WO2019074085A1 - Dual clutch transmission - Google Patents
Dual clutch transmission Download PDFInfo
- Publication number
- WO2019074085A1 WO2019074085A1 PCT/JP2018/038048 JP2018038048W WO2019074085A1 WO 2019074085 A1 WO2019074085 A1 WO 2019074085A1 JP 2018038048 W JP2018038048 W JP 2018038048W WO 2019074085 A1 WO2019074085 A1 WO 2019074085A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gear
- shaft
- counter
- input
- clutch
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 56
- 230000009977 dual effect Effects 0.000 title claims abstract description 22
- 230000008878 coupling Effects 0.000 claims abstract description 11
- 238000010168 coupling process Methods 0.000 claims abstract description 11
- 238000005859 coupling reaction Methods 0.000 claims abstract description 11
- 230000008859 change Effects 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 description 107
- 238000000034 method Methods 0.000 description 10
- 239000003921 oil Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 230000006866 deterioration Effects 0.000 description 9
- 239000000446 fuel Substances 0.000 description 9
- 238000013019 agitation Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 239000010687 lubricating oil Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/02—Control by fluid pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H3/00—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
- F16H3/02—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
- F16H3/08—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
- F16H3/087—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
- F16H3/091—Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears including a single countershaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed- or reversing-gearings for conveying rotary motion
- F16H59/36—Inputs being a function of speed
- F16H59/46—Inputs being a function of speed dependent on a comparison between speeds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/04—Smoothing ratio shift
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/68—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
- F16H61/684—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
- F16H61/688—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with two inputs, e.g. selection of one of two torque-flow paths by clutches
Definitions
- the present disclosure relates to a dual clutch transmission.
- Patent Document 1 discloses a dual clutch transmission in which a dual clutch device having two clutches is provided between an engine and a transmission so that power transmission from the engine to the transmission can be switched to two systems. It is done.
- An object of the present disclosure is to provide a dual clutch transmission that can suppress deterioration in fuel efficiency due to stirring of oil.
- a dual clutch type transmission includes a first input shaft having a first clutch capable of connecting and disconnecting power from a drive source, and a second clutch capable of connecting and disconnecting power from the drive source.
- a second input shaft coaxial with the first input shaft, a first counter shaft parallel to the first input shaft, and the first counter shaft coaxial with the first input shaft;
- a second counter shaft selectively coupled to the counter shaft; and an output shaft coaxially disposed with the first input shaft, the second input shaft from the drive source, the first counter shaft, and Power is transmitted from the drive source to the output shaft from the drive source via the first input shaft and the second counter shaft from a first predetermined shift stage where power is transmitted to the output shaft via a second counter shaft
- shifting to the second predetermined gear is performed Releasing the coupling between the first counter shaft and the second counter shaft so that power is not transmitted from the drive source to the first counter shaft, and the first counter from the drive source or the output shaft
- the transmission control device it is possible to suppress the deterioration of fuel consumption due to the stirring of oil.
- FIG. 1 is a skeleton diagram showing a dual clutch transmission according to an embodiment.
- FIG. 2 is a skeleton diagram showing the state immediately after the shift from the eighth gear to the ninth gear.
- FIG. 3 is a skeleton diagram showing a traveling state at the 9th gear.
- FIG. 4 is a flowchart showing the processing content of the oil agitation reduction control.
- FIG. 5 is a skeleton diagram showing a state immediately after shifting from the fourth gear to the fifth gear.
- FIG. 6 is a skeleton diagram showing a traveling state at the fifth gear.
- the left side in FIG. 1 is the front side of the dual clutch transmission 1, and the right side in FIG. 1 is the rear side of the dual clutch transmission 1.
- the dual clutch transmission 1 includes a first clutch 10, a second clutch 20, and a transmission unit 30.
- a drive wheel is coupled to the output side of the transmission unit 30 so as to be able to transmit power via a propeller shaft, a differential and a drive shaft (not shown).
- the first clutch 10 is, for example, a hydraulically operated wet multi-plate clutch having a plurality of input side clutch plates 11 and a plurality of output side clutch plates 12.
- the input clutch plate 11 rotates integrally with the output shaft 2 of the engine (not shown).
- the output-side clutch plate 12 rotates integrally with the first input shaft 31 of the transmission unit 30.
- the first clutch 10 is biased in the disconnecting direction by a return spring (not shown), and the control oil pressure is supplied to the hydraulic fluid chamber of the piston (not shown), whereby the piston moves and the input side clutch plate 11 and the output side clutch plate 12 are brought into pressure contact with each other. With the first clutch 10 engaged, the power of the engine is transmitted to the first input shaft 31. The connection and disconnection of the first clutch 10 is controlled by the controller 40.
- the second clutch 20 is provided on the outer peripheral side of the first clutch 10.
- the second clutch 20 is provided on the outer peripheral side of the first clutch 10 as an example, but the arrangement relationship of the first clutch 10 and the second clutch 20 is the same. It is not limited.
- the second clutch 20 may be disposed on the front side or the rear side of the first clutch 10.
- the second clutch 20 is, for example, a hydraulically operated wet multi-plate clutch having a plurality of input side clutch plates 21 and a plurality of output side clutch plates 22.
- the input clutch plate 21 rotates integrally with the output shaft 2 of the engine.
- the output side clutch plate 22 rotates integrally with the second input shaft 32 of the transmission unit 30.
- the second clutch 20 is biased in the disconnecting direction by a return spring (not shown), and the control oil pressure is supplied to the hydraulic fluid chamber of the piston (not shown), whereby the piston moves and the input side clutch plate 21 and the output side clutch plate 22 are brought into pressure contact with each other.
- the power of the engine is transmitted to the second input shaft 32 by engaging the second clutch 20.
- the connection and disconnection of the second clutch 20 is controlled by the control device 40.
- the transmission unit 30 includes a first input shaft 31 connected to the output side of the first clutch 10 and a second input shaft 32 connected to the output side of the second clutch 20.
- the transmission unit 30 further includes a first counter shaft 33 and a second counter shaft 34 disposed in parallel to the first input shaft 31 and the second input shaft 32.
- the transmission unit 30 further includes an output shaft 35 coaxially disposed with the first input shaft 31 and the second input shaft 32.
- the first input shaft 31 is rotatably supported by the second input shaft 32 via a bearing (not shown).
- a second input gear 52 a functioning as a reverse gear is fixed to an intermediate portion in the front-rear direction of the first input shaft 31.
- a first sync hub 61 a of a first sync mechanism 61 (to be described later) is fixed at a stage subsequent to the second input gear 52 a of the first input shaft 31.
- a third input gear 53a is provided between the second input gear 52a and the first synchro hub 61a so as to be rotatable relative to the first input shaft 31.
- a fourth input gear 54a (corresponding to the "free rotation gear” of the present disclosure) is provided so as to be rotatable relative to the first input shaft 31.
- the second input shaft 32 is a hollow shaft through which the first input shaft 31 is inserted, and is rotatably supported by a transmission case (not shown) via a bearing (not shown).
- a first input gear 51 a is fixed to the rear end of the second input shaft 32.
- the first input gear 51a is disposed on the front side of the second input gear 52a.
- the first counter shaft 33 is rotatably supported by a transmission case (not shown) via a bearing (not shown).
- a first counter gear 51b, a third sync hub 63a of a third sync mechanism 63 (described later), a sixth counter gear 56b and a seventh counter gear 57b are fixed to the first counter shaft 33 in order from the front side. .
- the first counter gear 51b is in constant mesh with the first input gear 51a.
- a first gear train 51 is formed by the first input gear 51a and the first counter gear 51b.
- a second counter gear 52 b is provided between the first counter gear 51 b and the third synchronizing mechanism 63 so as to be rotatable relative to the first counter shaft 33.
- the second counter gear 52b is constantly meshed with the second input gear 52a via the reverse idler gear 52c.
- a reverse gear train 52 is configured by the second input gear 52a, the reverse idler gear 52c, and the second counter gear 52b.
- the second counter shaft 34 is disposed between the third synchronizing mechanism 63 and the sixth counter gear 56 b.
- the second counter shaft 34 is a hollow shaft through which the first counter shaft 33 is inserted, and is rotatably supported relative to the first counter shaft 33 via a bearing (not shown).
- a third counter gear 53 b is fixed to the front of the second counter shaft 34.
- the third counter gear 53b is in constant mesh with the third input gear 53a.
- a second gear train 53 is formed by the third input gear 53a and the third counter gear 53b.
- a fourth counter gear 54 b (corresponding to the “first counter gear” of the present disclosure) is fixed at a stage subsequent to the third counter gear 53 b in the second counter shaft 34.
- the fourth counter gear 54b is in constant mesh with the fourth input gear 54a.
- a third gear train 54 is configured by the fourth input gear 54a and the fourth counter gear 54b.
- a fifth counter gear 55 b (corresponding to a “second counter gear” in the present disclosure) is fixed to the rear end portion of the second counter shaft 34.
- the output shaft 35 is rotatably supported by a transmission case (not shown) via a bearing (not shown).
- a second synchro hub 62a of a second synchro mechanism 62 (described later) is fixed.
- a fourth sync hub 64 a of a fourth sync mechanism 64 (to be described later) is fixed at a stage subsequent to the second sync hub 62 a in the output shaft 35.
- a first output gear 55 a (corresponding to the “output gear” in the present disclosure) is provided between the second synchro hub 62 a and the fourth synchro hub 64 a so as to be rotatable relative to the output shaft 35.
- the first output gear 55a is in constant mesh with the fifth counter gear 55b.
- a fourth gear train 55 is formed by the first output gear 55a and the fifth counter gear 55b.
- a second output gear 56 a is provided rotatably relative to the output shaft 35 between the first output gear 55 a and the fourth synchro hub 64 a.
- the second output gear 56a is in constant mesh with the sixth counter gear 56b.
- a fifth gear train 56 is configured by the second output gear 56a and the sixth counter gear 56b.
- a third output gear 57 a is provided in the rear stage of the fourth synchro hub 64 a so as to be rotatable relative to the output shaft 35.
- the third output gear 57a always meshes with the seventh counter gear 57b.
- a sixth gear train 57 (corresponding to the “fifth gear train” in the present disclosure) is configured by the third output gear 57 a and the seventh counter gear 57 b.
- the transmission unit 30 includes a first synchronizing mechanism 61, a second synchronizing mechanism 62, a third synchronizing mechanism 63, and a fourth synchronizing mechanism 64.
- the first synchronization mechanism 61 includes a first synchronization hub 61a, a first synchronization sleeve 61b, a first dog gear 61c, and a second dog gear 61d.
- the first synchro hub 61a is fixed to the first input shaft 31 as described above.
- the first synchro sleeve 61 b is provided to surround the first synchro hub 61 a.
- the first synchro sleeve 61b has spline internal teeth that engage with the spline external teeth of the first synchro hub 61a.
- the first synchro sleeve 61b rotates integrally with the first synchro hub 61a, and is movable in the front-rear direction with respect to the first synchro hub 61a.
- the first dog gear 61c is provided on the rear side of the third input gear 53a.
- the second dog gear 61d is provided on the front side of the fourth input gear 54a.
- Synchronizer rings (not shown) are provided between the first synchro hub 61a and the first dog gear 61c and the second dog gear 61d, respectively.
- the spline internal teeth of the first synchro sleeve 61b are selectively engageable with the spline external teeth of the first dog gear 61c and the second dog gear 61d.
- the first sync mechanism 61 is configured such that the first sync sleeve 61b is moved by a shift fork (not shown) and engaged with the first dog gear 61c or the second dog gear 61d, whereby the first input shaft 31 and the third input gear are engaged. It selectively couples in synchronization with the 53a or the fourth input gear 54a.
- the operation of the first synchro sleeve 61 b is controlled by the controller 40.
- the second synchronization mechanism 62 includes a second synchronization hub 62a, a second synchronization sleeve 62b, a third dog gear 62c, and a fourth dog gear 62d.
- the second synchro hub 62a is fixed to the output shaft 35 as described above.
- the second synchro sleeve 62b is provided so as to surround the second synchro hub 62a.
- the second synchro sleeve 62b has spline internal teeth that engage with the spline external teeth of the second synchro hub 62a.
- the second sync sleeve 62b rotates integrally with the second sync hub 62a, and is movable in the front-rear direction with respect to the second sync hub 62a.
- the third dog gear 62c is provided on the rear side of the fourth input gear 54a.
- the fourth dog gear 62d is provided on the front side of the first output gear 55a.
- Synchronizer rings (not shown) are provided between the second synchro hub 62a and the third dog gear 62c and the fourth dog gear 62d, respectively.
- the spline internal teeth of the second synchro sleeve 62b are selectively engageable with the spline external teeth of the third dog gear 62c and the fourth dog gear 62d.
- the second synchro mechanism 62 moves the second synchro sleeve 62b by a shift fork (not shown) and engages with the third dog gear 62c or the fourth dog gear 62d, whereby the output shaft 35 and the fourth input gear 54a or The first output gear 55a is selectively and synchronously coupled.
- the operation of the second synchro sleeve 62 b is controlled by the controller 40.
- the third synchronization mechanism 63 includes a third synchronization hub 63a, a third synchronization sleeve 63b, a fifth dog gear 63c, and a sixth dog gear 63d.
- the third synchro hub 63a is fixed to the first counter shaft 33 as described above.
- the third synchro sleeve 63b is provided to surround the third synchro hub 63a.
- the third synchro sleeve 63b has spline internal teeth that engage with the spline external teeth of the third synchro hub 63a.
- the third sync sleeve 63b is integrally rotated with the third sync hub 63a, and is movable in the front-rear direction with respect to the third sync hub 63a.
- the fifth dog gear 63c is provided on the rear side of the second counter gear 52b.
- the sixth dog gear 63 d is provided at the front end of the second countershaft 34.
- Synchronizer rings (not shown) are provided between the third synchro hub 63a and the fifth dog gear 63c and the sixth dog gear 63d, respectively.
- the spline internal teeth of the third synchro sleeve 63b are selectively engageable with the spline external teeth of the fifth dog gear 63c and the sixth dog gear 63d.
- the third synchronization sleeve 63b is moved by a shift fork (not shown) and engaged with the fifth dog gear 63c or the sixth dog gear 63d, whereby the first counter shaft 33 and the second counter gear are engaged. And 52b or the second counter shaft 34 is selectively synchronized.
- the operation of the third synchro sleeve 63 b is controlled by the controller 40.
- the fourth synchronizing mechanism 64 includes a fourth synchronizing hub 64a, a fourth synchronizing sleeve 64b, a seventh dog gear 64c, and an eighth dog gear 64d.
- the fourth synchro hub 64a is fixed to the output shaft 35 as described above.
- the fourth sync sleeve 64b is provided to surround the fourth sync hub 64a.
- the fourth synchro sleeve 64b has spline internal teeth that engage with the spline external teeth of the fourth synchro hub 64a.
- the fourth synchro sleeve 64b rotates integrally with the fourth synchro hub 64a, and is movable in the front-rear direction with respect to the fourth synchro hub 64a.
- the seventh dog gear 64c is provided on the rear side of the second output gear 56a.
- the eighth dog gear 64d is provided on the front side of the third output gear 57a.
