WO2019083039A1 - カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス - Google Patents
カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネスInfo
- Publication number
- WO2019083039A1 WO2019083039A1 PCT/JP2018/039981 JP2018039981W WO2019083039A1 WO 2019083039 A1 WO2019083039 A1 WO 2019083039A1 JP 2018039981 W JP2018039981 W JP 2018039981W WO 2019083039 A1 WO2019083039 A1 WO 2019083039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire
- cnt
- carbon nanotube
- composite wire
- twist
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/04—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/0036—Details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B5/00—Non-insulated conductors or conductive bodies characterised by their form
- H01B5/08—Several wires or the like stranded in the form of a rope
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/0009—Details relating to the conductive cores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the present invention provides a carbon nanotube composite wire formed by twisting together a plurality of carbon nanotube wires composed of a plurality of carbon nanotubes, a carbon nanotube coated electric wire wherein the carbon nanotube composite wire is coated with an insulating material, and a wire having the coated electric wire. It relates to the harness.
- Carbon nanotubes (hereinafter sometimes referred to as "CNT") are materials having various properties, and their application in many fields is expected.
- CNT is a single layer of a tubular body having a network structure of a hexagonal lattice, or a three-dimensional network structure composed of multiple layers arranged substantially coaxially, which is lightweight, conductive, and thermally conductive. Excellent in various properties such as flexibility and mechanical strength. However, it is not easy to wire CNTs, and no technology has been proposed for utilizing CNTs as wires.
- a carbon nanotube material in which a conductive deposit made of metal or the like is formed at the electrical junction of adjacent CNT wires, such carbon It is disclosed that nanotube materials can be applied to a wide range of applications (Patent Document 2). Moreover, the heater which has a heat conductive member made from the matrix of a carbon nanotube is proposed from the outstanding thermal conductivity which a CNT wire has (patent document 3).
- an electric wire made of a core wire made of one or a plurality of wires and an insulation coating which covers the core wire is used.
- a material of the wire which comprises a core wire although a copper or copper alloy is usually used from a viewpoint of an electrical property, aluminum or an aluminum alloy is proposed from a viewpoint of weight reduction in recent years.
- the specific gravity of aluminum is about 1/3 of the specific gravity of copper
- the conductivity of aluminum is about 2/3 of that of copper (based on 100% IACS for pure copper, about 66% IACS for pure aluminum)
- the object of the present invention is to achieve further weight reduction as compared with a wire mainly composed of a core wire made of metal such as copper and aluminum, and to achieve both good bending resistance and handling property.
- An object of the present invention is to provide a carbon nanotube composite wire, a carbon nanotube coated electric wire and a wire harness which can be produced.
- the present inventors produced a carbon nanotube wire comprising a plurality of carbon nanotube aggregates composed of a plurality of carbon nanotubes, and further, the carbon nanotube wire It finds that using a carbon nanotube composite wire as an electric wire by twisting a plurality of wires, in particular, the degree of twisting of a plurality of carbon nanotube aggregates forming the carbon nanotube wire, and a plurality of carbon nanotube wires forming the carbon nanotube composite wire.
- various properties such as conductivity and bending resistance of a carbon nanotube composite wire are different depending on the degree of twisting or a combination of twisting methods, and the present invention has been completed based on such knowledge.
- the gist configuration of the present invention is as follows.
- a carbon nanotube composite wire in which a plurality of carbon nanotube wires formed by bundling a plurality of carbon nanotube aggregates composed of a plurality of carbon nanotubes are twisted together A carbon nanotube composite wire, wherein at least one of the twist number t1 of the carbon nanotube wire and the twist number t2 of the carbon nanotube composite wire is 1000 T / m or more.
- the equivalent circle diameter of the carbon nanotube wire is 20 ⁇ m or more and 200 ⁇ m
- the equivalent circle diameter of the carbon nanotube composite wire is 0.1 mm or more and 60 mm or less
- the carbon nanotube composite wire according to [1], wherein the number of the carbon nanotube wire constituting the carbon nanotube composite wire is 15 or more and 5000 or less.
- the twist number t1 of the carbon nanotube wire is more than 0 and less than 500 T / m
- the twist number t2 of the carbon nanotube composite wire is 1000 T / m or more and less than 2500 T / m
- the twist number t1 of the carbon nanotube wire is 500 T / m or more and less than 1000 T / m
- the twist number t2 of the carbon nanotube composite wire is 1000 T / m or more and less than 2500 T / m
- Carbon nanotube composite wire is 500 T / m or more and less than 1000 T / m
- the twist number t2 of the carbon nanotube composite wire is 1000 T / m or more and less than 2500 T / m
- the above-mentioned [1] wherein the twisting direction d1 of the carbon nanotube wire is one of S direction and Z direction, and the twisting direction d2 of the carbon nanotube composite wire is the same as the twisting direction of the carbon nanotube wire.
- the twist number t1 of the carbon nanotube wire is not less than 1000 T / m and less than 2500 T / m
- the twist number t2 of the carbon nanotube composite wire is more than 0 and less than 1000 T / m
- the twist number t1 of the carbon nanotube wire is 2500 T / m or more,
- the twist number t2 of the carbon nanotube composite wire is more than 0 and less than 500 T / m,
- Carbon nanotube composite wire [7] Any of [1] to [6], wherein the equivalent circle diameter of the carbon nanotube wire is 0.01 mm to 30 mm, and the equivalent circle diameter of the carbon nanotube composite wire is 0.1 mm to 60 mm.
- a carbon nanotube coated electric wire comprising the carbon nanotube composite wire according to any one of the above [1] to [7], and an insulating coating layer provided on the outer periphery of the carbon nanotube composite wire.
- a wire harness comprising the carbon nanotube coated wire according to the above [8].
- the stress generated when an external force acts is dispersed by twisting to concentrate stress.
- the shape of the carbon nanotube composite wire can be easily maintained in the axial direction, and it is possible to realize both good bending resistance and handling.
- a carbon nanotube wire has a significantly higher tensile strength than a wire made of copper, aluminum or the like, and a strong twisting process with a large number of twists can be applied to the carbon nanotube wire.
- a stranded wire having a high degree of twisting can be produced.
- twist number t1 of the carbon nanotube wire is more than 0 and less than 500 T / m
- twist number t2 of the carbon nanotube composite wire is not less than 1000 T / m and less than 2500 T / m
- twist direction d1 of the carbon nanotube wire Is one of the S direction and the Z direction
- the twist direction d2 of the carbon nanotube composite wire is the same as the twist direction of the carbon nanotube wire
- the twist number t1 of the carbon nanotube wire is 500 T / m or more
- the carbon nanotube composite wire has a twist number t2 of 1000 T / m or more and less than 2500 T / m
- a twist direction d1 of the carbon nanotube wire is one of S direction and Z direction
- carbon nanotube Twisting direction d2 of the composite wire is the twisting direction of the carbon nanotube wire It is the same, it is possible to realize both good flexibility and handling properties.
- twist number t1 of the carbon nanotube wire is not less than 1000 T / m and less than 2500 T / m
- twist number t2 of the carbon nanotube composite wire is more than 0 and less than 1000 T / m
- twist direction d1 of the carbon nanotube wire Is one of the S direction and the Z direction
- the twist direction d2 of the carbon nanotube composite wire is the same as the twist direction of the carbon nanotube wire
- the twist number t1 of the carbon nanotube wire is 2500 T / M or more
- the twist number t2 of the carbon nanotube composite wire is more than 0 and less than 500 T / m
- the twist direction d1 of the carbon nanotube wire is one of the S direction and the Z direction
- the carbon nanotube composite wire As the twisting direction d2 of is the same as the twisting direction of the carbon nanotube wire It is possible to realize both good flexibility and handling properties.
- a carbon nanotube coated electric wire (hereinafter sometimes referred to as “CNT coated electric wire”) 1 according to an embodiment of the present invention is a carbon nanotube composite wire (hereinafter referred to as “CNT complex wire” 2) has a configuration in which the insulating coating layer 21 is coated on the outer peripheral surface of the second embodiment. That is, the insulating covering layer 21 is coated along the longitudinal direction of the CNT composite wire 2.
- the insulating covering layer 21 is in an aspect in direct contact with the outer peripheral surface of the CNT composite wire 2.
- the CNT composite wire 2 is formed by twisting a plurality of CNT wires 10 together.
- the equivalent circle diameter of the CNT composite wire 2 is preferably 0.1 mm or more, and more preferably 0.1 mm or more and 60 mm or less. Further, the number of CNT wires 10 (wires) constituting the CNT composite wire 2 is, for example, 14 or more and 10000 or less.
- twisting direction of the CNT composite wire 2 for example, an S direction as shown in FIG. 2 (a) or a Z direction as shown in FIG. 2 (b) can be mentioned.
- the S direction refers to the direction of twisting when the lower end is twisted clockwise (clockwise) with respect to the central axis of the CNT composite wire 2 with the upper end of the upper and lower ends of the CNT wire 10 fixed.
- Z direction a twist that occurs when the lower end is twisted counterclockwise (counterclockwise) with respect to the central axis of the CNT composite line 2 in a state in which the upper end of the upper and lower ends of the CNT composite line 2 is fixed.
- the twisting direction of the CNT composite wire 2 is d2. The degree of twist of the CNT composite wire 2 will be described later.
- the CNT wire 10 is formed by bundling a plurality of CNT aggregates 11 composed of a plurality of CNTs 11a, 11a,... Having a layer structure of one or more layers.
- the state in which the CNT assembly 11 is bundled means both the case where the CNT wire 10 has a twist and the case where the CNT wire 10 has no twist or substantially no twist.
- the CNT wire refers to a CNT wire having a ratio of CNT of 90% by mass or more, in other words, a CNT wire having less than 10% by mass of impurities.
- the mass of plating and a dopant is remove
- the twist direction of the CNT wire 10 As the twist direction of the CNT wire 10, as in the CNT composite wire 2, an S direction as shown in FIG. 4 (a) or a Z direction as shown in FIG. 4 (b) can be mentioned. That is, the S direction and the Z direction of the CNT wire 10 are the same as the S direction and the Z direction which are the twist directions of the CNT composite wire 2 respectively.
- the twisting direction of the CNT wire 10 is set to d1.
- the longitudinal direction of the CNT assembly 11 and the longitudinal direction of the CNT wire 10 include the same or substantially the same state. That is, the CNT wire 10 includes what is bundled in the state which two or more of the CNT assembly 11 were not twisted together.
- the circle equivalent diameter of the CNT wire 10 is, for example, 20 ⁇ m or more and 200 ⁇ m or less. The degree of twist of the CNT wire 10 will be described later.
- the CNT assembly 11 is a bundle of CNTs 11 a having a layer structure of one or more layers.
- the longitudinal direction of the CNTs 11 a forms the longitudinal direction of the CNT assembly 11.
- the plurality of CNTs 11a, 11a,... In the CNT assembly 11 are arranged substantially in the same longitudinal direction. Therefore, the plurality of CNTs 11a, 11a,... In the CNT aggregate 11 are oriented.
- the equivalent circle diameter of the CNT assembly 11 is, for example, 20 nm or more and 1000 nm or less, and more typically 20 nm or more and 80 nm or less.
- the width dimension of the outermost layer of the CNTs 11 a is, for example, 1.0 nm or more and 5.0 nm or less.
