+

WO2019087369A1 - User device, and transmission power control method - Google Patents

User device, and transmission power control method Download PDF

Info

Publication number
WO2019087369A1
WO2019087369A1 PCT/JP2017/039820 JP2017039820W WO2019087369A1 WO 2019087369 A1 WO2019087369 A1 WO 2019087369A1 JP 2017039820 W JP2017039820 W JP 2017039820W WO 2019087369 A1 WO2019087369 A1 WO 2019087369A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
power control
user apparatus
base station
mapping table
Prior art date
Application number
PCT/JP2017/039820
Other languages
French (fr)
Japanese (ja)
Inventor
真平 安川
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/039820 priority Critical patent/WO2019087369A1/en
Publication of WO2019087369A1 publication Critical patent/WO2019087369A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. Transmission Power Control [TPC] or power classes
    • H04W52/04Transmission power control [TPC]

Definitions

  • the present invention relates to transmission power control in a wireless communication system.
  • An unmanned aerial vehicle such as a drone can fly at a higher altitude than the base station, and it is assumed that wireless communication is performed in an environment where the whole cell can be seen. Therefore, when the sight line passes the null direction of the base station antenna pattern with the flight of the drone (user apparatus), it is assumed that the path loss between the base station and the drone (user apparatus) greatly fluctuates. In that case, there is a possibility that the transmission power control in the user apparatus can not follow the fluctuation of the path loss.
  • a subject is a subject which may arise not only in a drone but in a user apparatus in general.
  • the present invention has been made in view of the above-described point, and an object of the present invention is to provide a technology that enables a user apparatus to appropriately perform transmission power control even when path loss fluctuates significantly.
  • a user equipment in a wireless communication system A signal receiving unit for receiving a size of a transmission power control command from a base station; Transmission that performs transmission power control using a partial table corresponding to the size in the mapping table, which is a table indicating the correspondence between the value of the transmission power control command and the power offset value, or the corresponding mapping table corresponding to the size
  • a user apparatus characterized by comprising: a power control unit.
  • a technology which enables the user apparatus to appropriately perform transmission power control even when path loss fluctuates significantly.
  • FIG. 1 is a schematic view showing a wireless communication system in an embodiment of the present invention. It is a figure which shows the example of a sequence of transmission power control. It is a figure which shows the parameter in determination of the transmission power of PUSCH. It is a figure which shows the parameter in determination of the transmission power of SRS. It is a figure which shows the example of the power offset in TPC command. It is a figure for demonstrating the subject in drone communication.
  • FIG. 5 is a sequence diagram in the first embodiment.
  • FIG. 8 is a diagram showing an example of a mapping table of TPC commands and power offsets in the first embodiment.
  • FIG. 8 is a diagram showing an example of a mapping table of TPC commands and power offsets in the first embodiment.
  • FIG. 8 is a diagram showing an example of a mapping table of TPC commands and power offsets in the first embodiment.
  • FIG. 18 is a diagram showing an example of a TPC command in the second embodiment.
  • FIG. 18 is a diagram showing an example of a TPC command in the second embodiment.
  • FIG. 18 is a diagram showing an example of a mapping table of TPC commands and power offsets in the second embodiment.
  • FIG. 8 is a sequence diagram in Embodiment 2.
  • 15 is a flowchart showing an operation of the user apparatus 100 in the third embodiment.
  • FIG. 18 is a diagram showing an example of UL grant in Example 3.
  • FIG. 18 is a diagram showing an example of a mapping table of TPC commands and power offsets in the third embodiment.
  • FIG. 18 is a diagram showing an example of a mapping table of TPC commands and power offsets in the third embodiment.
  • FIG. 18 is a sequence diagram in the fourth embodiment.
  • FIG. 18 is a sequence diagram in the fourth embodiment.
  • FIG. 18 is a diagram showing an example of correspondence between subframes and a mapping table in the fourth embodiment.
  • FIG. 18 is a sequence diagram in Example 5;
  • FIG. 2 is a diagram showing an example of a functional configuration of a user device 100.
  • FIG. 2 is a diagram showing an example of a functional configuration of a base station 200. It is a figure which shows an example of the hardware constitutions of the user apparatus 100 and the base station 200.
  • the radio communication system according to the present embodiment is assumed to support at least the LTE communication scheme. Therefore, when the wireless communication system operates, the existing technology defined by the existing LTE can be used as appropriate.
  • the existing technology is not limited to LTE.
  • the present invention is also applicable to communication systems other than LTE.
  • the present invention is not limited to this, and the present invention provides a ground deployment with a good perspective to a base station. It is also applicable to user devices of the same type.
  • FIG. 1 is a diagram showing a wireless communication system in the present embodiment.
  • the wireless communication system 10 includes a user apparatus 100 and a base station 200.
  • the wireless communication system 10 may be, for example, any wireless communication system defined by 3GPP such as an LTE system, an LTE-Advanced system, an NR system, or any other wireless communication system. May be
  • the user apparatus 100 is any information processing apparatus that can be communicably connected to the base station 200, and may be, for example, without limitation, a drone, an unmanned aerial vehicle, a non-ground-placed user apparatus, or a part thereof. .
  • the base station 200 performs wireless communication with a large number of user devices including the user device 100 under the control of a higher station (not shown) such as a core network.
  • a higher station such as a core network.
  • the base station 200 may be referred to, for example, as an eNB (evolved Node B), and in the NR system, the base station 200 may be referred to, for example, as a gNB.
  • eNB evolved Node B
  • gNB evolved Node B
  • the coverage of base station 200 is generally referred to as a cell.
  • the cell in which the user apparatus 100 is located is called a serving cell.
  • transmission power control Transmission Power Control
  • TPC Transmission Power Control
  • step 1 target received power is broadcasted from the base station 200 to the user apparatus 100 by the SIB2 carried by the PDSCH.
  • the user apparatus 100 estimates the path loss from the downlink reference signal (DL RS), determines the transmission power of the uplink signal (Sounding RS, PUSCH, PUCCH, etc.) according to the path loss, and transmits the uplink signal with the determined transmission power. To do (S2). This operation (called Open-loop TPC) compensates for the propagation loss. In addition, instantaneous AMC (Adaptive Modulation and Coding) and HARQ follow.
  • DL RS downlink reference signal
  • Sounding RS Sounding RS, PUSCH, PUCCH, etc.
  • S2 To do
  • This operation compensates for the propagation loss.
  • instantaneous AMC Adaptive Modulation and Coding
  • HARQ Adaptive Modulation and Coding
  • the base station 200 notifies the TPC command based on the received power of the Sounding RS transmitted from the user apparatus 100 (S3).
  • the user apparatus 100 performs error correction of transmission power using this TPC command. This operation is called Closed-loop TPC. More specifically, base station 200 calculates a TPC command which is a correction value based on reception SIR information, and notifies TPC command to user apparatus 100 by UL scheduling grant or TPC-PDCCH (DCI format 3 / 3A).
  • TPC-PDCCH (DCI format 3 / 3A) is a PDCCH for TPC command notification, which enables TPC command notification to a plurality of user apparatuses simultaneously.
  • a transmission power determination method for PUSCH and SRS will be described as an example.
  • the user apparatus 100 determines the PUSCH transmission power based on the following equation (Non-Patent Document 2).
  • P PUSCH 10 log 10 (M PUSCH ) + P O _ PUSCH + ⁇ ⁇ PL + ⁇ TF (TF (i)) + f (i).
  • P PUSCH ⁇ P CMAX (UE maximum transmission power) formula 2 The parameters in equation 1 above are shown in FIG. Equation 2 implies that P CMAX is used as P PUSCH when the maximum value is exceeded by addition of f (i).
  • the user apparatus 100 determines the SRS transmission power based on the following Equation 3 (Non-Patent Document 2). The parameters are shown in FIG.
  • P SRS P SRS_OFFSET +10 log 10 (M PUSCH ) + PO_PUSCH + ⁇ ⁇ PL + ⁇ TF (TF (i)) + f (i) formula 3
  • P SRS is the PUSCH transmission power plus P SRS_OFFSET .
  • FIG. 5 An example of the mapping between the value of the TPC command and the amount of change of transmission power (referred to as a power offset value) in the existing technology is shown in FIG. 5 (Non-Patent Document 2).
  • Table 5.1.1.1-2 and Table 5.1.1.1-3 defined in Non-Patent Document 2 are shown in FIG.
  • the user apparatus 100 determines a power offset value corresponding to the value of the TPC command received from the base station 200 based on, for example, the mapping between the value of the TPC command and the power offset value shown in FIG.
  • the aforementioned f (i) is calculated based on the power offset value.
  • the user apparatus 100 in the present embodiment is a drone (or a terminal mounted on a drone). It is assumed that a flying object such as a drone can fly at a higher altitude than the base station, and wireless communication is performed in an environment where the base station can be viewed without obstacles. Therefore, as shown in FIG. 6, when the line of sight passes the null direction of the base station antenna pattern with the flight of the drone (user apparatus 100), there is a path loss between the base station 200 and the drone (user apparatus 100). It is assumed that it fluctuates greatly. In that case, there is a possibility that transmission power control in the user apparatus 100 can not follow the fluctuation of the path loss.
  • Example 1 In the first embodiment, a mapping table of TPC command values and UE specific power offset values is used. An example of the processing procedure in the first embodiment will be described with reference to FIG.
  • the user apparatus 100 connected to the base station 200 transmits its own capability information to the base station 200 in S101.
  • this capability information for example, information indicating that the user apparatus 100 has drone capability, or that the user apparatus 100 is a UE of a predetermined specific type, or the user apparatus 100 has a specific uplink transmission power It contains information indicating that it has control capability.
  • the base station 200 determines that the user equipment 100 has a specific uplink transmission power control capability based on the capability information received in S101 and determines that it is necessary to apply the specific uplink transmission power control, the user equipment specific ( It is transmitted to the user apparatus 100 by upper layer signaling (example: RRC signaling) with UE-specific mapping table of TPC command value and power offset value as setting information (S102).
  • upper layer signaling example: RRC signaling
  • UE-specific mapping table of TPC command value and power offset value as setting information (S102).
  • the user apparatus 100 performs transmission power control using the mapping table received in S102. For example, when determining the transmission power of the PUSCH, the user apparatus 100 refers to the mapping table received in S102, and uses the power offset value corresponding to the value of the TPC command received from the base station 200 to obtain Equation 1 described above. Calculate f (i) in In the calculation here, for example, calculation of the accumulated value of the power offset value is performed.
  • FIG. 8B shows an example of the above mapping table.
  • FIG. 8A shows the existing mapping table used when the setting in S102 is not made.
  • the power offset values shown in FIGS. 8A and 8B are merely examples, for example, as shown in FIG. 8B, following the large path loss fluctuation by making the absolute value of the power offset value larger than the existing value It is possible.
  • the base station 200 determines whether to set the UE specific mapping table based on the capability information of S101, but this is an example. For example, when the base station 200 determines that the user apparatus 100 exists in a location with good line of sight based on the received power of the reference signal received from the user apparatus 100, the base station 200 sets a UE specific mapping table for the user apparatus 100 You may do it. Also, the base station 200 sets the UE specific mapping table regardless of the capability or type of the user apparatus 100, and the user apparatus 100 uses the UE specific mapping table or uses the existing technology mapping table. You may decide to do it.
  • the information notified from the base station 200 to the user apparatus 100 in S102 may be the mapping table itself (that is, the power offset value corresponding to each TPC command) or may be the index of the mapping table. .
  • a plurality of types of mapping tables are preset in the user apparatus 100 in association with the respective indexes, and the user apparatus 100 corresponds to the index received from the base station 200 in S102.
  • the user apparatus 100 uses a default table (eg, FIG. 8A). Also, even when the user apparatus 100 does not correspond to the switching of the mapping between the TPC command and the power offset, the default table (for example, FIG. 8A) is used.
  • the size of the TPC command as a whole is expanded, and the range (range) of the power offset value that can be notified by the TPC command is expanded.
  • FIG. 9A and 9B show examples of TPC commands transmitted from the base station 200 to the user apparatus 100.
  • FIG. 9A shows an example of an 8-bit TPC command.
  • FIG. 9B shows an example in which a 1-bit TPC command indicated by A and a 2-bit TPC command indicated by B are concatenated to form a 3-bit TPC command.
  • mapping table indicating the mapping between TPC command values and power offset values as shown in FIG. 10 is used.
  • the mapping table is defined, for example, for each TPC command size, and the size of the TPC command used for the user apparatus 100 from the base station 200 to the user apparatus 100, the index of the mapping table (the mapping table itself Good) is notified.
  • the size of the TPC command may be used as a mapping table index, in which case notification of the mapping table index is unnecessary.
  • the entire mapping table shown in FIG. 10 is a mapping table corresponding to a 3-bit TPC command.
  • a part (partial table) of the mapping table it is also possible to use the mapping table for TPC commands having the number of bits other than 3 bits.
  • the partial table shown as "TPC command size # 1" can be used for a 2-bit TPC command.
  • the entire table shown as "TPC command size # 2" can be used for 3-bit TPC commands.
  • the user apparatus 100 connected to the base station 200 transmits its own capability information to the base station 200 in S201 (S201).
  • This capability information for example, information indicating that the user apparatus 100 has drone capability, or that the user apparatus 100 is a UE of a predetermined specific type, or the user apparatus 100 has a specific uplink transmission power It contains information indicating that it has control capability.
  • the base station 200 determines that the user equipment 100 has a specific uplink transmission power control capability based on the capability information received in S201, and determines that it is necessary to apply the specific uplink transmission power control, the user equipment specific (UE specific) TPC command size (may be information on TPC command format corresponding to the TPC command size) and information on mapping table between TPC command value and power offset value (example: index) as upper layer signaling (example) : Transmit to the user apparatus 100 by RRC signaling (S202).
  • a common table not dependent on TPC command size for example, preset in user apparatus 100
  • the mapping table here The notification of the information may not be notified.
  • the index of the TPC command (for example, tpc-Index) may be notified to the user apparatus 100 together with the TPC command size, or the index of the TPC command may be notified separately from the TPC command size.
  • the user apparatus 100 performs transmission power control using the information such as the TPC command size received in S202. For example, when the user apparatus 100 determines the transmission power of the PUSCH, a partial table corresponding to the size in the common mapping table (eg, FIG. 10) based on the TPC command size (eg, 2 bits) received in S202. And calculate the f (i) in Equation 1 described above using the power offset value corresponding to the value of the TPC command received from the base station 200.
  • the base station 200 determines whether to set the UE specific TPC command size and the like based on the capability information of S201, but this is an example. For example, when the base station 200 determines that the user apparatus 100 exists in a location with good line-of-sight based on the received power of the reference signal received from the user apparatus 100, the UE specific TPC command size etc. for the user apparatus 100 May be set. Also, regardless of the capability or type of the user apparatus 100, the base station 200 sets the UE specific TPC command size etc. in the user apparatus 100, and the user apparatus 100 uses the UE specific TPC command size, It may be determined whether to use the existing technology TPC command size.
  • the user apparatus 100 uses the default TPC command size and mapping table when the UE specific TPC command size is not set from the base station 200.
  • Example 3 TPC command notification in UL grant (downlink control information for uplink transmission) is targeted.
  • the user apparatus 100 performs switching of the power offset value based on field values other than the TPC command among the fields of UL grant (DCI format 0) received from the base station 200.
  • the user apparatus 100 receives a UL grant from the base station 200.
  • the UL grant includes fields for setting information such as Hopping flag, Resource block assignment, MCS, NDI (New Data Indicator), TPC command and the like.
  • the user apparatus 100 determines the mapping table (the mapping table of the value of the TPC command and the power offset value) to be used from the plurality of mapping tables based on the value of the specific field in the UL grant.
  • field X in UL grant shown in FIG. 13 is the above-described specific field
  • user apparatus 100 uses the table shown in FIG. 14A when the value of field X is smaller than N. It is determined to use the table shown in FIG. 14B when the value of field X is N or more.
  • the user apparatus 100 executes transmission power control using the value of the TPC command received in S301 (it may be the value of the TPC command of timing different from the timing in S301) and the mapping table determined in S302. Do. For example, when determining the transmission power of the PUSCH, the user apparatus 100 refers to the mapping table determined in S302, and the power offset corresponding to the value of the TPC command received in S301, f (i) in Equation 1 described above. Calculate using the value. In the calculation here, for example, calculation of the accumulated value of the power offset value is performed.
  • the base station 200 notifies the user apparatus 100 of information on one or more mapping tables.
  • the procedure described in FIG. 7 in the first embodiment is applied. That is, in S102 of FIG. 7, for example, the base station 100 notifies the user apparatus 100 of information (index or power offset value corresponding to each TPC command) of the table shown in FIG. 14A and the table shown in FIG.
  • the existing table example: FIG. 5
  • the information of the said existing table does not need to be notified.
  • field X is, for example, an MCS field and / or an NDI field. However, it is not necessarily limited to these.
  • an MCS field as a specific field
  • a MCS index is smaller than a predetermined threshold (case of FIG. 14A)
  • a large power offset value is made to correspond to a specific TPC command value (example: Table in Figure 8B).
  • an existing table eg, the table of FIG. 8A is used.
  • a large power offset value is associated with the specific TPC command value (eg, the table of FIG. 8B).
  • an existing table eg, the table of FIG. 8A is used.
  • Example 4 A fourth embodiment will now be described.
  • the mapping between the TPC command value and the power offset value is switched for each subframe set.
  • the user apparatus 100 connected to the base station 200 transmits its own capability information to the base station 200 in S401.
  • this capability information for example, information indicating that the user apparatus 100 has drone capability, or that the user apparatus 100 is a UE of a predetermined specific type, or the user apparatus 100 has a specific uplink transmission power It contains information indicating that it has control capability.
  • the base station 200 determines that the user apparatus 100 has a specific uplink transmission power control capacity based on the capacity information received in S401, and determines that it is necessary to apply the specific uplink transmission power control, the user apparatus specific ( Information of mapping table of subframe set (a set of subframe numbers) and TPC command value corresponding to the subframe set and power offset value of UE specific) (eg, index or corresponding to each TPC command
  • the power offset value is transmitted to the user apparatus 100 by higher layer signaling (eg, RRC signaling) (S402).
  • the user apparatus 100 performs transmission power control using the subframe offset received in S402 and the information in the mapping table (S403).
  • FIG. 16 is a diagram showing an example of the relationship between a subframe set and a mapping table.
  • the base station 200 transmits, to the user apparatus 100, a combination of subframe set A information and table A information, subframe set B information, and table B information. The set is notified.
  • table A is an existing table (example: FIG. 5)
  • base station 200 notifies user apparatus 100 of only a set of information of subframe set B and information of table B. It is also good. In that case, the user apparatus 100 determines to use the existing table A in the subframe set A (a set other than the subframe set B) that is not notified.
  • the user apparatus 100 that has received the information shown in FIG. 16 in S402 refers to Table A for the TPC command received in subframes belonging to subframe set A, for example, in determining transmission power of PUSCH in S403. Then, f (i) is calculated using the power offset value corresponding to the value of the TPC command. Also, with respect to the TPC command received in a subframe belonging to subframe set B, user apparatus 100 refers to table B and calculates f (i) using the power offset value corresponding to the value of the TPC command. Do.
  • the base station 200 grasps the information set in the user apparatus 100 in S402. For example, in the case where the base station 200 needs to increase the transmission power of the user apparatus 100 significantly, the subframe set shown in FIG. In subframe B, a TPC command for increasing transmission power is transmitted to the user apparatus 100.
  • the control in the fourth embodiment may not be applied to the UL grant, but may be applied only to the downlink control information of only the TPC command (ie, TPC-PDCCH (DCI format 3 / 3A)). This makes it possible to avoid the restriction on PUSCH scheduling.
  • TPC-PDCCH DCI format 3 / 3A
  • the base station 200 determines whether to set a UE specific subframe set or the like based on the capability information of S401, but this is an example. For example, when the base station 200 determines that the user apparatus 100 exists in a location with good line-of-sight based on the received power of the reference signal received from the user apparatus 100, the UE specific subframe set is set to the user apparatus 100. It may be set. Also, the base station 200 sets the UE specific subframe set to the user equipment 100 regardless of the capability or type of the user equipment 100, and whether the user equipment 100 uses the UE specific subframe set or not You may decide
  • the mapping table is newly defined with respect to the power offset value corresponding to the value of the TPC command.
  • a scaling factor of may be used.
  • the scaling factor is notified from the base station 200 to the user apparatus 100 instead of the information in the mapping table.
  • the scaling factor may be determined for each TPC command value, or one scaling factor may be determined for each of a plurality of TPC commands.
  • the user apparatus 100 calculates the power offset value corresponding to the TPC command value by multiplying the power offset value corresponding to a certain TPC command value in the original mapping table by the scaling coefficient.
  • the calculated power offset value corresponds to the power offset value corresponding to the TPC command value in the UE specific mapping table described in the first to fourth embodiments.
  • the scaling factor may be set from the base station 20 to the user apparatus 100 by higher layer signaling (eg, S102 in FIG. 7).
  • a plurality of scaling factors may be set in advance in the user apparatus 100, and the base station 200 may be configured to use the scaling factor for the user apparatus 100 in higher layer signaling. If the result obtained by multiplying the existing power offset value by the scaling factor is not an integer, truncation after the decimal point or rounding off after the decimal point may be performed.
  • Example 5 is an embodiment related to path loss compensation related to Open loop TPC in uplink transmission power control. That is, when PUSCH is taken as an example, the portion of ⁇ ⁇ PL in the following equation 1 is focused.
  • P PUSCH 10 log 10 (M PUSCH ) + P O _ PUSCH + ⁇ ⁇ PL + ⁇ TF (TF (i)) + f (i).
  • upper layer filtering is, for example, filtering specified as Layer 3 filtering in Non-Patent Document 3, and in the present embodiment, upper layer filtering is assumed to be Layer 3 filtering, but upper layer filtering is assumed. Filtering is not limited to this.
  • the user apparatus 100 performs filtering on RSRP obtained in measurement of the downlink reference signal according to Equation 4 below.
  • F n (1 ⁇ ) ⁇ F n ⁇ 1 + ⁇ ⁇ M n equation 4
  • Mn is the latest (latest) measurement result received from the physical layer (here, RSRP of the reference signal received by the user apparatus 100 from the base station 200).
  • F n is the filtered measurement result.
  • F n-1 is the old filtered result.
  • F 0 is set to M 1 (first measurement result).
  • is 1/2 (k / 4)
  • k is a parameter (filterCoefficient) notified from the base station 200 by the UplinkPowerControl information element.
  • the parameter to be notified may be ⁇ , k, or any other value that determines ⁇ .
  • a plurality of parameters are set from the base station 200 to the user apparatus 100 by upper layer signaling as the above parameters, and the user apparatus 100 executes filtering using each parameter, and results obtained by filtering One of them is used for the above-mentioned calculation of PL, and used for uplink transmission power control. Other results are used, for example, in a measurement report.
  • the user apparatus 100 uses parameter 1 for RSRP obtained in RSRP measurement periodically performed.
  • the filtering result 1 which is the filtering result and the filtering result 2 which is the filtering result using the parameter 2 are obtained, and one of them is set as PL in uplink transmission power control.
  • is 0 ⁇ ⁇ ⁇ 1, but in this range, the filtering result reflects the latest result more greatly as ⁇ is larger. That is, it is a short time average.
  • the user apparatus 100 sets the filtering result using the parameter in which ⁇ is large to PL. use. This enables transmission power control to follow steep path loss fluctuation.
  • the user apparatus 100 uses the filtering result using a parameter that is normal ⁇ . This makes it possible to avoid adverse effects on mobility.
  • Parameters may be selected according to the application, and one filtering may be performed using one parameter.
  • FIG. 17 shows the sequence of Example 5 in the case where an additional parameter is notified for the drone. An operation example will be described with reference to FIG.
  • the user apparatus 100 connected to the base station 200 transmits its own capability information to the base station 200 in S501.
  • this capability information for example, information indicating that the user apparatus 100 has drone capability, or that the user apparatus 100 is a UE of a predetermined specific type, or the user apparatus 100 has a specific uplink transmission power It contains information indicating that it has control capability.
  • the base station 200 determines that the user equipment 100 has a specific uplink transmission power control capability based on the capability information received in S501 and determines that it is necessary to apply the specific uplink transmission power control, the user equipment specific ( As a parameter of UE specific), the parameter which makes alpha in above Formula 4 larger than usual is transmitted to the user apparatus 100 by upper layer signaling (example: RRC signaling) (S502).
  • the user apparatus 100 executes transmission power control using the parameters received in S502 (S503).
  • the base station 200 determines whether to set a UE-specific parameter based on the capability information of S501, but this is an example. For example, when the base station 200 determines that the user apparatus 100 exists in a location with good line-of-sight based on the received power of the reference signal received from the user apparatus 100, the base station 200 sets UE specific parameters for the user apparatus 100. You may do it.
  • Each of the user apparatus 100 and the base station 200 has the functions of all the embodiments described in the present embodiment. However, each of the user apparatus 100 and the base station 200 may be provided with the functions of a part of all the examples described in the present embodiment.
  • FIG. 18 is a diagram showing an example of a functional configuration of the user apparatus 100.
  • the user apparatus 100 includes a signal transmission unit 110, a signal reception unit 120, a setting information management unit 130, and a transmission power control unit 140.
  • the functional configuration shown in FIG. 18 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the functional unit may be arbitrary.
  • the signal transmission unit 110 is configured to generate a signal of the lower layer from the information of the upper layer, and wirelessly transmit the signal.
  • the signal receiving unit 120 is configured to wirelessly receive various signals and acquire information of the upper layer from the received signals.
  • the signal receiving unit 120 includes a received power measurement function.
  • the setting information management unit 130 has a storage unit that stores setting information set in advance and setting information dynamically and / or semi-statically transmitted from the base station 200 or the like.
  • the setting information management unit 130 stores various parameters, a mapping table, a scaling coefficient, and the like.
  • the transmission power control unit 140 performs the transmission power control operation described in the present embodiment.
  • the transmission power control unit 140 may be included in the signal transmission unit 110 and / or the signal reception unit 120.
  • the signal receiving unit 120 is configured to receive the size of the transmission power control command from the base station, and the signal receiving unit and the transmission power control unit 140 are configured to receive the value of the transmission power control command and the power offset value.
  • Transmission power control is performed using a partial table corresponding to the size in the mapping table, which is a table indicating correspondence, or a corresponding mapping table corresponding to the size.
  • the signal receiving unit 120 receives, from the base station, a connected transmission power control command in which bits of a plurality of transmission power control commands are connected, and the transmission power control unit 140 corresponds to the value of the connected transmission power control command.
  • the power offset value may be obtained from the partial table or the corresponding mapping table.
  • the signal receiving unit 120 may receive, from the base station, information of the mapping table specific to the user apparatus, which is information of the mapping table indicating the correspondence between the value of the transmission power control command and the power offset value.
  • the transmission power control unit 140 is configured to perform transmission power control using the mapping table.
  • the signal reception unit 120 is configured to receive from the base station information of a mapping coefficient that is a mapping table indicating correspondence with a power offset value, and that is specific to the user apparatus, and the transmission power control unit 140
  • the scaling factor is used to perform transmit power control.
  • the signal transmission unit 110 is configured to transmit the capability information of the user apparatus 100 to the base station, and in the base station, the type of the user apparatus is identified based on the capability information.
  • the signal reception unit 120 receives the mapping table when it is determined that the user apparatus is
  • the signal receiving unit 120 is configured to receive, from the base station, downlink control information for uplink transmission, and the transmission power control unit 140 is configured based on the value of a specific field in the downlink control information. And a mapping table indicating correspondence between a value of the transmission power control command and a power offset value is determined from among the plurality of mapping tables, and transmission power control is performed using the determined mapping table.
  • the signal receiving unit 120 may receive, from the base station, information of a subframe set, and a mapping table indicating a correspondence between a value of a transmission power control command and a power offset value used in the subframe set.
  • the transmission power control unit 140 is configured to perform transmission power control using the mapping table in subframes belonging to the subframe set.
  • the signal receiving unit 120 is configured to measure the received power of the signal received from the base station, and the transmission power control unit 140 performs the filtering process on the received power, and the filtering process is performed.
  • the path loss is calculated using received power, and transmission power control is performed using the path loss, and the signal receiving unit 120 receives a plurality of parameters used for the filtering process from the base station,
  • the transmission power control unit 140 calculates the path loss using the reception power obtained by the filtering process using one specific parameter of the plurality of parameters.
  • FIG. 19 is a diagram showing an example of a functional configuration of the base station 200.
  • the base station 200 includes a signal transmission unit 210, a signal reception unit 220, a scheduling unit 230, and a setting information management unit 240.
  • the functional configuration shown in FIG. 19 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the functional unit may be arbitrary.
  • the signal transmission unit 210 is configured to generate a signal of the lower layer from the information of the upper layer and wirelessly transmit the signal.
  • the signal reception unit 220 is configured to wirelessly receive various signals and acquire information of the upper layer from the received signals.
  • the signal transmission unit 210 includes a function of transmitting information of the mapping table acquired from the setting information management unit 240, various parameters, and the like to the user device 100.
  • the scheduling unit 230 performs resource assignment to the user apparatus 100 and the like.
  • the setting information management unit 240 includes a storage unit, stores the preset setting information, and has a function of determining and holding the setting information to be set to the user apparatus 100 dynamically and / or semi-statically.
  • each functional block may be realized by one device physically and / or logically connected to a plurality of elements, or directly and two or more physically and / or logically separated devices. And / or indirectly (for example, wired and / or wirelessly) connected, and may be realized by the plurality of devices.
  • both the user apparatus 100 and the base station 200 in the embodiment of the present invention may function as a computer that performs the process according to the present embodiment.
  • FIG. 20 is a diagram showing an example of a hardware configuration of user apparatus 100 and base station 200 according to the present embodiment.
  • Each of the above-described user device 100 and base station 200 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the user apparatus 100 and the base station 200 may be configured to include one or more of the devices indicated by 1001 to 1006 shown in the figure, or may be configured without including some devices. May be
  • Each function in the user apparatus 100 and the base station 200 causes the processor 1001 to perform an operation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication by the communication apparatus 1004, the memory 1002 And by controlling the reading and / or writing of data in the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the signal transmission unit 110, the signal reception unit 120, the setting information management unit 130, and the transmission power control unit 140 of the user apparatus 100 illustrated in FIG. 18 are realized by a control program stored in the memory 1002 and operated by the processor 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the process according to the embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used.
  • the storage 1003 may be called an auxiliary storage device.
  • the above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the signal transmission unit 110 and the signal reception unit 120 of the user apparatus 100 may be realized by the communication apparatus 1004.
  • the signal transmission unit 210 and the signal reception unit 220 of the base station 200 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • the user apparatus 100 and the base station 200 each include a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a user equipment in a wireless communication system A signal receiving unit for receiving a size of a transmission power control command from a base station; Transmission that performs transmission power control using a partial table corresponding to the size in the mapping table, which is a table indicating the correspondence between the value of the transmission power control command and the power offset value, or the corresponding mapping table corresponding to the size And a power control unit.
  • the above configuration provides a technology that enables the user apparatus to appropriately perform transmission power control even when the path loss fluctuates significantly.
  • the signal receiving unit receives, from the base station, a connected transmission power control command in which bits of a plurality of transmission power control commands are connected.
  • the user apparatus according to claim 1, wherein the transmission power control unit acquires a power offset value corresponding to a value of the coupled transmission power control command from the partial table or the correspondence mapping table.
  • the user apparatus can perform transmission power control based on a large range transmission power control command.
  • (Section 3) A user equipment in a wireless communication system, A signal receiving unit that is information of a mapping table indicating correspondence between a value of a transmission power control command and a power offset value, the information of the mapping table unique to the user apparatus from the base station; And a transmission power control unit configured to perform transmission power control using the mapping table.
  • the above configuration provides a technology that enables the user apparatus to appropriately perform transmission power control even when the path loss fluctuates significantly.
  • the base station further comprises a signal transmission unit that transmits capability information of the user apparatus to the base station, When the base station determines that the user apparatus is a user apparatus of a specific type based on the capability information, the signal reception unit receives the mapping table.
  • a transmission power control method performed by a user apparatus in a wireless communication system comprising: Receiving from the base station the size of the transmit power control command; Performing transmission power control using a partial table corresponding to the size in the mapping table, which is a table indicating the correspondence between the value of the transmission power control command and the power offset value, or the corresponding mapping table corresponding to the size And a transmission power control method characterized by comprising: (Section 6) A transmission power control method performed by a user apparatus in a wireless communication system, comprising: Receiving, from a base station, information of a mapping table specific to the user equipment, which is information of a mapping table indicating a correspondence between a value of a transmission power control command and a power offset value; Performing transmission power control using the mapping table.
  • (Section 7) A user equipment in a wireless communication system, A signal receiving unit for receiving downlink control information for uplink transmission from a base station; Based on the value of a specific field in the downlink control information, a mapping table indicating the correspondence between the value of the transmission power control command and the power offset value is determined from among a plurality of mapping tables, and using the determined mapping table And a transmission power control unit that performs transmission power control.
  • a user equipment in a wireless communication system A signal reception unit that receives, from a base station, a subframe set, and a mapping table information indicating a correspondence between a value of a transmission power control command and a power offset value, which is used in the subframe set; And a transmission power control unit configured to perform transmission power control using the mapping table in subframes belonging to the subframe set.
  • a user equipment in a wireless communication system A signal receiving unit that measures the received power of a signal received from a base station; A transmission power control unit that performs filtering processing on the reception power, calculates path loss using the reception power subjected to the filtering processing, and performs transmission power control using the path loss;
  • the signal reception unit receives a plurality of parameters used for the filtering process from the base station, and the transmission power control unit is obtained by a filtering process using one specific parameter of the plurality of parameters. And calculating the path loss using received power.
  • the operations of multiple functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by multiple components.
  • the order of processing may be changed as long as there is no contradiction.
  • the user apparatus 100 and the base station 200 have been described using functional block diagrams for the convenience of the processing description, such an apparatus may be realized in hardware, software or a combination thereof.
  • the software operated by the processor of the user apparatus 100 according to the embodiment of the present invention and the software operated by the processor of the base station 200 according to the embodiment of the present invention are random access memory (RAM), flash memory, read only It may be stored in memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods.
  • notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band),
  • the present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
  • the specific operation supposed to be performed by the base station 200 in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with the user equipment 100 may be performed by the base station 200 and / or other than the base station 200. It is clear that it may be done by a network node (for example but not limited to MME or S-GW etc).
  • a network node for example but not limited to MME or S-GW etc.
  • MME Mobility Management Entity
  • the user equipment 100 may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, by those skilled in the art. It may also be called a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • Base station 200 may also be referred to by those skilled in the art in terms of NB (Node B), eNB (enhanced Node B), Base Station, or some other suitable terminology.
  • NB Node B
  • eNB enhanced Node B
  • Base Station or some other suitable terminology.
  • determining may encompass a wide variety of operations.
  • “Judgment”, “decision” are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc.
  • “determination” and “determination” are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (Accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • 100 user apparatus 110 signal transmitting unit 120 signal receiving unit 130 setting information managing unit 140 transmission power control unit 200 base station 210 signal transmitting unit 220 signal receiving unit 230 scheduling unit 240 setting information managing unit 1001 processor 1002 memory 1003 storage 1004 storage 1004 communication device 1005 Input device 1006 Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a user device in a wireless communication system, wherein the user device comprises: a signal reception unit that receives the size of a transmission power control command; and a transmission power control unit that carries out transmission power control using a partial table corresponding to said size or a correspondence mapping table corresponding to said size, both tables being in a mapping table indicating the correspondence between a transmission power control command value and a power offset value.

