WO2019009145A1 - Liquid crystal display device - Google Patents
Liquid crystal display device Download PDFInfo
- Publication number
- WO2019009145A1 WO2019009145A1 PCT/JP2018/024264 JP2018024264W WO2019009145A1 WO 2019009145 A1 WO2019009145 A1 WO 2019009145A1 JP 2018024264 W JP2018024264 W JP 2018024264W WO 2019009145 A1 WO2019009145 A1 WO 2019009145A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical compensation
- compensation layer
- liquid crystal
- polarizer
- display device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
Definitions
- the present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device suitable for a liquid crystal display device in a vertical alignment mode provided with a pair of circularly polarizing plates.
- a liquid crystal display device generally includes a pair of linear polarizing plates as polarizing plates and a liquid crystal cell provided between the pair of linear polarizing plates, and various types such as vertical alignment (VA) mode and horizontal alignment mode. Display modes have been developed.
- VA vertical alignment
- a VA mode liquid crystal display device using a pair of circularly polarizing plates instead of a pair of linear polarizing plates as a polarizing plate has been developed.
- a circularly polarizing plate is typically constituted by a combination of a linear polarizing plate and a ⁇ / 4 retardation plate.
- a VA mode liquid crystal display device using a pair of circularly polarizing plates is also referred to as a VA circularly polarizing panel.
- the VA circularly polarizing panel has room for improvement in that the contrast ratio at an oblique viewing angle is low and a sufficient viewing angle characteristic can not be obtained.
- various techniques for improving the viewing angle characteristics using an optical compensation film have been proposed.
- a pair of polarizers consisting of polarizer A and polarizer B and a pair of polarizers are disclosed.
- the liquid crystal display device is provided with a liquid crystal cell of the vertical alignment type disposed in the above, and Nz represented by the following formula (1) between the liquid crystal cell and the polarizer A and between the liquid crystal cell and the polarizer B: Retarders each having a value of more than 2.0, and the in-plane slow axis of the quarter-wave retarder has a positional relationship of approximately 45 ° with the transmission axis of the adjacent polarizer, At least one of A and the adjacent 1 ⁇ 4 ⁇ retardation plate and / or between the polarizer B and the adjacent 1 ⁇ 4 ⁇ retardation plate comprises a material layer having a negative intrinsic birefringence value, And the in-plane slow axis is in a positional relationship substantially parallel or nearly orthogonal to the absorption
- the first polarizer functions as a first polarizer and a ⁇ / 4 plate as a liquid crystal display device in which light leakage in an oblique direction is suppressed in the circular polarization mode and a viewing angle is accurately compensated.
- a liquid crystal cell, a second optical compensation layer functioning as a ⁇ / 4 plate, a third optical compensation layer having a refractive index relationship of nz>nx> ny, and a second polarizer Of the first optical compensation layer and the second optical compensation layer, with the retardation wavelength dispersion value (Re cell [450] / Re cell [550]) of the liquid crystal cell as ⁇ cell.
- the ⁇ ⁇ / 4 / ⁇ cell is 0.95 to 1.02.
- a liquid crystal display device having a liquid crystal panel is disclosed.
- the circular polarizer structure constituting the liquid crystal display element is the first for its optical compensation.
- the circular analyzer structure has an anisotropy of refractive index nx ny ny ⁇ between the second polarizing plate and the second retardation plate for optical compensation.
- variable retarder structure includes the uniaxial sixth retardation plate and the eighth retardation plate with nz and the uniaxial seventh retardation plate with the refractive index anisotropy of nx> ny ⁇ nz
- a liquid crystal display device comprising a ninth retardation plate having a refractive index anisotropy of nxnxny> nz between the first retardation plate and the second retardation plate for compensation It has been disclosed.
- Patent Document 4 wide viewing angle compensation can be performed on a liquid crystal cell, and circularly polarized light of a wide band can be obtained, which contributes to thinning, prevents thermal unevenness, and leaks light in black display.
- the retardation Rth 2 in the thickness direction is 30 to 400 nm
- the angle between the absorption axis of the polarizer and the slow axis of the first optical compensation layer is “+” or “ ⁇ ” 25 to 65 °
- a polarizing plate with an optical compensation layer is disclosed.
- Patent Document 5 as a liquid crystal display device which can be manufactured at low cost and simply and which can realize a high contrast ratio in a wide viewing angle range, a first polarizer, a first birefringence, and the like are disclosed.
- Layer, first ⁇ / 4 plate, liquid crystal cell, second ⁇ / 4 plate, second birefringent layer, and second absorption axis orthogonal to absorption axis of first polarizer A liquid crystal display device having a polarizer in this order, wherein the first birefringent layer satisfies Nz> 0.9, and the in-plane slow axis is orthogonal to the absorption axis of the first polarizer, In the first ⁇ / 4 plate, the in-plane slow axis forms an angle of about 45 ° with the absorption axis of the first polarizer, and the liquid crystal cell makes liquid crystal molecules in the liquid crystal cell perpendicular to the substrate surface
- the second ⁇ / 4 plate has the in-plane
- Patent Document 6 discloses that a long polymer film continuously supplied is conveyed while being held at both ends.
- a method for producing a retardation film which transports a molecular film while stretching it in a transverse direction orthogonal to the transport direction, in which the polymer film is stretched in the transverse direction with the polymer film slackened in the transport direction.
- a method of making a retardation film is disclosed.
- the characteristic change of the optical compensation layer is large in an environment such as a low temperature, a high temperature, a high temperature and high humidity environment, and a drop in display quality such as a drop in contrast or display unevenness may occur.
- a solvent adheres to the polarizing plate peeling of the optical compensation layer from the polarizer and breakage of the optical compensation layer may occur.
- the thickness of the polarizing plate becomes large and it is not suitable for mobile applications.
- a third optical compensation layer having a refractive index relationship of nz> nx> ny is used, but such an optical compensation layer has a viewing angle improving effect.
- the required optical parameters are narrow and the materials and processes that can be selected are limited. Furthermore, when materials that can be mass-produced are selected from the viewpoint of cost and production tact, the occurrence of the problems as described in (1) to (3) above can not be avoided.
- the liquid crystal display element of patent document 3 uses many retardation plates for optical compensation, when the number of optical compensation layers increases, the thickness of the liquid crystal panel containing a polarizing plate becomes like said (3). With the increase, the manufacturing cost will increase.
- the present invention has been made in view of the above-mentioned present situation, and can suppress deterioration of display quality even under severe environment, can suppress peeling and breakage at the time of solvent adhesion to a polarizing plate, and liquid crystal
- An object of the present invention is to provide a liquid crystal display device capable of thinning a panel.
- the inventors of the present invention can suppress deterioration in display quality even under severe environments, can suppress peeling and breakage at the time of solvent adhesion to a polarizing plate, and can make a liquid crystal panel thinner.
- the first optical compensation layer having an in-plane retardation Re of 15 nm or less and a thickness direction retardation Rth of ⁇ 60 nm or less, and Two layers with a second optical compensation layer having an internal retardation Re of 40 to 120 nm and satisfying 1 ⁇ Nz ⁇ 4 are provided, and the in-plane slow axis of the second optical compensation layer is a liquid crystal cell.
- the first polarizer, the first optical compensation layer, the second optical compensation layer, and the third optical compensation layer functioning as a ⁇ / 4 retardation plate are opposed to each other.
- a liquid crystal cell including a pair of substrates and a liquid crystal layer between the pair of substrates, a fourth optical compensation layer functioning as a ⁇ / 4 retardation plate, and a second polarizer in this order;
- the first polarizer has an absorption axis at an angle of substantially 90 ° to the absorption axis of the second polarizer, and the first optical compensation layer has an in-plane retardation Re of 15 nm or less
- the thickness direction retardation Rth is ⁇ 60 nm or less
- the second optical compensation layer has an in-plane retardation Re of 40 to 120 nm, satisfies 1 ⁇ Nz ⁇ 4, and an in-plane retardation
- the phase axis is substantially parallel to the absorption axis of the first polarizer
- the third optical compensation layer has an in-plan
- the third and fourth optical compensation layers may each satisfy 1 ⁇ Nz ⁇ 2.4.
- the liquid crystal display device does not include an optical compensation layer other than the first to third optical compensation layers between the first polarizer and the liquid crystal cell, and the liquid crystal cell and the second polarizer And the optical compensation layer other than the fourth optical compensation layer.
- the first optical compensation layer has a thickness direction retardation Rth of ⁇ 200 to ⁇ 100 nm
- the second optical compensation layer has an in-plane retardation Re of 60 to 110 nm, and 1 ⁇ Nz ⁇
- the third optical compensation layer may satisfy 1.4 ⁇ Nz ⁇ 2.4
- the fourth optical compensation layer may satisfy 1.4 ⁇ Nz ⁇ 2.4. .
- the liquid crystal display device has an in-plane retardation Re of 40 to 120 nm, satisfies 1 ⁇ Nz ⁇ 4, and an in-plane slow axis is substantially parallel to the absorption axis of the second polarizer.
- a fifth optical compensation layer, and a sixth optical compensation layer having an in-plane retardation Re of 15 nm or less and a thickness direction retardation Rth of -60 nm or less, the first polarizer,
- the layer and the second polarizer may be arranged in this order.
- the first and sixth optical compensation layers each have a thickness direction retardation Rth of -150 to -80 nm
- the second and fifth optical compensation layers each have an in-plane retardation Re of 40 to 90 nm and satisfy 1 ⁇ Nz ⁇ 1.4
- the third optical compensation layer satisfies 1.4 ⁇ Nz ⁇ 2.4
- the fourth optical compensation layer satisfies 1.4 ⁇ It may satisfy Nz ⁇ 2.4.
- the liquid crystal display device has a seventh optical compensation layer having an in-plane retardation Re of 15 nm or less, a thickness direction retardation Rth of 50 to 300 nm, and Nz> 1, and an in-plane retardation Re of And an eighth optical compensation layer having a thickness direction retardation Rth of 50 to 300 nm and Nz> 1 and having a thickness of 15 nm or less, the first polarizer, the first optical compensation layer, The second optical compensation layer, the third optical compensation layer, the seventh optical compensation layer, the liquid crystal cell, the eighth optical compensation layer, the fourth optical compensation layer, the fifth optical compensation
- the layer, the sixth optical compensation layer, and the second polarizer may be arranged in this order.
- the first and sixth optical compensation layers each have a thickness direction retardation Rth of -150 to -80 nm, and the second and fifth optical compensation layers each have an in-plane retardation Re of 40 to
- the third and fourth optical compensation layers may be 90 nm and satisfy 1 ⁇ Nz ⁇ 1.4, and each of the third and fourth optical compensation layers may satisfy 1 ⁇ Nz ⁇ 1.4.
- the in-plane retardation Re of the third optical compensation layer may be substantially the same as the in-plane retardation Re of the fourth optical compensation layer.
- Each of the third and fourth optical compensation layers may have an in-plane retardation Re of 100 to 175 nm.
- the present invention it is possible to suppress deterioration in display quality even when placed under a severe environment, to suppress peeling and breakage at the time of solvent adhesion to a polarizing plate, and to reduce the thickness of the liquid crystal panel.
- the device can be realized.
- FIG. 1 is a schematic plan view of a liquid crystal display device according to Embodiment 1.
- FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 1.
- FIG. 1 is a schematic perspective view of a liquid crystal display device according to Embodiment 1.
- FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to a lamination structure 1-1 of Embodiment 1.
- FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to laminated structure 1-2 in embodiment 1.
- FIG. 1 is a schematic perspective view of a liquid crystal display device according to a laminated structure 1-2 of Embodiment 1.
- FIG. 1 is a schematic plan view of a liquid crystal display device according to Embodiment 1.
- FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 1.
- FIG. 1 is a schematic perspective view of a liquid crystal display device according to Embodiment 1.
- FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to laminated structure 1-3 of embodiment 1.
- FIG. 1 is a schematic perspective view of a liquid crystal display device according to laminated structure 1-3 of embodiment 1.
- FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Example 1.
- FIG. 5 is a schematic cross-sectional view of a liquid crystal display device according to Comparative Example 1;
- FIG. 7 is an iso-contrast ratio contour line of the liquid crystal display device according to Example 1.
- FIG. It is an iso-contrast ratio contour line of the liquid crystal display device which concerns on the comparative example 1.
- FIG. It is an iso-contrast ratio contour line of the liquid crystal display device which concerns on the reference example 1.
- FIG. 6 is a schematic cross-sectional view of a liquid crystal display device according to Example 2.
- FIG. 10 is an iso-contrast ratio contour line of the liquid crystal display device according to Example 2.
- FIG. 7 is a schematic cross-sectional view of a liquid crystal display device according to Example 3.
- FIG. 16 is an iso-contrast ratio contour line of the liquid crystal display device according to Example 3.
- Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the refractive index in the in-plane direction orthogonal to the slow axis "Nz” is the refractive index in the thickness direction.
- Refractive index (nx, ny, nz) “Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the refractive index in the in-plane direction orthogonal to the slow axis "Nz” is the refractive index in the thickness direction.
- In-plane retardation (Re) refers to the in-plane retardation value of a layer (film) at a wavelength of 550 nm at 23 ° C., unless otherwise specified.
- Re (nx ⁇ ny) ⁇ d, where d (nm) is the thickness of the layer (film).
- the optical compensation layer has an in-plane retardation Re of 15 nm or more and a retardation Rth in the thickness direction of +55 nm or more or -15 nm or less for light of wavelength 550 nm unless otherwise specified. And the function and optical performance thereof are not particularly limited. That is, the optical compensation layer is a layer satisfying 15 nm ⁇ Re and Rth ⁇ ⁇ 15 nm or +55 nm ⁇ Rth.
- the viewing surface side and the rear surface viewing surface side mean the side closer to the screen (display surface) of the liquid crystal display device, and the rear surface side is more about the screen (display surface) of the liquid crystal display device It means the far side.
- a member (for example, an optical compensation layer) adjacent to another member (for example, an optical compensation layer) means that an optical compensation layer is not provided between both members, for example, A form in which a layer having no optical anisotropy is disposed between the two members is included.
- the layer having no optical anisotropy means a layer satisfying Re ⁇ 15 nm and ⁇ 15 nm ⁇ Rth ⁇ +55 nm.
- FIG. 1 is a schematic plan view of the liquid crystal display device according to the first embodiment.
- FIG. 2 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
- the liquid crystal display device 1 according to the present embodiment includes a liquid crystal panel 2, and the liquid crystal panel 2 has a display area 2 a corresponding to the shape.
- a plurality of pixels (not shown) are arranged in a matrix in the display area 2a, and an image is displayed in the display area 2a.
- the liquid crystal display device 1 is a transmissive or semi-transmissive liquid crystal display device, and includes a liquid crystal panel 2 and a backlight (not shown) disposed on the back side of the liquid crystal panel 2 as shown in FIG.
- the liquid crystal panel 2 includes a first polarizer 11, a first optical compensation layer 21, a second optical compensation layer 22, and a third optical compensation layer 23 functioning as a ⁇ / 4 retardation plate.
- a liquid crystal cell 30, a fourth optical compensation layer 24 functioning as a ⁇ / 4 retardation plate, and a second polarizer 12 are provided in this order.
- the first circularly polarizing plate 3 including the first polarizer 11, the first optical compensation layer 21, the second optical compensation layer 22, and the third optical compensation layer 23, and the fourth optical compensation
- a second circularly polarizing plate 4 including a layer 24 and a second polarizer 12 is provided on both sides of the liquid crystal panel 2.
- the liquid crystal cell 30 also includes a pair of substrates 31 and 32 facing each other, and a liquid crystal layer 33 between the pair of substrates 31 and 32.
- FIG. 3 is a schematic perspective view of the liquid crystal display device according to the first embodiment.
- the absorption axis 11a forms an angle of substantially 90 ° with the absorption axis 12a of the second polarizer 12, and the second optical compensation layer 22
- the in-plane slow axis 22 a is substantially parallel to the absorption axis 11 a of the first polarizer 11, and the third optical compensation layer 23 has an in-plane slow axis 23 a of the absorption of the first polarizer 11.
- the fourth optical compensation layer 24 has an in-plane slow axis 24 a relative to the in-plane slow axis 23 a of the third optical compensation layer 23 at an angle of substantially 45 ° or 135 ° with respect to the axis 11 a.
- the angle is substantially 90 degrees.
- the liquid crystal cell 30 aligns liquid crystal molecules in the liquid crystal layer 33 substantially perpendicularly to the pair of substrates 31 and 32 in black display.
- the first optical compensation layer 21 has an in-plane retardation Re of 15 nm or less, and a thickness direction retardation Rth of ⁇ 60 nm or less, and the second optical compensation layer 22 has an in-plane retardation Re of Is 40 to 120 nm, and 1 ⁇ Nz ⁇ 4 is satisfied.
- the first to fourth optical compensation layers 21 to 24 have relatively many options for their materials.
- the optical compensation layer 24 to 24 it is possible to use an optical compensation layer having a relatively small change in characteristics such as optical parameters even under severe environments such as low temperature, high temperature, high temperature and high humidity environment. Therefore, even after the liquid crystal display device 1 is left in a severe environment such as a low temperature, a high temperature, a high temperature and high humidity environment, it is possible to suppress a decrease in display quality (for example, contrast, display unevenness).
- a material having high durability to a solvent can be selected as the material of the first to fourth optical compensation layers 21 to 24, so that the solvent to the polarizing plate (circularly polarizing plates 3 and 4) Of the first to fourth optical compensation layers 21 to 24 can be suppressed from peeling from the first or second polarizer 11 or 12 and the first to fourth optical compensation layers 21 to 24 The occurrence of 24 fractures can be suppressed. Furthermore, according to the liquid crystal display device 1, the number of optical compensation layers can be reduced to a minimum of four (first to fourth optical compensation layers 21 to 24), thereby improving productivity (that is, reducing manufacturing costs). At the same time, the overall thickness of the liquid crystal display device 1 can be reduced.
- the liquid crystal display device 1 can further include an optical compensation layer in addition to the first to fourth optical compensation layers 21 to 24 as described later, but the second optical compensation layer 22 is a first optical
- the third optical compensation layer 23 is preferably disposed adjacent to the second optical compensation layer 22.
- each member may be disposed such that the first polarizer 11 and the second polarizer 12 are on the viewing surface side and the back surface, respectively.
- the respective members may be arranged such that the second polarizer 12 and the first polarizer 11 are on the viewing surface side and the back surface side, respectively.
- the liquid crystal display device 1 is a normally black mode liquid crystal display device which performs black display when no voltage is applied.
- the polarizers 11 and 12 are arranged in crossed nicols, and as described above
- One polarizer 11 has an absorption axis 11 a substantially at an angle of 90 ° with respect to the absorption axis 12 a of the second polarizer 12.
- the fact that the absorption axis 11a forms an angle of substantially 90 ° with respect to the absorption axis 12a means that, more specifically, the angle (absolute value) between the two axes is within a range of 90 ⁇ 2 °. This is preferably within the range of 90 ⁇ 0.6 °, and particularly preferably 90 ° (perfectly orthogonal).
- the in-plane slow axis 22 a is substantially parallel to the absorption axis 11 a of the first polarizer 11.
- that the in-plane slow axis 22a is substantially parallel to the absorption axis 11a more specifically means that the angle x between the two axes satisfies -5 ° ⁇ x ⁇ 5 °.
- Preferably satisfies -3 ° ⁇ x ⁇ 3 °, more preferably satisfies ⁇ 1 ° ⁇ x ⁇ 1 °, still more preferably satisfies ⁇ 0.5 ° ⁇ x ⁇ 0.5 °, particularly preferably x 0 (perfectly parallel). If the angle x satisfies x ⁇ ⁇ 5 ° or 5 ° ⁇ x, the normal contrast and the viewing angle characteristics may be degraded.
- the in-plane slow axis 23a forms an angle of substantially 45 ° or 135 ° with the absorption axis 11a of the first polarizer 11.
- that the in-plane slow axis 23a makes an angle of substantially 45 ° or 135 ° with the absorption axis 11a means that the angle (absolute value) between the two axes is 45 ⁇ 5 ° or 135 ⁇ 5.
- the in-plane slow axis 24a forms an angle of substantially 90 ° with the in-plane slow axis 23a of the third optical compensation layer 23.
- the fact that the in-plane slow axis 24a forms an angle of substantially 90 ° with the in-plane slow axis 23a means that the angle (absolute value) between the two axes is 90 ⁇ , more specifically. It means within the range of 2 °, preferably within the range of 90 ⁇ 0.6 °, and particularly preferably 90 ° (completely orthogonal).
- polarizer Any appropriate polarizer may be employed as the first polarizer 11 and the second polarizer 12 depending on the purpose.
- a hydrophilic polymer film such as a polyvinyl alcohol-based film (hereinafter, also referred to as a PVA film), a partially formalized polyvinyl alcohol-based film, or an ethylene / vinyl acetate copolymer-based partially saponified film
- a dichromatic substance dichroic dye
- a polarizer obtained by adsorbing a dichroic substance (dichroic dye) such as iodine to a polyvinyl alcohol-based film and uniaxially stretching it is particularly preferable because the polarization dichroic ratio is high.
- the thickness of these polarizers is not particularly limited, but in general, it is about 5 to 30 ⁇ m.
- a polarizer obtained by adsorbing iodine to a polyvinyl alcohol-based film and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching it to 3 to 7 times its original length. . If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or it may be immersed in an aqueous solution such as potassium iodide. Furthermore, if necessary, the polyvinyl alcohol-based film may be dipped in water and rinsed before dyeing.
- Stretching may be carried out after dyeing with iodine, may be stretched while dyeing, or may be dyed with iodine after being stretched. It can also be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
- the first polarizer 11 and the second polarizer 12 may each be provided with a protective layer on the viewing surface side and the back surface side.
- the protective layer is formed of any suitable film that can be used as a protective layer of a polarizer.
- Specific examples of the material that is the main component of the film include, for example, cellulose resins such as triacetyl cellulose (TAC), and transparent resins such as cycloolefin resins. The cycloolefin resin will be described in detail later.
- a film having triacetyl cellulose as a main component is also referred to as a TAC film
- a film having a cycloolefin resin, in particular, a cycloolefin polymer (COP) as a main component is also referred to as a COP film.
- COP cycloolefin polymer
- the protective layer when a protective layer is provided on the liquid crystal cell 30 side of the first polarizer 11 and / or the second polarizer 12, the protective layer (inner protective layer) preferably has optical isotropy.
- the retardation Rth in the thickness direction of the inner protective layer is preferably more than -15 nm and less than +15 nm, more preferably -10 nm or more and +10 nm or less, still more preferably -6 nm or more and +6 nm or less, particularly preferably -3 nm or more and +3 nm or less.
- the in-plane retardation Re of the inner protective layer is preferably 0 nm or more and less than 15 nm, more preferably 0 nm or more and 10 nm or less, still more preferably 0 nm or more and 6 nm or less, and particularly preferably 0 nm or more and 3 nm or less.
- an optical compensation layer for example, the first optical compensation layer 21 or the fourth optical compensation layer 21 immediately adjacent to the liquid crystal cell 30 side of the first polarizer 11 and the second polarizer 12.
- the optical compensation layer 24 or the like may be used as a protective layer.
- the first optical compensation layer 21 satisfies Re ⁇ 15 nm and Rth ⁇ ⁇ 60 nm.
- the in-plane retardation Re of the first optical compensation layer 21 is preferably 0 to 10 nm, more preferably 0 to 5 nm, still more preferably 0 to 3 nm, and still more preferably 0 to 1 nm. Is particularly preferred.
- the thickness direction retardation Rth of the first optical compensation layer 21 can be appropriately set within the above range according to the optical parameters of the other members.
- the first optical compensation layer 21 can be regarded as substantially optically isotropic in the plane when the in-plane retardation Re is sufficiently small, such as 15 nm or less, so the surface of the first optical compensation layer 21 is
- the arrangement direction in the inside is not particularly limited.
- the second optical compensation layer 22 satisfies 40 nm ⁇ Re ⁇ 120 nm and 1 ⁇ Nz ⁇ 4.
- the in-plane retardation Re of the second optical compensation layer 22 can be appropriately set within the above range according to the optical parameters of the other members.
- the third optical compensation layer 23 and the fourth optical compensation layer 24 function as ⁇ / 4 retardation plates as described above.
- the ⁇ / 4 retardation plate is an electron optical birefringence plate that serves to rotate the polarization plane of the light beam, and has an optical path of 1 ⁇ 4 wavelength between linearly polarized light vibrating in directions perpendicular to each other.
- the phase between the ordinary ray component and the extraordinary ray component acts so as to be shifted by a quarter cycle, and circularly polarized light is converted to linearly polarized light (or linearly polarized light to circularly polarized light). Therefore, the first polarizer 11 and the third optical compensation layer 23, and the second polarizer 12 and the fourth optical compensation layer 24 function as left and right circularly polarizing plates orthogonal to each other.
- the third optical compensation layer 23 and the fourth optical compensation layer 24 each have an in-plane retardation Re of approximately 137.5 nm, but may be 100 to 175 nm, and 110 to 165 nm. Is preferable, and 130 to 145 nm is more preferable. From the viewpoint of maintaining high contrast, the in-plane retardation Re of the third optical compensation layer 23 is preferably substantially the same as the in-plane retardation Re of the fourth optical compensation layer 24.
- the in-plane retardation Re of the third optical compensation layer 23 and the fourth optical compensation layer 24 is substantially the same, more specifically, the difference between the two in-plane retardations Re ( It means that the absolute value) is 7.64 nm or less, preferably 2 nm or less, more preferably 1 nm or less, and particularly preferably 0 nm (completely the same).
- the third optical compensation layer 23 and the fourth optical compensation layer 24 each satisfy 1 ⁇ Nz ⁇ 2.4.
- the material and formation method of the first to fourth optical compensation layers 21 to 24 there is no particular limitation on the material and formation method of the first to fourth optical compensation layers 21 to 24.
- the polymer film is processed by stretching or the like, the orientation of the liquid crystalline material is fixed, and it is composed of an inorganic material.
- thin plates or the like to be used can be used, among them, one obtained by processing a polymer film by drawing or the like and one obtained by fixing the orientation of a liquid crystalline material are preferable.
- the liquid crystal compound is preferably a polymerizable liquid crystal.
- the first to fourth optical compensation layers 21 to 24 in the case of a polymer film, for example, a solvent cast method, a melt extrusion method or the like can be used. It may be a method of simultaneously forming a plurality of birefringent layers by a co-extrusion method. As long as the desired retardation is developed, it may be non-stretching or may be stretched.
- the stretching method is also not particularly limited, and it is a special stretching in which stretching is performed under the action of the shrinking force of the heat shrinkable film, in addition to the inter-roll tensile stretching method, inter-roll compression stretching method, tenter transverse uniaxial stretching method, longitudinal and transverse biaxial stretching method. A law etc. can be used.
- a method of applying a liquid crystalline material on a substrate film subjected to alignment treatment, and orienting and fixing can be used. Even if there is a method in which the substrate film is not subjected to special orientation processing as long as the desired phase difference is expressed, or a method in which the film is peeled off from the substrate film and transferred to another film after orientation fixation. Good. Furthermore, a method in which the orientation of the liquid crystal material is not fixed may be used. Also in the case of a non-liquid crystal material, the same formation method as the liquid crystal material may be used.
- the liquid crystalline material may be coated on the second optical compensation layer 22.
- transparent resin such as cycloolefin system resin, cellulose system resin, (meth) acrylic resin
- (meth) acrylic resin is mentioned, for example.
- (meth) acrylic-type resin represents at least 1 sort (s) chosen from the group which consists of acrylic resin and methacrylic resin. The same applies to other terms with "(meth)”.
- the above cycloolefin resin is not particularly limited as long as it is a resin having a monomer unit consisting of cyclic olefin (cycloolefin), and may be any of cycloolefin polymer (COP) or cycloolefin copolymer (COC) .
- the cycloolefin copolymer refers to a non-crystalline cyclic olefin resin which is a copolymer of a cyclic olefin and an olefin such as ethylene.
- polycyclic cyclic olefin examples include norbornenes such as norbornene, methyl norbornene, dimethyl norbornene, ethyl norbornene, ethylidene norbornene and butyl norbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene and the like
- Examples include tetracyclododecenes such as dicyclopentadienes, tetracyclododecene, methyltetracyclododecene and dimethyltetracyclododecene, and polymers of cyclopentadienes such as tricyclopentadiene and tetracyclopentadiene.
- examples of monocyclic cyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene and cyclododecatriene.
- norbornenes are preferable in terms of transparency, moisture resistance, and retardation control.
- cellulose resin part or all of hydrogen atoms in hydroxyl groups of cellulose obtained from raw material cellulose such as cotton linta and wood pulp (hardwood pulp and softwood pulp) are substituted with acetyl group, propionyl group and / or butyryl group
- Cellulose organic acid ester or cellulose mixed organic acid ester For example, those composed of cellulose acetate, propionate, butyrate, mixed esters thereof and the like can be mentioned. Among them, triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate and cellulose acetate butyrate are preferable.
- the (meth) acrylic resin is a polymer containing a structural unit derived from a (meth) acrylic monomer.
- the polymer is typically a polymer containing a methacrylic acid ester.
- the proportion of constituent units derived from methacrylic acid ester is a polymer containing 50% by weight or more based on all constituent units.
- the (meth) acrylic resin may be a homopolymer of methacrylic acid ester, or may be a copolymer containing a structural unit derived from another polymerizable monomer. In this case, the proportion of constituent units derived from other polymerizable monomers is preferably 50% or less based on all constituent units.
- methacrylic acid alkyl ester which can comprise the said (meth) acrylic-type resin
- methacrylic acid alkyl ester is preferable.
- alkyl methacrylate methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate
- methacrylic acid alkyl esters having 1 to 8 carbon atoms in the alkyl group such as 2-hydroxyethyl methacrylate.
- the carbon number of the alkyl group contained in the methacrylic acid alkyl ester is preferably 1 to 4.
- the (meth) acrylic resin only one kind of methacrylic acid ester may be used alone, or two or more kinds thereof may be used in combination.
- Examples of the other polymerizable monomer which can constitute the (meth) acrylic resin include acrylic acid esters and compounds having a polymerizable carbon-carbon double bond in another molecule.
- the other polymerizable monomers may be used alone or in combination of two or more.
- acrylic acid ester acrylic acid alkyl ester is preferable.
- alkyl acrylate methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate
- alkyl acrylates having 1 to 8 carbon atoms in the alkyl group such as 2-hydroxyethyl acrylate.
- the carbon number of the alkyl group contained in the acrylic acid alkyl ester is preferably 1 to 4. In the (meth) acrylic resin, only one acrylic ester may be used alone, or two or more acrylic esters may be used in combination.
- Examples of the other compound having a polymerizable carbon-carbon double bond in the molecule include vinyl compounds such as ethylene, propylene and styrene, and vinyl cyan compounds such as acrylonitrile.
- vinyl compounds such as ethylene, propylene and styrene
- vinyl cyan compounds such as acrylonitrile.
- the compound having a polymerizable carbon-carbon double bond in the other molecule one type may be used alone, or two or more types may be used in combination.
- the polymerizable liquid crystal is a compound having a polymerizable group and having liquid crystallinity.
- the polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group.
- the photopolymerizable group refers to a group capable of participating in the polymerization reaction by active radicals or acids generated from the photopolymerization initiator.
- Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, oxetanyl group and the like.
- the liquid crystallinity may be a thermotropic liquid crystal or a lyotropic liquid crystal. If the thermotropic liquid crystals are classified according to the degree of order, they may be nematic liquid crystals or smectic liquid crystals, but from the viewpoint of easiness of film formation, thermotropic nematic liquid crystals are preferred. .
- polymerizable liquid crystal examples include “3.8.6 Network (fully cross-linked type)”, “6. .5.1 Liquid Crystal Materials b. Compounds Having a Polymerizable Group Among the Compounds Described in the Polymerizable Nematic Liquid Crystal Material], compounds disclosed in JP 2010-31223 A, JP 2010-270108 A, JP 2011-6360 A And polymerizable liquid crystals described in JP-A-2011-207765.