- the CNTs 11 a constituting the CNT assembly 11 are cylindrical bodies having a single-layer structure or a multi-layer structure, and are respectively referred to as SWNT (single-walled nanotubes) and MWNT (multi-walled nanotubes).
- SWNT single-walled nanotubes
- MWNT multi-walled nanotubes
- FIG. 3 for convenience, only the CNTs 11 a having a two-layer structure are described, but the CNT aggregate 11 includes CNTs having a three-layer structure or more and a CNT having a single-layer structure. It may be formed of CNT having a layer structure of three or more layer structure or CNT having a layer structure of single layer structure.
- the CNT 11a having a two-layer structure is a three-dimensional network structure in which two cylindrical bodies T1 and T2 having a network structure of a hexagonal lattice are arranged substantially coaxially, and is called DWNT (Double-walled nanotube) .
- the hexagonal lattice which is a structural unit, is a six-membered ring having carbon atoms disposed at its apex, and these adjacent six-membered rings are continuously bonded.
- the properties of the CNTs 11a depend on the chirality of the above-mentioned cylindrical body.
- the chirality is roughly classified into an armchair type, a zigzag type, and a chiral type.
- the armchair type is metallic
- the zigzag type is semiconductive and semimetallic
- the chiral type is semiconductive and semimetallic. Therefore, the conductivity of the CNTs 11a largely differs depending on which chirality the tubular body has.
- the chiral CNTs 11a exhibit metallic behavior by doping the chiral CNTs 11a exhibiting a semiconducting behavior with a material having an electron donating property or an electron accepting property (different element).
- the doping of different elements causes scattering of conduction electrons inside the metal to lower the conductivity, but similar to this, the CNT 11a showing metallic behavior is doped with different elements. If it does, it causes a decrease in conductivity.
- the doping effects on the CNTs 11a showing the behavior of the metal and the CNTs 11a showing the behavior of the semiconductivity are in a trade-off relationship from the viewpoint of the conductivity, and thus the behavior of the metal theoretically appears. It is desirable that the CNTs 11a and the CNTs 11a exhibiting the behavior of the semiconductor property are separately manufactured, and the doping process is performed only on the CNTs 11a exhibiting the behavior of the semiconductor property, and then these are combined.
- a CNT having a smaller number of layers such as a two-layer structure or a three-layer structure
- a CNT having a larger number of layers is relatively more conductive than a CNT having a larger number of layers, and when doped, the two-layer structure or three layers
- the doping effect in the structured CNT is the highest. Therefore, in order to further improve the conductivity of the CNT wire 10, it is preferable to increase the proportion of CNTs having a two-layer structure or a three-layer structure.
- the ratio of CNTs having a two-layer structure or a three-layer structure to the entire CNTs is preferably 50 number% or more, and more preferably 75 number% or more.
- the proportion of CNTs having a two-layer structure or a three-layer structure can be determined by observing and analyzing the cross section of the CNT assembly 11 with a transmission electron microscope (TEM) and measuring a predetermined number of arbitrary CNTs within the range of 50 to 200. It can be calculated by selecting and measuring the number of layers of each CNT.
- TEM transmission electron microscope
- the diameter distribution of the plurality of CNTs 11a is narrow in the CNT aggregate 11 based on the measured values of the lattice constant estimated from the (10) peak and the CNT diameters observed by Raman spectroscopy or TEM, and the plurality of CNTs 11a , 11a,... Can be said to form a hexagonal close-packed structure by having regular arrangement, that is, having good orientation. Therefore, the charge in the CNT aggregate 11 easily flows along the longitudinal direction of the CNTs 11a, and the conductivity is further improved. In addition, the heat of the CNT assembly 11 is easily dissipated while being smoothly transmitted along the longitudinal direction of the CNTs 11 a.
- the orientation of the CNT aggregate 11 and the CNTs 11, and the arrangement structure and density of the CNTs 11a can be adjusted by appropriately selecting the spinning method such as dry spinning and wet spinning described later and the spinning conditions of the spinning method. .
- the degree of twist of the CNT composite wire 2 and the CNT wire 10 can be classified into any of sweet twist, mid twist, strong twist, and extra-strong twist.
- Sweet twist refers to a value in the range of greater than 0 and less than 500 T / m
- mid twist refers to a value in the range of 500 T / m to less than 1000 T / m.
- strong twist refers to a value in the range of more than 1000 and less than 2500 T / m
- extremely strong twist refers to a value in the range of 2500 T / m or more.
- the twist number of the CNT composite wire 2 is the number of turns per unit length (T / m) when the plurality of CNT wires 10, 10, ... constituting one CNT composite wire are twisted together. .
- the twist number of the CNT composite wire 2 is t2.
- the number of twists of the CNT wire 10 refers to the number of turns per unit length (T / m) when the plurality of CNT assemblies 11, 11, ... forming the single CNT wire 10 are twisted together. It is. In the present embodiment, the number of twists of the CNT wire 10 is t1.
- At least one of the twist number t1 of the CNT wire 10 and the twist number t2 of the CNT composite wire 2 is 1000 T / m or more.
- the stress generated when an external force acts is dispersed by twisting, generation of stress concentration is suppressed, and bending characteristics are appropriately improved.
- the shape of the CNT composite wire 2 can be easily maintained in the axial direction, and it is possible to realize both good bending resistance and handling.
- the CNT wire 10 has a significantly higher tensile strength as compared with a wire mainly composed of a core wire made of metal such as copper and aluminum, and the CNT wire 10 can be subjected to strong twisting with a large number of twists.
- a stranded wire with a high degree of twisting that could not be realized with a metal wire can be produced.
- the twist number t1 of the CNT wire 10 is more than 0 and less than 500 T / m, and the twist number t2 of the CNT composite wire 2 is 1000 T / m or more (Less than 2500 T / m, the twisting direction d1 of the CNT wire 10 is one of S direction and Z direction, and the twisting direction d2 of the CNT composite wire 2 is the same as the twisting direction of the CNT wire
- the twist number t1 of the CNT wire 10 is 500 T / m or more and less than 1000 T / m
- the twist number t2 of the CNT composite wire 2 is 1000 T / m or more and less than 2500 T / m
- the twist direction d1 of the CNT wire 10 is S direction And the Z direction
- the twisting direction d2 of the CNT composite wire 2 is preferably the same as the twisting direction of the CNT wire 10.
- the CNT wire 10 is sweet-twisted, the CNT composite wire 2 is strong-twisted, and the CNT wire and the CNT composite wire 2 have the same twist direction, or the CNT wire 10 is middle-twisted and the CNT composite wire 2 By being strongly twisted and the twist direction of the CNT wire and the CNT composite wire 2 being the same, both excellent bending resistance and handling property can be realized.
- the twist number t1 of the CNT wire is 1000 T / m or more and less than 2500 T / m, and the twist number t2 of the CNT composite wire exceeds 0 and 1000 T / less than m, the twisting direction d1 of the CNT wire is one of S direction and Z direction, and the twisting direction d2 of the CNT composite wire is the same as the twisting direction of the CNT wire, or (d)
- the twist number t1 of the CNT wire is 2500 T / m or more, the twist number t2 of the CNT composite wire is more than 0 and less than 500 T / m, and the twist direction d1 of the CNT wire is one of S direction and Z direction
- the twisting direction d2 of the CNT composite wire is the same as the twisting direction of the CNT wire.
- the CNT wire 10 is strongly twisted, and the CNT composite wire 2 is either sweet or semi-twisted, and the CNT wire and the CNT composite wire 2 have the same twist direction, or the CNT wire 10 is extremely strong twisted Because the CNT composite wire 2 is sweet-twisted and the CNT wire and the CNT composite wire 2 have the same twist direction, it is possible to realize both excellent bending resistance and handling properties.
- thermosetting resins As a material of the insulating covering layer 21 (refer to FIG. 1) formed on the outer periphery of the CNT wire 10, a material used for the insulating covering layer of a covered electric wire using a metal as a core wire can be used.
- thermosetting resins for example, polytetrafluoroethylene (PTFE), polyethylene, polypropylene, polyacetal, polystyrene, polycarbonate, polyamide, polyvinyl chloride, polyvinyl acetate, polyurethane, polymethyl methacrylate, acrylonitrile butadiene styrene resin, acrylic resin, etc. Can be mentioned.
- a thermosetting resin a polyimide resin, a phenol resin, etc. can be mentioned, for example. These may be used alone or in combination of two or more.
- the insulating covering layer 21 may be a single layer as shown in FIG. 1, or alternatively, may be two or more layers.
- the insulating covering layer may have a first insulating covering layer formed on the outer circumference of the CNT wire 10 and a second insulating covering layer formed on the outer circumference of the first insulating covering layer.
- the content of other CNTs contained in the second insulating covering layer may be smaller than the content of other CNTs contained in the first insulating covering layer.
- one or more layers of a thermosetting resin may be further provided on the insulating covering layer 21 as necessary.
- the thermosetting resin may contain a filler having a fiber shape or a particle shape.
- the ratio of the cross-sectional area in the radial direction of the insulating covering layer 21 to the cross-sectional area in the radial direction of the CNT composite wire 2 is in the range of 0.001 or more and 1.5 or less.
- the core wire is the CNT wire 10 which is lighter compared to copper, aluminum or the like, and the thickness of the insulating covering layer 21 is thin.
- the insulating covering layer is formed, weight reduction can be realized as compared with a metal-coated wire such as copper or aluminum.
- the insulating covering layer 21 is coated on the outer surface of the CNT wire 10 at the ratio of the cross-sectional area, the shape of the CNT-coated electric wire 1 in the longitudinal direction can be easily maintained. Therefore, the handling property at the time of wiring of the CNT coated wire 1 can be enhanced.
- adhesion between the CNT wire 10 and the insulating coating layer 21 is improved as compared to a coated wire using a core wire of aluminum or copper. It can improve and it can control exfoliation between CNT wire 10 and insulating covering layer 21.
- the ratio of the cross-sectional area is not particularly limited as long as it is in the range of 0.001 or more and 1.5 or less, but from the viewpoint of further improving the insulation reliability, the lower limit thereof is preferably 0.1, particularly 0.2 preferable.
- the upper limit value of the ratio of the cross-sectional area is preferably 1.0 from the viewpoint of further improving the weight saving of the CNT-coated electric wire 1 and the heat dissipation characteristics to the heat of the CNT wire 10, and 0.27 is particularly preferable.
- the cross-sectional area in the radial direction of the CNT composite wire 2 is not particularly limited, but for example, 0.1 mm 2 or more and 3000 mm 2 or less is preferable. 100 mm 2 or more 3000 mm 2 more preferably less, 1000 mm 2 or more 2700 mm 2 or less is particularly preferred.
- the cross-sectional area in the radial direction of the insulating covering layer 21 is not particularly limited, but is preferably 0.001 mm 2 or more and 4500 mm 2 or less, for example, from the viewpoint of the balance between insulation reliability and heat dissipation.
- the cross-sectional area can be measured, for example, from an image of a scanning electron microscope (SEM) observation. Specifically, after obtaining an SEM image (100 times to 10,000 times) of a radial cross section of the CNT-coated wire 1, the CNT wire 10 enters from the area of the portion surrounded by the outer periphery of the CNT composite wire 2.