- Synchronizer rings (not shown) are provided between the fourth synchro hub 64a and the seventh dog gear 64c and the eighth dog gear 64d, respectively.
- the spline internal teeth of the fourth synchro sleeve 64b are selectively engageable with the spline external teeth of the seventh dog gear 64c and the eighth dog gear 64d.
- the fourth synchronizing sleeve 64b is moved by a shift fork (not shown) and engaged with the seventh dog gear 64c or the eighth dog gear 64d, whereby the output shaft 35 and the second output gear 56a or The third output gear 57a is selectively and synchronously coupled.
- the operation of the fourth synchro sleeve 64 b is controlled by the controller 40.
- the first clutch 10 In the first gear, the first clutch 10 is brought into contact, and the first input shaft 31 and the fourth input gear 54 a are coupled by the first synchro mechanism 61, and the third counter shaft 63 is coupled with the first counter shaft 34 by the third synchro mechanism 63.
- the counter shaft 33 is coupled, and the second output gear 56 a and the output shaft 35 are coupled by the fourth synchronizing mechanism 64.
- the power of the engine is: first clutch 10 ⁇ first input shaft 31 ⁇ first synchro mechanism 61 ⁇ third gear train 54 ⁇ second counter shaft 34 ⁇ third synchro mechanism 63 ⁇ first counter shaft 33 ⁇ fifth gear
- the power transmission path of the first gear is established by transmitting the train 56 ⁇ the fourth synchronization mechanism 64 ⁇ the output shaft 35.
- the second clutch 20 In the second gear, the second clutch 20 is brought into contact, and the second output gear 56a and the output shaft 35 are coupled by the fourth synchronizing mechanism 64.
- the power of the engine is transmitted to the second clutch 20 ⁇ second input shaft 32 ⁇ first gear train 51 ⁇ first countershaft 33 ⁇ fifth gear train 56 ⁇ fourth synchronizing mechanism 64 ⁇ output shaft 35
- the power transmission path of the second gear is established.
- the third gear is realized by disconnecting the second clutch 20 and engaging the first clutch 10 in a state in which the preshift to the third gear is completed in the second gear.
- the first clutch 10 is brought into contact, and the first input shaft 31 and the fourth input gear 54a are coupled by the first synchro mechanism 61, and the first output gear 55a and the output shaft are formed by the second synchro mechanism 62. And 35 are combined.
- the power of the engine is 1st clutch 10 ⁇ 1st input shaft 31 ⁇ 1st synchro mechanism 61 ⁇ 3rd gear train 54 ⁇ 2nd counter shaft 34 ⁇ 4th gear train 55 ⁇ 2nd synchro mechanism 62 ⁇ output shaft 35
- the power transmission path of the third gear is established.
- pre-shifting to the fourth gear is performed. Specifically, the coupling between the second output gear 56a and the output shaft 35 by the fourth synchronizing mechanism 64 is released, and the first counter shaft 33 and the second counter shaft 34 are coupled by the third synchronizing mechanism 63.
- the fourth gear is realized by disengaging the first clutch 10 and engaging the second clutch 20 in a state in which the preshift to the fourth gear is completed in the third gear.
- the second clutch 20 is brought into contact, and the first output gear 55a and the output shaft 35 are coupled by the second synchro mechanism 62, and the first counter shaft 33 and the second counter shaft by the third synchro mechanism 63. 34 are combined.
- the power of the engine is second clutch 20 ⁇ second input shaft 32 ⁇ first gear train 51 ⁇ first counter shaft 33 ⁇ third synchro mechanism 63 ⁇ second counter shaft 34 ⁇ fourth gear train 55 ⁇ second synchro
- the mechanism 62 ⁇ the output shaft 35 a power transmission path of the fourth gear is established.
- pre-shifting to the fifth gear is performed. Specifically, the connection between the first input shaft 31 and the fourth input gear 54a is released by the first synchronization mechanism 61, and the first input shaft 31 and the third input gear 53a are connected.
- the fifth gear is realized by disengaging the second clutch 20 and engaging the first clutch 10 in a state in which the preshift to the fifth gear is completed in the fourth gear.
- the first clutch 10 is brought into contact, and the first input shaft 31 and the third input gear 53a are coupled by the first synchro mechanism 61, and the first output gear 55a and the output shaft are formed by the second synchro mechanism 62. And 35 are combined.
- the power of the engine is 1st clutch 10 ⁇ 1st input shaft 31 ⁇ 1st synchro mechanism 61 ⁇ 2nd gear train 53 ⁇ 2nd counter shaft 34 ⁇ 4th gear train 55 ⁇ 2nd synchro mechanism 62 ⁇ output shaft 35
- the power transmission path of the fifth gear is established.
- pre-shifting to the sixth gear is performed. Specifically, the coupling between the second counter shaft 34 and the first counter shaft 33 by the third synchronizing mechanism 63 is released, and the third output gear 57 a and the output shaft 35 are coupled by the fourth synchronizing mechanism 64.
- the sixth gear is realized by disengaging the first clutch 10 and engaging the second clutch 20 in a state where the preshift to the sixth gear is completed at the fifth gear.
- the second clutch 20 is brought into contact, and the third output gear 57 a and the output shaft 35 are coupled by the fourth synchronizing mechanism 64.
- the power of the engine is transmitted to the second clutch 20 ⁇ second input shaft 32 ⁇ first gear train 51 ⁇ first countershaft 33 ⁇ sixth gear train 57 ⁇ fourth synchronizing mechanism 64 ⁇ output shaft 35
- the power transmission path of the sixth gear is established.
- the first synchronization mechanism 61 releases the connection between the first input shaft 31 and the third input gear 53a, and the first input shaft 31 and the fourth input gear 54a are connected to each other.
- the connection between the first output gear 55a and the output shaft 35 is released by 62, and the fourth input gear 54a and the output shaft 35 are connected.
- the seventh gear is realized by disengaging the second clutch 20 and engaging the first clutch 10 in a state where pre-shifting to the seventh gear is completed in the sixth gear.
- the first clutch 10 is brought into contact, and the first input shaft 31 and the fourth input gear 54 a are coupled by the first synchro mechanism 61, and the fourth input gear 54 a and the output shaft by the second synchro mechanism 62. And 35 are combined.
- the power of the engine is transmitted to the first clutch 10 ⁇ the first input shaft 31 ⁇ the first synchro mechanism 61 ⁇ the fourth input gear 54 a ⁇ the second synchro mechanism 62 ⁇ the output shaft 35, whereby the power of the seventh gear is achieved.
- a transmission path is established.
- the 7th gear is a direct connection gear.
- the eighth gear is realized by disengaging the first clutch 10 and engaging the second clutch 20 in a state where the preshift to the eighth gear is completed in the seventh gear.
- the second clutch 20 is brought into contact, and the fourth synchronizer 62 couples the fourth input gear 54a to the output shaft 35, and the third synchro mechanism 63 couples the first counter shaft 33 to the second counter shaft. 34 are combined.
- the power of the engine is second clutch 20 ⁇ second input shaft 32 ⁇ first gear train 51 ⁇ first counter shaft 33 ⁇ third synchronizing mechanism 63 ⁇ second counter shaft 34 ⁇ third gear train 54 ⁇ second synchro
- the mechanism 62 ⁇ the output shaft 35 a power transmission path of the eighth gear is established.
- pre-shifting to the ninth gear is performed. Specifically, the connection between the first input shaft 31 and the fourth input gear 54a is released by the first synchronization mechanism 61, and the first input shaft 31 and the third input gear 53a are connected.
- the ninth gear is realized by disengaging the second clutch 20 and engaging the first clutch 10 in a state in which the preshift to the ninth gear is completed in the eighth gear.
- the first clutch 10 is brought into contact, and the first input shaft 31 and the third input gear 53a are coupled by the first synchro mechanism 61, and the fourth input gear 54a and the output shaft are formed by the second synchro mechanism 62. And 35 are combined.
- the power of the engine is 1st clutch 10 ⁇ 1st input shaft 31 ⁇ 1st synchro mechanism 61 ⁇ 2nd gear train 53 ⁇ 2nd counter shaft 34 ⁇ 3rd gear train 54 ⁇ 2nd synchro mechanism 62 ⁇ output shaft 35
- the power transmission path of the ninth gear is established.
- FIG. 2 shows a state immediately after the upshift from the eighth gear to the ninth gear is performed.
- thick lines indicate power transmission paths contributing to power transmission from the engine to the output shaft 35.
- the solid line does not contribute to the power transmission from the engine to the output shaft 35, but indicates that rotational power from the engine is transmitted.
- the broken line indicates that rotational power from the engine is not transmitted.
- the third synchronizing mechanism 63 is in a state in which the first counter shaft 33 and the second counter shaft 34 are coupled.
- the following operation is performed to prevent the first counter shaft 33 from being rotationally driven by the engine after the shift from the eighth gear to the ninth gear.
- the second clutch 20 is temporarily engaged.
- the power of the engine is transmitted to the first countershaft 33 via the second input shaft 32, and the rotational speed of the first countershaft 33 is increased. Then, when the rotational speed of the first counter shaft 33 is sufficiently increased, the engaged second clutch 20 is disconnected, and the third synchro sleeve 63b is engaged with the sixth dog gear 63d. Thereby, the load applied to the third synchronizing mechanism 63 can be reduced.
- step S1 the control device 40 determines whether or not pre-shifting is unnecessary. This determination is made, for example, based on the vehicle speed and the like. Also, for example, this determination may be made by determining whether there is a possibility of shifting to the eighth gear.
- step S1 If it is determined in step S1 that pre-shifting is not unnecessary (step S1: NO), the process of step S1 is repeated. On the other hand, if it is determined in step S1 that pre-shifting is unnecessary (step S1: YES), the process proceeds to step S2.
- step S2 the control device 40 performs gear removal in the third synchronizing mechanism 63. Specifically, the engagement state between the third synchro sleeve 63b and the sixth dog gear 63d is released.
- step S3 control device 40 determines whether or not pre-shifting is necessary. This determination is performed based on the vehicle speed or the like, for example, as in the above-described step S1.
- step S3 If it is determined in step S3 that pre-shifting is not necessary (step S3: NO), the process of step S3 is repeated. On the other hand, if it is determined in step S3 that pre-shifting is necessary (step S3: YES), the process proceeds to step S4.
- step S4 the control device 40 determines whether the rotational speed difference between the first countershaft 33 and the second countershaft 34 is less than or equal to a predetermined threshold. This determination is made, for example, by detecting the number of rotations of the first countershaft 33 and the number of rotations of the second countershaft 34 with a rotation number sensor (not shown) and directly determining the number of rotations.
- the above-described threshold value may be stored in advance in the control device 40 as a rotational speed difference that does not apply an excessive load to the third synchronizing mechanism 63 by an experiment or the like.
- step S4 may be made by measuring an elapsed time after gear removal in the third synchronizing mechanism 63. In this case, an elapsed time until the above-mentioned rotational speed difference exceeds a predetermined threshold may be determined by experiment.
- step S4 If it is determined in step S4 that the rotational speed difference between the first countershaft 33 and the second countershaft 34 is less than or equal to the predetermined threshold (step S4: YES), the process proceeds to step S8 (described later). On the other hand, if it is determined in step S4 that the rotational speed difference between the first countershaft 33 and the second countershaft 34 is not less than or equal to the predetermined threshold (step S4: NO), the process proceeds to step S5.
- step S5 the control device 40 engages the second clutch 20. Specifically, the second clutch 20 is fully engaged. The second clutch 20 may be slip engaged. When the second clutch 20 is engaged in step S5, the process proceeds to step S6.
- step S6 the control device 40 determines whether the rotational speed difference between the first countershaft 33 and the second countershaft 34 is equal to or less than a threshold. This determination is made, for example, by detecting the number of rotations of the first countershaft 33 and the number of rotations of the second countershaft 34 with a rotation number sensor (not shown) and directly determining the number of rotations.
- a rotation number sensor not shown
- the engagement time required to bring the second clutch 20 into the full engagement state from the disengaged state is determined in advance by experiment. You may make it judge simply by whether it is not.
- step S6 If it is determined in step S6 that the rotational speed difference between the first countershaft 33 and the second countershaft 34 is not less than or equal to a predetermined threshold (step S6: NO), the process of step S6 is repeated. On the other hand, when it is determined in step S6 that the rotational speed difference between the first countershaft 33 and the second countershaft 34 is less than or equal to the predetermined threshold (step S6: YES), the process proceeds to step S7.
- step S7 the control device 40 releases the engagement of the second clutch 20. Then, the process proceeds to step S8.
- step S8 the control device 40 causes the third synchronization mechanism 63 to engage the gear. Specifically, the third synchro sleeve 63b and the sixth dog gear 63d are engaged.
- the connection between the first counter shaft 33 and the second counter shaft 34 is performed by the third synchronizing mechanism 63. To release. This can prevent the rotational power from the engine from being transmitted to the first countershaft 33. Therefore, the deterioration of the fuel consumption by stirring of lubricating oil can be suppressed.
- the second clutch 20 is temporarily engaged. Therefore, the load applied to the third synchronizing mechanism 63 can be reduced.
- the second clutch 20 when the rotational speed difference between the first countershaft 33 and the second countershaft 34 exceeds the predetermined threshold, the second clutch 20 is temporarily engaged.
- the third sync when the relative rotational speed between the first countershaft 33 and the second countershaft 34 is small and is less than or equal to the predetermined threshold, the third sync is generated without temporarily engaging the second clutch 20. Gear engagement in the mechanism 63 is performed. Therefore, in a situation where the load applied to the third synchronizing mechanism 63 is not so large, the time required for the pre-shift can be shortened.
- FIG. 5 shows a state immediately after the upshift from the fourth gear to the fifth gear is performed.
- the third synchronizing mechanism 63 is in a state in which the first counter shaft 33 and the second counter shaft 34 are coupled.
- the following operation is performed to prevent the first counter shaft 33 from being rotationally driven by the engine after the shift from the fourth gear to the fifth gear.
- the second clutch 20 is temporarily engaged.
- the power of the engine is transmitted to the first countershaft 33 via the second input shaft 32, and the rotational speed of the first countershaft 33 is increased. Then, when the rotational speed of the first counter shaft 33 is sufficiently increased, the engaged second clutch 20 is disconnected, and the third synchro sleeve 63b is engaged with the sixth dog gear 63d. Thereby, the load applied to the third synchronizing mechanism 63 can be reduced.
- the following operation is performed prior to the connection of the third output gear 57a and the output shaft 35 by the fourth synchronizing mechanism 64. It will be.
- the second clutch 20 is temporarily engaged.
- the power of the engine is transmitted to the third output gear 57a via the second input shaft 32, the first gear train 51, the first countershaft 33 and the seventh counter gear 57b, and the rotational speed of the third output gear 57a Will rise. Then, when the rotational speed of the third output gear 57a is sufficiently increased, the engaged second clutch 20 is disconnected, and the fourth synchro sleeve 64b is engaged with the eighth dog gear 64d. Thereby, the load applied to the fourth synchronizing mechanism 64 can be reduced.