- All of these materials are materials in which the problems as described in the above (1) to (3) are solved or the influence is small, but among them, as the first optical compensation layer 21, a polymerizable liquid crystal It is preferable that the polymer is oriented in parallel to the base material (substrate) and polymerized, and as the second to fourth optical compensation layers 22 to 24, those obtained by drawing a cycloolefin resin, It is preferable to use one obtained by stretching acetyl cellulose, one obtained by stretching a (meth) acrylic resin, and one obtained by orientating and polymerizing a polymerizable liquid crystal in parallel to a substrate (substrate).
- optical compensation layer formed by the above-mentioned material and forming method as the first to fourth optical compensation layers 21 to 24, occurrence of peeling and breakage even if the solvent adheres to the circularly polarizing plates 3 and 4 Can be suppressed.
- the liquid crystal cell 30 includes the pair of substrates 31 and 32 facing each other, and the liquid crystal layer 33 between the pair of substrates 31 and 32.
- a color filter substrate On one of the substrates 31 and 32 (color filter substrate), a color filter, a black matrix and a common electrode are provided.
- a switching element typically, a TFT for controlling the electro-optical characteristics of liquid crystal, and a scanning line for applying a gate signal to the switching element And a pixel electrode.
- the color filter may have a thickness direction retardation Rth of about 10 to 50 nm.
- the color filter may be provided on the active matrix substrate side. The distance between the substrates 31 and 32 (cell gap) is controlled by the spacer.
- an alignment film made of polyimide is provided on the side of each of the substrates 31 and 32 in contact with the liquid crystal layer 33.
- the liquid crystal molecules in the liquid crystal layer 33 are substantially perpendicular to the pair of substrates 31 and 32 during black display (black display of the liquid crystal display device 1). Orientation in the normal direction).
- substantially perpendicular also includes the case where the alignment vector of the liquid crystal molecules is tilted with respect to the normal direction of each substrate 31, 32, that is, the case where the liquid crystal molecules have a tilt angle.
- the tilt angle (angle from the normal) is at least 0 ° and preferably at all positions of the displayable portion of the liquid crystal panel 2 (the modulatable portion of the light except for the light shielding portion in the display area 2a).
- the liquid crystal molecules are aligned substantially perpendicular (normal direction) to the surfaces of the substrates 31 and 32 when no voltage is applied.
- Such alignment can be realized, for example, by arranging a nematic liquid crystal having negative dielectric anisotropy between substrates on which a vertical alignment film is formed as an alignment film.
- the major axes of the liquid crystal molecules are aligned parallel to the surface of each substrate.
- the liquid crystal molecules in this state exhibit birefringence with respect to linearly polarized light that has entered the liquid crystal layer through the polarizer on the back side, and the polarization state of the incident light changes in accordance with the inclination of the liquid crystal molecules.
- a predetermined maximum voltage is applied, light passing through the liquid crystal layer becomes, for example, linearly polarized light whose polarization direction is rotated by 90 °. Therefore, light passing through the polarizer on the viewing surface side is displayed in a bright state (white display) Is obtained.
- gradation display can be performed by changing the applied voltage to control the inclination of the liquid crystal molecules and changing the transmitted light intensity from the polarizer on the observation surface side.
- the polarizer axis orientation and the tilt orientation of liquid crystal molecules at the time of voltage application are set to form an angle of 45 °.
- the transmittance when a birefringent medium is sandwiched between crossed Nicol polarizers is sin 2 (2 ⁇ ), where the angle between the axis of the polarizer and the slow axis of the birefringent medium is ⁇ (unit: rad)
- ⁇ unit: rad
- the tilt orientation of liquid crystal molecules can be divided into four domains of 45 °, 135 °, 225 °, and 315 °. Even in the MVA mode divided into such four domains, Schlieren orientation or orientation in an unintended direction is often observed in the vicinity of domain boundaries or orientation control means, which causes transmittance loss. There is.
- the transmittance when the birefringent medium is sandwiched between the left and right circularly polarizing plates 3 and 4 orthogonal to each other is Because it does not depend on the angle between the axes of the polarizers 11 and 12 and the slow axis of the birefringent medium, the liquid crystal molecules are not inclined at 45 °, 135 °, 225 °, 315 °, If the inclination can be controlled, the desired transmittance can be secured. Therefore, for example, a circular protrusion may be disposed at the center of the pixel, and liquid crystal molecules may be inclined in all directions, or may be inclined in random directions without controlling the inclination direction at all. May be
- the retardation (panel retardation) ⁇ n ⁇ d of the liquid crystal layer 33 represented by the product of ⁇ n and cell thickness (cell gap, ie, thickness of the liquid crystal layer 33) d of the liquid crystal material is not particularly limited. Usually, it is 200 to 500 nm, preferably 250 to 450 nm, and more preferably 300 to 400 nm.
- FIG. 4 is a schematic cross-sectional view of the liquid crystal display device according to the multilayer structure 1-1 of the first embodiment.
- the liquid crystal display device 1 of this embodiment does not include an optical compensation layer other than the first to third optical compensation layers 21 to 23 between the first polarizer 11 and the liquid crystal cell 30.
- an optical compensation layer other than the fourth optical compensation layer 24 may not be provided between the liquid crystal cell 30 and the second polarizer 12.
- the first optical compensation layer 21 has a thickness direction retardation Rth of -200 to -100 nm (more preferably -180 to -120 nm), and the second optical compensation layer 22 has an in-plane position.
- the third optical compensation layer 23 has a phase difference Re of 60 to 110 nm (more preferably 70 to 100 nm) and satisfies 1 ⁇ Nz ⁇ 1.4 (more preferably 1 ⁇ Nz ⁇ 1.2).
- the fourth optical compensation layer 24 satisfies 1.4 ⁇ Nz ⁇ 2.4 (more preferably 1.5 ⁇ Nz ⁇ 1.8), and 1.4 ⁇ Nz ⁇ 2.4 (more preferably 2 ⁇ ). It is preferable to satisfy Nz ⁇ 2.3).
- the first polarizer 11 may be disposed adjacent to the first optical compensation layer 21, and the third optical compensation layer 23 and the fourth optical compensation layer 24 may be disposed in the liquid crystal cell 30.
- the second polarizer 12 may be disposed adjacent to the fourth optical compensation layer 24.
- FIG. 5 is a schematic cross-sectional view of the liquid crystal display device according to the multilayer structure 1-2 in the first embodiment.
- FIG. 6 is a schematic perspective view of the liquid crystal display device according to the layered structure 1-2 of the first embodiment.
- the liquid crystal display device 1 of the present embodiment further includes a fifth optical compensation layer 25 and a sixth optical compensation layer 26, and the first polarizer 11 and the first optical compensation.
- the two polarizers 12 may be arranged in this order.
- the fifth optical compensation layer 25 has an in-plane retardation Re of 40 to 120 nm and satisfies 1 ⁇ Nz ⁇ 4.
- the fifth optical compensation layer 25 has the in-plane slow axis 25 a substantially parallel to the absorption axis 12 a of the second polarizer 12.
- the sixth optical compensation layer 26 has an in-plane retardation Re of 15 nm or less and a thickness direction retardation Rth of -60 nm or less.
- the laminated structure 1-1 it is possible to exhibit more excellent viewing angle characteristics than the laminated structure 1-1.
- the laminated structure 1-1 is more preferable than the present laminated structure.
- the material having high durability to the solvent can be selected as the material of the fifth to sixth optical compensation layers 25 to 26, the solvent is attached to the polarizing plates (circularly polarizing plates 3 and 4)
- peeling of the first to sixth optical compensation layers 21 to 26 from the first or second polarizer 11 or 12 can be suppressed, and peeling and the first to sixth optical compensation layers 21 can be suppressed. It is possible to suppress the occurrence of breakage of ⁇ 26.
- the first and sixth optical compensation layers 21 and 26 each have a thickness direction retardation Rth of ⁇ 150 to ⁇ 80 nm (more preferably ⁇ 120 to ⁇ 90 nm), and
- the fifth optical compensation layers 22 and 25 each have an in-plane retardation Re of 40 to 90 nm (more preferably 40 to 60 nm), and 1 ⁇ Nz ⁇ 1.4 (more preferably 1 ⁇ Nz ⁇ ).
- the third optical compensation layer 23 satisfies 1.4 ⁇ Nz ⁇ 2.4 (more preferably 1.5 ⁇ Nz ⁇ 1.8), and the fourth optical compensation layer 24 It is preferable to satisfy 1.4 ⁇ Nz ⁇ 2.4 (more preferably 2 ⁇ Nz ⁇ 2.3).
- the fifth optical compensation layer 25 is preferably disposed adjacent to the sixth optical compensation layer 26, and the fourth optical compensation layer 24 is disposed adjacent to the fifth optical compensation layer 25.
- the first polarizer 11 may be disposed adjacent to the first optical compensation layer 21, and the third optical compensation layer 23 and the fourth optical compensation layer 24 are disposed adjacent to the liquid crystal cell 30.
- the second polarizer 12 may be disposed adjacent to the sixth optical compensation layer 26.
- the in-plane slow axis 25 a is substantially parallel to the absorption axis 12 a of the second polarizer 12.
- that the in-plane slow axis 25a is substantially parallel to the absorption axis 12a more specifically means that the angle between the two axes is in the range of 0 ⁇ 3 °, It is preferably in the range of 0 ⁇ 1 °, more preferably in the range of 0 ⁇ 0.5 °, and particularly preferably 0 ° (perfectly parallel).
- the fifth optical compensation layer 25 satisfies 40 nm ⁇ Re ⁇ 120 nm and 1 ⁇ Nz ⁇ 4.
- the in-plane retardation Re of the fifth optical compensation layer 25 can be appropriately set within the above range according to the optical parameters of the other members.
- the sixth optical compensation layer 26 satisfies Re ⁇ 15 nm and Rth ⁇ ⁇ 60 nm.
- the in-plane retardation Re of the sixth optical compensation layer 26 is preferably 0 to 10 nm, more preferably 0 to 5 nm, still more preferably 0 to 3 nm, and further preferably 0 to 1 nm. Is particularly preferred.
- the thickness direction retardation Rth of the sixth optical compensation layer 26 can be appropriately set within the above range according to the optical parameters of the other members.
- the sixth optical compensation layer 26 can be regarded as substantially optically isotropic in the plane when the in-plane retardation Re is sufficiently small, such as 15 nm or less, so the surface of the sixth optical compensation layer 26 is
- the arrangement direction in the inside is not particularly limited.
- Examples of materials and formation methods of the fifth to sixth optical compensation layers 25 to 26 include the same ones as those of the first to fourth optical compensation layers 21 to 24 described above.
- the fifth optical compensation layer 25 one obtained by drawing a cycloolefin resin, one obtained by drawing a cellulose resin, particularly triacetyl cellulose, one obtained by drawing a (meth) acrylic resin, and It is preferable that the liquid crystal is aligned and parallel to the base material (substrate) and polymerized
- the sixth optical compensation layer 26 one obtained by aligning and polymerizing the polymerizable liquid crystal parallel to the base material (substrate) It is suitable.
- FIG. 7 is a schematic cross-sectional view of the liquid crystal display device according to the layered structure 1-3 of the first embodiment.
- FIG. 8 is a schematic perspective view of the liquid crystal display device according to the layered structure 1-3 of the first embodiment.
- the liquid crystal display device 1 of the present embodiment further includes a seventh optical compensation layer 27 and an eighth optical compensation layer 28, and the first polarizer 11, the first optical compensation.
- the optical compensation layer 25, the sixth optical compensation layer 26, and the second polarizer 12 may be disposed in this order.
- the seventh optical compensation layer 27 and the eighth optical compensation layer 28 each have an in-plane retardation Re of 15 nm or less, a thickness direction retardation Rth of 50 to 300 nm, and satisfy Nz> 1.
- the laminated structure 1-1 compared to the laminated structure 1-1, it is possible to exhibit viewing angle characteristics with less omnidirectional bias.
- the laminated structure 1-1 is more preferable than the present laminated structure.
- the material having high durability to the solvent can be selected as the material of the seventh to eighth optical compensation layers 27 to 28, the solvent is attached to the polarizing plates (circularly polarizing plates 3 and 4)
- peeling of the first to eighth optical compensation layers 21 to 28 from the first or second polarizer 11 or 12 can be suppressed, and peeling and the first to eighth optical compensation layers 21 can be suppressed. It is possible to suppress the occurrence of breakage of ⁇ 28.
- the first and sixth optical compensation layers 21 and 26 each have a thickness direction retardation Rth of ⁇ 150 to ⁇ 80 nm (more preferably ⁇ 120 to ⁇ 90 nm), and
- the fifth optical compensation layers 22 and 25 each have an in-plane retardation Re of 40 to 90 nm (more preferably 45 to 60 nm), and 1 ⁇ Nz ⁇ 1.4 (more preferably 1 ⁇ Nz ⁇ ). It is preferable to satisfy 1.2), and the third and fourth optical compensation layers 23 and 24 each satisfy 1 ⁇ Nz ⁇ 1.4 (more preferably 1 ⁇ Nz ⁇ 1.2).
- the fifth optical compensation layer 25 is preferably disposed adjacent to the sixth optical compensation layer 26, and the fourth optical compensation layer 24 is disposed adjacent to the fifth optical compensation layer 25.
- the seventh optical compensation layer 27 is preferably disposed adjacent to the third optical compensation layer 23, and the eighth optical compensation layer 28 is disposed adjacent to the fourth optical compensation layer 24. Is preferred.
- the first polarizer 11 may be disposed adjacent to the first optical compensation layer 21, and the seventh and eighth optical compensation layers 27 and 28 may be disposed adjacent to the liquid crystal cell 30.
- the second polarizer 12 may be disposed adjacent to the sixth optical compensation layer 26.
- the seventh and eighth optical compensation layers 27 and 28 satisfy Re ⁇ 15 nm, 50 nm ⁇ Rth ⁇ 300 nm, and Nz> 1.
- the in-plane retardation Re of each of the seventh and eighth optical compensation layers 27 and 28 is preferably 0 to 10 nm, more preferably 0 to 5 nm, and still more preferably 0 to 3 nm. Particularly preferred is 0 to 1 nm.
- the thickness direction retardation Rth of the seventh and eighth optical compensation layers 27 and 28 can be appropriately set within the above range according to the optical parameters of the other members.
- the seventh and eighth optical compensation layers 27 and 28 can be regarded as substantially optically isotropic in the plane when the in-plane retardation Re is sufficiently small, such as 15 nm or less.
- the arrangement direction of the eight optical compensation layers 27 and 28 in the plane is not particularly limited.
- the thickness direction retardations Rth of the seventh and eighth optical compensation layers 27 and 28 may be different from each other or may be the same, and in any case, the sum of the thickness direction retardations Rth of the both is the same. It can function as well.
- the total of the thickness direction retardations Rth of the seventh and eighth optical compensation layers 27 and 28 is preferably 100 nm or more and 300 nm or less, and more preferably 150 nm or more and 250 nm or less.
- Examples of materials and forming methods of the seventh to eighth optical compensation layers 27 to 28 include the same ones as those of the first to fourth optical compensation layers 21 to 24 described above. Among them, as the seventh to eighth optical compensation layers 27 to 28, those obtained by stretching a cycloolefin resin, and those obtained by stretching a cellulose resin, particularly triacetyl cellulose, and a (meth) acrylic resin are preferred.
- each axial direction is represented by an angle when the right direction of the display area of the liquid crystal panel is 0 ° and the counterclockwise direction is positive when viewed from the viewing surface side. .
- FIG. 9 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
- a front polarizer a first optical compensation layer as a positive C plate, a second optical compensation layer as a positive A plate, a third optical compensation layer as a ⁇ / 4 retardation plate, A liquid crystal cell, a fourth optical compensation layer as a ⁇ / 4 retardation plate, a liquid crystal panel in which a back polarizer is disposed in this order from the observation surface side, and a backlight (not shown) of the liquid crystal panel
- the optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG.
- the front polarizer corresponds to the first polarizer
- the back polarizer corresponds to the second polarizer.
- the liquid crystal cell As the liquid crystal cell, a VA mode liquid crystal cell was used.
- the dielectric anisotropy ⁇ n of the liquid crystal material is 0.113, and the cell thickness (cell gap) d is 3.2 ⁇ m. That is, the retardation ⁇ n ⁇ d of the liquid crystal layer was 360 nm.
- the second to fourth optical compensation layers films in which predetermined optical parameters shown in FIG. 9 were obtained by biaxially stretching a COP film were used.
- the first optical compensation layer a film having a predetermined optical parameter shown in FIG. 9 obtained by applying a liquid crystalline material on the second optical compensation layer was used.
- the COP film used did not contain cycloolefin copolymer (COC).
- a front polarizer and a back polarizer what laminated
- the COP films of the front polarizer and the back polarizer were produced so as not to have optical anisotropy.
- the front polarizer and the back polarizer were disposed such that the COP film was on the liquid crystal cell side and the TAC film was on the opposite side to the liquid crystal cell.
- a PVA film of a front polarizer and a back polarizer what has a polarization performance by adding iodine after extending
- a TAC film is widely used as a support body of a PVA film, adhere
- a COP film is widely used as a broad-band retardation film or as a support of a PVA film, and has birefringence by stretching.
- first and second optical compensation layers are disposed on the viewing surface side in the first embodiment, they may be disposed on the back surface side.
- each polarizer and each optical compensation layer may be rotated while maintaining the relative angle of the axes, or may be moved in line symmetry.
- FIG. 10 is a schematic cross-sectional view of a liquid crystal display device according to Comparative Example 1.
- a ninth optical compensation layer as a positive B plate was used instead of the first and second optical compensation layers.
- a liquid crystal display was produced.
- the ninth optical compensation layer a film having predetermined optical parameters shown in FIG. 10 by stretching and relaxing the COP film was used.
- Example 1 and Comparative Example 1 The dark room contrast of the liquid crystal display of Example 1 and Comparative Example 1 was measured.
- the dark room contrast is obtained by measuring the luminance of white display and black display without external light, and dividing the white display luminance by the black display luminance. The higher the display device, the better. Furthermore, from the viewpoint of durability, it is preferable that the change in this numerical value be as small as possible when exposed to a severe environment such as high temperature.
- Table 1 below shows dark room contrast at the center of the screen before and after aging for 12 hours at 85 ° C. for Example 1 and Comparative Example 1. Although there is not much difference with the value before the aging, the value in Comparative Example 1 is greatly reduced by the aging. On the other hand, in Example 1, the change was small and it was shown that the durability was improved.
- the black display uniformity of the liquid crystal display devices of Example 1 and Comparative Example 1 was measured.
- the black display uniformity is an index indicating the intensity of so-called unevenness of black display, which is obtained by dividing the minimum luminance by the maximum luminance by scanning the luminance of the display area when a black solid screen is displayed. As this value is closer to 100%, there is no luminance distribution, that is, the unevenness is weak, which is preferable as a display device. The lower the value, the stronger the unevenness and the lower the quality as a display device.
- Table 2 below shows black display uniformity before and after aging for 12 hours at 85 ° C. for Example 1 and Comparative Example 1. Although there is not much difference with the value before the aging, the value in Comparative Example 1 is greatly reduced by the aging. On the other hand, in Example 1, the change was small and it was shown that the durability was improved.
- FIGS. 11 and 12 show the simulation results (isocontrast ratio contour lines) of the viewing angle characteristics of the liquid crystal display according to Example 1 and Comparative Example 1, respectively.
- portions where the contrast is 100 or 1000 are indicated by solid lines.
- FIGS. 11 and 12 although the direction in which the viewing angle characteristics are excellent is different, it can be adjusted by, for example, the rotation of the axis of the polarizer. In consideration of that, it is shown that Example 1 has a viewing angle characteristic which is almost equal to or slightly superior to Comparative Example 1.
- FIG. 13 is an iso-contrast ratio contour line of the liquid crystal display device according to the first reference example.
- the reference example 1 has the same configuration as that of the example 1 except that the slow axis of the second optical compensation layer is disposed in a direction forming an angle of 90 ° with the absorption axis of the front polarizer.
- the relative angle is 0 ° (or 180 °)
- the viewing angle characteristics will be good, but as shown in FIG. 13, if the relative angle is 90 °, the viewing angle Properties are not suitable for practical use because of deterioration.
- the angle X between the slow axis of the second optical compensation layer and the absorption axis of the front polarizer (first polarizer) is -5. It is preferable to set the range of ° ⁇ X ⁇ 5 °.
- FIG. 14 is a schematic cross-sectional view of the liquid crystal display device according to the second embodiment.
- a front polarizer a first optical compensation layer as a positive C plate, a second optical compensation layer as a positive A plate, a third optical compensation layer as a ⁇ / 4 retardation plate, Liquid crystal cell, fourth optical compensation layer as ⁇ / 4 retardation plate, fifth optical compensation layer as positive A plate, sixth optical compensation layer as positive C plate, and back polarizer
- a liquid crystal display device of Example 2 provided with a liquid crystal panel arranged in this order from the side and a back light (not shown) on the back side of the liquid crystal panel was produced.
- the optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG.
- the front polarizer corresponds to the first polarizer
- the back polarizer corresponds to the second polarizer.
- the present embodiment is substantially the same as the first embodiment, but in the present embodiment, the viewing angle characteristics are further enhanced by similarly arranging the optical compensation layer on the viewing surface side and the back surface side. Can.
- the liquid crystal cell As the liquid crystal cell, a VA mode liquid crystal cell was used.
- the dielectric anisotropy ⁇ n of the liquid crystal material is 0.113, and the cell thickness (cell gap) d is 3.2 ⁇ m. That is, the retardation ⁇ n ⁇ d of the liquid crystal layer was 360 nm.
- films in which predetermined optical parameters shown in FIG. 14 were obtained by biaxially stretching a COP film were used.
- films obtained by applying the liquid crystalline material on the second and fifth optical compensation layers and using the predetermined optical parameters shown in FIG. 14 were used. .
- a front polarizer and a back polarizer what laminated
- the COP films of the front polarizer and the back polarizer were produced so as not to have optical anisotropy.
- the front polarizer and the back polarizer were disposed such that the COP film was on the liquid crystal cell side and the TAC film was on the opposite side to the liquid crystal cell.
- a PVA film of a front polarizer and a back polarizer what has a polarization performance by adding iodine after extending
- first and second optical compensation layers are disposed on the viewing surface side in the second embodiment, they may be disposed on the back surface side.
- each polarizer and each optical compensation layer may be rotated while maintaining the relative angle of the axes, or may be moved in line symmetry.
- Example 2 and Comparative Example 1 The same thing as in the above ⁇ Comparison of Example 1 and Comparative Example 1> applies to Example 2 and Comparative Example 1.
- Table 5 below shows black display uniformity before and after aging for 12 hours at 85 ° C. for Example 2 and Comparative Example 1.
- Example 1 the change in dark room contrast and black display uniformity before and after aging is also smaller in Example 2 than in Comparative Example 1, indicating that the durability is excellent.
- the change is larger than in the first embodiment, it is presumed that the layer structure is increased and the characteristic change is more likely to occur.
- FIG. 15 shows the simulation results (isocontrast ratio contour lines) of the viewing angle characteristics of the liquid crystal display device according to the second embodiment.
- the present embodiment is greatly improved as compared with the embodiment 1 and the comparative example 1, and it is possible to select the present embodiment depending on the requirement of the viewing angle characteristics. It is possible. However, with regard to the manufacturing cost, this embodiment is expected to be higher than the first embodiment.
- FIG. 16 is a schematic cross-sectional view of the liquid crystal display device according to the third embodiment.
- a front polarizer a first optical compensation layer as a positive C plate, a second optical compensation layer as a positive A plate, a third optical compensation layer as a ⁇ / 4 retardation plate, Seventh optical compensation layer as negative C plate, liquid crystal cell, eighth optical compensation layer as negative C plate, fourth optical compensation layer as ⁇ / 4 retardation plate, fifth as positive A plate
- the viewing angle characteristics of the liquid crystal display device of Example 3 including the above were simulated.
- the optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG.
- the front polarizer corresponds to the first polarizer
- the back polarizer corresponds to the second polarizer.
- FIG. 17 shows the simulation results (isocontrast ratio contour lines) of the viewing angle characteristics of the liquid crystal display device according to the third embodiment.
- the present embodiment has viewing angle characteristics with less omnidirectional bias as compared to Embodiment 1 and Comparative Example 1, and this embodiment can be used depending on the requirement of the viewing angle characteristics. It is also possible to choose However, with regard to the manufacturing cost, this embodiment is expected to be higher than the first embodiment.
- One aspect of the present invention is a third polarizer functioning as a first polarizer (11), a first optical compensation layer (21), a second optical compensation layer (22), and a ⁇ / 4 retardation plate.
- a fourth optical compensation layer (24) functioning as a four-retardation plate and a second polarizer (12) are provided in this order, and the first polarizer (11) has an absorption axis (11a)
- the first optical compensation layer (21) has an in-plane retardation Re of 15 nm or less at an angle of substantially 90 ° to the absorption axis (12a) of the second polarizer (12).
- the thickness direction retardation Rth is ⁇ 60 nm or less
- the second optical compensation layer (22) has an in-plane retardation Re of 40 to 12 nm, satisfying 1 ⁇ Nz ⁇ 4, and the in-plane slow axis (22a) is substantially parallel to the absorption axis (11a) of the first polarizer (11), and the third In the optical compensation layer (23), the in-plane slow axis (23a) forms an angle of substantially 45 ° or 135 ° with the absorption axis (11a) of the first polarizer (11), and the liquid crystal
- the cell (30) aligns liquid crystal molecules in the liquid crystal layer (33) substantially perpendicularly to the pair of substrates (31, 32) during black display
- the fourth optical compensation layer ( 24) is a liquid crystal display in which the in-plane slow axis (24a) makes an angle of substantially 90 ° with the in-plane slow axis (23a) of the third optical compensation layer (23); It is also good.
- Patent Document 3 may disclose a circularly polarizing plate using a positive C plate and a positive A plate
- the slow axis of the positive A plate is a polarizer close to it. It is orthogonal to the absorption axis.
- the first optical compensation layer (21) satisfying 1 ⁇ Nz ⁇ 4 has the in-plane slow axis (22a) of the first polarizer ( It is substantially parallel to the absorption axis (11a) of 11), and the design concept is different. The difference in the design concept makes it possible to reduce the number of used optical compensation layers in the liquid crystal display device (1).
- the third and fourth optical compensation layers (23, 24) may each satisfy 1 ⁇ Nz ⁇ 2.4.
- the liquid crystal display (1) includes an optical compensation layer other than the first to third optical compensation layers (21 to 23) between the first polarizer (11) and the liquid crystal cell (30).
- an optical compensation layer other than the fourth optical compensation layer (24) may not be provided between the liquid crystal cell (30) and the second polarizer (12).
- the first optical compensation layer (21) has a thickness direction retardation Rth of -200 to -100 nm
- the second optical compensation layer (22) has an in-plane retardation Re of 60 to 110 nm.
- 1 ⁇ Nz ⁇ 1.4 is satisfied
- the third optical compensation layer (23) satisfies 1.4 ⁇ Nz ⁇ 2.4
- the in-plane retardation Re is 40 to 120 nm, 1 ⁇ Nz ⁇ 4 is satisfied, and the in-plane slow axis (25a) substantially corresponds to the absorption axis (12a) of the second polarizer (12)
- the first and sixth optical compensation layers (21, 26) each have a thickness direction retardation Rth of -150 to -80 nm, and the second and fifth optical compensation layers (22, 25) have The in-plane retardation Re is 40 to 90 nm, and 1 ⁇ Nz ⁇ 1.4, and the third optical compensation layer (23) satisfies 1.4 ⁇ Nz ⁇ 2.4, The fourth optical compensation layer (24) may satisfy 1.4 ⁇ Nz ⁇ 2.4.
- the liquid crystal display device (1) can exhibit viewing angle characteristics with less omnidirectional bias.
- the first and sixth optical compensation layers (21, 26) each have a thickness direction retardation Rth of -150 to -80 nm, and the second and fifth optical compensation layers (22, 25) have The in-plane retardation Re is 40 to 90 nm, and 1 ⁇ Nz ⁇ 1.4 is satisfied, and the third and fourth optical compensation layers (23, 24) are each 1 ⁇ Nz ⁇ 1. .4 may be satisfied.
- the in-plane retardation Re of the third optical compensation layer (23) may be substantially the same as the in-plane retardation Re of the fourth optical compensation layer (24). Thereby, the liquid crystal display device (1) can maintain high contrast.
- Each of the third and fourth optical compensation layers (23, 24) may have an in-plane retardation Re of 100 to 175 nm.
- Liquid crystal display 2 Liquid crystal panel 2a: Display area 3: First circularly polarizing plate 4: Second circularly polarizing plate 11: First polarizer 11a: Absorption axis 12: Second polarizer 12a: Absorption Axis 21: first optical compensation layer 22: second optical compensation layer 22a: in-plane slow axis 23: third optical compensation layer ( ⁇ / 4 retardation plate) 23a: in-plane slow axis 24: fourth optical compensation layer ( ⁇ / 4 retardation plate) 24a: in-plane slow axis 25: fifth optical compensation layer 25a: in-plane slow axis 26: sixth optical compensation layer 27: seventh optical compensation layer 28: eighth optical compensation layer 30: liquid crystal cell 31, 32: substrate 33: liquid crystal layer
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
The present invention provides a liquid crystal display device that is capable of suppressing a deterioration in display quality under severe environmental conditions and suppressing the peeling and breaking of a solvent when the same is bonded to a polarization plate, and with which a thinner liquid crystal panel can be obtained. This liquid crystal display device comprises a first polarizer, a first optical compensation layer, a second optical compensation layer, a third optical compensation layer functioning as a λ/4 phase-difference plate, a liquid crystal cell, a fourth optical compensation layer functioning as a λ/4 phase-difference plate, and a second polarizer in this order. The first optical compensation layer is configured such that the in-plane phase difference Re is 15 nm or less and the phase difference Rth in a thickness direction is −60 nm or less. The second optical compensation layer is configured such that the in-plane phase difference Re is 40 to 120 nm, 1 ≤ Nz ≤ 4 is satisfied, and the in-plane slow axis is substantially parallel to the absorption axis of the first polarizer. The liquid crystal cell aligns liquid crystal molecules substantially vertical to a pair of substrate surfaces while displaying black.
Description
本発明は、液晶表示装置に関する。より詳しくは、一対の円偏光板を備える垂直配向モードの液晶表示装置に好適な液晶表示装置に関するものである。
The present invention relates to a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device suitable for a liquid crystal display device in a vertical alignment mode provided with a pair of circularly polarizing plates.
液晶表示装置は、薄型、軽量及び低消費電力といった特長を活かし、幅広い分野で用いられている。液晶表示装置は、通常、偏光板としての一対の直線偏光板と、一対の直線偏光板間に設けられた液晶セルとを備えており、垂直配向(VA)モードや水平配向モード等の種々の表示モードが開発されている。
Liquid crystal display devices are used in a wide range of fields, taking advantage of features such as thinness, lightness, and low power consumption. A liquid crystal display device generally includes a pair of linear polarizing plates as polarizing plates and a liquid crystal cell provided between the pair of linear polarizing plates, and various types such as vertical alignment (VA) mode and horizontal alignment mode. Display modes have been developed.