- SEM scanning electron microscope
- the area of the CNT composite wire 2 in the radial direction and the cross-sectional area of the insulating covering layer 21 in the radial direction are respectively used.
- the radial cross-sectional area of the insulating covering layer 21 also includes the resin that has entered between the CNT wires 10.
- the thickness in the direction orthogonal to the longitudinal direction of the insulating covering layer 21 is preferably uniform from the viewpoint of improving the insulation properties and the wear resistance of the CNT-coated electric wire 1.
- the uneven thickness ratio of the insulating coating layer 21 is 50% or more from the point of improving the insulating property and the wear resistance, and is preferably 80% or more from the point of improving the handling property in addition to these. .
- the value of the maximum value of the thickness of the covering layer 21) ⁇ 100 is calculated, which means a value obtained by averaging the ⁇ values calculated in each cross section.
- the thickness of the insulating covering layer 21 can be measured, for example, from an image of SEM observation by circular approximation of the CNT wire 10.
- the longitudinal center side refers to a region located at the center as viewed from the longitudinal direction of the line.
- the uneven thickness ratio of the insulating covering layer 21 is, for example, a tension applied in the longitudinal direction of the CNT wire 10 when passing through the die during the extrusion process when forming the insulating covering layer 21 on the outer peripheral surface of the CNT wire 10 by extrusion coating. Can be improved by adjusting the
- the CNT-coated electric wire 1 manufactures the CNTs 11a, and twists the plurality of obtained CNTs 11a in the S direction or the Z direction to form the CNT wire 10. Further, a plurality of the CNT wire 10 is subjected to the S direction or the Z direction. It can be manufactured by twisting together to form the CNT composite wire 2 and coating the outer peripheral surface of the CNT composite wire 2 with the insulating covering layer 21.
- the CNTs 11a can be manufactured by a method such as a floating catalyst method (Japanese Patent No. 5819888) or a substrate method (Japanese Patent No. 5590603).
- the strands of the CNT wire 10 are, for example, dry spinning (Japanese Patent No. 5819888, Patent No. 5990202, Japanese Patent No. 5350635), wet spinning (Japanese Patent No. 5135620, Japanese Patent No. 5131571, Japanese Patent No. 5288359), liquid crystal spinning (Japanese Patent Application Publication No. 2014-530964) and the like.
- the CNT composite wire 2 can be produced, for example, by fixing both ends of the created CNT wire to a substrate and rotating one of the opposing substrates.
- the orientation of the CNTs constituting the CNT aggregate can be adjusted, for example, by appropriately selecting a spinning method such as dry spinning, wet spinning, liquid crystal spinning and the like and spinning conditions of the spinning method.
- a spinning method such as dry spinning, wet spinning, liquid crystal spinning and the like and spinning conditions of the spinning method.
- a method of covering an insulating covering layer on a core wire of aluminum or copper can be used as a method of covering an insulating covering layer on a core wire of aluminum or copper.
- the method of melting the thermoplastic resin which is a raw material and extruding and coating around the CNT composite wire 2 or the method of applying it around the CNT composite wire 2 can be mentioned.
- the CNT-coated electric wire 1 or the CNT composite wire 2 manufactured by the above method is suitable for wiring of a robot used under an extreme environment because CNTs are excellent in corrosion resistance.
- the extreme environment for example, the inside of a nuclear reactor, high temperature / humid environment, underwater such as deep sea, space, etc. may be mentioned.
- a large number of neutrons are generated in the reactor, and if a conductor composed of copper or a copper alloy is used as a wire of a mobile body or the like, it absorbs neutrons and changes to radioactive zinc.
- This radiation zinc has a long half life of 245 days and continues to emit radiation. That is, copper or copper alloy is changed to radioactive material by neutrons, and causes various adverse effects to the outside.
- the above reaction hardly occurs, and the generation of a radioactive substance can be suppressed.
- the CNT-coated electric wire 1 or the CNT composite wire 2 manufactured by the above method is particularly suitable for wiring of a device such as a robot arm which is required to have both bending resistance and handling property.
- the CNT-coated electric wire 1 can be used as a general electric wire such as a wire harness, and a cable may be produced from a general electric wire using the CNT-coated electric wire 1.
- a wire is selected so that the CNT wire which is a CNT wire manufactured by various spinning methods becomes a composite wire of a predetermined diameter.
- each strand is passed through the hole in the center of the substrate in a normal shape, and then the CNT strand is wound and fixed on the substrate.
- the ends of the other CNT strands are collected at one place and fixed, and then the substrate is rotated and twisted so as to have a predetermined number of turns.
- the twist directions and the number of twists of the plurality of CNT wires were adjusted as shown in Tables 1 to 4 and twisted to obtain a CNT composite wire having a cross-sectional area as shown in Tables 1 to 4.
- a cross-sectional area of a CNT composite wire the resin which got inside the CNT composite wire was not included in the measurement.
- a radial cross section of the CNT wire is cut out by an ion milling apparatus (IM 4000 manufactured by Hitachi High-Technologies Corporation), and then a scanning electron microscope (SU 8020 manufactured by Hitachi High-Technologies Corporation), magnification: 100 to 10, The cross-sectional area of the radial direction of the CNT wire was measured from the SEM image obtained by 000 times).
- twist number can be represented by a value (unit: T / m) obtained by dividing the number of twists (T) by the length of the line (m).
- T number of twists
- m length of the line
- the measurement method of one winding length is the distance in the longitudinal direction of the wire from the distance until one strand reaches from the end of the wire side to the other end and the cross section of the CNT wire and composite wire. Calculate the double value as the length of one turn in the longitudinal direction.
