WO2019008595A1 - Process for the preparation of 1-(4-fluorobenzyl)-3-(4-isobutoxybenzyl)-1-(1- methylpiperidin-4-yl)urea and salts thereof - Google Patents
Process for the preparation of 1-(4-fluorobenzyl)-3-(4-isobutoxybenzyl)-1-(1- methylpiperidin-4-yl)urea and salts thereof Download PDFInfo
- Publication number
- WO2019008595A1 WO2019008595A1 PCT/IN2018/050053 IN2018050053W WO2019008595A1 WO 2019008595 A1 WO2019008595 A1 WO 2019008595A1 IN 2018050053 W IN2018050053 W IN 2018050053W WO 2019008595 A1 WO2019008595 A1 WO 2019008595A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- formula
- compound
- pimavanserin
- preparation
- group
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 150000003839 salts Chemical class 0.000 title claims abstract description 39
- RKEWSXXUOLRFBX-UHFFFAOYSA-N pimavanserin Chemical compound C1=CC(OCC(C)C)=CC=C1CNC(=O)N(C1CCN(C)CC1)CC1=CC=C(F)C=C1 RKEWSXXUOLRFBX-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims abstract description 31
- 150000001875 compounds Chemical class 0.000 claims description 72
- 229960003300 pimavanserin Drugs 0.000 claims description 36
- 238000006243 chemical reaction Methods 0.000 claims description 30
- 239000002904 solvent Substances 0.000 claims description 28
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 24
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 22
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims description 18
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 13
- 239000002585 base Substances 0.000 claims description 12
- 239000003513 alkali Substances 0.000 claims description 11
- 150000002148 esters Chemical class 0.000 claims description 11
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 claims description 10
- 150000008282 halocarbons Chemical class 0.000 claims description 9
- 150000002825 nitriles Chemical class 0.000 claims description 9
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 6
- -1 alkaline earth metal carbonates Chemical class 0.000 claims description 6
- 150000007529 inorganic bases Chemical class 0.000 claims description 6
- 150000007530 organic bases Chemical class 0.000 claims description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 claims description 5
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 4
- 239000000543 intermediate Substances 0.000 abstract description 11
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 30
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 24
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 18
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 8
- PFYXSUNOLOJMDX-UHFFFAOYSA-N bis(2,5-dioxopyrrolidin-1-yl) carbonate Chemical compound O=C1CCC(=O)N1OC(=O)ON1C(=O)CCC1=O PFYXSUNOLOJMDX-UHFFFAOYSA-N 0.000 description 8
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- JBVKKHDTYSDPHA-UHFFFAOYSA-N [4-(2-methylpropoxy)phenyl]methanamine Chemical compound CC(C)COC1=CC=C(CN)C=C1 JBVKKHDTYSDPHA-UHFFFAOYSA-N 0.000 description 5
- 150000001342 alkaline earth metals Chemical class 0.000 description 5
- 229910052788 barium Inorganic materials 0.000 description 5
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- PLYWEOOWONUOBN-UHFFFAOYSA-N n-[(4-fluorophenyl)methyl]-1-methylpiperidin-4-amine Chemical compound C1CN(C)CCC1NCC1=CC=C(F)C=C1 PLYWEOOWONUOBN-UHFFFAOYSA-N 0.000 description 5
- 229910052700 potassium Inorganic materials 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 4
- 229940011051 isopropyl acetate Drugs 0.000 description 4
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 4
- RGSULKHNAKTFIZ-CEAXSRTFSA-N pimavanserin tartrate Chemical class OC(=O)[C@H](O)[C@@H](O)C(O)=O.C1=CC(OCC(C)C)=CC=C1CNC(=O)N(C1CCN(C)CC1)CC1=CC=C(F)C=C1.C1=CC(OCC(C)C)=CC=C1CNC(=O)N(C1CCN(C)CC1)CC1=CC=C(F)C=C1 RGSULKHNAKTFIZ-CEAXSRTFSA-N 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- VPEGFBXWSGBVDN-UHFFFAOYSA-N acetic acid;[4-(2-methylpropoxy)phenyl]methanamine Chemical compound CC(O)=O.CC(C)COC1=CC=C(CN)C=C1 VPEGFBXWSGBVDN-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229940081770 pimavanserin tartrate Drugs 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- ZARAKWXJTKKOLY-UHFFFAOYSA-N 5-(isocyanatomethyl)-5-(2-methylpropoxy)cyclohexa-1,3-diene Chemical compound CC(C)COC1(CN=C=O)CC=CC=C1 ZARAKWXJTKKOLY-UHFFFAOYSA-N 0.000 description 2
- 0 CC(C)COc1ccc(CNC(O*(C(CC2)=O)C2=O)=O)cc1 Chemical compound CC(C)COc1ccc(CNC(O*(C(CC2)=O)C2=O)=O)cc1 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- MKRTXPORKIRPDG-UHFFFAOYSA-N diphenylphosphoryl azide Chemical compound C=1C=CC=CC=1P(=O)(N=[N+]=[N-])C1=CC=CC=C1 MKRTXPORKIRPDG-UHFFFAOYSA-N 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- PSHKMPUSSFXUIA-UHFFFAOYSA-N n,n-dimethylpyridin-2-amine Chemical compound CN(C)C1=CC=CC=N1 PSHKMPUSSFXUIA-UHFFFAOYSA-N 0.000 description 2
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 229940090181 propyl acetate Drugs 0.000 description 2
- 238000001665 trituration Methods 0.000 description 2
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- BPILZXNFTZZYJJ-UHFFFAOYSA-N 1-(isocyanatomethyl)-4-(2-methylpropoxy)benzene Chemical compound CC(C)COC1=CC=C(CN=C=O)C=C1 BPILZXNFTZZYJJ-UHFFFAOYSA-N 0.000 description 1
- UJZBSAONPRVEIJ-UHFFFAOYSA-N 2,2,2-trifluoroethyl carbonochloridate Chemical compound FC(F)(F)COC(Cl)=O UJZBSAONPRVEIJ-UHFFFAOYSA-N 0.000 description 1
- APXLSLWSMWRTTL-UHFFFAOYSA-N 2-[4-(2-methylpropoxy)phenyl]acetic acid Chemical compound CC(C)COC1=CC=C(CC(O)=O)C=C1 APXLSLWSMWRTTL-UHFFFAOYSA-N 0.000 description 1
- IYXORPUPKMTKBL-UHFFFAOYSA-N CC(C)COc1ccc(CNC(NCc(cc2)ccc2OCC(C)C)=O)cc1 Chemical compound CC(C)COc1ccc(CNC(NCc(cc2)ccc2OCC(C)C)=O)cc1 IYXORPUPKMTKBL-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 206010012239 Delusion Diseases 0.000 description 1