- the fourth synchro mechanism 64 couples the third output gear 57a to the output shaft 35. Then, the first counter shaft 33 and the second counter shaft 34 are coupled by the third synchronizing mechanism 63. In this case, the following problems may occur.
- the first counter shaft 33 is separated from the engine, and the rotational power from the engine is transmitted to the first counter shaft 33. It will not be done. Therefore, the rotation speed of the first counter shaft 33 lower than the rotation speed of the second counter shaft 34 is further reduced by the stirring resistance of the lubricating oil in the transmission case. In this state, if the first counter shaft 33 and the second counter shaft 34 are to be coupled by the third synchronizing mechanism 63 as it is, there is a possibility that the third synchronizing mechanism 63 may be overloaded.
- the fourth synchronizing mechanism 64 releases the connection between the third output gear 57a and the output shaft 35, and then the third synchronizing mechanism Prior to coupling the first counter shaft 33 and the second counter shaft 34 according to 63, the following operation is performed.
- the second clutch 20 is temporarily engaged before the third synchro sleeve 63b is engaged with the sixth dog gear 63d. Match.
- the power of the engine is transmitted to the first countershaft 33 via the second input shaft 32, and the rotational speed of the first countershaft 33 is increased. Then, when the rotational speed of the first counter shaft 33 is sufficiently increased, the engaged second clutch 20 is disconnected, and the third synchro sleeve 63b is engaged with the sixth dog gear 63d.
- Such load reduction control of the synchronization mechanism is not limited to the pre-shift to the fourth gear immediately after the down shift from the sixth gear to the fifth gear, and is applicable.
- the dual clutch transmission of the present disclosure can suppress the deterioration of fuel efficiency due to the stirring of oil, and has great industrial applicability.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Control Of Transmission Device (AREA)
- Structure Of Transmissions (AREA)
- Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
Abstract
When a shift is performed from a first prescribed shift stage in which motive power is transmitted to an output shaft from a drive source via a second input shaft, a first countershaft, and a second countershaft, to a second prescribed shift stage in which motive power is transmitted to the output shaft from the drive source via a first input shaft and the second countershaft, this dual clutch transmission sets a state in which the coupling of the first countershaft and the second countershaft is released and motive power is not transmitted from the drive source to the first countershaft, and, when the state is to be changed to a state in which motive power is transmitted from the drive source or the output shaft to the first countershaft, a second clutch is temporarily set in a connected state before the state is changed.
Description
本開示は、デュアルクラッチ式変速機に関する。
The present disclosure relates to a dual clutch transmission.
特許文献1には、二個のクラッチを有するデュアルクラッチ装置をエンジンと変速機との間に設け、エンジンから変速機への動力伝達を二系統に切り替えられるようにしたデュアルクラッチ式変速機が開示されている。
Patent Document 1 discloses a dual clutch transmission in which a dual clutch device having two clutches is provided between an engine and a transmission so that power transmission from the engine to the transmission can be switched to two systems. It is done.
特許文献1に記載されるようなデュアルクラッチ式変速機では、例えば偶数段での走行中に、奇数段でプレシフトが行われる。プレシフトが行われると、エンジンから車輪への動力伝達に寄与しない伝達経路における要素がエンジンによって回転駆動されることから、オイルの撹拌抵抗が増大し、燃費の悪化を招く。
In the dual clutch transmission as described in Patent Document 1, for example, while traveling in even gear, pre-shifting is performed in odd gear. When pre-shifting is performed, the elements in the transmission path that do not contribute to the power transmission from the engine to the wheels are rotationally driven by the engine, so the oil agitation resistance increases, resulting in deterioration of fuel efficiency.
本開示の目的は、オイルの撹拌による燃費の悪化を抑制することができるデュアルクラッチ式変速機を提供することである。
An object of the present disclosure is to provide a dual clutch transmission that can suppress deterioration in fuel efficiency due to stirring of oil.
本開示の一態様に係るデュアルクラッチ式変速機は、駆動源からの動力を断接可能な第1クラッチを有する第1入力軸と、前記駆動源からの動力を断接可能な第2クラッチを有するとともに前記第1入力軸と同軸に配置された第2入力軸と、前記第1入力軸と平行に配置された第1カウンタ軸と、前記第1カウンタ軸と同軸に配置され、前記第1カウンタ軸と選択的に結合される第2カウンタ軸と、前記第1入力軸と同軸に配置された出力軸と、を備え、前記駆動源から前記第2入力軸、前記第1カウンタ軸および前記第2カウンタ軸を介して前記出力軸へ動力伝達が行われる第1所定変速段から、前記駆動源から前記第1入力軸および前記第2カウンタ軸を介して前記出力軸へ動力伝達が行われる第2所定変速段への変速が行われた場合に、前記第1カウンタ軸と前記第2カウンタ軸との結合を解除して前記駆動源から前記第1カウンタ軸へ動力が伝達されない状態とするとともに、前記駆動源または前記出力軸から前記第1カウンタ軸へ動力が伝達される状態への状態変化を行う際に、前記状態変化に先立って、前記第2クラッチを一時的に接続状態とする。
A dual clutch type transmission according to an aspect of the present disclosure includes a first input shaft having a first clutch capable of connecting and disconnecting power from a drive source, and a second clutch capable of connecting and disconnecting power from the drive source. A second input shaft coaxial with the first input shaft, a first counter shaft parallel to the first input shaft, and the first counter shaft coaxial with the first input shaft; A second counter shaft selectively coupled to the counter shaft; and an output shaft coaxially disposed with the first input shaft, the second input shaft from the drive source, the first counter shaft, and Power is transmitted from the drive source to the output shaft from the drive source via the first input shaft and the second counter shaft from a first predetermined shift stage where power is transmitted to the output shaft via a second counter shaft When shifting to the second predetermined gear is performed Releasing the coupling between the first counter shaft and the second counter shaft so that power is not transmitted from the drive source to the first counter shaft, and the first counter from the drive source or the output shaft When performing a state change to a state in which power is transmitted to the shaft, prior to the state change, the second clutch is temporarily brought into the connected state.
本開示に係る変速制御装置によれば、オイルの撹拌による燃費の悪化を抑制することができる。
According to the transmission control device according to the present disclosure, it is possible to suppress the deterioration of fuel consumption due to the stirring of oil.
以下、本開示の実施形態について、図面を参照して詳細に説明する。なお、以下に説明する実施形態は一例であり、本開示はこの実施形態により限定されるものではない。
Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiment described below is an example, and the present disclosure is not limited to this embodiment.
まず、図1を参照して、実施形態に係るデュアルクラッチ式変速機1の全体構成について説明する。図1における左側がデュアルクラッチ式変速機1の前側であり、図1における右側がデュアルクラッチ式変速機1の後側である。
First, with reference to FIG. 1, the whole structure of the dual clutch type transmission 1 which concerns on embodiment is demonstrated. The left side in FIG. 1 is the front side of the dual clutch transmission 1, and the right side in FIG. 1 is the rear side of the dual clutch transmission 1.
デュアルクラッチ式変速機1は、第1クラッチ10と、第2クラッチ20と、変速部30とを備えている。そして、変速部30の出力側に、不図示のプロペラシャフト、デファレンシャルおよびドライブシャフトを介して、駆動輪が動力伝達可能に連結されている。
The dual clutch transmission 1 includes a first clutch 10, a second clutch 20, and a transmission unit 30. A drive wheel is coupled to the output side of the transmission unit 30 so as to be able to transmit power via a propeller shaft, a differential and a drive shaft (not shown).
第1クラッチ10は、例えば、複数の入力側クラッチ板11および複数の出力側クラッチ板12を有する油圧作動式の湿式多板クラッチである。入力側クラッチ板11は、エンジン(不図示)の出力軸2と一体回転する。出力側クラッチ板12は、変速部30の第1入力軸31と一体回転する。
The first clutch 10 is, for example, a hydraulically operated wet multi-plate clutch having a plurality of input side clutch plates 11 and a plurality of output side clutch plates 12. The input clutch plate 11 rotates integrally with the output shaft 2 of the engine (not shown). The output-side clutch plate 12 rotates integrally with the first input shaft 31 of the transmission unit 30.
第1クラッチ10は、リターンスプリング(不図示)によって断方向に付勢されており、ピストン(不図示)の作動油室に制御油圧が供給されることでピストンが移動して、入力側クラッチ板11および出力側クラッチ板12を圧接することで接とされる。第1クラッチ10が接とされることで、エンジンの動力が第1入力軸31に伝達される。第1クラッチ10の断接は、制御装置40によって制御される。
The first clutch 10 is biased in the disconnecting direction by a return spring (not shown), and the control oil pressure is supplied to the hydraulic fluid chamber of the piston (not shown), whereby the piston moves and the input side clutch plate 11 and the output side clutch plate 12 are brought into pressure contact with each other. With the first clutch 10 engaged, the power of the engine is transmitted to the first input shaft 31. The connection and disconnection of the first clutch 10 is controlled by the controller 40.
第2クラッチ20は、第1クラッチ10の外周側に設けられている。なお、本実施形態では、第2クラッチ20が第1クラッチ10の外周側に設けられているものを例に挙げて説明を行うが、第1クラッチ10および第2クラッチ20の配置関係はこれに限定されない。例えば、第2クラッチ20を、第1クラッチ10の前側または後側に配置するようにしてもよい。
The second clutch 20 is provided on the outer peripheral side of the first clutch 10. In the present embodiment, the second clutch 20 is provided on the outer peripheral side of the first clutch 10 as an example, but the arrangement relationship of the first clutch 10 and the second clutch 20 is the same. It is not limited. For example, the second clutch 20 may be disposed on the front side or the rear side of the first clutch 10.
第2クラッチ20は、例えば、複数の入力側クラッチ板21および複数の出力側クラッチ板22を有する油圧作動式の湿式多板クラッチである。入力側クラッチ板21は、エンジンの出力軸2と一体回転する。出力側クラッチ板22は、変速部30の第2入力軸32と一体回転する。
The second clutch 20 is, for example, a hydraulically operated wet multi-plate clutch having a plurality of input side clutch plates 21 and a plurality of output side clutch plates 22. The input clutch plate 21 rotates integrally with the output shaft 2 of the engine. The output side clutch plate 22 rotates integrally with the second input shaft 32 of the transmission unit 30.
第2クラッチ20は、リターンスプリング(不図示)によって断方向に付勢されており、ピストン(不図示)の作動油室に制御油圧が供給されることでピストンが移動して、入力側クラッチ板21および出力側クラッチ板22を圧接することで接とされる。第2クラッチ20が接とされることで、エンジンの動力が第2入力軸32に伝達される。第2クラッチ20の断接は、制御装置40によって制御される。
The second clutch 20 is biased in the disconnecting direction by a return spring (not shown), and the control oil pressure is supplied to the hydraulic fluid chamber of the piston (not shown), whereby the piston moves and the input side clutch plate 21 and the output side clutch plate 22 are brought into pressure contact with each other. The power of the engine is transmitted to the second input shaft 32 by engaging the second clutch 20. The connection and disconnection of the second clutch 20 is controlled by the control device 40.
変速部30は、第1クラッチ10の出力側に接続された第1入力軸31と、第2クラッチ20の出力側に接続された第2入力軸32とを備えている。また、変速部30は、第1入力軸31および第2入力軸32と平行に配置された第1カウンタ軸33および第2カウンタ軸34を備えている。さらに、変速部30は、第1入力軸31および第2入力軸32と同軸上に配置された出力軸35を備えている。
The transmission unit 30 includes a first input shaft 31 connected to the output side of the first clutch 10 and a second input shaft 32 connected to the output side of the second clutch 20. The transmission unit 30 further includes a first counter shaft 33 and a second counter shaft 34 disposed in parallel to the first input shaft 31 and the second input shaft 32. The transmission unit 30 further includes an output shaft 35 coaxially disposed with the first input shaft 31 and the second input shaft 32.
第1入力軸31は、軸受(不図示)を介して第2入力軸32に回転可能に軸支されている。第1入力軸31の前後方向の中間部には、後進ギヤとして機能する第2入力ギヤ52aが固定されている。
The first input shaft 31 is rotatably supported by the second input shaft 32 via a bearing (not shown). A second input gear 52 a functioning as a reverse gear is fixed to an intermediate portion in the front-rear direction of the first input shaft 31.
第1入力軸31における第2入力ギヤ52aの後段には、第1シンクロ機構61(後述する)の第1シンクロハブ61aが固定されている。
A first sync hub 61 a of a first sync mechanism 61 (to be described later) is fixed at a stage subsequent to the second input gear 52 a of the first input shaft 31.
第2入力ギヤ52aと第1シンクロハブ61aとの間には、第3入力ギヤ53aが、第1入力軸31と相対回転可能に設けられている。
A third input gear 53a is provided between the second input gear 52a and the first synchro hub 61a so as to be rotatable relative to the first input shaft 31.
第1シンクロハブ61aの後段には、第4入力ギヤ54a(本開示の「遊転ギヤ」に相当)が、第1入力軸31と相対回転可能に設けられている。
At the rear stage of the first synchro hub 61a, a fourth input gear 54a (corresponding to the "free rotation gear" of the present disclosure) is provided so as to be rotatable relative to the first input shaft 31.
第2入力軸32は、第1入力軸31が挿通される中空軸であって、軸受(不図示)を介して変速機ケース(不図示)に回転可能に軸支されている。第2入力軸32の後端部には、第1入力ギヤ51aが固定されている。第1入力ギヤ51aは、第2入力ギヤ52aより前側に配置される。
The second input shaft 32 is a hollow shaft through which the first input shaft 31 is inserted, and is rotatably supported by a transmission case (not shown) via a bearing (not shown). A first input gear 51 a is fixed to the rear end of the second input shaft 32. The first input gear 51a is disposed on the front side of the second input gear 52a.
第1カウンタ軸33は、軸受(不図示)を介して変速機ケース(不図示)に回転可能に軸支されている。第1カウンタ軸33には、前側から順に、第1カウンタギヤ51b、第3シンクロ機構63(後述する)の第3シンクロハブ63a、第6カウンタギヤ56bおよび第7カウンタギヤ57bが固定されている。
The first counter shaft 33 is rotatably supported by a transmission case (not shown) via a bearing (not shown). A first counter gear 51b, a third sync hub 63a of a third sync mechanism 63 (described later), a sixth counter gear 56b and a seventh counter gear 57b are fixed to the first counter shaft 33 in order from the front side. .
第1カウンタギヤ51bは、第1入力ギヤ51aと常時噛合している。第1入力ギヤ51aと第1カウンタギヤ51bとにより、第1ギヤ列51が構成される。
The first counter gear 51b is in constant mesh with the first input gear 51a. A first gear train 51 is formed by the first input gear 51a and the first counter gear 51b.
第1カウンタギヤ51bと第3シンクロ機構63との間には、第2カウンタギヤ52bが、第1カウンタ軸33に対して相対回転可能に設けられている。第2カウンタギヤ52bは、リバースアイドラギヤ52cを介して、第2入力ギヤ52aと常時噛合している。第2入力ギヤ52aとリバースアイドラギヤ52cと第2カウンタギヤ52bとにより、後進ギヤ列52が構成される。
A second counter gear 52 b is provided between the first counter gear 51 b and the third synchronizing mechanism 63 so as to be rotatable relative to the first counter shaft 33. The second counter gear 52b is constantly meshed with the second input gear 52a via the reverse idler gear 52c. A reverse gear train 52 is configured by the second input gear 52a, the reverse idler gear 52c, and the second counter gear 52b.