- the reciprocal of the length of one turn is T / m.
- the pass level is 7.5 ⁇ 10 ⁇ 5 ⁇ ⁇ cm or less before the heating, and the rate of increase in resistivity after the heat treatment (%) [(after the heat treatment The resistivity before heat treatment) ⁇ 100 / the resistivity before heat treatment] assumes a pass level of 35% or less as a pass level, and both the above-mentioned resistivity before heating and the rate of increase in resistivity after heating are all pass levels. Some were rated "good", and either or both not rated as "bad”.
- the CNT wire was sweet-twisted and the CNT composite wire was strongly-twisted to extremely-strongly twisted, and both of the bending resistance and the handling property were generally good or more .
- the conductivity was also good in Examples 1 to 12.
- the CNT wire is sweet-twisted and the CNT composite wire is strongly-twisted, and the CNT wire and the CNT composite wire are twisted in the same direction (both in the S direction or both in the Z direction) Both the bending resistance and the handling property were good.
- the CNT wire was sweet-twisted and the CNT composite wire was strongly-twisted to extremely-strongly twisted, and both of the bending resistance and the handling property were generally good or more .
- the conductivity was also good.
- the CNT wire is medium-twisted and the CNT composite wire is strongly-twisted, and the CNT wire and the CNT composite wire are twisted in the same direction (both in the S direction or both in the Z direction) Both the bending resistance and the handling property were good.
- the CNT wire has a strong twist and the CNT composite wire has a sweet to very strong twist, and both of the bending resistance and the handling property are generally good or more.
- the conductivity was also good.
- the CNT wire has extremely strong twist and the CNT composite wire has sweet to very strong twist, and both of the bending resistance and the handling property are generally good or more.
- the conductivity was also good.
- Carbon nanotube coated wire (CNT coated wire) 2 Carbon nanotube composite wire (CNT composite wire) 10 Carbon nanotube wire (CNT wire) 11 Carbon nanotube assembly (CNT assembly) 11a Carbon nanotube (CNT) 21 Insulating layer
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Non-Insulated Conductors (AREA)
- Carbon And Carbon Compounds (AREA)
- Conductive Materials (AREA)
- Insulated Conductors (AREA)
Abstract
本発明は、主に銅、アルミニウム等の金属製の芯線から構成される線材と比較して更なる軽量化を実現すると共に、良好な耐屈曲性とハンドリング性の双方を両立することができるカーボンナノチューブ複合線に関する。 CNT複合線(2)は、複数のCNT(11a)で構成されるCNT集合体(11)の複数が束ねられてなるCNT線材(10)の複数が撚り合わされてなる。CNT線材(10)の撚り数t1及びCNT複合線(2)の撚り数t2の少なくとも一方が1000T/m以上である。
Description
本発明は、複数のカーボンナノチューブで構成されるカーボンナノチューブ線材の複数を撚り合わせてなるカーボンナノチューブ複合線、該カーボンナノチューブ複合線を絶縁材料で被覆したカーボンナノチューブ被覆電線、及び該被覆電線を有するワイヤハーネスに関するものである。
カーボンナノチューブ(以下、「CNT」ということがある。)は、様々な特性を有する素材であり、多くの分野への応用が期待されている。
例えば、CNTは、六角形格子の網目構造を有する筒状体の単層、または略同軸で配された多層で構成される3次元網目構造体であり、軽量であると共に、導電性、熱伝導性、機械的強度等の諸特性に優れる。しかし、CNTを線材化することは容易ではなく、CNTを線材として利用する技術は提案されていない。
数少ないCNT線を利用した技術の例として、多層配線構造に形成されるビアホールの埋め込み材料である金属の代替として、CNTを使用することが検討されている。具体的には、多層配線構造の低抵抗化のために、多層CNTの成長基点から遠い側の端部へ同心状に伸延した多層CNTの複数の切り口を導電層にそれぞれ接触させた多層CNTを、2以上の導線層の層間配線として使用した配線構造が提案されている(特許文献1)。
その他の例として、CNT材料の導電性をさらに向上させるために、隣接したCNT線材の電気的接合点に、金属等からなる導電性堆積物を形成したカーボンナノチューブ材料が提案され、このようなカーボンナノチューブ材料は広汎な用途に適用できることが開示されている(特許文献2)。また、CNT線材の有する優れた熱伝導性から、カーボンナノチューブのマトリクスから作られた熱伝導部材を有する加熱器が提案されている(特許文献3)。
一方で、自動車や産業機器などの様々な分野における電力線や信号線として、一又は複数の線材からなる芯線と、該芯線を被覆する絶縁被覆とからなる電線が用いられている。芯線を構成する線材の材料としては、通常、電気特性の観点から銅又は銅合金が使用されるが、近年、軽量化の観点からアルミニウム又はアルミニウム合金が提案されている。例えば、アルミニウムの比重は銅の比重の約1/3、アルミニウムの導電率は銅の導電率の約2/3(純銅を100%IACSの基準とした場合、純アルミニウムは約66%IACS)であり、アルミニウム線材に、銅線材と同じ電流を流すためには、アルミニウム線材の断面積を、銅の線材の断面積の約1.5倍と大きくする必要があるが、そのように断面積を大きくしたアルミニウム線材を用いたとしても、アルミニウム線材の質量は、純銅の線材の質量の半分程度であることから、アルミニウム線材を使用することは、軽量化の観点から有利である。
昨今、自動車、産業機器等の更なる高性能化・高機能化が急速に進められており、これに伴い、各種電気機器、制御機器などの配設数が増加すると共に、作業者が電線を配索する際のハンドリング性を向上させることが要求されている。また、自動車やロボット等に代表される移動体での繰り返し運動などに因る断線等の異常の発生を防止するために、線材の耐屈曲性の向上が求められている。また、その一方で、環境対応のために自動車等の移動体の燃費を向上させるため、線材の更なる軽量化も要求されている。
本発明の目的は、主に銅、アルミニウム等の金属製の芯線から構成される線材と比較して更なる軽量化を実現すると共に、良好な耐屈曲性とハンドリング性の双方を両立することができるカーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネスを提供することにある。
本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の複数本からなるカーボンナノチューブ線材を作製し、更に該カーボンナノチューブ線材の複数本を撚り合わせてカーボンナノチューブ複合線を電線として用いることを見出し、特に、カーボンナノチューブ線材を構成する複数のカーボンナノチューブ集合体の撚りの程度、カーボンナノチューブ複合線を構成する複数のカーボンナノチューブ線材の撚りの程度、或いはこれらの撚り方の組み合わせによって、カーボンナノチューブ複合線の導電性や耐屈曲性などの諸特性が異なるという知見を得、かかる知見に基づき本発明を完成させるに至った。
すなわち、本願発明の要旨構成は以下の通りである。
[1]複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の複数が束ねられてなるカーボンナノチューブ線材の複数が撚り合わされてなるカーボンナノチューブ複合線であって、
前記カーボンナノチューブ線材の撚り数t1及び前記カーボンナノチューブ複合線の撚り数t2の少なくとも一方が1000T/m以上である、カーボンナノチューブ複合線。
[2]前記カーボンナノチューブ線材の円相当直径が、20μm以上200μmであり、
前記カーボンナノチューブ複合線の円相当直径が、0.1mm以上60mm以下であり、
前記カーボンナノチューブ複合線を構成する前記カーボンナノチューブ線材の本数が、15以上5000以下であることを特徴とする、上記[1]記載のカーボンナノチューブ複合線。
[3]前記カーボンナノチューブ線材の撚り数t1が0を超え500T/m未満であり、
前記カーボンナノチューブ複合線の撚り数t2が1000T/m以上2500T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、上記[1]記載のカーボンナノチューブ複合線。
[4]前記カーボンナノチューブ線材の撚り数t1が500T/m以上1000T/m未満であり、
前記カーボンナノチューブ複合線の撚り数t2が1000T/m以上2500T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、上記[1]記載のカーボンナノチューブ複合線。
[5]前記カーボンナノチューブ線材の撚り数t1が1000T/m以上2500T/m未満であり、
前記カーボンナノチューブ複合線の撚り数t2が0を超え1000T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、上記[1]記載のカーボンナノチューブ複合線。
[6]前記カーボンナノチューブ線材の撚り数t1が2500T/m以上であり、
前記カーボンナノチューブ複合線の撚り数t2が0を超え500T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、上記[1]記載のカーボンナノチューブ複合線。
[7]前記カーボンナノチューブ線材の円相当直径が0.01mm以上30mm以下であり、且つ前記カーボンナノチューブ複合線の円相当直径が0.1mm以上60mm以下である、[1]乃至[6]のいずれかに記載のカーボンナノチューブ複合線。
[8]上記[1]乃至[7]のいずれかに記載のカーボンナノチューブ複合線と、前記カーボンナノチューブ複合線の外周に設けられた絶縁被覆層とを有する、カーボンナノチューブ被覆電線。
[9]上記[8]記載のカーボンナノチューブ被覆電線を有するワイヤハーネス。
[1]複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の複数が束ねられてなるカーボンナノチューブ線材の複数が撚り合わされてなるカーボンナノチューブ複合線であって、
前記カーボンナノチューブ線材の撚り数t1及び前記カーボンナノチューブ複合線の撚り数t2の少なくとも一方が1000T/m以上である、カーボンナノチューブ複合線。
[2]前記カーボンナノチューブ線材の円相当直径が、20μm以上200μmであり、
前記カーボンナノチューブ複合線の円相当直径が、0.1mm以上60mm以下であり、
前記カーボンナノチューブ複合線を構成する前記カーボンナノチューブ線材の本数が、15以上5000以下であることを特徴とする、上記[1]記載のカーボンナノチューブ複合線。
[3]前記カーボンナノチューブ線材の撚り数t1が0を超え500T/m未満であり、
前記カーボンナノチューブ複合線の撚り数t2が1000T/m以上2500T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、上記[1]記載のカーボンナノチューブ複合線。
[4]前記カーボンナノチューブ線材の撚り数t1が500T/m以上1000T/m未満であり、
前記カーボンナノチューブ複合線の撚り数t2が1000T/m以上2500T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、上記[1]記載のカーボンナノチューブ複合線。