また、近年、偏光板として、一対の直線偏光板の代わりに一対の円偏光板を用いたVAモードの液晶表示装置が開発されている。円偏光板は、よく知られているように、典型的には直線偏光板とλ/4位相差板との組み合わせによって構成される。以下、一対の円偏光板を用いたVAモードの液晶表示装置を、VA円偏光パネルとも言う。しかしながら、VA円偏光パネルでは斜め視角でのコントラスト比が低く、充分な視野角特性が得られないという点で改善の余地があった。これに対して光学補償フィルムを用いた視野角特性の改良技術が種々提案されている。
Also, in recent years, a VA mode liquid crystal display device using a pair of circularly polarizing plates instead of a pair of linear polarizing plates as a polarizing plate has been developed. As well known, a circularly polarizing plate is typically constituted by a combination of a linear polarizing plate and a λ / 4 retardation plate. Hereinafter, a VA mode liquid crystal display device using a pair of circularly polarizing plates is also referred to as a VA circularly polarizing panel. However, the VA circularly polarizing panel has room for improvement in that the contrast ratio at an oblique viewing angle is low and a sufficient viewing angle characteristic can not be obtained. On the other hand, various techniques for improving the viewing angle characteristics using an optical compensation film have been proposed.
例えば、特許文献1には、様々な方向から見ても均質で高いコントラストを得ることができる液晶表示装置として、偏光子A及び偏光子Bからなる一対の偏光子と、一対の偏光子の間に配置される垂直配向型の液晶セルとを備える液晶表示装置であって、液晶セルと偏光子Aとの間及び液晶セルと偏光子Bとの間に下記式(1)で表されるNzの値が2.0を超える1/4λ位相差板をそれぞれ備え、1/4λ位相差板の面内遅相軸は近接する偏光子の透過軸と略45°の位置関係にあり、偏光子Aとそれに近接する1/4λ位相差板との間及び偏光子Bとそれに近接する1/4λ位相差板との間の少なくとも一方には、固有複屈折値が負である材料層からなり、かつその面内遅相軸が、近接する偏光子の吸収軸と略平行又は略直交の位置関係にある光学異方体を備える液晶表示装置が開示されている。
Nz=(nx-nz)/(nx-ny)・・・(1) For example, inPatent Document 1, as a liquid crystal display device capable of obtaining uniform high contrast even when viewed from various directions, a pair of polarizers consisting of polarizer A and polarizer B and a pair of polarizers are disclosed. The liquid crystal display device is provided with a liquid crystal cell of the vertical alignment type disposed in the above, and Nz represented by the following formula (1) between the liquid crystal cell and the polarizer A and between the liquid crystal cell and the polarizer B: Retarders each having a value of more than 2.0, and the in-plane slow axis of the quarter-wave retarder has a positional relationship of approximately 45 ° with the transmission axis of the adjacent polarizer, At least one of A and the adjacent 1⁄4 λ retardation plate and / or between the polarizer B and the adjacent 1⁄4 λ retardation plate comprises a material layer having a negative intrinsic birefringence value, And the in-plane slow axis is in a positional relationship substantially parallel or nearly orthogonal to the absorption axis of the adjacent polarizer A liquid crystal display device comprising an optical anisotropic body is disclosed.
Nz = (nx-nz) / (nx-ny) (1)
Nz=(nx-nz)/(nx-ny)・・・(1) For example, in
Nz = (nx-nz) / (nx-ny) (1)
また、特許文献2には、円偏光モードにおいて斜め方向の光漏れが抑制され、視野角が精度よく補償された液晶表示装置として、第1の偏光子と、λ/4板として機能する第1の光学補償層と、液晶セルと、λ/4板として機能する第2の光学補償層と、nz>nx>nyの屈折率の関係を有する第3の光学補償層と、第2の偏光子とを、視認側からこの順に有し、液晶セルの位相差波長分散値(Recell[450]/Recell[550])をαcellとし、第1の光学補償層及び第2の光学補償層の平均位相差波長分散値(Reλ/4[450]/Reλ/4[550])をαλ/4としたときに、αλ/4/αcellが0.95~1.02である液晶パネルを有する液晶表示装置が開示されている。
Further, according to Patent Document 2, the first polarizer functions as a first polarizer and a λ / 4 plate as a liquid crystal display device in which light leakage in an oblique direction is suppressed in the circular polarization mode and a viewing angle is accurately compensated. , A liquid crystal cell, a second optical compensation layer functioning as a λ / 4 plate, a third optical compensation layer having a refractive index relationship of nz>nx> ny, and a second polarizer Of the first optical compensation layer and the second optical compensation layer, with the retardation wavelength dispersion value (Re cell [450] / Re cell [550]) of the liquid crystal cell as α cell. When the average retardation wavelength dispersion value (Re λ / 4 [450] / Re λ / 4 [550]) of the above is α λ / 4 , the α λ / 4 / α cell is 0.95 to 1.02. A liquid crystal display device having a liquid crystal panel is disclosed.
また、特許文献3には、視野角特性を改善することができ、かつ、コストの低減が可能な液晶表示素子として、液晶表示素子を構成する円偏光子構成体はその光学補償用に第1偏光板と第1位相差板との間に屈折率異方性がnx≒ny<nzとなる1軸の第3位相差板及び第5位相差板と屈折率異方性がnx>ny≒nzとなる1軸の第4位相差板とを備え、円検光子構成体はその光学補償用に第2偏光板と第2位相差板との間に屈折率異方性がnx≒ny<nzとなる1軸の第6位相差板及び第8位相差板と屈折率異方性がnx>ny≒nzとなる1軸の第7位相差板とを備え、可変リターダー構成体はその光学補償用に第1位相差板と第2位相差板との間に屈折率異方性がnx≒ny>nzとなる第9位相差板を備えている液晶表示素子が開示されている。
Further, according to Patent Document 3, as a liquid crystal display element capable of improving the viewing angle characteristics and reducing the cost, the circular polarizer structure constituting the liquid crystal display element is the first for its optical compensation. Between the polarizing plate and the first retardation plate, uniaxial uniaxial third retardation plate and fifth retardation plate with refractive index anisotropy nx <ny <nz and refractive index anisotropy nx> ny ≒ The circular analyzer structure has an anisotropy of refractive index nx ny ny <between the second polarizing plate and the second retardation plate for optical compensation. The variable retarder structure includes the uniaxial sixth retardation plate and the eighth retardation plate with nz and the uniaxial seventh retardation plate with the refractive index anisotropy of nx> ny ≒ nz A liquid crystal display device comprising a ninth retardation plate having a refractive index anisotropy of nxnxny> nz between the first retardation plate and the second retardation plate for compensation It has been disclosed.
また、特許文献4には、液晶セルに対して広視野角補償を行うとともに、広帯域の円偏光を得ることができ、薄型化に寄与し、熱ムラを防止し、かつ、黒表示における光漏れを良好に防止し得る光学補償層付偏光板として、偏光子と、第1の光学補償層と、第2の光学補償層とが、この順序で積層され、第1の光学補償層が、液晶化合物から形成され、nx>ny=nzの関係を有し、かつ、その面内位相差Re1が100~170nmであり、第2の光学補償層が、nx=ny>nzの関係を有し、かつ、その厚み方向の位相差Rth2が30~400nmであり、偏光子の吸収軸と第1の光学補償層の遅相軸とのなす角度が「+」又は「-」25~65°の範囲である光学補償層付偏光板が開示されている。
Further, in Patent Document 4, wide viewing angle compensation can be performed on a liquid crystal cell, and circularly polarized light of a wide band can be obtained, which contributes to thinning, prevents thermal unevenness, and leaks light in black display. The polarizer, the first optical compensation layer, and the second optical compensation layer are laminated in this order as a polarizing plate with an optical compensation layer that can prevent the liquid crystal layer well, and the first optical compensation layer is a liquid crystal It is formed of a compound, has a relationship of nx> ny = nz, and has an in-plane retardation Re 1 of 100 to 170 nm, and the second optical compensation layer has a relationship of nx = ny> nz. And, the retardation Rth 2 in the thickness direction is 30 to 400 nm, and the angle between the absorption axis of the polarizer and the slow axis of the first optical compensation layer is “+” or “−” 25 to 65 ° A polarizing plate with an optical compensation layer is disclosed.
また、特許文献5には、低コストかつ簡便に製造することができるとともに、広い視角範囲において高いコントスラト比を実現することができる液晶表示装置として、第一の偏光子、第一種の複屈折層、第一のλ/4板、液晶セル、第二のλ/4板、第二種の複屈折層、及び、第一の偏光子の吸収軸に対して吸収軸が直交する第二の偏光子をこの順に有する液晶表示装置であって、第一種の複屈折層は、Nz>0.9を満たし、面内遅相軸が第一の偏光子の吸収軸に対して直交し、第一のλ/4板は、面内遅相軸が第一の偏光子の吸収軸に対して略45°の角度をなし、液晶セルは、液晶セル中の液晶分子を基板面に垂直に配向させることで黒表示を行い、第二のλ/4板は、面内遅相軸が第一のλ/4板の面内遅相軸に対して直交し、二種の複屈折層は、Nz<0.1を満たし、面内遅相軸が第二の偏光子の吸収軸と平行である液晶表示装置が開示されている。
In addition, in Patent Document 5, as a liquid crystal display device which can be manufactured at low cost and simply and which can realize a high contrast ratio in a wide viewing angle range, a first polarizer, a first birefringence, and the like are disclosed. Layer, first λ / 4 plate, liquid crystal cell, second λ / 4 plate, second birefringent layer, and second absorption axis orthogonal to absorption axis of first polarizer A liquid crystal display device having a polarizer in this order, wherein the first birefringent layer satisfies Nz> 0.9, and the in-plane slow axis is orthogonal to the absorption axis of the first polarizer, In the first λ / 4 plate, the in-plane slow axis forms an angle of about 45 ° with the absorption axis of the first polarizer, and the liquid crystal cell makes liquid crystal molecules in the liquid crystal cell perpendicular to the substrate surface The second λ / 4 plate has the in-plane slow axis orthogonal to the in-plane slow axis of the first λ / 4 plate by orientating to give a black display. Oriso satisfies Nz <0.1, the liquid crystal display device is disclosed an in-plane slow axis is parallel to the absorption axis of the second polarizer.
また、0.1≦Nz≦0.9を満たす位相差フィルムの製造方法として、特許文献6には、連続的に供給される長尺状の高分子フィルムの両端を保持しながら搬送し、高分子フィルムを搬送しつつ搬送方向に対して直交する横方向に延伸する位相差フィルムの製造方法であって、高分子フィルムが搬送方向に弛んだ状態で、高分子フィルムを横方向に延伸する位相差フィルムの製造方法が開示されている。
In addition, as a method for producing a retardation film satisfying 0.1 ≦ Nz ≦ 0.9, Patent Document 6 discloses that a long polymer film continuously supplied is conveyed while being held at both ends. A method for producing a retardation film, which transports a molecular film while stretching it in a transverse direction orthogonal to the transport direction, in which the polymer film is stretched in the transverse direction with the polymer film slackened in the transport direction. A method of making a retardation film is disclosed.
しかしながら、近年、液晶表示装置における耐久性要求が高くなっており、光学補償層を用いたVA円偏光パネルでは、下記のような点で改善の余地があった。
(1)低温、高温、高温高湿環境等の環境において光学補償層の特性変化が大きく、コントラスト低下や表示ムラ等の表示品位の低下が発生することがある。
(2)偏光板に溶剤が付着したときに光学補償層と偏光子との剥離や、光学補償層の破断を生じることがある。
(3)偏光板の厚みが大きくなり、モバイル用途に適さない。 However, in recent years, the demand for durability in liquid crystal display devices has been increased, and in the case of a VA circularly polarizing panel using an optical compensation layer, there is room for improvement in the following points.
(1) The characteristic change of the optical compensation layer is large in an environment such as a low temperature, a high temperature, a high temperature and high humidity environment, and a drop in display quality such as a drop in contrast or display unevenness may occur.
(2) When a solvent adheres to the polarizing plate, peeling of the optical compensation layer from the polarizer and breakage of the optical compensation layer may occur.
(3) The thickness of the polarizing plate becomes large and it is not suitable for mobile applications.
(1)低温、高温、高温高湿環境等の環境において光学補償層の特性変化が大きく、コントラスト低下や表示ムラ等の表示品位の低下が発生することがある。
(2)偏光板に溶剤が付着したときに光学補償層と偏光子との剥離や、光学補償層の破断を生じることがある。
(3)偏光板の厚みが大きくなり、モバイル用途に適さない。 However, in recent years, the demand for durability in liquid crystal display devices has been increased, and in the case of a VA circularly polarizing panel using an optical compensation layer, there is room for improvement in the following points.
(1) The characteristic change of the optical compensation layer is large in an environment such as a low temperature, a high temperature, a high temperature and high humidity environment, and a drop in display quality such as a drop in contrast or display unevenness may occur.
(2) When a solvent adheres to the polarizing plate, peeling of the optical compensation layer from the polarizer and breakage of the optical compensation layer may occur.
(3) The thickness of the polarizing plate becomes large and it is not suitable for mobile applications.
例えば、特許文献2の液晶表示装置では、nz>nx>nyの屈折率の関係を有する第3の光学補償層が用いられるが、このような光学補償層は、視野角改善効果を得るために要求される光学パラメータが狭く、選択できる材料及び製法が限られる。更に、コスト及び生産タクトの観点から量産可能な材料を選択する場合、上記(1)~(3)のような課題の発生が避けられない。
For example, in the liquid crystal display device of Patent Document 2, a third optical compensation layer having a refractive index relationship of nz> nx> ny is used, but such an optical compensation layer has a viewing angle improving effect. The required optical parameters are narrow and the materials and processes that can be selected are limited. Furthermore, when materials that can be mass-produced are selected from the viewpoint of cost and production tact, the occurrence of the problems as described in (1) to (3) above can not be avoided.
また、特許文献3の液晶表示素子は、光学補償用に多くの位相差板を用いているが、光学補償層が多くなると、上記(3)のように、偏光板を含む液晶パネルの厚みが増加するとともに、製造コストが増加してしまう。
Moreover, although the liquid crystal display element of patent document 3 uses many retardation plates for optical compensation, when the number of optical compensation layers increases, the thickness of the liquid crystal panel containing a polarizing plate becomes like said (3). With the increase, the manufacturing cost will increase.
本発明は、上記現状に鑑みてなされたものであり、過酷な環境下に置かれても表示品位の低下を抑制でき、偏光板への溶剤付着時の剥離及び破断を抑制でき、かつ、液晶パネルの薄型化が可能な液晶表示装置を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned present situation, and can suppress deterioration of display quality even under severe environment, can suppress peeling and breakage at the time of solvent adhesion to a polarizing plate, and liquid crystal An object of the present invention is to provide a liquid crystal display device capable of thinning a panel.
本発明者らは、過酷な環境下に置かれても表示品位の低下を抑制でき、偏光板への溶剤付着時の剥離及び破断を抑制でき、かつ、液晶パネルの薄型化が可能な液晶表示装置について種々検討したところ、光学補償層の組み合わせに着目した。そして、λ/4位相差板の液晶セルとは反対側に、面内位相差Reが15nm以下であり、かつ、厚み方向位相差Rthが-60nm以下である第1の光学補償層と、面内位相差Reが40~120nmであり、かつ、1≦Nz≦4を満たす第2の光学補償層との2層を設け、第2の光学補償層の面内遅相軸を、液晶セルに対して第2の光学補償層と同じ側に設けられた第1の偏光子の吸収軸と実質的に平行とすることにより、過酷な環境下に置かれても特性変化が比較的小さい光学補償層を用いることができ、また、溶剤に対する偏光板の耐久性を向上でき、更に、光学補償層の数を削減可能であることを見いだし、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
The inventors of the present invention can suppress deterioration in display quality even under severe environments, can suppress peeling and breakage at the time of solvent adhesion to a polarizing plate, and can make a liquid crystal panel thinner. When various examinations were made about the device, attention was focused on the combination of the optical compensation layer. Then, on the opposite side to the liquid crystal cell of the λ / 4 retardation plate, the first optical compensation layer having an in-plane retardation Re of 15 nm or less and a thickness direction retardation Rth of −60 nm or less, and Two layers with a second optical compensation layer having an internal retardation Re of 40 to 120 nm and satisfying 1 ≦ Nz ≦ 4 are provided, and the in-plane slow axis of the second optical compensation layer is a liquid crystal cell. On the other hand, by making it substantially parallel to the absorption axis of the first polarizer provided on the same side as the second optical compensation layer, optical compensation with relatively small characteristic change even under severe environment It has been found that a layer can be used, the durability of the polarizing plate to a solvent can be improved, and furthermore, the number of optical compensation layers can be reduced, and it is possible to solve the above problems clearly. The present invention has been achieved.
本発明の一態様は、第1の偏光子と、第1の光学補償層と、第2の光学補償層と、λ/4位相差板として機能する第3の光学補償層と、互いに対向する一対の基板、及び、前記一対の基板間の液晶層を含む液晶セルと、λ/4位相差板として機能する第4の光学補償層と、第2の偏光子と、をこの順に備え、前記第1の偏光子は、吸収軸が前記第2の偏光子の吸収軸に対して実質的に90°の角度をなし、前記第1の光学補償層は、面内位相差Reが15nm以下であり、かつ、厚み方向位相差Rthが-60nm以下であり、前記第2の光学補償層は、面内位相差Reが40~120nmであり、1≦Nz≦4を満たし、かつ、面内遅相軸が前記第1の偏光子の吸収軸と実質的に平行であり、前記第3の光学補償層は、面内遅相軸が前記第1の偏光子の吸収軸に対して実質的に45°又は135°の角度をなし、前記液晶セルは、黒表示時に、前記液晶層中の液晶分子を前記一対の基板面に対して実質的に垂直に配向し、前記第4の光学補償層は、面内遅相軸が前記第3の光学補償層の面内遅相軸に対して実質的に90°の角度をなす液晶表示装置であってもよい。
In one aspect of the present invention, the first polarizer, the first optical compensation layer, the second optical compensation layer, and the third optical compensation layer functioning as a λ / 4 retardation plate are opposed to each other. A liquid crystal cell including a pair of substrates and a liquid crystal layer between the pair of substrates, a fourth optical compensation layer functioning as a λ / 4 retardation plate, and a second polarizer in this order; The first polarizer has an absorption axis at an angle of substantially 90 ° to the absorption axis of the second polarizer, and the first optical compensation layer has an in-plane retardation Re of 15 nm or less And the thickness direction retardation Rth is −60 nm or less, the second optical compensation layer has an in-plane retardation Re of 40 to 120 nm, satisfies 1 ≦ Nz ≦ 4, and an in-plane retardation The phase axis is substantially parallel to the absorption axis of the first polarizer, and the third optical compensation layer has an in-plane slow axis of the first The liquid crystal cell makes an angle of substantially 45 ° or 135 ° with respect to the absorption axis of the polarizer, and the liquid crystal cell displays liquid crystal molecules in the liquid crystal layer substantially perpendicular to the pair of substrate surfaces during black display. The fourth optical compensation layer is a liquid crystal display device in which the in-plane slow axis forms an angle of substantially 90 ° with the in-plane slow axis of the third optical compensation layer, It is also good.
前記第3及び第4の光学補償層は、各々、1≦Nz≦2.4を満たしてもよい。
The third and fourth optical compensation layers may each satisfy 1 ≦ Nz ≦ 2.4.
前記液晶表示装置は、前記第1の偏光子及び前記液晶セルの間に前記第1~第3の光学補償層以外の光学補償層を備えず、かつ、前記液晶セル及び前記第2の偏光子の間に前記第4の光学補償層以外の光学補償層を備えなくてもよい。
The liquid crystal display device does not include an optical compensation layer other than the first to third optical compensation layers between the first polarizer and the liquid crystal cell, and the liquid crystal cell and the second polarizer And the optical compensation layer other than the fourth optical compensation layer.
前記第1の光学補償層は、厚み方向位相差Rthが-200~-100nmであり、前記第2の光学補償層は、面内位相差Reが60~110nmであり、かつ、1≦Nz≦1.4を満たし、前記第3の光学補償層は、1.4≦Nz≦2.4を満たし、前記第4の光学補償層は、1.4≦Nz≦2.4を満たしてもよい。
The first optical compensation layer has a thickness direction retardation Rth of −200 to −100 nm, and the second optical compensation layer has an in-plane retardation Re of 60 to 110 nm, and 1 ≦ Nz ≦ And the third optical compensation layer may satisfy 1.4 ≦ Nz ≦ 2.4, and the fourth optical compensation layer may satisfy 1.4 ≦ Nz ≦ 2.4. .
前記液晶表示装置は、面内位相差Reが40~120nmであり、1≦Nz≦4を満たし、かつ、面内遅相軸が前記第2の偏光子の吸収軸と実質的に平行である第5の光学補償層と、面内位相差Reが15nm以下であり、かつ、厚み方向位相差Rthが-60nm以下である第6の光学補償層とを更に備え、前記第1の偏光子、前記第1の光学補償層、前記第2の光学補償層、前記第3の光学補償層、前記液晶セル、前記第4の光学補償層、前記第5の光学補償層、前記第6の光学補償層、及び、前記第2の偏光子は、この順に配置されてもよい。
The liquid crystal display device has an in-plane retardation Re of 40 to 120 nm, satisfies 1 ≦ Nz ≦ 4, and an in-plane slow axis is substantially parallel to the absorption axis of the second polarizer. A fifth optical compensation layer, and a sixth optical compensation layer having an in-plane retardation Re of 15 nm or less and a thickness direction retardation Rth of -60 nm or less, the first polarizer, The first optical compensation layer, the second optical compensation layer, the third optical compensation layer, the liquid crystal cell, the fourth optical compensation layer, the fifth optical compensation layer, and the sixth optical compensation The layer and the second polarizer may be arranged in this order.
前記第1及び第6の光学補償層は、各々、厚み方向位相差Rthが-150~-80nmであり、前記第2及び第5の光学補償層は、各々、面内位相差Reが40~90nmであり、かつ、1≦Nz≦1.4を満たし、前記第3の光学補償層は、1.4≦Nz≦2.4を満たし、前記第4の光学補償層は、1.4≦Nz≦2.4を満たしてもよい。
The first and sixth optical compensation layers each have a thickness direction retardation Rth of -150 to -80 nm, and the second and fifth optical compensation layers each have an in-plane retardation Re of 40 to 90 nm and satisfy 1 ≦ Nz ≦ 1.4, the third optical compensation layer satisfies 1.4 ≦ Nz ≦ 2.4, and the fourth optical compensation layer satisfies 1.4 ≦ It may satisfy Nz ≦ 2.4.
前記第5の光学補償層は、実質的にNz=1を満たしてもよい。
The fifth optical compensation layer may substantially satisfy Nz = 1.
前記液晶表示装置は、面内位相差Reが15nm以下であり、厚み方向位相差Rthが50~300nmであり、かつ、Nz>1を満たす第7の光学補償層と、面内位相差Reが15nm以下であり、厚み方向位相差Rthが50~300nmであり、かつ、Nz>1を満たす第8の光学補償層とを更に備え、前記第1の偏光子、前記第1の光学補償層、前記第2の光学補償層、前記第3の光学補償層、前記第7の光学補償層、前記液晶セル、前記第8の光学補償層、前記第4の光学補償層、前記第5の光学補償層、前記第6の光学補償層、及び、前記第2の偏光子は、この順に配置されてもよい。
The liquid crystal display device has a seventh optical compensation layer having an in-plane retardation Re of 15 nm or less, a thickness direction retardation Rth of 50 to 300 nm, and Nz> 1, and an in-plane retardation Re of And an eighth optical compensation layer having a thickness direction retardation Rth of 50 to 300 nm and Nz> 1 and having a thickness of 15 nm or less, the first polarizer, the first optical compensation layer, The second optical compensation layer, the third optical compensation layer, the seventh optical compensation layer, the liquid crystal cell, the eighth optical compensation layer, the fourth optical compensation layer, the fifth optical compensation The layer, the sixth optical compensation layer, and the second polarizer may be arranged in this order.
前記第1及び第6の光学補償層は、各々、厚み方向位相差Rthが-150~-80nmであり、前記第2及び第5の光学補償層は、各々、面内位相差Reが40~90nmであり、かつ、1≦Nz≦1.4を満たし、前記第3及び第4の光学補償層は、各々、1≦Nz≦1.4を満たしてもよい。
The first and sixth optical compensation layers each have a thickness direction retardation Rth of -150 to -80 nm, and the second and fifth optical compensation layers each have an in-plane retardation Re of 40 to The third and fourth optical compensation layers may be 90 nm and satisfy 1 ≦ Nz ≦ 1.4, and each of the third and fourth optical compensation layers may satisfy 1 ≦ Nz ≦ 1.4.
前記第2の光学補償層は、実質的にNz=1を満たしてもよい。
The second optical compensation layer may substantially satisfy Nz = 1.
前記第3の光学補償層の面内位相差Reは、前記第4の光学補償層の面内位相差Reと実質的に同じであってもよい。
The in-plane retardation Re of the third optical compensation layer may be substantially the same as the in-plane retardation Re of the fourth optical compensation layer.
前記第3及び第4の光学補償層は、各々、面内位相差Reが100~175nmであってもよい。
Each of the third and fourth optical compensation layers may have an in-plane retardation Re of 100 to 175 nm.
以上に示した本発明の各態様は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
Each aspect of the present invention shown above may be combined suitably in the range which does not deviate from the gist of the present invention.
本発明によれば、過酷な環境下に置かれても表示品位の低下を抑制でき、偏光板への溶剤付着時の剥離及び破断を抑制でき、かつ、液晶パネルの薄型化が可能な液晶表示装置を実現することができる。
According to the present invention, it is possible to suppress deterioration in display quality even when placed under a severe environment, to suppress peeling and breakage at the time of solvent adhesion to a polarizing plate, and to reduce the thickness of the liquid crystal panel. The device can be realized.
以下、本発明の実施形態について説明する。本発明は、以下の実施形態に記載された内容に限定されるものではなく、本発明の構成を充足する範囲内で、適宜設計変更を行うことが可能である。
Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the contents described in the following embodiments, and design changes can be made as appropriate as long as the configuration of the present invention is satisfied.
<用語および記号の定義>
本明細書における用語及び記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は、面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は、面内で遅相軸と直交する方向の屈折率であり、「nz」は、厚み方向の屈折率である。
(2)面内位相差(Re)
面内位相差(Re)は、23℃、特に明記しなければ波長550nmにおける層(フィルム)の面内位相差値を言う。Reは、層(フィルム)の厚みをd(nm)としたとき、Re=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
厚み方向の位相差(Rth)は、23℃、特に明記しなければ波長550nmにおける層(フィルム)の厚み方向の位相差値を言う。Rthは、層(フィルム)の厚みをd(nm)としたとき、Rth={(nx+ny)/2-nz}×dによって求められる。
(4)Nz係数
Nz係数は、Nz=(nx-nz)/(nx-ny)によって求められる。
(5)光学補償層
光学補償層は、23℃、特に明記しなければ波長550nmの光に対して、15nm以上の面内位相差Reと、+55nm以上又は-15nm以下の厚み方向の位相差Rthとの少なくとも一方を付与する層を言い、その機能及び光学的性能は、特に限定されない。すなわち、光学補償層とは、15nm≦Re、かつ、Rth≦-15nm又は+55nm≦Rthを満たす層を言う。
(6)観察面側及び背面側
観察面側は、液晶表示装置の画面(表示面)に対してより近い側を意味し、背面側は、液晶表示装置の画面(表示面)に対してより遠い側を意味する。
(7)隣接配置
ある部材(例えば光学補償層)に他の部材(例えば光学補償層)が隣接配置されるとは、両部材の間に光学補償層が設けられないことを意味し、例えば、両部材の間に光学異方性を持たない層が配置された形態は含まれる。なお、光学異方性を持たない層とは、Re<15nm、かつ、-15nm<Rth<+55nmを満たす層を言う。 <Definition of terms and symbols>
The definitions of terms and symbols in the present specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the refractive index in the in-plane direction orthogonal to the slow axis "Nz" is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
The in-plane retardation (Re) refers to the in-plane retardation value of a layer (film) at a wavelength of 550 nm at 23 ° C., unless otherwise specified. Re is obtained by Re = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Retardation in the thickness direction (Rth)
The thickness direction retardation (Rth) refers to the thickness direction retardation value of a layer (film) at a wavelength of 550 nm unless otherwise specified. Rth is determined by Rth = {(nx + ny) / 2−nz} × d, where d (nm) is the thickness of the layer (film).
(4) Nz Coefficient The Nz coefficient is obtained by Nz = (nx−nz) / (nx−ny).
(5) Optical compensation layer The optical compensation layer has an in-plane retardation Re of 15 nm or more and a retardation Rth in the thickness direction of +55 nm or more or -15 nm or less for light of wavelength 550 nm unless otherwise specified. And the function and optical performance thereof are not particularly limited. That is, the optical compensation layer is a layer satisfying 15 nm ≦ Re and Rth ≦ −15 nm or +55 nm ≦ Rth.
(6) The viewing surface side and the rear surface viewing surface side mean the side closer to the screen (display surface) of the liquid crystal display device, and the rear surface side is more about the screen (display surface) of the liquid crystal display device It means the far side.
(7) Adjacent Arrangement A member (for example, an optical compensation layer) adjacent to another member (for example, an optical compensation layer) means that an optical compensation layer is not provided between both members, for example, A form in which a layer having no optical anisotropy is disposed between the two members is included. Here, the layer having no optical anisotropy means a layer satisfying Re <15 nm and −15 nm <Rth <+55 nm.
本明細書における用語及び記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
「nx」は、面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は、面内で遅相軸と直交する方向の屈折率であり、「nz」は、厚み方向の屈折率である。
(2)面内位相差(Re)
面内位相差(Re)は、23℃、特に明記しなければ波長550nmにおける層(フィルム)の面内位相差値を言う。Reは、層(フィルム)の厚みをd(nm)としたとき、Re=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
厚み方向の位相差(Rth)は、23℃、特に明記しなければ波長550nmにおける層(フィルム)の厚み方向の位相差値を言う。Rthは、層(フィルム)の厚みをd(nm)としたとき、Rth={(nx+ny)/2-nz}×dによって求められる。
(4)Nz係数
Nz係数は、Nz=(nx-nz)/(nx-ny)によって求められる。
(5)光学補償層
光学補償層は、23℃、特に明記しなければ波長550nmの光に対して、15nm以上の面内位相差Reと、+55nm以上又は-15nm以下の厚み方向の位相差Rthとの少なくとも一方を付与する層を言い、その機能及び光学的性能は、特に限定されない。すなわち、光学補償層とは、15nm≦Re、かつ、Rth≦-15nm又は+55nm≦Rthを満たす層を言う。
(6)観察面側及び背面側
観察面側は、液晶表示装置の画面(表示面)に対してより近い側を意味し、背面側は、液晶表示装置の画面(表示面)に対してより遠い側を意味する。
(7)隣接配置
ある部材(例えば光学補償層)に他の部材(例えば光学補償層)が隣接配置されるとは、両部材の間に光学補償層が設けられないことを意味し、例えば、両部材の間に光学異方性を持たない層が配置された形態は含まれる。なお、光学異方性を持たない層とは、Re<15nm、かつ、-15nm<Rth<+55nmを満たす層を言う。 <Definition of terms and symbols>
The definitions of terms and symbols in the present specification are as follows.
(1) Refractive index (nx, ny, nz)
“Nx” is the refractive index in the direction in which the in-plane refractive index is maximum (ie, the slow axis direction), and “ny” is the refractive index in the in-plane direction orthogonal to the slow axis "Nz" is the refractive index in the thickness direction.
(2) In-plane retardation (Re)
The in-plane retardation (Re) refers to the in-plane retardation value of a layer (film) at a wavelength of 550 nm at 23 ° C., unless otherwise specified. Re is obtained by Re = (nx−ny) × d, where d (nm) is the thickness of the layer (film).
(3) Retardation in the thickness direction (Rth)
The thickness direction retardation (Rth) refers to the thickness direction retardation value of a layer (film) at a wavelength of 550 nm unless otherwise specified. Rth is determined by Rth = {(nx + ny) / 2−nz} × d, where d (nm) is the thickness of the layer (film).
(4) Nz Coefficient The Nz coefficient is obtained by Nz = (nx−nz) / (nx−ny).