Description

ユーザ装置、及び送信電力制御方法User apparatus and transmission power control method
 本発明は、無線通信システムにおける送信電力制御に関連するものである。 The present invention relates to transmission power control in a wireless communication system.
 現在、ドローン等の無人航空機が様々な企業ユース及び個人ユースにおいて利用されてきている。今後、LTE(Long Term Evolution)ネットワーク、NR(New Radio)ネットワーク等の無線ネットワークを利用したドローンサービスの実現が想定される。 Currently, unmanned aerial vehicles such as drones have been used in various corporate and individual uses. In the future, the realization of a drone service using a wireless network such as an LTE (Long Term Evolution) network or an NR (New Radio) network is assumed.
 このような想定の下、ドローン等の特定タイプ(特定種別)のユーザ装置(User Equipment:UE)の実現性の検討が進められている。例えば、3GPP(Third Generation Partnership Project)におけるスタディアイテム"New SID on Enhanced Support for Aerial Vehicles"において、既存の地上端末向けネットワークにおける無人航空機の接続時の性能評価、潜在的な問題点、改善技術等が検討されている。 Under such an assumption, the feasibility of a specific type (specific type) user equipment (UE) such as a drone has been studied. For example, in the study item "New SID on Enhanced Support for Aerial Vehicles" in 3GPP (Third Generation Partnership Project), the performance evaluation at the time of connecting an unmanned aerial vehicle in the existing ground terminal network, potential problems, improvement techniques etc. It is being considered.
 ドローン等の無人航空機は基地局よりも高い高度での飛行が可能であり、セル全体を見通せる環境内で無線通信を行うことが想定される。従って、ドローン(ユーザ装置)の飛行に伴い見通しパスが基地局アンテナパターンのヌル方向を通過する場合、基地局とドローン(ユーザ装置)との間のパスロスが大きく変動することが想定される。その場合、ユーザ装置における送信電力制御がパスロスの変動に追随できない可能性がある。なお、このような課題は、ドローンに限らず、ユーザ装置全般に生じ得る課題である。 An unmanned aerial vehicle such as a drone can fly at a higher altitude than the base station, and it is assumed that wireless communication is performed in an environment where the whole cell can be seen. Therefore, when the sight line passes the null direction of the base station antenna pattern with the flight of the drone (user apparatus), it is assumed that the path loss between the base station and the drone (user apparatus) greatly fluctuates. In that case, there is a possibility that the transmission power control in the user apparatus can not follow the fluctuation of the path loss. In addition, such a subject is a subject which may arise not only in a drone but in a user apparatus in general.
 本発明は上述した点に鑑みてなされたものであり、パスロスが大きく変動する場合でも、ユーザ装置が適切に送信電力制御を行うことを可能とする技術を提供することを目的とする。 The present invention has been made in view of the above-described point, and an object of the present invention is to provide a technology that enables a user apparatus to appropriately perform transmission power control even when path loss fluctuates significantly.
 開示の技術によれば、無線通信システムにおけるユーザ装置であって、
 基地局から、送信電力制御コマンドのサイズを受信する信号受信部と、
 送信電力制御コマンドの値と電力オフセット値との対応を示すテーブルであるマッピングテーブルにおける前記サイズに対応する部分テーブル、又は、前記サイズに対応する対応マッピングテーブルを使用して、送信電力制御を行う送信電力制御部と
 を備えることを特徴とするユーザ装置が提供される。
According to the disclosed technology, a user equipment in a wireless communication system,
A signal receiving unit for receiving a size of a transmission power control command from a base station;
Transmission that performs transmission power control using a partial table corresponding to the size in the mapping table, which is a table indicating the correspondence between the value of the transmission power control command and the power offset value, or the corresponding mapping table corresponding to the size There is provided a user apparatus characterized by comprising: a power control unit.
 開示の技術によれば、パスロスが大きく変動する場合でも、ユーザ装置が適切に送信電力制御を行うことを可能とする技術が提供される。 According to the disclosed technology, a technology is provided which enables the user apparatus to appropriately perform transmission power control even when path loss fluctuates significantly.
本発明の実施の形態における無線通信システムを示す概略図である。FIG. 1 is a schematic view showing a wireless communication system in an embodiment of the present invention. 送信電力制御のシーケンス例を示す図である。It is a figure which shows the example of a sequence of transmission power control. PUSCHの送信電力の決定におけるパラメータを示す図である。It is a figure which shows the parameter in determination of the transmission power of PUSCH. SRSの送信電力の決定におけるパラメータを示す図である。It is a figure which shows the parameter in determination of the transmission power of SRS. TPCコマンドにおける電力オフセットの例を示す図である。It is a figure which shows the example of the power offset in TPC command. ドローン通信における課題を説明するための図である。It is a figure for demonstrating the subject in drone communication. 実施例1におけるシーケンス図である。FIG. 5 is a sequence diagram in the first embodiment. 実施例1におけるTPCコマンドと電力オフセットとのマッピングテーブルの例を示す図である。FIG. 8 is a diagram showing an example of a mapping table of TPC commands and power offsets in the first embodiment. 実施例1におけるTPCコマンドと電力オフセットとのマッピングテーブルの例を示す図である。FIG. 8 is a diagram showing an example of a mapping table of TPC commands and power offsets in the first embodiment. 実施例2におけるTPCコマンドの例を示す図である。FIG. 18 is a diagram showing an example of a TPC command in the second embodiment. 実施例2におけるTPCコマンドの例を示す図である。FIG. 18 is a diagram showing an example of a TPC command in the second embodiment. 実施例2におけるTPCコマンドと電力オフセットとのマッピングテーブルの例を示す図である。FIG. 18 is a diagram showing an example of a mapping table of TPC commands and power offsets in the second embodiment. 実施例2におけるシーケンス図である。FIG. 8 is a sequence diagram in Embodiment 2. 実施例3におけるユーザ装置100の動作を示すフローチャートである。15 is a flowchart showing an operation of the user apparatus 100 in the third embodiment. 実施例3におけるUL grantの例を示す図である。FIG. 18 is a diagram showing an example of UL grant in Example 3. 実施例3におけるTPCコマンドと電力オフセットとのマッピングテーブルの例を示す図である。FIG. 18 is a diagram showing an example of a mapping table of TPC commands and power offsets in the third embodiment. 実施例3におけるTPCコマンドと電力オフセットとのマッピングテーブルの例を示す図である。FIG. 18 is a diagram showing an example of a mapping table of TPC commands and power offsets in the third embodiment. 実施例4におけるシーケンス図である。FIG. 18 is a sequence diagram in the fourth embodiment. 実施例4におけるサブフレームとマッピングテーブルとの対応付けの例を示す図である。FIG. 18 is a diagram showing an example of correspondence between subframes and a mapping table in the fourth embodiment. 実施例5におけるシーケンス図である。FIG. 18 is a sequence diagram in Example 5; ユーザ装置100の機能構成の一例を示す図である。FIG. 2 is a diagram showing an example of a functional configuration of a user device 100. 基地局200の機能構成の一例を示す図である。FIG. 2 is a diagram showing an example of a functional configuration of a base station 200. ユーザ装置100と基地局200のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware constitutions of the user apparatus 100 and the base station 200. FIG.
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the embodiments described below are merely examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
 本実施の形態の無線通信システムは、少なくともLTEの通信方式をサポートしていることを想定している。よって、無線通信システムが動作するにあたっては、適宜、既存のLTEで規定された既存技術を使用できる。ただし、当該既存技術はLTEに限られない。また、本発明は、LTE以外の通信方式にも適用可能である。 The radio communication system according to the present embodiment is assumed to support at least the LTE communication scheme. Therefore, when the wireless communication system operates, the existing technology defined by the existing LTE can be used as appropriate. However, the existing technology is not limited to LTE. The present invention is also applicable to communication systems other than LTE.
 以下の実施の形態では、ドローン等の地上に配置されないユーザ装置を想定して説明を行うが、本発明はこれに限定されるものでなく、本発明は、基地局への見通しが良い地上配置型のユーザ装置にも適用可能である。 Although the following embodiments will be described on the assumption of a user apparatus not placed on the ground such as a drone, the present invention is not limited to this, and the present invention provides a ground deployment with a good perspective to a base station. It is also applicable to user devices of the same type.
 また、以下の説明では、PDSCH、SIB、SRS、PUSCH等の既存のLTEで使用される信号、チャネル等の名称を使用するが、これらと同様の信号、チャネルが別の名称で呼ばれてもよい。 Also, in the following description, the names of signals, channels, etc. used in existing LTE, such as PDSCH, SIB, SRS, PUSCH, etc., are used, but similar signals and channels may be called by other names. Good.
 (無線通信システムの構成)
 図1を参照して本実施の形態における無線通信システムの例を説明する。図1は、本実施の形態における無線通信システムを示す図である。
(Configuration of wireless communication system)
An example of a wireless communication system according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a wireless communication system in the present embodiment.
 図1に示されるように、無線通信システム10は、ユーザ装置100及び基地局200を有する。無線通信システム10は、例えば、LTEシステム、LTE-Advancedシステム、NRシステム等の3GPPによって規定された何れかの無線通信システムであってもよいし、あるいは、他の何れかの無線通信システムであってもよい。 As shown in FIG. 1, the wireless communication system 10 includes a user apparatus 100 and a base station 200. The wireless communication system 10 may be, for example, any wireless communication system defined by 3GPP such as an LTE system, an LTE-Advanced system, an NR system, or any other wireless communication system. May be
 ユーザ装置100は、基地局200と通信接続可能な何れかの情報処理装置であり、例えば、限定されることなく、ドローン、無人航空機、非地上配置型ユーザ装置又はその一部であってもよい。 The user apparatus 100 is any information processing apparatus that can be communicably connected to the base station 200, and may be, for example, without limitation, a drone, an unmanned aerial vehicle, a non-ground-placed user apparatus, or a part thereof. .
 基地局200は、コアネットワーク等の上位局(図示せず)による制御の下、ユーザ装置100を含む多数のユーザ装置と無線通信を実行する。LTEシステム及びLTE-Advancedシステムでは、基地局200は、例えば、eNB(evolved NodeB)として参照され、NRシステムでは、基地局200は、例えば、gNBとして参照されうる。図示された例では、1つの基地局200しか示されていないが、典型的には、多数の基地局が配置される。基地局200のカバレッジは一般にセルと呼ばれる。また、ユーザ装置100が在圏するセルはサービングセルと呼ばれる。 The base station 200 performs wireless communication with a large number of user devices including the user device 100 under the control of a higher station (not shown) such as a core network. In the LTE system and the LTE-Advanced system, the base station 200 may be referred to, for example, as an eNB (evolved Node B), and in the NR system, the base station 200 may be referred to, for example, as a gNB. Although only one base station 200 is shown in the illustrated example, a large number of base stations are typically deployed. The coverage of base station 200 is generally referred to as a cell. Moreover, the cell in which the user apparatus 100 is located is called a serving cell.
 (送信電力制御について)
 本実施の形態は上りの送信電力制御を対象とすることから、まず、無線通信システムにおける送信電力制御に係る基本的な動作例を図2~図5を参照して説明する。
(About transmission power control)
Since the present embodiment targets uplink transmission power control, first, a basic operation example related to transmission power control in a wireless communication system will be described with reference to FIGS. 2 to 5.
 ユーザ装置100が信号を送信する際の送信電力は、基地局200が受信信号を復調でき、かつ、ユーザ装置100が周囲に余計な干渉を与えないようにするために、適切な値に制御される必要がある。そのために、本実施の形態に係る無線通信システムではユーザ装置100と基地局200との間で、送信電力制御(TPC:Transmission Power Control)が行われる。 The transmission power when the user apparatus 100 transmits a signal is controlled to an appropriate value so that the base station 200 can demodulate the received signal and the user apparatus 100 does not give unnecessary interference to the surroundings. Need to Therefore, transmission power control (TPC: Transmission Power Control) is performed between the user apparatus 100 and the base station 200 in the wireless communication system according to the present embodiment.
 図2を参照して送信電力制御の手順例を説明する。S1(ステップ1)において、PDSCHにより運ばれるSIB2により目標受信電力が基地局200からユーザ装置100にブロードキャストされる。 A procedure example of transmission power control will be described with reference to FIG. In S1 (step 1), target received power is broadcasted from the base station 200 to the user apparatus 100 by the SIB2 carried by the PDSCH.
 ユーザ装置100は、下りの参照信号(DL RS)からパスロスを推定し、パスロスに応じて上り信号(Sounding RS、PUSCH、PUCCH等)の送信電力を決定し、決定した送信電力で上り信号を送信する(S2)。この動作(Open-loop TPCと呼ばれる)により伝搬損失の補償が行われる。なお、フェージングによる瞬時変動には、瞬時AMC(Adaptive Modulation and Coding)とHARQで追従する。 The user apparatus 100 estimates the path loss from the downlink reference signal (DL RS), determines the transmission power of the uplink signal (Sounding RS, PUSCH, PUCCH, etc.) according to the path loss, and transmits the uplink signal with the determined transmission power. To do (S2). This operation (called Open-loop TPC) compensates for the propagation loss. In addition, instantaneous AMC (Adaptive Modulation and Coding) and HARQ follow.
 基地局200は、ユーザ装置100から送信されるSounding RSの受信電力に基づき、TPCコマンドを通知する(S3)。ユーザ装置100は、このTPCコマンドを用いて送信電力の誤差補正を行う。この動作はClosed-loop TPCと呼ばれる。より詳細には、基地局200は受信SIR情報を元に補正値であるTPCコマンドを算出し、UL scheduling grant、又は、TPC-PDCCH(DCI format 3/3A)によりTPCコマンドをユーザ装置100に通知する(非特許文献1)。TPC-PDCCH(DCI format 3/3A)は、TPCコマンド通知用のPDCCHであり、これにより、複数のユーザ装置に対し同時にTPCコマンドの通知が可能である。 The base station 200 notifies the TPC command based on the received power of the Sounding RS transmitted from the user apparatus 100 (S3). The user apparatus 100 performs error correction of transmission power using this TPC command. This operation is called Closed-loop TPC. More specifically, base station 200 calculates a TPC command which is a correction value based on reception SIR information, and notifies TPC command to user apparatus 100 by UL scheduling grant or TPC-PDCCH (DCI format 3 / 3A). (Non-Patent Document 1). TPC-PDCCH (DCI format 3 / 3A) is a PDCCH for TPC command notification, which enables TPC command notification to a plurality of user apparatuses simultaneously.
 一例として、PUSCHとSRSについての送信電力決定方法を説明する。 A transmission power determination method for PUSCH and SRS will be described as an example.
 ユーザ装置100は、下記の式に基づきPUSCHの送信電力を決定する(非特許文献2)。 The user apparatus 100 determines the PUSCH transmission power based on the following equation (Non-Patent Document 2).
 PPUSCH=10log10(MPUSCH)+PO_PUSCH+α・PL+ΔTF(TF(i))+f(i)....式1
 PPUSCH≦PCMAX(UE最大送信電力)...式2
 上記の式1におけるパラメータを図3に示す。式2は、f(i)の加算により最大値を超えた場合に、PPUSCHとしてPCMAXを使用することを意味する。
P PUSCH = 10 log 10 (M PUSCH ) + P O _ PUSCH + α · PL + Δ TF (TF (i)) + f (i). Formula 1
P PUSCH ≦ P CMAX (UE maximum transmission power) formula 2
The parameters in equation 1 above are shown in FIG. Equation 2 implies that P CMAX is used as P PUSCH when the maximum value is exceeded by addition of f (i).
 また、ユーザ装置100は、下記の式3に基づきSRSの送信電力を決定する(非特許文献2)。パラメータを図4に示す。 Also, the user apparatus 100 determines the SRS transmission power based on the following Equation 3 (Non-Patent Document 2). The parameters are shown in FIG.
 PSRS=PSRS_OFFSET+10log10(MPUSCH)+PO_PUSCH+α・PL+ΔTF(TF(i))+f(i)...式3
 上記のとおり、PSRSはPUSCH送信電力にPSRS_OFFSETを加算したものである。既存技術におけるTPCコマンドの値と、送信電力の変更量(電力オフセット値と呼ぶ)とのマッピングの例を図5に示す(非特許文献2)。図5には、非特許文献2に規定されているTable 5.1.1.1-2とTable 5.1.1.1-3が示されている。ユーザ装置100は、例えば図5に示すTPCコマンドの値と電力オフセット値とのマッピングに基づき、基地局200から受信したTPCコマンドの値に対応する電力オフセット値を決定する。当該電力オフセット値に基づき、前述したf(i)が算出される。
P SRS = P SRS_OFFSET +10 log 10 (M PUSCH ) + PO_PUSCH + α · PL + Δ TF (TF (i)) + f (i) formula 3
As described above, P SRS is the PUSCH transmission power plus P SRS_OFFSET . An example of the mapping between the value of the TPC command and the amount of change of transmission power (referred to as a power offset value) in the existing technology is shown in FIG. 5 (Non-Patent Document 2). Table 5.1.1.1-2 and Table 5.1.1.1-3 defined in Non-Patent Document 2 are shown in FIG. The user apparatus 100 determines a power offset value corresponding to the value of the TPC command received from the base station 200 based on, for example, the mapping between the value of the TPC command and the power offset value shown in FIG. The aforementioned f (i) is calculated based on the power offset value.
 本実施の形態におけるユーザ装置100はドローン(あるいはドローンに搭載される端末)であることを想定している。ドローン等の飛行体は基地局よりも高い高度での飛行が可能であり、基地局を障害物なく見通せる環境内で無線通信を行うことが想定される。従って、図6に示すように、ドローン(ユーザ装置100)の飛行に伴い見通しパスが基地局アンテナパターンのヌル方向を通過する場合、基地局200とドローン(ユーザ装置100)との間のパスロスが大きく変動することが想定される。その場合、ユーザ装置100における送信電力制御がパスロスの変動に追随できない可能性がある。より詳細には、既存技術では、Closed-loop TPCにおけるTPCコマンドの電力オフセット値の範囲(レンジ)が小さく、パスロスの変動に追随できない可能性がある。以下、この課題を解消する動作例として、実施例1~5を説明する。実施例1~5におけるいずれか複数の実施例は組み合わせて実施することが可能である。 It is assumed that the user apparatus 100 in the present embodiment is a drone (or a terminal mounted on a drone). It is assumed that a flying object such as a drone can fly at a higher altitude than the base station, and wireless communication is performed in an environment where the base station can be viewed without obstacles. Therefore, as shown in FIG. 6, when the line of sight passes the null direction of the base station antenna pattern with the flight of the drone (user apparatus 100), there is a path loss between the base station 200 and the drone (user apparatus 100). It is assumed that it fluctuates greatly. In that case, there is a possibility that transmission power control in the user apparatus 100 can not follow the fluctuation of the path loss. More specifically, in the existing technology, the range of the power offset value of the TPC command in the Closed-loop TPC is small, and there is a possibility that the variation of the path loss can not be followed. Hereinafter, Examples 1 to 5 will be described as operation examples for solving the problem. Any one or more of the embodiments 1 to 5 can be implemented in combination.