[5]前記カーボンナノチューブ線材の撚り数t1が1000T/m以上2500T/m未満であり、
前記カーボンナノチューブ複合線の撚り数t2が0を超え1000T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、上記[1]記載のカーボンナノチューブ複合線。
[6]前記カーボンナノチューブ線材の撚り数t1が2500T/m以上であり、
前記カーボンナノチューブ複合線の撚り数t2が0を超え500T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、上記[1]記載のカーボンナノチューブ複合線。
[7]前記カーボンナノチューブ線材の円相当直径が0.01mm以上30mm以下であり、且つ前記カーボンナノチューブ複合線の円相当直径が0.1mm以上60mm以下である、[1]乃至[6]のいずれかに記載のカーボンナノチューブ複合線。
[8]上記[1]乃至[7]のいずれかに記載のカーボンナノチューブ複合線と、前記カーボンナノチューブ複合線の外周に設けられた絶縁被覆層とを有する、カーボンナノチューブ被覆電線。
[9]上記[8]記載のカーボンナノチューブ被覆電線を有するワイヤハーネス。
本発明によれば、カーボンナノチューブ線材の撚り数t1及びカーボンナノチューブ複合線の撚り数t2の少なくとも一方が1000T/m以上であるので、外力が作用した際に生じる応力が撚りによって分散して応力集中の発生が抑制され、曲げ特性が適度に向上すると共に、カーボンナノチューブ複合線が軸方向に関して形状が保持されやすくなり、良好な耐屈曲性とハンドリング性の両立を実現することができる。特に、カーボンナノチューブ線材は、銅やアルミニウム等で構成される線材と比較して引張強度が格段に大きく、撚り数の大きい強撚り加工をカーボンナノチューブ線材に施すことができることから、金属線では実現し得なかった撚りの度合いの大きい撚り線を作製することができる。
また、(a)カーボンナノチューブ線材の撚り数t1が0を超え500T/m未満であり、カーボンナノチューブ複合線の撚り数t2が1000T/m以上2500T/m未満であり、カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つカーボンナノチューブ複合線の撚り方向d2がカーボンナノチューブ線材の撚り方向と同じであるか、(b)カーボンナノチューブ線材の撚り数t1が500T/m以上1000T/m未満であり、カーボンナノチューブ複合線の撚り数t2が1000T/m以上2500T/m未満であり、カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つカーボンナノチューブ複合線の撚り方向d2がカーボンナノチューブ線材の撚り方向と同じであるので、優れた耐屈曲性とハンドリング性の双方を実現することができる。
また、(c)カーボンナノチューブ線材の撚り数t1が1000T/m以上2500T/m未満であり、カーボンナノチューブ複合線の撚り数t2が0を超え1000T/m未満であり、カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つカーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じであるか、又は、(d)カーボンナノチューブ線材の撚り数t1が2500T/m以上であり、カーボンナノチューブ複合線の撚り数t2が0を超え500T/m未満であり、カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つカーボンナノチューブ複合線の撚り方向d2がカーボンナノチューブ線材の撚り方向と同じであるので、優れた耐屈曲性とハンドリング性の双方を実現することができる。
以下、本発明の実施形態に係るカーボンナノチューブ被覆電線を、図面を参照しながら説明する。
[カーボンナノチューブ被覆電線の構成]
図1に示すように、本発明の実施形態に係るカーボンナノチューブ被覆電線(以下、「CNT被覆電線」ということがある。)1は、カーボンナノチューブ複合線(以下、「CNT複合線」ということがある。)2の外周面に絶縁被覆層21が被覆された構成となっている。すなわち、CNT複合線2の長手方向に沿って絶縁被覆層21が被覆されている。CNT被覆電線1では、CNT複合線2の外周面全体が、絶縁被覆層21によって被覆されている。また、CNT被覆電線1では、絶縁被覆層21はCNT複合線2の外周面と直接接した態様となっている。
図1に示すように、本発明の実施形態に係るカーボンナノチューブ被覆電線(以下、「CNT被覆電線」ということがある。)1は、カーボンナノチューブ複合線(以下、「CNT複合線」ということがある。)2の外周面に絶縁被覆層21が被覆された構成となっている。すなわち、CNT複合線2の長手方向に沿って絶縁被覆層21が被覆されている。CNT被覆電線1では、CNT複合線2の外周面全体が、絶縁被覆層21によって被覆されている。また、CNT被覆電線1では、絶縁被覆層21はCNT複合線2の外周面と直接接した態様となっている。
CNT複合線2は、CNT線材10の複数が撚り合わされて形成されている。図1では、CNT複合線2では、説明の便宜上、4本のCNT線材10が撚り合わされているが、数本~数千本のCNT線材10が撚り合わされていてもよい。CNT複合線2の円相当直径は、好ましくは0.1mm以上であり、より好ましくは0.1mm以上60mm以下である。また、CNT複合線2を構成するCNT線材10(素線)の本数は、例えば14以上10000以下である。
CNT複合線2の撚り方向としては、例えば図2(a)に示すようなS方向、或いは図2(b)に示すようなZ方向を挙げることができる。S方向とは、CNT線材10の上下端のうちの上端を固定した状態で、下端をCNT複合線2の中心軸に対して時計回り(右回り)に捻ったときに生じる撚りの方向を指す。また、Z方向とは、CNT複合線2の上下端のうちの上端を固定した状態で、下端をCNT複合線2の中心軸に対して反時計回り(左回り)に捻ったときに生じる撚りの方向を指す。本実施形態では、CNT複合線2の撚り方向をd2とする。CNT複合線2の撚りの度合いについては後述する。
CNT線材10は、図3に示すように、1層以上の層構造を有する複数のCNT11a,11a,・・・で構成されるCNT集合体11の複数が束ねられて形成されている。CNT集合体11が束ねられている状態とは、CNT線材10に撚りが在る場合と、CNT線材10に撚りが無いか或いは実質的に撚りが無い場合の双方を意味する。ここで、CNT線材とは、CNTの割合が90質量%以上のCNT線材、言い換えると不純物が10質量%未満のCNT線材を意味する。なお、CNT線材におけるCNT割合の算定においては、メッキとドーパントの質量は除く。
CNT線材10の撚り方向としては、CNT複合線2と同様、図4(a)に示すようなS方向、或いは図4(b)に示すようなZ方向を挙げることができる。すなわち、CNT線材10のS方向及びZ方向は、それぞれCNT複合線2の撚り方向であるS方向及びZ方向と同じである。本実施形態では、CNT線材10の撚り方向をd1とする。但し、CNT線材10では、図4(c)に示すように、CNT集合体11の長手方向とCNT線材10の長手方向が同一或いは実質的に同一である状態を含んでいる。すなわち、CNT線材10は、CNT集合体11の複数が撚り合わされていない状態で束ねられているものを含む。CNT線材10の円相当直径は、例えば、20μm以上200μm以下である。CNT線材10の撚りの度合いについては後述する。
CNT集合体11は、1層以上の層構造を有するCNT11aの束である。CNT11aの長手方向が、CNT集合体11の長手方向を形成している。CNT集合体11における複数のCNT11a,11a,・・・は、その長軸方向がほぼ揃って配されている。従って、CNT集合体11における複数のCNT11a,11a,・・・は、配向している。CNT集合体11の円相当直径は、例えば、20nm以上1000nm以下であり、より典型的には、20nm以上80nm以下である。CNT11aの最外層の幅寸法は、例えば、1.0nm以上5.0nm以下である。
CNT集合体11を構成するCNT11aは、単層構造又は複層構造を有する筒状体であり、それぞれ、SWNT(single-walled nanotube)、MWNT(multi-walled nanotube)と呼ばれる。図3では、便宜上、2層構造を有するCNT11aのみを記載しているが、CNT集合体11には、3層構造以上の層構造を有するCNTや単層構造の層構造を有するCNTも含まれていてもよく、3層構造以上の層構造を有するCNTまたは単層構造の層構造を有するCNTから形成されていてもよい。
2層構造を有するCNT11aでは、六角形格子の網目構造を有する2つの筒状体T1、T2が略同軸で配された3次元網目構造体となっており、DWNT(Double-walled nanotube)と呼ばれる。構成単位である六角形格子は、その頂点に炭素原子が配された六員環であり、他の六員環と隣接したこれらが連続的に結合している。
CNT11aの性質は、上記筒状体のカイラリティ(chirality)に依存する。カイラリティは、アームチェア型、ジグザグ型、及びカイラル型に大別され、アームチェア型は金属性、ジグザグ型は半導体性および半金属性、カイラル型は半導体性および半金属性の挙動を示す。従って、CNT11aの導電性は、筒状体がいずれのカイラリティを有するかによって大きく異なる。CNT被覆電線1のCNT線材10を構成するCNT集合体11では、導電性をさらに向上させる点から、金属性の挙動を示すアームチェア型のCNT11aの割合を増大させることが好ましい。
一方で、半導体性の挙動を示すカイラル型のCNT11aに電子供与性もしくは電子受容性を持つ物質(異種元素)をドープすることにより、カイラル型のCNT11aが金属的挙動を示すことが分かっている。また、一般的な金属では、異種元素をドープすることによって金属内部での伝導電子の散乱が起こって導電性が低下するが、これと同様に、金属性の挙動を示すCNT11aに異種元素をドープした場合には、導電性の低下を引き起こす。
このように、金属性の挙動を示すCNT11a及び半導体性の挙動を示すCNT11aへのドーピング効果は、導電性の観点からはトレードオフの関係にあることから、理論的には金属性の挙動を示すCNT11aと半導体性の挙動を示すCNT11aとを別個に作製し、半導体性の挙動を示すCNT11aにのみドーピング処理を施した後、これらを組み合わせることが望ましい。しかし、現状の製法技術では、金属性の挙動を示すCNT11aと半導体性の挙動を示すCNT11aとを選択的に作り分けることは困難であり、金属性の挙動を示すCNT11aと半導体性の挙動を示すCNT11aが混在した状態で作製される。このため、金属性の挙動を示すCNT11aと半導体性の挙動を示すCNT11aの混合物からなるCNT線材10の導電性をさらに向上させるために、異種元素・分子によるドーピング処理が効果的となるCNT11aの層構造を選択することが好ましい。
例えば、2層構造又は3層構造のような層数が少ないCNTは、それより層数の多いCNTよりも比較的導電性が高く、ドーピング処理を施した際には、2層構造又は3層構造を有するCNTでのドーピング効果が最も高い。従って、CNT線材10の導電性をさらに向上させる点から、2層構造又は3層構造を有するCNTの割合を増大させることが好ましい。具体的には、CNT全体に対する2層構造又は3層構造をもつCNTの割合が50個数%以上が好ましく、75個数%以上がより好ましい。2層構造又は3層構造をもつCNTの割合は、CNT集合体11の断面を透過型電子顕微鏡(TEM)で観察及び解析し、50個~200個の範囲内の所定数の任意のCNTを選択し、それぞれのCNTの層数を測定することで算出することができる。
高密度を得ることで、導電性や放熱特性をより向上させる観点から、複数のCNT11a,11a,・・・の密度を示すX線散乱による強度の(10)ピークにおけるピークトップのq値が2.0nm-1以上5.0nm-1以下であり、且つ半値幅Δq(FWHM)が0.1nm-1以上2.0nm-1以下であることが好ましい。この(10)ピークから見積られる格子定数の測定値と、ラマン分光法やTEMなどで観測されるCNT直径とに基づいて、CNT集合体11内で複数のCNT11aの直径分布が狭く、複数のCNT11a,11a,・・・が、規則正しく配列、すなわち、良好な配向性を有することで、六方最密充填構造を形成しているといえる。よって、CNT集合体11中の電荷は、CNT11aの長手方向に沿って流れ易くなり、導電性がより向上する。また、CNT集合体11の熱は、CNT11aの長手方向に沿って円滑に伝達して行きながら放熱され易くなる。CNT集合体11及びCNT11の配向性、並びにCNT11aの配列構造及び密度は、後述する、乾式紡糸、湿式紡糸等の紡糸方法と該紡糸方法の紡糸条件とを適宜選択することで調節することができる。
CNT複合線2及びCNT線材10の撚りの度合いは、甘撚り、中撚り、強撚り及び極強撚りのうちのいずれかに分類することができる。甘撚りとは、撚り数0を超え500T/m未満の範囲内の値を指し、中撚りとは、撚り数500T/m以上1000T/m未満の範囲内の値を指す。また、強撚りとは、撚り数1000を超え2500T/m未満の範囲内の値を指し、極強撚りとは、撚り数2500T/m以上の範囲内の値を指す。
CNT複合線2の撚り数とは、1本のCNT複合線を構成する複数のCNT線材10,10,・・・を撚り合わせた際の単位長さ当たりの巻き数(T/m)である。本実施形態では、CNT複合線2の撚り数をt2とする。また、CNT線材10の撚り数とは、1本のCNT線材10を構成する複数のCNT集合体11,11,・・・を撚り合わせた際の単位長さ当たりの巻き数(T/m)である。本実施形態では、CNT線材10の撚り数をt1とする。
CNT複合線2では、CNT線材10の撚り数t1及びCNT複合線2の撚り数t2の少なくとも一方が1000T/m以上である。CNT線材10及びCNT複合線2の少なくとも一方が強撚り以上であることで、外力が作用した際に生じる応力が撚りによって分散して応力集中の発生が抑制され、曲げ特性が適度に向上すると共に、CNT複合線2が軸方向に関して形状が保持されやすくなり、良好な耐屈曲性とハンドリング性の両立を実現することができる。特に、CNT線材10は、主に銅、アルミニウム等の金属製の芯線から構成される線材と比較して引張強度が格段に大きく、撚り数の大きい強撚り加工をCNT線材10に施すことができることから、金属線では実現し得なかった撚りの度合いの大きい撚り線を作製することができる。