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 1
- 208000004547 Hallucinations Diseases 0.000 description 1
- 239000001358 L(+)-tartaric acid Substances 0.000 description 1
- 235000011002 L(+)-tartaric acid Nutrition 0.000 description 1
- FEWJPZIEWOKRBE-LWMBPPNESA-N L-(+)-Tartaric acid Natural products OC(=O)[C@@H](O)[C@H](O)C(O)=O FEWJPZIEWOKRBE-LWMBPPNESA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000004657 carbamic acid derivatives Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 231100000868 delusion Toxicity 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- XMJHPCRAQCTCFT-UHFFFAOYSA-N methyl chloroformate Chemical compound COC(Cl)=O XMJHPCRAQCTCFT-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000012044 organic layer Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- WMOVHXAZOJBABW-UHFFFAOYSA-N tert-butyl acetate Chemical compound CC(=O)OC(C)(C)C WMOVHXAZOJBABW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/46—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with hetero atoms directly attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D211/00—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
- C07D211/04—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D211/06—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
- C07D211/36—Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D211/56—Nitrogen atoms
- C07D211/58—Nitrogen atoms attached in position 4
Definitions
- the present invention relates to an efficient process for the preparation of l-(4- fluorobenzyl)-3-(4-isobutoxybenzyl)-l-(l-methylpiperidin-4-yl)urea and pharmaceutically acceptable salts thereof involving use of novel intermediates.
- pimavanserin tartrate salt by Acadia Pharmaceuticals which has been approved for use in patients for the treatment of hallucinations and delusions associated with Parkinson's disease psychosis.
- Pimavanserin tartrate is represented structurally as Formula I,
- Pimavanserin synthesis is disclosed in US 7,601,740 and US 7,790,899, wherein the process involves the reaction of N-(4-fluorobenzyl)-l-methylpiperidine-4-amine with 1- isobutoxybenzyl isocyanate.
- the patents disclose the preparation of intermediate 1- isobutoxybenzyl isocyanate via two processes wherein one process involves reaction of 2- (4-isobutoxyphenyl)acetic acid with diphenyl phosphoryl azide and the other process involves reaction of 4-isobutoxybenzylamine with phosgene or its equivalents.
- WO2017015272 discloses a process for the preparation of pimavanserin via preparation of variously substituted carbamate intermediates, which are further condensed with another intermediate to obtain pimavanserin.
- the process using dimethyl carbonate for the preparation of carbamate is carried out in the presence of zirconium catalyst for about 72 hours at high temperature with a proximal yield of 20%.
- the process involving use of diphenyl carbonate for the preparation of carbamate takes place in about 24 hours.
- the preparation of carbmate using methyl chloroformate involved column chromatography for the purification of carbamate intermediate to achieve required purity standards.
- the pimavanserin was obtained by trituration with only 70.5% purity, wherein the carbamte intermediate was prepared using bis(2,2,2-trifluroethyl)carbonate of 2,2,2-trifluoroethyl chloroformate.
- the processes disclosed involve major challenges to be easily applicable on industrial scale such as use of an expensive catalyst, long reaction time increases energy consumption, which increases overall production cost.
- the process providing pimavanserin with purity of 70% will attract additional purifications, thereby leading to loss of yield and increase in cost.
- the procedure of trituration is not at all advisable at industrial scale.
- the disclosed processes suffer a number of disadvantages to be successfully implemented on industrial scale.
- there remains an urgent need for the development of a process which not only overcome one or more problems of the prior art processes as mentioned above, but also is an efficient, safe and convenient process for the preparation of pimavanserin and pharmaceutically acceptable salts thereof.
- the principal object of present invention relates to novel, efficient and safe processes for the preparation of l-(4-fluorobenzyl)-3-(4-isobutoxybenzyl)-l-(l-methylpiperidin-4- yl)urea and pharmaceutically acceptable salts thereof in high yield and purity involving novel intermediates, which alleviates one or more drawbacks of prior art processes.
- the present invention relates to the compound of formula IV
- the present invention provides a process for the preparation of compound of formula IV
- the present invention provides use of compound of formula IV for the preparation of pimavanserin and pharmaceutically acceptable salts thereof, comprising the reaction of formula II or its salt with the compound of formula III to give a compound of formula IV.
- the next step involves reaction of compound of formula IV with compound of formula V to give pimavanserin of formula IA, according to Scheme 1, which is optionally converted to its pharmaceutically acceptable salts.
- the present invention relates to the compound of formula VI
- the present invention provides a process for the preparation of compound of formula VI
- the present invention provides use of compound of formula VI for the preparation of pimavanserin and pharmaceutically acceptable salts thereof, comprising the reaction of compound of formula V with compound of formula III to give a compound of formula VI.