 (実施例1)
 実施例1では、TPCコマンドの値とユーザ装置固有(UE specific)な電力オフセット値とのマッピングテーブルが使用される。実施例1における処理手順の例を図7を参照して説明する。
Example 1
In the first embodiment, a mapping table of TPC command values and UE specific power offset values is used. An example of the processing procedure in the first embodiment will be described with reference to FIG.
 基地局200に接続したユーザ装置100は、S101において、自身の能力情報を基地局200に送信する。この能力情報には、例えば、ユーザ装置100がドローンの能力を有することを示す情報、あるいは、ユーザ装置100が、予め定めた特定種別のUEであること、あるいはユーザ装置100が特定の上り送信電力制御能力を有することを示す情報が含まれる。 The user apparatus 100 connected to the base station 200 transmits its own capability information to the base station 200 in S101. In this capability information, for example, information indicating that the user apparatus 100 has drone capability, or that the user apparatus 100 is a UE of a predetermined specific type, or the user apparatus 100 has a specific uplink transmission power It contains information indicating that it has control capability.
 基地局200は、S101で受信した能力情報に基づいて、ユーザ装置100が特定の上り送信電力制御能力を有すると判断し、特定の上り送信電力制御の適用が必要と判断すると、ユーザ装置固有(UE specific)な、TPCコマンドの値と電力オフセット値とのマッピングテーブルを設定情報として、上位レイヤシグナリング(例:RRCシグナリング)でユーザ装置100に送信する(S102)。 The base station 200 determines that the user equipment 100 has a specific uplink transmission power control capability based on the capability information received in S101 and determines that it is necessary to apply the specific uplink transmission power control, the user equipment specific ( It is transmitted to the user apparatus 100 by upper layer signaling (example: RRC signaling) with UE-specific mapping table of TPC command value and power offset value as setting information (S102).
 ユーザ装置100は、S102で受信したマッピングテーブルを使用して、送信電力制御を実行する。例えば、ユーザ装置100は、PUSCHの送信電力を決定するに際し、S102で受信したマッピングテーブルを参照し、基地局200から受信するTPCコマンドの値に対応する電力オフセット値を用いて、前述した式1におけるf(i)を算出する。ここでの算出においては、例えば、電力オフセット値の累積値の計算が行われる。 The user apparatus 100 performs transmission power control using the mapping table received in S102. For example, when determining the transmission power of the PUSCH, the user apparatus 100 refers to the mapping table received in S102, and uses the power offset value corresponding to the value of the TPC command received from the base station 200 to obtain Equation 1 described above. Calculate f (i) in In the calculation here, for example, calculation of the accumulated value of the power offset value is performed.
 図8Bに、上記のマッピングテーブルの例を示す。図8Aは、S102における設定がなされない場合に使用される既存のマッピングテーブルを示す。 FIG. 8B shows an example of the above mapping table. FIG. 8A shows the existing mapping table used when the setting in S102 is not made.
 図8A、Bに示す電力オフセット値は一例に過ぎないが、例えば、図8Bに示すように、電力オフセット値の絶対値を既存の値より大きくすることで、大きなパスロスの変動に追随することを可能としている。 Although the power offset values shown in FIGS. 8A and 8B are merely examples, for example, as shown in FIG. 8B, following the large path loss fluctuation by making the absolute value of the power offset value larger than the existing value It is possible.
 なお、図7に示す例では、S101の能力情報に基づいて、基地局200はUE specificなマッピングテーブルを設定するか否かを判断しているが、これは一例である。例えば、基地局200は、ユーザ装置100から受信する参照信号の受信電力に基づき、ユーザ装置100が見通しの良い場所に存在すると判断した場合に、ユーザ装置100に対してUE specificなマッピングテーブルを設定することとしてもよい。また、基地局200は、ユーザ装置100の能力あるいは種別に関わらずに、UE specificなマッピングテーブルを設定し、ユーザ装置100が、UE specificなマッピングテーブルを使用するか、既存技術のマッピングテーブルを使用するかを判断してもよい。 In the example illustrated in FIG. 7, the base station 200 determines whether to set the UE specific mapping table based on the capability information of S101, but this is an example. For example, when the base station 200 determines that the user apparatus 100 exists in a location with good line of sight based on the received power of the reference signal received from the user apparatus 100, the base station 200 sets a UE specific mapping table for the user apparatus 100 You may do it. Also, the base station 200 sets the UE specific mapping table regardless of the capability or type of the user apparatus 100, and the user apparatus 100 uses the UE specific mapping table or uses the existing technology mapping table. You may decide to do it.
 また、S102において基地局200からユーザ装置100に通知される情報は、マッピングテーブルそのもの(つまり、各TPCコマンドに対応する電力オフセット値)であってもよいし、マッピングテーブルのインデックスであってもよい。後者の場合においては、例えば、ユーザ装置100において複数種類のマッピングテーブルが、それぞれインデックスと対応付けて事前設定されており、ユーザ装置100は、S102で基地局200から受信するインデックスに対応するマッピングテーブルを使用する。 Further, the information notified from the base station 200 to the user apparatus 100 in S102 may be the mapping table itself (that is, the power offset value corresponding to each TPC command) or may be the index of the mapping table. . In the latter case, for example, a plurality of types of mapping tables are preset in the user apparatus 100 in association with the respective indexes, and the user apparatus 100 corresponds to the index received from the base station 200 in S102. Use
 ユーザ装置100は、UE specificのマッピングテーブルが基地局200から設定されない場合には、デフォルトのテーブル(例:図8A)を使用する。また、ユーザ装置100が、仮に、TPCコマンドと電力オフセットとのマッピングの切り替えに未対応である場合にも、デフォルトのテーブル(例:図8A)を使用する。 When the UE specific mapping table is not set from the base station 200, the user apparatus 100 uses a default table (eg, FIG. 8A). Also, even when the user apparatus 100 does not correspond to the switching of the mapping between the TPC command and the power offset, the default table (for example, FIG. 8A) is used.
 (実施例2)
 既存技術におけるTPCコマンドのサイズ(=DCIフォーマットにおけるTPC Command Fieldのビット数)は、1ビット又は2ビットである。実施例2においては、既存のTPCコマンドのビットを連結することにより、全体としてのTPCコマンドのサイズを拡張し、TPCコマンドで通知可能な電力オフセット値の範囲(レンジ)を拡張する。
(Example 2)
The size of the TPC command in the existing technology (= the number of bits of the TPC Command Field in the DCI format) is 1 bit or 2 bits. In the second embodiment, by connecting bits of the existing TPC command, the size of the TPC command as a whole is expanded, and the range (range) of the power offset value that can be notified by the TPC command is expanded.
 図9A、図9Bに、基地局200からユーザ装置100に送信されるTPCコマンドの例を示す。図9Aは、8ビットのTPCコマンドの例を示す。図9Bは、Aで示す1ビットのTPCコマンドとBで示す2ビットのTPCコマンドを連結して3ビットのTPCコマンドとした例を示す。 9A and 9B show examples of TPC commands transmitted from the base station 200 to the user apparatus 100. FIG. FIG. 9A shows an example of an 8-bit TPC command. FIG. 9B shows an example in which a 1-bit TPC command indicated by A and a 2-bit TPC command indicated by B are concatenated to form a 3-bit TPC command.
 実施例2では、例えば図10に示すような、TPCコマンドの値と電力オフセット値とのマッピングを示すマッピングテーブルが使用される。マッピングテーブルは、例えば、TPCコマンドのサイズ毎に定義され、基地局200からユーザ装置100に対し、当該ユーザ装置100に対して使用されるTPCコマンドのサイズと、マッピングテーブルのインデックス(マッピングテーブルそのものでもよい)が通知される。ただし、TPCコマンドのサイズを、マッピングテーブルのインデックスとして使用してもよく、その場合、マッピングテーブルのインデックスの通知は不要である。 In the second embodiment, for example, a mapping table indicating the mapping between TPC command values and power offset values as shown in FIG. 10 is used. The mapping table is defined, for example, for each TPC command size, and the size of the TPC command used for the user apparatus 100 from the base station 200 to the user apparatus 100, the index of the mapping table (the mapping table itself Good) is notified. However, the size of the TPC command may be used as a mapping table index, in which case notification of the mapping table index is unnecessary.
 図10に示すマッピングテーブル全体は、3ビットのTPCコマンドに対応するマッピングテーブルである。ただし、当該マッピングテーブルの一部(部分テーブル)を使用することで、当該マッピングテーブルを3ビット以外のビット数のTPCコマンドに対して使用することも可能である。例えば、図10において、「TPCコマンドサイズ#1」として示される部分テーブルを2ビットのTPCコマンド用に使用することができる。図10において、「TPCコマンドサイズ#2」として示される全体のテーブルは3ビットのTPCコマンド用に使用することができる。 The entire mapping table shown in FIG. 10 is a mapping table corresponding to a 3-bit TPC command. However, by using a part (partial table) of the mapping table, it is also possible to use the mapping table for TPC commands having the number of bits other than 3 bits. For example, in FIG. 10, the partial table shown as "TPC command size # 1" can be used for a 2-bit TPC command. In FIG. 10, the entire table shown as "TPC command size # 2" can be used for 3-bit TPC commands.
 図11を参照して、実施例2における処理手順例を説明する。基地局200に接続したユーザ装置100は、S201において、自身の能力情報を基地局200に送信する(S201)。この能力情報には、例えば、ユーザ装置100がドローンの能力を有することを示す情報、あるいは、ユーザ装置100が、予め定めた特定種別のUEであること、あるいはユーザ装置100が特定の上り送信電力制御能力を有することを示す情報が含まれる。 An example of the processing procedure in the second embodiment will be described with reference to FIG. The user apparatus 100 connected to the base station 200 transmits its own capability information to the base station 200 in S201 (S201). In this capability information, for example, information indicating that the user apparatus 100 has drone capability, or that the user apparatus 100 is a UE of a predetermined specific type, or the user apparatus 100 has a specific uplink transmission power It contains information indicating that it has control capability.
 基地局200は、S201で受信した能力情報に基づいて、ユーザ装置100が特定の上り送信電力制御能力を有すると判断し、特定の上り送信電力制御の適用が必要と判断すると、ユーザ装置固有(UE specific)のTPCコマンドサイズ(当該TPCコマンドサイズに対応するTPCコマンドフォーマットの情報でもよい)と、TPCコマンドの値と電力オフセット値とのマッピングテーブルの情報(例:インデックス)を上位レイヤシグナリング(例:RRCシグナリング)でユーザ装置100に送信する(S202)。なお、TPCコマンドの値と電力オフセット値とのマッピングテーブルとして、TPCコマンドサイズに依存しない共通のテーブル(例えば、ユーザ装置100に事前設定される)が使用される場合には、ここでのマッピングテーブルの情報を通知しないこととしてもよい。また、TPCコマンドのインデックス(例:tpc-Index)が、TPCコマンドサイズとともにユーザ装置100に通知されてもよいし、TPCコマンドサイズとは別にTPCコマンドのインデックスが通知されてもよい。 The base station 200 determines that the user equipment 100 has a specific uplink transmission power control capability based on the capability information received in S201, and determines that it is necessary to apply the specific uplink transmission power control, the user equipment specific ( UE specific) TPC command size (may be information on TPC command format corresponding to the TPC command size) and information on mapping table between TPC command value and power offset value (example: index) as upper layer signaling (example) : Transmit to the user apparatus 100 by RRC signaling (S202). When a common table not dependent on TPC command size (for example, preset in user apparatus 100) is used as a mapping table between TPC command values and power offset values, the mapping table here The notification of the information may not be notified. Also, the index of the TPC command (for example, tpc-Index) may be notified to the user apparatus 100 together with the TPC command size, or the index of the TPC command may be notified separately from the TPC command size.
 ユーザ装置100は、S202で受信したTPCコマンドサイズ等の情報を使用して、送信電力制御を実行する。例えば、ユーザ装置100は、PUSCHの送信電力を決定するに際し、S202で受信したTPCコマンドサイズ(例:2ビット)に基づいて、共通マッピングテーブル(例:図10)における当該サイズに対応する部分テーブルを参照し、基地局200から受信するTPCコマンドの値に対応する電力オフセット値を用いて、前述した式1におけるf(i)を算出する。 The user apparatus 100 performs transmission power control using the information such as the TPC command size received in S202. For example, when the user apparatus 100 determines the transmission power of the PUSCH, a partial table corresponding to the size in the common mapping table (eg, FIG. 10) based on the TPC command size (eg, 2 bits) received in S202. And calculate the f (i) in Equation 1 described above using the power offset value corresponding to the value of the TPC command received from the base station 200.
 なお、図11に示す例では、S201の能力情報に基づいて、基地局200はUE specificなTPCコマンドサイズ等を設定するか否かを判断しているが、これは一例である。例えば、基地局200は、ユーザ装置100から受信する参照信号の受信電力に基づき、ユーザ装置100が見通しの良い場所に存在すると判断した場合に、ユーザ装置100に対してUE specificなTPCコマンドサイズ等を設定することとしてもよい。また、基地局200は、ユーザ装置100の能力あるいは種別に関わらずに、UE specificなTPCコマンドサイズ等をユーザ装置100に設定し、ユーザ装置100が、UE specificなTPCコマンドサイズを使用するか、既存技術のTPCコマンドサイズを使用するかを判断してもよい。 Note that, in the example illustrated in FIG. 11, the base station 200 determines whether to set the UE specific TPC command size and the like based on the capability information of S201, but this is an example. For example, when the base station 200 determines that the user apparatus 100 exists in a location with good line-of-sight based on the received power of the reference signal received from the user apparatus 100, the UE specific TPC command size etc. for the user apparatus 100 May be set. Also, regardless of the capability or type of the user apparatus 100, the base station 200 sets the UE specific TPC command size etc. in the user apparatus 100, and the user apparatus 100 uses the UE specific TPC command size, It may be determined whether to use the existing technology TPC command size.
 ユーザ装置100は、UE specificのTPCコマンドサイズが基地局200から設定されない場合には、デフォルトのTPCコマンドサイズ及びマッピングテーブルを使用する。 The user apparatus 100 uses the default TPC command size and mapping table when the UE specific TPC command size is not set from the base station 200.
 (実施例3)
 次に、実施例3を説明する。実施例3では、UL grant(上り送信のための下り制御情報)でのTPCコマンド通知を対象とする。実施例3では、ユーザ装置100は、基地局200から受信するUL grant(DCI format 0)のフィールドのうち、TPCコマンド以外のフィールド値に基づいて電力オフセット値の切り替えを実行する。
(Example 3)
Next, Example 3 will be described. In the third embodiment, TPC command notification in UL grant (downlink control information for uplink transmission) is targeted. In the third embodiment, the user apparatus 100 performs switching of the power offset value based on field values other than the TPC command among the fields of UL grant (DCI format 0) received from the base station 200.
 実施例3におけるユーザ装置100が実行する処理手順の例を図12のフローチャットを参照して説明する。 An example of the processing procedure executed by the user device 100 in the third embodiment will be described with reference to the flow chat in FIG.
 S301において、ユーザ装置100は基地局200からUL grantを受信する。UL grantには、Hopping flag、Resource block assignment、MCS、NDI (New Data Indicator)、TPCコマンド等の情報をセットするための各フィールドが含まれる。 In S301, the user apparatus 100 receives a UL grant from the base station 200. The UL grant includes fields for setting information such as Hopping flag, Resource block assignment, MCS, NDI (New Data Indicator), TPC command and the like.
 S302において、ユーザ装置100は、UL grantにおける特定のフィールドの値に基づいて、使用するマッピングテーブル(TPCコマンドの値と電力オフセット値とのマッピングテーブル)を、複数のマッピングテーブルから決定する。 In S302, the user apparatus 100 determines the mapping table (the mapping table of the value of the TPC command and the power offset value) to be used from the plurality of mapping tables based on the value of the specific field in the UL grant.
 例えば、図13に示すUL grantにおけるフィールドXが、上記の特定のフィールドである場合において、ユーザ装置100は、例えば、フィールドXの値がNより小さい場合に図14Aに示すテーブルを使用することを決定し、フィールドXの値がN以上である場合に図14Bに示すテーブルを使用することを決定する。 For example, in the case where field X in UL grant shown in FIG. 13 is the above-described specific field, for example, user apparatus 100 uses the table shown in FIG. 14A when the value of field X is smaller than N. It is determined to use the table shown in FIG. 14B when the value of field X is N or more.
 S303において、ユーザ装置100は、S301で受信したTPCコマンドの値(S301におけるタイミングとは別のタイミングのTPCコマンドの値でもよい)と、S302で決定したマッピングテーブルを使用して送信電力制御を実行する。例えば、ユーザ装置100は、PUSCHの送信電力を決定するに際し、S302で決定したマッピングテーブルを参照し、前述した式1におけるf(i)を、S301で受信したTPCコマンドの値に対応する電力オフセット値を用いて算出する。ここでの算出においては、例えば、電力オフセット値の累積値の計算が行われる。 In S303, the user apparatus 100 executes transmission power control using the value of the TPC command received in S301 (it may be the value of the TPC command of timing different from the timing in S301) and the mapping table determined in S302. Do. For example, when determining the transmission power of the PUSCH, the user apparatus 100 refers to the mapping table determined in S302, and the power offset corresponding to the value of the TPC command received in S301, f (i) in Equation 1 described above. Calculate using the value. In the calculation here, for example, calculation of the accumulated value of the power offset value is performed.