また、耐屈曲性とハンドリング性の双方を向上する観点から、(a)CNT線材10の撚り数t1が0を超え500T/m未満であり、CNT複合線2の撚り数t2が1000T/m以上2500T/m未満であり、CNT線材10の撚り方向d1がS方向及びZ方向のうちの一方であり、且つCNT複合線2の撚り方向d2がCNT線材の撚り方向と同じであるか、(b)CNT線材10の撚り数t1が500T/m以上1000T/m未満であり、CNT複合線2の撚り数t2が1000T/m以上2500T/m未満であり、CNT線材10の撚り方向d1がS方向及びZ方向のうちの一方であり、且つCNT複合線2の撚り方向d2がCNT線材10の撚り方向と同じであるのが好ましい。CNT線材10が甘撚りであってCNT複合線2が強撚りであり且つCNT線材とCNT複合線2の撚り方向が同じであるか、又は、CNT線材10が中撚りであってCNT複合線2が強撚りであり且つCNT線材とCNT複合線2の撚り方向が同じであることで、優れた耐屈曲性とハンドリング性の双方を実現することができる。
また、耐屈曲性とハンドリング性の双方を向上する観点から、(c)CNT線材の撚り数t1が1000T/m以上2500T/m未満であり、CNT複合線の撚り数t2が0を超え1000T/m未満であり、CNT線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つCNT複合線の撚り方向d2が前記CNT線材の撚り方向と同じであるか、又は、(d)CNT線材の撚り数t1が2500T/m以上であり、CNT複合線の撚り数t2が0を超え500T/m未満であり、CNT線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つCNT複合線の撚り方向d2がCNT線材の撚り方向と同じであるのが好ましい。CNT線材10が強撚りであってCNT複合線2が甘撚り、中撚りのいずれかであり且つCNT線材とCNT複合線2の撚り方向が同じであるか、又は、CNT線材10が極強撚りであってCNT複合線2が甘撚りであり且つCNT線材とCNT複合線2の撚り方向が同じであることで、優れた耐屈曲性とハンドリング性の双方を実現することができる。
CNT線材10の外周に形成される絶縁被覆層21(図1参照)の材料としては、芯線として金属を用いた被覆電線の絶縁被覆層に用いる材料を使用することができ、例えば、熱可塑性樹脂、熱硬化性樹脂を挙げることができる。熱可塑性樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、ポリアセタール、ポリスチレン、ポリカーボネート、ポリアミド、ポリ塩化ビニル、ポリ酢酸ビニル、ポリウレタン、ポリメチルメタクリレート、アクリロニトリルブタジエンスチレン樹脂、アクリル樹脂等を挙げることができる。熱硬化性樹脂としては、例えば、ポリイミド)、フェノール樹脂等を挙げることができる。これらは、単独で使用してもよく、2種以上を適宜混合して使用してもよい。
絶縁被覆層21は、図1に示すように、一層としてもよく、これに代えて、二層以上としてもよい。例えば、絶縁被覆層が、CNT線材10の外周に形成された第1絶縁被覆層と、該第1絶縁被覆層の外周に形成された第2絶縁被覆層とを有していてもよい。この場合、第2絶縁被覆層に含有された他のCNTの含有量が、前記第1絶縁被覆層に含有された他のCNTの含有量よりも小さくなるように構成されていてもよい。また、必要に応じて、絶縁被覆層21上に、さらに、熱硬化性樹脂の一又は二以上の層が設けられていてもよい。また、上記熱硬化性樹脂が、繊維形状或いは粒子形状を有する充填材を含有していてもよい。
CNT被覆電線1では、CNT複合線2の径方向の断面積に対する絶縁被覆層21の径方向の断面積の比率は、0.001以上1.5以下の範囲である。前記断面積の比率が0.01以上1.5以下の範囲であることにより、芯線が銅やアルミニウム等と比較して軽量であるCNT線材10である上、絶縁被覆層21の厚さを薄肉化できることから、絶縁信頼性を十分に確保すると共に、CNT複合線2の熱に対して優れた放熱特性を得ることができる。また、絶縁被覆層が形成されていても、銅やアルミニウムなどの金属被覆電線と比較して軽量化を実現することができる。
また、上記断面積の比率にて絶縁被覆層21がCNT線材10の外面に被覆されていることにより、CNT被覆電線1の長手方向における形状を維持し易くなる。従って、CNT被覆電線1の配索時のハンドリング性を高めることができる。
さらに、CNT線材10は、外面に微細な凹凸が形成されていることから、アルミニウムや銅の芯線を用いた被覆電線と比較して、CNT線材10と絶縁被覆層21との間の接着性が向上し、CNT線材10と絶縁被覆層21との間の剥離を抑制することができる。
前記断面積の比率は0.001以上1.5以下の範囲であれば、特に限定されないが、絶縁信頼性をさらに向上させる点から、その下限値は0.1が好ましく、0.2が特に好ましい。一方で、前記断面積の比率の上限値は、CNT被覆電線1のさらなる軽量化とCNT線材10の熱に対する放熱特性をさらに向上させる点から1.0が好ましく、0.27が特に好ましい。
前記断面積の比率が0.001以上1.5以下の範囲である場合、CNT複合線2の径方向の断面積は、特に限定されないが、例えば、0.1mm2以上3000mm2以下が好ましく、100mm2以上3000mm2以下が更に好ましく、1000mm2以上2700mm2以下が特に好ましい。また、絶縁被覆層21の径方向の断面積は、特に限定されないが、絶縁信頼性と放熱性とのバランスの観点から、例えば、0.001mm2以上4500mm2以下が好ましい。
断面積は、例えば、走査型電子顕微鏡(SEM)観察の画像から測定することができる。具体的には、CNT被覆電線1の径方向断面のSEM像(100倍~10,000倍)を得た後に、CNT複合線2の外周で囲われた部分の面積からCNT線材10内部に入り込んだ絶縁被覆層21の材料の面積を差し引いた面積、CNT複合線2の外周を被覆する絶縁被覆層の部分の面積とCNT線材10内部に入り込んだ絶縁被覆層21の材料の面積との合計を、それぞれ、CNT複合線2の径方向の面積、絶縁被覆層21の径方向の断面積とする。絶縁被覆層21の径方向の断面積には、CNT線材10間に入り込んだ樹脂も含む。
断面積は、例えば、走査型電子顕微鏡(SEM)観察の画像から測定することができる。具体的には、CNT被覆電線1の径方向断面のSEM像(100倍~10,000倍)を得た後に、CNT複合線2の外周で囲われた部分の面積からCNT線材10内部に入り込んだ絶縁被覆層21の材料の面積を差し引いた面積、CNT複合線2の外周を被覆する絶縁被覆層の部分の面積とCNT線材10内部に入り込んだ絶縁被覆層21の材料の面積との合計を、それぞれ、CNT複合線2の径方向の面積、絶縁被覆層21の径方向の断面積とする。絶縁被覆層21の径方向の断面積には、CNT線材10間に入り込んだ樹脂も含む。
絶縁被覆層21の長手方向に対し直交方向(すなわち、径方向)の肉厚は、CNT被覆電線1の絶縁性及び耐摩耗性を向上させる点から均一化されていることが好ましい。具体的には、絶縁被覆層21の偏肉率は、絶縁性及び耐摩耗性を向上させる点から50%以上であり、また、これらに加えてハンドリング性を向上させる点から80%以上が好ましい。なお、「偏肉率」とは、CNT被覆電線1の長手方向の任意の1.0mにおいて10cmごとに、径方向断面について、それぞれ、α=(絶縁被覆層21の肉厚の最小値/絶縁被覆層21の肉厚の最大値)×100の値を算出し、各断面にて算出したα値を平均した値を意味する。また、絶縁被覆層21の肉厚は、例えば、CNT線材10を円近似してSEM観察の画像から測定することができる。ここで、長手方向中心側とは、線の長手方向からみて中心に位置する領域をさす。
絶縁被覆層21の偏肉率は、例えば、押出被覆にてCNT線材10の外周面に絶縁被覆層21を形成する場合、押出工程時にダイスへ通す際にCNT線材10の長手方向に付与する張力を調整することで向上させることができる。
[カーボンナノチューブ被覆電線の製造方法]
次に、本発明の実施形態に係るCNT被覆電線1の製造方法例について説明する。CNT被覆電線1は、まず、CNT11aを製造し、得られた複数のCNT11aをS方向或いはZ方向に撚り合わせてCNT線材10を形成し、更に、CNT線材10の複数本をS方向或いはZ方向に撚り合わせてCNT複合線2を形成し、CNT複合線2の外周面に絶縁被覆層21を被覆することで、製造することができる。
次に、本発明の実施形態に係るCNT被覆電線1の製造方法例について説明する。CNT被覆電線1は、まず、CNT11aを製造し、得られた複数のCNT11aをS方向或いはZ方向に撚り合わせてCNT線材10を形成し、更に、CNT線材10の複数本をS方向或いはZ方向に撚り合わせてCNT複合線2を形成し、CNT複合線2の外周面に絶縁被覆層21を被覆することで、製造することができる。
CNT11aは、浮遊触媒法(特許第5819888号)や、基板法(特許第5590603号)などの手法で作製することができる。CNT線材10の素線は、例えば、乾式紡糸(特許第5819888号、特許第5990202号、特許第5350635号)、湿式紡糸(特許第5135620号、特許第5131571号、特許第5288359号)、液晶紡糸(特表2014-530964号公報)等で作製することができる。また、CNT複合線2は、例えば、作成したCNT線材の両端を基板に固定し、対向する基板の一方を回転させることで作製することができる。
このとき、CNT集合体を構成するCNTの配向性は、例えば乾式紡糸、湿式紡糸、液晶紡糸等の紡糸方法と該紡糸方法の紡糸条件とを適宜選択することで調節することができる。
上記のようにして得られたCNT複合線2の外周面に絶縁被覆層21を被覆する方法は、アルミニウムや銅の芯線に絶縁被覆層を被覆する方法を使用でき、例えば、絶縁被覆層21の原料である熱可塑性樹脂を溶融させ、CNT複合線2の周りに押し出して被覆する方法や、或いはCNT複合線2の周りに塗布する方法を挙げることができる。
上記方法で作製されたCNT被覆電線1或いはCNT複合線2は、CNTが耐腐食性に優れていることから、極限環境下で使用されるロボットの配線に好適である。極限環境としては、例えば原子炉内、高温・多湿環境、深海などの水中、宇宙空間などが挙げられる。特に、原子炉内では多くの中性子が発生しており、仮に銅或いは銅合金で構成される導体を移動体などの配線として使用している場合、中性子を吸収して放射性亜鉛に変化する。この放射線亜鉛は半減期が245日と長く、放射線を放出し続ける。すなわち、銅或いは銅合金は、中性子に因って放射性物質に変化し、外部に様々な悪影響を及ぼす原因となる。一方、CNTで構成されるCNT複合線を配線として使用することで、上記のような反応が起こり難くなり、放射性物質の生成を抑制することができる。また、上記方法で作製されたCNT被覆電線1或いはCNT複合線2は、耐屈曲性及びハンドリング性の双方が求められるロボットアームなどの装置の配線に特に好適である。
本発明の実施形態に係るCNT被覆電線1は、ワイヤハーネス等の一般電線として使用することができ、また、CNT被覆電線1を使用した一般電線からケーブルを作製してもよい。
次に、本発明の実施例を説明するが、本発明の趣旨を超えない限り、下記実施例に限定されるものではない。
(実施例1~48、比較例1~16について)
CNT線材の製造方法について
先ず、浮遊触媒法で作製したCNTを直接紡糸する乾式紡糸方法(特許第5819888号)または湿式紡糸する方法(特許第5135620号、特許第5131571号、特許第5288359号)でCNT線材の素線(単線)を得て、その後CNT線材を束ねるか、或いは撚り方向及び撚り数を調節して撚り合わせて表1~表4に示すような断面積のCNT線材を得た。
CNT線材の製造方法について
先ず、浮遊触媒法で作製したCNTを直接紡糸する乾式紡糸方法(特許第5819888号)または湿式紡糸する方法(特許第5135620号、特許第5131571号、特許第5288359号)でCNT線材の素線(単線)を得て、その後CNT線材を束ねるか、或いは撚り方向及び撚り数を調節して撚り合わせて表1~表4に示すような断面積のCNT線材を得た。
次に、各種紡糸方法で製造されたCNT線材であるCNT素線を、所定の直径の複合線になる様に素線を選ぶ。その後、穴の開いたディスク状の基板に各素線を、基板の中心の穴から法線状に通した後、CNT素線を基板に巻きつけて固定する。もう一方のCNT素線らの端部を一箇所に集めて固定し、その後所定の巻き数になる様に基板を回転させて撚る。そして、複数のCNT線材の撚り方向及び撚り数を表1~表4に示すように調節して撚り合わせて、表1~表4に示すような断面積のCNT複合線を得た。
(a)CNT複合線及びCNT線材の断面積の測定
CNT複合線の径方向の断面をイオンミリング装置(日立ハイテクノロジーズ社製IM4000)により切り出した後、走査電子顕微鏡(日立ハイテクノロジーズ社製SU8020、倍率:100~10,000倍)で得られたSEM像から、CNT複合線の径方向の断面積を測定した。CNT被覆電線の長手方向中心側の任意の1.0mにおいて10cmごとに同様の測定を繰り返し、その平均値をCNT複合線の径方向の断面積とした。なお、CNT複合線の断面積として、CNT複合線内部に入り込んだ樹脂は測定に含めなかった。
また、CNT線材についても同様に、CNT線材の径方向の断面をイオンミリング装置(日立ハイテクノロジーズ社製IM4000)により切り出した後、走査電子顕微鏡(日立ハイテクノロジーズ社製SU8020、倍率:100~10,000倍)で得られたSEM像から、CNT線材の径方向の断面積を測定した。CNT被覆電線の長手方向中心側の任意の1.0mにおいて10cmごとに同様の測定を繰り返し、その平均値をCNT線材の径方向の断面積とした。CNT線材の断面積として、CNT線材内部に入り込んだ樹脂は測定に含めなかった。
CNT複合線の径方向の断面をイオンミリング装置(日立ハイテクノロジーズ社製IM4000)により切り出した後、走査電子顕微鏡(日立ハイテクノロジーズ社製SU8020、倍率:100~10,000倍)で得られたSEM像から、CNT複合線の径方向の断面積を測定した。CNT被覆電線の長手方向中心側の任意の1.0mにおいて10cmごとに同様の測定を繰り返し、その平均値をCNT複合線の径方向の断面積とした。なお、CNT複合線の断面積として、CNT複合線内部に入り込んだ樹脂は測定に含めなかった。
また、CNT線材についても同様に、CNT線材の径方向の断面をイオンミリング装置(日立ハイテクノロジーズ社製IM4000)により切り出した後、走査電子顕微鏡(日立ハイテクノロジーズ社製SU8020、倍率:100~10,000倍)で得られたSEM像から、CNT線材の径方向の断面積を測定した。CNT被覆電線の長手方向中心側の任意の1.0mにおいて10cmごとに同様の測定を繰り返し、その平均値をCNT線材の径方向の断面積とした。CNT線材の断面積として、CNT線材内部に入り込んだ樹脂は測定に含めなかった。
(b)CNT複合線及びCNT線材の撚り数の測定