- the next step involves reaction of compound of formula VI with compound of formula II or its salt to give pimavanserin of formula IA, according to Scheme 2, which is optionally converted to its pharmaceutically acceptable salts.
- the present invention provides processes that are simple, convenient, environment friendly and economical for industrial application.
- the method utilizes use of safer reagents, conditions and novel intermediates that avoids formation of multiple impurities and thereby reduces the additional requirements of purifying intermediates at various stages and accordingly reduces the use of solvents and reagents, which results in decrease in costs attributed to a more efficient use of reagents and solvents and at the same time makes process more environment friendly.
- the present invention relates to the compound of formula IV:
- the present invention provides a process for the preparation of compound of formula IV:
- the compound of formula II or its salt is reacted with compound of formula III to give compound of formula IV.
- a salt of compound of formula II is used it is selected from the group comprising of hydrochloride, hydrobromide, acetate and the like.
- the salt is neutralized to compound of formula II by use of base in a solvent, wherein the base used is selected from the group comprising organic and inorganic.
- the organic base used is selected from the group comprising of trimethylamine and the like.
- the inorganic base used is selected from alkali and alkaline earth metal carbonates, bicarbonates and the like.
- the alkali and alkaline earth metal is selected from the group comprising of sodium, potassium, calcium, barium and the like.
- the solvent used in the liberation of free base of compound of Formula II and further reaction with compound of Formula III can be same or different and is selected from the group comprising of halogenated hydrocarbons such as dichloromethane, chlorobenzene and the like, hydrocarbons such as cyclohexane, heptane, octane, toluene, xylene and the like, esters such as ethyl acetate, propyl acetate and the like, nitrile such as acetonitrile, propionitrile and the like, DMSO, DMF, water and mixtures thereof.
- halogenated hydrocarbons such as dichloromethane, chlorobenzene and the like
- hydrocarbons such as cyclohexane, heptane, octane, toluene, xylene and the like
- esters such as ethyl acetate, propyl acetate and the like
- nitrile
- the present invention provides a process for the preparation of pimavanserin involving use of compound of formula IV, comprising the reaction of formula II or its salt with the compound of formula III to give a compound of formula IV.
- the next step involves reaction of compound of formula IV with compound of formula V to give pimavanserin of formula IA, according to Scheme 1, which is optionally converted to its pharmaceutically acceptable salts.
- compound of formula II or its salt reacts with compound of formula III to give compound of formula IV.
- a salt of compound of formula II is used it is selected from the group comprising of hydrochloride, hydrobromide, acetate and the like.
- the salt is neutralized to compound of formula II by use of base in a solvent, wherein the base used is selected from the group comprising organic and inorganic.
- the organic base used is selected from the group comprising of trimethylamine and the like.
- the inorganic base used is selected from alkali and alkaline earth metal carbonates, bicarbonates and the like.
- the alkali and alkaline earth metal is selected from the group comprising of sodium, potassium, calcium, barium and the like.
- the solvent used in the liberation of free base of compound of Formula II and further reaction with compound of Formula III can be same or different and is selected from the group comprising of halogenated hydrocarbons such as dichloromethane, chlorobenzene and the like, hydrocarbons such as cyclohexane, heptane, octane, toluene, xylene and the like, esters such as ethyl acetate, propyl acetate and the like, nitrile such as acetonitrile, propionitrile and the like, DMSO, DMF, water and mixtures thereof.
- halogenated hydrocarbons such as dichloromethane, chlorobenzene and the like
- hydrocarbons such as cyclohexane, heptane, octane, toluene, xylene and the like
- esters such as ethyl acetate, propyl acetate and the like
- nitrile
- the compound of formula II is optionally isolated after neutralization and is further reacted with compound of formula III to obtain compound of formula IV, which is isolated or is used in-situ for further reaction.
- the compound of formula IV is treated with compound of formula V, wherein the reaction is carried out in solvent in presence of base.
- the solvent used is selected from the group comprising of halogenated hydrocarbons such as dichloromethane and the like, esters such as ethyl acetate, isopropyl acetate and the like, nitrile such as acetonitrile, propionitrile and the like, aromatic hydrocarbons such as toluene, chlorobenzene and the like, DMSO, DMF, water and mixtures thereof.
- the base used is selected from organic and inorganic, wherein organic base used is selected from the group comprising of triethylamine and the like.
- the inorganic base used is selected from alkali and alkaline earth metal carbonates, bicarbonates and the like.
- the alkali and alkaline earth metal is selected from the group comprising of sodium, potassium, calcium, barium and the like.
- the reaction give pimavanserin of formula IA, which is optionally converted to its pharmaceutically acceptable salts.
- the present invention relates to the compound of formula VI
- the present invention provides a process for the preparation of compound of formula VI
- the compound of formula V reacts with compound of formula III in solvent to obtain compound of formula VI.
- the solvent used is selected from the group comprising of halogenated hydrocarbons such as dichloromethane and the like, esters such as ethyl acetate and the like, nitrile such as acetonitrile, propionitrile and the like, water and mixtures thereof.
- the present invention provides use of compound of formula VI for the preparation of pimavanserin and pharmaceutically acceptable salts thereof, comprising the reaction of compound of formula V with compound of formula III to give a compound of formula VI.
- the next step involves reaction of compound of formula VI with compound of formula II or its salt to give pimavanserin of formula IA, according to Scheme 2, which is optionally converted to its pharmaceutically acceptable salts.
- the N-(4-fluorobenzyl)-l-methylpiperidine-4-amine of formula V reacts with compound of formula III.
- the reaction is carried out in solvent optionally in presence of base.