第3シンクロ機構63と第6カウンタギヤ56bとの間には、第2カウンタ軸34が配置されている。第2カウンタ軸34は、第1カウンタ軸33が挿通される中空軸であって、軸受(不図示)を介して第1カウンタ軸33に相対回転可能に軸支されている。第2カウンタ軸34の前寄りには、第3カウンタギヤ53bが固定されている。第3カウンタギヤ53bは、第3入力ギヤ53aと常時噛合している。第3入力ギヤ53aと第3カウンタギヤ53bとにより、第2ギヤ列53が構成される。
The second counter shaft 34 is disposed between the third synchronizing mechanism 63 and the sixth counter gear 56 b. The second counter shaft 34 is a hollow shaft through which the first counter shaft 33 is inserted, and is rotatably supported relative to the first counter shaft 33 via a bearing (not shown). A third counter gear 53 b is fixed to the front of the second counter shaft 34. The third counter gear 53b is in constant mesh with the third input gear 53a. A second gear train 53 is formed by the third input gear 53a and the third counter gear 53b.
第2カウンタ軸34における第3カウンタギヤ53bの後段には、第4カウンタギヤ54b(本開示の「第1カウンタギヤ」に相当)が固定されている。第4カウンタギヤ54bは、第4入力ギヤ54aと常時噛合している。第4入力ギヤ54aと第4カウンタギヤ54bとにより、第3ギヤ列54が構成される。第2カウンタ軸34の後端部には、第5カウンタギヤ55b(本開示の「第2カウンタギヤ」に相当)が固定されている。
A fourth counter gear 54 b (corresponding to the “first counter gear” of the present disclosure) is fixed at a stage subsequent to the third counter gear 53 b in the second counter shaft 34. The fourth counter gear 54b is in constant mesh with the fourth input gear 54a. A third gear train 54 is configured by the fourth input gear 54a and the fourth counter gear 54b. A fifth counter gear 55 b (corresponding to a “second counter gear” in the present disclosure) is fixed to the rear end portion of the second counter shaft 34.
出力軸35は、軸受(不図示)を介して変速機ケース(不図示)に回転可能に軸支されている。出力軸35の前端部には、第2シンクロ機構62(後述する)の第2シンクロハブ62aが固定されている。出力軸35における第2シンクロハブ62aの後段には、第4シンクロ機構64(後述する)の第4シンクロハブ64aが固定されている。
The output shaft 35 is rotatably supported by a transmission case (not shown) via a bearing (not shown). At the front end of the output shaft 35, a second synchro hub 62a of a second synchro mechanism 62 (described later) is fixed. A fourth sync hub 64 a of a fourth sync mechanism 64 (to be described later) is fixed at a stage subsequent to the second sync hub 62 a in the output shaft 35.
第2シンクロハブ62aと第4シンクロハブ64aとの間には、第1出力ギヤ55a(本開示の「出力ギヤ」に相当)が、出力軸35に対して相対回転可能に設けられている。第1出力ギヤ55aは、第5カウンタギヤ55bと常時噛合している。第1出力ギヤ55aと第5カウンタギヤ55bとにより、第4ギヤ列55が構成される。
A first output gear 55 a (corresponding to the “output gear” in the present disclosure) is provided between the second synchro hub 62 a and the fourth synchro hub 64 a so as to be rotatable relative to the output shaft 35. The first output gear 55a is in constant mesh with the fifth counter gear 55b. A fourth gear train 55 is formed by the first output gear 55a and the fifth counter gear 55b.
第1出力ギヤ55aと第4シンクロハブ64aとの間には、第2出力ギヤ56aが、出力軸35に対して相対回転可能に設けられている。第2出力ギヤ56aは、第6カウンタギヤ56bと常時噛合している。第2出力ギヤ56aと第6カウンタギヤ56bとにより、第5ギヤ列56が構成される。
A second output gear 56 a is provided rotatably relative to the output shaft 35 between the first output gear 55 a and the fourth synchro hub 64 a. The second output gear 56a is in constant mesh with the sixth counter gear 56b. A fifth gear train 56 is configured by the second output gear 56a and the sixth counter gear 56b.
第4シンクロハブ64aの後段には、第3出力ギヤ57aが、出力軸35に対して相対回転可能に設けられている。第3出力ギヤ57aは、第7カウンタギヤ57bと常時噛合している。第3出力ギヤ57aおよび第7カウンタギヤ57bにより、第6ギヤ列57(本開示の「第5ギヤ列」に相当)が構成される。
A third output gear 57 a is provided in the rear stage of the fourth synchro hub 64 a so as to be rotatable relative to the output shaft 35. The third output gear 57a always meshes with the seventh counter gear 57b. A sixth gear train 57 (corresponding to the “fifth gear train” in the present disclosure) is configured by the third output gear 57 a and the seventh counter gear 57 b.
変速部30は、第1シンクロ機構61と、第2シンクロ機構62と、第3シンクロ機構63と、第4シンクロ機構64とを備えている。
The transmission unit 30 includes a first synchronizing mechanism 61, a second synchronizing mechanism 62, a third synchronizing mechanism 63, and a fourth synchronizing mechanism 64.
第1シンクロ機構61は、第1シンクロハブ61aと、第1シンクロスリーブ61bと、第1ドグギヤ61cと、第2ドグギヤ61dとを備えている。第1シンクロハブ61aは、上述のとおり、第1入力軸31に固定されている。
The first synchronization mechanism 61 includes a first synchronization hub 61a, a first synchronization sleeve 61b, a first dog gear 61c, and a second dog gear 61d. The first synchro hub 61a is fixed to the first input shaft 31 as described above.
第1シンクロスリーブ61bは、第1シンクロハブ61aを取り囲むように設けられている。第1シンクロスリーブ61bは、第1シンクロハブ61aのスプライン外歯と係合するスプライン内歯を有する。第1シンクロスリーブ61bは、第1シンクロハブ61aと一体回転し、かつ第1シンクロハブ61aに対して前後方向に移動可能である。
The first synchro sleeve 61 b is provided to surround the first synchro hub 61 a. The first synchro sleeve 61b has spline internal teeth that engage with the spline external teeth of the first synchro hub 61a. The first synchro sleeve 61b rotates integrally with the first synchro hub 61a, and is movable in the front-rear direction with respect to the first synchro hub 61a.
第1ドグギヤ61cは、第3入力ギヤ53aの後側に設けられている。第2ドグギヤ61dは、第4入力ギヤ54aの前側に設けられている。第1シンクロハブ61aと第1ドグギヤ61cおよび第2ドグギヤ61dとの間には、それぞれシンクロナイザリング(不図示)が設けられている。第1シンクロスリーブ61bのスプライン内歯は、第1ドグギヤ61cおよび第2ドグギヤ61dのスプライン外歯と選択的に係合可能である。
The first dog gear 61c is provided on the rear side of the third input gear 53a. The second dog gear 61d is provided on the front side of the fourth input gear 54a. Synchronizer rings (not shown) are provided between the first synchro hub 61a and the first dog gear 61c and the second dog gear 61d, respectively. The spline internal teeth of the first synchro sleeve 61b are selectively engageable with the spline external teeth of the first dog gear 61c and the second dog gear 61d.
第1シンクロ機構61は、シフトフォーク(不図示)によって第1シンクロスリーブ61bが移動させられて第1ドグギヤ61cまたは第2ドグギヤ61dと係合することで、第1入力軸31と第3入力ギヤ53aまたは第4入力ギヤ54aとを選択的に同期結合させる。第1シンクロスリーブ61bの動作は、制御装置40によって制御される。
The first sync mechanism 61 is configured such that the first sync sleeve 61b is moved by a shift fork (not shown) and engaged with the first dog gear 61c or the second dog gear 61d, whereby the first input shaft 31 and the third input gear are engaged. It selectively couples in synchronization with the 53a or the fourth input gear 54a. The operation of the first synchro sleeve 61 b is controlled by the controller 40.
第2シンクロ機構62は、第2シンクロハブ62aと、第2シンクロスリーブ62bと、第3ドグギヤ62cと、第4ドグギヤ62dとを備えている。第2シンクロハブ62aは、上述のとおり、出力軸35に固定されている。
The second synchronization mechanism 62 includes a second synchronization hub 62a, a second synchronization sleeve 62b, a third dog gear 62c, and a fourth dog gear 62d. The second synchro hub 62a is fixed to the output shaft 35 as described above.
第2シンクロスリーブ62bは、第2シンクロハブ62aを取り囲むように設けられている。第2シンクロスリーブ62bは、第2シンクロハブ62aのスプライン外歯と係合するスプライン内歯を有する。第2シンクロスリーブ62bは、第2シンクロハブ62aと一体回転し、かつ第2シンクロハブ62aに対して前後方向に移動可能である。
The second synchro sleeve 62b is provided so as to surround the second synchro hub 62a. The second synchro sleeve 62b has spline internal teeth that engage with the spline external teeth of the second synchro hub 62a. The second sync sleeve 62b rotates integrally with the second sync hub 62a, and is movable in the front-rear direction with respect to the second sync hub 62a.
第3ドグギヤ62cは、第4入力ギヤ54aの後側に設けられている。第4ドグギヤ62dは、第1出力ギヤ55aの前側に設けられている。第2シンクロハブ62aと第3ドグギヤ62cおよび第4ドグギヤ62dとの間には、それぞれシンクロナイザリング(不図示)が設けられている。第2シンクロスリーブ62bのスプライン内歯は、第3ドグギヤ62cおよび第4ドグギヤ62dのスプライン外歯と選択的に係合可能である。
The third dog gear 62c is provided on the rear side of the fourth input gear 54a. The fourth dog gear 62d is provided on the front side of the first output gear 55a. Synchronizer rings (not shown) are provided between the second synchro hub 62a and the third dog gear 62c and the fourth dog gear 62d, respectively. The spline internal teeth of the second synchro sleeve 62b are selectively engageable with the spline external teeth of the third dog gear 62c and the fourth dog gear 62d.
第2シンクロ機構62は、シフトフォーク(不図示)によって第2シンクロスリーブ62bが移動させられて第3ドグギヤ62cまたは第4ドグギヤ62dと係合することで、出力軸35と第4入力ギヤ54aまたは第1出力ギヤ55aとを選択的に同期結合させる。第2シンクロスリーブ62bの動作は、制御装置40によって制御される。
The second synchro mechanism 62 moves the second synchro sleeve 62b by a shift fork (not shown) and engages with the third dog gear 62c or the fourth dog gear 62d, whereby the output shaft 35 and the fourth input gear 54a or The first output gear 55a is selectively and synchronously coupled. The operation of the second synchro sleeve 62 b is controlled by the controller 40.
第3シンクロ機構63は、第3シンクロハブ63aと、第3シンクロスリーブ63bと、第5ドグギヤ63cと、第6ドグギヤ63dとを備えている。第3シンクロハブ63aは、上述のとおり、第1カウンタ軸33に固定されている。
The third synchronization mechanism 63 includes a third synchronization hub 63a, a third synchronization sleeve 63b, a fifth dog gear 63c, and a sixth dog gear 63d. The third synchro hub 63a is fixed to the first counter shaft 33 as described above.
第3シンクロスリーブ63bは、第3シンクロハブ63aを取り囲むように設けられている。第3シンクロスリーブ63bは、第3シンクロハブ63aのスプライン外歯と係合するスプライン内歯を有する。第3シンクロスリーブ63bは、第3シンクロハブ63aと一体回転し、かつ第3シンクロハブ63aに対して前後方向に移動可能である。
The third synchro sleeve 63b is provided to surround the third synchro hub 63a. The third synchro sleeve 63b has spline internal teeth that engage with the spline external teeth of the third synchro hub 63a. The third sync sleeve 63b is integrally rotated with the third sync hub 63a, and is movable in the front-rear direction with respect to the third sync hub 63a.
第5ドグギヤ63cは、第2カウンタギヤ52bの後側に設けられている。第6ドグギヤ63dは、第2カウンタ軸34の前端部に設けられている。第3シンクロハブ63aと第5ドグギヤ63cおよび第6ドグギヤ63dとの間には、それぞれシンクロナイザリング(不図示)が設けられている。第3シンクロスリーブ63bのスプライン内歯は、第5ドグギヤ63cおよび第6ドグギヤ63dのスプライン外歯と選択的に係合可能である。
The fifth dog gear 63c is provided on the rear side of the second counter gear 52b. The sixth dog gear 63 d is provided at the front end of the second countershaft 34. Synchronizer rings (not shown) are provided between the third synchro hub 63a and the fifth dog gear 63c and the sixth dog gear 63d, respectively. The spline internal teeth of the third synchro sleeve 63b are selectively engageable with the spline external teeth of the fifth dog gear 63c and the sixth dog gear 63d.
第3シンクロ機構63は、シフトフォーク(不図示)によって第3シンクロスリーブ63bが移動させられて第5ドグギヤ63cまたは第6ドグギヤ63dと係合することで、第1カウンタ軸33と第2カウンタギヤ52bまたは第2カウンタ軸34とを選択的に同期結合させる。第3シンクロスリーブ63bの動作は、制御装置40によって制御される。
In the third synchronization mechanism 63, the third synchronization sleeve 63b is moved by a shift fork (not shown) and engaged with the fifth dog gear 63c or the sixth dog gear 63d, whereby the first counter shaft 33 and the second counter gear are engaged. And 52b or the second counter shaft 34 is selectively synchronized. The operation of the third synchro sleeve 63 b is controlled by the controller 40.
第4シンクロ機構64は、第4シンクロハブ64aと、第4シンクロスリーブ64bと、第7ドグギヤ64cと、第8ドグギヤ64dとを備えている。第4シンクロハブ64aは、上述のとおり、出力軸35に固定されている。
The fourth synchronizing mechanism 64 includes a fourth synchronizing hub 64a, a fourth synchronizing sleeve 64b, a seventh dog gear 64c, and an eighth dog gear 64d. The fourth synchro hub 64a is fixed to the output shaft 35 as described above.
第4シンクロスリーブ64bは、第4シンクロハブ64aを取り囲むように設けられている。第4シンクロスリーブ64bは、第4シンクロハブ64aのスプライン外歯と係合するスプライン内歯を有する。第4シンクロスリーブ64bは、第4シンクロハブ64aと一体回転し、かつ第4シンクロハブ64aに対して前後方向に移動可能である。
The fourth sync sleeve 64b is provided to surround the fourth sync hub 64a. The fourth synchro sleeve 64b has spline internal teeth that engage with the spline external teeth of the fourth synchro hub 64a. The fourth synchro sleeve 64b rotates integrally with the fourth synchro hub 64a, and is movable in the front-rear direction with respect to the fourth synchro hub 64a.