撚り線の場合、複数の単線を束ね、一端を固定した状態で、もう一端を所定の回数ひねることで、撚り線とすることができる。撚り数は、ひねった回数(T)を線の長さ(m)で割った値(単位:T/m)で表すことができる。
CNT線材及びその複合線をカーボンテープの上に設置し、走査型電子顕微鏡で得られたSEM像を観察する。観察する際は、倍率を1000~100000倍に設定する。1.0mサンプルで5cmごとに測定し、平均値をひと巻きの長さとして1mあたりの撚り数を算出する。ひと巻き長さの測定方法は、SEM像より、一つの撚り線が線側面の端部から他方の端部までたどり着くまでの距離とCNT線材及び複合線の断面より、線の長手方向の距離を算出し、その二倍の値を一巻きの長手方向の長さとする。この一巻きの長さの逆数をT/mとした。
撚り線の場合、複数の単線を束ね、一端を固定した状態で、もう一端を所定の回数ひねることで、撚り線とすることができる。撚り数は、ひねった回数(T)を線の長さ(m)で割った値(単位:T/m)で表すことができる。
CNT線材及びその複合線をカーボンテープの上に設置し、走査型電子顕微鏡で得られたSEM像を観察する。観察する際は、倍率を1000~100000倍に設定する。1.0mサンプルで5cmごとに測定し、平均値をひと巻きの長さとして1mあたりの撚り数を算出する。ひと巻き長さの測定方法は、SEM像より、一つの撚り線が線側面の端部から他方の端部までたどり着くまでの距離とCNT線材及び複合線の断面より、線の長手方向の距離を算出し、その二倍の値を一巻きの長手方向の長さとする。この一巻きの長さの逆数をT/mとした。
CNT複合線の上記各測定の結果を、下記表1~表4に示す。
次に、上記のようにして作製したCNT複合線について、以下の評価を行った。
(1)導電性
抵抗測定機(ケースレー社製、装置名「DMM2000」)にCNT集合体を接続し、4端子法により抵抗測定を実施した。抵抗率は、r=RA/L(R:抵抗、A:CNT集合体の断面積、L:測定長さ)の計算式に基づいて抵抗率を算出した。試験片は、長さ40mmとした。なお、上記試験は、150℃、1時間の加熱処理の前後において、各CNT集合体3本ずつについて行い(N=3)、その平均値を求め、それぞれのCNT集合体の加熱前後の抵抗率(Ω・cm)とした。抵抗率は、小さいほど好ましく、本実施例では、上記加熱前においては7.5×10-5Ω・cm以下を合格レベルとし、上記熱処理後の抵抗率の上昇率(%)[(熱処理後の抵抗率-熱処理前の抵抗率)×100/熱処理前の抵抗率]は、35%以下を合格レベルとし、加熱前の上記抵抗率及び加熱後の抵抗率の上昇率のいずれも合格レベルであるものを良好「〇」、いずれか或いは双方が合格レベルでないものを不良「×」とした。
抵抗測定機(ケースレー社製、装置名「DMM2000」)にCNT集合体を接続し、4端子法により抵抗測定を実施した。抵抗率は、r=RA/L(R:抵抗、A:CNT集合体の断面積、L:測定長さ)の計算式に基づいて抵抗率を算出した。試験片は、長さ40mmとした。なお、上記試験は、150℃、1時間の加熱処理の前後において、各CNT集合体3本ずつについて行い(N=3)、その平均値を求め、それぞれのCNT集合体の加熱前後の抵抗率(Ω・cm)とした。抵抗率は、小さいほど好ましく、本実施例では、上記加熱前においては7.5×10-5Ω・cm以下を合格レベルとし、上記熱処理後の抵抗率の上昇率(%)[(熱処理後の抵抗率-熱処理前の抵抗率)×100/熱処理前の抵抗率]は、35%以下を合格レベルとし、加熱前の上記抵抗率及び加熱後の抵抗率の上昇率のいずれも合格レベルであるものを良好「〇」、いずれか或いは双方が合格レベルでないものを不良「×」とした。
(2)屈曲性
IEC60227-2に準拠した方法で、100cmのCNT被覆電線に荷重500gfで90度の屈曲を1000回行った。その後、軸方向10cmごとに断面観察を行い、導体と被覆の間に剥離があるかどうかを確認した。剥離がないものを〇、一部剥離したものを△、導体が断線したものを×とした。
IEC60227-2に準拠した方法で、100cmのCNT被覆電線に荷重500gfで90度の屈曲を1000回行った。その後、軸方向10cmごとに断面観察を行い、導体と被覆の間に剥離があるかどうかを確認した。剥離がないものを〇、一部剥離したものを△、導体が断線したものを×とした。
(3)ハンドリング性
CNT被覆電線を用いて、直径10mmのコアに幅10mmで5層の巻線を手巻きで一定速度で行った。得られたコイルの断面観察から、占積率(占積率(%)=(CNT被覆電線の断面積の和)/(コイル断面積) × 100)を求めた。コイルは、各CNT被覆電線について5回作製し、占積率は5回の平均値とした。占積率が50%以上はハンドリング性が良いとして「○」、占積率が50%未満はハンドリング性が良くないとして「×」とした。
CNT被覆電線を用いて、直径10mmのコアに幅10mmで5層の巻線を手巻きで一定速度で行った。得られたコイルの断面観察から、占積率(占積率(%)=(CNT被覆電線の断面積の和)/(コイル断面積) × 100)を求めた。コイルは、各CNT被覆電線について5回作製し、占積率は5回の平均値とした。占積率が50%以上はハンドリング性が良いとして「○」、占積率が50%未満はハンドリング性が良くないとして「×」とした。
上記評価の結果を、下記表1~表4に示す。
上記表1に示すように、実施例1~12では、CNT線材が甘撚りでCNT複合線が強撚り~極強撚りであり、耐屈曲性及びハンドリング性のいずれも、概ね良好以上であった。また、実施例1~12では導電性も良好であった。特に、実施例2,5では、CNT線材が甘撚りでCNT複合線が強撚りであり、且つCNT線材とCNT複合線が同じ方向(双方がS方向、或いは双方がZ方向)の撚りであり、耐屈曲性及びハンドリング性のいずれも良好であった。
一方、比較例1~8では、CNT線材が甘撚りでCNT複合線が甘撚り~中撚りであり、耐屈曲性及びハンドリング性のいずれかが不良であった。
また、表2に示すように、実施例9~16では、CNT線材が甘撚りでCNT複合線が強撚り~極強撚りであり、耐屈曲性及びハンドリング性のいずれも概ね良好以上であった。また、実施例9~16では導電性も良好であった。特に、実施例10,13では、CNT線材が中撚りでCNT複合線が強撚りであり、且つCNT線材とCNT複合線が同じ方向(双方がS方向、或いは双方がZ方向)の撚りであり、耐屈曲性及びハンドリング性の双方が良好であった。
一方、比較例9~16では、CNT線材が中撚りでCNT複合線が甘撚り~中撚りであり、ハンドリング性が不良であった。
また、表3に示すように、実施例17~32では、CNT線材が強撚りでCNT複合線が甘撚り~極強撚りであり、耐屈曲性及びハンドリング性のいずれも、概ね良好以上であった。また、実施例17~32では導電性も良好であった。
更に、表4に示すように、実施例33~48では、CNT線材が極強撚りでCNT複合線が甘撚り~極強撚りであり、耐屈曲性及びハンドリング性のいずれも概ね良好以上であった。また、実施例33~48では導電性も良好であった。
1 カーボンナノチューブ被覆電線(CNT被覆電線)
2 カーボンナノチューブ複合線(CNT複合線)
10 カーボンナノチューブ線材(CNT線材)
11 カーボンナノチューブ集合体(CNT集合体)
11a カーボンナノチューブ(CNT)
21 絶縁被覆層
2 カーボンナノチューブ複合線(CNT複合線)
10 カーボンナノチューブ線材(CNT線材)
11 カーボンナノチューブ集合体(CNT集合体)
11a カーボンナノチューブ(CNT)
21 絶縁被覆層
Claims (9)
- 複数のカーボンナノチューブで構成されるカーボンナノチューブ集合体の複数が束ねられてなるカーボンナノチューブ線材の複数が撚り合わされてなるカーボンナノチューブ複合線であって、
前記カーボンナノチューブ線材の撚り数t1及び前記カーボンナノチューブ複合線の撚り数t2の少なくとも一方が1000T/m以上である、カーボンナノチューブ複合線。 - 前記カーボンナノチューブ線材の円相当直径が、20μm以上200μmであり、
前記カーボンナノチューブ複合線の円相当直径が、0.1mm以上60mm以下であり、
前記カーボンナノチューブ複合線を構成する前記カーボンナノチューブ線材の本数が、15以上5000以下であることを特徴とする、請求項1記載のカーボンナノチューブ複合線。 - 前記カーボンナノチューブ線材の撚り数t1が0を超え500T/m未満であり、
前記カーボンナノチューブ複合線の撚り数t2が1000T/m以上2500T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、請求項1記載のカーボンナノチューブ複合線。 - 前記カーボンナノチューブ線材の撚り数t1が500T/m以上1000T/m未満であり、
前記カーボンナノチューブ複合線の撚り数t2が1000T/m以上2500T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、請求項1記載のカーボンナノチューブ複合線。 - 前記カーボンナノチューブ線材の撚り数t1が1000T/m以上2500T/m未満であり、
前記カーボンナノチューブ複合線の撚り数t2が0を超え1000T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、請求項1記載のカーボンナノチューブ複合線。 - 前記カーボンナノチューブ線材の撚り数t1が2500T/m以上であり、
前記カーボンナノチューブ複合線の撚り数t2が0を超え500T/m未満であり、
前記カーボンナノチューブ線材の撚り方向d1がS方向及びZ方向のうちの一方であり、且つ前記カーボンナノチューブ複合線の撚り方向d2が前記カーボンナノチューブ線材の撚り方向と同じである、請求項1記載のカーボンナノチューブ複合線。 - 前記カーボンナノチューブ線材の円相当直径が0.01mm以上30mm以下であり、且つ前記カーボンナノチューブ複合線の円相当直径が0.1mm以上60mm以下である、請求項1乃至6のいずれか1項に記載のカーボンナノチューブ複合線。
- 請求項1乃至7のいずれか1項に記載のカーボンナノチューブ複合線と、前記カーボンナノチューブ複合線の外周に設けられた絶縁被覆層とを有する、カーボンナノチューブ被覆電線。
- 請求項8記載のカーボンナノチューブ被覆電線を有するワイヤハーネス。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880070244.3A CN111279439B (zh) | 2017-10-26 | 2018-10-26 | 碳纳米管复合线、碳纳米管包覆电线以及线束 |
EP18871720.1A EP3703083B1 (en) | 2017-10-26 | 2018-10-26 | Carbon nanotube composite wire, carbon nanotube-coated electric wire, and wire harness |
JP2019550350A JP7254708B2 (ja) | 2017-10-26 | 2018-10-26 | カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス |
US16/857,675 US20200251240A1 (en) | 2017-10-26 | 2020-04-24 | Carbon nanotube strand wire, coated carbon nanotube electric wire, and wire harness |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017207669 | 2017-10-26 | ||
JP2017-207669 | 2017-10-26 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/857,675 Continuation US20200251240A1 (en) | 2017-10-26 | 2020-04-24 | Carbon nanotube strand wire, coated carbon nanotube electric wire, and wire harness |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019083039A1 true WO2019083039A1 (ja) | 2019-05-02 |
Family
ID=66247421
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/039981 WO2019083039A1 (ja) | 2017-10-26 | 2018-10-26 | カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス |
Country Status (5)
Country | Link |
---|---|
US (1) | US20200251240A1 (ja) |
EP (1) | EP3703083B1 (ja) |
JP (1) | JP7254708B2 (ja) |
CN (1) | CN111279439B (ja) |
WO (1) | WO2019083039A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019083038A1 (ja) * | 2017-10-26 | 2020-12-03 | 古河電気工業株式会社 | カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5131571B2 (ja) | 1971-11-01 | 1976-09-07 | ||
JPS5135620B2 (ja) | 1973-04-04 | 1976-10-04 | ||
JPS5819888B2 (ja) | 1977-08-12 | 1983-04-20 | 本田技研工業株式会社 | デイスクブレ−キ装置 |
JP2003303515A (ja) * | 2002-04-09 | 2003-10-24 | Furukawa Electric Co Ltd:The | 通電用複合撚線導体 |
JP2005197135A (ja) * | 2004-01-08 | 2005-07-21 | Auto Network Gijutsu Kenkyusho:Kk | 自動車用電源線 |
JP2006120730A (ja) | 2004-10-19 | 2006-05-11 | Fujitsu Ltd | 層間配線に多層カーボンナノチューブを用いる配線構造及びその製造方法 |
JP2006156346A (ja) * | 2004-10-27 | 2006-06-15 | Furukawa Electric Co Ltd:The | 複合撚線導体 |