(5) Optical compensation layer The optical compensation layer has an in-plane retardation Re of 15 nm or more and a retardation Rth in the thickness direction of +55 nm or more or -15 nm or less for light of wavelength 550 nm unless otherwise specified. And the function and optical performance thereof are not particularly limited. That is, the optical compensation layer is a layer satisfying 15 nm ≦ Re and Rth ≦ −15 nm or +55 nm ≦ Rth.
(6) The viewing surface side and the rear surface viewing surface side mean the side closer to the screen (display surface) of the liquid crystal display device, and the rear surface side is more about the screen (display surface) of the liquid crystal display device It means the far side.
(7) Adjacent Arrangement A member (for example, an optical compensation layer) adjacent to another member (for example, an optical compensation layer) means that an optical compensation layer is not provided between both members, for example, A form in which a layer having no optical anisotropy is disposed between the two members is included. Here, the layer having no optical anisotropy means a layer satisfying Re <15 nm and −15 nm <Rth <+55 nm.
<実施形態1>
図1は、実施形態1に係る液晶表示装置の平面模式図である。図2は、実施形態1に係る液晶表示装置の断面模式図である。
図1に示すように、本実施形態に係る液晶表示装置1は、液晶パネル2を備えており、液晶パネル2は、その形状に対応した表示領域2aを有している。表示領域2aには複数の画素(図示せず)がマトリクス状に配列されており、表示領域2aにて画像が表示される。 First Embodiment
FIG. 1 is a schematic plan view of the liquid crystal display device according to the first embodiment. FIG. 2 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
As shown in FIG. 1, the liquidcrystal display device 1 according to the present embodiment includes a liquid crystal panel 2, and the liquid crystal panel 2 has a display area 2 a corresponding to the shape. A plurality of pixels (not shown) are arranged in a matrix in the display area 2a, and an image is displayed in the display area 2a.
図1は、実施形態1に係る液晶表示装置の平面模式図である。図2は、実施形態1に係る液晶表示装置の断面模式図である。
図1に示すように、本実施形態に係る液晶表示装置1は、液晶パネル2を備えており、液晶パネル2は、その形状に対応した表示領域2aを有している。表示領域2aには複数の画素(図示せず)がマトリクス状に配列されており、表示領域2aにて画像が表示される。 First Embodiment
FIG. 1 is a schematic plan view of the liquid crystal display device according to the first embodiment. FIG. 2 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
As shown in FIG. 1, the liquid
液晶表示装置1は、透過型又は半透過型の液晶表示装置であり、図2に示すように、液晶パネル2と、液晶パネル2の背面側に配置されたバックライト(図示せず)とを備え、液晶パネル2は、第1の偏光子11と、第1の光学補償層21と、第2の光学補償層22と、λ/4位相差板として機能する第3の光学補償層23と、液晶セル30と、λ/4位相差板として機能する第4の光学補償層24と、第2の偏光子12とをこの順に備えている。このように、第1の偏光子11、第1の光学補償層21、第2の光学補償層22及び第3の光学補償層23を含む第1の円偏光板3と、第4の光学補償層24及び第2の偏光子12を含む第2の円偏光板4とが液晶パネル2の両側にそれぞれ設けられている。また、液晶セル30は、互いに対向する一対の基板31及び32と、一対の基板31及び32間の液晶層33とを含んでいる。
The liquid crystal display device 1 is a transmissive or semi-transmissive liquid crystal display device, and includes a liquid crystal panel 2 and a backlight (not shown) disposed on the back side of the liquid crystal panel 2 as shown in FIG. The liquid crystal panel 2 includes a first polarizer 11, a first optical compensation layer 21, a second optical compensation layer 22, and a third optical compensation layer 23 functioning as a λ / 4 retardation plate. A liquid crystal cell 30, a fourth optical compensation layer 24 functioning as a λ / 4 retardation plate, and a second polarizer 12 are provided in this order. Thus, the first circularly polarizing plate 3 including the first polarizer 11, the first optical compensation layer 21, the second optical compensation layer 22, and the third optical compensation layer 23, and the fourth optical compensation A second circularly polarizing plate 4 including a layer 24 and a second polarizer 12 is provided on both sides of the liquid crystal panel 2. The liquid crystal cell 30 also includes a pair of substrates 31 and 32 facing each other, and a liquid crystal layer 33 between the pair of substrates 31 and 32.
図3は、実施形態1に係る液晶表示装置の斜視模式図である。
図3に示すように、第1の偏光子11は、吸収軸11aが第2の偏光子12の吸収軸12aに対して実質的に90°の角度をなし、第2の光学補償層22は、面内遅相軸22aが第1の偏光子11の吸収軸11aと実質的に平行であり、第3の光学補償層23は、面内遅相軸23aが第1の偏光子11の吸収軸11aに対して実質的に45°又は135°の角度をなし、第4の光学補償層24は、面内遅相軸24aが第3の光学補償層23の面内遅相軸23aに対して実質的に90°の角度をなしている。また、液晶セル30は、黒表示時に、液晶層33中の液晶分子を一対の基板31及び32面に対して実質的に垂直に配向させている。 FIG. 3 is a schematic perspective view of the liquid crystal display device according to the first embodiment.
As shown in FIG. 3, in thefirst polarizer 11, the absorption axis 11a forms an angle of substantially 90 ° with the absorption axis 12a of the second polarizer 12, and the second optical compensation layer 22 The in-plane slow axis 22 a is substantially parallel to the absorption axis 11 a of the first polarizer 11, and the third optical compensation layer 23 has an in-plane slow axis 23 a of the absorption of the first polarizer 11. The fourth optical compensation layer 24 has an in-plane slow axis 24 a relative to the in-plane slow axis 23 a of the third optical compensation layer 23 at an angle of substantially 45 ° or 135 ° with respect to the axis 11 a. The angle is substantially 90 degrees. The liquid crystal cell 30 aligns liquid crystal molecules in the liquid crystal layer 33 substantially perpendicularly to the pair of substrates 31 and 32 in black display.
図3に示すように、第1の偏光子11は、吸収軸11aが第2の偏光子12の吸収軸12aに対して実質的に90°の角度をなし、第2の光学補償層22は、面内遅相軸22aが第1の偏光子11の吸収軸11aと実質的に平行であり、第3の光学補償層23は、面内遅相軸23aが第1の偏光子11の吸収軸11aに対して実質的に45°又は135°の角度をなし、第4の光学補償層24は、面内遅相軸24aが第3の光学補償層23の面内遅相軸23aに対して実質的に90°の角度をなしている。また、液晶セル30は、黒表示時に、液晶層33中の液晶分子を一対の基板31及び32面に対して実質的に垂直に配向させている。 FIG. 3 is a schematic perspective view of the liquid crystal display device according to the first embodiment.
As shown in FIG. 3, in the
そして、第1の光学補償層21は、面内位相差Reが15nm以下であり、かつ、厚み方向位相差Rthが-60nm以下であり、第2の光学補償層22は、面内位相差Reが40~120nmであり、かつ、1≦Nz≦4を満たしている。
The first optical compensation layer 21 has an in-plane retardation Re of 15 nm or less, and a thickness direction retardation Rth of −60 nm or less, and the second optical compensation layer 22 has an in-plane retardation Re of Is 40 to 120 nm, and 1 ≦ Nz ≦ 4 is satisfied.
このような構成を有する液晶表示装置1によれば、第1~第4の光学補償層21~24は、それらの材料の選択肢が比較的多いことから、第1~第4の光学補償層21~24として、低温、高温、高温高湿環境等の過酷な環境下に置かれても光学パラメータ等の特性変化が比較的小さい光学補償層を用いることができる。したがって、液晶表示装置1を低温、高温、高温高湿環境等の過酷な環境下に放置した後であっても、その表示品位(例えば、コントラスト、表示ムラ)が低下することを抑制できる。また、液晶表示装置1によれば、第1~第4の光学補償層21~24の材料として、溶剤に対する耐久性が高い材料を選択できることから、偏光板(円偏光板3及び4)へ溶剤が付着したとしても、第1~第4の光学補償層21~24が第1又は第2の偏光子11又は12から剥離することを抑制できるとともに、第1~第4の光学補償層21~24の破断の発生を抑制することができる。更に、液晶表示装置1によれば、光学補償層の数を最小4枚(第1~第4の光学補償層21~24)まで削減できることから、生産性を向上(すなわち製造コストを削減)しつつ、液晶表示装置1全体の厚みを薄くすることができる。
According to the liquid crystal display device 1 having such a configuration, the first to fourth optical compensation layers 21 to 24 have relatively many options for their materials. As the optical compensation layer 24 to 24, it is possible to use an optical compensation layer having a relatively small change in characteristics such as optical parameters even under severe environments such as low temperature, high temperature, high temperature and high humidity environment. Therefore, even after the liquid crystal display device 1 is left in a severe environment such as a low temperature, a high temperature, a high temperature and high humidity environment, it is possible to suppress a decrease in display quality (for example, contrast, display unevenness). Further, according to the liquid crystal display device 1, a material having high durability to a solvent can be selected as the material of the first to fourth optical compensation layers 21 to 24, so that the solvent to the polarizing plate (circularly polarizing plates 3 and 4) Of the first to fourth optical compensation layers 21 to 24 can be suppressed from peeling from the first or second polarizer 11 or 12 and the first to fourth optical compensation layers 21 to 24 The occurrence of 24 fractures can be suppressed. Furthermore, according to the liquid crystal display device 1, the number of optical compensation layers can be reduced to a minimum of four (first to fourth optical compensation layers 21 to 24), thereby improving productivity (that is, reducing manufacturing costs). At the same time, the overall thickness of the liquid crystal display device 1 can be reduced.
液晶表示装置1は、後述するように第1~第4の光学補償層21~24の他に、光学補償層を更に備えることができるが、第2の光学補償層22は、第1の光学補償層21に隣接配置されることが好ましく、第3の光学補償層23は、第2の光学補償層22に隣接配置されることが好ましい。
The liquid crystal display device 1 can further include an optical compensation layer in addition to the first to fourth optical compensation layers 21 to 24 as described later, but the second optical compensation layer 22 is a first optical The third optical compensation layer 23 is preferably disposed adjacent to the second optical compensation layer 22.
なお、液晶パネル2の表裏は特に限定されず、第1の偏光子11及び第2の偏光子12がそれぞれ観察面側及び背面側となるように各部材が配置されてもよいし、反対に、第2の偏光子12及び第1の偏光子11がそれぞれ観察面側及び背面側となるように各部材が配置されてもよい。
The front and back of the liquid crystal panel 2 is not particularly limited, and each member may be disposed such that the first polarizer 11 and the second polarizer 12 are on the viewing surface side and the back surface, respectively. The respective members may be arranged such that the second polarizer 12 and the first polarizer 11 are on the viewing surface side and the back surface side, respectively.
液晶表示装置1は、電圧無印加時に黒表示を行うノーマリブラックモードの液晶表示装置であり、コントラストの観点から、偏光子11及び12は、クロスニコルに配置されており、上述のように第1の偏光子11は、吸収軸11aが第2の偏光子12の吸収軸12aに対して実質的に90°の角度をなしている。ここで、吸収軸11aが吸収軸12aに対して実質的に90°の角度をなすとは、より具体的には、2つの軸のなす角度(絶対値)が90±2°の範囲内であることを意味し、好ましくは90±0.6°の範囲内であり、特に好ましくは90°(完全に直交)である。
The liquid crystal display device 1 is a normally black mode liquid crystal display device which performs black display when no voltage is applied. From the viewpoint of contrast, the polarizers 11 and 12 are arranged in crossed nicols, and as described above One polarizer 11 has an absorption axis 11 a substantially at an angle of 90 ° with respect to the absorption axis 12 a of the second polarizer 12. Here, the fact that the absorption axis 11a forms an angle of substantially 90 ° with respect to the absorption axis 12a means that, more specifically, the angle (absolute value) between the two axes is within a range of 90 ± 2 °. This is preferably within the range of 90 ± 0.6 °, and particularly preferably 90 ° (perfectly orthogonal).
第2の光学補償層22は、上述のように、面内遅相軸22aが第1の偏光子11の吸収軸11aと実質的に平行である。ここで、面内遅相軸22aが吸収軸11aと実質的に平行であるとは、より具体的には、2つの軸のなす角度xが-5°<x<5°を満たすことを意味し、好ましくは-3°≦x≦3°を満たし、より好ましくは-1°≦x≦1°を満たし、更に好ましくは-0.5°≦x≦0.5°を満たし、特に好ましくはx=0°(完全に平行)である。角度xがx≦-5°又は5°≦xを満たすと、法線コントラスト及び視野角特性が悪化するおそれがある。
As described above, in the second optical compensation layer 22, the in-plane slow axis 22 a is substantially parallel to the absorption axis 11 a of the first polarizer 11. Here, that the in-plane slow axis 22a is substantially parallel to the absorption axis 11a more specifically means that the angle x between the two axes satisfies -5 ° <x <5 °. Preferably satisfies -3 ° ≦ x ≦ 3 °, more preferably satisfies −1 ° ≦ x ≦ 1 °, still more preferably satisfies −0.5 ° ≦ x ≦ 0.5 °, particularly preferably x = 0 (perfectly parallel). If the angle x satisfies x ≦ −5 ° or 5 ° ≦ x, the normal contrast and the viewing angle characteristics may be degraded.
第3の光学補償層23は、上述のように、面内遅相軸23aが第1の偏光子11の吸収軸11aに対して実質的に45°又は135°の角度をなしている。ここで、面内遅相軸23aが吸収軸11aに対して実質的に45°又は135°の角度をなすとは、2つの軸のなす角度(絶対値)が45±5°又は135±5°の範囲内であることを意味し、好ましくは45±2°又は135±2°の範囲内であり、より好ましくは45±0.6°又は135±0.6°の範囲内であり、特に好ましくは45°又は135°(完全に45°又は135°)である。
As described above, in the third optical compensation layer 23, the in-plane slow axis 23a forms an angle of substantially 45 ° or 135 ° with the absorption axis 11a of the first polarizer 11. Here, that the in-plane slow axis 23a makes an angle of substantially 45 ° or 135 ° with the absorption axis 11a means that the angle (absolute value) between the two axes is 45 ± 5 ° or 135 ± 5. Meaning within the range of 45 °, preferably within the range of 45 ± 2 ° or 135 ± 2 °, more preferably within the range of 45 ± 0.6 ° or 135 ± 0.6 °, Particularly preferred is 45 ° or 135 ° (completely 45 ° or 135 °).
第4の光学補償層24は、上述のように、面内遅相軸24aが第3の光学補償層23の面内遅相軸23aに対して実質的に90°の角度をなしている。ここで、面内遅相軸24aが面内遅相軸23aに対して実質的に90°の角度をなすとは、より具体的には、2つの軸のなす角度(絶対値)が90±2°の範囲内であることを意味し、好ましくは90±0.6°の範囲内であり、特に好ましくは90°(完全に直交)である。
以下、各構成について更に説明する。 As described above, in the fourthoptical compensation layer 24, the in-plane slow axis 24a forms an angle of substantially 90 ° with the in-plane slow axis 23a of the third optical compensation layer 23. Here, the fact that the in-plane slow axis 24a forms an angle of substantially 90 ° with the in-plane slow axis 23a means that the angle (absolute value) between the two axes is 90 ±, more specifically. It means within the range of 2 °, preferably within the range of 90 ± 0.6 °, and particularly preferably 90 ° (completely orthogonal).
Each configuration will be further described below.
以下、各構成について更に説明する。 As described above, in the fourth
Each configuration will be further described below.
<偏光子>
第1の偏光子11及び第2の偏光子12としては、目的に応じて任意の適切な偏光子が採用され得る。例えば、ポリビニルアルコール系フィルム(以下、PVAフィルムとも言う。)、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性ポリマーフィルムに、ヨウ素や二色性染料等の二色性物質(二色性色素)を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらのなかでも、ポリビニルアルコール系フィルムにヨウ素等の二色性物質(二色性色素)を吸着させて一軸延伸した偏光子が、偏光二色比が高く特に好ましい。これら偏光子の厚さは特に制限されないが、一般的に、5~30μm程度である。 <Polarizer>
Any appropriate polarizer may be employed as thefirst polarizer 11 and the second polarizer 12 depending on the purpose. For example, a hydrophilic polymer film such as a polyvinyl alcohol-based film (hereinafter, also referred to as a PVA film), a partially formalized polyvinyl alcohol-based film, or an ethylene / vinyl acetate copolymer-based partially saponified film A film obtained by adsorbing a dichromatic substance (dichroic dye) of the above and uniaxially stretched, a dehydrated product of polyvinyl alcohol, a dehydrochlorinated product of polyvinyl chloride, and the like, and a polyene-based oriented film and the like. Among these, a polarizer obtained by adsorbing a dichroic substance (dichroic dye) such as iodine to a polyvinyl alcohol-based film and uniaxially stretching it is particularly preferable because the polarization dichroic ratio is high. The thickness of these polarizers is not particularly limited, but in general, it is about 5 to 30 μm.
第1の偏光子11及び第2の偏光子12としては、目的に応じて任意の適切な偏光子が採用され得る。例えば、ポリビニルアルコール系フィルム(以下、PVAフィルムとも言う。)、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性ポリマーフィルムに、ヨウ素や二色性染料等の二色性物質(二色性色素)を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等が挙げられる。これらのなかでも、ポリビニルアルコール系フィルムにヨウ素等の二色性物質(二色性色素)を吸着させて一軸延伸した偏光子が、偏光二色比が高く特に好ましい。これら偏光子の厚さは特に制限されないが、一般的に、5~30μm程度である。 <Polarizer>
Any appropriate polarizer may be employed as the
ポリビニルアルコール系フィルムにヨウ素を吸着させて一軸延伸した偏光子は、例えば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸や硫酸亜鉛、塩化亜鉛等を含んでいても良いし、ヨウ化カリウム等の水溶液に浸漬することもできる。更に必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗しても良い。延伸は、ヨウ素で染色した後に行ってもよいし、染色しながら延伸してもよいし、延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウム等の水溶液中や水浴中でも延伸することができる。
A polarizer obtained by adsorbing iodine to a polyvinyl alcohol-based film and uniaxially stretching it can be produced, for example, by dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching it to 3 to 7 times its original length. . If necessary, it may contain boric acid, zinc sulfate, zinc chloride or the like, or it may be immersed in an aqueous solution such as potassium iodide. Furthermore, if necessary, the polyvinyl alcohol-based film may be dipped in water and rinsed before dyeing. Stretching may be carried out after dyeing with iodine, may be stretched while dyeing, or may be dyed with iodine after being stretched. It can also be stretched in an aqueous solution of boric acid or potassium iodide or in a water bath.
第1の偏光子11及び第2の偏光子12は、各々、観察面側及び背面側に保護層が設けられていてもよい。上記保護層は、偏光子の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、例えば、トリアセチルセルロース(TAC)等のセルロース系樹脂や、シクロオレフィン系樹脂等の透明樹脂等が挙げられる。なお、シクロオレフィン系樹脂については、後で詳述する。以下、トリアセチルセルロースを主成分とするフィルムをTACフィルムとも言い、シクロオレフィン系樹脂、なかでもシクロオレフィンポリマー(COP)を主成分とするフィルムをCOPフィルムとも言う。
The first polarizer 11 and the second polarizer 12 may each be provided with a protective layer on the viewing surface side and the back surface side. The protective layer is formed of any suitable film that can be used as a protective layer of a polarizer. Specific examples of the material that is the main component of the film include, for example, cellulose resins such as triacetyl cellulose (TAC), and transparent resins such as cycloolefin resins. The cycloolefin resin will be described in detail later. Hereinafter, a film having triacetyl cellulose as a main component is also referred to as a TAC film, and a film having a cycloolefin resin, in particular, a cycloolefin polymer (COP) as a main component is also referred to as a COP film.
第1の偏光子11及び/又は第2の偏光子12の液晶セル30側に保護層を設ける場合、該保護層(内側保護層)は、光学的に等方性を有することが好ましい。具体的には、内側保護層の厚み方向の位相差Rthは、好ましくは-15nmより大きく、+15nm未満、より好ましくは-10nm以上、+10nm以下、更に好ましくは-6nm以上、+6nm以下、特に好ましくは-3nm以上、+3nm以下である。内側保護層の面内位相差Reは、好ましくは0nm以上、15nm未満、より好ましくは0nm以上、10nm以下、更に好ましくは0nm以上、6nm以下、特に好ましくは0nm以上、3nm以下である。
When a protective layer is provided on the liquid crystal cell 30 side of the first polarizer 11 and / or the second polarizer 12, the protective layer (inner protective layer) preferably has optical isotropy. Specifically, the retardation Rth in the thickness direction of the inner protective layer is preferably more than -15 nm and less than +15 nm, more preferably -10 nm or more and +10 nm or less, still more preferably -6 nm or more and +6 nm or less, particularly preferably -3 nm or more and +3 nm or less. The in-plane retardation Re of the inner protective layer is preferably 0 nm or more and less than 15 nm, more preferably 0 nm or more and 10 nm or less, still more preferably 0 nm or more and 6 nm or less, and particularly preferably 0 nm or more and 3 nm or less.
また、内側保護層を別途設ける代わりに、第1の偏光子11及び第2の偏光子12の液晶セル30側の直ぐ隣の光学補償層(例えば、第1の光学補償層21、第4の光学補償層24等)をそれぞれ保護層として用いてもよい。
In addition, instead of separately providing the inner protective layer, an optical compensation layer (for example, the first optical compensation layer 21 or the fourth optical compensation layer 21 immediately adjacent to the liquid crystal cell 30 side of the first polarizer 11 and the second polarizer 12). The optical compensation layer 24 or the like may be used as a protective layer.
<第1の光学補償層>
第1の光学補償層21は、上述のように、Re≦15nm、かつ、Rth≦-60nmを満たす。第1の光学補償層21の面内位相差Reは、0~10nmであることが好ましく、0~5nmであることがより好ましく、0~3nmであることが更に好ましく、0~1nmであることが特に好ましい。このように、第1の光学補償層21は、nz>nx=nyの屈折率の関係を有する光学補償層(所謂ポジティブCプレート)であることが好ましい。なお、第1の光学補償層21の厚み方向位相差Rthについては、他の部材の光学パラメータに応じて上記範囲内において適宜設定可能である。また、第1の光学補償層21は、面内位相差Reが15nm以下等、充分小さい場合、面内では実質的に光学的に等方性と見なせるため、第1の光学補償層21の面内における配置方向は特に限定されない。 <First optical compensation layer>
As described above, the firstoptical compensation layer 21 satisfies Re ≦ 15 nm and Rth ≦ −60 nm. The in-plane retardation Re of the first optical compensation layer 21 is preferably 0 to 10 nm, more preferably 0 to 5 nm, still more preferably 0 to 3 nm, and still more preferably 0 to 1 nm. Is particularly preferred. Thus, the first optical compensation layer 21 is preferably an optical compensation layer (so-called positive C plate) having a refractive index relationship of nz> nx = ny. The thickness direction retardation Rth of the first optical compensation layer 21 can be appropriately set within the above range according to the optical parameters of the other members. The first optical compensation layer 21 can be regarded as substantially optically isotropic in the plane when the in-plane retardation Re is sufficiently small, such as 15 nm or less, so the surface of the first optical compensation layer 21 is The arrangement direction in the inside is not particularly limited.
第1の光学補償層21は、上述のように、Re≦15nm、かつ、Rth≦-60nmを満たす。第1の光学補償層21の面内位相差Reは、0~10nmであることが好ましく、0~5nmであることがより好ましく、0~3nmであることが更に好ましく、0~1nmであることが特に好ましい。このように、第1の光学補償層21は、nz>nx=nyの屈折率の関係を有する光学補償層(所謂ポジティブCプレート)であることが好ましい。なお、第1の光学補償層21の厚み方向位相差Rthについては、他の部材の光学パラメータに応じて上記範囲内において適宜設定可能である。また、第1の光学補償層21は、面内位相差Reが15nm以下等、充分小さい場合、面内では実質的に光学的に等方性と見なせるため、第1の光学補償層21の面内における配置方向は特に限定されない。 <First optical compensation layer>
As described above, the first
<第2の光学補償層>
第2の光学補償層22は、上述のように、40nm≦Re≦120nm、かつ、1≦Nz≦4を満たす。第2の光学補償層22は、1≦Nz≦1.4を満たすことが好ましく、1≦Nz≦1.15を満たすことがより好ましく、実質的にNz=1を満たすことが特に好ましい。ここで、実質的にNz=1を満たすとは、より具体的には、1≦Nz≦1.05を満たすことを意味する。このように、第2の光学補償層22は、nx>nz>nyの屈折率の関係を有する光学補償層(所謂ポジティブBプレート)、又は、nx>nz=nyの屈折率の関係を有する光学補償層(所謂ポジティブAプレート)であってもよいが、後者(ポジティブAプレート)であることが好ましい。第2の光学補償層22の面内位相差Reについては、他の部材の光学パラメータ応じて上記範囲内において適宜設定可能である。 <Second optical compensation layer>
As described above, the secondoptical compensation layer 22 satisfies 40 nm ≦ Re ≦ 120 nm and 1 ≦ Nz ≦ 4. The second optical compensation layer 22 preferably satisfies 1 ≦ Nz ≦ 1.4, more preferably 1 ≦ Nz ≦ 1.15, and particularly preferably substantially satisfying Nz = 1. Here, substantially satisfying Nz = 1 means, more specifically, satisfying 1 ≦ Nz ≦ 1.05. Thus, the second optical compensation layer 22 is an optical compensation layer (so-called positive B plate) having a refractive index relationship of nx>nz> ny, or an optical component having a refractive index relationship of nx> nz = ny. It may be a compensation layer (so-called positive A plate), but is preferably the latter (positive A plate). The in-plane retardation Re of the second optical compensation layer 22 can be appropriately set within the above range according to the optical parameters of the other members.
第2の光学補償層22は、上述のように、40nm≦Re≦120nm、かつ、1≦Nz≦4を満たす。第2の光学補償層22は、1≦Nz≦1.4を満たすことが好ましく、1≦Nz≦1.15を満たすことがより好ましく、実質的にNz=1を満たすことが特に好ましい。ここで、実質的にNz=1を満たすとは、より具体的には、1≦Nz≦1.05を満たすことを意味する。このように、第2の光学補償層22は、nx>nz>nyの屈折率の関係を有する光学補償層(所謂ポジティブBプレート)、又は、nx>nz=nyの屈折率の関係を有する光学補償層(所謂ポジティブAプレート)であってもよいが、後者(ポジティブAプレート)であることが好ましい。第2の光学補償層22の面内位相差Reについては、他の部材の光学パラメータ応じて上記範囲内において適宜設定可能である。 <Second optical compensation layer>
As described above, the second
<第3及び第4の光学補償層>
第3の光学補償層23及び第4の光学補償層24は、上述のように、λ/4位相差板として機能する。ここで、λ/4位相差板とは、光ビームの偏光面を回転させる役目をする電子光学的な複屈折板であり、互いに直角な方向に振動する直線偏光間に1/4波長の光路差を生じさせる機能を有するものを言う。すなわち、常光線成分と異常光線成分との間の位相が4分の1サイクルずれるように作用し、円偏光を直線偏光に(又は直線偏光を円偏光に)変換するものを言う。したがって、第1の偏光子11及び第3の光学補償層23と、第2の偏光子12及び第4の光学補償層24とが、互いに直交する左右円偏光板として機能する。 <Third and Fourth Optical Compensation Layers>
The thirdoptical compensation layer 23 and the fourth optical compensation layer 24 function as λ / 4 retardation plates as described above. Here, the λ / 4 retardation plate is an electron optical birefringence plate that serves to rotate the polarization plane of the light beam, and has an optical path of 1⁄4 wavelength between linearly polarized light vibrating in directions perpendicular to each other. We say what has function to make difference. That is, it means that the phase between the ordinary ray component and the extraordinary ray component acts so as to be shifted by a quarter cycle, and circularly polarized light is converted to linearly polarized light (or linearly polarized light to circularly polarized light). Therefore, the first polarizer 11 and the third optical compensation layer 23, and the second polarizer 12 and the fourth optical compensation layer 24 function as left and right circularly polarizing plates orthogonal to each other.
第3の光学補償層23及び第4の光学補償層24は、上述のように、λ/4位相差板として機能する。ここで、λ/4位相差板とは、光ビームの偏光面を回転させる役目をする電子光学的な複屈折板であり、互いに直角な方向に振動する直線偏光間に1/4波長の光路差を生じさせる機能を有するものを言う。すなわち、常光線成分と異常光線成分との間の位相が4分の1サイクルずれるように作用し、円偏光を直線偏光に(又は直線偏光を円偏光に)変換するものを言う。したがって、第1の偏光子11及び第3の光学補償層23と、第2の偏光子12及び第4の光学補償層24とが、互いに直交する左右円偏光板として機能する。 <Third and Fourth Optical Compensation Layers>
The third
第3の光学補償層23及び第4の光学補償層24は、各々、面内位相差Reが正確には137.5nm付近であるが、100~175nmであればよく、110~165nmであることが好ましく、130~145nmであることがより好ましい。高コントラストを保つ観点から、第3の光学補償層23の面内位相差Reは、第4の光学補償層24の面内位相差Reと実質的に同じであることが好ましい。ここで、第3の光学補償層23及び第4の光学補償層24の面内位相差Reが実質的に同じであるとは、より具体的には、2つの面内位相差Reの差(絶対値)が7.64nm以下であることを意味し、好ましくは2nm以下であり、より好ましくは1nm以下であり、特に好ましくは0nm(完全に同じ)である。なお、7.64nmの面内位相差Reの差とは、面内位相差Reをラジアン(rad)で表したΓ(=2π×Re/λ)が5°であることを意味し、第3及び第4の光学補償層23及び24の面内位相差Reの差がこれより大きくなると、急激にコントラストが悪化することが経験上分かっている。また、第3の光学補償層23及び第4の光学補償層24は、各々、1≦Nz≦2.4を満たすことが好ましい。
The third optical compensation layer 23 and the fourth optical compensation layer 24 each have an in-plane retardation Re of approximately 137.5 nm, but may be 100 to 175 nm, and 110 to 165 nm. Is preferable, and 130 to 145 nm is more preferable. From the viewpoint of maintaining high contrast, the in-plane retardation Re of the third optical compensation layer 23 is preferably substantially the same as the in-plane retardation Re of the fourth optical compensation layer 24. Here, the in-plane retardation Re of the third optical compensation layer 23 and the fourth optical compensation layer 24 is substantially the same, more specifically, the difference between the two in-plane retardations Re ( It means that the absolute value) is 7.64 nm or less, preferably 2 nm or less, more preferably 1 nm or less, and particularly preferably 0 nm (completely the same). The difference of the in-plane retardation Re of 7.64 nm means that Γ (= 2π × Re / λ), which represents the in-plane retardation Re in radians (rad), is 5 °, and the third difference It is empirically known that when the difference between the in-plane retardations Re of the fourth optical compensation layers 23 and 24 becomes larger than this, the contrast is rapidly deteriorated. Preferably, the third optical compensation layer 23 and the fourth optical compensation layer 24 each satisfy 1 ≦ Nz ≦ 2.4.
<第1~第4の光学補償層の材料及び形成方法>
第1~第4の光学補償層21~24の材料及び形成方法については特に限定されず、例えば、ポリマーフィルムを延伸等の加工したもの、液晶性材料の配向を固定したもの、無機材料から構成される薄板等を用いることができるが、なかでもポリマーフィルムを延伸等の加工したもの及び液晶性材料の配向を固定したものが好適である。液晶化合物としては、重合性液晶が好適である。 <Material and Method of Forming First to Fourth Optical Compensation Layers>
There is no particular limitation on the material and formation method of the first to fourthoptical compensation layers 21 to 24. For example, the polymer film is processed by stretching or the like, the orientation of the liquid crystalline material is fixed, and it is composed of an inorganic material. Although thin plates or the like to be used can be used, among them, one obtained by processing a polymer film by drawing or the like and one obtained by fixing the orientation of a liquid crystalline material are preferable. The liquid crystal compound is preferably a polymerizable liquid crystal.