第7ドグギヤ64cは、第2出力ギヤ56aの後側に設けられている。第8ドグギヤ64dは、第3出力ギヤ57aの前側に設けられている。第4シンクロハブ64aと第7ドグギヤ64cおよび第8ドグギヤ64dとの間には、それぞれシンクロナイザリング(不図示)が設けられている。第4シンクロスリーブ64bのスプライン内歯は、第7ドグギヤ64cおよび第8ドグギヤ64dのスプライン外歯と選択的に係合可能である。
The seventh dog gear 64c is provided on the rear side of the second output gear 56a. The eighth dog gear 64d is provided on the front side of the third output gear 57a. Synchronizer rings (not shown) are provided between the fourth synchro hub 64a and the seventh dog gear 64c and the eighth dog gear 64d, respectively. The spline internal teeth of the fourth synchro sleeve 64b are selectively engageable with the spline external teeth of the seventh dog gear 64c and the eighth dog gear 64d.
第4シンクロ機構64は、シフトフォーク(不図示)によって第4シンクロスリーブ64bが移動させられて第7ドグギヤ64cまたは第8ドグギヤ64dと係合することで、出力軸35と第2出力ギヤ56aまたは第3出力ギヤ57aとを選択的に同期結合させる。第4シンクロスリーブ64bの動作は、制御装置40によって制御される。
In the fourth synchronizing mechanism 64, the fourth synchronizing sleeve 64b is moved by a shift fork (not shown) and engaged with the seventh dog gear 64c or the eighth dog gear 64d, whereby the output shaft 35 and the second output gear 56a or The third output gear 57a is selectively and synchronously coupled. The operation of the fourth synchro sleeve 64 b is controlled by the controller 40.
次に、本実施形態のデュアルクラッチ式変速機1による各変速段の動力伝達経路について説明する。以下においては、一例として、1速段で発進を行い、9速段まで順次アップシフトを行う場合を説明する。
Next, the power transmission path of each gear by the dual clutch transmission 1 of the present embodiment will be described. In the following, as an example, a case will be described in which the vehicle is started at the first gear and upshifted to the ninth gear sequentially.
1速段では、第1クラッチ10が接とされ、第1シンクロ機構61によって第1入力軸31と第4入力ギヤ54aとが結合され、第3シンクロ機構63によって第2カウンタ軸34と第1カウンタ軸33とが結合され、第4シンクロ機構64によって第2出力ギヤ56aと出力軸35とが結合される。
In the first gear, the first clutch 10 is brought into contact, and the first input shaft 31 and the fourth input gear 54 a are coupled by the first synchro mechanism 61, and the third counter shaft 63 is coupled with the first counter shaft 34 by the third synchro mechanism 63. The counter shaft 33 is coupled, and the second output gear 56 a and the output shaft 35 are coupled by the fourth synchronizing mechanism 64.
すなわち、エンジンの動力が第1クラッチ10→第1入力軸31→第1シンクロ機構61→第3ギヤ列54→第2カウンタ軸34→第3シンクロ機構63→第1カウンタ軸33→第5ギヤ列56→第4シンクロ機構64→出力軸35と伝達されることで、1速段の動力伝達経路が確立される。
That is, the power of the engine is: first clutch 10 → first input shaft 31 → first synchro mechanism 61 → third gear train 54 → second counter shaft 34 → third synchro mechanism 63 → first counter shaft 33 → fifth gear The power transmission path of the first gear is established by transmitting the train 56 → the fourth synchronization mechanism 64 → the output shaft 35.
2速段では、第2クラッチ20が接とされ、第4シンクロ機構64によって第2出力ギヤ56aと出力軸35とが結合される。
In the second gear, the second clutch 20 is brought into contact, and the second output gear 56a and the output shaft 35 are coupled by the fourth synchronizing mechanism 64.
すなわち、エンジンの動力が第2クラッチ20→第2入力軸32→第1ギヤ列51→第1カウンタ軸33→第5ギヤ列56→第4シンクロ機構64→出力軸35と伝達されることで、2速段の動力伝達経路が確立される。
That is, the power of the engine is transmitted to the second clutch 20 → second input shaft 32 → first gear train 51 → first countershaft 33 → fifth gear train 56 → fourth synchronizing mechanism 64 → output shaft 35 The power transmission path of the second gear is established.
2速段が確立されると、3速段へのプレシフトが行われる。具体的には、第3シンクロ機構63による第2カウンタ軸34と第1カウンタ軸33との結合が解除され、第2シンクロ機構62によって第1出力ギヤ55aと出力軸35とが結合される。
When the second gear is established, pre-shifting to the third gear is performed. Specifically, the coupling between the second counter shaft 34 and the first counter shaft 33 by the third synchronizing mechanism 63 is released, and the first output gear 55 a and the output shaft 35 are coupled by the second synchronizing mechanism 62.
3速段は、2速段において3速段へのプレシフトが完了した状態で、第2クラッチ20を断とするとともに第1クラッチ10を接とすることで実現される。3速段では、第1クラッチ10が接とされ、第1シンクロ機構61によって第1入力軸31と第4入力ギヤ54aとが結合され、第2シンクロ機構62によって第1出力ギヤ55aと出力軸35とが結合される。
The third gear is realized by disconnecting the second clutch 20 and engaging the first clutch 10 in a state in which the preshift to the third gear is completed in the second gear. In the third gear, the first clutch 10 is brought into contact, and the first input shaft 31 and the fourth input gear 54a are coupled by the first synchro mechanism 61, and the first output gear 55a and the output shaft are formed by the second synchro mechanism 62. And 35 are combined.
すなわち、エンジンの動力が第1クラッチ10→第1入力軸31→第1シンクロ機構61→第3ギヤ列54→第2カウンタ軸34→第4ギヤ列55→第2シンクロ機構62→出力軸35と伝達されることで、3速段の動力伝達経路が確立される。
That is, the power of the engine is 1st clutch 10 → 1st input shaft 31 → 1st synchro mechanism 61 → 3rd gear train 54 → 2nd counter shaft 34 → 4th gear train 55 → 2nd synchro mechanism 62 → output shaft 35 The power transmission path of the third gear is established.
3速段が確立されると、4速段へのプレシフトが行われる。具体的には、第4シンクロ機構64による第2出力ギヤ56aと出力軸35との結合が解除され、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とが結合される。
When the third gear is established, pre-shifting to the fourth gear is performed. Specifically, the coupling between the second output gear 56a and the output shaft 35 by the fourth synchronizing mechanism 64 is released, and the first counter shaft 33 and the second counter shaft 34 are coupled by the third synchronizing mechanism 63.
4速段は、3速段において4速段へのプレシフトが完了した状態で、第1クラッチ10を断とするとともに第2クラッチ20を接とすることで実現される。4速段では、第2クラッチ20が接とされ、第2シンクロ機構62によって第1出力ギヤ55aと出力軸35とが結合され、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とが結合される。
The fourth gear is realized by disengaging the first clutch 10 and engaging the second clutch 20 in a state in which the preshift to the fourth gear is completed in the third gear. In the fourth gear, the second clutch 20 is brought into contact, and the first output gear 55a and the output shaft 35 are coupled by the second synchro mechanism 62, and the first counter shaft 33 and the second counter shaft by the third synchro mechanism 63. 34 are combined.
すなわち、エンジンの動力が第2クラッチ20→第2入力軸32→第1ギヤ列51→第1カウンタ軸33→第3シンクロ機構63→第2カウンタ軸34→第4ギヤ列55→第2シンクロ機構62→出力軸35と伝達されることで、4速段の動力伝達経路が確立される。
That is, the power of the engine is second clutch 20 → second input shaft 32 → first gear train 51 → first counter shaft 33 → third synchro mechanism 63 → second counter shaft 34 → fourth gear train 55 → second synchro By transmitting the mechanism 62 → the output shaft 35, a power transmission path of the fourth gear is established.
4速段が確立されると、5速段へのプレシフトが行われる。具体的には、第1シンクロ機構61によって第1入力軸31と第4入力ギヤ54aとの結合が解除されるとともに第1入力軸31と第3入力ギヤ53aとが結合される。
When the fourth gear is established, pre-shifting to the fifth gear is performed. Specifically, the connection between the first input shaft 31 and the fourth input gear 54a is released by the first synchronization mechanism 61, and the first input shaft 31 and the third input gear 53a are connected.
5速段は、4速段において5速段へのプレシフトが完了した状態で、第2クラッチ20を断とするとともに第1クラッチ10を接とすることで実現される。5速段では、第1クラッチ10が接とされ、第1シンクロ機構61によって第1入力軸31と第3入力ギヤ53aとが結合され、第2シンクロ機構62によって第1出力ギヤ55aと出力軸35とが結合される。
The fifth gear is realized by disengaging the second clutch 20 and engaging the first clutch 10 in a state in which the preshift to the fifth gear is completed in the fourth gear. In the fifth gear, the first clutch 10 is brought into contact, and the first input shaft 31 and the third input gear 53a are coupled by the first synchro mechanism 61, and the first output gear 55a and the output shaft are formed by the second synchro mechanism 62. And 35 are combined.
すなわち、エンジンの動力が第1クラッチ10→第1入力軸31→第1シンクロ機構61→第2ギヤ列53→第2カウンタ軸34→第4ギヤ列55→第2シンクロ機構62→出力軸35と伝達されることで、5速段の動力伝達経路が確立される。
That is, the power of the engine is 1st clutch 10 → 1st input shaft 31 → 1st synchro mechanism 61 → 2nd gear train 53 → 2nd counter shaft 34 → 4th gear train 55 → 2nd synchro mechanism 62 → output shaft 35 The power transmission path of the fifth gear is established.
5速段が確立されると、6速段へのプレシフトが行われる。具体的には、第3シンクロ機構63による第2カウンタ軸34と第1カウンタ軸33との結合が解除され、第4シンクロ機構64によって第3出力ギヤ57aと出力軸35とが結合される。
When the fifth gear is established, pre-shifting to the sixth gear is performed. Specifically, the coupling between the second counter shaft 34 and the first counter shaft 33 by the third synchronizing mechanism 63 is released, and the third output gear 57 a and the output shaft 35 are coupled by the fourth synchronizing mechanism 64.
6速段は、5速段において6速段へのプレシフトが完了した状態で、第1クラッチ10を断とするとともに第2クラッチ20を接とすることで実現される。6速段では、第2クラッチ20が接とされ、第4シンクロ機構64によって第3出力ギヤ57aと出力軸35とが結合される。
The sixth gear is realized by disengaging the first clutch 10 and engaging the second clutch 20 in a state where the preshift to the sixth gear is completed at the fifth gear. In the sixth gear, the second clutch 20 is brought into contact, and the third output gear 57 a and the output shaft 35 are coupled by the fourth synchronizing mechanism 64.
すなわち、エンジンの動力が第2クラッチ20→第2入力軸32→第1ギヤ列51→第1カウンタ軸33→第6ギヤ列57→第4シンクロ機構64→出力軸35と伝達されることで、6速段の動力伝達経路が確立される。
That is, the power of the engine is transmitted to the second clutch 20 → second input shaft 32 → first gear train 51 → first countershaft 33 → sixth gear train 57 → fourth synchronizing mechanism 64 → output shaft 35 The power transmission path of the sixth gear is established.
6速段が確立されると、7速段へのプレシフトが行われる。具体的には、第1シンクロ機構61によって第1入力軸31と第3入力ギヤ53aとの結合が解除されるとともに第1入力軸31と第4入力ギヤ54aとが結合され、第2シンクロ機構62によって第1出力ギヤ55aと出力軸35との結合が解除されるとともに第4入力ギヤ54aと出力軸35とが結合される。
When the sixth gear is established, pre-shifting to the seventh gear is performed. Specifically, the first synchronization mechanism 61 releases the connection between the first input shaft 31 and the third input gear 53a, and the first input shaft 31 and the fourth input gear 54a are connected to each other. The connection between the first output gear 55a and the output shaft 35 is released by 62, and the fourth input gear 54a and the output shaft 35 are connected.
7速段は、6速段において7速段へのプレシフトが完了した状態で、第2クラッチ20を断とするとともに第1クラッチ10を接とすることで実現される。7速段では、第1クラッチ10が接とされ、第1シンクロ機構61によって第1入力軸31と第4入力ギヤ54aとが結合され、第2シンクロ機構62によって第4入力ギヤ54aと出力軸35とが結合される。
The seventh gear is realized by disengaging the second clutch 20 and engaging the first clutch 10 in a state where pre-shifting to the seventh gear is completed in the sixth gear. In the seventh gear, the first clutch 10 is brought into contact, and the first input shaft 31 and the fourth input gear 54 a are coupled by the first synchro mechanism 61, and the fourth input gear 54 a and the output shaft by the second synchro mechanism 62. And 35 are combined.
すなわち、エンジンの動力が第1クラッチ10→第1入力軸31→第1シンクロ機構61→第4入力ギヤ54a→第2シンクロ機構62→出力軸35と伝達されることで、7速段の動力伝達経路が確立される。7速段は、直結段である。
That is, the power of the engine is transmitted to the first clutch 10 → the first input shaft 31 → the first synchro mechanism 61 → the fourth input gear 54 a → the second synchro mechanism 62 → the output shaft 35, whereby the power of the seventh gear is achieved. A transmission path is established. The 7th gear is a direct connection gear.
7速段が確立されると、8速段へのプレシフトが行われる。具体的には、第4シンクロ機構64による第3出力ギヤ57aと出力軸35との結合が解除され、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とが結合される。
When the seventh gear is established, pre-shifting to the eighth gear is performed. Specifically, the coupling between the third output gear 57a and the output shaft 35 by the fourth synchronizing mechanism 64 is released, and the first countershaft 33 and the second countershaft 34 are coupled by the third synchronizing mechanism 63.
8速段は、7速段において8速段へのプレシフトが完了した状態で、第1クラッチ10を断とするとともに第2クラッチ20を接とすることで実現される。8速段では、第2クラッチ20が接とされ、第2シンクロ機構62によって第4入力ギヤ54aと出力軸35とが結合され、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とが結合される。
The eighth gear is realized by disengaging the first clutch 10 and engaging the second clutch 20 in a state where the preshift to the eighth gear is completed in the seventh gear. In the eighth gear, the second clutch 20 is brought into contact, and the fourth synchronizer 62 couples the fourth input gear 54a to the output shaft 35, and the third synchro mechanism 63 couples the first counter shaft 33 to the second counter shaft. 34 are combined.
すなわち、エンジンの動力が第2クラッチ20→第2入力軸32→第1ギヤ列51→第1カウンタ軸33→第3シンクロ機構63→第2カウンタ軸34→第3ギヤ列54→第2シンクロ機構62→出力軸35と伝達されることで、8速段の動力伝達経路が確立される。
That is, the power of the engine is second clutch 20 → second input shaft 32 → first gear train 51 → first counter shaft 33 → third synchronizing mechanism 63 → second counter shaft 34 → third gear train 54 → second synchro By transmitting the mechanism 62 → the output shaft 35, a power transmission path of the eighth gear is established.
8速段が確立されると、9速段へのプレシフトが行われる。具体的には、第1シンクロ機構61によって第1入力軸31と第4入力ギヤ54aとの結合が解除されるとともに第1入力軸31と第3入力ギヤ53aとが結合される。
When the eighth gear is established, pre-shifting to the ninth gear is performed. Specifically, the connection between the first input shaft 31 and the fourth input gear 54a is released by the first synchronization mechanism 61, and the first input shaft 31 and the third input gear 53a are connected.