- the solvent used is selected from the group comprising of halogenated hydrocarbons such as dichloromethane and the like, esters such as ethyl acetate and the like, nitrile such as acetonitrile and the like, water and mixtures thereof.
- the base used is selected from organic and inorganic, wherein organic base used is selected from the group comprising of trimethylamine and the like.
- the inorganic base used is selected from alkali and alkaline earth metal carbonates, bicarbonates and the like.
- the alkali and alkaline earth metal is selected from the group comprising of sodium, potassium, calcium, barium and the like.
- the reaction give compound of formula VI which is optionally isolated and is further used in next step.
- the compound of formula VI is then treated with 4- isobutoxybenzylamine or its salt of formula II, wherein the 4-isobutoxybenzylamine salt used is selected from the group comprising of hydrochloride, hydrobromide, acetate and the like.
- the salt is neutralized to compound of formula II by use of base in a solvent, wherein the base used is selected from the group comprising organic and inorganic.
- the organic base used is selected from the group comprising of trimethylamine and the like.
- the inorganic base used is selected from alkali and alkaline earth metal carbonates, bicarbonates and the like.
- the alkali and alkaline earth metal is selected from the group comprising of sodium, potassium, calcium, barium and the like.
- the reaction is carried out in solvent selected from the group comprising of halogenated hydrocarbons such as dichloromethane and the like, esters such as ethyl acetate and the like, nitrile such as acetonitrile and the like, water and mixtures thereof.
- the reaction of compound of formula VI with compound of formula II is carried out in presence of solvent, optionally in the presence of a catalyst such as dimethylaminopyridine and the like.
- the solvent used is selected from the group comprising of esters such as ethyl acetate, isopropyl acetate and the like, aromatic hydrocarbons such as toluene, chlorobenzene and the like, DMSO, DMF, water and mixtures thereof.
- the pimavanserin of formula IA so obtained is optionally converted to pharmaceutically acceptable salts.
- the pharmaceutically acceptable salt of pimavanserin is selected from the group comprising of hydrochloride, hydrobromide, tartrate, oxalate and the like.
- the compound of formula IV, VI and pimavanserin or its pharmaceutically acceptable salt are isolated using one or more work-up processes such as extraction, washing, filtration and the like.
- the pimavanserin or its pharmaceutically acceptable salt obtained is then optionally crystallized from suitable organic solvent to get pure pimavanserin.
- the suitable organic solvent for crystallization is selected from the group comprising of alcohols, esters, ketones, ethers, water or mixtures thereof; particularly methanol, ethanol, n-propanol, isopropanol, n-butanol, iso-butanol, tert- butanol, methyl acetate, ethyl acetate, isopropyl acetate, tertiary butyl acetate, acetone, methyl ethyl ketone, di-isopropyl ether, tetrahydrofuran, water or mixtures thereof.
- pimavanserin or its pharmaceutically acceptable salts obtained is having purity not less than 99.5%, preferably not less than 99.8%.
- pimavanserin tartrate To solution of pimavanserin (1.5 g) in ethanol (18 ml) slowly added a solution of L- (+)-tartaric acid (0.263 g) in ethanol (12 ml) at 60-65 °C. The resulting clear mixture is slowly cooled to room temperature. The solid so obtained is filtered and dried to obtain pimavanserin tartrate.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrogenated Pyridines (AREA)
Abstract
The present invention relates to an efficient process for the preparation of 1-(4-fluorobenzyl)-3-(4-isobutoxybenzyl)-1-(1- methylpiperidin-4-yl)urea and pharmaceutically acceptable salts thereof involving use of novel intermediates.
Description
PROCESS FOR THE PREPARATION OF l-(4-FLUOROBENZYL)-3-(4- ISOBUTOXYBENZYL)-l-(l- METHYLPIPERIDIN-4-YL)UREA AND SALTS
THEREOF
Field of the Invention
The present invention relates to an efficient process for the preparation of l-(4- fluorobenzyl)-3-(4-isobutoxybenzyl)-l-(l-methylpiperidin-4-yl)urea and pharmaceutically acceptable salts thereof involving use of novel intermediates.
Background of the Invention l-(4-Fluorobenzyl)-3-(4-isobutoxybenzyl)-l-(l-methylpiperidin-4-yl)urea is known as pimavanserin and has been developed as pimavanserin tartrate salt by Acadia Pharmaceuticals which has been approved for use in patients for the treatment of hallucinations and delusions associated with Parkinson's disease psychosis. Pimavanserin tartrate is represented structurally as Formula I,
I
Pimavanserin synthesis is disclosed in US 7,601,740 and US 7,790,899, wherein the process involves the reaction of N-(4-fluorobenzyl)-l-methylpiperidine-4-amine with 1- isobutoxybenzyl isocyanate. The patents disclose the preparation of intermediate 1- isobutoxybenzyl isocyanate via two processes wherein one process involves reaction of 2- (4-isobutoxyphenyl)acetic acid with diphenyl phosphoryl azide and the other process involves reaction of 4-isobutoxybenzylamine with phosgene or its equivalents. The methods mentioned in the patents suffer a number of disadvantages, the main disadvantage involves use of 4-isobutoxybenzyl isocyanate, as isocyanates are known toxic and are highly reactive compounds and thus are very unsafe to handle at industrial scale. Another disadvantage
pertains to use of highly toxic reagents such as phosgene and diphenyl phosphoryl azide, which are again toxic and explosive in nature, thereby are highly unsafe to be used at industrial level. The process disclosed not only suffers working incapability but the product obtained i.e. pimavanserin is also not of very high purity as per the required standards and need undue multiple purifications, which leads to loss of yield and thus makes processes highly incapable for industrial application.