JP2013047402A (ja) * | 2011-08-29 | 2013-03-07 | Denso Corp | カーボンナノチューブ糸接続体及びその製造方法 |
JP5288359B2 (ja) | 2010-11-22 | 2013-09-11 | 古河電気工業株式会社 | 凝集紡糸構造体および電線 |
JP5350635B2 (ja) | 2004-11-09 | 2013-11-27 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | ナノファイバーのリボンおよびシートならびにナノファイバーの撚り糸および無撚り糸の製造および適用 |
JP5590603B2 (ja) | 2010-04-09 | 2014-09-17 | 日本ゼオン株式会社 | カーボンナノチューブ配向集合体の製造装置 |
JP2015181102A (ja) | 2008-05-07 | 2015-10-15 | ナノコンプ テクノロジーズ インコーポレイテッド | ナノ構造体ベースの加熱装置およびその使用方法 |
JP5990202B2 (ja) | 2011-02-28 | 2016-09-07 | ウィリアム・マーシュ・ライス・ユニバーシティ | ドープした多層カーボンナノチューブファイバーおよびその製造方法 |
JP2017171545A (ja) * | 2016-03-24 | 2017-09-28 | 古河電気工業株式会社 | カーボンナノチューブ線材の製造方法 |
JP2017171546A (ja) * | 2016-03-24 | 2017-09-28 | 古河電気工業株式会社 | カーボンナノチューブ線材及びカーボンナノチューブ線材接続構造体 |
JP2018115086A (ja) * | 2017-01-18 | 2018-07-26 | 古河電気工業株式会社 | カーボンナノチューブ集合体及びカーボンナノチューブ線材 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3255300A (en) * | 1963-12-19 | 1966-06-07 | Anaconda Wire & Cable Co | Electric furnace cable |
US6023026A (en) * | 1996-10-02 | 2000-02-08 | Nippon Cable Systems Inc. | Wire rope |
JP4900619B2 (ja) * | 2006-04-13 | 2012-03-21 | 東洋紡績株式会社 | 微細炭素繊維撚糸を連続的に製造する方法、及び装置 |
CN101556839B (zh) * | 2008-04-09 | 2011-08-24 | 清华大学 | 线缆 |
JP4424690B2 (ja) * | 2008-02-01 | 2010-03-03 | 北京富納特創新科技有限公司 | 同軸ケーブル |
JP5557992B2 (ja) * | 2008-09-02 | 2014-07-23 | 国立大学法人北海道大学 | カーボンナノチューブが付着した導電性繊維、導電性糸、繊維構造体およびそれらの製造方法 |
US8524622B2 (en) * | 2009-04-10 | 2013-09-03 | Toyota Boshoku Kabushiki Kaisha | Skin material of vehicle interior equipment and manufacturing method for the same |
CN102314964B (zh) * | 2010-07-05 | 2014-04-23 | 清华大学 | 起搏器 |
CN102063959B (zh) * | 2010-11-18 | 2013-02-13 | 清华大学 | 线缆 |
GB201116670D0 (en) * | 2011-09-27 | 2011-11-09 | Cambridge Entpr Ltd | Materials and methods for insulation of conducting fibres, and insulated products |
CN203631148U (zh) * | 2013-07-25 | 2014-06-04 | 安徽江淮电缆集团有限公司 | 新型生活电器用软扁线 |
JP5497237B1 (ja) * | 2013-10-17 | 2014-05-21 | 株式会社 Mgコーポレーション | 導電線、導電線の製造方法およびコイル |
US9322131B2 (en) * | 2013-12-31 | 2016-04-26 | Apple Inc. | Cut-resistant cable structures and systems and methods for making the same |
CN105097065B (zh) * | 2014-04-23 | 2018-03-02 | 北京富纳特创新科技有限公司 | 碳纳米管复合导线 |
CN104376901B (zh) * | 2014-12-03 | 2017-02-01 | 江苏诸利电气有限公司 | 汽车配线用铝导线 |
CN204695816U (zh) * | 2015-06-24 | 2015-10-07 | 江苏诸利电气有限公司 | 高性能超软电机绕组引接电缆 |
JP6407500B1 (ja) * | 2017-03-29 | 2018-10-17 | タツタ電線株式会社 | リード線 |
WO2019083038A1 (ja) * | 2017-10-26 | 2019-05-02 | 古河電気工業株式会社 | カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス |
CN111279427A (zh) * | 2017-10-26 | 2020-06-12 | 古河电气工业株式会社 | 碳纳米管包覆电线及其施工方法、识别标记的检测方法 |
-
2018
- 2018-10-26 WO PCT/JP2018/039981 patent/WO2019083039A1/ja unknown
- 2018-10-26 JP JP2019550350A patent/JP7254708B2/ja active Active
- 2018-10-26 EP EP18871720.1A patent/EP3703083B1/en active Active
- 2018-10-26 CN CN201880070244.3A patent/CN111279439B/zh active Active
-
2020
- 2020-04-24 US US16/857,675 patent/US20200251240A1/en not_active Abandoned
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5131571B2 (ja) | 1971-11-01 | 1976-09-07 | ||
JPS5135620B2 (ja) | 1973-04-04 | 1976-10-04 | ||
JPS5819888B2 (ja) | 1977-08-12 | 1983-04-20 | 本田技研工業株式会社 | デイスクブレ−キ装置 |
JP2003303515A (ja) * | 2002-04-09 | 2003-10-24 | Furukawa Electric Co Ltd:The | 通電用複合撚線導体 |
JP2005197135A (ja) * | 2004-01-08 | 2005-07-21 | Auto Network Gijutsu Kenkyusho:Kk | 自動車用電源線 |
JP2006120730A (ja) | 2004-10-19 | 2006-05-11 | Fujitsu Ltd | 層間配線に多層カーボンナノチューブを用いる配線構造及びその製造方法 |
JP2006156346A (ja) * | 2004-10-27 | 2006-06-15 | Furukawa Electric Co Ltd:The | 複合撚線導体 |
JP5350635B2 (ja) | 2004-11-09 | 2013-11-27 | ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム | ナノファイバーのリボンおよびシートならびにナノファイバーの撚り糸および無撚り糸の製造および適用 |
JP2015181102A (ja) | 2008-05-07 | 2015-10-15 | ナノコンプ テクノロジーズ インコーポレイテッド | ナノ構造体ベースの加熱装置およびその使用方法 |
JP5590603B2 (ja) | 2010-04-09 | 2014-09-17 | 日本ゼオン株式会社 | カーボンナノチューブ配向集合体の製造装置 |
JP5288359B2 (ja) | 2010-11-22 | 2013-09-11 | 古河電気工業株式会社 | 凝集紡糸構造体および電線 |
JP5990202B2 (ja) | 2011-02-28 | 2016-09-07 | ウィリアム・マーシュ・ライス・ユニバーシティ | ドープした多層カーボンナノチューブファイバーおよびその製造方法 |
JP2013047402A (ja) * | 2011-08-29 | 2013-03-07 | Denso Corp | カーボンナノチューブ糸接続体及びその製造方法 |
JP2017171545A (ja) * | 2016-03-24 | 2017-09-28 | 古河電気工業株式会社 | カーボンナノチューブ線材の製造方法 |
JP2017171546A (ja) * | 2016-03-24 | 2017-09-28 | 古河電気工業株式会社 | カーボンナノチューブ線材及びカーボンナノチューブ線材接続構造体 |
JP2018115086A (ja) * | 2017-01-18 | 2018-07-26 | 古河電気工業株式会社 | カーボンナノチューブ集合体及びカーボンナノチューブ線材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3703083A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2019083038A1 (ja) * | 2017-10-26 | 2020-12-03 | 古河電気工業株式会社 | カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス |
JP7214645B2 (ja) | 2017-10-26 | 2023-01-30 | 古河電気工業株式会社 | カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス |
Also Published As
Publication number | Publication date |
---|---|
EP3703083A4 (en) | 2021-08-04 |
US20200251240A1 (en) | 2020-08-06 |
CN111279439A (zh) | 2020-06-12 |
EP3703083A1 (en) | 2020-09-02 |
CN111279439B (zh) | 2022-06-17 |
EP3703083B1 (en) | 2022-06-22 |
JPWO2019083039A1 (ja) | 2020-11-19 |
JP7254708B2 (ja) | 2023-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200258648A1 (en) | Carbon nanotube strand wire, coated carbon nanotube electric wire, and wire harness | |
JP7306996B2 (ja) | カーボンナノチューブ被覆電線及びコイル | |
US20200258652A1 (en) | Carbon nanotube strand wire, coated carbon nanotube electric wire, wire harness, wiring for robot, and overhead wiring for train | |
JP7393858B2 (ja) | カーボンナノチューブ被覆電線、コイル及び被覆電線 | |
JP7254708B2 (ja) | カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス | |
WO2019083032A2 (ja) | カーボンナノチューブ被覆電線 | |
JP7195711B2 (ja) | カーボンナノチューブ被覆電線 | |
JP7203748B2 (ja) | カーボンナノチューブ被覆電線 | |
WO2019083028A1 (ja) | カーボンナノチューブ被覆電線 | |
WO2019083025A1 (ja) | カーボンナノチューブ被覆電線 | |
WO2019083031A1 (ja) | カーボンナノチューブ被覆電線 | |
JP2020184422A (ja) | カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス | |
WO2019083029A1 (ja) | カーボンナノチューブ被覆電線 | |
JP2020184421A (ja) | カーボンナノチューブ複合線、カーボンナノチューブ被覆電線及びワイヤハーネス | |
JP2020184420A (ja) | カーボンナノチューブ複合線、カーボンナノチューブ被覆電線、ワイヤハーネス、ロボットの配線及び電車の架線 | |
US20200258656A1 (en) | Coated carbon nanotube electric wire | |
WO2019083033A2 (ja) | カーボンナノチューブ被覆電線 | |
WO2019083034A1 (ja) | カーボンナノチューブ被覆電線 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18871720 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019550350 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018871720 Country of ref document: EP Effective date: 20200526 |