9速段は、8速段において9速段へのプレシフトが完了した状態で、第2クラッチ20を断とするとともに第1クラッチ10を接とすることで実現される。9速段では、第1クラッチ10が接とされ、第1シンクロ機構61によって第1入力軸31と第3入力ギヤ53aとが結合され、第2シンクロ機構62によって第4入力ギヤ54aと出力軸35とが結合される。
The ninth gear is realized by disengaging the second clutch 20 and engaging the first clutch 10 in a state in which the preshift to the ninth gear is completed in the eighth gear. In the ninth gear, the first clutch 10 is brought into contact, and the first input shaft 31 and the third input gear 53a are coupled by the first synchro mechanism 61, and the fourth input gear 54a and the output shaft are formed by the second synchro mechanism 62. And 35 are combined.
すなわち、エンジンの動力が第1クラッチ10→第1入力軸31→第1シンクロ機構61→第2ギヤ列53→第2カウンタ軸34→第3ギヤ列54→第2シンクロ機構62→出力軸35と伝達されることで、9速段の動力伝達経路が確立される。
That is, the power of the engine is 1st clutch 10 → 1st input shaft 31 → 1st synchro mechanism 61 → 2nd gear train 53 → 2nd counter shaft 34 → 3rd gear train 54 → 2nd synchro mechanism 62 → output shaft 35 Thus, the power transmission path of the ninth gear is established.
次に、本実施形態のデュアルクラッチ式変速機1において9速段で行われるオイル撹拌低減制御の概要について、図2および図3を参照して詳細に説明する。図2は、8速段から9速段へのアップシフトが行われた直後の様子を示している。
Next, an outline of the oil agitation reduction control performed in the ninth gear in the dual clutch transmission 1 according to the present embodiment will be described in detail with reference to FIGS. 2 and 3. FIG. 2 shows a state immediately after the upshift from the eighth gear to the ninth gear is performed.
なお、図2および図3において、太線は、エンジンから出力軸35までの動力伝達に寄与している動力伝達経路を示している。また、実線は、エンジンから出力軸35までの動力伝達には寄与していないが、エンジンからの回転動力が伝達されているものを示している。また、破線は、エンジンからの回転動力が伝達されていないものを示している。
In FIGS. 2 and 3, thick lines indicate power transmission paths contributing to power transmission from the engine to the output shaft 35. The solid line does not contribute to the power transmission from the engine to the output shaft 35, but indicates that rotational power from the engine is transmitted. The broken line indicates that rotational power from the engine is not transmitted.
図2に示すように、8速段から9速段へのアップシフトが行われた直後、第3シンクロ機構63は、第1カウンタ軸33と第2カウンタ軸34とを結合した状態である。
As shown in FIG. 2, immediately after the upshift from the eighth gear to the ninth gear is performed, the third synchronizing mechanism 63 is in a state in which the first counter shaft 33 and the second counter shaft 34 are coupled.
そのため、エンジンからの回転動力は、第1入力軸31、第3入力ギヤ53aおよび第2カウンタ軸34を経由して第1カウンタ軸33にも伝達される。これにより、第1カウンタ軸33に固定された第1カウンタギヤ51b、第6カウンタギヤ56bおよび第7カウンタギヤ57bは、エンジンによって回転駆動される。そのため、第1カウンタギヤ51b、第6カウンタギヤ56bおよび第7カウンタギヤ57bの回転によって変速機ケース内の潤滑オイルの撹拌抵抗が増大し、燃費の悪化を招く。
Therefore, rotational power from the engine is also transmitted to the first countershaft 33 via the first input shaft 31, the third input gear 53a and the second countershaft 34. Thus, the first counter gear 51b, the sixth counter gear 56b and the seventh counter gear 57b fixed to the first counter shaft 33 are rotationally driven by the engine. Therefore, the agitation resistance of the lubricating oil in the transmission case is increased by the rotation of the first counter gear 51b, the sixth counter gear 56b and the seventh counter gear 57b, resulting in deterioration of the fuel efficiency.
本実施形態では、8速段から9速段への変速後、第1カウンタ軸33がエンジンにより回転駆動されることを防止するため、以下の動作が行われる。
In the present embodiment, the following operation is performed to prevent the first counter shaft 33 from being rotationally driven by the engine after the shift from the eighth gear to the ninth gear.
具体的には、8速段から9速段へのアップシフトが行われた後、9速段の状態で、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34との結合を解除する(図3を参照)。これにより、エンジンからの回転動力が第1カウンタ軸33に伝達されることを防止することができる。そのため、潤滑オイルの撹拌による燃費の悪化を抑制することができる。
Specifically, after the upshift from the eighth gear to the ninth gear is performed, in the state of the ninth gear, coupling of the first counter shaft 33 and the second counter shaft 34 is performed by the third synchronizing mechanism 63. Release (see Figure 3). This can prevent the rotational power from the engine from being transmitted to the first countershaft 33. Therefore, the deterioration of the fuel consumption by stirring of lubricating oil can be suppressed.
ところで、このような9速段での走行中に、車速の減少等により8速段への変速が行われる場合等、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とを再結合する場合に、以下に示す問題が生じる可能性がある。
By the way, when shifting to the eighth gear is performed due to a decrease in vehicle speed or the like during traveling at such a ninth gear, the first counter shaft 33 and the second counter shaft 34 can be When rejoining, the following problems may occur.
すなわち、第2カウンタ軸34が高速回転しているのに対して、第1カウンタ軸33の回転数は低い。そのため、そのまま第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とを結合させようとすると、第3シンクロ機構63に過大な負荷がかかるおそれがある。
That is, while the second counter shaft 34 is rotating at high speed, the rotational speed of the first counter shaft 33 is low. Therefore, if it is attempted to couple the first countershaft 33 and the second countershaft 34 by the third synchronizing mechanism 63 as it is, there is a possibility that an excessive load may be applied to the third synchronizing mechanism 63.
そこで、本実施形態では、第3シンクロ機構63に過大な負荷がかかることを防止するため、第3シンクロ機構63による第1カウンタ軸33と第2カウンタ軸34との再結合に先立って、以下の動作が行われる。
Therefore, in the present embodiment, in order to prevent an excessive load from being applied to the third synchronizing mechanism 63, prior to the reconnection of the first counter shaft 33 and the second counter shaft 34 by the third synchronizing mechanism 63, the following will be described. Operation is performed.
具体的には、第3シンクロスリーブ63bを第6ドグギヤ63dと係合させる前に、第2クラッチ20を一時的に係合させる。
Specifically, before the third synchro sleeve 63b is engaged with the sixth dog gear 63d, the second clutch 20 is temporarily engaged.
これにより、第2入力軸32を介して第1カウンタ軸33へエンジンの動力が伝達され、第1カウンタ軸33の回転数が上昇する。そして、第1カウンタ軸33の回転数が十分に上昇したところで、係合している第2クラッチ20を切断し、第3シンクロスリーブ63bを第6ドグギヤ63dと係合させる。これにより、第3シンクロ機構63にかかる負荷を低減することができる。
As a result, the power of the engine is transmitted to the first countershaft 33 via the second input shaft 32, and the rotational speed of the first countershaft 33 is increased. Then, when the rotational speed of the first counter shaft 33 is sufficiently increased, the engaged second clutch 20 is disconnected, and the third synchro sleeve 63b is engaged with the sixth dog gear 63d. Thereby, the load applied to the third synchronizing mechanism 63 can be reduced.
次に、図4のフローチャートを参照して、オイル撹拌低減制御の処理内容について説明する。なお、このようなオイル撹拌低減制御は、8速段から9速段への変速が行われた場合に開始される。
Next, the processing contents of the oil agitation reduction control will be described with reference to the flowchart of FIG. 4. Such oil agitation reduction control is started when a shift from the eighth gear to the ninth gear is performed.
まず、ステップS1で、制御装置40は、プレシフトが不要であるか否かを判断する。この判断は、例えば、車速等に基づき行われる。また、例えば、この判断は、8速段への変速可能性の有無を判断することにより行われてもよい。
First, in step S1, the control device 40 determines whether or not pre-shifting is unnecessary. This determination is made, for example, based on the vehicle speed and the like. Also, for example, this determination may be made by determining whether there is a possibility of shifting to the eighth gear.
ステップS1で、プレシフトが不要でないと判断された場合(ステップS1:NO)、ステップS1の処理を繰り返す。一方、ステップS1で、プレシフトが不要であると判断された場合(ステップS1:YES)、処理はステップS2へ進む。
If it is determined in step S1 that pre-shifting is not unnecessary (step S1: NO), the process of step S1 is repeated. On the other hand, if it is determined in step S1 that pre-shifting is unnecessary (step S1: YES), the process proceeds to step S2.
ステップS2で、制御装置40は、第3シンクロ機構63におけるギヤ抜きを行わせる。具体的には、第3シンクロスリーブ63bと第6ドグギヤ63dとの係合状態を解除させる。
In step S2, the control device 40 performs gear removal in the third synchronizing mechanism 63. Specifically, the engagement state between the third synchro sleeve 63b and the sixth dog gear 63d is released.
ステップS2に続くステップS3で、制御装置40は、プレシフトが必要であるか否かを判断する。この判断は、例えば、上述のステップS1と同様に、車速等に基づき行われる。
In step S3 following step S2, control device 40 determines whether or not pre-shifting is necessary. This determination is performed based on the vehicle speed or the like, for example, as in the above-described step S1.
ステップS3で、プレシフトが必要でないと判断された場合(ステップS3:NO)、ステップS3の処理を繰り返す。一方、ステップS3で、プレシフトが必要であると判断された場合(ステップS3:YES)、処理はステップS4へ進む。
If it is determined in step S3 that pre-shifting is not necessary (step S3: NO), the process of step S3 is repeated. On the other hand, if it is determined in step S3 that pre-shifting is necessary (step S3: YES), the process proceeds to step S4.
ステップS4で、制御装置40は、第1カウンタ軸33と、第2カウンタ軸34との回転数差が、所定の閾値以下であるか否かを判断する。この判断は、例えば、第1カウンタ軸33の回転数と第2カウンタ軸34の回転数とを不図示の回転数センサにより検出し、回転数差を直接求めることにより行われる。この場合、上述の閾値は、実験等により、第3シンクロ機構63に過大な負荷がかからない回転数差として予め制御装置40内に記憶されていてもよい。
In step S4, the control device 40 determines whether the rotational speed difference between the first countershaft 33 and the second countershaft 34 is less than or equal to a predetermined threshold. This determination is made, for example, by detecting the number of rotations of the first countershaft 33 and the number of rotations of the second countershaft 34 with a rotation number sensor (not shown) and directly determining the number of rotations. In this case, the above-described threshold value may be stored in advance in the control device 40 as a rotational speed difference that does not apply an excessive load to the third synchronizing mechanism 63 by an experiment or the like.
また、ステップS4における判断は、第3シンクロ機構63におけるギヤ抜きを行ってからの経過時間を計測することにより行うようにしてもよい。この場合、ギヤ抜きから上述の回転数差が所定の閾値を超えるまでの経過時間を実験により求めるようにしてもよい。
Further, the determination in step S4 may be made by measuring an elapsed time after gear removal in the third synchronizing mechanism 63. In this case, an elapsed time until the above-mentioned rotational speed difference exceeds a predetermined threshold may be determined by experiment.
ステップS4で、第1カウンタ軸33と第2カウンタ軸34との回転数差が所定の閾値以下であると判断された場合(ステップS4:YES)、処理はステップS8(後述する)へ進む。一方、ステップS4で、第1カウンタ軸33と第2カウンタ軸34との回転数差が所定の閾値以下でないと判断された場合(ステップS4:NO)、処理はステップS5へ進む。
If it is determined in step S4 that the rotational speed difference between the first countershaft 33 and the second countershaft 34 is less than or equal to the predetermined threshold (step S4: YES), the process proceeds to step S8 (described later). On the other hand, if it is determined in step S4 that the rotational speed difference between the first countershaft 33 and the second countershaft 34 is not less than or equal to the predetermined threshold (step S4: NO), the process proceeds to step S5.
ステップS5で、制御装置40は、第2クラッチ20を係合させる。具体的には、第2クラッチ20を完全係合させる。なお、第2クラッチ20をスリップ係合させるようにしてもよい。ステップS5で第2クラッチ20が係合させられると、処理はステップS6へ進む。
At step S5, the control device 40 engages the second clutch 20. Specifically, the second clutch 20 is fully engaged. The second clutch 20 may be slip engaged. When the second clutch 20 is engaged in step S5, the process proceeds to step S6.
ステップS6で、制御装置40は、第1カウンタ軸33と、第2カウンタ軸34との回転数差が閾値以下であるか否かを判断する。この判断は、例えば、第1カウンタ軸33の回転数と第2カウンタ軸34の回転数とを不図示の回転数センサにより検出し、回転数差を直接求めることにより行われる。なお、第2クラッチ20を完全係合させる場合、第2クラッチ20を断状態から完全係合状態とするのに必要な係合時間を予め実験により求めておき、この係合時間が経過したか否かにより簡易的に判断するようにしてもよい。
In step S6, the control device 40 determines whether the rotational speed difference between the first countershaft 33 and the second countershaft 34 is equal to or less than a threshold. This determination is made, for example, by detecting the number of rotations of the first countershaft 33 and the number of rotations of the second countershaft 34 with a rotation number sensor (not shown) and directly determining the number of rotations. When the second clutch 20 is completely engaged, the engagement time required to bring the second clutch 20 into the full engagement state from the disengaged state is determined in advance by experiment. You may make it judge simply by whether it is not.
ステップS6で、第1カウンタ軸33と第2カウンタ軸34との回転数差が所定の閾値以下でないと判断された場合(ステップS6:NO)、ステップS6の処理を繰り返す。一方、ステップS6で、第1カウンタ軸33と第2カウンタ軸34との回転数差が所定の閾値以下であると判断された場合(ステップS6:YES)、処理はステップS7へ進む。
If it is determined in step S6 that the rotational speed difference between the first countershaft 33 and the second countershaft 34 is not less than or equal to a predetermined threshold (step S6: NO), the process of step S6 is repeated. On the other hand, when it is determined in step S6 that the rotational speed difference between the first countershaft 33 and the second countershaft 34 is less than or equal to the predetermined threshold (step S6: YES), the process proceeds to step S7.
ステップS7で、制御装置40は、第2クラッチ20の係合を解除させる。そして、処理はステップS8へ進む。
At step S7, the control device 40 releases the engagement of the second clutch 20. Then, the process proceeds to step S8.
ステップS8で、制御装置40は、第3シンクロ機構63におけるギヤ入れを行わせる。具体的には、第3シンクロスリーブ63bと第6ドグギヤ63dとを係合させる。
In step S8, the control device 40 causes the third synchronization mechanism 63 to engage the gear. Specifically, the third synchro sleeve 63b and the sixth dog gear 63d are engaged.