WO2017015272 discloses a process for the preparation of pimavanserin via preparation of variously substituted carbamate intermediates, which are further condensed with another intermediate to obtain pimavanserin. Of the various processes disclosed, the process using dimethyl carbonate for the preparation of carbamate is carried out in the presence of zirconium catalyst for about 72 hours at high temperature with a proximal yield of 20%. The process involving use of diphenyl carbonate for the preparation of carbamate takes place in about 24 hours. In another process, the preparation of carbmate using methyl chloroformate involved column chromatography for the purification of carbamate intermediate to achieve required purity standards. In yet another disclosure, the pimavanserin was obtained by trituration with only 70.5% purity, wherein the carbamte intermediate was prepared using bis(2,2,2-trifluroethyl)carbonate of 2,2,2-trifluoroethyl chloroformate. Thus, the processes disclosed involve major challenges to be easily applicable on industrial scale such as use of an expensive catalyst, long reaction time increases energy consumption, which increases overall production cost. The process providing pimavanserin with purity of 70% will attract additional purifications, thereby leading to loss of yield and increase in cost. The procedure of trituration is not at all advisable at industrial scale. Thus, it is evident that the disclosed processes suffer a number of disadvantages to be successfully implemented on industrial scale. Thus, there remains an urgent need for the development of a process, which not only overcome one or more problems of the prior art processes as mentioned above, but also is an efficient, safe and convenient process for the preparation of pimavanserin and pharmaceutically acceptable salts thereof.
Object and Summary of the Invention
The principal object of present invention relates to novel, efficient and safe processes for the preparation of l-(4-fluorobenzyl)-3-(4-isobutoxybenzyl)-l-(l-methylpiperidin-4-
yl)urea and pharmaceutically acceptable salts thereof in high yield and purity involving novel intermediates, which alleviates one or more drawbacks of prior art processes. embodiment, the present invention relates to the compound of formula IV
In another embodiment, the present invention provides a process for the preparation of compound of formula IV
In yet another embodiment, the present invention provides use of compound of formula IV for the preparation of pimavanserin and pharmaceutically acceptable salts thereof, comprising the reaction of formula II or its salt with the compound of formula III to give a compound of formula IV. The next step involves reaction of compound of formula IV with compound of formula V to give pimavanserin of formula IA, according to Scheme 1, which is optionally converted to its pharmaceutically acceptable salts.
IA
Scheme 1
In another embodiment, the present invention relates to the compound of formula VI
VI In yet another embodiment, the present invention provides a process for the preparation of compound of formula VI
VI
III
In another embodiment, the present invention provides use of compound of formula VI for the preparation of pimavanserin and pharmaceutically acceptable salts thereof, comprising the reaction of compound of formula V with compound of formula III to give a compound of formula VI. The next step involves reaction of compound of formula VI with compound of formula II or its salt to give pimavanserin of formula IA, according to Scheme 2, which is optionally converted to its pharmaceutically acceptable salts.
IA
Scheme 2
Detailed description of the Invention
The well-known intermediates of formula II and V used for the preparation of pimavanserin are reported in literature and that used in the present invention are very much prone to the formation of multiple impurities such as dimer impurity of formula VII.
The formation of impurities or the control on formation of impurities is dependent upon the reagents, solvents and conditions used for carrying out various reactions, therefore it is a challenge for the present inventors to reach at such reaction conditions, selection of solvents and reagents such that they provide pimavanserin with required purity standards, wherein the process should not involve working difficulties, involve high costs, expensive techniques/reagents, rather the process should be simple, convenient, easy to operate, environment friendly and economical.
In view of above requirements, the present invention provides processes that are simple, convenient, environment friendly and economical for industrial application. The method utilizes use of safer reagents, conditions and novel intermediates that avoids formation of multiple impurities and thereby reduces the additional requirements of purifying intermediates at various stages and accordingly reduces the use of solvents and reagents, which results in decrease in costs attributed to a more efficient use of reagents and solvents and at the same time makes process more environment friendly.
In an embodiment, the present invention relates to the compound of formula IV:
IV
In an embodiment, the present invention provides a process for the preparation of compound of formula IV:
IV
II III
According to present invention, the compound of formula II or its salt is reacted with compound of formula III to give compound of formula IV. Whenever a salt of compound of formula II is used it is selected from the group comprising of hydrochloride, hydrobromide, acetate and the like. The salt is neutralized to compound of formula II by use of base in a solvent, wherein the base used is selected from the group comprising organic and inorganic. The organic base used is selected from the group comprising of trimethylamine and the like. The inorganic base used is selected from alkali and alkaline earth metal carbonates, bicarbonates and the like. The alkali and alkaline earth metal is selected from the group comprising of sodium, potassium, calcium, barium and the like. The solvent used in the liberation of free base of compound of Formula II and further reaction with compound of Formula III can be same or different and is selected from the group comprising of halogenated hydrocarbons such as dichloromethane, chlorobenzene and the like, hydrocarbons such as cyclohexane, heptane, octane, toluene, xylene and the like, esters such as ethyl acetate, propyl acetate and the like, nitrile such as acetonitrile, propionitrile and the like, DMSO, DMF, water and mixtures thereof. The reaction provides compound of formula
IV.
In yet another embodiment, the present invention provides a process for the preparation of pimavanserin involving use of compound of formula IV, comprising the reaction of formula II or its salt with the compound of formula III to give a compound of formula IV. The next step involves reaction of compound of formula IV with compound of formula V to give pimavanserin of formula IA, according to Scheme 1, which is optionally converted to its pharmaceutically acceptable salts.