 実施例3では、基地局200からユーザ装置100に1つ又は複数のマッピングテーブルの情報が通知される。マッピングテーブルの通知においては、例えば、実施例1における図7で説明した手順が適用される。すなわち、図7のS102において、例えば、図14Aに示すテーブルと図14Bに示すテーブルの情報(インデックス、あるいは各TPCコマンドに対応する電力オフセット値)を基地局100がユーザ装置100に通知する。なお、いずれかのテーブルとして既存のテーブル(例:図5)を使用する場合には、当該既存のテーブルの情報は通知されなくてもよい。 In the third embodiment, the base station 200 notifies the user apparatus 100 of information on one or more mapping tables. For the notification of the mapping table, for example, the procedure described in FIG. 7 in the first embodiment is applied. That is, in S102 of FIG. 7, for example, the base station 100 notifies the user apparatus 100 of information (index or power offset value corresponding to each TPC command) of the table shown in FIG. 14A and the table shown in FIG. In addition, when using the existing table (example: FIG. 5) as any table, the information of the said existing table does not need to be notified.
 上述した特定のフィールド(フィールドX)は、例えば、MCSフィールド及び/又はNDIフィールドである。ただし、これらに限られるわけではない。 The specific field (field X) described above is, for example, an MCS field and / or an NDI field. However, it is not necessarily limited to these.
 MCSフィールドの値であるMCSインデックスに関し、高いMCSインデックスが利用される高SINRの領域では、ヌル点の通過等によるSINRの急激な変動をLink adaptationと再送により吸収可能である。一方で、低いMCSインデックスが利用される低SINR領域ではLink adaptationによってMCSを下げる余地が少ないため、送信電力制御による補償が必要となる。 In the high SINR region in which a high MCS index is used with respect to the MCS index which is the value of the MCS field, it is possible to absorb abrupt change of SINR due to passage of a null point or the like by Link adaptation and retransmission. On the other hand, in a low SINR region where a low MCS index is used, there is little room for lowering the MCS by Link adaptation, so compensation by transmission power control is required.
 そこで、特定のフィールドとしてMCSフィールドを使用する場合には、例えば、MCSインデックスが所定の閾値より小さい場合(図14Aのケース)に、特定のTPCコマンド値に大きな電力オフセット値を対応させる(例:図8Bのテーブル)。また、MCSインデックスが所定の閾値以上の場合(図14Bのケース)に、既存のテーブル(例:図8Aのテーブル)を使用する。 Therefore, when using an MCS field as a specific field, for example, when a MCS index is smaller than a predetermined threshold (case of FIG. 14A), a large power offset value is made to correspond to a specific TPC command value (example: Table in Figure 8B). Also, when the MCS index is equal to or more than the predetermined threshold (case of FIG. 14B), an existing table (eg, the table of FIG. 8A) is used.
 また、NDIに関し、ヌル点通過等により急激にSINRが劣化した場合、再送が行われる可能性が高い。例えば、再送時にTPCコマンド値に大きな電力加算値を対応させることで、急激なSINR劣化を補償可能となる。 Moreover, regarding NDI, when SINR degrades rapidly by null point passage etc., there is a high possibility that retransmission will be performed. For example, by associating a large power addition value with the TPC command value at the time of retransmission, it is possible to compensate for a sharp SINR deterioration.
 すなわち、特定のフィールドとしてNDIフィールドを使用する場合には、例えば、NDI値が再送を示す値である場合に、特定のTPCコマンド値に大きな電力オフセット値を対応させる(例:図8Bのテーブル)。また、NDI値が新規送信を示す値である場合に、既存のテーブル(例:図8Aのテーブル)を使用する。 That is, when using the NDI field as a specific field, for example, when the NDI value is a value indicating retransmission, a large power offset value is associated with the specific TPC command value (eg, the table of FIG. 8B). . Also, when the NDI value is a value indicating new transmission, an existing table (eg, the table of FIG. 8A) is used.
 (実施例4)
 次に、実施例4を説明する。実施例4では、サブフレームセット毎に、TPCコマンドの値と電力オフセット値とのマッピングの切り替えを行う。
(Example 4)
A fourth embodiment will now be described. In the fourth embodiment, the mapping between the TPC command value and the power offset value is switched for each subframe set.
 図15を参照して、実施例4における処理手順例を説明する。基地局200に接続したユーザ装置100は、S401において、自身の能力情報を基地局200に送信する。この能力情報には、例えば、ユーザ装置100がドローンの能力を有することを示す情報、あるいは、ユーザ装置100が、予め定めた特定種別のUEであること、あるいはユーザ装置100が特定の上り送信電力制御能力を有することを示す情報が含まれる。 An example of a process procedure in the fourth embodiment will be described with reference to FIG. The user apparatus 100 connected to the base station 200 transmits its own capability information to the base station 200 in S401. In this capability information, for example, information indicating that the user apparatus 100 has drone capability, or that the user apparatus 100 is a UE of a predetermined specific type, or the user apparatus 100 has a specific uplink transmission power It contains information indicating that it has control capability.
 基地局200は、S401で受信した能力情報に基づいて、ユーザ装置100が特定の上り送信電力制御能力を有すると判断し、特定の上り送信電力制御の適用が必要と判断すると、ユーザ装置固有(UE specific)の、サブフレームセット(サブフレーム番号の集合)と、当該サブフレームセットに対応するTPCコマンドの値と電力オフセット値とのマッピングテーブルの情報(例:インデックス、あるいは各TPCコマンドに対応する電力オフセット値)とを上位レイヤシグナリング(例:RRCシグナリング)でユーザ装置100に送信する(S402)。 The base station 200 determines that the user apparatus 100 has a specific uplink transmission power control capacity based on the capacity information received in S401, and determines that it is necessary to apply the specific uplink transmission power control, the user apparatus specific ( Information of mapping table of subframe set (a set of subframe numbers) and TPC command value corresponding to the subframe set and power offset value of UE specific) (eg, index or corresponding to each TPC command The power offset value is transmitted to the user apparatus 100 by higher layer signaling (eg, RRC signaling) (S402).
 ユーザ装置100は、S402で受信したサブフレームオフセットとマッピングテーブルの情報を使用して、送信電力制御を実行する(S403)。 The user apparatus 100 performs transmission power control using the subframe offset received in S402 and the information in the mapping table (S403).
 図16は、サブフレームセットとマッピングテーブルとの関係の一例を示す図である。図16に示す例では、上記のS402において、基地局200からユーザ装置100に対し、サブフレームセットAの情報とテーブルAの情報の組、及び、サブフレームセットBの情報とテーブルBの情報の組が通知される。ただし、例えば、テーブルAが既存のテーブル(例:図5)である場合においては、基地局200からユーザ装置100に対し、サブフレームセットBの情報とテーブルBの情報の組のみを通知してもよい。その場合、ユーザ装置100は、通知されないサブフレームセットA(サブフレームセットB以外のセット)においては、既存のテーブルAを使用すると判断する。 FIG. 16 is a diagram showing an example of the relationship between a subframe set and a mapping table. In the example illustrated in FIG. 16, in S402 described above, the base station 200 transmits, to the user apparatus 100, a combination of subframe set A information and table A information, subframe set B information, and table B information. The set is notified. However, for example, when table A is an existing table (example: FIG. 5), base station 200 notifies user apparatus 100 of only a set of information of subframe set B and information of table B. It is also good. In that case, the user apparatus 100 determines to use the existing table A in the subframe set A (a set other than the subframe set B) that is not notified.
 S402において、図16に示す情報を受信したユーザ装置100は、S403において、例えばPUSCHの送信電力を決定するに際し、サブフレームセットAに属するサブフレームで受信したTPCコマンドに対し、テーブルAを参照して、当該TPCコマンドの値に対応する電力オフセット値を用いてf(i)を算出する。また、ユーザ装置100は、サブフレームセットBに属するサブフレームで受信したTPCコマンドに対し、テーブルBを参照して、当該TPCコマンドの値に対応する電力オフセット値を用いてf(i)を算出する。 The user apparatus 100 that has received the information shown in FIG. 16 in S402 refers to Table A for the TPC command received in subframes belonging to subframe set A, for example, in determining transmission power of PUSCH in S403. Then, f (i) is calculated using the power offset value corresponding to the value of the TPC command. Also, with respect to the TPC command received in a subframe belonging to subframe set B, user apparatus 100 refers to table B and calculates f (i) using the power offset value corresponding to the value of the TPC command. Do.
 基地局200は、S402でユーザ装置100に設定した情報を把握しており、例えば、基地局200は、ユーザ装置100の送信電力を大きく増加させる必要がある場合において、図16に示すサブフレームセットBのサブフレームで、送信電力を増加させるTPCコマンドをユーザ装置100に送信する。 The base station 200 grasps the information set in the user apparatus 100 in S402. For example, in the case where the base station 200 needs to increase the transmission power of the user apparatus 100 significantly, the subframe set shown in FIG. In subframe B, a TPC command for increasing transmission power is transmitted to the user apparatus 100.
 なお、実施例4における制御は、UL grantには適用せず、TPCコマンドのみの下り制御情報(つまり、TPC-PDCCH(DCI format 3/3A))だけに適用してもよい。これにより、PUSCHスケジューリングに制限が加わることを回避できる。 The control in the fourth embodiment may not be applied to the UL grant, but may be applied only to the downlink control information of only the TPC command (ie, TPC-PDCCH (DCI format 3 / 3A)). This makes it possible to avoid the restriction on PUSCH scheduling.
 なお、図15に示す例では、S401の能力情報に基づいて、基地局200はUE specificなサブフレームセット等を設定するか否かを判断しているが、これは一例である。例えば、基地局200は、ユーザ装置100から受信する参照信号の受信電力に基づき、ユーザ装置100が見通しの良い場所に存在すると判断した場合に、ユーザ装置100に対してUE specificなサブフレームセットを設定することとしてもよい。また、基地局200は、ユーザ装置100の能力あるいは種別に関わらずに、UE specificなサブフレームセットをユーザ装置100に設定し、ユーザ装置100が、UE specificなサブフレームセットを使用するか否かを判断してもよい。 Note that, in the example illustrated in FIG. 15, the base station 200 determines whether to set a UE specific subframe set or the like based on the capability information of S401, but this is an example. For example, when the base station 200 determines that the user apparatus 100 exists in a location with good line-of-sight based on the received power of the reference signal received from the user apparatus 100, the UE specific subframe set is set to the user apparatus 100. It may be set. Also, the base station 200 sets the UE specific subframe set to the user equipment 100 regardless of the capability or type of the user equipment 100, and whether the user equipment 100 uses the UE specific subframe set or not You may decide
 (実施例1~4に共通の例)
 実施例1~4において、TPCコマンドの値に対応する電力オフセット値に関し、新たにマッピングテーブルを規定することとしている。これに代えて、あるいは、これに加えて、元になるマッピングテーブル(例:図5、図8A)の電力オフセット値に対して、これまでに説明した新たなマッピングテーブルにおける電力オフセット値を得るためのスケーリング係数を使用してもよい。この場合、実施例1~4において、基地局200からユーザ装置100に対して、マッピングテーブルの情報に代えて、スケーリング係数が通知される。スケーリング係数は、TPCコマンドの値毎に定められてもよいし、複数のTPCコマンド毎に1つのスケーリング係数が定められてもよい。
(Example common to Examples 1 to 4)
In the first to fourth embodiments, the mapping table is newly defined with respect to the power offset value corresponding to the value of the TPC command. Alternatively or additionally, to obtain the power offset value in the new mapping table described above with respect to the power offset value in the original mapping table (eg, FIG. 5, FIG. 8A) A scaling factor of may be used. In this case, in the first to fourth embodiments, the scaling factor is notified from the base station 200 to the user apparatus 100 instead of the information in the mapping table. The scaling factor may be determined for each TPC command value, or one scaling factor may be determined for each of a plurality of TPC commands.
 ユーザ装置100は、元になるマッピングテーブルにおける、あるTPCコマンド値に対応する電力オフセット値に、スケーリング係数を乗算することにより、当該TPCコマンド値に対応する電力オフセット値を算出する。この算出された電力オフセット値は、実施例1~4において説明したUE specificなマッピングテーブルにおける当該TPCコマンド値に対応する電力オフセット値に相当する。 The user apparatus 100 calculates the power offset value corresponding to the TPC command value by multiplying the power offset value corresponding to a certain TPC command value in the original mapping table by the scaling coefficient. The calculated power offset value corresponds to the power offset value corresponding to the TPC command value in the UE specific mapping table described in the first to fourth embodiments.
 例えば、スケーリング係数は、上位レイヤシグナリング(例:図7のS102)で基地局20からユーザ装置100に設定することとしてよい。また、複数のスケーリング係数が予めユーザ装置100に設定されていて、上位レイヤシグナリングで基地局200からユーザ装置100に対し、当該スケーリング係数を使用することの設定がされることとしてもよい。なお、スケーリング係数を、既存の電力オフセット値に乗算することにより得られた結果が、整数でない場合には、小数点以下の切り捨て、あるいは小数点以下の四捨五入を行ってもよい。 For example, the scaling factor may be set from the base station 20 to the user apparatus 100 by higher layer signaling (eg, S102 in FIG. 7). Also, a plurality of scaling factors may be set in advance in the user apparatus 100, and the base station 200 may be configured to use the scaling factor for the user apparatus 100 in higher layer signaling. If the result obtained by multiplying the existing power offset value by the scaling factor is not an integer, truncation after the decimal point or rounding off after the decimal point may be performed.
 (実施例5)
 次に、実施例5について説明する。実施例5は、上り送信電力制御におけるOpen loop TPCに関わるパスロス補償に関する実施例である。すなわち、PUSCHを例にとると、下記の式1におけるα・PLの部分に注目する。
(Example 5)
Example 5 will now be described. The fifth embodiment is an embodiment related to path loss compensation related to Open loop TPC in uplink transmission power control. That is, when PUSCH is taken as an example, the portion of α · PL in the following equation 1 is focused.
 PPUSCH=10log10(MPUSCH)+PO_PUSCH+α・PL+ΔTF(TF(i))+f(i)....式1
 ユーザ装置100は、上記のパスロス(PL)を、「PL=(基地局から通知される参照信号送信電力)-(上位レイヤフィルタリング適用後のRSRP)」により算出する。ここで、上位レイヤフィルタリングは、例えば、非特許文献3にLayer 3 filteringとして規定されているフィルタリングであり、本実施の形態では上位レイヤフィルタリングは当該Layer 3 filteringであることを想定するが、上位レイヤフィルタリングは、これに限られるわけではない。
P PUSCH = 10 log 10 (M PUSCH ) + P O _ PUSCH + α · PL + Δ TF (TF (i)) + f (i). Formula 1
The user apparatus 100 calculates the above path loss (PL) by “PL = (reference signal transmission power notified from the base station) − (RSRP after upper layer filtering application)”. Here, upper layer filtering is, for example, filtering specified as Layer 3 filtering in Non-Patent Document 3, and in the present embodiment, upper layer filtering is assumed to be Layer 3 filtering, but upper layer filtering is assumed. Filtering is not limited to this.
 上位レイヤフィルタリングにおいて、ユーザ装置100は、下記の式4により、下りの参照信号の測定で得られたRSRPに対するフィルタリングを実施する。 In upper layer filtering, the user apparatus 100 performs filtering on RSRP obtained in measurement of the downlink reference signal according to Equation 4 below.
 F=(1-α)・Fn-1+α・M ...式4
 上記の式において、Mは、物理レイヤから受け取った直近の(最新の)測定結果(ここでは、ユーザ装置100が基地局200から受信した参照信号のRSRP)である。Fは、フィルタされた測定結果である。Fn-1は、古いフィルタされた結果である。Fは、M(最初の測定結果)に設定される。αは、1/2(k/4)であり、kは、UplinkPowerControl情報要素により基地局200から通知されるパラメータ(filterCoefficient)である。なお、本実施の形態においては、通知されるパラメータがαであってもよいし、kであってもよいし、αを決定するその他の値であってもよい。
F n = (1−α) · F n−1 + α · M n equation 4
In the above equation, Mn is the latest (latest) measurement result received from the physical layer (here, RSRP of the reference signal received by the user apparatus 100 from the base station 200). F n is the filtered measurement result. F n-1 is the old filtered result. F 0 is set to M 1 (first measurement result). α is 1/2 (k / 4) , and k is a parameter (filterCoefficient) notified from the base station 200 by the UplinkPowerControl information element. In the present embodiment, the parameter to be notified may be α, k, or any other value that determines α.
 実施例5においては、上記のパラメータとして複数のパラメータを上位レイヤシグナリングにより基地局200からユーザ装置100に設定し、ユーザ装置100は、各パラメータを使用したフィルタリングを実行し、フィルタリングにより得られた結果のうちの1つを上記のPLの算出に用い、上り送信電力制御に用いる。他の結果については、例えばMeasurement report等に用いる。 In the fifth embodiment, a plurality of parameters are set from the base station 200 to the user apparatus 100 by upper layer signaling as the above parameters, and the user apparatus 100 executes filtering using each parameter, and results obtained by filtering One of them is used for the above-mentioned calculation of PL, and used for uplink transmission power control. Other results are used, for example, in a measurement report.
 一例として、パラメータ1とパラメータ2が基地局200からユーザ装置100に設定された場合において、ユーザ装置100は、周期的に実施しているRSRP測定で得られたRSRPに対し、パラメータ1を使用したフィルタリング結果であるフィルタリング結果1と、パラメータ2を使用したフィルタリング結果であるフィルタリング結果2とを得て、いずれかを上り送信電力制御におけるPLとする。 As an example, in the case where parameter 1 and parameter 2 are set from the base station 200 to the user apparatus 100, the user apparatus 100 uses parameter 1 for RSRP obtained in RSRP measurement periodically performed. The filtering result 1 which is the filtering result and the filtering result 2 which is the filtering result using the parameter 2 are obtained, and one of them is set as PL in uplink transmission power control.
 ここで、αは0≦α≦1であるが、この範囲で、αが大きいほど、フィルタリング結果は、直近の結果が大きく反映される。すなわち、短い時間平均となる。 Here, α is 0 ≦ α ≦ 1, but in this range, the filtering result reflects the latest result more greatly as α is larger. That is, it is a short time average.
 そこで、実施例5においては、例えば、ユーザ装置100がドローンである場合(あるいは、基地局への見通しが良い場合)において、ユーザ装置100は、αが大きくなるパラメータを使用したフィルタリング結果をPLに使用する。これにより、急峻なパスロス変動に追随する送信電力制御が可能となる。 Therefore, in the fifth embodiment, for example, in the case where the user apparatus 100 is a drone (or when the line of sight to the base station is good), the user apparatus 100 sets the filtering result using the parameter in which α is large to PL. use. This enables transmission power control to follow steep path loss fluctuation.