第1~第4の光学補償層21~24の材料及び形成方法については特に限定されず、例えば、ポリマーフィルムを延伸等の加工したもの、液晶性材料の配向を固定したもの、無機材料から構成される薄板等を用いることができるが、なかでもポリマーフィルムを延伸等の加工したもの及び液晶性材料の配向を固定したものが好適である。液晶化合物としては、重合性液晶が好適である。 <Material and Method of Forming First to Fourth Optical Compensation Layers>
There is no particular limitation on the material and formation method of the first to fourth
第1~第4の光学補償層21~24の形成方法としては、ポリマーフィルムの場合、例えば溶剤キャスト法、溶融押出し法等を用いることができる。共押出し法により、複数の複屈折層を同時に形成する方法であってもよい。所望の位相差が発現してさえいれば、無延伸であってもよいし、延伸が施されていてもよい。延伸方法も特に限定されず、ロール間引張り延伸法、ロール間圧縮延伸法、テンター横一軸延伸法、縦横二軸延伸法の他、熱収縮性フィルムの収縮力の作用下に延伸を行う特殊延伸法等を用いることができる。また、液晶性材料の場合、例えば、配向処理を施した基材フィルムの上に液晶性材料を塗布し、配向固定する方法等を用いることができる。所望の位相差が発現してさえいれば、基材フィルムに特別な配向処理を行わない方法や、配向固定した後、基材フィルムから剥がして別のフィルムに転写加工する方法等であってもよい。更に、液晶性材料の配向を固定しない方法を用いてもよい。また、非液晶性材料の場合も、液晶性材料と同様の形成方法を用いてもよい。
As a method of forming the first to fourth optical compensation layers 21 to 24, in the case of a polymer film, for example, a solvent cast method, a melt extrusion method or the like can be used. It may be a method of simultaneously forming a plurality of birefringent layers by a co-extrusion method. As long as the desired retardation is developed, it may be non-stretching or may be stretched. The stretching method is also not particularly limited, and it is a special stretching in which stretching is performed under the action of the shrinking force of the heat shrinkable film, in addition to the inter-roll tensile stretching method, inter-roll compression stretching method, tenter transverse uniaxial stretching method, longitudinal and transverse biaxial stretching method. A law etc. can be used. Moreover, in the case of a liquid crystalline material, for example, a method of applying a liquid crystalline material on a substrate film subjected to alignment treatment, and orienting and fixing can be used. Even if there is a method in which the substrate film is not subjected to special orientation processing as long as the desired phase difference is expressed, or a method in which the film is peeled off from the substrate film and transferred to another film after orientation fixation. Good. Furthermore, a method in which the orientation of the liquid crystal material is not fixed may be used. Also in the case of a non-liquid crystal material, the same formation method as the liquid crystal material may be used.
第1の光学補償層21を液晶性材料から形成する場合、第2の光学補償層22上に液晶性材料を塗布してもよい。
When the first optical compensation layer 21 is formed of a liquid crystalline material, the liquid crystalline material may be coated on the second optical compensation layer 22.
上記ポリマーフィルムの主成分となる材料の具体例としては、例えば、シクロオレフィン系樹脂、セルロース系樹脂、(メタ)アクリル系樹脂等の透明樹脂が挙げられる。なお、本明細書において「(メタ)アクリル系樹脂」とは、アクリル系樹脂及びメタクリル系樹脂よりなる群から選ばれる少なくとも1種を表す。その他の「(メタ)」を付した用語においても同様である。
As a specific example of the material used as the main ingredients of the above-mentioned polymer film, transparent resin, such as cycloolefin system resin, cellulose system resin, (meth) acrylic resin, is mentioned, for example. In addition, in this specification, "(meth) acrylic-type resin" represents at least 1 sort (s) chosen from the group which consists of acrylic resin and methacrylic resin. The same applies to other terms with "(meth)".
上記シクロオレフィン系樹脂としては、環状オレフィン(シクロオレフィン)からなるモノマーのユニットを有する樹脂であれば特に限定されず、シクロオレフィンポリマー(COP)又はシクロオレフィンコポリマー(COC)のいずれであってもよい。シクロオレフィンコポリマーとは、環状オレフィンとエチレン等のオレフィンとの共重合体である非結晶性の環状オレフィン系樹脂のことをいう。
The above cycloolefin resin is not particularly limited as long as it is a resin having a monomer unit consisting of cyclic olefin (cycloolefin), and may be any of cycloolefin polymer (COP) or cycloolefin copolymer (COC) . The cycloolefin copolymer refers to a non-crystalline cyclic olefin resin which is a copolymer of a cyclic olefin and an olefin such as ethylene.
上記環状オレフィンとしては、多環式の環状オレフィンと単環式の環状オレフィンとが挙げられる。多環式の環状オレフィンとしては、ノルボルネン、メチルノルボルネン、ジメチルノルボルネン、エチルノルボルネン、エチリデンノルボルネン、ブチルノルボルネン等のノルボルネン類、ジシクロペンタジエン、ジヒドロジシクロペンタジエン、メチルジシクロペンタジエン、ジメチルジシクロペンタジエン等のジシクロペンタジエン類、テトラシクロドデセン、メチルテトラシクロドデセン、ジメチルテトラシクロドデセン等のテトラシクロドデセン類、トリシクロペンタジエン、テトラシクロペンタジエン等のシクロペンタジエンの多量体類が挙げられる。また、単環式の環状オレフィンとしては、シクロブテン、シクロペンテン、シクロオクテン、シクロオクタジエン、シクロオクタトリエン、シクロドデカトリエンが挙げられる。なかでも、透明性、耐湿性、位相差制御の点から、ノルボルネン類が好ましい。
As said cyclic olefin, polycyclic cyclic olefin and monocyclic cyclic olefin are mentioned. Examples of polycyclic cyclic olefins include norbornenes such as norbornene, methyl norbornene, dimethyl norbornene, ethyl norbornene, ethylidene norbornene and butyl norbornene, dicyclopentadiene, dihydrodicyclopentadiene, methyldicyclopentadiene, dimethyldicyclopentadiene and the like Examples include tetracyclododecenes such as dicyclopentadienes, tetracyclododecene, methyltetracyclododecene and dimethyltetracyclododecene, and polymers of cyclopentadienes such as tricyclopentadiene and tetracyclopentadiene. Furthermore, examples of monocyclic cyclic olefins include cyclobutene, cyclopentene, cyclooctene, cyclooctadiene, cyclooctatriene and cyclododecatriene. Among them, norbornenes are preferable in terms of transparency, moisture resistance, and retardation control.
上記セルロース系樹脂とは、綿花リンタや木材パルプ(広葉樹パルプ、針葉樹パルプ)等の原料セルロースから得られるセルロースの水酸基における水素原子の一部又は全部がアセチル基、プロピオニル基及び/又はブチリル基で置換された、セルロース有機酸エステル又はセルロース混合有機酸エステルをいう。例えば、セルロースの酢酸エステル、プロピオン酸エステル、酪酸エステル、及びそれらの混合エステル等からなるものが挙げられる。なかでも、トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネート、セルロースアセテートブチレートが好ましい。
With the above-mentioned cellulose resin, part or all of hydrogen atoms in hydroxyl groups of cellulose obtained from raw material cellulose such as cotton linta and wood pulp (hardwood pulp and softwood pulp) are substituted with acetyl group, propionyl group and / or butyryl group Cellulose organic acid ester or cellulose mixed organic acid ester. For example, those composed of cellulose acetate, propionate, butyrate, mixed esters thereof and the like can be mentioned. Among them, triacetyl cellulose, diacetyl cellulose, cellulose acetate propionate and cellulose acetate butyrate are preferable.
上記(メタ)アクリル系樹脂は、(メタ)アクリル系モノマー由来の構成単位を含む重合体である。該重合体は、典型的にはメタクリル酸エステルを含む重合体である。好ましくはメタクリル酸エステルに由来する構成単位の割合が、全構成単位に対して、50重量%以上含む重合体である。(メタ)アクリル系樹脂は、メタクリル酸エステルの単独重合体であってもよいし、他の重合性モノマー由来の構成単位を含む共重合体であってもよい。この場合、他の重合性モノマー由来の構成単位の割合は、好ましくは全構成単位に対して、50%以下である。
The (meth) acrylic resin is a polymer containing a structural unit derived from a (meth) acrylic monomer. The polymer is typically a polymer containing a methacrylic acid ester. Preferably, the proportion of constituent units derived from methacrylic acid ester is a polymer containing 50% by weight or more based on all constituent units. The (meth) acrylic resin may be a homopolymer of methacrylic acid ester, or may be a copolymer containing a structural unit derived from another polymerizable monomer. In this case, the proportion of constituent units derived from other polymerizable monomers is preferably 50% or less based on all constituent units.
上記(メタ)アクリル系樹脂を構成し得るメタクリル酸エステルとしては、メタクリル酸アルキルエステルが好ましい。メタクリル酸アルキルエステルとしては、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-ヒドロキシエチルのようなアルキル基の炭素数が1~8であるメタクリル酸アルキルエステルが挙げられる。メタクリル酸アルキルエステルに含まれるアルキル基の炭素数は、好ましくは1~4である。(メタ)アクリル系樹脂において、メタクリル酸エステルは、1種のみを単独で用いてもよいし2種以上を併用してもよい。
As a methacrylic acid ester which can comprise the said (meth) acrylic-type resin, methacrylic acid alkyl ester is preferable. As alkyl methacrylate, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate And methacrylic acid alkyl esters having 1 to 8 carbon atoms in the alkyl group such as 2-hydroxyethyl methacrylate. The carbon number of the alkyl group contained in the methacrylic acid alkyl ester is preferably 1 to 4. In the (meth) acrylic resin, only one kind of methacrylic acid ester may be used alone, or two or more kinds thereof may be used in combination.
上記(メタ)アクリル系樹脂を構成し得る上記他の重合性モノマーとしては、アクリル酸エステル、その他の分子内に重合性炭素-炭素二重結合を有する化合物を挙げることができる。他の重合性モノマーは、1種のみを単独で用いてもよいし2種以上を併用してもよい。アクリル酸エステルとしては、アクリル酸アルキルエステルが好ましい。アクリル酸アルキルエステルとしては、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル、アクリル酸2-ヒドロキシエチルのようなアルキル基の炭素数が1~8であるアクリル酸アルキルエステル等が挙げられる。アクリル酸アルキルエステルに含まれるアルキル基の炭素数は、好ましくは1~4である。(メタ)アクリル系樹脂において、アクリル酸エステルは、1種のみを単独で用いてもよいし2種以上を併用してもよい。
Examples of the other polymerizable monomer which can constitute the (meth) acrylic resin include acrylic acid esters and compounds having a polymerizable carbon-carbon double bond in another molecule. The other polymerizable monomers may be used alone or in combination of two or more. As acrylic acid ester, acrylic acid alkyl ester is preferable. As alkyl acrylate, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acrylate And alkyl acrylates having 1 to 8 carbon atoms in the alkyl group such as 2-hydroxyethyl acrylate. The carbon number of the alkyl group contained in the acrylic acid alkyl ester is preferably 1 to 4. In the (meth) acrylic resin, only one acrylic ester may be used alone, or two or more acrylic esters may be used in combination.
上記その他の分子内に重合性炭素-炭素二重結合を有する化合物としては、エチレン、プロピレン、スチレン等のビニル系化合物や、アクリロニトリルのようなビニルシアン化合物が挙げられる。その他の分子内に重合性炭素-炭素二重結合を有する化合物は、1種のみを単独で用いてもよいし2種以上を併用してもよい。
Examples of the other compound having a polymerizable carbon-carbon double bond in the molecule include vinyl compounds such as ethylene, propylene and styrene, and vinyl cyan compounds such as acrylonitrile. As the compound having a polymerizable carbon-carbon double bond in the other molecule, one type may be used alone, or two or more types may be used in combination.
上記重合性液晶とは、重合性基を有し、かつ、液晶性を有する化合物である。重合性基は、重合反応に関与する基を意味し、光重合性基であることが好ましい。ここで、光重合性基とは、光重合開始剤から発生した活性ラジカルや酸等によって重合反応に関与し得る基のことをいう。重合性基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。なかでも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基及びオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性はサーモトロピック性液晶でもリオトロピック液晶でもよく、サーモトロピック液晶を秩序度で分類すると、ネマチック液晶でもスメクチック液晶でもよいが、成膜の容易さという観点からは、サーモトロピック性のネマチック液晶が好ましい。
The polymerizable liquid crystal is a compound having a polymerizable group and having liquid crystallinity. The polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable group. Here, the photopolymerizable group refers to a group capable of participating in the polymerization reaction by active radicals or acids generated from the photopolymerization initiator. Examples of the polymerizable group include vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, oxetanyl group and the like. Among them, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable. The liquid crystallinity may be a thermotropic liquid crystal or a lyotropic liquid crystal. If the thermotropic liquid crystals are classified according to the degree of order, they may be nematic liquid crystals or smectic liquid crystals, but from the viewpoint of easiness of film formation, thermotropic nematic liquid crystals are preferred. .
上記重合性液晶の具体例としては、液晶便覧(液晶便覧編集委員会編、丸善(株)平成12年10月30日発行)の「3.8.6 ネットワーク(完全架橋型)」、「6.5.1 液晶材料 b.重合性ネマチック液晶材料」に記載された化合物の中で重合性基を有する化合物、特開2010-31223号公報、特開2010-270108号公報、特開2011-6360号公報および特開2011-207765号公報記載の重合性液晶が挙げられる。
Specific examples of the above-mentioned polymerizable liquid crystal include “3.8.6 Network (fully cross-linked type)”, “6. .5.1 Liquid Crystal Materials b. Compounds Having a Polymerizable Group Among the Compounds Described in the Polymerizable Nematic Liquid Crystal Material], compounds disclosed in JP 2010-31223 A, JP 2010-270108 A, JP 2011-6360 A And polymerizable liquid crystals described in JP-A-2011-207765.
これらの材料は、いずれも、上記(1)~(3)のような課題が解決された、あるいは影響が小さい材料であるが、なかでも、第1の光学補償層21としては、重合性液晶を基材(基板)と平行に配向させて重合したものが好適であり、第2~第4の光学補償層22~24としては、シクロオレフィン系樹脂を延伸したもの、セルロース系樹脂、特にトリアセチルセルロースを延伸したもの、(メタ)アクリル系樹脂を延伸したもの、及び、重合性液晶を基材(基板)と平行に配向させて重合したものが好適である。
All of these materials are materials in which the problems as described in the above (1) to (3) are solved or the influence is small, but among them, as the first optical compensation layer 21, a polymerizable liquid crystal It is preferable that the polymer is oriented in parallel to the base material (substrate) and polymerized, and as the second to fourth optical compensation layers 22 to 24, those obtained by drawing a cycloolefin resin, It is preferable to use one obtained by stretching acetyl cellulose, one obtained by stretching a (meth) acrylic resin, and one obtained by orientating and polymerizing a polymerizable liquid crystal in parallel to a substrate (substrate).
第1~第4の光学補償層21~24として、上述の材料及び形成方法により形成された光学補償層を用いることによって、円偏光板3、4に溶剤が付着したとしても剥離及び破断の発生を抑制することができる。
By using the optical compensation layer formed by the above-mentioned material and forming method as the first to fourth optical compensation layers 21 to 24, occurrence of peeling and breakage even if the solvent adheres to the circularly polarizing plates 3 and 4 Can be suppressed.
<液晶セル>
液晶セル30は、上述のように、互いに対向する一対の基板31及び32と、一対の基板31及び32間の液晶層33とを含む。基板31及び32の一方(カラーフィルター基板)には、カラーフィルターと、ブラックマトリクスと、共通電極とが設けられている。基板31及び32の他方(アクティブマトリクス基板)には、液晶の電気光学特性を制御するスイッチング素子(代表的にはTFT)と、このスイッチング素子にゲート信号を与える走査線及びソース信号を与える信号線と、画素電極とが設けられている。なお、カラーフィルターは、10~50nm程度の厚み方向の位相差Rthを持っていてもよい。また、カラーフィルターは、アクティブマトリクス基板側に設けてもよい。基板31及び32の間隔(セルギャップ)は、スペーサーによって制御されている。各基板31、32の液晶層33と接する側には、例えば、ポリイミドからなる配向膜が設けられている。 <Liquid crystal cell>
As described above, theliquid crystal cell 30 includes the pair of substrates 31 and 32 facing each other, and the liquid crystal layer 33 between the pair of substrates 31 and 32. On one of the substrates 31 and 32 (color filter substrate), a color filter, a black matrix and a common electrode are provided. On the other of the substrates 31 and 32 (active matrix substrate), a switching element (typically, a TFT) for controlling the electro-optical characteristics of liquid crystal, and a scanning line for applying a gate signal to the switching element And a pixel electrode. The color filter may have a thickness direction retardation Rth of about 10 to 50 nm. In addition, the color filter may be provided on the active matrix substrate side. The distance between the substrates 31 and 32 (cell gap) is controlled by the spacer. On the side of each of the substrates 31 and 32 in contact with the liquid crystal layer 33, for example, an alignment film made of polyimide is provided.
液晶セル30は、上述のように、互いに対向する一対の基板31及び32と、一対の基板31及び32間の液晶層33とを含む。基板31及び32の一方(カラーフィルター基板)には、カラーフィルターと、ブラックマトリクスと、共通電極とが設けられている。基板31及び32の他方(アクティブマトリクス基板)には、液晶の電気光学特性を制御するスイッチング素子(代表的にはTFT)と、このスイッチング素子にゲート信号を与える走査線及びソース信号を与える信号線と、画素電極とが設けられている。なお、カラーフィルターは、10~50nm程度の厚み方向の位相差Rthを持っていてもよい。また、カラーフィルターは、アクティブマトリクス基板側に設けてもよい。基板31及び32の間隔(セルギャップ)は、スペーサーによって制御されている。各基板31、32の液晶層33と接する側には、例えば、ポリイミドからなる配向膜が設けられている。 <Liquid crystal cell>
As described above, the
また、液晶セル30は、上述のように、黒表示時(液晶表示装置1の黒表示時)に、液晶層33中の液晶分子を一対の基板31及び32面に対して実質的に垂直(法線方向)に配向する。ここで、「実質的に垂直」とは、液晶分子の配向ベクトルが各基板31、32の法線方向に対して傾いている場合、すなわち、液晶分子がチルト角を有する場合も包含する。当該チルト角(法線からの角度)は、液晶パネル2の表示可能部分(表示領域2a内における遮光部を除く光の変調可能な部分)の全ての位置で、0°以上、かつ、好ましくは10°以下、より好ましくは5°以下、更に好ましくは1°以下である。通常、液晶分子は、電圧無印加時に、各基板31、32面に略垂直(法線方向)に配向する。このような配向は、例えば、配向膜として垂直配向膜を形成した基板間に負の誘電率異方性を有するネマチック液晶を配することにより実現され得る。
Further, as described above, in the liquid crystal cell 30, the liquid crystal molecules in the liquid crystal layer 33 are substantially perpendicular to the pair of substrates 31 and 32 during black display (black display of the liquid crystal display device 1). Orientation in the normal direction). Here, "substantially perpendicular" also includes the case where the alignment vector of the liquid crystal molecules is tilted with respect to the normal direction of each substrate 31, 32, that is, the case where the liquid crystal molecules have a tilt angle. The tilt angle (angle from the normal) is at least 0 ° and preferably at all positions of the displayable portion of the liquid crystal panel 2 (the modulatable portion of the light except for the light shielding portion in the display area 2a). It is 10 ° or less, more preferably 5 ° or less, and still more preferably 1 ° or less. Usually, the liquid crystal molecules are aligned substantially perpendicular (normal direction) to the surfaces of the substrates 31 and 32 when no voltage is applied. Such alignment can be realized, for example, by arranging a nematic liquid crystal having negative dielectric anisotropy between substrates on which a vertical alignment film is formed as an alignment film.
一対の直線偏光板を用いたVAモードでは、バックライトにより背面側の基板に光を照射すると、背面側の偏光子を通過して液晶層に入射した直線偏光の光は、略垂直配向している液晶分子の長軸の方向に沿って進む。液晶分子の長軸方向には実質的に複屈折が生じないため入射光は偏光方位を変えずに進み、背面側の偏光子と実質的に直交する吸収軸を有する観察面側の偏光子で吸収される。これにより電圧無印加時において暗状態の表示(黒表示)が得られる(ノーマリブラックモード)。画素電極及び共通電極間に電圧が印加されると、液晶分子の長軸が各基板面に平行に配向する。この状態の液晶分子は、背面側の偏光子を通過して液晶層に入射した直線偏光の光に対して複屈折性を示し、入射光の偏光状態は液晶分子の傾きに応じて変化する。所定の最大電圧印加時において液晶層を通過する光は、例えばその偏光方位が90°回転させられた直線偏光となるので、観察面側の偏光子を透過して明状態の表示(白表示)が得られる。再び電圧無印加状態にすると配向規制力により暗状態の表示に戻すことができる。また、印加電圧を変化させて液晶分子の傾きを制御して観察面側の偏光子からの透過光強度を変化させることにより階調表示が可能となる。
In the VA mode using a pair of linear polarizing plates, when light is irradiated to the substrate on the back side by back light, linearly polarized light passing through the polarizer on the back side and entering the liquid crystal layer is approximately vertically aligned. Travel along the direction of the long axis of the liquid crystal molecules. Since substantially no birefringence occurs in the long axis direction of liquid crystal molecules, incident light travels without changing the polarization direction, and is a polarizer on the viewing surface side having an absorption axis substantially orthogonal to the polarizer on the back surface side. Absorbed As a result, a dark state display (black display) can be obtained when no voltage is applied (normally black mode). When a voltage is applied between the pixel electrode and the common electrode, the major axes of the liquid crystal molecules are aligned parallel to the surface of each substrate. The liquid crystal molecules in this state exhibit birefringence with respect to linearly polarized light that has entered the liquid crystal layer through the polarizer on the back side, and the polarization state of the incident light changes in accordance with the inclination of the liquid crystal molecules. When a predetermined maximum voltage is applied, light passing through the liquid crystal layer becomes, for example, linearly polarized light whose polarization direction is rotated by 90 °. Therefore, light passing through the polarizer on the viewing surface side is displayed in a bright state (white display) Is obtained. When the voltage is not applied again, the display can be returned to the dark state by the alignment control force. In addition, gradation display can be performed by changing the applied voltage to control the inclination of the liquid crystal molecules and changing the transmitted light intensity from the polarizer on the observation surface side.
このような一対の直線偏光板を用いたVAモードでは、電圧印加時の液晶分子の傾斜方向が一方向であると視野角特性に非対称性が発生してしまうため、例えば画素電極構造の工夫や、画素内に突起物等の配向制御手段を設ける方法により、液晶分子の傾斜方向を複数に分割した配向分割型のVAモード、いわゆるMVAモード(マルチドメイン型VAモード)が広く用いられている。白表示状態の透過率を最大化する観点から、通常は偏光子軸方位と電圧印加時の液晶分子の傾斜方位とが45°の角度をなすように設定される。クロスニコル偏光子間に複屈折媒体を挟んだときの透過率は、偏光子の軸と複屈折媒体の遅相軸とのなす角度をβ(単位:rad)とするとき、sin2(2β)に比例するためである。典型的なMVAモードでは、液晶分子の傾斜方位が45°、135°、225°、315°の4つのドメインに分割され得る。このような4つのドメインに分割されたMVAモードにおいても、ドメイン境界や配向制御手段の近傍で、シュリーレン配向や意図しない方向への配向が観察されることが多く、透過率ロスの原因となっている。
In the VA mode using such a pair of linear polarizing plates, asymmetry is generated in the viewing angle characteristics if the tilt direction of the liquid crystal molecules is one direction at the time of voltage application, for example, the device of the pixel electrode structure or A so-called MVA mode (multi-domain type VA mode), which is an alignment division type VA mode in which the tilt direction of liquid crystal molecules is divided into a plurality, is widely used by providing alignment control means such as protrusions in pixels. From the viewpoint of maximizing the transmittance in the white display state, usually, the polarizer axis orientation and the tilt orientation of liquid crystal molecules at the time of voltage application are set to form an angle of 45 °. The transmittance when a birefringent medium is sandwiched between crossed Nicol polarizers is sin 2 (2β), where the angle between the axis of the polarizer and the slow axis of the birefringent medium is β (unit: rad) To be proportional to In a typical MVA mode, the tilt orientation of liquid crystal molecules can be divided into four domains of 45 °, 135 °, 225 °, and 315 °. Even in the MVA mode divided into such four domains, Schlieren orientation or orientation in an unintended direction is often observed in the vicinity of domain boundaries or orientation control means, which causes transmittance loss. There is.
それに対して、本実施形態の一対の円偏光板3及び4を用いたVAモードによれば、互いに直交する左右円偏光板3及び4間に複屈折媒体を挟んだときの透過率は、各偏光子11、12の軸と複屈折媒体の遅相軸とのなす角度に依存しないため、液晶分子の傾斜方位が45°、135°、225°、315°以外であっても、液晶分子の傾きさえ制御できれば所望の透過率が確保できる。したがって、例えば、画素中央に円形の突起物を配置し、液晶分子を全方位に傾斜させるものであってもよいし、又は、傾斜方位を全く制御せずにランダムな方位に傾斜させるものであってもよい。
On the other hand, according to the VA mode using the pair of circularly polarizing plates 3 and 4 of the present embodiment, the transmittance when the birefringent medium is sandwiched between the left and right circularly polarizing plates 3 and 4 orthogonal to each other is Because it does not depend on the angle between the axes of the polarizers 11 and 12 and the slow axis of the birefringent medium, the liquid crystal molecules are not inclined at 45 °, 135 °, 225 °, 315 °, If the inclination can be controlled, the desired transmittance can be secured. Therefore, for example, a circular protrusion may be disposed at the center of the pixel, and liquid crystal molecules may be inclined in all directions, or may be inclined in random directions without controlling the inclination direction at all. May be
液晶材料の屈折率異方性をΔnとセル厚み(セルギャップ、すなわち液晶層33の厚み)dとの積で表される液晶層33のリタデーション(パネルリタデーション)Δn・dは、特に限定されないが、通常、200~500nmであり、250~450nmであることが好ましく、300~400nmであることがより好ましい。
The retardation (panel retardation) Δn · d of the liquid crystal layer 33 represented by the product of Δn and cell thickness (cell gap, ie, thickness of the liquid crystal layer 33) d of the liquid crystal material is not particularly limited. Usually, it is 200 to 500 nm, preferably 250 to 450 nm, and more preferably 300 to 400 nm.
以下、本実施形態のより具体的かつ好適な積層構造について説明する。
Hereinafter, a more specific and preferable laminated structure of the present embodiment will be described.
<積層構造1-1>
図4は、実施形態1の積層構造1-1に係る液晶表示装置の断面模式図である。
図4に示すように、本実施形態の液晶表示装置1は、第1の偏光子11及び液晶セル30の間に第1~第3の光学補償層21~23以外の光学補償層を備えず、かつ、液晶セル30及び第2の偏光子12の間に第4の光学補償層24以外の光学補償層を備えていなくてもよい。これにより、過酷な環境に対する液晶表示装置1の耐久性をより優れたものにすることができるとともに、液晶パネル2を特に薄くすることができる。 <Laminated structure 1-1>
FIG. 4 is a schematic cross-sectional view of the liquid crystal display device according to the multilayer structure 1-1 of the first embodiment.
As shown in FIG. 4, the liquidcrystal display device 1 of this embodiment does not include an optical compensation layer other than the first to third optical compensation layers 21 to 23 between the first polarizer 11 and the liquid crystal cell 30. In addition, an optical compensation layer other than the fourth optical compensation layer 24 may not be provided between the liquid crystal cell 30 and the second polarizer 12. Thus, the durability of the liquid crystal display device 1 against severe environments can be made more excellent, and the liquid crystal panel 2 can be made particularly thin.
図4は、実施形態1の積層構造1-1に係る液晶表示装置の断面模式図である。
図4に示すように、本実施形態の液晶表示装置1は、第1の偏光子11及び液晶セル30の間に第1~第3の光学補償層21~23以外の光学補償層を備えず、かつ、液晶セル30及び第2の偏光子12の間に第4の光学補償層24以外の光学補償層を備えていなくてもよい。これにより、過酷な環境に対する液晶表示装置1の耐久性をより優れたものにすることができるとともに、液晶パネル2を特に薄くすることができる。 <Laminated structure 1-1>
FIG. 4 is a schematic cross-sectional view of the liquid crystal display device according to the multilayer structure 1-1 of the first embodiment.
As shown in FIG. 4, the liquid
本積層構造では、第1の光学補償層21は、厚み方向位相差Rthが-200~-100nm(より好ましくは-180~-120nm)であり、第2の光学補償層22は、面内位相差Reが60~110nm(より好ましくは70~100nm)であり、かつ、1≦Nz≦1.4(より好ましくは1≦Nz≦1.2)を満たし、第3の光学補償層23は、1.4≦Nz≦2.4(より好ましくは1.5≦Nz≦1.8)を満たし、第4の光学補償層24は、1.4≦Nz≦2.4(より好ましくは2≦Nz≦2.3)を満たすことが好ましい。
In the present laminated structure, the first optical compensation layer 21 has a thickness direction retardation Rth of -200 to -100 nm (more preferably -180 to -120 nm), and the second optical compensation layer 22 has an in-plane position. The third optical compensation layer 23 has a phase difference Re of 60 to 110 nm (more preferably 70 to 100 nm) and satisfies 1 ≦ Nz ≦ 1.4 (more preferably 1 ≦ Nz ≦ 1.2). The fourth optical compensation layer 24 satisfies 1.4 ≦ Nz ≦ 2.4 (more preferably 1.5 ≦ Nz ≦ 1.8), and 1.4 ≦ Nz ≦ 2.4 (more preferably 2 ≦). It is preferable to satisfy Nz ≦ 2.3).
本積層構造では、第1の偏光子11は、第1の光学補償層21に隣接配置されていてもよく、第3の光学補償層23及び第4の光学補償層24は、液晶セル30に隣接配置されていてもよく、第2の偏光子12は、第4の光学補償層24に隣接配置されていてもよい。
In the present laminated structure, the first polarizer 11 may be disposed adjacent to the first optical compensation layer 21, and the third optical compensation layer 23 and the fourth optical compensation layer 24 may be disposed in the liquid crystal cell 30. The second polarizer 12 may be disposed adjacent to the fourth optical compensation layer 24.
<積層構造1-2>
図5は、実施形態1の積層構造1-2に係る液晶表示装置の断面模式図である。図6は、実施形態1の積層構造1-2に係る液晶表示装置の斜視模式図である。
図5及び6に示すように、本実施形態の液晶表示装置1は、第5の光学補償層25及び第6の光学補償層26を更に備え、第1の偏光子11、第1の光学補償層21、第2の光学補償層22、第3の光学補償層23、液晶セル30、第4の光学補償層24、第5の光学補償層25、第6の光学補償層26、及び、第2の偏光子12は、この順に配置されてもよい。第5の光学補償層25は、第2の光学補償層22と同様に、面内位相差Reが40~120nmであり、1≦Nz≦4を満たす。第5の光学補償層25は、面内遅相軸25aが第2の偏光子12の吸収軸12aと実質的に平行である。第6の光学補償層26は、第1の光学補償層21と同様に、面内位相差Reが15nm以下であり、かつ、厚み方向位相差Rthが-60nm以下である。 <Laminated structure 1-2>
FIG. 5 is a schematic cross-sectional view of the liquid crystal display device according to the multilayer structure 1-2 in the first embodiment. FIG. 6 is a schematic perspective view of the liquid crystal display device according to the layered structure 1-2 of the first embodiment.