以上説明したように、本実施形態によれば、8速段から9速段への変速が行われた場合、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34との結合を解除する。これにより、エンジンからの回転動力が第1カウンタ軸33に伝達されることを防止することができる。そのため、潤滑オイルの撹拌による燃費の悪化を抑制することができる。
As described above, according to the present embodiment, when the shift from the eighth gear to the ninth gear is performed, the connection between the first counter shaft 33 and the second counter shaft 34 is performed by the third synchronizing mechanism 63. To release. This can prevent the rotational power from the engine from being transmitted to the first countershaft 33. Therefore, the deterioration of the fuel consumption by stirring of lubricating oil can be suppressed.
また、本実施形態によれば、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とを再結合する場合に、一時的に第2クラッチ20を係合させる。そのため、第3シンクロ機構63にかかる負荷を低減することができる。
Further, according to the present embodiment, when the first countershaft 33 and the second countershaft 34 are rejoined by the third synchronizing mechanism 63, the second clutch 20 is temporarily engaged. Therefore, the load applied to the third synchronizing mechanism 63 can be reduced.
さらに、本実施形態によれば、第1カウンタ軸33と第2カウンタ軸34との回転数差が所定の閾値を超えている場合に、一時的に第2クラッチ20を係合させる。換言すれば、第1カウンタ軸33と第2カウンタ軸34との相対回転数が小さく、所定の閾値以下である場合には、第2クラッチ20を一時的に係合させることなく、第3シンクロ機構63におけるギヤ入れを行う。そのため、第3シンクロ機構63にかかる負荷がそれほど大きくない状況において、プレシフトに要する時間を短くすることができる。
Furthermore, according to the present embodiment, when the rotational speed difference between the first countershaft 33 and the second countershaft 34 exceeds the predetermined threshold, the second clutch 20 is temporarily engaged. In other words, when the relative rotational speed between the first countershaft 33 and the second countershaft 34 is small and is less than or equal to the predetermined threshold, the third sync is generated without temporarily engaging the second clutch 20. Gear engagement in the mechanism 63 is performed. Therefore, in a situation where the load applied to the third synchronizing mechanism 63 is not so large, the time required for the pre-shift can be shortened.
(変形例)
なお、上述の実施形態では、8速段から9速段への変速が行われた場合を例に説明を行ったが、これに限定されない。例えば、4速段から5速段への変速が行われた場合にも、同様の制御により、同様の効果を得ることができる。以下、4速段から5速段への変速が行われた場合について詳細に説明する。 (Modification)
In the above-described embodiment, the case where the shift from the eighth gear to the ninth gear is performed is described as an example, but the present invention is not limited to this. For example, even when the shift from the fourth gear to the fifth gear is performed, similar effects can be obtained by the same control. Hereinafter, the case where the shift from the fourth gear to the fifth gear is performed will be described in detail.
なお、上述の実施形態では、8速段から9速段への変速が行われた場合を例に説明を行ったが、これに限定されない。例えば、4速段から5速段への変速が行われた場合にも、同様の制御により、同様の効果を得ることができる。以下、4速段から5速段への変速が行われた場合について詳細に説明する。 (Modification)
In the above-described embodiment, the case where the shift from the eighth gear to the ninth gear is performed is described as an example, but the present invention is not limited to this. For example, even when the shift from the fourth gear to the fifth gear is performed, similar effects can be obtained by the same control. Hereinafter, the case where the shift from the fourth gear to the fifth gear is performed will be described in detail.
図5は、4速段から5速段へのアップシフトが行われた直後の様子を示している。図5に示すように、4速段から5速段へのアップシフトが行われた直後、第3シンクロ機構63は、第1カウンタ軸33と第2カウンタ軸34とを結合した状態である。
FIG. 5 shows a state immediately after the upshift from the fourth gear to the fifth gear is performed. As shown in FIG. 5, immediately after the upshift from the fourth gear to the fifth gear is performed, the third synchronizing mechanism 63 is in a state in which the first counter shaft 33 and the second counter shaft 34 are coupled.
そのため、エンジンからの回転動力は、第1入力軸31、第3入力ギヤ53aおよび第2カウンタ軸34を経由して第1カウンタ軸33にも伝達される。これにより、第1カウンタ軸33に固定された第1カウンタギヤ51b、第6カウンタギヤ56bおよび第7カウンタギヤ57bは、エンジンによって回転駆動される。そのため、第1カウンタギヤ51b、第6カウンタギヤ56bおよび第7カウンタギヤ57bの回転によって変速機ケース内の潤滑オイルの撹拌抵抗が増大し、燃費の悪化を招く。
Therefore, rotational power from the engine is also transmitted to the first countershaft 33 via the first input shaft 31, the third input gear 53a and the second countershaft 34. Thus, the first counter gear 51b, the sixth counter gear 56b and the seventh counter gear 57b fixed to the first counter shaft 33 are rotationally driven by the engine. Therefore, the agitation resistance of the lubricating oil in the transmission case is increased by the rotation of the first counter gear 51b, the sixth counter gear 56b and the seventh counter gear 57b, resulting in deterioration of the fuel efficiency.
本例では、4速段から5速段への変速後、第1カウンタ軸33がエンジンにより回転駆動されることを防止するため、以下の動作が行われる。
In this example, the following operation is performed to prevent the first counter shaft 33 from being rotationally driven by the engine after the shift from the fourth gear to the fifth gear.
具体的には、4速段から5速段へのアップシフトが行われた後、5速段の状態で、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34との結合を解除する(図6を参照)。これにより、エンジンからの回転動力が第1カウンタ軸33に伝達されることを防止することができる。そのため、潤滑オイルの撹拌による燃費の悪化を抑制することができる。
Specifically, after the upshift from the 4th gear position to the 5th gear position is performed, in the state of the 5th gear position, coupling of the first counter shaft 33 and the second counter shaft 34 by the third synchro mechanism 63 is performed. Release (see FIG. 6). This can prevent the rotational power from the engine from being transmitted to the first countershaft 33. Therefore, the deterioration of the fuel consumption by stirring of lubricating oil can be suppressed.
ところで、このような5速段での走行中に、車速の減少等により4速段への変速が行われる場合、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とを再結合することになるが、この場合に、以下に示す問題が生じる可能性がある。
By the way, when shifting to the fourth gear is performed due to a decrease in the vehicle speed or the like while traveling at the fifth gear, the first counter shaft 33 and the second counter shaft 34 are re-operated by the third synchro mechanism 63. Although it will combine, in this case, the problem shown below may arise.
すなわち、第2カウンタ軸34が高速回転しているのに対して、第1カウンタ軸33の回転数は低い。そのため、そのまま第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とを結合させようとすると、第3シンクロ機構63に過大な負荷がかかるおそれがある。
That is, while the second counter shaft 34 is rotating at high speed, the rotational speed of the first counter shaft 33 is low. Therefore, if it is attempted to couple the first countershaft 33 and the second countershaft 34 by the third synchronizing mechanism 63 as it is, there is a possibility that an excessive load may be applied to the third synchronizing mechanism 63.
そこで、本例では、第3シンクロ機構63に過大な負荷がかかることを防止するため、第3シンクロ機構63による第1カウンタ軸33と第2カウンタ軸34との再結合に先立って、以下の動作が行われる。
Therefore, in the present embodiment, in order to prevent an excessive load from being applied to the third synchronizing mechanism 63, prior to the reconnection of the first counter shaft 33 and the second counter shaft 34 by the third synchronizing mechanism 63, The action is taken.
具体的には、第3シンクロスリーブ63bを第6ドグギヤ63dと係合させる前に、第2クラッチ20を一時的に係合させる。
Specifically, before the third synchro sleeve 63b is engaged with the sixth dog gear 63d, the second clutch 20 is temporarily engaged.
これにより、第2入力軸32を介して第1カウンタ軸33へエンジンの動力が伝達され、第1カウンタ軸33の回転数が上昇する。そして、第1カウンタ軸33の回転数が十分に上昇したところで、係合している第2クラッチ20を切断し、第3シンクロスリーブ63bを第6ドグギヤ63dと係合させる。これにより、第3シンクロ機構63にかかる負荷を低減することができる。
As a result, the power of the engine is transmitted to the first countershaft 33 via the second input shaft 32, and the rotational speed of the first countershaft 33 is increased. Then, when the rotational speed of the first counter shaft 33 is sufficiently increased, the engaged second clutch 20 is disconnected, and the third synchro sleeve 63b is engaged with the sixth dog gear 63d. Thereby, the load applied to the third synchronizing mechanism 63 can be reduced.
また、5速段において第1カウンタ軸33と第2カウンタ軸34との係合を解除した状態で走行中に、車速の増大等により6速段への変速が行われる場合、第4シンクロ機構64によって第3出力ギヤ57aと出力軸35とを結合することになるが、この場合に、以下に示す問題が生じる可能性がある。
When shifting to the sixth gear is performed due to an increase in the vehicle speed or the like while traveling at a state where the first countershaft 33 and the second countershaft 34 are disengaged in the fifth gear, the fourth synchro mechanism Although the third output gear 57a and the output shaft 35 are coupled by 64, in this case, the following problems may occur.
すなわち、出力軸35が高速回転しているのに対して、第3出力ギヤ57aの回転数は低い。そのため、そのまま第4シンクロ機構64によって第3出力ギヤ57aと出力軸35とを結合させようとすると、第4シンクロ機構64に過大な負荷がかかるおそれがある。
That is, while the output shaft 35 is rotating at high speed, the rotational speed of the third output gear 57a is low. Therefore, if it is attempted to couple the third output gear 57a and the output shaft 35 by the fourth synchronizing mechanism 64 as it is, there is a possibility that an excessive load may be applied to the fourth synchronizing mechanism 64.
そこで、本例では、第4シンクロ機構64に過大な負荷がかかることを防止するため、第4シンクロ機構64による第3出力ギヤ57aと出力軸35との結合に先立って、以下の動作が行われる。
Therefore, in the present embodiment, in order to prevent an excessive load from being applied to the fourth synchronizing mechanism 64, the following operation is performed prior to the connection of the third output gear 57a and the output shaft 35 by the fourth synchronizing mechanism 64. It will be.
具体的には、第4シンクロスリーブ64bを第8ドグギヤ64dと係合させる前に、第2クラッチ20を一時的に係合させる。
Specifically, before the fourth synchro sleeve 64b is engaged with the eighth dog gear 64d, the second clutch 20 is temporarily engaged.
これにより、第2入力軸32、第1ギヤ列51、第1カウンタ軸33および第7カウンタギヤ57bを介して第3出力ギヤ57aへエンジンの動力が伝達され、第3出力ギヤ57aの回転数が上昇する。そして、第3出力ギヤ57aの回転数が十分に上昇したところで、係合している第2クラッチ20を切断し、第4シンクロスリーブ64bを第8ドグギヤ64dと係合させる。これにより、第4シンクロ機構64にかかる負荷を低減することができる。
Thus, the power of the engine is transmitted to the third output gear 57a via the second input shaft 32, the first gear train 51, the first countershaft 33 and the seventh counter gear 57b, and the rotational speed of the third output gear 57a Will rise. Then, when the rotational speed of the third output gear 57a is sufficiently increased, the engaged second clutch 20 is disconnected, and the fourth synchro sleeve 64b is engaged with the eighth dog gear 64d. Thereby, the load applied to the fourth synchronizing mechanism 64 can be reduced.
(シンクロ機構の負荷低減制御の他の一例)
ところで、例えば6速段から5速段へのダウンシフトが行われた直後に、4速段へのプレシフトを行う場合、第4シンクロ機構64によって第3出力ギヤ57aと出力軸35との結合を解除し、その後、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とが結合される。この場合、以下に示す問題が生じる可能性がある。 (Another example of load reduction control of synchro mechanism)
By the way, for example, when performing the preshift to the fourth gear immediately after the downshift from the sixth gear to the fifth gear, thefourth synchro mechanism 64 couples the third output gear 57a to the output shaft 35. Then, the first counter shaft 33 and the second counter shaft 34 are coupled by the third synchronizing mechanism 63. In this case, the following problems may occur.
ところで、例えば6速段から5速段へのダウンシフトが行われた直後に、4速段へのプレシフトを行う場合、第4シンクロ機構64によって第3出力ギヤ57aと出力軸35との結合を解除し、その後、第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とが結合される。この場合、以下に示す問題が生じる可能性がある。 (Another example of load reduction control of synchro mechanism)
By the way, for example, when performing the preshift to the fourth gear immediately after the downshift from the sixth gear to the fifth gear, the
すなわち、第4シンクロ機構64によって第3出力ギヤ57aと出力軸35との結合を解除することで、第1カウンタ軸33がエンジンから切り離され、エンジンからの回転動力が第1カウンタ軸33に伝達されなくなる。そのため、第2カウンタ軸34の回転数よりも低い第1カウンタ軸33の回転数は、変速機ケース内の潤滑オイルの撹拌抵抗によってさらに低下する。この状態で、そのまま第3シンクロ機構63によって第1カウンタ軸33と第2カウンタ軸34とを結合させようとすると、第3シンクロ機構63に過大な負荷がかかるおそれがある。
That is, by releasing the connection between the third output gear 57a and the output shaft 35 by the fourth synchronizing mechanism 64, the first counter shaft 33 is separated from the engine, and the rotational power from the engine is transmitted to the first counter shaft 33. It will not be done. Therefore, the rotation speed of the first counter shaft 33 lower than the rotation speed of the second counter shaft 34 is further reduced by the stirring resistance of the lubricating oil in the transmission case. In this state, if the first counter shaft 33 and the second counter shaft 34 are to be coupled by the third synchronizing mechanism 63 as it is, there is a possibility that the third synchronizing mechanism 63 may be overloaded.
そこで、本例では、第3シンクロ機構63に過大な負荷がかかることを防止するため、第4シンクロ機構64によって第3出力ギヤ57aと出力軸35との結合を解除した後、第3シンクロ機構63による第1カウンタ軸33と第2カウンタ軸34とを結合させるのに先立って、以下の動作が行われる。
Therefore, in the present embodiment, in order to prevent an excessive load from being applied to the third synchronizing mechanism 63, the fourth synchronizing mechanism 64 releases the connection between the third output gear 57a and the output shaft 35, and then the third synchronizing mechanism Prior to coupling the first counter shaft 33 and the second counter shaft 34 according to 63, the following operation is performed.
具体的には、第4シンクロスリーブ64bと第8ドグギヤ64dとの係合を解除した後、第3シンクロスリーブ63bを第6ドグギヤ63dと係合させる前に、第2クラッチ20を一時的に係合させる。
Specifically, after disengaging the fourth synchro sleeve 64b and the eighth dog gear 64d, the second clutch 20 is temporarily engaged before the third synchro sleeve 63b is engaged with the sixth dog gear 63d. Match.
これにより、第2入力軸32を介して第1カウンタ軸33へエンジンの動力が伝達され、第1カウンタ軸33の回転数が上昇する。そして、第1カウンタ軸33の回転数が十分に上昇したところで、係合している第2クラッチ20を切断し、第3シンクロスリーブ63bを第6ドグギヤ63dと係合させる。
As a result, the power of the engine is transmitted to the first countershaft 33 via the second input shaft 32, and the rotational speed of the first countershaft 33 is increased. Then, when the rotational speed of the first counter shaft 33 is sufficiently increased, the engaged second clutch 20 is disconnected, and the third synchro sleeve 63b is engaged with the sixth dog gear 63d.