 また、急峻なパスロス変動への追随を要しない送信電力制御、あるいは、モビリティ制御用の測定報告に関しては、ユーザ装置100は、通常のαとなるパラメータを使用したフィルタリング結果を使用する。これにより、モビリティへの悪影響を回避可能となる。 In addition, with regard to measurement reports for transmission power control or mobility control that does not require tracking of abrupt path loss fluctuation, the user apparatus 100 uses the filtering result using a parameter that is normal α. This makes it possible to avoid adverse effects on mobility.
 なお、上記のように、複数のパラメータを用いた複数のフィルタリングを同時に並行して行うことは一例である。用途に応じてパラメータを選択し、1つのパラメータを用いた1つのフィルタリングを行うこととしてもよい。 Note that, as described above, simultaneously performing a plurality of filtering processes using a plurality of parameters is one example. Parameters may be selected according to the application, and one filtering may be performed using one parameter.
 図17は、ドローン用に追加でパラメータが通知されることとする場合における実施例5のシーケンスを示す。図17を参照して動作例を説明する。 FIG. 17 shows the sequence of Example 5 in the case where an additional parameter is notified for the drone. An operation example will be described with reference to FIG.
 基地局200に接続したユーザ装置100は、S501において、自身の能力情報を基地局200に送信する。この能力情報には、例えば、ユーザ装置100がドローンの能力を有することを示す情報、あるいは、ユーザ装置100が、予め定めた特定種別のUEであること、あるいはユーザ装置100が特定の上り送信電力制御能力を有することを示す情報が含まれる。 The user apparatus 100 connected to the base station 200 transmits its own capability information to the base station 200 in S501. In this capability information, for example, information indicating that the user apparatus 100 has drone capability, or that the user apparatus 100 is a UE of a predetermined specific type, or the user apparatus 100 has a specific uplink transmission power It contains information indicating that it has control capability.
 基地局200は、S501で受信した能力情報に基づいて、ユーザ装置100が特定の上り送信電力制御能力を有すると判断し、特定の上り送信電力制御の適用が必要と判断すると、ユーザ装置固有(UE specific)のパラメータとして、上記の式4におけるαを通常よりも大きくするようなパラメータを上位レイヤシグナリング(例:RRCシグナリング)でユーザ装置100に送信する(S502)。ユーザ装置100は、S502で受信したパラメータを使用して、送信電力制御を実行する(S503)。 The base station 200 determines that the user equipment 100 has a specific uplink transmission power control capability based on the capability information received in S501 and determines that it is necessary to apply the specific uplink transmission power control, the user equipment specific ( As a parameter of UE specific), the parameter which makes alpha in above Formula 4 larger than usual is transmitted to the user apparatus 100 by upper layer signaling (example: RRC signaling) (S502). The user apparatus 100 executes transmission power control using the parameters received in S502 (S503).
 なお、図17に示す例では、S501の能力情報に基づいて、基地局200はUE specificなパラメータを設定するか否かを判断しているが、これは一例である。例えば、基地局200は、ユーザ装置100から受信する参照信号の受信電力に基づき、ユーザ装置100が見通しの良い場所に存在すると判断した場合に、ユーザ装置100に対してUE specificなパラメータを設定することとしてもよい。 Note that, in the example illustrated in FIG. 17, the base station 200 determines whether to set a UE-specific parameter based on the capability information of S501, but this is an example. For example, when the base station 200 determines that the user apparatus 100 exists in a location with good line-of-sight based on the received power of the reference signal received from the user apparatus 100, the base station 200 sets UE specific parameters for the user apparatus 100. You may do it.
 (装置構成)
 以上説明した実施の形態の動作を実行するユーザ装置100及び基地局200の機能構成例を説明する。ユーザ装置100及び基地局200はそれぞれ、本実施の形態で説明した全ての実施例の機能を備える。ただし、ユーザ装置100及び基地局200はそれぞれ、本実施の形態で説明した全ての実施例の中の一部の実施例の機能を備えることとしてもよい。
(Device configuration)
A functional configuration example of the user apparatus 100 and the base station 200 that execute the operation of the embodiment described above will be described. Each of the user apparatus 100 and the base station 200 has the functions of all the embodiments described in the present embodiment. However, each of the user apparatus 100 and the base station 200 may be provided with the functions of a part of all the examples described in the present embodiment.
 <ユーザ装置100>
 図18は、ユーザ装置100の機能構成の一例を示す図である。図18に示すように、ユーザ装置100は、信号送信部110と、信号受信部120と、設定情報管理部130と、送信電力制御部140を含む。図18に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
<User device 100>
FIG. 18 is a diagram showing an example of a functional configuration of the user apparatus 100. As shown in FIG. As shown in FIG. 18, the user apparatus 100 includes a signal transmission unit 110, a signal reception unit 120, a setting information management unit 130, and a transmission power control unit 140. The functional configuration shown in FIG. 18 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the functional unit may be arbitrary.
 信号送信部110は、上位レイヤの情報から下位レイヤの信号を生成し、当該信号を無線で送信するように構成されている。信号受信部120は、各種の信号を無線受信し、受信した信号から上位レイヤの情報を取得するように構成されている。信号受信部120は受信電力測定機能を含む。 The signal transmission unit 110 is configured to generate a signal of the lower layer from the information of the upper layer, and wirelessly transmit the signal. The signal receiving unit 120 is configured to wirelessly receive various signals and acquire information of the upper layer from the received signals. The signal receiving unit 120 includes a received power measurement function.
 設定情報管理部130は、予め設定される設定情報と、ダイナミック及び/又はセミスタティックに基地局200等から送信される設定情報とを格納する記憶部を有する。例えば、設定情報管理部130には、各種パラメータ、マッピングテーブル、スケーリング係数等が格納される。送信電力制御部140は、本実施の形態で説明した送信電力制御の動作を実行する。なお、送信電力制御部140が、信号送信部110及び/又は信号受信部120に含まれていてもよい。 The setting information management unit 130 has a storage unit that stores setting information set in advance and setting information dynamically and / or semi-statically transmitted from the base station 200 or the like. For example, the setting information management unit 130 stores various parameters, a mapping table, a scaling coefficient, and the like. The transmission power control unit 140 performs the transmission power control operation described in the present embodiment. The transmission power control unit 140 may be included in the signal transmission unit 110 and / or the signal reception unit 120.
 例えば、信号受信部120は、基地局から、送信電力制御コマンドのサイズを受信するように構成され、信号受信部と、送信電力制御部140は、送信電力制御コマンドの値と電力オフセット値との対応を示すテーブルであるマッピングテーブルにおける前記サイズに対応する部分テーブル、又は、前記サイズに対応する対応マッピングテーブルを使用して、送信電力制御を行うように構成される。前記信号受信部120は、複数の送信電力制御コマンドのビットを連結した連結送信電力制御コマンドを前記基地局から受信し、前記送信電力制御部140は、前記連結送信電力制御コマンドの値に対応する電力オフセット値を、前記部分テーブル又は前記対応マッピングテーブルから取得することとしてもよい。 For example, the signal receiving unit 120 is configured to receive the size of the transmission power control command from the base station, and the signal receiving unit and the transmission power control unit 140 are configured to receive the value of the transmission power control command and the power offset value. Transmission power control is performed using a partial table corresponding to the size in the mapping table, which is a table indicating correspondence, or a corresponding mapping table corresponding to the size. The signal receiving unit 120 receives, from the base station, a connected transmission power control command in which bits of a plurality of transmission power control commands are connected, and the transmission power control unit 140 corresponds to the value of the connected transmission power control command. The power offset value may be obtained from the partial table or the corresponding mapping table.
 また、例えば、信号受信部120は、送信電力制御コマンドの値と電力オフセット値との対応を示すマッピングテーブルの情報であって、前記ユーザ装置に固有のマッピングテーブルの情報を基地局から受信するように構成され、送信電力制御部140は、前記マッピングテーブルを使用して、送信電力制御を行うように構成される。 Also, for example, the signal receiving unit 120 may receive, from the base station, information of the mapping table specific to the user apparatus, which is information of the mapping table indicating the correspondence between the value of the transmission power control command and the power offset value. The transmission power control unit 140 is configured to perform transmission power control using the mapping table.
 信号受信部120は、電力オフセット値との対応を示すマッピングテーブルの情報であって、前記ユーザ装置に固有のスケーリング係数の情報を基地局から受信するように構成され、送信電力制御部140は、前記スケーリング係数を使用して、送信電力制御を行うように構成される。 The signal reception unit 120 is configured to receive from the base station information of a mapping coefficient that is a mapping table indicating correspondence with a power offset value, and that is specific to the user apparatus, and the transmission power control unit 140 The scaling factor is used to perform transmit power control.
 また、例えば、信号送信部110は、基地局に対して、前記ユーザ装置100の能力情報を送信するように構成され、前記基地局において、前記能力情報に基づいて、前記ユーザ装置が特定の種別のユーザ装置であると判定された場合に、前記信号受信部120は、前記マッピングテーブルを受信する。 Also, for example, the signal transmission unit 110 is configured to transmit the capability information of the user apparatus 100 to the base station, and in the base station, the type of the user apparatus is identified based on the capability information. The signal reception unit 120 receives the mapping table when it is determined that the user apparatus is
 また、例えば、信号受信部120は、基地局から、上り送信のための下り制御情報を受信するように構成され、送信電力制御部140は、前記下り制御情報における特定のフィールドの値に基づいて、送信電力制御コマンドの値と電力オフセット値との対応を示すマッピングテーブルを複数のマッピングテーブルの中から決定し、決定したマッピングテーブを使用して、送信電力制御を行うように構成される。 Also, for example, the signal receiving unit 120 is configured to receive, from the base station, downlink control information for uplink transmission, and the transmission power control unit 140 is configured based on the value of a specific field in the downlink control information. And a mapping table indicating correspondence between a value of the transmission power control command and a power offset value is determined from among the plurality of mapping tables, and transmission power control is performed using the determined mapping table.
 また、例えば、信号受信部120は、サブフレームセットと、当該サブフレームセットにおいて使用される、送信電力制御コマンドの値と電力オフセット値との対応を示すマッピングテーブルの情報を基地局から受信するように構成され、送信電力制御部140は、前記サブフレームセットに属するサブフレームにおいて、前記マッピングテーブルを使用して、送信電力制御を行うように構成される。 Also, for example, the signal receiving unit 120 may receive, from the base station, information of a subframe set, and a mapping table indicating a correspondence between a value of a transmission power control command and a power offset value used in the subframe set. The transmission power control unit 140 is configured to perform transmission power control using the mapping table in subframes belonging to the subframe set.
 また、例えば、信号受信部120は、基地局から受信する信号の受信電力を測定するように構成され、送信電力制御部140は、前記受信電力にフィルタリング処理を施し、当該フィルタリング処理が施された受信電力を用いてパスロスを算出し、当該パスロスを用いて送信電力制御を行うように構成され、前記信号受信部120は、前記基地局から前記フィルタリング処理に使用する複数のパラメータを受信し、前記送信電力制御部140は、前記複数のパラメータのうちの特定の1つのパラメータを用いたフィルタリング処理により得られた受信電力を用いて前記パスロスを算出する。 Also, for example, the signal receiving unit 120 is configured to measure the received power of the signal received from the base station, and the transmission power control unit 140 performs the filtering process on the received power, and the filtering process is performed. The path loss is calculated using received power, and transmission power control is performed using the path loss, and the signal receiving unit 120 receives a plurality of parameters used for the filtering process from the base station, The transmission power control unit 140 calculates the path loss using the reception power obtained by the filtering process using one specific parameter of the plurality of parameters.
 <基地局200>
 図19は、基地局200の機能構成の一例を示す図である。図19に示すように、基地局200は、信号送信部210と、信号受信部220と、スケジューリング部230と、設定情報管理部240を含む。
<Base station 200>
FIG. 19 is a diagram showing an example of a functional configuration of the base station 200. As shown in FIG. As shown in FIG. 19, the base station 200 includes a signal transmission unit 210, a signal reception unit 220, a scheduling unit 230, and a setting information management unit 240.
 図19に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。 The functional configuration shown in FIG. 19 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the functional unit may be arbitrary.
 信号送信部210は、上位レイヤの情報から下位レイヤの信号を生成し、当該信号を無線で送信するように構成されている。信号受信部220は、各種の信号を無線受信し、受信した信号から上位レイヤの情報を取得するように構成されている。また、信号送信部210は、設定情報管理部240から取得したマッピングテーブルの情報、各種のパラメータ等をユーザ装置100に送信する機能を含む。 The signal transmission unit 210 is configured to generate a signal of the lower layer from the information of the upper layer and wirelessly transmit the signal. The signal reception unit 220 is configured to wirelessly receive various signals and acquire information of the upper layer from the received signals. In addition, the signal transmission unit 210 includes a function of transmitting information of the mapping table acquired from the setting information management unit 240, various parameters, and the like to the user device 100.
 スケジューリング部230は、ユーザ装置100へのリソース割り当て等を行う。設定情報管理部240は記憶部を含み、予め設定される設定情報を格納するとともに、ダイナミック及び/又はセミスタティックにユーザ装置100に対して設定する設定情報を決定し、保持する機能を含む。 The scheduling unit 230 performs resource assignment to the user apparatus 100 and the like. The setting information management unit 240 includes a storage unit, stores the preset setting information, and has a function of determining and holding the setting information to be set to the user apparatus 100 dynamically and / or semi-statically.
 <ハードウェア構成>
 上記実施の形態の説明に用いたブロック図(図18~図19)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
<Hardware configuration>
The block diagrams (FIGS. 18 to 19) used in the description of the above embodiment show blocks in units of functions. These functional blocks (components) are realized by any combination of hardware and / or software. Moreover, the implementation means of each functional block is not particularly limited. That is, each functional block may be realized by one device physically and / or logically connected to a plurality of elements, or directly and two or more physically and / or logically separated devices. And / or indirectly (for example, wired and / or wirelessly) connected, and may be realized by the plurality of devices.
 また、例えば、本発明の一実施の形態におけるユーザ装置100と基地局200はいずれも、本実施の形態に係る処理を行うコンピュータとして機能してもよい。図20は、本実施の形態に係るユーザ装置100と基地局200のハードウェア構成の一例を示す図である。上述のユーザ装置100と基地局200はそれぞれ、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 Also, for example, both the user apparatus 100 and the base station 200 in the embodiment of the present invention may function as a computer that performs the process according to the present embodiment. FIG. 20 is a diagram showing an example of a hardware configuration of user apparatus 100 and base station 200 according to the present embodiment. Each of the above-described user device 100 and base station 200 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。ユーザ装置100と基地局200のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following description, the term "device" can be read as a circuit, a device, a unit, or the like. The hardware configuration of the user apparatus 100 and the base station 200 may be configured to include one or more of the devices indicated by 1001 to 1006 shown in the figure, or may be configured without including some devices. May be
 ユーザ装置100と基地局200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。 Each function in the user apparatus 100 and the base station 200 causes the processor 1001 to perform an operation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication by the communication apparatus 1004, the memory 1002 And by controlling the reading and / or writing of data in the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図18に示したユーザ装置100の信号送信部110、信号受信部120、設定情報管理部130、送信電力制御部140は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図19に示した基地局200の信号送信部210と、信号受信部220と、スケジューリング部230と、設定情報管理部240は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。 Also, the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these. As a program, a program that causes a computer to execute at least a part of the operations described in the above embodiments is used. For example, the signal transmission unit 110, the signal reception unit 120, the setting information management unit 130, and the transmission power control unit 140 of the user apparatus 100 illustrated in FIG. 18 are realized by a control program stored in the memory 1002 and operated by the processor 1001. May be Also, for example, a control program stored in the memory 1002 of the signal transmission unit 210, the signal reception unit 220, the scheduling unit 230, and the setting information management unit 240 of the base station 200 shown in FIG. It may be realized by The various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001. The processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done. The memory 1002 may be called a register, a cache, a main memory (main storage device) or the like. The memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the process according to the embodiment of the present invention.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used. The storage 1003 may be called an auxiliary storage device. The above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、ユーザ装置100の信号送信部110及び信号受信部120は、通信装置1004で実現されてもよい。また、基地局200の信号送信部210及び信号受信部220は、通信装置1004で実現されてもよい。 The communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like. For example, the signal transmission unit 110 and the signal reception unit 120 of the user apparatus 100 may be realized by the communication apparatus 1004. Also, the signal transmission unit 210 and the signal reception unit 220 of the base station 200 may be realized by the communication device 1004.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. The input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