IA
Scheme 1
According to present invention, compound of formula II or its salt reacts with compound of formula III to give compound of formula IV. Whenever a salt of compound of formula II is used it is selected from the group comprising of hydrochloride, hydrobromide, acetate and the like. The salt is neutralized to compound of formula II by use of base in a solvent, wherein the base used is selected from the group comprising organic and inorganic. The organic base used is selected from the group comprising of trimethylamine and the like. The inorganic base used is selected from alkali and alkaline earth metal carbonates, bicarbonates and the like. The alkali and alkaline earth metal is selected from the group comprising of sodium, potassium, calcium, barium and the like. The solvent used in the liberation of free base of compound of Formula II and further reaction with compound of Formula III can be same or different and is selected from the group comprising of halogenated hydrocarbons such as dichloromethane, chlorobenzene and the like, hydrocarbons such as cyclohexane, heptane, octane, toluene, xylene and the like, esters such as ethyl acetate, propyl acetate and the like, nitrile such as acetonitrile, propionitrile and the like, DMSO, DMF, water and mixtures thereof. The compound of formula II is optionally isolated after neutralization and is further reacted with compound of formula III to obtain compound of formula IV, which is isolated or is used in-situ for further reaction.
According to present invention, the compound of formula IV is treated with compound of formula V, wherein the reaction is carried out in solvent in presence of base. The solvent used is selected from the group comprising of halogenated hydrocarbons such as dichloromethane and the like, esters such as ethyl acetate, isopropyl acetate and the like, nitrile such as acetonitrile, propionitrile and the like, aromatic hydrocarbons such as toluene, chlorobenzene and the like, DMSO, DMF, water and mixtures thereof. The base used is selected from organic and inorganic, wherein organic base used is selected from the group comprising of triethylamine and the like. The inorganic base used is selected from alkali and alkaline earth metal carbonates, bicarbonates and the like. The alkali and alkaline earth metal is selected from the group comprising of sodium, potassium, calcium, barium and the like. The reaction give pimavanserin of formula IA, which is optionally converted to its pharmaceutically acceptable salts. embodiment, the present invention relates to the compound of formula VI
VI
In another embodiment, the present invention provides a process for the preparation of compound of formula VI
VI
V III
According to present invention, the compound of formula V reacts with compound of formula III in solvent to obtain compound of formula VI. The solvent used is selected from the group comprising of halogenated hydrocarbons such as dichloromethane and the like, esters such as ethyl acetate and the like, nitrile such as acetonitrile, propionitrile and the like, water and mixtures thereof.
In another embodiment, the present invention provides use of compound of formula VI for the preparation of pimavanserin and pharmaceutically acceptable salts thereof, comprising the reaction of compound of formula V with compound of formula III to give a compound of formula VI. The next step involves reaction of compound of formula VI with compound of formula II or its salt to give pimavanserin of formula IA, according to Scheme 2, which is optionally converted to its pharmaceutically acceptable salts.
IA
Scheme 2
According to present invention, the N-(4-fluorobenzyl)-l-methylpiperidine-4-amine of formula V reacts with compound of formula III. The reaction is carried out in solvent optionally in presence of base. The solvent used is selected from the group comprising of
halogenated hydrocarbons such as dichloromethane and the like, esters such as ethyl acetate and the like, nitrile such as acetonitrile and the like, water and mixtures thereof. The base used is selected from organic and inorganic, wherein organic base used is selected from the group comprising of trimethylamine and the like. The inorganic base used is selected from alkali and alkaline earth metal carbonates, bicarbonates and the like. The alkali and alkaline earth metal is selected from the group comprising of sodium, potassium, calcium, barium and the like. The reaction give compound of formula VI which is optionally isolated and is further used in next step.
According to present invention, the compound of formula VI is then treated with 4- isobutoxybenzylamine or its salt of formula II, wherein the 4-isobutoxybenzylamine salt used is selected from the group comprising of hydrochloride, hydrobromide, acetate and the like. The salt is neutralized to compound of formula II by use of base in a solvent, wherein the base used is selected from the group comprising organic and inorganic. The organic base used is selected from the group comprising of trimethylamine and the like. The inorganic base used is selected from alkali and alkaline earth metal carbonates, bicarbonates and the like. The alkali and alkaline earth metal is selected from the group comprising of sodium, potassium, calcium, barium and the like. The reaction is carried out in solvent selected from the group comprising of halogenated hydrocarbons such as dichloromethane and the like, esters such as ethyl acetate and the like, nitrile such as acetonitrile and the like, water and mixtures thereof. The reaction of compound of formula VI with compound of formula II is carried out in presence of solvent, optionally in the presence of a catalyst such as dimethylaminopyridine and the like. The solvent used is selected from the group comprising of esters such as ethyl acetate, isopropyl acetate and the like, aromatic hydrocarbons such as toluene, chlorobenzene and the like, DMSO, DMF, water and mixtures thereof. The pimavanserin of formula IA so obtained is optionally converted to pharmaceutically acceptable salts.
According to present invention, the pharmaceutically acceptable salt of pimavanserin is selected from the group comprising of hydrochloride, hydrobromide, tartrate, oxalate and the like. According to the present invention, the compound of formula IV, VI and pimavanserin or its pharmaceutically acceptable salt are isolated using one or more work-up processes such as extraction, washing, filtration and the like. The pimavanserin or its
pharmaceutically acceptable salt obtained is then optionally crystallized from suitable organic solvent to get pure pimavanserin. The suitable organic solvent for crystallization is selected from the group comprising of alcohols, esters, ketones, ethers, water or mixtures thereof; particularly methanol, ethanol, n-propanol, isopropanol, n-butanol, iso-butanol, tert- butanol, methyl acetate, ethyl acetate, isopropyl acetate, tertiary butyl acetate, acetone, methyl ethyl ketone, di-isopropyl ether, tetrahydrofuran, water or mixtures thereof.