これにより、第3シンクロ機構63にかかる負荷を低減することができる。なお、このようなシンクロ機構の負荷低減制御は、6速段から5速段へのダウンシフト直後における4速段へのプレシフトに限らず、適用可能である。
Thereby, the load applied to the third synchronizing mechanism 63 can be reduced. Such load reduction control of the synchronization mechanism is not limited to the pre-shift to the fourth gear immediately after the down shift from the sixth gear to the fifth gear, and is applicable.
本出願は、2017年10月12日付で出願された日本国特許出願(特願2017-198763)に基づくものであり、その内容はここに参照として取り込まれる。
This application is based on the Japanese Patent Application (Japanese Patent Application No. 2017-198763) filed on October 12, 2017, the contents of which are incorporated herein by reference.
本開示のデュアルクラッチ式変速機は、オイルの撹拌による燃費の悪化を抑制することができ、産業上の利用可能性は多大である。
The dual clutch transmission of the present disclosure can suppress the deterioration of fuel efficiency due to the stirring of oil, and has great industrial applicability.
1 デュアルクラッチ式変速機
2 出力軸
10 第1クラッチ
11 入力側クラッチ板
12 出力側クラッチ板
20 第2クラッチ
21 入力側クラッチ板
22 出力側クラッチ板
30 変速部
31 第1入力軸
32 第2入力軸
33 第1カウンタ軸
34 第2カウンタ軸
35 出力軸
40 制御装置
51 第1ギヤ列
51a 第1入力ギヤ
51b 第1カウンタギヤ
52 後進ギヤ列
52a 第2入力ギヤ
52b 第2カウンタギヤ
52c リバースアイドラギヤ
53 第2ギヤ列
53a 第3入力ギヤ
53b 第3カウンタギヤ
54 第3ギヤ列
54a 第4入力ギヤ
54b 第4カウンタギヤ
55 第4ギヤ列
55a 第1出力ギヤ
55b 第5カウンタギヤ
56 第5ギヤ列
56a 第2出力ギヤ
56b 第6カウンタギヤ
57 第6ギヤ列
57a 第3出力ギヤ
57b 第7カウンタギヤ
61 第1シンクロ機構
61a 第1シンクロハブ
61b 第1シンクロスリーブ
61c 第1ドグギヤ
61d 第2ドグギヤ
62 第2シンクロ機構
62a 第2シンクロハブ
62b 第2シンクロスリーブ
62c 第3ドグギヤ
62d 第4ドグギヤ
63 第3シンクロ機構
63a 第3シンクロハブ
63b 第3シンクロスリーブ
63c 第5ドグギヤ
63d 第6ドグギヤ
64 第4シンクロ機構
64a 第4シンクロハブ
64b 第4シンクロスリーブ
64c 第7ドグギヤ
64d 第8ドグギヤ Reference Signs List 1 dualclutch type transmission 2 output shaft 10 first clutch 11 input clutch plate 12 output clutch plate 20 second clutch 21 input clutch plate 22 output clutch plate 30 transmission unit 31 first input shaft 32 second input shaft 33 first counter shaft 34 second counter shaft 35 output shaft 40 control device 51 first gear train 51 a first input gear 51 b first counter gear 52 reverse gear train 52 a second input gear 52 b second counter gear 52 c reverse idler gear 53 2nd gear train 53a 3rd input gear 53b 3rd counter gear 54 3rd gear train 54a 4th input gear 54b 4th counter gear 55 4th gear train 55a 1st output gear 55b 5th counter gear 56 5th gear train 56a Second output gear 56b Sixth counter gear 57 Sixth gear train 57a Third output Gear 57b seventh counter gear 61 first synchronizing mechanism 61a first synchro hub 61b first synchronizer sleeve 61c first Dogugiya 61d second Dogugiya 62 second synchronizing mechanism
62asecond sync hub 62b second sync sleeve 62c third dog gear 62d fourth dog gear 63 third sync mechanism 63a third sync hub 63b third sync sleeve 63c fifth dog gear 63d sixth dog gear 64 fourth sync mechanism 64a fourth sync Hub 64b 4th synchro sleeve 64c 7th dog gear 64d 8th dog gear
2 出力軸
10 第1クラッチ
11 入力側クラッチ板
12 出力側クラッチ板
20 第2クラッチ
21 入力側クラッチ板
22 出力側クラッチ板
30 変速部
31 第1入力軸
32 第2入力軸
33 第1カウンタ軸
34 第2カウンタ軸
35 出力軸
40 制御装置
51 第1ギヤ列
51a 第1入力ギヤ
51b 第1カウンタギヤ
52 後進ギヤ列
52a 第2入力ギヤ
52b 第2カウンタギヤ
52c リバースアイドラギヤ
53 第2ギヤ列
53a 第3入力ギヤ
53b 第3カウンタギヤ
54 第3ギヤ列
54a 第4入力ギヤ
54b 第4カウンタギヤ
55 第4ギヤ列
55a 第1出力ギヤ
55b 第5カウンタギヤ
56 第5ギヤ列
56a 第2出力ギヤ
56b 第6カウンタギヤ
57 第6ギヤ列
57a 第3出力ギヤ
57b 第7カウンタギヤ
61 第1シンクロ機構
61a 第1シンクロハブ
61b 第1シンクロスリーブ
61c 第1ドグギヤ
61d 第2ドグギヤ
62 第2シンクロ機構
62a 第2シンクロハブ
62b 第2シンクロスリーブ
62c 第3ドグギヤ
62d 第4ドグギヤ
63 第3シンクロ機構
63a 第3シンクロハブ
63b 第3シンクロスリーブ
63c 第5ドグギヤ
63d 第6ドグギヤ
64 第4シンクロ機構
64a 第4シンクロハブ
64b 第4シンクロスリーブ
64c 第7ドグギヤ
64d 第8ドグギヤ Reference Signs List 1 dual
62a
Claims (5)
- 駆動源からの動力を断接可能な第1クラッチを有する第1入力軸と、前記駆動源からの動力を断接可能な第2クラッチを有するとともに前記第1入力軸と同軸に配置された第2入力軸と、前記第1入力軸と平行に配置された第1カウンタ軸と、前記第1カウンタ軸と同軸に配置され、前記第1カウンタ軸と選択的に結合される第2カウンタ軸と、前記第1入力軸と同軸に配置された出力軸と、を備え、
前記駆動源から前記第2入力軸、前記第1カウンタ軸および前記第2カウンタ軸を介して前記出力軸へ動力伝達が行われる第1所定変速段から、前記駆動源から前記第1入力軸および前記第2カウンタ軸を介して前記出力軸へ動力伝達が行われる第2所定変速段への変速が行われた場合に、前記第1カウンタ軸と前記第2カウンタ軸との結合を解除して前記駆動源から前記第1カウンタ軸へ動力が伝達されない状態とするとともに、
前記駆動源または前記出力軸から前記第1カウンタ軸へ動力が伝達される状態への状態変化を行う際に、前記状態変化に先立って、前記第2クラッチを一時的に接続状態とする、
デュアルクラッチ式変速機。 A first input shaft having a first clutch capable of connecting and disconnecting power from a driving source, and a second clutch capable of connecting and disconnecting power from the driving source, the first input shaft being coaxial with the first input shaft; Two input shafts, a first counter shaft parallel to the first input shaft, and a second counter shaft coaxially arranged to the first counter shaft and selectively coupled to the first counter shaft An output shaft coaxially arranged with the first input shaft,
From the drive source to the first input shaft and the first input gear, from the first predetermined shift stage where power transmission is performed from the drive source to the output shaft via the second input shaft, the first counter shaft and the second counter shaft When a shift to a second predetermined shift stage is performed where power is transmitted to the output shaft via the second counter shaft, the coupling between the first counter shaft and the second counter shaft is released. While the power is not transmitted from the drive source to the first counter shaft,
When performing a state change to a state where power is transmitted from the drive source or the output shaft to the first counter shaft, the second clutch is temporarily connected prior to the state change.
Dual clutch transmission. - 前記第1カウンタ軸と前記第2カウンタ軸との結合を解除させた後、前記第1カウンタ軸と前記第2カウンタ軸との相対回転数が予め定められた所定の閾値を超える場合に、前記第2クラッチを一時的に結合させる、
請求項1に記載のデュアルクラッチ式変速機。 In the case where the relative rotational speed between the first countershaft and the second countershaft exceeds a predetermined threshold value after releasing the coupling between the first countershaft and the second countershaft, Temporarily connect the second clutch,
The dual clutch transmission according to claim 1. - 前記第2入力軸と前記第1カウンタ軸との間で動力伝達を行う第1ギヤ列と、
前記第1入力軸と前記第2カウンタ軸との間で選択的に動力伝達を行う第2ギヤ列と、
前記第1入力軸および前記出力軸と結合可能な遊転ギヤならびに前記第2カウンタ軸に固設された第1カウンタギヤを有する第3ギヤ列と、
前記第2カウンタ軸に固設された第2カウンタギヤおよび前記出力軸と結合可能な出力ギヤを有する第4ギヤ列と、
前記第1カウンタ軸と前記出力軸との間で選択的に動力伝達を行う第5ギヤ列と、を備える、
請求項1に記載のデュアルクラッチ式変速機。 A first gear train for transmitting power between the second input shaft and the first counter shaft;
A second gear train selectively transmitting power between the first input shaft and the second counter shaft;
A third gear train having an idle gear connectable to the first input shaft and the output shaft, and a first counter gear fixed to the second counter shaft;
A fourth gear train having a second counter gear fixed to the second counter shaft and an output gear connectable to the output shaft;
And a fifth gear train for selectively transmitting power between the first countershaft and the output shaft.
The dual clutch transmission according to claim 1. - 前記第1所定変速段において、前記駆動源から前記第1ギヤ列および前記第3ギヤ列を介して前記出力軸へ動力伝達が行われ、
前記第2所定変速段において、前記駆動源から前記第2ギヤ列および前記第3ギヤ列を介して前記出力軸へ動力伝達が行われる、
請求項3に記載のデュアルクラッチ式変速機。 In the first predetermined gear, power is transmitted from the drive source to the output shaft via the first gear train and the third gear train.
In the second predetermined gear, power is transmitted from the drive source to the output shaft through the second gear train and the third gear train.
The dual clutch transmission according to claim 3. - 前記第1所定変速段において、前記駆動源から前記第1ギヤ列および前記第4ギヤ列を介して前記出力軸へ動力伝達が行われ、
前記第2所定変速段において、前記駆動源から前記第2ギヤ列および前記第4ギヤ列を介して前記出力軸へ動力伝達が行われる、
請求項3に記載のデュアルクラッチ式変速機。 In the first predetermined gear, power is transmitted from the drive source to the output shaft via the first gear train and the fourth gear train.
In the second predetermined gear, power is transmitted from the drive source to the output shaft via the second gear train and the fourth gear train.
The dual clutch transmission according to claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880065833.2A CN111201390B (en) | 2017-10-12 | 2018-10-12 | Double-clutch type speed changer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017198763A JP2019074103A (en) | 2017-10-12 | 2017-10-12 | Dual clutch transmission |
JP2017-198763 | 2017-10-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019074085A1 true WO2019074085A1 (en) | 2019-04-18 |
Family
ID=66100720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/038048 WO2019074085A1 (en) | 2017-10-12 | 2018-10-12 | Dual clutch transmission |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2019074103A (en) |
CN (1) | CN111201390B (en) |
WO (1) | WO2019074085A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001270347A (en) * | 2000-03-28 | 2001-10-02 | Isuzu Motors Ltd | Automatic transmission of vehicle |
JP2004050891A (en) * | 2002-07-17 | 2004-02-19 | Isuzu Motors Ltd | Shift control device and method |
JP2010537144A (en) * | 2007-08-28 | 2010-12-02 | ダイムラー・アクチェンゲゼルシャフト | Gear transmission |
JP2015034580A (en) * | 2013-08-08 | 2015-02-19 | いすゞ自動車株式会社 | Twin clutch type transmission |
JP2015117793A (en) * | 2013-12-19 | 2015-06-25 | いすゞ自動車株式会社 | Dual clutch-type transmission |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006194405A (en) * | 2005-01-17 | 2006-07-27 | Nissan Motor Co Ltd | Shift control device for twin clutch type manual transmission |
KR101611056B1 (en) * | 2014-07-02 | 2016-04-21 | 현대자동차주식회사 | Automatic Manual Transmission |
-
2017
- 2017-10-12 JP JP2017198763A patent/JP2019074103A/en active Pending
-
2018
- 2018-10-12 CN CN201880065833.2A patent/CN111201390B/en active Active
- 2018-10-12 WO PCT/JP2018/038048 patent/WO2019074085A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001270347A (en) * | 2000-03-28 | 2001-10-02 | Isuzu Motors Ltd | Automatic transmission of vehicle |
JP2004050891A (en) * | 2002-07-17 | 2004-02-19 | Isuzu Motors Ltd | Shift control device and method |
JP2010537144A (en) * | 2007-08-28 | 2010-12-02 | ダイムラー・アクチェンゲゼルシャフト | Gear transmission |
JP2015034580A (en) * | 2013-08-08 | 2015-02-19 | いすゞ自動車株式会社 | Twin clutch type transmission |
JP2015117793A (en) * | 2013-12-19 | 2015-06-25 | いすゞ自動車株式会社 | Dual clutch-type transmission |
Also Published As
Publication number | Publication date |
---|---|
CN111201390B (en) | 2021-09-28 |
CN111201390A (en) | 2020-05-26 |
JP2019074103A (en) | 2019-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4822891B2 (en) | Gear transmission | |
JP2007332991A (en) | Gear transmission device | |
JP2007331654A (en) | Gear transmission having parking lock function | |
WO2012102337A1 (en) | Dual-clutch transmission for vehicles | |
KR101936981B1 (en) | Transmission for vehicle | |
KR101755799B1 (en) | Transmission for vehicle | |
WO2017209229A1 (en) | Control device for dual clutch transmission | |
US6779417B2 (en) | Power transmission system | |
US10975935B2 (en) | Dual clutch-type transmission | |
US9429213B2 (en) | Multi-clutch transmission for a heavy duty vehicle | |
US10337588B2 (en) | Transmission for vehicle | |
SE539248C2 (en) | A method for controlling a gearbox, a gearbox and a vehicle provided with such a gearbox | |
WO2019074085A1 (en) | Dual clutch transmission | |
JP5195510B2 (en) | Always meshing transmission | |
CN113614415B (en) | Automatic transmission | |
US10072733B2 (en) | Automated manual transmission | |
JP6897406B2 (en) | Shift control device | |
JP3712660B2 (en) | Power transmission device | |
WO2013008544A1 (en) | Transmission | |
JP2019027458A (en) | Dual clutch type transmission | |
WO2017082280A1 (en) | Dual-clutch transmission | |
JP5120208B2 (en) | Transmission control system | |
JP2021055681A (en) | Control device and control method | |
JP4929222B2 (en) | transmission | |
WO2020196514A1 (en) | Automatic transmission and warming-up method for automatic transmission |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18866940 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18866940 Country of ref document: EP Kind code of ref document: A1 |