 また、ユーザ装置100と基地局200はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。 The user apparatus 100 and the base station 200 each include a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
 (実施の形態のまとめ)
 以上、説明したように、本実施の形態によれば、少なくとも、下記の各項の技術が提供される。
(第1項)
 無線通信システムにおけるユーザ装置であって、
 基地局から、送信電力制御コマンドのサイズを受信する信号受信部と、
 送信電力制御コマンドの値と電力オフセット値との対応を示すテーブルであるマッピングテーブルにおける前記サイズに対応する部分テーブル、又は、前記サイズに対応する対応マッピングテーブルを使用して、送信電力制御を行う送信電力制御部と
 を備えることを特徴とするユーザ装置。
(Summary of the embodiment)
As described above, according to the present embodiment, at least the techniques described in the following items are provided.
(Section 1)
A user equipment in a wireless communication system,
A signal receiving unit for receiving a size of a transmission power control command from a base station;
Transmission that performs transmission power control using a partial table corresponding to the size in the mapping table, which is a table indicating the correspondence between the value of the transmission power control command and the power offset value, or the corresponding mapping table corresponding to the size And a power control unit.
 上記の構成により、パスロスが大きく変動する場合でも、ユーザ装置が適切に送信電力制御を行うことを可能とする技術が提供される。
(第2項)
 前記信号受信部は、複数の送信電力制御コマンドのビットを連結した連結送信電力制御コマンドを前記基地局から受信し、
 前記送信電力制御部は、前記連結送信電力制御コマンドの値に対応する電力オフセット値を、前記部分テーブル又は前記対応マッピングテーブルから取得する
 ことを特徴とする第1項に記載のユーザ装置。
The above configuration provides a technology that enables the user apparatus to appropriately perform transmission power control even when the path loss fluctuates significantly.
(Section 2)
The signal receiving unit receives, from the base station, a connected transmission power control command in which bits of a plurality of transmission power control commands are connected.
The user apparatus according to claim 1, wherein the transmission power control unit acquires a power offset value corresponding to a value of the coupled transmission power control command from the partial table or the correspondence mapping table.
 上記の構成により、ユーザ装置は、レンジの大きな送信電力制御コマンドに基づき送信電力制御を行うことができる。
(第3項)
 無線通信システムにおけるユーザ装置であって、
 送信電力制御コマンドの値と電力オフセット値との対応を示すマッピングテーブルの情報であって、前記ユーザ装置に固有のマッピングテーブルの情報を基地局から受信する信号受信部と、
 前記マッピングテーブルを使用して、送信電力制御を行う送信電力制御部と
 を備えることを特徴とするユーザ装置。
With the above configuration, the user apparatus can perform transmission power control based on a large range transmission power control command.
(Section 3)
A user equipment in a wireless communication system,
A signal receiving unit that is information of a mapping table indicating correspondence between a value of a transmission power control command and a power offset value, the information of the mapping table unique to the user apparatus from the base station;
And a transmission power control unit configured to perform transmission power control using the mapping table.
 上記の構成により、パスロスが大きく変動する場合でも、ユーザ装置が適切に送信電力制御を行うことを可能とする技術が提供される。
(第4項)
 前記基地局に対して、前記ユーザ装置の能力情報を送信する信号送信部を更に備え、
 前記基地局において、前記能力情報に基づいて、前記ユーザ装置が特定の種別のユーザ装置であると判定された場合に、前記信号受信部は、前記マッピングテーブルを受信する
 ことを特徴とする第3項に記載のユーザ装置。
The above configuration provides a technology that enables the user apparatus to appropriately perform transmission power control even when the path loss fluctuates significantly.
(Section 4)
The base station further comprises a signal transmission unit that transmits capability information of the user apparatus to the base station,
When the base station determines that the user apparatus is a user apparatus of a specific type based on the capability information, the signal reception unit receives the mapping table. User equipment according to clause.
 上記の構成により、ユーザ装置は、例えば、ドローンのような特定の機能を持つ場合に、当該特定の機能に適合した送信電力制御を行うことができる。
(第5項)
 無線通信システムにおけるユーザ装置が実行する送信電力制御方法であって、
 基地局から、送信電力制御コマンドのサイズを受信するステップと、
 送信電力制御コマンドの値と電力オフセット値との対応を示すテーブルであるマッピングテーブルにおける前記サイズに対応する部分テーブル、又は、前記サイズに対応する対応マッピングテーブルを使用して、送信電力制御を行うステップと
 を備えることを特徴とする送信電力制御方法。
(第6項)
 無線通信システムにおけるユーザ装置が実行する送信電力制御方法であって、
 送信電力制御コマンドの値と電力オフセット値との対応を示すマッピングテーブルの情報であって、前記ユーザ装置に固有のマッピングテーブルの情報を基地局から受信するステップと、
 前記マッピングテーブルを使用して、送信電力制御を行うステップと
 を備えることを特徴とする送信電力制御方法。
(第7項)
 無線通信システムにおけるユーザ装置であって、
 基地局から、上り送信のための下り制御情報を受信する信号受信部と、
 前記下り制御情報における特定のフィールドの値に基づいて、送信電力制御コマンドの値と電力オフセット値との対応を示すマッピングテーブルを複数のマッピングテーブルの中から決定し、決定したマッピングテーブを使用して、送信電力制御を行う送信電力制御部と
 を備えることを特徴とするユーザ装置。
(第8項)
 無線通信システムにおけるユーザ装置であって、
 サブフレームセットと、当該サブフレームセットにおいて使用される、送信電力制御コマンドの値と電力オフセット値との対応を示すマッピングテーブルの情報を基地局から受信する信号受信部と、
 前記サブフレームセットに属するサブフレームにおいて、前記マッピングテーブルを使用して、送信電力制御を行う送信電力制御部と
 を備えることを特徴とするユーザ装置。
(第9項)
 無線通信システムにおけるユーザ装置であって、
 基地局から受信する信号の受信電力を測定する信号受信部と、
 前記受信電力にフィルタリング処理を施し、当該フィルタリング処理が施された受信電力を用いてパスロスを算出し、当該パスロスを用いて送信電力制御を行う送信電力制御部と、を備え、
 前記信号受信部は、前記基地局から前記フィルタリング処理に使用する複数のパラメータを受信し、前記送信電力制御部は、前記複数のパラメータのうちの特定の1つのパラメータを用いたフィルタリング処理により得られた受信電力を用いて前記パスロスを算出する
 ことを特徴とするユーザ装置。
With the above configuration, when having a specific function such as, for example, a drone, the user apparatus can perform transmission power control adapted to the specific function.
(Section 5)
A transmission power control method performed by a user apparatus in a wireless communication system, comprising:
Receiving from the base station the size of the transmit power control command;
Performing transmission power control using a partial table corresponding to the size in the mapping table, which is a table indicating the correspondence between the value of the transmission power control command and the power offset value, or the corresponding mapping table corresponding to the size And a transmission power control method characterized by comprising:
(Section 6)
A transmission power control method performed by a user apparatus in a wireless communication system, comprising:
Receiving, from a base station, information of a mapping table specific to the user equipment, which is information of a mapping table indicating a correspondence between a value of a transmission power control command and a power offset value;
Performing transmission power control using the mapping table.
(Section 7)
A user equipment in a wireless communication system,
A signal receiving unit for receiving downlink control information for uplink transmission from a base station;
Based on the value of a specific field in the downlink control information, a mapping table indicating the correspondence between the value of the transmission power control command and the power offset value is determined from among a plurality of mapping tables, and using the determined mapping table And a transmission power control unit that performs transmission power control.
(Section 8)
A user equipment in a wireless communication system,
A signal reception unit that receives, from a base station, a subframe set, and a mapping table information indicating a correspondence between a value of a transmission power control command and a power offset value, which is used in the subframe set;
And a transmission power control unit configured to perform transmission power control using the mapping table in subframes belonging to the subframe set.
(Section 9)
A user equipment in a wireless communication system,
A signal receiving unit that measures the received power of a signal received from a base station;
A transmission power control unit that performs filtering processing on the reception power, calculates path loss using the reception power subjected to the filtering processing, and performs transmission power control using the path loss;
The signal reception unit receives a plurality of parameters used for the filtering process from the base station, and the transmission power control unit is obtained by a filtering process using one specific parameter of the plurality of parameters. And calculating the path loss using received power.
 上記の第5項~第9項のいずれの構成によっても、パスロスが大きく変動する場合でも、ユーザ装置が適切に送信電力制御を行うことを可能とする技術が提供される。 With any of the configurations of the above-mentioned items 5 to 9, there is provided a technique which enables the user apparatus to appropriately perform the transmission power control even when the path loss greatly fluctuates.
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、ユーザ装置100と基地局200は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置100が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局200が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
(Supplement of the embodiment)
Although the embodiments of the present invention have been described above, the disclosed invention is not limited to such embodiments, and those skilled in the art should understand various modifications, modifications, alternatives, replacements, and the like. I will. Although specific numerical examples are used to facilitate understanding of the invention, unless otherwise noted, those numerical values are merely examples and any appropriate values may be used. The division of items in the above description is not essential to the present invention, and the items described in two or more items may be used in combination as necessary, and the items described in one item may be used in another item. It may be applied to the matters described in (unless contradictory). The boundaries of the functional units or processing units in the functional block diagram do not necessarily correspond to the boundaries of physical parts. The operations of multiple functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by multiple components. With regard to the processing procedures described in the embodiment, the order of processing may be changed as long as there is no contradiction. Although the user apparatus 100 and the base station 200 have been described using functional block diagrams for the convenience of the processing description, such an apparatus may be realized in hardware, software or a combination thereof. The software operated by the processor of the user apparatus 100 according to the embodiment of the present invention and the software operated by the processor of the base station 200 according to the embodiment of the present invention are random access memory (RAM), flash memory, read only It may be stored in memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods. For example, notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof. Also, RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。 Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band), The present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。 As long as there is no contradiction, the processing procedure, sequence, flow chart, etc. of each aspect / embodiment described in this specification may be reversed. For example, for the methods described herein, elements of the various steps are presented in an exemplary order and are not limited to the particular order presented.
 本明細書において基地局200によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局200を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置100との通信のために行われる様々な動作は、基地局200および/または基地局200以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局200以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。 The specific operation supposed to be performed by the base station 200 in this specification may be performed by the upper node in some cases. In a network of one or more network nodes having a base station 200, various operations performed for communication with the user equipment 100 may be performed by the base station 200 and / or other than the base station 200. It is clear that it may be done by a network node (for example but not limited to MME or S-GW etc). Although the case where one other network node other than the base station 200 has been illustrated above is illustrated, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。 Each aspect / embodiment described in this specification may be used alone, may be used in combination, and may be switched and used along with execution.
 ユーザ装置100は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 The user equipment 100 may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, by those skilled in the art. It may also be called a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
 基地局200は、当業者によって、NB(NodeB)、eNB(enhanced NodeB)、ベースステーション(Base Station)、またはいくつかの他の適切な用語で呼ばれる場合もある。 Base station 200 may also be referred to by those skilled in the art in terms of NB (Node B), eNB (enhanced Node B), Base Station, or some other suitable terminology.
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。 The terms "determining", "determining" as used herein may encompass a wide variety of operations. "Judgment", "decision" are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc. Also, "determination" and "determination" are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (Accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”. Also, "judgement" and "decision" are to be considered as "judgement" and "decision" that they have resolved (resolving), selecting (selecting), choosing (choosing), establishing (establishing), etc. May be included. That is, "judgment" "decision" may include considering that some action is "judged" "decision".
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 As used herein, the phrase "based on" does not mean "based only on," unless expressly stated otherwise. In other words, the phrase "based on" means both "based only on" and "based at least on."
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 As long as "includes", "including", and variations thereof are used in the present specification or claims, these terms as well as the term "comprising" Is intended to be comprehensive. Further, it is intended that the term "or" as used in the present specification or in the claims is not an exclusive OR.
 本開示の全体において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。 Throughout the present disclosure, when articles are added by translation, such as, for example, a, an, and the in English, these articles are not clearly indicated by the context: May contain multiple things.
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。 Although the present invention has been described above in detail, it is apparent to those skilled in the art that the present invention is not limited to the embodiments described herein. The present invention can be embodied as modifications and alterations without departing from the spirit and scope of the present invention defined by the description of the claims. Accordingly, the description in the present specification is for the purpose of illustration and does not have any limiting meaning on the present invention.
100 ユーザ装置
110 信号送信部
120 信号受信部
130 設定情報管理部
140 送信電力制御部
200 基地局
210 信号送信部
220 信号受信部
230 スケジューリング部
240 設定情報管理部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置
100 user apparatus 110 signal transmitting unit 120 signal receiving unit 130 setting information managing unit 140 transmission power control unit 200 base station 210 signal transmitting unit 220 signal receiving unit 230 scheduling unit 240 setting information managing unit 1001 processor 1002 memory 1003 storage 1004 storage 1004 communication device 1005 Input device 1006 Output device