According to present invention, pimavanserin or its pharmaceutically acceptable salts obtained is having purity not less than 99.5%, preferably not less than 99.8%.
The process for the preparation of pimavanserin or salts thereof described in the present invention is demonstrated in the examples illustrated below. These examples are provided as illustration only and therefore should not be construed as limitation of the scope of the invention. It will be apparent to those skilled in the art that many modifications, both to materials and methods, may be practiced without departing from the scope of the invention. Examples
Example 1: Preparation of compound of formula IV
To a solution of (4-isobutoxyphenyl) methanamine acetate (II) (1.34 g) in dichloromethane (5 ml), added saturated solution of sodium bicarbonate at room temperature and stirred the reaction mixture for about 1 hour. The layers were separated and to the organic layer, added bis(2,5-dioxopyrrolidin-l-yl) carbonate (III) (1.57 g). The reaction mixture was stirred at room temperature for 1-2 h. On completion of reaction, the solvent was distilled off to obtain compound of formula IV as solid residue.
1H-NMR (400 MHz, DMSO, δ): 8.778 (1H, t, H), 7.16-7.18 (2H, d, CH), 6.89-6.91 (2H, d, CH), 4.17-4.19 (2H, d, CH2), 3.71-3.72 (2H, d, CH2), 2.762 (4H, s, CH2), 1.96-2.09 (1H, m, CH), 0.95-0.97 (6H, d, CH3)
Mass [M+H+]: 321.3, [M++NH3]: 338.4
Example 2: Preparation of pimavanserin using compound of formula IV
To a solution of compound of formula IV (as obtained in Example 1) in toluene (20 ml), added potassium carbonate (0.77 g) and N-(4-fluorobenzyl)-l-methylpiperidin-4-amine (V) (1.48 g) at room temperature. The temperature of reaction mixture was raised to 70-80 °C and stirred for 1-2 hours. On completion of reaction, the solvent was distilled off and
ethyl acetate (30 ml) was charged to the residue. The solution was washed with water and the solvent was evaporated. The solid residue so obtained was treated with ethyl acetate/n- heptane and cooled to precipitate out pimavanserin, which was filtered and dried.
Example 3: Preparation of pimavanserin using compound of formula IV
To a solution of compound of formula IV (as obtained in Example 1) in isopropyl acetate (25 ml), added potassium carbonate (1.16 g) and N-(4-fluorobenzyl)-l- methylpiperidin-4-amine (V) (1.36 g) at room temperature. The temperature of reaction mixture was raised to 50-60 °C and stirred for about 6 hours. On completion of reaction, water (125 ml) was added to reaction mixture and stirred for another 1 hour at 50-60 °C, cooled the reaction mixture and separated layers. The solvent was distilled off from organic solvent to obtain residue. To the residue, n-heptane (25 ml) was added slowly and stirred for about 3 hours at about 40 °C. The solid pimavanserin so obtained was filtered and dried. Yield: 82%
HPLC purity: 99.4%
Example 4: Preparation of compound of formula VI
To a solution of N-(4-fluorobenzyl)-l-methylpiperidin-4-amine (V) (1.34 g) in dichloromethane (5 ml), added bis(2,5-dioxopyrrolidin-l-yl) carbonate (III) (1.57 g). The reaction mixture was stirred at room temperature for 2 h. On completion of reaction, the solvent was distilled off to obtain compound of formula VI as solid residue.
1H-NMR (400MHz, CDC13, δ): 7.39 (1H, m, CH), 7.22 (1H, m, CH), 7.00-7.06 (2H, m, CH), 4.51-4.59 (2H, d, CH2), 2.84 (6H, brs, CH2), 3.89-3.95 (1H, m, CH), 2.23 (3H, s, CH3), 1.93-1.98 (2H, m, CH2), 1.66-1.80 (4H, m, CH2)
Mass [M+H+]: 364.1
Example 5: Preparation of pimavanserin using compound of formula VI
To a solution of compound of formula VI (as obtained in Example 3) residue in toluene (75 ml), added 4-isobutoxy benzylamine (4.0 g) and catalytic amount of dimethylamino pyridine (0.05 g) at 20-25 °C. The temperature of reaction mixture was raised to 85-90 °C and stirred for 18 hours. Thereafter the solvent was distilled off to obtain desired pimavanserin.
Example 6: Preparation of pimavanserin tartrate
To solution of pimavanserin (1.5 g) in ethanol (18 ml) slowly added a solution of L- (+)-tartaric acid (0.263 g) in ethanol (12 ml) at 60-65 °C. The resulting clear mixture is slowly cooled to room temperature. The solid so obtained is filtered and dried to obtain pimavanserin tartrate.
Claims
Claims:
1. A com ound of formula IV
IV
2. A rocess for the preparation of compound of formula IV
II III
The process according to claim 2, wherein salt of compound of formula II is selected from the group comprising of hydrochloride, hydrobromide and acetate.
The process according to claim 2, wherein the reaction is carried out in solvent selected from the group comprising of halogenated hydrocarbons, hydrocarbons, esters, nitrile, DMSO, DMF, water and mixtures thereof.
Use of compound of formula IV for the preparation of pimavanserin and its pharmaceutically acceptable salts.
A process for the preparation of pimavanserin comprising:
(i) reacting compound of formula II or its salt with the compound of formula III to give a compound of formula IV;
IV
(ii) reacting compound of formula IV with compound of formula V to give pimavanserin of formula IA; and
IA
(iii) optionally, converting compound of formula IA to its pharmaceutically acceptable salts.
7. The process according to claim 6, wherein the reaction of step (i) is carried out in solvent selected from the group comprising of hydrocarbons, halogenated hydrocarbons, esters, nitriles, DMSO, DMF, water and mixtures thereof.