As shown in FIGS. 5 and 6, the liquidcrystal display device 1 of the present embodiment further includes a fifth optical compensation layer 25 and a sixth optical compensation layer 26, and the first polarizer 11 and the first optical compensation. Layer 21, second optical compensation layer 22, third optical compensation layer 23, liquid crystal cell 30, fourth optical compensation layer 24, fifth optical compensation layer 25, sixth optical compensation layer 26, and The two polarizers 12 may be arranged in this order. Like the second optical compensation layer 22, the fifth optical compensation layer 25 has an in-plane retardation Re of 40 to 120 nm and satisfies 1 ≦ Nz ≦ 4. The fifth optical compensation layer 25 has the in-plane slow axis 25 a substantially parallel to the absorption axis 12 a of the second polarizer 12. Similar to the first optical compensation layer 21, the sixth optical compensation layer 26 has an in-plane retardation Re of 15 nm or less and a thickness direction retardation Rth of -60 nm or less.
図5は、実施形態1の積層構造1-2に係る液晶表示装置の断面模式図である。図6は、実施形態1の積層構造1-2に係る液晶表示装置の斜視模式図である。
図5及び6に示すように、本実施形態の液晶表示装置1は、第5の光学補償層25及び第6の光学補償層26を更に備え、第1の偏光子11、第1の光学補償層21、第2の光学補償層22、第3の光学補償層23、液晶セル30、第4の光学補償層24、第5の光学補償層25、第6の光学補償層26、及び、第2の偏光子12は、この順に配置されてもよい。第5の光学補償層25は、第2の光学補償層22と同様に、面内位相差Reが40~120nmであり、1≦Nz≦4を満たす。第5の光学補償層25は、面内遅相軸25aが第2の偏光子12の吸収軸12aと実質的に平行である。第6の光学補償層26は、第1の光学補償層21と同様に、面内位相差Reが15nm以下であり、かつ、厚み方向位相差Rthが-60nm以下である。 <Laminated structure 1-2>
FIG. 5 is a schematic cross-sectional view of the liquid crystal display device according to the multilayer structure 1-2 in the first embodiment. FIG. 6 is a schematic perspective view of the liquid crystal display device according to the layered structure 1-2 of the first embodiment.
As shown in FIGS. 5 and 6, the liquid
本積層構造によれば、積層構造1-1に比べて、より優れた視野角特性を発揮することができる。他方、液晶表示装置1の薄型化及び製造コストの観点からは、本積層構造に比べて、積層構造1-1の方が好ましい。また、本積層構造では、第5~第6の光学補償層25~26の材料として、溶剤に対する耐久性が高い材料を選択できることから、偏光板(円偏光板3及び4)へ溶剤が付着した時のとしても、第1~第6の光学補償層21~26が第1又は第2の偏光子11又は12から剥離することを抑制できるとともに、剥離及び第1~第6の光学補償層21~26の破断の発生を抑制することができる。
According to the present laminated structure, it is possible to exhibit more excellent viewing angle characteristics than the laminated structure 1-1. On the other hand, from the viewpoint of thinning of the liquid crystal display device 1 and the manufacturing cost, the laminated structure 1-1 is more preferable than the present laminated structure. Further, in the present laminated structure, since the material having high durability to the solvent can be selected as the material of the fifth to sixth optical compensation layers 25 to 26, the solvent is attached to the polarizing plates (circularly polarizing plates 3 and 4) At the same time, peeling of the first to sixth optical compensation layers 21 to 26 from the first or second polarizer 11 or 12 can be suppressed, and peeling and the first to sixth optical compensation layers 21 can be suppressed. It is possible to suppress the occurrence of breakage of ̃26.
積層構造1-2では、第1及び第6の光学補償層21及び26は、各々、厚み方向位相差Rthが-150~-80nm(より好ましくは-120~-90nm)であり、第2及び第5の光学補償層22及び25は、各々、面内位相差Reが40~90nm(より好ましくは40~60nm)であり、かつ、1≦Nz≦1.4(より好ましくは1≦Nz≦1.2)を満たし、第3の光学補償層23は、1.4≦Nz≦2.4(より好ましくは1.5≦Nz≦1.8)を満たし、第4の光学補償層24は、1.4≦Nz≦2.4(より好ましくは2≦Nz≦2.3)を満たすことが好ましい。
In the laminated structure 1-2, the first and sixth optical compensation layers 21 and 26 each have a thickness direction retardation Rth of −150 to −80 nm (more preferably −120 to −90 nm), and The fifth optical compensation layers 22 and 25 each have an in-plane retardation Re of 40 to 90 nm (more preferably 40 to 60 nm), and 1 ≦ Nz ≦ 1.4 (more preferably 1 ≦ Nz ≦). 1.2, the third optical compensation layer 23 satisfies 1.4 ≦ Nz ≦ 2.4 (more preferably 1.5 ≦ Nz ≦ 1.8), and the fourth optical compensation layer 24 It is preferable to satisfy 1.4 ≦ Nz ≦ 2.4 (more preferably 2 ≦ Nz ≦ 2.3).
本積層構造では、第5の光学補償層25は、第6の光学補償層26に隣接配置されることが好ましく、第4の光学補償層24は、第5の光学補償層25に隣接配置されることが好ましい。また、第1の偏光子11は、第1の光学補償層21に隣接配置されていてもよく、第3の光学補償層23及び第4の光学補償層24は、液晶セル30に隣接配置されていてもよく、第2の偏光子12は、第6の光学補償層26に隣接配置されていてもよい。
In the present laminated structure, the fifth optical compensation layer 25 is preferably disposed adjacent to the sixth optical compensation layer 26, and the fourth optical compensation layer 24 is disposed adjacent to the fifth optical compensation layer 25. Is preferred. Further, the first polarizer 11 may be disposed adjacent to the first optical compensation layer 21, and the third optical compensation layer 23 and the fourth optical compensation layer 24 are disposed adjacent to the liquid crystal cell 30. The second polarizer 12 may be disposed adjacent to the sixth optical compensation layer 26.
第5の光学補償層25は、上述のように、面内遅相軸25aが第2の偏光子12の吸収軸12aと実質的に平行である。ここで、面内遅相軸25aが吸収軸12aと実質的に平行であるとは、より具体的には、2つの軸のなす角度が0±3°の範囲内であることを意味し、好ましくは0±1°の範囲内であり、より好ましくは0±0.5°の範囲内であり、特に好ましくは0°(完全に平行)である。
As described above, in the fifth optical compensation layer 25, the in-plane slow axis 25 a is substantially parallel to the absorption axis 12 a of the second polarizer 12. Here, that the in-plane slow axis 25a is substantially parallel to the absorption axis 12a more specifically means that the angle between the two axes is in the range of 0 ± 3 °, It is preferably in the range of 0 ± 1 °, more preferably in the range of 0 ± 0.5 °, and particularly preferably 0 ° (perfectly parallel).
<第5の光学補償層>
第5の光学補償層25は、上述のように、40nm≦Re≦120nm、かつ、1≦Nz≦4を満たす。第5の光学補償層25は、1≦Nz≦1.4を満たすことが好ましく、1≦Nz≦1.15を満たすことがより好ましく、実質的にNz=1を満たすことが特に好ましい。ここで、実質的にNz=1を満たすとは、より具体的には、1≦Nz≦1.05を満たすことを意味する。このように、第5の光学補償層25は、nx>nz>nyの屈折率の関係を有する光学補償層(所謂ポジティブBプレート)、又は、nx>nz=nyの屈折率の関係を有する光学補償層(所謂ポジティブAプレート)であってもよいが、後者(ポジティブAプレート)であることが好ましい。第5の光学補償層25の面内位相差Reについては、他の部材の光学パラメータ応じて上記範囲内において適宜設定可能である。 <Fifth Optical Compensation Layer>
As described above, the fifthoptical compensation layer 25 satisfies 40 nm ≦ Re ≦ 120 nm and 1 ≦ Nz ≦ 4. The fifth optical compensation layer 25 preferably satisfies 1 ≦ Nz ≦ 1.4, more preferably 1 ≦ Nz ≦ 1.15, and particularly preferably substantially satisfying Nz = 1. Here, substantially satisfying Nz = 1 means, more specifically, satisfying 1 ≦ Nz ≦ 1.05. Thus, the fifth optical compensation layer 25 is an optical compensation layer (so-called positive B plate) having a refractive index relationship of nx>nz> ny, or an optical component having a refractive index relationship of nx> nz = ny. It may be a compensation layer (so-called positive A plate), but is preferably the latter (positive A plate). The in-plane retardation Re of the fifth optical compensation layer 25 can be appropriately set within the above range according to the optical parameters of the other members.
第5の光学補償層25は、上述のように、40nm≦Re≦120nm、かつ、1≦Nz≦4を満たす。第5の光学補償層25は、1≦Nz≦1.4を満たすことが好ましく、1≦Nz≦1.15を満たすことがより好ましく、実質的にNz=1を満たすことが特に好ましい。ここで、実質的にNz=1を満たすとは、より具体的には、1≦Nz≦1.05を満たすことを意味する。このように、第5の光学補償層25は、nx>nz>nyの屈折率の関係を有する光学補償層(所謂ポジティブBプレート)、又は、nx>nz=nyの屈折率の関係を有する光学補償層(所謂ポジティブAプレート)であってもよいが、後者(ポジティブAプレート)であることが好ましい。第5の光学補償層25の面内位相差Reについては、他の部材の光学パラメータ応じて上記範囲内において適宜設定可能である。 <Fifth Optical Compensation Layer>
As described above, the fifth
<第6の光学補償層>
第6の光学補償層26は、上述のように、Re≦15nm、かつ、Rth≦-60nmを満たす。第6の光学補償層26の面内位相差Reは、0~10nmであることが好ましく、0~5nmであることがより好ましく、0~3nmであることが更に好ましく、0~1nmであることが特に好ましい。このように、第6の光学補償層26は、nz>nx=nyの屈折率の関係を有する光学補償層(所謂ポジティブCプレート)であることが好ましい。なお、第6の光学補償層26の厚み方向位相差Rthについては、他の部材の光学パラメータに応じて上記範囲内において適宜設定可能である。また、第6の光学補償層26は、面内位相差Reが15nm以下等、充分小さい場合、面内では実質的に光学的に等方性と見なせるため、第6の光学補償層26の面内における配置方向は特に限定されない。 <Sixth optical compensation layer>
As described above, the sixthoptical compensation layer 26 satisfies Re ≦ 15 nm and Rth ≦ −60 nm. The in-plane retardation Re of the sixth optical compensation layer 26 is preferably 0 to 10 nm, more preferably 0 to 5 nm, still more preferably 0 to 3 nm, and further preferably 0 to 1 nm. Is particularly preferred. Thus, the sixth optical compensation layer 26 is preferably an optical compensation layer (so-called positive C plate) having a refractive index relationship of nz> nx = ny. The thickness direction retardation Rth of the sixth optical compensation layer 26 can be appropriately set within the above range according to the optical parameters of the other members. The sixth optical compensation layer 26 can be regarded as substantially optically isotropic in the plane when the in-plane retardation Re is sufficiently small, such as 15 nm or less, so the surface of the sixth optical compensation layer 26 is The arrangement direction in the inside is not particularly limited.
第6の光学補償層26は、上述のように、Re≦15nm、かつ、Rth≦-60nmを満たす。第6の光学補償層26の面内位相差Reは、0~10nmであることが好ましく、0~5nmであることがより好ましく、0~3nmであることが更に好ましく、0~1nmであることが特に好ましい。このように、第6の光学補償層26は、nz>nx=nyの屈折率の関係を有する光学補償層(所謂ポジティブCプレート)であることが好ましい。なお、第6の光学補償層26の厚み方向位相差Rthについては、他の部材の光学パラメータに応じて上記範囲内において適宜設定可能である。また、第6の光学補償層26は、面内位相差Reが15nm以下等、充分小さい場合、面内では実質的に光学的に等方性と見なせるため、第6の光学補償層26の面内における配置方向は特に限定されない。 <Sixth optical compensation layer>
As described above, the sixth
<第5~第6の光学補償層の材料及び形成方法>
第5~第6の光学補償層25~26の材料及び形成方法としては、上述の第1~第4の光学補償層21~24と同様のものが挙げられる。なかでも、第5の光学補償層25としては、シクロオレフィン系樹脂を延伸したもの、セルロース系樹脂、特にトリアセチルセルロースを延伸したもの、(メタ)アクリル系樹脂を延伸したもの、及び、重合性液晶を基材(基板)と平行に配向させて重合したものが好適であり、第6の光学補償層26としては、重合性液晶を基材(基板)と平行に配向させて重合したものが好適である。
<積層構造1-3>
図7は、実施形態1の積層構造1-3に係る液晶表示装置の断面模式図である。図8は、実施形態1の積層構造1-3に係る液晶表示装置の斜視模式図である。
図7及び8に示すように、本実施形態の液晶表示装置1は、第7の光学補償層27及び第8の光学補償層28を更に備え、第1の偏光子11、第1の光学補償層21、第2の光学補償層22、第3の光学補償層23、第7の光学補償層27、液晶セル30、第8の光学補償層28、第4の光学補償層24、第5の光学補償層25、第6の光学補償層26、及び、第2の偏光子12は、この順に配置されてもよい。第7の光学補償層27及び第8の光学補償層28は、各々、面内位相差Reが15nm以下であり、厚み方向位相差Rthが50~300nmであり、かつ、Nz>1を満たす。 <Material and Method of Forming Fifth to Sixth Optical Compensation Layers>
Examples of materials and formation methods of the fifth to sixthoptical compensation layers 25 to 26 include the same ones as those of the first to fourth optical compensation layers 21 to 24 described above. Among them, as the fifth optical compensation layer 25, one obtained by drawing a cycloolefin resin, one obtained by drawing a cellulose resin, particularly triacetyl cellulose, one obtained by drawing a (meth) acrylic resin, and It is preferable that the liquid crystal is aligned and parallel to the base material (substrate) and polymerized, and as the sixth optical compensation layer 26, one obtained by aligning and polymerizing the polymerizable liquid crystal parallel to the base material (substrate) It is suitable.
<Laminated structure 1-3>
FIG. 7 is a schematic cross-sectional view of the liquid crystal display device according to the layered structure 1-3 of the first embodiment. FIG. 8 is a schematic perspective view of the liquid crystal display device according to the layered structure 1-3 of the first embodiment.
As shown in FIGS. 7 and 8, the liquidcrystal display device 1 of the present embodiment further includes a seventh optical compensation layer 27 and an eighth optical compensation layer 28, and the first polarizer 11, the first optical compensation. Layer 21, second optical compensation layer 22, third optical compensation layer 23, seventh optical compensation layer 27, liquid crystal cell 30, eighth optical compensation layer 28, fourth optical compensation layer 24, fifth The optical compensation layer 25, the sixth optical compensation layer 26, and the second polarizer 12 may be disposed in this order. The seventh optical compensation layer 27 and the eighth optical compensation layer 28 each have an in-plane retardation Re of 15 nm or less, a thickness direction retardation Rth of 50 to 300 nm, and satisfy Nz> 1.
第5~第6の光学補償層25~26の材料及び形成方法としては、上述の第1~第4の光学補償層21~24と同様のものが挙げられる。なかでも、第5の光学補償層25としては、シクロオレフィン系樹脂を延伸したもの、セルロース系樹脂、特にトリアセチルセルロースを延伸したもの、(メタ)アクリル系樹脂を延伸したもの、及び、重合性液晶を基材(基板)と平行に配向させて重合したものが好適であり、第6の光学補償層26としては、重合性液晶を基材(基板)と平行に配向させて重合したものが好適である。
<積層構造1-3>
図7は、実施形態1の積層構造1-3に係る液晶表示装置の断面模式図である。図8は、実施形態1の積層構造1-3に係る液晶表示装置の斜視模式図である。
図7及び8に示すように、本実施形態の液晶表示装置1は、第7の光学補償層27及び第8の光学補償層28を更に備え、第1の偏光子11、第1の光学補償層21、第2の光学補償層22、第3の光学補償層23、第7の光学補償層27、液晶セル30、第8の光学補償層28、第4の光学補償層24、第5の光学補償層25、第6の光学補償層26、及び、第2の偏光子12は、この順に配置されてもよい。第7の光学補償層27及び第8の光学補償層28は、各々、面内位相差Reが15nm以下であり、厚み方向位相差Rthが50~300nmであり、かつ、Nz>1を満たす。 <Material and Method of Forming Fifth to Sixth Optical Compensation Layers>
Examples of materials and formation methods of the fifth to sixth
<Laminated structure 1-3>
FIG. 7 is a schematic cross-sectional view of the liquid crystal display device according to the layered structure 1-3 of the first embodiment. FIG. 8 is a schematic perspective view of the liquid crystal display device according to the layered structure 1-3 of the first embodiment.
As shown in FIGS. 7 and 8, the liquid
本積層構造によれば、積層構造1-1に比べて、全方位的な偏りの少ない視野角特性を発揮することができる。他方、液晶表示装置1の薄型化及び製造コストの観点からは、本積層構造に比べて、積層構造1-1の方が好ましい。また、本積層構造では、第7~第8の光学補償層27~28の材料として、溶剤に対する耐久性が高い材料を選択できることから、偏光板(円偏光板3及び4)へ溶剤が付着した時のとしても、第1~第8の光学補償層21~28が第1又は第2の偏光子11又は12から剥離することを抑制できるとともに、剥離及び第1~第8の光学補償層21~28の破断の発生を抑制することができる。
According to the present laminated structure, compared to the laminated structure 1-1, it is possible to exhibit viewing angle characteristics with less omnidirectional bias. On the other hand, from the viewpoint of thinning of the liquid crystal display device 1 and the manufacturing cost, the laminated structure 1-1 is more preferable than the present laminated structure. Further, in the present laminated structure, since the material having high durability to the solvent can be selected as the material of the seventh to eighth optical compensation layers 27 to 28, the solvent is attached to the polarizing plates (circularly polarizing plates 3 and 4) At the same time, peeling of the first to eighth optical compensation layers 21 to 28 from the first or second polarizer 11 or 12 can be suppressed, and peeling and the first to eighth optical compensation layers 21 can be suppressed. It is possible to suppress the occurrence of breakage of ̃28.
積層構造1-3では、第1及び第6の光学補償層21及び26は、各々、厚み方向位相差Rthが-150~-80nm(より好ましくは-120~-90nm)であり、第2及び第5の光学補償層22及び25は、各々、面内位相差Reが40~90nm(より好ましくは45~60nm)であり、かつ、1≦Nz≦1.4(より好ましくは1≦Nz≦1.2)を満たし、第3及び第4の光学補償層23及び24は、各々、1≦Nz≦1.4(より好ましくは1≦Nz≦1.2)を満たすことが好ましい。
In the layered structure 1-3, the first and sixth optical compensation layers 21 and 26 each have a thickness direction retardation Rth of −150 to −80 nm (more preferably −120 to −90 nm), and The fifth optical compensation layers 22 and 25 each have an in-plane retardation Re of 40 to 90 nm (more preferably 45 to 60 nm), and 1 ≦ Nz ≦ 1.4 (more preferably 1 ≦ Nz ≦). It is preferable to satisfy 1.2), and the third and fourth optical compensation layers 23 and 24 each satisfy 1 ≦ Nz ≦ 1.4 (more preferably 1 ≦ Nz ≦ 1.2).
本積層構造では、第5の光学補償層25は、第6の光学補償層26に隣接配置されることが好ましく、第4の光学補償層24は、第5の光学補償層25に隣接配置されることが好ましく、第7の光学補償層27は、第3の光学補償層23に隣接配置されることが好ましく、第8の光学補償層28は、第4の光学補償層24に隣接配置されることが好ましい。また、第1の偏光子11は、第1の光学補償層21に隣接配置されていてもよく、第7及び第8の光学補償層27及び28は、液晶セル30に隣接配置されていてもよく、第2の偏光子12は、第6の光学補償層26に隣接配置されていてもよい。
In the present laminated structure, the fifth optical compensation layer 25 is preferably disposed adjacent to the sixth optical compensation layer 26, and the fourth optical compensation layer 24 is disposed adjacent to the fifth optical compensation layer 25. The seventh optical compensation layer 27 is preferably disposed adjacent to the third optical compensation layer 23, and the eighth optical compensation layer 28 is disposed adjacent to the fourth optical compensation layer 24. Is preferred. The first polarizer 11 may be disposed adjacent to the first optical compensation layer 21, and the seventh and eighth optical compensation layers 27 and 28 may be disposed adjacent to the liquid crystal cell 30. The second polarizer 12 may be disposed adjacent to the sixth optical compensation layer 26.
<第7及び第8の光学補償層>
第7及び第8の光学補償層27及び28は、上述のように、各々、Re≦15nm、50nm≦Rth≦300nm、かつ、Nz>1を満たす。第7及び第8の光学補償層27及び28の各面内位相差Reは、0~10nmであることが好ましく、0~5nmであることがより好ましく、0~3nmであることが更に好ましく、0~1nmであることが特に好ましい。このように、第7及び第8の光学補償層27及び28は、nx=ny>nzの屈折率の関係を有する光学補償層(所謂ネガティブCプレート)であることが好ましい。なお、第7及び第8の光学補償層27及び28の各厚み方向位相差Rthについては、他の部材の光学パラメータに応じて上記範囲内において適宜設定可能である。また、第7及び第8の光学補償層27及び28は、面内位相差Reが15nm以下等、充分小さい場合、面内では実質的に光学的に等方性と見なせるため、第7及び第8の光学補償層27及び28の面内における配置方向は特に限定されない。 <Seventh and Eighth Optical Compensation Layers>
As described above, the seventh and eighth optical compensation layers 27 and 28 satisfy Re ≦ 15 nm, 50 nm ≦ Rth ≦ 300 nm, and Nz> 1. The in-plane retardation Re of each of the seventh and eighth optical compensation layers 27 and 28 is preferably 0 to 10 nm, more preferably 0 to 5 nm, and still more preferably 0 to 3 nm. Particularly preferred is 0 to 1 nm. Thus, the seventh and eighth optical compensation layers 27 and 28 are preferably optical compensation layers (so-called negative C plates) having a refractive index relationship of nx = ny> nz. The thickness direction retardation Rth of the seventh and eighth optical compensation layers 27 and 28 can be appropriately set within the above range according to the optical parameters of the other members. The seventh and eighth optical compensation layers 27 and 28 can be regarded as substantially optically isotropic in the plane when the in-plane retardation Re is sufficiently small, such as 15 nm or less. The arrangement direction of the eight optical compensation layers 27 and 28 in the plane is not particularly limited.
第7及び第8の光学補償層27及び28は、上述のように、各々、Re≦15nm、50nm≦Rth≦300nm、かつ、Nz>1を満たす。第7及び第8の光学補償層27及び28の各面内位相差Reは、0~10nmであることが好ましく、0~5nmであることがより好ましく、0~3nmであることが更に好ましく、0~1nmであることが特に好ましい。このように、第7及び第8の光学補償層27及び28は、nx=ny>nzの屈折率の関係を有する光学補償層(所謂ネガティブCプレート)であることが好ましい。なお、第7及び第8の光学補償層27及び28の各厚み方向位相差Rthについては、他の部材の光学パラメータに応じて上記範囲内において適宜設定可能である。また、第7及び第8の光学補償層27及び28は、面内位相差Reが15nm以下等、充分小さい場合、面内では実質的に光学的に等方性と見なせるため、第7及び第8の光学補償層27及び28の面内における配置方向は特に限定されない。 <Seventh and Eighth Optical Compensation Layers>
As described above, the seventh and eighth optical compensation layers 27 and 28 satisfy Re ≦ 15 nm, 50 nm ≦ Rth ≦ 300 nm, and Nz> 1. The in-plane retardation Re of each of the seventh and eighth optical compensation layers 27 and 28 is preferably 0 to 10 nm, more preferably 0 to 5 nm, and still more preferably 0 to 3 nm. Particularly preferred is 0 to 1 nm. Thus, the seventh and eighth optical compensation layers 27 and 28 are preferably optical compensation layers (so-called negative C plates) having a refractive index relationship of nx = ny> nz. The thickness direction retardation Rth of the seventh and eighth optical compensation layers 27 and 28 can be appropriately set within the above range according to the optical parameters of the other members. The seventh and eighth optical compensation layers 27 and 28 can be regarded as substantially optically isotropic in the plane when the in-plane retardation Re is sufficiently small, such as 15 nm or less. The arrangement direction of the eight optical compensation layers 27 and 28 in the plane is not particularly limited.
第7及び第8の光学補償層27及び28の厚み方向位相差Rthは、互いに異なっていても同じであってもよく、いずれの場合も両者の厚み方向位相差Rthの合計が同じであれば同様に機能することができる。第7及び第8の光学補償層27及び28の厚み方向位相差Rthの合計は、100nm以上、300nm以下であることが好ましく、150nm以上、250nm以下であることがより好ましい。
The thickness direction retardations Rth of the seventh and eighth optical compensation layers 27 and 28 may be different from each other or may be the same, and in any case, the sum of the thickness direction retardations Rth of the both is the same. It can function as well. The total of the thickness direction retardations Rth of the seventh and eighth optical compensation layers 27 and 28 is preferably 100 nm or more and 300 nm or less, and more preferably 150 nm or more and 250 nm or less.
<第7~第8の光学補償層の材料及び形成方法>
第7~第8の光学補償層27~28の材料及び形成方法としては、上述の第1~第4の光学補償層21~24と同様のものが挙げられる。なかでも、第7~第8の光学補償層27~28としては、シクロオレフィン系樹脂を延伸したもの、及び、セルロース系樹脂、特にトリアセチルセルロースを延伸したもの、(メタ)アクリル系樹脂を延伸したものが好適である。 <Materials and Forming Methods of Seventh to Eighth Optical Compensation Layers>
Examples of materials and forming methods of the seventh to eighthoptical compensation layers 27 to 28 include the same ones as those of the first to fourth optical compensation layers 21 to 24 described above. Among them, as the seventh to eighth optical compensation layers 27 to 28, those obtained by stretching a cycloolefin resin, and those obtained by stretching a cellulose resin, particularly triacetyl cellulose, and a (meth) acrylic resin Are preferred.
第7~第8の光学補償層27~28の材料及び形成方法としては、上述の第1~第4の光学補償層21~24と同様のものが挙げられる。なかでも、第7~第8の光学補償層27~28としては、シクロオレフィン系樹脂を延伸したもの、及び、セルロース系樹脂、特にトリアセチルセルロースを延伸したもの、(メタ)アクリル系樹脂を延伸したものが好適である。 <Materials and Forming Methods of Seventh to Eighth Optical Compensation Layers>
Examples of materials and forming methods of the seventh to eighth
以上、本発明の実施形態について説明したが、説明された個々の事項は、すべて本発明全般に対して適用され得るものである。
Although the embodiments of the present invention have been described above, all the individual matters described can be applied to the whole of the present invention.
以下に実施例及び比較例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。なお、以下の各実施例及び比較例では、各軸方向は、液晶パネルの表示領域の右方向を0°とし、観察面側から見て反時計回りを正としたときの角度で表している。
EXAMPLES The present invention will be described in more detail by way of the following Examples and Comparative Examples, but the present invention is not limited to these Examples. In each of the following Examples and Comparative Examples, each axial direction is represented by an angle when the right direction of the display area of the liquid crystal panel is 0 ° and the counterclockwise direction is positive when viewed from the viewing surface side. .
<実施例1>
図9は、実施例1に係る液晶表示装置の断面模式図である。
図9に示すように、表偏光子、ポジティブCプレートとしての第1の光学補償層、ポジティブAプレートとしての第2の光学補償層、λ/4位相差板としての第3の光学補償層、液晶セル、λ/4位相差板としての第4の光学補償層、及び、裏偏光子が観察面側からこの順の配置された液晶パネルと、液晶パネルの背面側のバックライト(図示せず)とを備える実施例1の液晶表示装置を作製した。各部材の光学パラメータと、各偏光子及び各光学補償層の軸方向とは、図9に示した通りである。本実施例では、表偏光子が上記第1の偏光子に対応し、裏偏光子が上記第2の偏光子に対応する。 Example 1
FIG. 9 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
As shown in FIG. 9, a front polarizer, a first optical compensation layer as a positive C plate, a second optical compensation layer as a positive A plate, a third optical compensation layer as a λ / 4 retardation plate, A liquid crystal cell, a fourth optical compensation layer as a λ / 4 retardation plate, a liquid crystal panel in which a back polarizer is disposed in this order from the observation surface side, and a backlight (not shown) of the liquid crystal panel And the liquid crystal display device of Example 1 is provided. The optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG. In this embodiment, the front polarizer corresponds to the first polarizer, and the back polarizer corresponds to the second polarizer.
図9は、実施例1に係る液晶表示装置の断面模式図である。
図9に示すように、表偏光子、ポジティブCプレートとしての第1の光学補償層、ポジティブAプレートとしての第2の光学補償層、λ/4位相差板としての第3の光学補償層、液晶セル、λ/4位相差板としての第4の光学補償層、及び、裏偏光子が観察面側からこの順の配置された液晶パネルと、液晶パネルの背面側のバックライト(図示せず)とを備える実施例1の液晶表示装置を作製した。各部材の光学パラメータと、各偏光子及び各光学補償層の軸方向とは、図9に示した通りである。本実施例では、表偏光子が上記第1の偏光子に対応し、裏偏光子が上記第2の偏光子に対応する。 Example 1
FIG. 9 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
As shown in FIG. 9, a front polarizer, a first optical compensation layer as a positive C plate, a second optical compensation layer as a positive A plate, a third optical compensation layer as a λ / 4 retardation plate, A liquid crystal cell, a fourth optical compensation layer as a λ / 4 retardation plate, a liquid crystal panel in which a back polarizer is disposed in this order from the observation surface side, and a backlight (not shown) of the liquid crystal panel And the liquid crystal display device of Example 1 is provided. The optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG. In this embodiment, the front polarizer corresponds to the first polarizer, and the back polarizer corresponds to the second polarizer.
液晶セルとしては、VAモードの液晶セルを用いた。液晶材料の誘電率異方性Δnは、0.113、セル厚み(セルギャップ)dは、3.2μmとした。すなわち、液晶層のリタデーションΔn・dは、360nmとした。
As the liquid crystal cell, a VA mode liquid crystal cell was used. The dielectric anisotropy Δn of the liquid crystal material is 0.113, and the cell thickness (cell gap) d is 3.2 μm. That is, the retardation Δn · d of the liquid crystal layer was 360 nm.
第2~第4の光学補償層としては、COPフィルムを2軸延伸することによって図9に記載の所定の光学パラメータが得られたフィルムを用いた。第1の光学補償層としては、第2の光学補償層上に液晶性材料を塗布することによって図9に記載の所定の光学パラメータが得られたフィルムを用いた。なお、各実施例及び比較例において、COPフィルムは、シクロオレフィンコポリマー(COC)を含まないものを用いた。
As the second to fourth optical compensation layers, films in which predetermined optical parameters shown in FIG. 9 were obtained by biaxially stretching a COP film were used. As the first optical compensation layer, a film having a predetermined optical parameter shown in FIG. 9 obtained by applying a liquid crystalline material on the second optical compensation layer was used. In each of the examples and the comparative examples, the COP film used did not contain cycloolefin copolymer (COC).
表偏光子及び裏偏光子としては、TACフィルム、PVAフィルム及びCOPフィルムを、接着剤を介してこの順に積層したものを用いた。表偏光子及び裏偏光子のCOPフィルムは、光学異方性を持たないように作製した。表偏光子及び裏偏光子は、COPフィルムが液晶セル側、TACフィルムが液晶セルと反対側になるように配置した。表偏光子及び裏偏光子のPVAフィルムとしては、延伸後にヨウ素を添加することで偏光性能を持つものを用いた。このフィルムは、延伸方向に吸収軸を持つ。
As a front polarizer and a back polarizer, what laminated | stacked the TAC film, the PVA film, and the COP film in this order through the adhesive agent was used. The COP films of the front polarizer and the back polarizer were produced so as not to have optical anisotropy. The front polarizer and the back polarizer were disposed such that the COP film was on the liquid crystal cell side and the TAC film was on the opposite side to the liquid crystal cell. As a PVA film of a front polarizer and a back polarizer, what has a polarization performance by adding iodine after extending | stretching was used. This film has an absorption axis in the stretching direction.