Claims (5)

  1.  無線通信システムにおけるユーザ装置であって、
     基地局から、送信電力制御コマンドのサイズを受信する信号受信部と、
     送信電力制御コマンドの値と電力オフセット値との対応を示すテーブルであるマッピングテーブルにおける前記サイズに対応する部分テーブル、又は、前記サイズに対応する対応マッピングテーブルを使用して、送信電力制御を行う送信電力制御部と
     を備えることを特徴とするユーザ装置。
    A user equipment in a wireless communication system,
    A signal receiving unit for receiving a size of a transmission power control command from a base station;
    Transmission that performs transmission power control using a partial table corresponding to the size in the mapping table, which is a table indicating the correspondence between the value of the transmission power control command and the power offset value, or the corresponding mapping table corresponding to the size And a power control unit.
  2.  前記信号受信部は、複数の送信電力制御コマンドのビットを連結した連結送信電力制御コマンドを前記基地局から受信し、
     前記送信電力制御部は、前記連結送信電力制御コマンドの値に対応する電力オフセット値を、前記部分テーブル又は前記対応マッピングテーブルから取得する
     ことを特徴とする請求項1に記載のユーザ装置。
    The signal receiving unit receives, from the base station, a connected transmission power control command in which bits of a plurality of transmission power control commands are connected.
    The user apparatus according to claim 1, wherein the transmission power control unit acquires a power offset value corresponding to a value of the connected transmission power control command from the partial table or the correspondence mapping table.
  3.  無線通信システムにおけるユーザ装置であって、
     送信電力制御コマンドの値と電力オフセット値との対応を示すマッピングテーブルの情報であって、前記ユーザ装置に固有のマッピングテーブルの情報を基地局から受信する信号受信部と、
     前記マッピングテーブルを使用して、送信電力制御を行う送信電力制御部と
     を備えることを特徴とするユーザ装置。
    A user equipment in a wireless communication system,
    A signal receiving unit that is information of a mapping table indicating correspondence between a value of a transmission power control command and a power offset value, the information of the mapping table unique to the user apparatus from the base station;
    And a transmission power control unit configured to perform transmission power control using the mapping table.
  4.  無線通信システムにおけるユーザ装置が実行する送信電力制御方法であって、
     基地局から、送信電力制御コマンドのサイズを受信するステップと、
     送信電力制御コマンドの値と電力オフセット値との対応を示すテーブルであるマッピングテーブルにおける前記サイズに対応する部分テーブル、又は、前記サイズに対応する対応マッピングテーブルを使用して、送信電力制御を行うステップと
     を備えることを特徴とする送信電力制御方法。
    A transmission power control method performed by a user apparatus in a wireless communication system, comprising:
    Receiving from the base station the size of the transmit power control command;
    Performing transmission power control using a partial table corresponding to the size in the mapping table, which is a table indicating the correspondence between the value of the transmission power control command and the power offset value, or the corresponding mapping table corresponding to the size And a transmission power control method characterized by comprising:
  5.  無線通信システムにおけるユーザ装置が実行する送信電力制御方法であって、
     送信電力制御コマンドの値と電力オフセット値との対応を示すマッピングテーブルの情報であって、前記ユーザ装置に固有のマッピングテーブルの情報を基地局から受信するステップと、
     前記マッピングテーブルを使用して、送信電力制御を行うステップと
     を備えることを特徴とする送信電力制御方法。
    A transmission power control method performed by a user apparatus in a wireless communication system, comprising:
    Receiving, from a base station, information of a mapping table specific to the user equipment, which is information of a mapping table indicating a correspondence between a value of a transmission power control command and a power offset value;
    Performing transmission power control using the mapping table.
PCT/JP2017/039820 2017-11-02 2017-11-02 User device, and transmission power control method WO2019087369A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039820 WO2019087369A1 (en) 2017-11-02 2017-11-02 User device, and transmission power control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/039820 WO2019087369A1 (en) 2017-11-02 2017-11-02 User device, and transmission power control method

Publications (1)

Publication Number Publication Date
WO2019087369A1 true WO2019087369A1 (en) 2019-05-09

Family

ID=66331696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/039820 WO2019087369A1 (en) 2017-11-02 2017-11-02 User device, and transmission power control method

Country Status (1)

Country Link
WO (1) WO2019087369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114375599A (en) * 2019-09-29 2022-04-19 联想(北京)有限公司 Method and apparatus for power control

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173937A (en) * 2004-12-15 2006-06-29 Nec Corp Radio communication device, and its transmitted power control method and program
WO2010146971A1 (en) * 2009-06-16 2010-12-23 シャープ株式会社 Mobile station device, base station device, radio communication method and communication program
JP2013516871A (en) * 2010-01-11 2013-05-13 パナソニック株式会社 Transmit power control signaling for communication systems using carrier aggregation
JP2013123141A (en) * 2011-12-12 2013-06-20 Sharp Corp Base station, terminal, communication system, and communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173937A (en) * 2004-12-15 2006-06-29 Nec Corp Radio communication device, and its transmitted power control method and program
WO2010146971A1 (en) * 2009-06-16 2010-12-23 シャープ株式会社 Mobile station device, base station device, radio communication method and communication program
JP2013516871A (en) * 2010-01-11 2013-05-13 パナソニック株式会社 Transmit power control signaling for communication systems using carrier aggregation
JP2013123141A (en) * 2011-12-12 2013-06-20 Sharp Corp Base station, terminal, communication system, and communication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Potential enhancements for UAV interference problem", 3GPP TSG-RAN WG2 MEETING #98 R2-1705426, 5 May 2017 (2017-05-05), pages 1 - 3, XP051264042, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_98/Docs/R2-1705426.zip> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114375599A (en) * 2019-09-29 2022-04-19 联想(北京)有限公司 Method and apparatus for power control

Similar Documents

Publication Publication Date Title
KR102352689B1 (en) Power control method, terminal device and network device
KR101931849B1 (en) Radio network node, user equipment and methods therein
JP7533876B2 (en) Terminal, communication system, and communication method
EP2757844B1 (en) Method and device for allocating multi-radio remote unit co-cell resources
JP7669612B2 (en) Terminal, communication system, and communication method
CN111182619B (en) Method and equipment for controlling uplink power
CN110291818B (en) User terminal and wireless communication method
TWI824030B (en) Terminal, wireless communication method, base station, and system
CN114223271B (en) Terminal, wireless communication method, base station and system
US11368915B2 (en) Systems and methods for fast uplink power control
CN114175761A (en) Terminal and wireless communication method
US20170013472A1 (en) Method and apparatus for transmitting pattern information
WO2019030913A1 (en) User equipment and radio communication method
WO2018203402A1 (en) User device and base station
US20240080148A1 (en) Csi measurement resource processing method and apparatus, terminal, and readable storage medium
WO2021149260A1 (en) Terminal, wireless communication method, and base station
JPWO2019142330A1 (en) User terminal and wireless communication method
JP7652366B2 (en) Communication device and communication method
WO2019159328A1 (en) User device and wireless communications method
CN118160367A (en) Terminal, wireless communication method and base station
WO2021068946A1 (en) Methods and systems for control resource set and search space set management
WO2019087369A1 (en) User device, and transmission power control method
WO2022009427A1 (en) Terminal, wireless communication method, and base station
WO2021014546A1 (en) Terminal and communication method
US11184844B2 (en) User terminal and cell selection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载