8. The process according to claim 6, wherein the reaction of step (ii) is carried out in solvent and in presence of base.
9. The process according to claim 8, wherein solvent is selected from the group comprising of hydrocarbons, halogenated hydrocarbons, esters, nitriles, DMSO, DMF, water and mixtures thereof.
10. The process according to claim 8, wherein base used is selected from the group comprising of organic and inorganic.
11. The process according to claim 10, wherein organic base used is trimethylamine.
12. The process according to claim 10, wherein the inorganic base used is selected from alkali and alkaline earth metal carbonates and bicarbonates.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN201711023281 | 2017-07-03 | ||
IN201711023281 | 2017-07-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019008595A1 true WO2019008595A1 (en) | 2019-01-10 |
Family
ID=64950742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IN2018/050053 WO2019008595A1 (en) | 2017-07-03 | 2018-02-02 | Process for the preparation of 1-(4-fluorobenzyl)-3-(4-isobutoxybenzyl)-1-(1- methylpiperidin-4-yl)urea and salts thereof |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019008595A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111303013A (en) * | 2020-04-08 | 2020-06-19 | 福建省微生物研究所 | A kind of preparation method of pemaserin |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013142307A1 (en) * | 2012-03-19 | 2013-09-26 | Abide Therapeutics | Carbamate compounds and of making and using same |
CA2992728A1 (en) * | 2015-07-20 | 2017-01-26 | Acadia Pharmaceuticals Inc. | Methods for preparing n-(4-fluorobenzyl)-n-(1-methylpiperidin-4-yl)-n'-(4-(2-methylpropyloxy)phenylmethyl)carbamide and its tartrate salt and polymorphic form c |
WO2017054786A1 (en) * | 2015-10-02 | 2017-04-06 | Zentiva, K. S. | A production method of 1-(4-fluorobenzyl)-3-(4-isobutoxybenzyl)-1-(1-methylpiperidin- 4-yl)urea and its deuterated analogs |
-
2018
- 2018-02-02 WO PCT/IN2018/050053 patent/WO2019008595A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013142307A1 (en) * | 2012-03-19 | 2013-09-26 | Abide Therapeutics | Carbamate compounds and of making and using same |
CA2992728A1 (en) * | 2015-07-20 | 2017-01-26 | Acadia Pharmaceuticals Inc. | Methods for preparing n-(4-fluorobenzyl)-n-(1-methylpiperidin-4-yl)-n'-(4-(2-methylpropyloxy)phenylmethyl)carbamide and its tartrate salt and polymorphic form c |
WO2017054786A1 (en) * | 2015-10-02 | 2017-04-06 | Zentiva, K. S. | A production method of 1-(4-fluorobenzyl)-3-(4-isobutoxybenzyl)-1-(1-methylpiperidin- 4-yl)urea and its deuterated analogs |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111303013A (en) * | 2020-04-08 | 2020-06-19 | 福建省微生物研究所 | A kind of preparation method of pemaserin |
CN111303013B (en) * | 2020-04-08 | 2023-10-13 | 福建省微生物研究所 | A kind of preparation method of pimaserin |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10626091B2 (en) | Process for the preparation of enzalutamide | |
US10358423B2 (en) | Processes for the preparation of 4-alkoxy-3-(acyl or alkyl)oxypicolinamdes | |
US9771317B2 (en) | Process for preparing lacosamide and related compounds | |
US20120108809A1 (en) | Process for preparation of efavirenz | |
US7541471B2 (en) | Synthesis of himbacine analogs | |
WO2019008595A1 (en) | Process for the preparation of 1-(4-fluorobenzyl)-3-(4-isobutoxybenzyl)-1-(1- methylpiperidin-4-yl)urea and salts thereof | |
US12173013B2 (en) | Synthetic processes and synthetic intermediates | |
US9802896B2 (en) | Process for large scale production of N-[4-(1-cyclobutyl piperidin-4-yloxy) phenyl]-2-(morpholin-4-yl) acetamide dihydrochloride | |
EP3242879B1 (en) | Novel process for the preparation of dipeptidyl peptidase-4 (dpp-4) enzyme inhibitor | |
EP3092222B1 (en) | Improved fingolimod process | |
KR20210092768A (en) | Synthetic Method for Preparation of 1-((3S,4R)-4-(2,6-difluoro-4-methoxyphenyl)-2-oxopyrrolidin-3-yl)-3-phenylurea | |
JP5396841B2 (en) | Process for producing α-trifluoromethyl-β-substituted-β-amino acids | |
KR101085170B1 (en) | (S) -Rivastigmine Production Method | |
CN101654426A (en) | Method for preparing ilomastat | |
KR20050062944A (en) | New process for preparing diisopropyl ((1-((2-amino-6-chloro-9h-purin-9-yl)methyl)cyclopropyl)oxy)-methylphosphonate | |
US20240124393A1 (en) | Process and intermediates for preparation of omaveloxolone and salts thereof | |
JPH045026B2 (en) | ||
US20220371995A1 (en) | Synthesis method for halofuginone and halofuginone intermediates | |
KR20250014306A (en) | Method for Producing Allulose Dimer | |
EP2152697A2 (en) | Process for the preparation of alfuzosin and salts thereof | |
JPWO2005026108A1 (en) | Process for producing N, N'-dialkoxy-N, N'-dialkyloxamide | |
JPH07109280A (en) | Production of hydantocidin | |
JPH0316339B2 (en) | ||
WO2015150887A1 (en) | Process for the preparation of anagliptin or its salts | |
JP2002322128A (en) | Method for producing benzyl derivative |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18827787 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18827787 Country of ref document: EP Kind code of ref document: A1 |