なお、TACフィルムは、PVAフィルムの支持体として広く使われており、PVAフィルムと接着し、フィルムとしての強度を保つ。また、COPフィルムは、広帯域の位相差フィルムとして、また、PVAフィルムの支持体としても広く使われており、延伸することで複屈折性を持つ。
In addition, a TAC film is widely used as a support body of a PVA film, adhere | attaches with a PVA film, and maintains the intensity | strength as a film. In addition, a COP film is widely used as a broad-band retardation film or as a support of a PVA film, and has birefringence by stretching.
また、図9では省略しているが、表偏光子と第1の光学補償層の間、第2の光学補償層と第3の光学補償層の間、第3の光学補償層と液晶セルの間、液晶セルと第4の光学補償層の間、及び、第4の光学補償層と裏偏光子の間は、それぞれ、大きな光学異方性を持たない感圧接着剤(粘着材)で満たした。このような粘着材等、大きな光学異方性を持たない材料は、その材料から形成された層が光学異方性を持たない層である限り、製法上の必要に応じて加えることも、省くこともできる。
Further, although not shown in FIG. 9, between the front polarizer and the first optical compensation layer, between the second optical compensation layer and the third optical compensation layer, and between the third optical compensation layer and the liquid crystal cell. Between the liquid crystal cell and the fourth optical compensation layer, and between the fourth optical compensation layer and the back polarizer, respectively, with a pressure sensitive adhesive (adhesive material) having no large optical anisotropy. The Such materials that do not have large optical anisotropy, such as adhesive materials, are also omitted from the process of adding them as needed in the manufacturing process as long as the layer formed from the material is a layer without optical anisotropy. It can also be done.
なお、実施例1は観察面側に第1及び第2の光学補償層を配置しているが、これらは背面側に配置されてもよい。また、各偏光子と各光学補償層は、軸の相対角度を保ったまま回転してもよく、線対称に移動してもよい。
Although the first and second optical compensation layers are disposed on the viewing surface side in the first embodiment, they may be disposed on the back surface side. In addition, each polarizer and each optical compensation layer may be rotated while maintaining the relative angle of the axes, or may be moved in line symmetry.
<比較例1>
図10は、比較例1に係る液晶表示装置の断面模式図である。
図10に示すように、第1及び第2の光学補償層の代わりに、ポジティブBプレートとしての第9の光学補償層を用いたことを除いて、実施例1と同様にして本比較例の液晶表示装置を作製した。第9の光学補償層としては、COPフィルムを延伸後緩和することによって図10に記載の所定の光学パラメータが得られたフィルムを用いた。 Comparative Example 1
FIG. 10 is a schematic cross-sectional view of a liquid crystal display device according to Comparative Example 1.
As shown in FIG. 10, in the same manner as in Example 1 except that a ninth optical compensation layer as a positive B plate was used instead of the first and second optical compensation layers. A liquid crystal display was produced. As the ninth optical compensation layer, a film having predetermined optical parameters shown in FIG. 10 by stretching and relaxing the COP film was used.
図10は、比較例1に係る液晶表示装置の断面模式図である。
図10に示すように、第1及び第2の光学補償層の代わりに、ポジティブBプレートとしての第9の光学補償層を用いたことを除いて、実施例1と同様にして本比較例の液晶表示装置を作製した。第9の光学補償層としては、COPフィルムを延伸後緩和することによって図10に記載の所定の光学パラメータが得られたフィルムを用いた。 Comparative Example 1
FIG. 10 is a schematic cross-sectional view of a liquid crystal display device according to Comparative Example 1.
As shown in FIG. 10, in the same manner as in Example 1 except that a ninth optical compensation layer as a positive B plate was used instead of the first and second optical compensation layers. A liquid crystal display was produced. As the ninth optical compensation layer, a film having predetermined optical parameters shown in FIG. 10 by stretching and relaxing the COP film was used.
<実施例1及び比較例1の比較>
比較例1の構成とする場合、第9の光学補償層として、nz>nx>ny、すなわちNz<1となるフィルムが必要になるが、その材料及び製法は限られる。例えば、Nz<1のフィルムの製造方法として、特許文献6に開示されるような、延伸と緩和を組み合わせた製法が提案されている。しかしながら、近年、特に車載の液晶表示装置において、高温や高温高湿、低温といった過酷な環境に対する高い耐久性を求められている。また、溶剤に対する耐久性や、パネルの薄型化を求められるようになっているが、このような製法で作製されたフィルムを用いる場合、上記(1)~(3)のような課題を解決し、かつ、コスト面でも有利な材料を選定することが難しいと考えられる。それに対して、位相差フィルムの作製方法として一般的な、延伸方向に1軸、又は、延伸方向と、延伸方向とは異なる方向との2軸で延伸する方法であれば、上記(1)~(3)のような課題が解決された、あるいは影響が小さい材料を選択することができる。実施例1で使用した第2の光学補償層のように、Re=85nm、Rth=42nmかつNz=1.0を満たすフィルムは、例えばシクロオレフィン系樹脂により実現可能であり、上記(1)~(3)のような問題が小さいことがわかっている。 Comparison of Example 1 and Comparative Example 1
In the case of the configuration of Comparative Example 1, a film satisfying nz>nx> ny, that is, Nz <1 is required as the ninth optical compensation layer, but the material and manufacturing method thereof are limited. For example, as a method of producing a film of Nz <1, a method of combining stretching and relaxation as disclosed in Patent Document 6 has been proposed. However, in recent years, high durability to severe environments such as high temperature, high temperature and high humidity, and low temperature has been required particularly for liquid crystal display devices mounted in vehicles. In addition, durability against solvents and thinning of panels are required, but when using a film produced by such a method, the problems as described in (1) to (3) above are solved. And, it is considered difficult to select an advantageous material also in terms of cost. On the other hand, if it is a method of uniaxially stretching in a stretching direction, or biaxially stretching in a stretching direction and a direction different from the stretching direction as a method for producing a retardation film, the above (1) to It is possible to select a material which has solved the problem such as (3) or has less influence. A film satisfying Re = 85 nm, Rth = 42 nm, and Nz = 1.0 as in the second optical compensation layer used in Example 1 can be realized by, for example, a cycloolefin resin, and It is known that the problem like (3) is small.
比較例1の構成とする場合、第9の光学補償層として、nz>nx>ny、すなわちNz<1となるフィルムが必要になるが、その材料及び製法は限られる。例えば、Nz<1のフィルムの製造方法として、特許文献6に開示されるような、延伸と緩和を組み合わせた製法が提案されている。しかしながら、近年、特に車載の液晶表示装置において、高温や高温高湿、低温といった過酷な環境に対する高い耐久性を求められている。また、溶剤に対する耐久性や、パネルの薄型化を求められるようになっているが、このような製法で作製されたフィルムを用いる場合、上記(1)~(3)のような課題を解決し、かつ、コスト面でも有利な材料を選定することが難しいと考えられる。それに対して、位相差フィルムの作製方法として一般的な、延伸方向に1軸、又は、延伸方向と、延伸方向とは異なる方向との2軸で延伸する方法であれば、上記(1)~(3)のような課題が解決された、あるいは影響が小さい材料を選択することができる。実施例1で使用した第2の光学補償層のように、Re=85nm、Rth=42nmかつNz=1.0を満たすフィルムは、例えばシクロオレフィン系樹脂により実現可能であり、上記(1)~(3)のような問題が小さいことがわかっている。 Comparison of Example 1 and Comparative Example 1
In the case of the configuration of Comparative Example 1, a film satisfying nz>nx> ny, that is, Nz <1 is required as the ninth optical compensation layer, but the material and manufacturing method thereof are limited. For example, as a method of producing a film of Nz <1, a method of combining stretching and relaxation as disclosed in Patent Document 6 has been proposed. However, in recent years, high durability to severe environments such as high temperature, high temperature and high humidity, and low temperature has been required particularly for liquid crystal display devices mounted in vehicles. In addition, durability against solvents and thinning of panels are required, but when using a film produced by such a method, the problems as described in (1) to (3) above are solved. And, it is considered difficult to select an advantageous material also in terms of cost. On the other hand, if it is a method of uniaxially stretching in a stretching direction, or biaxially stretching in a stretching direction and a direction different from the stretching direction as a method for producing a retardation film, the above (1) to It is possible to select a material which has solved the problem such as (3) or has less influence. A film satisfying Re = 85 nm, Rth = 42 nm, and Nz = 1.0 as in the second optical compensation layer used in Example 1 can be realized by, for example, a cycloolefin resin, and It is known that the problem like (3) is small.
<実施例1及び比較例1の評価結果>
実施例1及び比較例1の液晶表示装置の暗室コントラストを測定した。暗室コントラストは、外光が無い状態で白表示と黒表示の輝度を測定し、白表示輝度を黒表示輝度で割ったものであり、表示装置としては高いほど好ましい。更に、耐久性の観点から言えば、高温等の過酷な環境に晒されたときにこの数値の変化が小さいほど好ましい。 <Evaluation Results of Example 1 and Comparative Example 1>
The dark room contrast of the liquid crystal display of Example 1 and Comparative Example 1 was measured. The dark room contrast is obtained by measuring the luminance of white display and black display without external light, and dividing the white display luminance by the black display luminance. The higher the display device, the better. Furthermore, from the viewpoint of durability, it is preferable that the change in this numerical value be as small as possible when exposed to a severe environment such as high temperature.
実施例1及び比較例1の液晶表示装置の暗室コントラストを測定した。暗室コントラストは、外光が無い状態で白表示と黒表示の輝度を測定し、白表示輝度を黒表示輝度で割ったものであり、表示装置としては高いほど好ましい。更に、耐久性の観点から言えば、高温等の過酷な環境に晒されたときにこの数値の変化が小さいほど好ましい。 <Evaluation Results of Example 1 and Comparative Example 1>
The dark room contrast of the liquid crystal display of Example 1 and Comparative Example 1 was measured. The dark room contrast is obtained by measuring the luminance of white display and black display without external light, and dividing the white display luminance by the black display luminance. The higher the display device, the better. Furthermore, from the viewpoint of durability, it is preferable that the change in this numerical value be as small as possible when exposed to a severe environment such as high temperature.
下記表1に、実施例1及び比較例1について、85℃で12時間のエージングを行った前後での画面中央部での暗室コントラストを示す。エージング前の値には大差ないものの、エージングにより比較例1は大きく数値が低下している。一方、実施例1は変化が小さくなっており、耐久性が向上したことが示された。
Table 1 below shows dark room contrast at the center of the screen before and after aging for 12 hours at 85 ° C. for Example 1 and Comparative Example 1. Although there is not much difference with the value before the aging, the value in Comparative Example 1 is greatly reduced by the aging. On the other hand, in Example 1, the change was small and it was shown that the durability was improved.
実施例1及び比較例1の液晶表示装置の黒表示均一性(Black Display Uniformity)を測定した。黒表示均一性とは、黒表示の所謂ムラの強さを示す指標であり、黒ベタ画面を表示したときの表示領域の輝度をスキャンして最小輝度を最大輝度で割ったものである。この値が100%に近いほど輝度分布が無い、すなわちムラが弱く、表示装置として好ましい。低いほどムラが強く、表示装置としての品位が低いということになる。
The black display uniformity of the liquid crystal display devices of Example 1 and Comparative Example 1 was measured. The black display uniformity is an index indicating the intensity of so-called unevenness of black display, which is obtained by dividing the minimum luminance by the maximum luminance by scanning the luminance of the display area when a black solid screen is displayed. As this value is closer to 100%, there is no luminance distribution, that is, the unevenness is weak, which is preferable as a display device. The lower the value, the stronger the unevenness and the lower the quality as a display device.
下記表2に、実施例1及び比較例1について、85℃で12時間のエージングを行った前後での黒表示均一性を示す。エージング前の値には大差ないものの、エージングにより比較例1は大きく数値が低下している。一方、実施例1は変化が小さくなっており、耐久性が向上したことが示された。
Table 2 below shows black display uniformity before and after aging for 12 hours at 85 ° C. for Example 1 and Comparative Example 1. Although there is not much difference with the value before the aging, the value in Comparative Example 1 is greatly reduced by the aging. On the other hand, in Example 1, the change was small and it was shown that the durability was improved.
図11及び12に、それぞれ、実施例1及び比較例1に係る液晶表示装置の視野角特性をシミュレーションした結果(等コントラスト比等高線)を示す。なお、各等コントラスト比等高線ではコントラストが100又は1000である箇所をそれぞれ実線で示している。図11及び12に示されるように、視野角特性に優れる方向が異なるが、それについては偏光子の軸の回転等により調整可能である。それを考慮すれば実施例1は比較例1とほぼ同等か、やや優勢な視野角特性を持つことが示されている。
FIGS. 11 and 12 show the simulation results (isocontrast ratio contour lines) of the viewing angle characteristics of the liquid crystal display according to Example 1 and Comparative Example 1, respectively. In each of the equal contrast ratio contour lines, portions where the contrast is 100 or 1000 are indicated by solid lines. As shown in FIGS. 11 and 12, although the direction in which the viewing angle characteristics are excellent is different, it can be adjusted by, for example, the rotation of the axis of the polarizer. In consideration of that, it is shown that Example 1 has a viewing angle characteristic which is almost equal to or slightly superior to Comparative Example 1.
<表偏光子の吸収軸と第2の光学補償層の遅相軸との関係>
実施例1と同じ構成において、第2の光学補償層の遅相軸の方向を変えて法線コントラスト及び視野角特性をシミュレーションした結果を示す。下記表3に、相対角度を変えて算出した法線コントラストを示す。相対角度とは、表偏光子の吸収軸に対する第2の光学補償層の遅相軸のなす角度であり、上記角度xに相当する。表偏光子の吸収軸は固定し、第2の光学補償層の遅相軸を変更した。表3に示すように、相対角度が90°及び0°又は180°から外れるとコントラストが低下するが、90°でも0°又は180°でも法線コントラストは高くなっている。 <Relationship between the absorption axis of the front polarizer and the slow axis of the second optical compensation layer>
In the same structure as Example 1, the result of having simulated the direction of the slow axis of the 2nd optical compensation layer, and simulated normal contrast and viewing angle characteristics is shown. Table 3 below shows the normal contrast calculated by changing the relative angle. The relative angle is an angle formed by the slow axis of the second optical compensation layer with respect to the absorption axis of the front polarizer, and corresponds to the above-mentioned angle x. The absorption axis of the front polarizer was fixed, and the slow axis of the second optical compensation layer was changed. As shown in Table 3, when the relative angle deviates from 90 ° and 0 ° or 180 °, the contrast decreases, but the normal contrast becomes high at 90 ° or 0 ° or 180 °.
実施例1と同じ構成において、第2の光学補償層の遅相軸の方向を変えて法線コントラスト及び視野角特性をシミュレーションした結果を示す。下記表3に、相対角度を変えて算出した法線コントラストを示す。相対角度とは、表偏光子の吸収軸に対する第2の光学補償層の遅相軸のなす角度であり、上記角度xに相当する。表偏光子の吸収軸は固定し、第2の光学補償層の遅相軸を変更した。表3に示すように、相対角度が90°及び0°又は180°から外れるとコントラストが低下するが、90°でも0°又は180°でも法線コントラストは高くなっている。 <Relationship between the absorption axis of the front polarizer and the slow axis of the second optical compensation layer>
In the same structure as Example 1, the result of having simulated the direction of the slow axis of the 2nd optical compensation layer, and simulated normal contrast and viewing angle characteristics is shown. Table 3 below shows the normal contrast calculated by changing the relative angle. The relative angle is an angle formed by the slow axis of the second optical compensation layer with respect to the absorption axis of the front polarizer, and corresponds to the above-mentioned angle x. The absorption axis of the front polarizer was fixed, and the slow axis of the second optical compensation layer was changed. As shown in Table 3, when the relative angle deviates from 90 ° and 0 ° or 180 °, the contrast decreases, but the normal contrast becomes high at 90 ° or 0 ° or 180 °.
図13は、参考例1に係る液晶表示装置の等コントラスト比等高線である。参考例1は、第2の光学補償層の遅相軸を表偏光子の吸収軸に対して90°をなす方向に配置したことを除いて、実施例1と同じ構成を有する。図11に示したように、相対角度が0°(又は180°)であれば、視野角特性は良好になるが、図13に示されるように、相対角度が90°であれば、視野角特性は悪化するため実用に適さない。
FIG. 13 is an iso-contrast ratio contour line of the liquid crystal display device according to the first reference example. The reference example 1 has the same configuration as that of the example 1 except that the slow axis of the second optical compensation layer is disposed in a direction forming an angle of 90 ° with the absorption axis of the front polarizer. As shown in FIG. 11, if the relative angle is 0 ° (or 180 °), the viewing angle characteristics will be good, but as shown in FIG. 13, if the relative angle is 90 °, the viewing angle Properties are not suitable for practical use because of deterioration.
以上より、法線コントラスト及び視野角特性を良好に保つためには、表偏光子(第1の偏光子)の吸収軸に対する第2の光学補償層の遅相軸のなす角度Xは、-5°<X<5°の範囲にすることが好ましい。
From the above, in order to maintain the normal contrast and the viewing angle characteristics well, the angle X between the slow axis of the second optical compensation layer and the absorption axis of the front polarizer (first polarizer) is -5. It is preferable to set the range of ° <X <5 °.
<実施例2>
図14は、実施例2に係る液晶表示装置の断面模式図である。
図14に示すように、表偏光子、ポジティブCプレートとしての第1の光学補償層、ポジティブAプレートとしての第2の光学補償層、λ/4位相差板としての第3の光学補償層、液晶セル、λ/4位相差板としての第4の光学補償層、ポジティブAプレートとしての第5の光学補償層、ポジティブCプレートとしての第6の光学補償層、及び、裏偏光子が観察面側からこの順の配置された液晶パネルと、液晶パネルの背面側のバックライト(図示せず)とを備える実施例2の液晶表示装置を作製した。各部材の光学パラメータと、各偏光子及び各光学補償層の軸方向とは、図14に示した通りである。本実施例では、表偏光子が上記第1の偏光子に対応し、裏偏光子が上記第2の偏光子に対応する。 Example 2
FIG. 14 is a schematic cross-sectional view of the liquid crystal display device according to the second embodiment.
As shown in FIG. 14, a front polarizer, a first optical compensation layer as a positive C plate, a second optical compensation layer as a positive A plate, a third optical compensation layer as a λ / 4 retardation plate, Liquid crystal cell, fourth optical compensation layer as λ / 4 retardation plate, fifth optical compensation layer as positive A plate, sixth optical compensation layer as positive C plate, and back polarizer A liquid crystal display device of Example 2 provided with a liquid crystal panel arranged in this order from the side and a back light (not shown) on the back side of the liquid crystal panel was produced. The optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG. In this embodiment, the front polarizer corresponds to the first polarizer, and the back polarizer corresponds to the second polarizer.
図14は、実施例2に係る液晶表示装置の断面模式図である。
図14に示すように、表偏光子、ポジティブCプレートとしての第1の光学補償層、ポジティブAプレートとしての第2の光学補償層、λ/4位相差板としての第3の光学補償層、液晶セル、λ/4位相差板としての第4の光学補償層、ポジティブAプレートとしての第5の光学補償層、ポジティブCプレートとしての第6の光学補償層、及び、裏偏光子が観察面側からこの順の配置された液晶パネルと、液晶パネルの背面側のバックライト(図示せず)とを備える実施例2の液晶表示装置を作製した。各部材の光学パラメータと、各偏光子及び各光学補償層の軸方向とは、図14に示した通りである。本実施例では、表偏光子が上記第1の偏光子に対応し、裏偏光子が上記第2の偏光子に対応する。 Example 2
FIG. 14 is a schematic cross-sectional view of the liquid crystal display device according to the second embodiment.
As shown in FIG. 14, a front polarizer, a first optical compensation layer as a positive C plate, a second optical compensation layer as a positive A plate, a third optical compensation layer as a λ / 4 retardation plate, Liquid crystal cell, fourth optical compensation layer as λ / 4 retardation plate, fifth optical compensation layer as positive A plate, sixth optical compensation layer as positive C plate, and back polarizer A liquid crystal display device of Example 2 provided with a liquid crystal panel arranged in this order from the side and a back light (not shown) on the back side of the liquid crystal panel was produced. The optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG. In this embodiment, the front polarizer corresponds to the first polarizer, and the back polarizer corresponds to the second polarizer.
図14に示したように、本実施例は、実施例1とほぼ同様だが、本実施例では観察面側と背面側とに同様に光学補償層を配置することで更に視野角特性を高めることができる。
As shown in FIG. 14, the present embodiment is substantially the same as the first embodiment, but in the present embodiment, the viewing angle characteristics are further enhanced by similarly arranging the optical compensation layer on the viewing surface side and the back surface side. Can.
液晶セルとしては、VAモードの液晶セルを用いた。液晶材料の誘電率異方性Δnは、0.113、セル厚み(セルギャップ)dは、3.2μmとした。すなわち、液晶層のリタデーションΔn・dは、360nmとした。
As the liquid crystal cell, a VA mode liquid crystal cell was used. The dielectric anisotropy Δn of the liquid crystal material is 0.113, and the cell thickness (cell gap) d is 3.2 μm. That is, the retardation Δn · d of the liquid crystal layer was 360 nm.
第2~第5の光学補償層としては、COPフィルムを2軸延伸することによって図14に記載の所定の光学パラメータが得られたフィルムを用いた。第1及び第6の光学補償層としては、それぞれ、第2及び第5の光学補償層上に液晶性材料を塗布することによって図14に記載の所定の光学パラメータが得られたフィルムを用いた。
As the second to fifth optical compensation layers, films in which predetermined optical parameters shown in FIG. 14 were obtained by biaxially stretching a COP film were used. As the first and sixth optical compensation layers, films obtained by applying the liquid crystalline material on the second and fifth optical compensation layers and using the predetermined optical parameters shown in FIG. 14 were used. .
表偏光子及び裏偏光子としては、TACフィルム、PVAフィルム及びCOPフィルムを、接着剤を介してこの順に積層したものを用いた。表偏光子及び裏偏光子のCOPフィルムは、光学異方性を持たないように作製した。表偏光子及び裏偏光子は、COPフィルムが液晶セル側、TACフィルムが液晶セルと反対側になるように配置した。表偏光子及び裏偏光子のPVAフィルムとしては、延伸後にヨウ素を添加することで偏光性能を持つものを用いた。このフィルムは、延伸方向に吸収軸を持つ。
As a front polarizer and a back polarizer, what laminated | stacked the TAC film, the PVA film, and the COP film in this order through the adhesive agent was used. The COP films of the front polarizer and the back polarizer were produced so as not to have optical anisotropy. The front polarizer and the back polarizer were disposed such that the COP film was on the liquid crystal cell side and the TAC film was on the opposite side to the liquid crystal cell. As a PVA film of a front polarizer and a back polarizer, what has a polarization performance by adding iodine after extending | stretching was used. This film has an absorption axis in the stretching direction.
また、図14では省略しているが、表偏光子と第1の光学補償層の間、第2の光学補償層と第3の光学補償層の間、第3の光学補償層と液晶セルの間、液晶セルと第4の光学補償層の間、第4の光学補償層と第5の光学補償層の間、及び、第6の光学補償層と裏偏光子の間は、それぞれ、大きな光学異方性を持たない感圧接着剤(粘着材)で満たした。このような粘着材等、大きな光学異方性を持たない材料は、その材料から形成された層が光学異方性を持たない層である限り、製法上の必要に応じて加えることも、省くこともできる。
In addition, although omitted in FIG. 14, between the front polarizer and the first optical compensation layer, between the second optical compensation layer and the third optical compensation layer, and between the third optical compensation layer and the liquid crystal cell. Between the liquid crystal cell and the fourth optical compensation layer, between the fourth optical compensation layer and the fifth optical compensation layer, and between the sixth optical compensation layer and the back polarizer, respectively. It filled with the pressure sensitive adhesive (adhesive material) which does not have anisotropy. Such materials that do not have large optical anisotropy, such as adhesive materials, are also omitted from the process of adding them as needed in the manufacturing process as long as the layer formed from the material is a layer without optical anisotropy. It can also be done.
なお、実施例2は観察面側に第1及び第2の光学補償層を配置しているが、これらは背面側に配置されてもよい。また、各偏光子と各光学補償層は、軸の相対角度を保ったまま回転してもよく、線対称に移動してもよい。
Although the first and second optical compensation layers are disposed on the viewing surface side in the second embodiment, they may be disposed on the back surface side. In addition, each polarizer and each optical compensation layer may be rotated while maintaining the relative angle of the axes, or may be moved in line symmetry.
<実施例2及び比較例1の比較>
実施例2及び比較例1についても、上記<実施例1及び比較例1の比較>と同様のことが言える。 Comparison of Example 2 and Comparative Example 1
The same thing as in the above <Comparison of Example 1 and Comparative Example 1> applies to Example 2 and Comparative Example 1.
実施例2及び比較例1についても、上記<実施例1及び比較例1の比較>と同様のことが言える。 Comparison of Example 2 and Comparative Example 1
The same thing as in the above <Comparison of Example 1 and Comparative Example 1> applies to Example 2 and Comparative Example 1.
<実施例2及び比較例1の評価結果>
下記表4に、実施例2及び比較例1について、85℃で12時間のエージングを行った前後での画面中央部での暗室コントラストを示す。 <Evaluation Results of Example 2 and Comparative Example 1>
Table 4 below shows dark room contrast at the center of the screen before and after aging for 12 hours at 85 ° C. for Example 2 and Comparative Example 1.
下記表4に、実施例2及び比較例1について、85℃で12時間のエージングを行った前後での画面中央部での暗室コントラストを示す。 <Evaluation Results of Example 2 and Comparative Example 1>
Table 4 below shows dark room contrast at the center of the screen before and after aging for 12 hours at 85 ° C. for Example 2 and Comparative Example 1.
下記表5に、実施例2及び比較例1について、85℃で12時間のエージングを行った前後での黒表示均一性を示す。
Table 5 below shows black display uniformity before and after aging for 12 hours at 85 ° C. for Example 2 and Comparative Example 1.
これらの結果、実施例1と同様に、実施例2においても暗室コントラスト及び黒表示均一性のエージング前後の変化は比較例1よりも小さく、耐久性が優れていることを示している。実施例1よりは変化が大きいが、層構成が増えて特性変化が生じやすくなったと推測される。
As a result, as in Example 1, the change in dark room contrast and black display uniformity before and after aging is also smaller in Example 2 than in Comparative Example 1, indicating that the durability is excellent. Although the change is larger than in the first embodiment, it is presumed that the layer structure is increased and the characteristic change is more likely to occur.
図15に実施例2に係る液晶表示装置の視野角特性をシミュレーションした結果(等コントラスト比等高線)を示す。図15に示されるように、視野角特性については、本実施例は、実施例1及び比較例1と比べて大きく向上しており、視野角特性の要求によっては本実施例を選択することも可能である。ただし、製造コストについては、本実施例は、実施例1より高くなることが予想される。
FIG. 15 shows the simulation results (isocontrast ratio contour lines) of the viewing angle characteristics of the liquid crystal display device according to the second embodiment. As shown in FIG. 15, regarding the viewing angle characteristics, the present embodiment is greatly improved as compared with the embodiment 1 and the comparative example 1, and it is possible to select the present embodiment depending on the requirement of the viewing angle characteristics. It is possible. However, with regard to the manufacturing cost, this embodiment is expected to be higher than the first embodiment.
<実施例3>
図16は、実施例3に係る液晶表示装置の断面模式図である。
図16に示すように、表偏光子、ポジティブCプレートとしての第1の光学補償層、ポジティブAプレートとしての第2の光学補償層、λ/4位相差板としての第3の光学補償層、ネガティブCプレートとしての第7の光学補償層、液晶セル、ネガティブCプレートとしての第8の光学補償層、λ/4位相差板としての第4の光学補償層、ポジティブAプレートとしての第5の光学補償層、ポジティブCプレートとしての第6の光学補償層、及び、裏偏光子が観察面側からこの順の配置された液晶パネルと、液晶パネルの背面側のバックライト(図示せず)とを備える実施例3の液晶表示装置について、視野角特性をシミュレーションした。各部材の光学パラメータと、各偏光子及び各光学補償層の軸方向とは、図16に示した通りである。本実施例では、表偏光子が上記第1の偏光子に対応し、裏偏光子が上記第2の偏光子に対応する。 Example 3
FIG. 16 is a schematic cross-sectional view of the liquid crystal display device according to the third embodiment.
As shown in FIG. 16, a front polarizer, a first optical compensation layer as a positive C plate, a second optical compensation layer as a positive A plate, a third optical compensation layer as a λ / 4 retardation plate, Seventh optical compensation layer as negative C plate, liquid crystal cell, eighth optical compensation layer as negative C plate, fourth optical compensation layer as λ / 4 retardation plate, fifth as positive A plate An optical compensation layer, a sixth optical compensation layer as a positive C plate, a liquid crystal panel in which a back polarizer is disposed in this order from the viewing surface side, and a backlight (not shown) on the back surface of the liquid crystal panel The viewing angle characteristics of the liquid crystal display device of Example 3 including the above were simulated. The optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG. In this embodiment, the front polarizer corresponds to the first polarizer, and the back polarizer corresponds to the second polarizer.
図16は、実施例3に係る液晶表示装置の断面模式図である。
図16に示すように、表偏光子、ポジティブCプレートとしての第1の光学補償層、ポジティブAプレートとしての第2の光学補償層、λ/4位相差板としての第3の光学補償層、ネガティブCプレートとしての第7の光学補償層、液晶セル、ネガティブCプレートとしての第8の光学補償層、λ/4位相差板としての第4の光学補償層、ポジティブAプレートとしての第5の光学補償層、ポジティブCプレートとしての第6の光学補償層、及び、裏偏光子が観察面側からこの順の配置された液晶パネルと、液晶パネルの背面側のバックライト(図示せず)とを備える実施例3の液晶表示装置について、視野角特性をシミュレーションした。各部材の光学パラメータと、各偏光子及び各光学補償層の軸方向とは、図16に示した通りである。本実施例では、表偏光子が上記第1の偏光子に対応し、裏偏光子が上記第2の偏光子に対応する。 Example 3
FIG. 16 is a schematic cross-sectional view of the liquid crystal display device according to the third embodiment.
As shown in FIG. 16, a front polarizer, a first optical compensation layer as a positive C plate, a second optical compensation layer as a positive A plate, a third optical compensation layer as a λ / 4 retardation plate, Seventh optical compensation layer as negative C plate, liquid crystal cell, eighth optical compensation layer as negative C plate, fourth optical compensation layer as λ / 4 retardation plate, fifth as positive A plate An optical compensation layer, a sixth optical compensation layer as a positive C plate, a liquid crystal panel in which a back polarizer is disposed in this order from the viewing surface side, and a backlight (not shown) on the back surface of the liquid crystal panel The viewing angle characteristics of the liquid crystal display device of Example 3 including the above were simulated. The optical parameters of the respective members and the axial directions of the respective polarizers and the respective optical compensation layers are as shown in FIG. In this embodiment, the front polarizer corresponds to the first polarizer, and the back polarizer corresponds to the second polarizer.
図17に実施例3に係る液晶表示装置の視野角特性をシミュレーションした結果(等コントラスト比等高線)を示す。図17に示されるように、本実施例は、実施例1及び比較例1と比べて、全方位的な偏りの少ない視野角特性を有しており、視野角特性の要求によっては本実施例を選択することも可能である。ただし、製造コストについては、本実施例は、実施例1より高くなることが予想される。
FIG. 17 shows the simulation results (isocontrast ratio contour lines) of the viewing angle characteristics of the liquid crystal display device according to the third embodiment. As shown in FIG. 17, the present embodiment has viewing angle characteristics with less omnidirectional bias as compared to Embodiment 1 and Comparative Example 1, and this embodiment can be used depending on the requirement of the viewing angle characteristics. It is also possible to choose However, with regard to the manufacturing cost, this embodiment is expected to be higher than the first embodiment.
[付記]
本発明の一態様は、第1の偏光子(11)と、第1の光学補償層(21)と、第2の光学補償層(22)と、λ/4位相差板として機能する第3の光学補償層(23)と、互いに対向する一対の基板(31、32)、及び、前記一対の基板(31、32)間の液晶層(33)を含む液晶セル(30)と、λ/4位相差板として機能する第4の光学補償層(24)と、第2の偏光子(12)と、をこの順に備え、前記第1の偏光子(11)は、吸収軸(11a)が前記第2の偏光子(12)の吸収軸(12a)に対して実質的に90°の角度をなし、前記第1の光学補償層(21)は、面内位相差Reが15nm以下であり、かつ、厚み方向位相差Rthが-60nm以下であり、前記第2の光学補償層(22)は、面内位相差Reが40~120nmであり、1≦Nz≦4を満たし、かつ、面内遅相軸(22a)が前記第1の偏光子(11)の吸収軸(11a)と実質的に平行であり、前記第3の光学補償層(23)は、面内遅相軸(23a)が前記第1の偏光子(11)の吸収軸(11a)に対して実質的に45°又は135°の角度をなし、前記液晶セル(30)は、黒表示時に、前記液晶層(33)中の液晶分子を前記一対の基板(31、32)面に対して実質的に垂直に配向し、前記第4の光学補償層(24)は、面内遅相軸(24a)が前記第3の光学補償層(23)の面内遅相軸(23a)に対して実質的に90°の角度をなす液晶表示装置であってもよい。これにより、過酷な環境下に置かれても表示品位の低下を抑制でき、偏光板への溶剤付着時の剥離及び破断を抑制でき、かつ、液晶パネル(2)の薄型化が可能である。 [Supplementary note]
One aspect of the present invention is a third polarizer functioning as a first polarizer (11), a first optical compensation layer (21), a second optical compensation layer (22), and a λ / 4 retardation plate. A liquid crystal cell (30) including a liquid crystal layer (33) between the pair of substrates (31, 32) and the pair of substrates (31, 32) facing each other; A fourth optical compensation layer (24) functioning as a four-retardation plate and a second polarizer (12) are provided in this order, and the first polarizer (11) has an absorption axis (11a) The first optical compensation layer (21) has an in-plane retardation Re of 15 nm or less at an angle of substantially 90 ° to the absorption axis (12a) of the second polarizer (12). And the thickness direction retardation Rth is −60 nm or less, and the second optical compensation layer (22) has an in-plane retardation Re of 40 to 12 nm, satisfying 1 ≦ Nz ≦ 4, and the in-plane slow axis (22a) is substantially parallel to the absorption axis (11a) of the first polarizer (11), and the third In the optical compensation layer (23), the in-plane slow axis (23a) forms an angle of substantially 45 ° or 135 ° with the absorption axis (11a) of the first polarizer (11), and the liquid crystal The cell (30) aligns liquid crystal molecules in the liquid crystal layer (33) substantially perpendicularly to the pair of substrates (31, 32) during black display, and the fourth optical compensation layer ( 24) is a liquid crystal display in which the in-plane slow axis (24a) makes an angle of substantially 90 ° with the in-plane slow axis (23a) of the third optical compensation layer (23); It is also good. This makes it possible to suppress deterioration in display quality even when placed under a severe environment, to suppress peeling and breakage when the solvent is attached to the polarizing plate, and to make the liquid crystal panel (2) thinner.
本発明の一態様は、第1の偏光子(11)と、第1の光学補償層(21)と、第2の光学補償層(22)と、λ/4位相差板として機能する第3の光学補償層(23)と、互いに対向する一対の基板(31、32)、及び、前記一対の基板(31、32)間の液晶層(33)を含む液晶セル(30)と、λ/4位相差板として機能する第4の光学補償層(24)と、第2の偏光子(12)と、をこの順に備え、前記第1の偏光子(11)は、吸収軸(11a)が前記第2の偏光子(12)の吸収軸(12a)に対して実質的に90°の角度をなし、前記第1の光学補償層(21)は、面内位相差Reが15nm以下であり、かつ、厚み方向位相差Rthが-60nm以下であり、前記第2の光学補償層(22)は、面内位相差Reが40~120nmであり、1≦Nz≦4を満たし、かつ、面内遅相軸(22a)が前記第1の偏光子(11)の吸収軸(11a)と実質的に平行であり、前記第3の光学補償層(23)は、面内遅相軸(23a)が前記第1の偏光子(11)の吸収軸(11a)に対して実質的に45°又は135°の角度をなし、前記液晶セル(30)は、黒表示時に、前記液晶層(33)中の液晶分子を前記一対の基板(31、32)面に対して実質的に垂直に配向し、前記第4の光学補償層(24)は、面内遅相軸(24a)が前記第3の光学補償層(23)の面内遅相軸(23a)に対して実質的に90°の角度をなす液晶表示装置であってもよい。これにより、過酷な環境下に置かれても表示品位の低下を抑制でき、偏光板への溶剤付着時の剥離及び破断を抑制でき、かつ、液晶パネル(2)の薄型化が可能である。 [Supplementary note]
One aspect of the present invention is a third polarizer functioning as a first polarizer (11), a first optical compensation layer (21), a second optical compensation layer (22), and a λ / 4 retardation plate. A liquid crystal cell (30) including a liquid crystal layer (33) between the pair of substrates (31, 32) and the pair of substrates (31, 32) facing each other; A fourth optical compensation layer (24) functioning as a four-retardation plate and a second polarizer (12) are provided in this order, and the first polarizer (11) has an absorption axis (11a) The first optical compensation layer (21) has an in-plane retardation Re of 15 nm or less at an angle of substantially 90 ° to the absorption axis (12a) of the second polarizer (12). And the thickness direction retardation Rth is −60 nm or less, and the second optical compensation layer (22) has an in-plane retardation Re of 40 to 12 nm, satisfying 1 ≦ Nz ≦ 4, and the in-plane slow axis (22a) is substantially parallel to the absorption axis (11a) of the first polarizer (11), and the third In the optical compensation layer (23), the in-plane slow axis (23a) forms an angle of substantially 45 ° or 135 ° with the absorption axis (11a) of the first polarizer (11), and the liquid crystal The cell (30) aligns liquid crystal molecules in the liquid crystal layer (33) substantially perpendicularly to the pair of substrates (31, 32) during black display, and the fourth optical compensation layer ( 24) is a liquid crystal display in which the in-plane slow axis (24a) makes an angle of substantially 90 ° with the in-plane slow axis (23a) of the third optical compensation layer (23); It is also good. This makes it possible to suppress deterioration in display quality even when placed under a severe environment, to suppress peeling and breakage when the solvent is attached to the polarizing plate, and to make the liquid crystal panel (2) thinner.
なお、特許文献3は、ポジティブCプレートとポジティブAプレートとを用いた円偏光板を開示しているかもしれないが、特許文献3では、ポジティブAプレートの遅相軸は、それに近い偏光子の吸収軸に対して直交している。それに対して、上記態様の液晶表示装置(1)では、1≦Nz≦4を満たす前記第1の光学補償層(21)は、面内遅相軸(22a)が前記第1の偏光子(11)の吸収軸(11a)と実質的に平行であり、設計思想が異なる。この設計思想の相違により、液晶表示装置(1)では、光学補償層の使用枚数の削減が可能となる。
Although Patent Document 3 may disclose a circularly polarizing plate using a positive C plate and a positive A plate, in Patent Document 3, the slow axis of the positive A plate is a polarizer close to it. It is orthogonal to the absorption axis. On the other hand, in the liquid crystal display device (1) of the above aspect, the first optical compensation layer (21) satisfying 1 ≦ Nz ≦ 4 has the in-plane slow axis (22a) of the first polarizer ( It is substantially parallel to the absorption axis (11a) of 11), and the design concept is different. The difference in the design concept makes it possible to reduce the number of used optical compensation layers in the liquid crystal display device (1).
前記第3及び第4の光学補償層(23、24)は、各々、1≦Nz≦2.4を満たしてもよい。
The third and fourth optical compensation layers (23, 24) may each satisfy 1 ≦ Nz ≦ 2.4.
前記液晶表示装置(1)は、前記第1の偏光子(11)及び前記液晶セル(30)の間に前記第1~第3の光学補償層(21~23)以外の光学補償層を備えず、かつ、前記液晶セル(30)及び前記第2の偏光子(12)の間に前記第4の光学補償層(24)以外の光学補償層を備えなくてもよい。これにより、過酷な環境に対する液晶表示装置(1)の耐久性をより優れたものにすることができるとともに、液晶パネル(2)を特に薄くすることができる。
The liquid crystal display (1) includes an optical compensation layer other than the first to third optical compensation layers (21 to 23) between the first polarizer (11) and the liquid crystal cell (30). In addition, an optical compensation layer other than the fourth optical compensation layer (24) may not be provided between the liquid crystal cell (30) and the second polarizer (12). Thereby, the durability of the liquid crystal display device (1) against severe environments can be made more excellent, and the liquid crystal panel (2) can be made particularly thin.
前記第1の光学補償層(21)は、厚み方向位相差Rthが-200~-100nmであり、前記第2の光学補償層(22)は、面内位相差Reが60~110nmであり、かつ、1≦Nz≦1.4を満たし、前記第3の光学補償層(23)は、1.4≦Nz≦2.4を満たし、前記第4の光学補償層(24)は、1.4≦Nz≦2.4を満たしてもよい。
The first optical compensation layer (21) has a thickness direction retardation Rth of -200 to -100 nm, and the second optical compensation layer (22) has an in-plane retardation Re of 60 to 110 nm. And, 1 ≦ Nz ≦ 1.4 is satisfied, the third optical compensation layer (23) satisfies 1.4 ≦ Nz ≦ 2.4, and the fourth optical compensation layer (24) is obtained by You may satisfy 4 <= Nz <= 2.4.
面内位相差Reが40~120nmであり、1≦Nz≦4を満たし、かつ、面内遅相軸(25a)が前記第2の偏光子(12)の吸収軸(12a)と実質的に平行である第5の光学補償層(25)と、面内位相差Reが15nm以下であり、かつ、厚み方向位相差Rthが-60nm以下である第6の光学補償層(26)とを更に備え、前記第1の偏光子(11)、前記第1の光学補償層(21)、前記第2の光学補償層(22)、前記第3の光学補償層(23)、前記液晶セル(30)、前記第4の光学補償層(24)、前記第5の光学補償層(25)、前記第6の光学補償層(26)、及び、前記第2の偏光子(12)は、この順に配置されてもよい。これにより、液晶表示装置(1)は、より優れた視野角特性を発揮することができる。
The in-plane retardation Re is 40 to 120 nm, 1 ≦ Nz ≦ 4 is satisfied, and the in-plane slow axis (25a) substantially corresponds to the absorption axis (12a) of the second polarizer (12) A fifth optical compensation layer (25) in parallel, and a sixth optical compensation layer (26) having an in-plane retardation Re of 15 nm or less and a thickness direction retardation Rth of -60 nm or less. The first polarizer (11), the first optical compensation layer (21), the second optical compensation layer (22), the third optical compensation layer (23), the liquid crystal cell (30) , The fourth optical compensation layer (24), the fifth optical compensation layer (25), the sixth optical compensation layer (26), and the second polarizer (12) in this order It may be arranged. Thereby, the liquid crystal display device (1) can exhibit more excellent viewing angle characteristics.
前記第1及び第6の光学補償層(21、26)は、各々、厚み方向位相差Rthが-150~-80nmであり、前記第2及び第5の光学補償層(22、25)は、各々、面内位相差Reが40~90nmであり、かつ、1≦Nz≦1.4を満たし、前記第3の光学補償層(23)は、1.4≦Nz≦2.4を満たし、前記第4の光学補償層(24)は、1.4≦Nz≦2.4を満たしてもよい。
The first and sixth optical compensation layers (21, 26) each have a thickness direction retardation Rth of -150 to -80 nm, and the second and fifth optical compensation layers (22, 25) have The in-plane retardation Re is 40 to 90 nm, and 1 ≦ Nz ≦ 1.4, and the third optical compensation layer (23) satisfies 1.4 ≦ Nz ≦ 2.4, The fourth optical compensation layer (24) may satisfy 1.4 ≦ Nz ≦ 2.4.
前記第5の光学補償層(25)は、実質的にNz=1を満たしてもよい。
The fifth optical compensation layer (25) may substantially satisfy Nz = 1.
面内位相差Reが15nm以下であり、厚み方向位相差Rthが50~300nmであり、かつ、Nz>1を満たす第7の光学補償層(27)と、面内位相差Reが15nm以下であり、厚み方向位相差Rthが50~300nmであり、かつ、Nz>1を満たす第8の光学補償層(28)とを更に備え、前記第1の偏光子(11)、前記第1の光学補償層(21)、前記第2の光学補償層(22)、前記第3の光学補償層(23)、前記第7の光学補償層(27)、前記液晶セル(30)、前記第8の光学補償層(28)、前記第4の光学補償層(24)、前記第5の光学補償層(25)、前記第6の光学補償層(26)、及び、前記第2の偏光子(12)は、この順に配置されてもよい。これにより、液晶表示装置(1)は、全方位的な偏りの少ない視野角特性を発揮することができる。
A seventh optical compensation layer (27) having an in-plane retardation Re of 15 nm or less, a thickness direction retardation Rth of 50 to 300 nm, and Nz> 1, and an in-plane retardation Re of 15 nm or less And an eighth optical compensation layer (28) having a thickness direction retardation Rth of 50 to 300 nm and satisfying Nz> 1, and the first polarizer (11), the first optical Compensation layer (21), the second optical compensation layer (22), the third optical compensation layer (23), the seventh optical compensation layer (27), the liquid crystal cell (30), the eighth Optical compensation layer (28), the fourth optical compensation layer (24), the fifth optical compensation layer (25), the sixth optical compensation layer (26), and the second polarizer (12 ) May be arranged in this order. Thus, the liquid crystal display device (1) can exhibit viewing angle characteristics with less omnidirectional bias.
前記第1及び第6の光学補償層(21、26)は、各々、厚み方向位相差Rthが-150~-80nmであり、前記第2及び第5の光学補償層(22、25)は、各々、面内位相差Reが40~90nmであり、かつ、1≦Nz≦1.4を満たし、前記第3及び第4の光学補償層(23、24)は、各々、1≦Nz≦1.4を満たしてもよい。
The first and sixth optical compensation layers (21, 26) each have a thickness direction retardation Rth of -150 to -80 nm, and the second and fifth optical compensation layers (22, 25) have The in-plane retardation Re is 40 to 90 nm, and 1 ≦ Nz ≦ 1.4 is satisfied, and the third and fourth optical compensation layers (23, 24) are each 1 ≦ Nz ≦ 1. .4 may be satisfied.
前記第2の光学補償層(22)は、実質的にNz=1を満たしてもよい。
The second optical compensation layer (22) may substantially satisfy Nz = 1.
前記第3の光学補償層(23)の面内位相差Reは、前記第4の光学補償層(24)の面内位相差Reと実質的に同じであってもよい。これにより、液晶表示装置(1)は、高コントラストを保つことができる。
The in-plane retardation Re of the third optical compensation layer (23) may be substantially the same as the in-plane retardation Re of the fourth optical compensation layer (24). Thereby, the liquid crystal display device (1) can maintain high contrast.
前記第3及び第4の光学補償層(23、24)は、各々、面内位相差Reが100~175nmであってもよい。
Each of the third and fourth optical compensation layers (23, 24) may have an in-plane retardation Re of 100 to 175 nm.
以上に示した本発明の各態様は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
Each aspect of the present invention shown above may be combined suitably in the range which does not deviate from the gist of the present invention.
1:液晶表示装置
2:液晶パネル
2a:表示領域
3:第1の円偏光板
4:第2の円偏光板
11:第1の偏光子
11a:吸収軸
12:第2の偏光子
12a:吸収軸
21:第1の光学補償層
22:第2の光学補償層
22a:面内遅相軸
23:第3の光学補償層(λ/4位相差板)
23a:面内遅相軸
24:第4の光学補償層(λ/4位相差板)
24a:面内遅相軸
25:第5の光学補償層
25a:面内遅相軸
26:第6の光学補償層
27:第7の光学補償層
28:第8の光学補償層
30:液晶セル
31、32:基板
33:液晶層 1: Liquid crystal display 2:Liquid crystal panel 2a: Display area 3: First circularly polarizing plate 4: Second circularly polarizing plate 11: First polarizer 11a: Absorption axis 12: Second polarizer 12a: Absorption Axis 21: first optical compensation layer 22: second optical compensation layer 22a: in-plane slow axis 23: third optical compensation layer (λ / 4 retardation plate)
23a: in-plane slow axis 24: fourth optical compensation layer (λ / 4 retardation plate)
24a: in-plane slow axis 25: fifthoptical compensation layer 25a: in-plane slow axis 26: sixth optical compensation layer 27: seventh optical compensation layer 28: eighth optical compensation layer 30: liquid crystal cell 31, 32: substrate 33: liquid crystal layer
2:液晶パネル
2a:表示領域
3:第1の円偏光板
4:第2の円偏光板
11:第1の偏光子
11a:吸収軸
12:第2の偏光子
12a:吸収軸
21:第1の光学補償層
22:第2の光学補償層
22a:面内遅相軸
23:第3の光学補償層(λ/4位相差板)
23a:面内遅相軸
24:第4の光学補償層(λ/4位相差板)
24a:面内遅相軸
25:第5の光学補償層
25a:面内遅相軸
26:第6の光学補償層
27:第7の光学補償層
28:第8の光学補償層
30:液晶セル
31、32:基板
33:液晶層 1: Liquid crystal display 2:
23a: in-plane slow axis 24: fourth optical compensation layer (λ / 4 retardation plate)
24a: in-plane slow axis 25: fifth
Claims (12)
- 第1の偏光子と、
第1の光学補償層と、
第2の光学補償層と、
λ/4位相差板として機能する第3の光学補償層と、
互いに対向する一対の基板、及び、前記一対の基板間の液晶層を含む液晶セルと、
λ/4位相差板として機能する第4の光学補償層と、
第2の偏光子と、をこの順に備え、
前記第1の偏光子は、吸収軸が前記第2の偏光子の吸収軸に対して実質的に90°の角度をなし、
前記第1の光学補償層は、面内位相差Reが15nm以下であり、かつ、厚み方向位相差Rthが-60nm以下であり、
前記第2の光学補償層は、面内位相差Reが40~120nmであり、1≦Nz≦4を満たし、かつ、面内遅相軸が前記第1の偏光子の吸収軸と実質的に平行であり、
前記第3の光学補償層は、面内遅相軸が前記第1の偏光子の吸収軸に対して実質的に45°又は135°の角度をなし、
前記液晶セルは、黒表示時に、前記液晶層中の液晶分子を前記一対の基板面に対して実質的に垂直に配向し、
前記第4の光学補償層は、面内遅相軸が前記第3の光学補償層の面内遅相軸に対して実質的に90°の角度をなす液晶表示装置。 A first polarizer,
A first optical compensation layer,
A second optical compensation layer,
a third optical compensation layer functioning as a λ / 4 retardation plate,
A liquid crystal cell including a pair of substrates facing each other, and a liquid crystal layer between the pair of substrates;
a fourth optical compensation layer functioning as a λ / 4 retardation plate,
And a second polarizer in this order,
The first polarizer has an absorption axis substantially at an angle of 90 ° with respect to the absorption axis of the second polarizer,
The first optical compensation layer has an in-plane retardation Re of 15 nm or less and a thickness direction retardation Rth of −60 nm or less,
The second optical compensation layer has an in-plane retardation Re of 40 to 120 nm, satisfies 1 ≦ Nz ≦ 4, and the in-plane slow axis substantially corresponds to the absorption axis of the first polarizer. Parallel and
The third optical compensation layer has an in-plane slow axis at an angle of substantially 45 ° or 135 ° with respect to the absorption axis of the first polarizer,
The liquid crystal cell aligns liquid crystal molecules in the liquid crystal layer substantially perpendicularly to the pair of substrate surfaces during black display.
The fourth optical compensation layer is a liquid crystal display device in which the in-plane slow axis forms an angle of substantially 90 ° with the in-plane slow axis of the third optical compensation layer. - 前記第3及び第4の光学補償層は、各々、1≦Nz≦2.4を満たす請求項1記載の液晶表示装置。 The liquid crystal display according to claim 1, wherein the third and fourth optical compensation layers each satisfy 1 ≦ Nz ≦ 2.4.
- 前記第1の偏光子及び前記液晶セルの間に前記第1~第3の光学補償層以外の光学補償層を備えず、かつ、前記液晶セル及び前記第2の偏光子の間に前記第4の光学補償層以外の光学補償層を備えない請求項1又は2記載の液晶表示装置。 An optical compensation layer other than the first to third optical compensation layers is not provided between the first polarizer and the liquid crystal cell, and the fourth between the liquid crystal cell and the second polarizer. The liquid crystal display device according to claim 1 or 2, wherein no optical compensation layer other than the optical compensation layer is provided.
- 前記第1の光学補償層は、厚み方向位相差Rthが-200~-100nmであり、
前記第2の光学補償層は、面内位相差Reが60~110nmであり、かつ、1≦Nz≦1.4を満たし、
前記第3の光学補償層は、1.4≦Nz≦2.4を満たし、
前記第4の光学補償層は、1.4≦Nz≦2.4を満たす請求項3記載の液晶表示装置。 The first optical compensation layer has a thickness direction retardation Rth of -200 to -100 nm,
The second optical compensation layer has an in-plane retardation Re of 60 to 110 nm and satisfies 1 ≦ Nz ≦ 1.4,
The third optical compensation layer satisfies 1.4 ≦ Nz ≦ 2.4,
4. The liquid crystal display device according to claim 3, wherein the fourth optical compensation layer satisfies 1.4 ≦ Nz ≦ 2.4. - 面内位相差Reが40~120nmであり、1≦Nz≦4を満たし、かつ、面内遅相軸が前記第2の偏光子の吸収軸と実質的に平行である第5の光学補償層と、
面内位相差Reが15nm以下であり、かつ、厚み方向位相差Rthが-60nm以下である第6の光学補償層とを更に備え、
前記第1の偏光子、前記第1の光学補償層、前記第2の光学補償層、前記第3の光学補償層、前記液晶セル、前記第4の光学補償層、前記第5の光学補償層、前記第6の光学補償層、及び、前記第2の偏光子は、この順に配置される請求項1又は2記載の液晶表示装置。 A fifth optical compensation layer having an in-plane retardation Re of 40 to 120 nm, satisfying 1 ≦ Nz ≦ 4, and having an in-plane slow axis substantially parallel to the absorption axis of the second polarizer. When,
And a sixth optical compensation layer having an in-plane retardation Re of 15 nm or less and a thickness direction retardation Rth of −60 nm or less,
The first polarizer, the first optical compensation layer, the second optical compensation layer, the third optical compensation layer, the liquid crystal cell, the fourth optical compensation layer, the fifth optical compensation layer The liquid crystal display device according to claim 1, wherein the sixth optical compensation layer and the second polarizer are disposed in this order. - 前記第1及び第6の光学補償層は、各々、厚み方向位相差Rthが-150~-80nmであり、
前記第2及び第5の光学補償層は、各々、面内位相差Reが40~90nmであり、かつ、1≦Nz≦1.4を満たし、
前記第3の光学補償層は、1.4≦Nz≦2.4を満たし、
前記第4の光学補償層は、1.4≦Nz≦2.4を満たす請求項5記載の液晶表示装置。 The first and sixth optical compensation layers each have a thickness direction retardation Rth of −150 to −80 nm,
The second and fifth optical compensation layers each have an in-plane retardation Re of 40 to 90 nm, and satisfy 1 ≦ Nz ≦ 1.4,
The third optical compensation layer satisfies 1.4 ≦ Nz ≦ 2.4,
The liquid crystal display device according to claim 5, wherein the fourth optical compensation layer satisfies 1.4 ≦ Nz ≦ 2.4. - 前記第5の光学補償層は、実質的にNz=1を満たす請求項5又は6記載の液晶表示装置。 7. The liquid crystal display device according to claim 5, wherein the fifth optical compensation layer substantially satisfies Nz = 1.
- 面内位相差Reが15nm以下であり、厚み方向位相差Rthが50~300nmであり、かつ、Nz>1を満たす第7の光学補償層と、
面内位相差Reが15nm以下であり、厚み方向位相差Rthが50~300nmであり、かつ、Nz>1を満たす第8の光学補償層とを更に備え、
前記第1の偏光子、前記第1の光学補償層、前記第2の光学補償層、前記第3の光学補償層、前記第7の光学補償層、前記液晶セル、前記第8の光学補償層、前記第4の光学補償層、前記第5の光学補償層、前記第6の光学補償層、及び、前記第2の偏光子は、この順に配置される請求項5記載の液晶表示装置。 A seventh optical compensation layer having an in-plane retardation Re of 15 nm or less, a thickness direction retardation Rth of 50 to 300 nm, and Nz>1;
And an eighth optical compensation layer having an in-plane retardation Re of 15 nm or less, a thickness direction retardation Rth of 50 to 300 nm, and Nz> 1.
The first polarizer, the first optical compensation layer, the second optical compensation layer, the third optical compensation layer, the seventh optical compensation layer, the liquid crystal cell, and the eighth optical compensation layer The liquid crystal display device according to claim 5, wherein the fourth optical compensation layer, the fifth optical compensation layer, the sixth optical compensation layer, and the second polarizer are arranged in this order. - 前記第1及び第6の光学補償層は、各々、厚み方向位相差Rthが-150~-80nmであり、
前記第2及び第5の光学補償層は、各々、面内位相差Reが40~90nmであり、かつ、1≦Nz≦1.4を満たし、
前記第3及び第4の光学補償層は、各々、1≦Nz≦1.4を満たす請求項8記載の液晶表示装置。 The first and sixth optical compensation layers each have a thickness direction retardation Rth of −150 to −80 nm,
The second and fifth optical compensation layers each have an in-plane retardation Re of 40 to 90 nm, and satisfy 1 ≦ Nz ≦ 1.4,
9. The liquid crystal display device according to claim 8, wherein the third and fourth optical compensation layers each satisfy 1 ≦ Nz ≦ 1.4. - 前記第2の光学補償層は、実質的にNz=1を満たす請求項1~9のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 9, wherein the second optical compensation layer substantially satisfies Nz = 1.
- 前記第3の光学補償層の面内位相差Reは、前記第4の光学補償層の面内位相差Reと実質的に同じである請求項1~10のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 10, wherein the in-plane retardation Re of the third optical compensation layer is substantially the same as the in-plane retardation Re of the fourth optical compensation layer.
- 前記第3及び第4の光学補償層は、各々、面内位相差Reが100~175nmである請求項1~11のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 11, wherein each of the third and fourth optical compensation layers has an in-plane retardation Re of 100 to 175 nm.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017131416 | 2017-07-04 | ||
JP2017-131416 | 2017-07-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019009145A1 true WO2019009145A1 (en) | 2019-01-10 |
Family
ID=64951029
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/024264 WO2019009145A1 (en) | 2017-07-04 | 2018-06-27 | Liquid crystal display device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019009145A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112505817A (en) * | 2020-12-14 | 2021-03-16 | 深圳市盛波光电科技有限公司 | Polarizer for near-to-eye display and display device |
US20220382091A1 (en) * | 2019-10-01 | 2022-12-01 | Sony Group Corporation | Optical compensation element, liquid-crystal display device, and electronic apparatus |
EP4339664A1 (en) * | 2022-09-16 | 2024-03-20 | Samsung Display Co., Ltd. | Display device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006251050A (en) * | 2005-03-08 | 2006-09-21 | Toshiba Matsushita Display Technology Co Ltd | Liquid crystal display element |
JP2007003668A (en) * | 2005-06-22 | 2007-01-11 | Nitto Denko Corp | Liquid crystal panel and liquid crystal display device using the same |
JP2008129176A (en) * | 2006-11-17 | 2008-06-05 | Nippon Oil Corp | Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same |
JP2008176259A (en) * | 2006-12-22 | 2008-07-31 | Nitto Denko Corp | Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film |
JP2009300760A (en) * | 2008-06-13 | 2009-12-24 | Nippon Oil Corp | Elliptical light polarization plate and vertically oriented type liquid crystal display using the same |
-
2018
- 2018-06-27 WO PCT/JP2018/024264 patent/WO2019009145A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006251050A (en) * | 2005-03-08 | 2006-09-21 | Toshiba Matsushita Display Technology Co Ltd | Liquid crystal display element |
JP2007003668A (en) * | 2005-06-22 | 2007-01-11 | Nitto Denko Corp | Liquid crystal panel and liquid crystal display device using the same |
JP2008129176A (en) * | 2006-11-17 | 2008-06-05 | Nippon Oil Corp | Elliptical polarizing plate and vertically aligned liquid crystal display apparatus using the same |
JP2008176259A (en) * | 2006-12-22 | 2008-07-31 | Nitto Denko Corp | Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film |
JP2009300760A (en) * | 2008-06-13 | 2009-12-24 | Nippon Oil Corp | Elliptical light polarization plate and vertically oriented type liquid crystal display using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220382091A1 (en) * | 2019-10-01 | 2022-12-01 | Sony Group Corporation | Optical compensation element, liquid-crystal display device, and electronic apparatus |
CN112505817A (en) * | 2020-12-14 | 2021-03-16 | 深圳市盛波光电科技有限公司 | Polarizer for near-to-eye display and display device |
EP4339664A1 (en) * | 2022-09-16 | 2024-03-20 | Samsung Display Co., Ltd. | Display device |
US12124065B2 (en) | 2022-09-16 | 2024-10-22 | Samsung Display Co., Ltd. | Display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5311605B2 (en) | Liquid crystal panel and liquid crystal display device | |
US20100045910A1 (en) | Laminated optical film, and liquid crystal panel and liquid crystal display apparatus using the laminated optical film | |
JP4228004B2 (en) | Transmission type liquid crystal display device | |
JP5127046B2 (en) | Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film | |
JP5259824B2 (en) | Liquid crystal display | |
JP2007206605A (en) | Liquid crystal panel and liquid crystal display device | |
KR20050071540A (en) | Optical film and liquid crystal display | |
JP2008134587A (en) | Liquid crystal panel comprising liquid crystal cell having multigap structure, and liquid crystal display device | |
KR20080096753A (en) | LCD Display | |
JP2008129177A (en) | Transmissive liquid crystal display device | |
KR20080106409A (en) | Transmissive Liquid Crystal Display | |
JP2009251442A (en) | Multilayer optical film, and liquid crystal panel and liquid crystal display device using multilayer optical film | |
JP2009075533A (en) | Elliptic polarization plate and liquid crystal display device | |
JP2005099475A (en) | Optical film and image display apparatus | |
JP2005321528A (en) | Liquid crystal display | |
WO2019009145A1 (en) | Liquid crystal display device | |
JP2009053614A (en) | Layered optical film, liquid crystal panel using layered optical film and liquid crystal display device | |
JP2003015134A (en) | Liquid crystal display device | |
JP2007225862A (en) | Liquid crystal panel and liquid crystal display device | |
US9618795B2 (en) | Liquid crystal panel and liquid crystal display | |
JP5084029B2 (en) | Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film | |
JP4911777B2 (en) | Liquid crystal panel and liquid crystal display device | |
JP2008139806A (en) | Layered optical film, liquid crystal panel using layered optical film and liquid crystal display device | |
JP2012252084A (en) | Liquid crystal panel and liquid crystal display device | |
JP4761399B2 (en) | Laminated optical film, liquid crystal panel and liquid crystal display device using laminated optical film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18828418 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18828418 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |