WO2019066013A1 - ヘテロ元素含有グラフェン - Google Patents
ヘテロ元素含有グラフェン Download PDFInfo
- Publication number
- WO2019066013A1 WO2019066013A1 PCT/JP2018/036399 JP2018036399W WO2019066013A1 WO 2019066013 A1 WO2019066013 A1 WO 2019066013A1 JP 2018036399 W JP2018036399 W JP 2018036399W WO 2019066013 A1 WO2019066013 A1 WO 2019066013A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- containing graphene
- heteroelement
- nitrogen
- graphene
- hetero
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 359
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 294
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 116
- 239000013078 crystal Substances 0.000 claims abstract description 69
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 62
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 50
- 229910052796 boron Inorganic materials 0.000 claims abstract description 15
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 14
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 12
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 12
- 239000011593 sulfur Substances 0.000 claims abstract description 12
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 claims abstract description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 10
- 239000010703 silicon Substances 0.000 claims abstract description 10
- 125000005842 heteroatom Chemical group 0.000 claims description 98
- 239000000843 powder Substances 0.000 claims description 87
- 150000001875 compounds Chemical class 0.000 claims description 46
- 239000002994 raw material Substances 0.000 claims description 38
- 238000002441 X-ray diffraction Methods 0.000 claims description 37
- 239000007788 liquid Substances 0.000 claims description 35
- 238000002003 electron diffraction Methods 0.000 claims description 23
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 17
- 238000001069 Raman spectroscopy Methods 0.000 claims description 16
- 239000010410 layer Substances 0.000 claims description 14
- 125000002091 cationic group Chemical group 0.000 claims description 12
- 239000002245 particle Substances 0.000 claims description 12
- 125000004429 atom Chemical group 0.000 claims description 11
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 10
- 229910052698 phosphorus Inorganic materials 0.000 claims description 10
- 239000011574 phosphorus Substances 0.000 claims description 10
- 230000005355 Hall effect Effects 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 239000003880 polar aprotic solvent Substances 0.000 claims description 7
- 239000007787 solid Substances 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims description 4
- 239000000758 substrate Substances 0.000 claims description 4
- 238000004611 spectroscopical analysis Methods 0.000 claims description 3
- 230000001747 exhibiting effect Effects 0.000 abstract description 3
- 238000004098 selected area electron diffraction Methods 0.000 abstract description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 abstract 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 53
- 238000002524 electron diffraction data Methods 0.000 description 30
- 238000004458 analytical method Methods 0.000 description 26
- 238000001237 Raman spectrum Methods 0.000 description 25
- 239000000463 material Substances 0.000 description 22
- 239000004065 semiconductor Substances 0.000 description 16
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 239000013598 vector Substances 0.000 description 11
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 10
- 229910002804 graphite Inorganic materials 0.000 description 10
- 239000010439 graphite Substances 0.000 description 10
- 125000004433 nitrogen atom Chemical group N* 0.000 description 10
- 239000012071 phase Substances 0.000 description 10
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 8
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 6
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 6
- 238000001228 spectrum Methods 0.000 description 6
- 239000003575 carbonaceous material Substances 0.000 description 5
- MKHFCTXNDRMIDR-UHFFFAOYSA-N cyanoiminomethylideneazanide;1-ethyl-3-methylimidazol-3-ium Chemical compound [N-]=C=NC#N.CCN1C=C[N+](C)=C1 MKHFCTXNDRMIDR-UHFFFAOYSA-N 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 238000003917 TEM image Methods 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- 150000001721 carbon Chemical group 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 150000008040 ionic compounds Chemical class 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000000634 powder X-ray diffraction Methods 0.000 description 3
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- -1 coronene is required Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 238000002211 ultraviolet spectrum Methods 0.000 description 2
- SIXHYMZEOJSYQH-UHFFFAOYSA-M 1-butyl-3-methylimidazol-3-ium;thiocyanate Chemical compound [S-]C#N.CCCCN1C=C[N+](C)=C1 SIXHYMZEOJSYQH-UHFFFAOYSA-M 0.000 description 1
- ZQQKKFZWOFBELB-UHFFFAOYSA-N 1-ethyl-3-methylimidazol-3-ium dicyanide Chemical compound N#[C-].N#[C-].CC[N+]=1C=CN(C)C=1.CC[N+]=1C=CN(C)C=1 ZQQKKFZWOFBELB-UHFFFAOYSA-N 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 238000000026 X-ray photoelectron spectrum Methods 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002180 crystalline carbon material Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 150000004693 imidazolium salts Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- LVWZTYCIRDMTEY-UHFFFAOYSA-N metamizole Chemical compound O=C1C(N(CS(O)(=O)=O)C)=C(C)N(C)N1C1=CC=CC=C1 LVWZTYCIRDMTEY-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000005575 polycyclic aromatic hydrocarbon group Chemical group 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/194—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B7/00—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
- C30B7/14—Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/04—Specific amount of layers or specific thickness
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2204/00—Structure or properties of graphene
- C01B2204/20—Graphene characterized by its properties
- C01B2204/22—Electronic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/74—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/76—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/77—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/78—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/82—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/80—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
- C01P2002/85—Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/64—Nanometer sized, i.e. from 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/80—Compositional purity
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a heteroelement-containing graphene which is a heteroelement-containing graphene and which exhibits a flat shape and exhibits properties as a transparent P-type semiconductor.
- heteroelement-containing graphene in which a different element other than carbon is introduced into the carbon six-membered ring structure of graphene.
- this heteroelement-containing graphene for example, when a different element such as nitrogen is introduced into the valley portion of the zigzag edge of graphene, the different element physically and chemically acts on the adjacent carbon atom. As a result, it is known that the adjacent carbon atom exhibits oxygen reduction characteristics. From this, utilization of the heteroelement-containing graphene as a catalyst material has been studied (see, for example, Patent Documents 1 to 3).
- Patent Document 1 discloses a support for an electrode catalyst in which nitrogen-containing graphite is formed on the surface of a carbon support.
- the nitrogen-containing graphite of Patent Document 1 is formed on the surface of a carbon support having a ⁇ electron supply property.
- Patent Document 1 also discloses that the crystallinity of nitrogen-containing graphite is evaluated by an ID / IG value based on a Raman spectrum, and the ID / IG value can be 0.8 to 1.2.
- Patent Document 2 discloses that it is possible to synthesize heteroatom-containing graphene containing a heteroatom such as nitrogen by solvothermal reaction.
- the example of Patent Document 2 describes that the heteroatom-containing graphene is doped with a nitrogen atom at a rate of 14.8 atomic%.
- Patent Document 2 does not disclose the crystallinity of the hetero atom-containing graphene at all.
- Patent Document 3 discloses graphitic carbon nitride (g-C 3 N 4 ) having a stoichiometric ratio.
- Graphitic carbon nitride disclosed in Patent Document 3 has a melon ((C 6 N 9 H 3 ) X) having a triangular crystal structure in which three six-membered rings consisting of nitrogen and carbon share a C—N bond with each other. Have a polymerized structure at the top nitrogen atom.
- Patent Document 4 a method for producing a hetero atom-containing carbon catalyst containing a large amount of nitrogen of 10 atomic% or more as a foreign element. According to these techniques, carrier-free heteroatom-containing graphene can be produced.
- Patent Document 5 shows that a carbon catalyst having an oxidation-reduction ability is formed on an electrode.
- the doping position of the heteroatom to the graphene sheet tends to be biased to the sheet edge (edge). And even if doping can be made inside (in-plane) of the graphene sheet, as the amount of nitrogen to be doped increases, the bond angle of carbon and hetero atom is disordered, and the flatness of the graphene sheet is maintained.
- the graphene sheet doped with nitrogen atoms does not return to a planar shape while being curved at the atomic level, and a crystallographically good nitrogen-containing carbon catalyst with good crystallinity has not been obtained.
- An object of the present invention is to provide a transparent, highly crystalline heteroelement-containing graphene that can maintain the flatness of a graphene sheet even if the amount of nitrogen to be doped increases, in view of the above problems.
- Crystalline graphite and graphene belong to a hexagonal system and can have a flat crystal structure composed of a six-membered ring structure.
- a heteroelement-containing graphene in which a heteroelement is introduced into graphene can cause distortion in the crystal structure at a bonding site between carbon and the heteroelement.
- the heteroelement-containing graphene has a sheet-like form in appearance, the symmetry of its crystal structure may be reduced or it may be amorphous rather than crystalline.
- the conventional heteroelement-containing graphene did not show long-range order in the crystal structure. This tendency becomes more remarkable as the amount of introduction of the hetero element increases.
- heteroelement-containing graphene As a result, in the conventional heteroelement-containing graphene, for example, a spot having single crystal symmetry was not observed in limited field electron diffraction. On the other hand, in the heteroelement-containing graphene disclosed herein, for example, a spot having the symmetry of a single crystal belonging to any of a rectangular parallelepiped system and a hexagonal system is observed in limited field electron diffraction. In other words, the present inventors succeeded for the first time in creating a heteroelement-containing graphene (hereinafter, may be simply referred to as “high-crystalline heteroelement-containing graphene”) having crystallographically high crystallinity. This provides highly crystalline heteroelement-containing graphene.
- heteroelement-containing graphene in which the flatness of the graphene sheet is maintained can not be obtained.
- the present inventors manufactured heteroelement-containing graphene using a specific manufacturing method, and it is possible to manufacture heteroelement-containing graphene in which nitrogen having a valence electron number 4 (cationic nitrogen) is doped on the basal plane.
- the present invention has been accomplished by finding that the heteroelement-containing graphene thus produced has crystallographically high crystallinity, is transparent, and has flatness. That is, the present inventors succeeded for the first time in creating a heteroelement-containing graphene (hereinafter, may be simply referred to as a “high-crystalline heteroelement-containing graphene”) having crystallographically high crystallinity.
- the present invention is as shown, for example, in the following (1) to (13).
- (1) In the limited field electron diffraction, a spot belonging to either a rectangular solid system or a hexagonal system and having a single crystal symmetry is observed, At least one selected from the group consisting of carbon (C) and heteroelement (X) nitrogen (N), phosphorus (P), arsenic (As), sulfur (S), boron (B), and silicon (Si) Heteroelement-containing graphene containing one kind of element.
- the hetero element (X) is more preferably at least one element selected from N and B.
- the spot is an electron diffraction image belonging to the cuboid system and having an incident direction of [101], and the reciprocal lattice points 11-1, -111, -202, 1-1-1, and 20-
- the hetero element-containing graphene according to (1) which is characterized in that it contains the arrangement of 2 and -1-11.
- the ratio (I (101) / I (002)) of the diffraction peak intensity I (101) from the (101) plane to the diffraction peak intensity I (002) from the (002) plane is 0
- the atomic ratio (X / C) of carbon (C) to hetero element (X) calculated based on X-ray photoelectron spectroscopy is 0.1 or more, (1) The heteroelement-containing graphene according to any one of (5) to (5).
- the doped chemical bonding state of nitrogen to the basal plane can indicate the possibility of cationic nitrogen, and the carrier type is determined to be p-type by Hall effect measurement
- the hetero element-containing graphene according to any one of (1) to (6), which is characterized in that (8) In Raman spectroscopy with an excitation wavelength of 532 nm, the ratio of the intensity I (D) of the D band seen around 1350 cm -1 to the intensity I (G) of the G band appearing around 1580 cm -1 (I (D) / I (G)) is 1 or less, and the half bandwidth of the G band is 50 cm ⁇ 1 or less,
- the hetero according to any one of (1) to (7) Element-containing graphene.
- the ratio (I (2D) / I (G)) of the intensity I (2D) of the 2D band seen around 2700 cm -1 to the intensity I (G) of the G band in the Raman spectroscopic analysis is The hetero element-containing graphene according to any one of (1) to (8), which is characterized by being 0.5 or more.
- a five-membered hetero ring member composed of at least one hetero element (X) selected from the group consisting of and carbon (C) is dissolved in a polar aprotic solvent to prepare a raw material-containing liquid
- the hetero 5-membered ring compound is polymerized to obtain a heteroelement-containing graphene.
- the heteroelement-containing graphene comprises carbon (C) and nitrogen (N), phosphorus (P), arsenic (As), sulfur (S), boron (B), and silicon (Si) as heteroelements (X). And at least one element selected from the group consisting of Then, in the limited field electron diffraction, a spot belonging to any one of a cuboid system and a hexagonal system and having the symmetry of a single crystal is observed.
- the spot belongs to the rectangular parallelepiped system, and in the electron diffraction image in which the incident direction is [101], reciprocal lattice points 11-1, -111,- It is characterized in that it contains the sequences of 202, 1-1-1, 20-2 and 1-11.
- the heteroelement-containing graphene having the above structure is preferable because it can stably maintain high crystallinity by having a rectangular crystal structure which is slightly deformed from the hexagonal graphene structure.
- the carbon (C) and the at least one heteroelement (X) are contained, and in X-ray diffraction (XRD) ( It is characterized in that the half value width of the diffraction peak from the (002) plane is 3 degrees or less.
- half-width means full width at half maximum (FWHM).
- the half width can be measured in accordance with JIS R7651: 2007 and JIS K0131: 1996. More specifically, for example, as shown in FIG. 5, the half width forms a baseline for a given peak of the spectrum, and is half the height (h) of the peak from the baseline. It can be obtained by measuring the width of the peak at (1/2 * h).
- diffraction peak intensities I from the (002) plane I (002) and diffraction peaks from the (101) plane I X-ray diffraction (XRD) It is characterized in that the ratio (I (002) / I (101)) to 101) is 0.1 or more.
- Heteroelement-containing graphene can also specify its high crystallinity by the XRD characteristics as described above.
- conventional heteroelement-containing graphene showed a broad halo pattern by XRD.
- a peak showing crystallinity is clearly observed in XRD. This makes it possible to clearly distinguish between the heteroelement-containing graphene provided by the technology disclosed herein and the low-crystallinity heteroelement-containing graphene that is frequently seen in the past.
- the interplanar spacing of (002) planes calculated by the above-mentioned X-ray diffraction analysis is 3.5 ⁇ or less.
- XPS X-ray photoelectron spectroscopy
- the doped chemical bonding state to the basal plane of nitrogen is cationic nitrogen, and from the Hall effect measurement, its carrier type is A heteroelement-containing graphene that can be determined to be p-type is provided.
- the high crystallinity of the heteroelement-containing graphene disclosed herein can be confirmed by other indicators.
- the carbon (C) and the at least one heteroelement (X) are included, and 1350 cm ⁇ in Raman spectroscopy with an excitation wavelength of 532 nm.
- the ratio (I (D) / I (G)) of the intensity I (D) of the D band found around 1 to the intensity I (G) of the G band appearing around 1580 cm ⁇ 1 is 1 or less, and And the half band width of the G band is 50 cm -1 or less.
- the high crystallinity of the heteroelement-containing graphene can also be identified by the Raman characteristics as described above.
- the peak of the D band in the Raman spectrum is originally rounded and does not appear as a sharp peak (in other words, a non-broad peak).
- the full width at half maximum of the peak showing the G band in the Raman spectrum is small.
- the peak of this G band may have a higher peak intensity than the peak showing the D band. This also confirms the high crystallinity of the heteroelement-containing graphene disclosed herein.
- the ratio of the above Raman spectrum, the intensity of the 2D band observed around 2700 cm -1 I (2D), the intensity I (G) of the G band ( I (2D) / I (G)) is 0.5 or more.
- the 2D band is a spectrum derived from defects in the crystal structure, it does not appear in the Raman spectrum of amorphous or poorly crystalline heteroelement-containing graphene. This also makes it possible to provide a highly crystalline heteroelement-containing graphene that has never been available.
- the half width of the 2D band observed around 2700 cm -1 is 80 cm -1 or less. Sharpness of the peak appearing in the Raman spectrum can be evaluated by the fact that its half width is small. Therefore, the above structure can provide a heteroelement-containing graphene with higher crystallinity.
- the substrate supporting the heteroelement-containing graphene is not included. That is, even when a heteroelement is introduced into graphene in the absence of a flat support substrate, the heteroelement-containing graphene disclosed herein can maintain its flat crystal structure.
- the heteroelement-containing graphene as various functional materials, it is possible to suppress the reduction in the function by the base material, the reduction in the efficiency, and the like.
- the effect such as the catalytic activity per unit weight is preferably increased.
- the atom of carbon (C) is chemically bonded to the atom of heteroelement (X), and the atom of carbon (C) is mainly sp 2
- the graphene sheet includes a graphene sheet formed by bonding, and the graphene sheet is characterized by having a single-layer structure formed of one layer or a stacked structure of two or more and five or less layers. This is preferable because it provides heteroelement-containing graphene having excellent electrical, mechanical and thermal properties due to the unique two-dimensional structure of the homographene sheet.
- a powder having an average particle diameter of 1 nm or more and 10 ⁇ m or less is used.
- a powder having an average particle diameter of 1 nm to 10 ⁇ m is preferable, for example, to provide a powder material for various uses or a heteroelement-containing graphene in a form that is easily prepared and used as a paste or the like.
- the technology disclosed herein provides a method of producing heteroelement-containing graphene.
- This manufacturing method is characterized by including the following steps. (1) A hetero 5-membered ring compound having a 5-membered ring structure at least in part and the 5-membered ring being constituted of the at least one hetero element (X) and carbon (C) as a polar compound Dissolving in a non-protonic solvent to prepare a raw material-containing liquid (2) Generating the hetero five-membered ring compound by generating plasma in the raw material-containing liquid to obtain a heteroelement-containing graphene.
- the heteroelement-containing graphene of the present invention can maintain the flatness of the graphene sheet and has high crystallinity, even if the amount of nitrogen to be doped is large. Therefore, the heteroelement-containing graphene of the present invention is expected to exhibit good semiconductor characteristics and catalytic characteristics.
- the method of producing a hetero element-containing graphene of the present invention can efficiently produce the hetero element-containing graphene.
- FIG. 1 is a schematic view showing the configuration of a submerged plasma generator.
- FIG. 2 shows TEM images of powders (a) to (d) and a selected area electron diffraction pattern.
- FIG. 3 is a diagram illustrating X-ray diffraction patterns of powders (a) to (d).
- FIG. 4A is a view illustrating the results of XPS analysis by wide scan of powders (a) to (d).
- FIG. 4B is a view illustrating an XPS analysis result by narrow scan of powders (a) and (b).
- FIG. 5 is a diagram illustrating Raman spectra of powders (a) to (d).
- FIG. 6 is a diagram illustrating the results of crystal structure analysis simulation of powder (a).
- FIG. 7 (a) to 7 (c) are diagrams for explaining the method of calculating the flattening of the crystal structure of the powder (a).
- FIG. 8 is a view showing the relationship between Hall effect measurement (semiconductor characteristics): Hall mobility and temperature dependency.
- FIG. 9 is a view showing the relationship between the Hall effect measurement (semiconductor characteristics): carrier concentration and temperature dependency.
- FIG. 10 is a view showing the relationship between Hall effect measurement (semiconductor characteristics): resistance value and temperature dependency.
- FIG. 11 is a diagram showing the transparency of a thin film containing nitrogen-containing graphene powder (a).
- hetero element-containing graphene of the present invention will be described. Note that matters (for example, various analyzes) other than matters particularly mentioned in the present specification (configuration of the hetero element-containing graphene) and which are necessary for the practice of the present invention can be determined by those skilled in the art.
- the present invention can be implemented by grasping the contents based on the contents disclosed in the specification and the drawings and technical common sense in the relevant field. Note that the notation “M to N” indicating the numerical range in the present specification means M or more and N or less.
- the heteroelement-containing graphene disclosed herein comprises carbon (C) and, as heteroelements, nitrogen (N), phosphorus (P), arsenic (As), sulfur (S), boron (B) and silicon (Si) And at least one element (X) selected from the group consisting of As described later, the heteroelement-containing graphene generally has a graphene sheet as a main structure. The hetero element chemically bonds with carbon to constitute the graphene sheet. Based on this, the heteroelement-containing graphene disclosed herein is characterized as having crystallinity, and in particular, exhibiting unprecedented high crystallinity.
- the hetero element of graphene characterized in this way is preferably selected from the group consisting of nitrogen (N) and boron (B).
- the heteroelement-containing graphene of the present invention is a heterostructure in place of carbon atoms in a sheet-like graphene structure (carbon six-membered ring structure) composed mainly of carbon atoms.
- the element is introduced, and it does not have a structure in which heterographene is disposed at the edge.
- a white circle shows carbon
- a black circle shows a hetero element.
- Carbon atoms constitute a graphene sheet mainly by sp 2 bonding.
- the position of the hetero element is not an edge, as shown in Formula 1, but is strictly located, but not limited to, within the planar structure of graphene.
- the position of the hetero element can be changed depending on the raw material used to produce heterographene and the production method.
- the position of nitrogen atoms affects the crystallinity, transparency and flatness of heterographene.
- the heteroelement in view of the raw materials for the preparation, the production process, and the high crystallinity of the product, the heteroelement is not a structure intensively arranged at the edge, but among the six-membered carbon ring It is considered to be included in two opposing positions (para position).
- the hetero element when the hetero element is nitrogen, it becomes exemplified in the following chemical structural formula 2.
- anionic boron be introduced.
- these heterographenes have a planar structure because the electronic configuration similar to that of the sp2 structure is realized also in a hetero atom, as in the carbon atoms that constitute the graphene. Furthermore, when the heteroatom is nitrogen, nitrogen has a valence electron number of 4 and participates in the nitrogen-carbon bond, so nitrogen becomes a positive ion. As described later, the nitrogen-containing heterographene of the present invention becomes a semiconductor by the movement of holes, that is, a so-called P-type semiconductor.
- graphene sheet is not strictly limited to sheet-like graphene consisting only of carbon atoms, and is substituted for carbon atoms of the graphene sheet to substitute the hetero element. It includes those of the aspect in which it is included.
- the "graphene sheet” referred to for the hetero element-containing graphene (high crystalline hetero element-containing graphene) disclosed herein may be of an aspect containing a hetero element.
- the “heteroelement-containing graphene” in the present specification may be configured of one graphene sheet, or two, three, four, five or more graphene sheets may be used. It may be laminated and configured.
- graphene sheets with different numbers of layers may be mixed.
- the average number of layers of the graphene sheet is preferably about 5 or less from the viewpoint of obtaining a highly crystalline heteroelement-containing graphene in which the properties attributed to the unique two-dimensional structure of the graphene sheet are more strongly reflected. For example, four or less, three or less, two or less, or one may be used.
- the heterographene of the present invention can be produced by a reaction using a plasma described later.
- the number of layers can be adjusted by changing the conditions of the plasma. That is, when the energy amount per unit time is increased, the average total number of graphene sheets can be increased, and when the energy amount per unit time is decreased, the average total number of graphene sheets can be reduced. can do.
- the flatness of the graphene sheets is impaired. For example, even if it is a homographene sheet which consists only of carbon atoms, it is known that it is difficult to maintain the flatness of a sheet alone.
- the hetero element is introduced in small amounts (for example, about several atomic percent) instead of carbon atoms of the graphene sheet, the flatness of the graphene sheet is further impaired. For example, even with heteroelement-containing graphene in which nitrogen is introduced at a few atomic% or less, good crystallinity is not obtained. As a result, for example, the conventional graphene sheet is curved or the crystal lattice is deformed.
- the heteroelement is introduced into the graphene sheet while maintaining high crystallinity.
- the introduction amount thereof is not strictly limited, the hetero element is, for example, a ratio of 0.1 or more, that is, 10 atomic% or more in atomic ratio (X / C) of hetero element (X) to carbon (C) It may be introduced, preferably 12 atomic% or more, more preferably 13 atomic% or more, and still more preferably 15 atomic% or more.
- the heteroelement-containing graphene of the present invention has higher crystallinity than the conventional heteroelement-containing graphene although there is a large amount of introduced heteroelement.
- the heteroelement-containing graphene disclosed herein can be said to be a completely new material which has not been known conventionally.
- the upper limit of the introduction amount of the hetero element is not particularly limited. Nitrogen atoms are present ionically in a state in which the planar structure of graphene is maintained, and become carriers of hole conduction. Therefore, if many can be introduced, the carrier density can be increased.
- the introduction amount of the hetero element is approximately 30 atomic% The following may be mentioned as preferable examples.
- the introduction amount of each hetero element to a carbon atom can be calculated based on, for example, an X-ray photoelectron spectroscopy (XPS) method. For example, it can be suitably calculated according to the method of the embodiment described later.
- the amount of nitrogen introduced can be adjusted by the nitrogen content ratio of the raw material molecules, the reaction temperature, the reaction time, and the discharge voltage. In order to increase the nitrogen content ratio, the introduction amount of nitrogen may be increased, but raising the reaction temperature, increasing the discharge voltage, or prolonging the reaction time leads to a decrease in the introduction amount of nitrogen.
- coronene which is a kind of polycyclic aromatic hydrocarbon and has a structure in which six benzene rings are cyclically connected, is a plane molecule.
- the chemical formula of coronene is C 24 H 12 , and it can not be said that the crystal structure has long-range order. Therefore, when distinction from hydrocarbons such as coronene is required, the carbon number of the highly crystalline heteroelement-containing graphene disclosed herein can be defined as, for example, 30 or more, and 50 or more is appropriate. 100 or more is preferable, 500 or more is more preferable, and 1000 or more is particularly preferable. The carbon number of graphene can be adjusted by controlling the manufacturing conditions using plasma described later.
- the number of carbon atoms can be increased while maintaining the crystal structure having long-range order. Furthermore, it is preferable that graphene can be produced in a state in which a uniform reaction phase is secured.
- high crystallinity refers to that the crystal structure has long-range order.
- the long-range order refers to a two-dimensional crystal.
- the long-range order of the heterographene of the present invention is relatively high in the long-range order of the crystal structure as compared to the conventional material of the same composition. Whether or not the optional material has high crystallinity can be determined as appropriate, for example, by using any one or more of the following analysis methods. Hereinafter, determination of high crystallinity of the heteroelement-containing graphene by each method will be described.
- Electron diffraction pattern Crystallographic information of various materials can be obtained by using electron diffraction be able to. For example, whether the material is single crystal, polycrystalline or amorphous can be determined by confirming the electron diffraction pattern. Here, with the exception of special materials, many materials are polycrystalline. In addition, even if the material is close to a single crystal, if there is a precipitate phase, domain structure, or disorder in the crystal structure in the material, the electron diffraction pattern has a complex spot arrangement or an excessive spot arrangement. It can appear.
- the highly crystalline heteroelement-containing graphene disclosed herein belongs to any one of a rectangular solid system and a hexagonal system in a limited field of view electron diffraction pattern, and exhibits a spot with single crystal symmetry. It can be grasped as
- the heteroelement-containing graphene may belong to the same hexagonal system as the homographene consisting only of carbon, or may belong to a crystal system in which the crystal lattice is deformed from the hexagonal system by the introduction of the heteroelement.
- One such crystal system is a cuboid system.
- the amount of deformation of the unit cell increases as the introduction amount of the hetero element increases.
- the highly crystalline heteroelement-containing graphene typically belongs to the rectangular parallelepiped system.
- the electron diffraction pattern of the single crystal material an arrangement of diffraction spots in accordance with the symmetry of the single crystal is obtained.
- the heteroelement-containing graphene is the above-described rectangular parallelepiped system as an example
- the incident direction is the [101] orientation
- an electron diffraction pattern characteristic of this crystal structure is obtained.
- the electron diffraction patterns thereof have reverse lattice points 11-1, -111, -202, 1-1-1, 20-2, and 1-11.
- the electron diffraction pattern of the polycrystalline material is a superposition of electron diffraction patterns obtained from a plurality of single crystals. Therefore, the electron diffraction pattern of the single crystal material can be obtained only according to the symmetry of one crystal.
- the electron diffraction pattern of the single crystal material may, for example, include distinct spots without overlap. In polycrystals, concentric rings are obtained. In the amorphous state, a broad annular electron diffraction pattern is obtained.
- the heteroelement-containing graphene of the present invention preferably includes the spot arrangement of the above-mentioned reciprocal lattice points in an electron diffraction pattern when the incident direction is the [101] direction, for example. Furthermore, it is more preferable that the above-mentioned spot arrangement of the reciprocal lattice points is included, and the other spot arrangement showing the crystalline order is not included.
- the unit cell of the highly crystalline heteroelement-containing graphene of the present invention may be in such a form that the unit cell of graphene is slightly deformed.
- the degree of deformation of the unit cell may be, for example, within a few percent (eg, within 3%).
- the unit cell of such highly crystalline heteroelement-containing graphene can have, for example, the following lattice conditions.
- XRD Method The evaluation of crystallinity by the XRD method is widely performed conventionally. In general, it is known that the smaller the half width of the XRD peak attributed to the crystalline compound is, the higher the crystallinity of the compound is among the XRD patterns obtained by powder XRD analysis. Therefore, the half width is preferably small from the viewpoint of high crystallinity.
- the full width at half maximum of the XRD peak attributed to the compound is generally a conventionally known nitrogen, sulfur, It is smaller than the half value width of the said XRD peak obtained about heteroelements containing graphene, such as oxygen and boron.
- the half-width of the XRD peak from the (002) plane attributed to the carbon six-membered ring structure is 3 degrees (°) or less Is preferably 2.8 degrees or less, more preferably 2.6 degrees or less, for example 2.5 degrees or less.
- the half width may be sufficiently small, such as 1 degree or less, for example, 0.5 degree or less.
- the crystalline carbon materials include graphite and diamond in which crystallinity is developed. However, many carbon materials have low crystallinity such as amorphous carbon and amorphous carbon.
- the hetero element containing graphene of this invention when the half value width of the XRD peak from a (002) plane is 3 degrees or less, it can be judged that it is a thing provided with relatively high crystallinity relatively.
- the ratio (I (101) / (Dif) of the diffraction peak intensity I (101) from the (101) plane to the diffraction peak intensity I (002) from the (002) It is preferable that I (002) is 0.1 or more.
- the peak intensity ratio (I (101) / I (002)) easily realizes 0.1 or more.
- the highly crystalline heteroelement-containing graphene of the present invention has a low stacking order in the crystal structure because the number of graphene sheets is small. Therefore, strictly, the peak corresponding to the hkl diffraction line seen in the XRD pattern of natural graphite can not be seen, and only the 001 diffraction line and the hk diffraction line can be observed. In such a case, in the present specification, the above-mentioned "(101) plane” can be replaced and read as "(10) plane".
- an intrinsically inactive band appears as peaks called D band and D 'band near 1350 cm -1 and 1620 cm -1 respectively.
- the introduction of the hetero element into the graphene structure may cause disorder in the graphite structure.
- a D band, a D ′ band, and the like may appear, and these peaks including the G band may be broad.
- the half bandwidth of the G band is small from the viewpoint of high crystallinity.
- the half bandwidth of the G band is generally smaller than the G band of the Raman shift obtained for the conventional heteroelement-containing graphene.
- the half-width of the peak attributed to the G band may be 50 cm -1 or less (eg, less than 50 cm -1 ).
- Half-value width of the peak attributed to the G band, and more preferably 45cm -1 or less, 40 cm -1 more preferably less may be for example 35 cm -1 or less.
- a peak derived from a 2D band said to be related to the number of layers of the graphene sheet is observed around 2700 cm -1 (double overtone of D band) May be
- the peak of the 2D band is sharp for mono-graphene, it is said to be broadened as the number of layers of the graphene sheet is increased, and the graphene sheet of five or more layers is said to substantially match the spectrum of bulk HOPG.
- the 2D band of monographene exhibits higher intensity than the G band, it is said that the intensity of the G band with respect to the 2D band becomes stronger as the number of layers increases to about five.
- the intensity of the 2D band observed around 2700 cm -1 I (2D) is usually 0.5 or more, and the ratio (I (2D) / I (G)) is preferably 0.6 or more, more preferably 0.7 or more, and 0.8 or more. Particularly preferred.
- the number of layers of the graphene sheet in the highly crystalline heteroelement-containing graphene can be relatively reduced.
- the upper limit of I (2D) / I (G) is not particularly limited, but the ratio (I (2D) / I (G)) can be approximately 5 or less, for example, 1 or less (eg, less than 1) ) Can also be.
- the half width of the 2D band of the Raman spectrum is also narrow.
- the full width at half maximum of the peak attributed to the 2D band is usually 80 cm -1 or less (eg less than 80 cm -1 ), more preferably 75 cm -1 or less, still more preferably 70 cm -1 or less, eg 65 cm -1 or less May be there.
- the specific shape of the highly crystalline heteroelement-containing graphene of the present invention is not particularly limited, for example, it is provided as a powder having an average particle diameter of 1 nm or more and 10 ⁇ m or less.
- the average particle size of the highly crystalline heteroelement-containing graphene may be 5 nm or more, may be 10 nm or more, and may be 100 nm or more.
- the average particle size of the highly crystalline heteroelement-containing graphene may be 5 ⁇ m or less, 3 ⁇ m or less, or 1 ⁇ m or less. From the viewpoint that the hetero-containing graphene of the present invention is a two-dimensional crystal, the average particle size is preferably larger.
- the average particle size can be adjusted by controlling the production conditions using plasma described later. The particle size does not increase when the reaction temperature is low. From the viewpoint of particle size, the smaller the energy per unit time of plasma, the better.
- the highly crystalline heteroelement-containing graphene does not include a base material supporting itself.
- This provides a lightweight material excellent in functionality per unit weight (e.g., semiconductor characteristics, catalytic activity, etc.).
- the highly crystalline heteroelement-containing graphene can be suitably produced by the following procedure.
- a hetero five-membered ring compound having a five-membered ring structure at least in part and having a five-membered ring composed of a hetero element (X) and carbon (C) is prepared as a raw material compound.
- the hetero element is at least one selected from the group consisting of nitrogen (N), phosphorus (P), arsenic (As), sulfur (S) and boron (B).
- N nitrogen
- P phosphorus
- the prepared raw material compound is dissolved in a polar aprotic solvent to prepare a raw material-containing liquid.
- the hetero 5-membered ring compound is ring-opened and polymerized.
- a combination of a raw material compound and a polar aprotic solvent is preferable. If the combination is not preferable, less crystalline heteroelement-containing graphene is synthesized as in the prior art. In addition, when the combination is deviated from the preferable combination, the incorporation of the hetero element into the graphene is relatively suppressed, or the hetero-element-containing graphene which is not high in crystallinity (for example, amorphous) is obtained.
- the hetero 5-membered ring compound as the raw material compound can not generally be mentioned because it depends on the kind of hetero element, but it is, for example, a heterocyclic aromatic compound containing a hetero element in the 1 and 3 position of the 5-membered ring Is preferred.
- the hetero elements may be the same or different at the 1- and 3-positions. Preferably, they are the same element.
- the hetero 5-membered ring compound is preferably a compound containing nitrogen as a hetero element.
- the hetero five-membered ring compound is, for example, preferably an amine containing nitrogen at the 1,3 position of a five-membered ring, and for example, an imidazole compound can be preferably used.
- the hetero 5-membered ring compound is also preferably an ionic compound.
- an ionic compound for example, a salt which is dissolved in water and has an ion containing the same hetero element and carbon as those contained in the hetero five-membered ring compound as an anion is preferable.
- ionic compounds include, for example, cyanate, thiocyanate, cyanamin and the like.
- Preferred examples of the hetero five-membered ring compound include imidazolium salts such as 1-ethyl-3-methylimidazolium dicyanamide, 1-butyl-3-methylimidazolium thiocyanate and the like.
- polar aprotic solvent a solvent which easily dissolves the above-mentioned starting compound and which does not have a proton supplying property can be preferably used.
- polar aprotic solvents include dimethyl sulfoxide, dimethylformamide and the like.
- a raw material containing liquid can be prepared by dissolving the said hetero 5-membered ring compound in a polar aprotic solvent.
- a plasma in the liquid is generated in the raw material-containing liquid as a reaction site for polymerization and carbonization of the raw material compound.
- non-equilibrium solution plasma 4 is formed between the electrodes 6 by applying a pulse voltage between the electrodes 6 in the liquid 2 by the in-liquid plasma generator 10 of FIG.
- the solution plasma (plasma phase) 4 is formed in the gas phase formed between the electrodes 6.
- Such plasma reaction site is constantly maintained between the electrodes 6.
- active species such as electrons, ions, and radicals having high energy are supplied from the plasma phase to the liquid phase.
- starting materials in the liquid phase are supplied from the liquid phase to the gas phase and the plasma phase. And they contact (collide) mainly at the interface between the liquid phase and the gas phase.
- the raw material compound is polymerized and carbonized to produce highly crystalline heteroelement-containing graphene.
- the yield of the heterographene of the present invention can be made 1 to 30%, preferably 10 to 30%, more preferably 20 to 30%. Can.
- the conditions for generating the in-liquid plasma may be, for example, a voltage (secondary voltage): about 1 kV to 2 kV, a frequency: about 10 kHz to 30 kHz, and a pulse width: about 0.5 ⁇ s to 3 ⁇ s.
- the electric conductivity of the raw material-containing liquid is preferably in the range of about 300 ⁇ S ⁇ cm ⁇ 1 to 3000 ⁇ S ⁇ cm ⁇ 1 .
- the disclosure of Patent Document 2 can be referred to, and thus the overlapping description will be omitted.
- the liquid containing the starting compound may contain a compound other than the starting compound, as long as the object of the present invention is not impaired.
- a needle-like electrode made of tungsten does not necessarily have to be used, and for example, an electrode having an arbitrary shape made of another conductive material may be used.
- solution plasma may be generated by a low inductance induction coil without using an electrode.
- the in-liquid plasma is not limited to the solution plasma (glow discharge plasma), and may be implemented using, for example, an arc discharge plasma or the like in the liquid.
- the highly crystalline heteroelement-containing graphene provided by the present invention has improved crystallinity. This can improve various characteristics of the highly crystalline heteroelement-containing graphene including the electrical conductivity and the catalytic activity. As a result, for example, it becomes possible to separately make highly crystalline heteroelement-containing graphene exhibiting electron conductivity and highly crystalline heteroelement-containing graphene having n-type or p-type semiconductor characteristics. This enables, for example, development of a lightweight and flexible semiconductor chip. In addition, various semiconductor chips can be developed, which can help to realize a flexible semiconductor device.
- the in-liquid plasma generator 10 includes a container 5 formed of a glass beaker containing the raw material compound-containing liquid 2, a pair of plasma generation electrodes 6 fixed to the container 5, and a power supply 8 for applying a voltage to the electrodes 6.
- the electrode 6 is constituted by a tungsten wire (manufactured by Niraco) having a diameter of 1.0 mm, and the distance between the electrodes is set to 0.3 mm.
- the wire had the tip exposed and the other part was covered with an insulating member 9 made of fluorocarbon resin.
- a bipolar DC power supply was used as the power supply 8.
- the raw material compound-containing liquid 2 selected from the raw material compound-containing liquids (a) to (d) prepared above was placed in a vessel 5 and stirred by a stirrer 7 made of a magnetic stirrer.
- the amount of the raw material compound-containing liquid 2 was adjusted so that the portion of the counter electrode 6 was immersed in the middle of the raw material compound-containing liquid 2.
- a predetermined pulse voltage was applied between the external power supply 8 (bipolar pulsed DC power supply) and the electrode 6 (electrode 0.1 mm) to generate plasma between the electrodes 6 in the liquid.
- the pulse voltage conditions were: inter-terminal voltage: +1500 V ⁇ 0 V ⁇ ⁇ 1500 V ⁇ 0 V ⁇ + 1500 V, repetition frequency: 200 kHz, pulse width: 1 ⁇ s, and plasma was generated for 5 minutes in the raw material compound-containing solution 2.
- the raw material compound-containing liquids (a) to (d) were all colorless and transparent, but turned to yellowish immediately after the generation of plasma, and changed to brown or black opaque liquid after about 5 minutes. This color change is considered to be because the raw material compound is polymerized to form a graphite skeleton.
- the black powder was obtained by drying the raw material compound containing liquid after plasma processing.
- the nitrogen-containing graphene powders (a) to (d) obtained from the raw material compound-containing liquids (a) to (d) were subjected to the following analysis, and the crystal structure and the like were examined.
- the resolution of the CCD chip is 3413 pixels / m ⁇ 3413 pixels / m, and the frame size of the camera is 640 pixels ⁇ 536 pixels.
- first select one particle in the powder with the TEM function control the tilt of the X axis and Y axis of the sample while observing the electron diffraction pattern to match the crystal orientation, and the most clear electron diffraction pattern TEM images were acquired at the positions where. The above results are shown in FIG.
- X-ray source Cu-K ⁇ ray X-ray generated current: 200 mA
- X-ray generated voltage 45kV
- Slit angle 0.5 °
- Step interval 0.02 °
- Step measurement time 3s [X-ray photoelectron spectroscopy]
- X-ray photoelectron spectroscopy (XPS) analysis was performed on the nitrogen-containing graphene powders (a) to (d) to determine the elements constituting each powder and the chemical state thereof.
- X-ray source Mg-K ⁇ ray X-ray generated current: 1.7 mA
- X-ray generated voltage 25kV
- Raman spectroscopic analysis was performed on the nitrogen-containing graphene powders (a) to (d) to investigate the types and states of the materials constituting the powders. As a Raman spectroscopy analyzer, analysis was conducted under the following analysis conditions using NRS-100 manufactured by JASCO Corporation.
- Excitation wavelength 532 nm
- Output 2mW
- Exposure time 10 seconds
- [Limited-field electron diffraction analysis] 2 (a) to 2 (d) show TEM images of nitrogen-containing graphene powders (a) to (d) and electron diffraction patterns obtained by limited field electron diffraction analysis.
- the TEM images are each at an arbitrary magnification.
- the nitrogen-containing graphene powders (a) to (d) are samples obtained from the same raw material compound EMIM-DCA, but the types of solvents in which the raw material compounds are dissolved are different.
- FIG. 2 (a) the electron diffraction pattern of the nitrogen-containing graphene powder (a) obtained using DMF as a solvent shows spots showing the symmetry of a single crystal of a slightly hexagonal regular hexagonal shape. Was confirmed to be obtained. From this, it was found that the nitrogen-containing graphene powder (a) was composed of single crystals.
- FIG. 2 (a) the electron diffraction pattern of the nitrogen-containing graphene powder (a) obtained using DMF as a solvent shows spots showing the symmetry of a single crystal of a slightly hexagonal regular hexagonal shape. was confirmed to be obtained. From this, it was found that the nitrogen-containing graphene powder (a) was composed of single crystals.
- the electron diffraction pattern of powder (b) obtained using acetonitrile as a solvent forms concentric Debyling, and crystals are formed at various angles in the measurement area. It was confirmed to exist. That is, it was found that powder (b) contained polycrystals.
- the electron diffraction patterns of the powder (c) obtained using benzene as a solvent and the powder (d) obtained using toluene are both concentric. Form a halo pattern, and no clear diffraction spots are observed. From this, it was found that powders (c) and (d) were amorphous having no crystal structure.
- FIG. 3 shows the X-ray diffraction patterns of the obtained nitrogen-containing graphene powders (a) to (d).
- FIG. 4A the result of the wide scan analysis of the XPS analysis of the nitrogen-containing graphene powders (a) to (d) obtained is shown in FIG. 4A.
- the C1s peak is observed near 285 eV
- the N1s peak is observed near 398 eV
- the O1s peak is observed near 531 eV. It could be confirmed that It was confirmed that all the nitrogen-containing graphene powders (a) to (d) were materials containing carbon (C), nitrogen (N) and oxygen (O).
- the oxygen content was a little as small as 5 to 7 atomic%, while it was obtained using acetonitrile as a solvent
- the powder (b) was found to have a high oxygen content of more than 10 atomic%.
- powder (c) and (d) are as small as 2 atomic% or less, while in nitrogen-containing graphene powders (a) and (b), 13.4 atomic% and 7.1 atoms, respectively It was found that it was relatively high as%.
- the composition of the compound to be produced may differ depending on the type of organic solvent in which the raw material compound is dissolved.
- the nitrogen-containing graphene powder (a) it was found that the nitrogen content was as high as more than 10 atomic%, and the oxygen content was as low as less than 5.5%.
- results of narrow scan analysis performed on nitrogen-containing graphene powders (a) and (b) having a relatively high nitrogen content are shown in FIG. 4B.
- the narrow scan spectrum of the N1s peak based on XPS analysis was shown separately as peaks showing four bonding states of nitrogen atoms. That is, the N1s peak is (1) a pyridine type binding peak near 398.5 eV, (2) a pyrrole type (N5) peak near 400.5 ⁇ 0.2 eV, and (3) 401.2 ⁇ 0.
- nitrogen-containing graphene powders (a) and (b) contained nitrogen atoms in all four bound states.
- relatively large amounts of pyridine type nitrogen and cationic nitrogen are contained, but pyridine type nitrogen
- the main nitrogen introduced in the plane is cationic nitrogen, as it can only be introduced at the edge. By containing a large amount of cationic nitrogen, it can be said that nitrogen atoms are introduced not inside the edge of the graphene sheet but inside.
- FIG. 5 shows Raman spectra of the obtained nitrogen-containing graphene powders (a) to (d).
- the G band derived from the graphite structure carbon six-membered ring structure
- the D band due to the disturbance and the defect can be seen in the vicinity of 1350 cm -1 .
- the G band and the D band of the nitrogen-containing graphene powder (a) form relatively steep peaks, and the high crystallinity of the nitrogen-containing graphene powder (a) is also apparent from the Raman spectrum.
- the G band appears as a pointed peak in the case of graphene into which a hetero element has been introduced (in particular, free-standing graphene not formed on a substrate). Absent.
- the full width at half maximum (FWHM) of the G band of the nitrogen-containing graphene powder (a) was 34.0 cm ⁇ 1 .
- the peak is broadened and the degree of crystallinity is lower.
- the powders (c) and (d) are roughly amorphous, they agree with the results of electron diffraction analysis and the like.
- I (D) / I (G) is also called an R value, which is an index used to evaluate the degree of graphitization of carbonaceous materials.
- R value is an index used to evaluate the degree of graphitization of carbonaceous materials.
- this I (D) / I (G) does not function as an indicator of crystallinity for samples whose crystallinity is extremely low and clear D and G bands can not be obtained. It could be confirmed.
- the Raman spectrum clearly reflects the crystallinity, and I (D) / I (G) is less than 1 (eg, 0.8 or less). It becomes a low value of). In other words, it can be said that the number of defects in the graphene structure can be shown, which means that the crystallinity is high.
- the electron diffraction pattern of the nitrogen-containing graphene powder (a) forms spots roughly similar to the electron diffraction pattern of graphite, but the form is slightly flattened.
- the electron diffraction pattern of FIG. 6 shows a diffraction image from the [101] direction which is a feature of the cuboid system.
- the unit cell in the crystal structure of the nitrogen-containing graphene powder (a) is, as shown in Table 3, the ideal six-membered ring structure of graphene in a plane lattice, It turned out that it was deformed so as to collapse in the direction.
- the lattice constant of the a-axis of the unit cell determined according to the symmetry of the cuboid system is extended to about 4 ⁇ .
- the spacing d002 of the (002) plane is 3.428 ⁇
- the spacing d101 of the (101) plane is 2.097 ⁇ .
- FIGS. 7 (a) to 7 (c) show electron diffraction patterns for explaining the method of calculating the flattening of unit cells.
- FIG. 7A is a diagram in which reciprocal lattice points are marked on the diffraction spots obtained by electron diffraction analysis.
- FIG. 7 (b) is a diagram in which reciprocal lattice vectors A to D extending from the origin of the unit cell are entered in the diffraction spots (reversal lattice points) of FIG. 7 (a).
- FIG. 7A is a diagram in which reciprocal lattice points are marked on the diffraction spots obtained by electron diffraction analysis.
- FIG. 7 (b) is a diagram in which reciprocal lattice vectors A to D extending from the origin of the unit cell are entered in the diffraction spots (reversal lattice points) of FIG. 7 (a).
- FIG. 7 (c) is a diagram in which reciprocal lattice vectors A to D are entered in the theoretically obtained electron diffraction pattern of the graphene shown in FIG.
- This FIG. 7 (c) corresponds to the reciprocal lattice vector of graphene before introducing a hetero element.
- reciprocal lattice vectors A to D are vectors connecting the origin and reciprocal lattice points (-111), (020), (11-1), and (20-2), respectively. .
- the lengths of the reciprocal lattice vectors A, C, D of the nitrogen-containing graphene powder (a) and the graphene are shown in Table 4 below as relative lengths to the lengths of the respective reciprocal lattice vectors.
- the deformation degree of the reciprocal lattice vector in nitrogen-containing graphene powder (a) was computed by following Formula as an aspect ratio in the direction of the said vector.
- the flat cell ratio of nitrogen-containing graphene powder (a) is 102.4% in the (20-2) direction, and it is confirmed that the unit cell is bent obliquely to 98.3% in the (11-1) direction. It was done. However, the aspect ratio is within about 3% in all directions, and the highly crystalline heteroelement-containing graphene disclosed herein has a small crystal structure of graphene even when a large amount of heteroelement is introduced. It has been found that high crystallinity can be maintained well only by being deformed. [Hall effect] The semiconductor characteristics of the nitrogen-containing graphene powder (a) were measured. As a measuring apparatus, a Toyo Technica 8400 ACLR / OW type was used.
- a powder sample was put in a mold of a predetermined size and pressed at 50 MPa, and a molded body obtained was used as a measurement sample. Thereafter, the film thickness of the measurement sample was measured using a micrometer. The measurement sample was pretreated at 280 ° C. in an argon atmosphere.
- the measurement conditions are as follows. Measurement conditions (room temperature measurement) H3 Size: 4 mm ⁇ 4 mm ⁇ 118 ⁇ m Temperature: 290.2K Current: 7 mA Magnetic field: 0.3744 T (AC 250 mHz) H4 Size: 5 mm x 5 mm x 117 ⁇ m Temperature: 290.5K Current: 7 mA Magnetic field: 0.5 T (direct current) H5 Size: 5 mm x 5 mm x 185 ⁇ m Temperature: 287.8K Current: 7 mA Magnetic field: 0.3744 T (AC 250 mHz) Moreover, about H4, temperature variable measurement was performed as follows. The results are shown in Table 5.
- the hole mobility and the carrier density increased as the temperature rose.
- the sheet resistance decreased.
- This temperature dependence matches the temperature dependence of the conventional semiconductor characteristics. No phase transition was observed in the temperature range from room temperature to helium temperature. In a wide temperature range, cationic nitrogen was stable as a carrier.
- the carrier type of the highly crystalline heterographene of the present invention is p-type, and the carrier density thereof is 10 18 cm ⁇ 3 or more.
- the doping with cationic nitrogen maintained the planarity and showed that holes rather than electrons were doped.
- the fact that conventional nitrogen-doped graphene is n-type indicates that the conventional doped nitrogen has a low proportion of cationic nitrogen, and planarity could not be maintained.
- the fact that the hole mobility, the carrier concentration, and the sheet resistance are monotonously changed in the range from the helium temperature to the normal temperature means that the structural phase transition does not occur in this temperature range and the structure is stable. It shows.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Metallurgy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
特許文献3には、化学量論比を有するグラファイト状窒化炭素(g-C3N4)が開示されている。特許文献3に開示されたグラファイト状窒化炭素は、窒素および炭素からなる3つの6員環が互いにC-N結合を共有した三角形の結晶構造を有するメロン((C6N9H3)X)が、頂点の窒素原子において重合した構造を有している。
(1)制限視野電子回折において、直方晶系および六方晶系のいずれかに属し、単結晶の対称性を備えるスポットが観測され、
炭素(C)と、ヘテロ元素(X)として窒素(N)、リン(P)、ヒ素(As)、イオウ(S)、ホウ素(B)、およびケイ素(Si)からなる群から選択される少なくとも1種の元素と、を含むヘテロ元素含有グラフェン。
(2)前記スポットは、前記直方晶系に属し、入射方向を[101]とする電子回折像であって、逆格子点11-1、-111、-202、1-1-1、20-2および-1-11の配列を含むことを特徴とする、(1)に記載のヘテロ元素含有グラフェン。
(3)X線回折において、(002)面からの回折ピークの半値幅が3度以下であることを特徴とする、(1)または(2)に記載のヘテロ元素含有グラフェン。
(4)X線回折において、(002)面からの回折ピーク強度I(002)に対する(101)面からの回折ピーク強度I(101)の比(I(101)/I(002))が0.1以上であることを特徴とする、(1)~(3)のいずれかに記載のヘテロ元素含有グラフェン。
(5)X線回折において、(002)面の面間隔は3.5Å以下であることを特徴とする、(3)または(4)に記載のヘテロ元素含有グラフェン。
(6)X線光電子分光法に基づき算出される、炭素(C)とヘテロ元素(X)との原子数比(X/C)が0.1以上であることを特徴とする、(1)~(5)のいずれかに記載のヘテロ元素含有グラフェン。
(7)X線光電子分光法に基づき、窒素の基底面へのドープされている化学結合状態が陽イオン性窒素の可能性が提示でき、ホール効果測定によりキャリアタイプがp型と判定されることを特徴とする、(1)~(6)のいずれかに記載のヘテロ元素含有グラフェン。
(8)励起波長を532nmとするラマン分光分析において、1350cm-1付近に見られるDバンドの強度I(D)と、1580cm-1付近に現れるGバンドの強度I(G)との比(I(D)/I(G))が1以下であり、かつ、前記Gバンドの半値幅が50cm-1以下であることを特徴とする、(1)~(7)のいずれかに記載のヘテロ元素含有グラフェン。
(9)前記ラマン分光分析において、2700cm-1付近に見られる2Dバンドの強度I(2D)と、前記Gバンドの強度I(G)との比(I(2D)/I(G))が0.5以上であることを特徴とする、(1)~(8)のいずれかに記載のヘテロ元素含有グラフェン。
(10)前記ラマン分光分析において、2700cm-1付近に見られる2Dバンドの半値幅が80cm-1以下である、(1)~(9)のいずれかに記載のヘテロ元素含有グラフェン。
(11)当該ヘテロ元素含有グラフェンを支持する基材を含まない、(1)~(10)のいずれかに記載のヘテロ元素含有グラフェン。
(12)前記炭素(C)の原子が前記へテロ元素(X)の原子と化学結合し、かつ、前記炭素(C)の原子が主としてsp2結合することで構成されるグラフェンシートを含み、
前記グラフェンシートは、1層からなる単層構造または2層以上5層以下の積層構造を有している、(1)~(11)のいずれかに記載のヘテロ元素含有グラフェン。
(13)平均粒子径が1nm以上10μm以下の粉末である、(1)~(12)のいずれかに記載のヘテロ元素含有グラフェン。
(14)少なくとも一部に5員環構造を有し、前記5員環が、窒素(N)、リン(P)、ヒ素(As)、イオウ(S)、ホウ素(B)およびケイ素(Si)からなる群から選択される少なくとも1種のヘテロ元素(X)と、炭素(C)とにより構成されているヘテロ5員環化合物を、極性非プロトン性溶媒に溶解させて原料含有液を用意すること、および、
前記原料含有液の中でプラズマを発生させることにより、前記ヘテロ5員環化合物を重合させて、ヘテロ元素含有グラフェンを得ること、
を含む、
制限視野電子回折において、直方晶系および六方晶系のいずれかに属し、単結晶の対称性を備えるスポットが観測され、
炭素(C)と、ヘテロ元素(X)として窒素(N)、リン(P)、ヒ素(As)、イオウ(S)、ホウ素(B)、およびケイ素(Si)からなる群から選択される少なくとも1種の元素と、を含むヘテロ元素含有グラフェンの製造方法。
(1)少なくとも一部に5員環構造を有し、上記5員環が、上記少なくとも1種のヘテロ元素(X)と、炭素(C)とにより構成されているヘテロ5員環化合物を極性非プロトン性溶媒に溶解させて原料含有液を用意すること
(2)上記原料含有液中でプラズマを発生させることにより、上記ヘテロ5員環化合物を重合させて、ヘテロ元素含有グラフェンを得ること。
本発明のヘテロ元素含有グラフェンは、下記化学構造式1に例示されるように、炭素原子を主体として構成されるシート状のグラフェン構造(炭素六員環構造)中に、炭素原子の代わりにヘテロ元素が導入されたものであり、エッジにヘテログラフェンが配置されている構造のものではない。ここで、式1中、白丸は炭素を示し、黒丸はヘテロ元素を示す。炭素原子は、主としてsp2結合することによってグラフェンシートを構成している。ヘテロ元素の位置は、式1に示すように、エッジではなく、厳密には限定されないがグラフェンの平面構造の内部に配置される。ヘテロ元素の位置は、ヘテログラフェンを製造するために用いられる原料、製造方法により位置を変更することができる。窒素の原子の位置によっては、ヘテログラフェンの結晶性、透明性、平坦性に影響する。
(2)XRDパターンの回折ピークの半値幅
(3)ラマンスペクトルの半値幅
(1)電子回折パターン
各種材料の結晶学的情報は、電子回折を利用することで得ることができる。例えば、その材料が単結晶か、多結晶か、アモルファスかは、電子回折パターンを確認することで判断することができる。ここで、特殊な材料を除き、多くの材料は多結晶である。また、たとえ単結晶に近い材料であっても、材料内に析出相や分域構造、結晶構造の乱れがある場合等には、電子回折パターンには複雑なスポット配列や、過剰なスポット配列が現れ得る。しかし、多結晶材料であっても、微視的に見れば単結晶の領域の集まりともみなし得る。ここに開示される高結晶性ヘテロ元素含有グラフェンは、制限視野電子回折パターンにおいて、直方晶系および六方晶系のいずれか一方に属するものであって、単結晶の対称性を備えるスポットを示すものとして把握することができる。
a=4.000~4.300Å
b=2.300~2.500Å
c=6.600~7.200Å
α=β=γ=90°
(2)XRD法
XRD法による結晶性の評価は、従来より広く行われている。一般に、粉末XRD分析によって得られるXRDパターンのうち、その結晶性化合物に帰属されるXRDピークの半値幅が小さければ小さい程、その化合物は結晶性が高いものであることが知られている。したがって、この半値幅は、高結晶性との観点から、小さいことが好ましい。ここに開示される高結晶性のヘテロ元素含有グラフェンについて、XRD法により得られるXRDパターンのうち、当該化合物に帰属されるXRDピークの半値幅が、総じて、従来から知られている窒素、硫黄、酸素、ホウ素などのヘテロ元素含有グラフェンについて得られる当該XRDピークの半値幅よりも小さい。本発明の高結晶性ヘテロ元素含有グラフェンについて粉末XRD分析によって得られるXRDパターンのうち、炭素六員環構造に帰属される(002)面からのXRDピークの半値幅は、3度(°)以下であることが好ましく、2.8度以下がより好ましく、2.6度以下がさらに好ましく、例えば2.5度以下であってよい。
(3)ラマンスペクトル
単層グラフェンシート(モノグラフェン)はグラファイトと同様に2重縮退したEgモードがラマン活性であり、ラマンスペクトルには、第1に、1580cm-1付近に一次のEgバンド、すなわちGバンドが観測される。ラマンスペクトルにこのGバンドが観測されることで、高結晶性ヘテロ元素含有グラフェンが、sp2炭素からなるグラフェンシートを含むことを確認することができる。このほかに、グラフェンシートのラマンスペクトルには、いくつかの特徴的なピークがあることが知られている。例えば、グラファイト構造に乱れや欠陥が生じると、Dバンドに加えて、本来不活性なバンドが1350cm-1付近や1620cm-1付近に、それぞれDバンド、D’バンドと呼ばれるピークとして出現する。ヘテロ元素含有グラフェンの場合は、ヘテロ元素がグラフェン構造に導入されていることによって、グラファイト構造に乱れが生じ得る。その結果、ヘテロ元素含有グラフェンのラマンスペクトルには、DバンドやD’バンド等が出現することがあり、また、Gバンドを含めたこれらのピークはブロードとなり得る。
高結晶性ヘテロ元素含有グラフェンは、以下の手順で好適に製造することができる。
<1> 少なくとも一部に5員環構造を有し、この5員環が、ヘテロ元素(X)と、炭素(C)とにより構成されているヘテロ5員環化合物を原料化合物として用意する。ここで、ヘテロ元素とは、窒素(N)、リン(P)、ヒ素(As)、イオウ(S)およびホウ素(B)からなる群から選択される少なくとも1種である。
<2> 次に、用意した原料化合物を、極性非プロトン性溶媒に溶解させて原料含有液を調製する。
<3> そして原料含有液中でプラズマを発生させることにより、上記ヘテロ5員環化合物を開環させて重合させる。
[ヘテロ元素含有グラフェンの製造]
原料化合物として、窒素含有5員環有機分子である1-エチル-3-メチルイミダゾリウムジシアナド(EMIM-DCA、C8H11N5、CAS登録番号:370865-89-7)を用意した。また、溶媒として以下の4とおりの有機溶剤(a)~(d)を用意した。そして原料化合物と溶媒とを1:9の質量比で混合し、原料化合物を溶解することで、原料化合物含有液(a)~(d)を調製した。
(a)N,N-ジメチルホルムアミド(DMF、(CH3)2NCHO)
(b)アセトニトリル(CH3CN)
(c)ベンゼン(C6H6)
(d)トルエン(C6H5CH3)
次いで、図1に示す液中プラズマ発生装置10を用い、それぞれの原料化合物含有液中でソリューションプラズマ4を発生させた。液中プラズマ発生装置10は、原料化合物含有液2を収容するガラス製ビーカーからなる容器5と、容器5に固定された一対のプラズマ発生電極6と、電極6に電圧を印加する電源8とを備えている。電極6は、直径1.0mmのタングステンワイヤ(ニラコ社製)によって構成され、電極間距離は0.3mmに設定されている。ワイヤは、先端部を露出させ、その他の部分はフッ素樹脂からなる絶縁部材9で被覆した。電源8には、バイポーラ直流電源を用いた。
窒素含有グラフェン粉末(a)~(d)について制限視野電子回折分析を行うことで、各粉末の結晶構造を調べた。分析装置としては、日本電子(株)製の高分解能透過型電子顕微鏡(TEM)JEM-2500SEを用い、電子回折パターンの取得およびTEM観察を行った。制限視野回折像条件は、電子線加速電圧を200kV、視野領域を約350nm、カメラ長を300cmとした。なお、本装置は、回折パターンをスロースキャンCCDカメラによってデジタル信号として取り込み、液晶ディスプレイ上に表示する。CCDチップの解像度は3413ピクセル/m×3413ピクセル/mであり、カメラのフレームサイズは640ピクセル×536ピクセルである。観察に際しては、まずTEM機能にて粉末中の一粒の粒子を選択し、電子回折パターンを見ながら試料のX軸、Y軸の傾斜をコントロールして結晶方位を合わせ、もっとも明瞭な電子回折パターンが得られた位置にてTEM像を取得した。以上の結果を図2に示した。
窒素含有グラフェン粉末(a)~(d)について粉末X線回折を行うことで、各粉末の結晶構造を調べた。X線回折分析装置としては、(株)リガク製のSmartLab(9kW)を用い、以下の分析条件にて分析を行った。X線のパターンを図3に示す。
X線発生電流:200mA
X線発生電圧:45kV
スリット角:0.5°
スリット幅:1.0mm
2θ=10~80°
ステップ間隔:0.02°
ステップ測定時間:3s
[X線光電子分光分析]
窒素含有グラフェン粉末(a)~(d)についてX線光電子分光(XPS)分析を行い、各粉末を構成する元素の特定と、その化学状態とを調べた。具体的には、全エネルギー範囲(0~1100eV)にて試料を走査し、高感度に定性分析するワイドスキャン分析を行ったのち、394~406eVの狭いエネルギー範囲を走査するナロースキャン分析を行うことで、粉末中の窒素原子の結合状態を調べた。XPS分析装置としては、アルバック・ファイ株式会社製のVersaProbe IIを用い、以下の分析条件にて分析を行った。
X線発生電流:1.7mA
X線発生電圧:25kV
[ラマン分光分析]
窒素含有グラフェン粉末(a)~(d)についてラマン分光分析を行い、粉末を構成する物質の種類や状態を調べた。ラマン分光分析装置としては、日本分光(株)製のNRS-100を用い、以下の分析条件にて分析を行った。
出力:2mW
露光時間:10秒
平均回数:5回
[評価]
[制限視野電子回折分析]
図2(a)~(d)に、窒素含有グラフェン粉末(a)~(d)のTEM像と、制限視野電子回折分析により得られた電子回折パターンとを示した。なお、TEM像は、それぞれ任意の倍率である。
[XRD分析]
図3に、得られた窒素含有グラフェン粉末(a)~(d)のX線回折パターンを示した。窒素含有グラフェン粉末(a)については、2θ=26°付近に(002)面からの回折ピークが、2θ=42~50°付近に(10)面からの回折ピークが観測されることが確認された。しかしながら、粉末(b)~(d)についてはブロードなピークが僅かに見られる程度であり、粉末(b)~(d)は結晶構造がないか、あっても長距離秩序性がほぼ見られないアモルファスであることがわかった。この結果は、電子回折分析の結果からも支持される。
次に、図4Aに得られた窒素含有グラフェン粉末(a)~(d)のXPS分析のワイドスキャン分析の結果を示した。図4Aに示されるように、窒素含有グラフェン粉末(a)~(d)の全てのXPSスペクトルについて、結合エネルギーが285eV付近にC1sピークが、398eV付近にN1sピークが、531eV付近にO1sピークが観測されることが確認できた。窒素含有グラフェン粉末(a)~(d)はいずれも炭素(C)、窒素(N)および酸素(O)を含む材料であることが確認できた。ただし、窒素含有グラフェン粉末(a)~(d)のC1sピークは鋭く大きいものの、N1sピークおよびO1sピークは窒素含有グラフェン粉末(a)~(d)の順に小さくなっていることがわかった。そこで、各粉末の炭素(C)、窒素(N)および酸素(O)の総量を100原子%としたときの各元素の割合を下記の表1に示した。
図5に、得られた窒素含有グラフェン粉末(a)~(d)のラマンスペクトルを示した。全ての窒素含有グラフェン粉末(a)~(d)について、グラフェンの特徴的なピークの一つであり、グラファイト構造(炭素六員環構造)に由来するGバンドが1580cm-1付近に、構造の乱れと欠陥に起因するDバンドが1350cm-1付近に見られることが確認できた。窒素含有グラフェン粉末(a)のGバンドおよびDバンドは比較的急峻なピークを形成しており、ラマンスペクトルからも窒素含有グラフェン粉末(a)の結晶性の高さがうかがえる。本発明者らの知見によると、ヘテロ元素を導入したグラフェン(特には、基材上に形成されていない自立グラフェン)については、Gバンドが先端のとがったピークとして現れることはこれまで報告されていない。窒素含有グラフェン粉末(a)のGバンドの半値幅(FWHM)は34.0cm-1であった。しかしながら、粉末窒素含有グラフェン粉末(b)、(c)、(d)になるにつれてピークがブロードとなり、結晶化度がより低くなることがわかった。おおよそ粉末(c)、(d)はアモルファスであるといえ、電子回折分析等の結果と一致する。
以上のことから、原料化合物としてEMIM-DCAを用い、溶媒としてDMFを用いることで、結晶性に優れたヘテロ元素含有グラフェンが得られることがわかった。そこで、窒素含有グラフェン粉末(a)の電子回折パターンとXRDパターンとから、更に詳細な結晶構造解析を行った。図6に、結晶構造解析のシミュレーションの結果を示した。図中の矢印で示したスポットが、実際に得られた電子回折スポット(図2(a)参照)である。図中の矢印で示されていないスポット(黒丸)が、グラフェン(グラファイト)結晶構造から理論的に得られる回折スポットである。また、グラフェン(グラファイト)の回折スポットの作成に用いた単位胞の格子条件と、窒素含有グラフェン粉末(a)の電子回折パターンに基づく結晶構造解析の結果とを、下記の表3に示した。
[ホール効果]
窒素含有グラフェン粉末(a)の半導体特性を測定した。測定装置は、東陽テクニカ8400ACLR/OW型を用いた。
測定試料は 、アルゴン雰囲気下、280℃で前処理をした。
測定条件(室温測定)
H3
サイズ:4mm×4mm×118μm
温度:290.2K
電流:7mA
磁場:0.3744T(交流250mHz)
H4
サイズ:5mm×5mm×117μm
温度:290.5K
電流:7mA
磁場:0.5T(直流)
H5
サイズ:5mm×5mm×185μm
温度:287.8K
電流:7mA
磁場:0.3744T(交流250mHz)
また、H4については、以下のように温度可変測定を行った。結果を表5に示す。
H4
サンプルサイズ:5mm×5mm×117μm(厚さ)
電流:7mA
磁場:0.5T(交流,周波数250mHz)
温度範囲(290K-20K, 10点,1/Tで等間隔測定)
測定の結果を図8~図10に示した。
[可視UVスペクトル]
窒素含有グラフェン粉末(a)を石英上で溶媒により分散させて乾燥させて得たキャストフィルムの薄膜の可視UVスペクトルを測定した。結果を図11に示す。この薄膜は、窒素を含む半導体の性質を示すが、400nm以上の可視領域で80%以上の透過率を示した。
4 ソリューションプラズマ
5 容器
6 電極
7 撹拌装置
8 外部電源
9 絶縁部材
10 液中プラズマ発生装置
Claims (14)
- 制限視野電子回折において、直方晶系および六方晶系のいずれかに属し、単結晶の対称性を備えるスポットが観測され、
炭素(C)と、ヘテロ元素(X)として窒素(N)、リン(P)、ヒ素(As)、イオウ(S)、ホウ素(B)、およびケイ素(Si)からなる群から選択される少なくとも1種の元素と、を含むヘテロ元素含有グラフェン。 - 前記スポットは、前記直方晶系に属し、入射方向を[101]とする電子回折像であって、逆格子点11-1、-111、-202、1-1-1、20-2および-1-11の配列を含むことを特徴とする、請求項1に記載のヘテロ元素含有グラフェン。
- X線回折において、(002)面からの回折ピークの半値幅が3度以下であることを特徴とする、請求項1または2に記載のヘテロ元素含有グラフェン。
- X線回折において、(002)面からの回折ピーク強度I(002)に対する(101)面からの回折ピーク強度I(101)の比(I(101)/I(002))が0.1以上であることを特徴とする、請求項1~3のいずれか1項に記載のヘテロ元素含有グラフェン。
- X線回折において、(002)面の面間隔は3.5Å以下であることを特徴とする、請求項3または4に記載のヘテロ元素含有グラフェン。
- X線光電子分光法に基づき算出される、炭素(C)とヘテロ元素(X)との原子数比(X/C)が0.1以上であることを特徴とする、請求項1~5のいずれか1項に記載のヘテロ元素含有グラフェン。
- X線光電子分光法に基づき、窒素の基底面へのドープされている化学結合状態が陽イオン性窒素の可能性が提示でき、ホール効果測定によりキャリアタイプがp型と判定されることを特徴とする、請求項1~6のいずれかに記載のヘテロ元素含有グラフェン。
- 励起波長を532nmとするラマン分光分析において、1350cm-1付近に見られるDバンドの強度I(D)と、1580cm-1付近に現れるGバンドの強度I(G)との比(I(D)/I(G))が1以下であり、かつ、前記Gバンドの半値幅が50cm-1以下であることを特徴とする、請求項1~7のいずれか1項に記載のヘテロ元素含有グラフェン。
- 前記ラマン分光分析において、2700cm-1付近に見られる2Dバンドの強度I(2D)と、前記Gバンドの強度I(G)との比(I(2D)/I(G))が0.5以上であることを特徴とする、請求項1~8のいずれか1項に記載のヘテロ元素含有グラフェン。
- 前記ラマン分光分析において、2700cm-1付近に見られる2Dバンドの半値幅が80cm-1以下である、請求項1~9のいずれか1項に記載のヘテロ元素含有グラフェン。
- 当該ヘテロ元素含有グラフェンを支持する基材を含まない、請求項1~10のいずれか1項に記載のヘテロ元素含有グラフェン。
- 前記炭素(C)の原子が前記へテロ元素(X)の原子と化学結合し、かつ、前記炭素(C)の原子が主としてsp2結合することで構成されるグラフェンシートを含み、
前記グラフェンシートは、1層からなる単層構造または2層以上5層以下の積層構造を有している、請求項1~11のいずれか1項に記載のヘテロ元素含有グラフェン。 - 平均粒子径が1nm以上10μm以下の粉末である、請求項1~12のいずれか1項に記載のヘテロ元素含有グラフェン。
- 少なくとも一部に5員環構造を有し、前記5員環が、窒素(N)、リン(P)、ヒ素(As)、イオウ(S)、ホウ素(B)およびケイ素(Si)からなる群から選択される少なくとも1種のヘテロ元素(X)と、炭素(C)とにより構成されているヘテロ5員環化合物を、極性非プロトン性溶媒に溶解させて原料含有液を用意すること、および、
前記原料含有液の中でプラズマを発生させることにより、前記ヘテロ5員環化合物を重合させて、ヘテロ元素含有グラフェンを得ること、
を含む、
制限視野電子回折において、直方晶系および六方晶系のいずれかに属し、単結晶の対称性を備えるスポットが観測され、
炭素(C)と、ヘテロ元素(X)として窒素(N)、リン(P)、ヒ素(As)、イオウ(S)、ホウ素(B)、およびケイ素(Si)からなる群から選択される少なくとも1種の元素と、を含むヘテロ元素含有グラフェンの製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/650,964 US20200346933A1 (en) | 2017-09-29 | 2018-09-28 | Heteroelement-Containing Graphene |
JP2019545161A JP7036448B2 (ja) | 2017-09-29 | 2018-09-28 | ヘテロ元素含有グラフェン |
EP18860508.3A EP3689819A4 (en) | 2017-09-29 | 2018-09-28 | GRAPH WITH HETEROELEMENT |
CN201880062815.9A CN111148719B (zh) | 2017-09-29 | 2018-09-28 | 含杂元素的石墨烯 |
KR1020207011964A KR102405114B1 (ko) | 2017-09-29 | 2018-09-28 | 헤테로 원소 함유 그래핀 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-190683 | 2017-09-29 | ||
JP2017190683 | 2017-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019066013A1 true WO2019066013A1 (ja) | 2019-04-04 |
Family
ID=65903358
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/036399 WO2019066013A1 (ja) | 2017-09-29 | 2018-09-28 | ヘテロ元素含有グラフェン |
Country Status (6)
Country | Link |
---|---|
US (1) | US20200346933A1 (ja) |
EP (1) | EP3689819A4 (ja) |
JP (1) | JP7036448B2 (ja) |
KR (1) | KR102405114B1 (ja) |
CN (1) | CN111148719B (ja) |
WO (1) | WO2019066013A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113422082B (zh) * | 2021-07-06 | 2023-04-21 | 中国科学技术大学 | 一种含有氮掺杂碳五元环结构的类石墨烯碳材料电催化剂及其制备方法和应用 |
CN114751400B (zh) * | 2022-05-23 | 2023-08-25 | 湖北工业大学 | 一种氮锌共掺杂的石墨烯量子点、比率型免疫传感器及其制备方法与应用 |
CN115400691B (zh) * | 2022-08-24 | 2024-05-10 | 内蒙古唐合科技有限公司 | 一种人造金刚石的制备方法 |
CN119400841A (zh) * | 2024-12-31 | 2025-02-07 | 湖南镓睿科技有限公司 | 负极材料及其制备方法和钾离子电池 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102605339A (zh) * | 2012-02-22 | 2012-07-25 | 中国科学院化学研究所 | 一种规则氮掺杂石墨烯及其制备方法 |
JP2012153555A (ja) | 2011-01-25 | 2012-08-16 | Tokyo Institute Of Technology | ヘテロ原子含有グラフェン |
JP2013232409A (ja) | 2012-04-30 | 2013-11-14 | Samsung Sdi Co Ltd | 電極触媒用担体およびその製造方法と燃料電池 |
JP2014100617A (ja) | 2012-11-16 | 2014-06-05 | Nagoya Univ | カーボン系触媒の製造方法 |
WO2014098251A1 (ja) | 2012-12-21 | 2014-06-26 | 独立行政法人理化学研究所 | g-C3N4フィルムの製造方法およびその利用 |
CN104630894A (zh) * | 2013-11-07 | 2015-05-20 | 中国科学技术大学 | 二维碳氮单晶合金及其制备方法 |
US20150236353A1 (en) * | 2012-06-28 | 2015-08-20 | The Royal Institution For The Advancement Of Learning / Mcgill University | Fabrication and functionalization of a pure non-noble metal catalyst structure showing time stability for large scale applications |
JP2016209798A (ja) | 2015-05-01 | 2016-12-15 | 公益財団法人科学技術交流財団 | 有機化合物触媒体とその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103282305B (zh) * | 2010-12-24 | 2015-12-09 | 株式会社丰田中央研究所 | 含氮石墨烯结构体和荧光体分散液 |
WO2012121031A1 (ja) | 2011-03-04 | 2012-09-13 | 国立大学法人 熊本大学 | 含窒素炭素化合物 |
CN103974900B (zh) * | 2011-12-12 | 2017-03-08 | 松下电器产业株式会社 | 碳系材料、电极催化剂、氧还原电极催化剂、气体扩散电极、水溶液电解装置和制备碳系材料的方法 |
CN102953118B (zh) * | 2012-11-12 | 2015-01-28 | 北京大学 | 一种单晶石墨烯pn结及其制备方法 |
CN106256761B (zh) * | 2015-06-16 | 2018-02-16 | 宋玉军 | 一种批量制备石墨烯和掺杂石墨烯的方法 |
CN105067586B (zh) * | 2015-08-12 | 2018-07-17 | 天津大学 | 氮掺杂三维石墨烯负载碳包覆铜基底材料及制备方法 |
CN106206682B (zh) * | 2016-08-22 | 2020-01-31 | 深圳丹邦科技股份有限公司 | Pi膜制备的多层石墨烯量子碳基半导体材料及其制备方法 |
-
2018
- 2018-09-28 EP EP18860508.3A patent/EP3689819A4/en active Pending
- 2018-09-28 JP JP2019545161A patent/JP7036448B2/ja active Active
- 2018-09-28 WO PCT/JP2018/036399 patent/WO2019066013A1/ja unknown
- 2018-09-28 KR KR1020207011964A patent/KR102405114B1/ko active Active
- 2018-09-28 CN CN201880062815.9A patent/CN111148719B/zh active Active
- 2018-09-28 US US16/650,964 patent/US20200346933A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012153555A (ja) | 2011-01-25 | 2012-08-16 | Tokyo Institute Of Technology | ヘテロ原子含有グラフェン |
CN102605339A (zh) * | 2012-02-22 | 2012-07-25 | 中国科学院化学研究所 | 一种规则氮掺杂石墨烯及其制备方法 |
JP2013232409A (ja) | 2012-04-30 | 2013-11-14 | Samsung Sdi Co Ltd | 電極触媒用担体およびその製造方法と燃料電池 |
US20150236353A1 (en) * | 2012-06-28 | 2015-08-20 | The Royal Institution For The Advancement Of Learning / Mcgill University | Fabrication and functionalization of a pure non-noble metal catalyst structure showing time stability for large scale applications |
JP2014100617A (ja) | 2012-11-16 | 2014-06-05 | Nagoya Univ | カーボン系触媒の製造方法 |
WO2014098251A1 (ja) | 2012-12-21 | 2014-06-26 | 独立行政法人理化学研究所 | g-C3N4フィルムの製造方法およびその利用 |
CN104630894A (zh) * | 2013-11-07 | 2015-05-20 | 中国科学技术大学 | 二维碳氮单晶合金及其制备方法 |
JP2016209798A (ja) | 2015-05-01 | 2016-12-15 | 公益財団法人科学技術交流財団 | 有機化合物触媒体とその製造方法 |
Non-Patent Citations (2)
Title |
---|
HYUN, KOANGYONG ET AL.: "The solution plasma process for heteroatom- carbon nanosheets: the role of precursors", SCIENTIFIC REPORTS, vol. 7, no. 1, 19 June 2017 (2017-06-19), pages 1 - 9, XP055585642, ISSN: 2045-2322, DOI: 10.1038/s41598-017-04190-x * |
See also references of EP3689819A4 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019066013A1 (ja) | 2020-10-22 |
US20200346933A1 (en) | 2020-11-05 |
KR102405114B1 (ko) | 2022-06-02 |
CN111148719A (zh) | 2020-05-12 |
EP3689819A1 (en) | 2020-08-05 |
KR20200060454A (ko) | 2020-05-29 |
EP3689819A4 (en) | 2021-06-23 |
CN111148719B (zh) | 2023-05-09 |
JP7036448B2 (ja) | 2022-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Controlled growth of vertical 3D MoS 2 (1− x) Se 2x nanosheets for an efficient and stable hydrogen evolution reaction | |
Gao et al. | Significant role of Al in ternary layered double hydroxides for enhancing electrochemical performance of flexible asymmetric supercapacitor | |
Ren et al. | A Se-doped MoS 2 nanosheet for improved hydrogen evolution reaction | |
Zheng et al. | 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution | |
Vrbanić et al. | Air-stable monodispersed Mo6S3I6 nanowires | |
Dubale et al. | The synergetic effect of graphene on Cu 2 O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting | |
WO2019066013A1 (ja) | ヘテロ元素含有グラフェン | |
Kumar et al. | Plasma-assisted simultaneous reduction and nitrogen doping of graphene oxide nanosheets | |
Pang et al. | Direct and in situ growth of 1T′ MoS2 and 1T MoSe2 on electrochemically synthesized MXene as an electrocatalyst for hydrogen generation | |
Wu et al. | Electrochemical deposition of Cl-doped n-type Cu 2 O on reduced graphene oxide electrodes | |
Du et al. | Ultra-efficient electrocatalytic hydrogen evolution at one-step carbonization generated molybdenum carbide nanosheets/N-doped carbon | |
Rajaboopathi et al. | Heterostructure of CdO-ZnO nanoparticles intercalated on PANI matrix for better thermal and electrochemical performance | |
Jokisaari et al. | Polarization-dependent Raman spectroscopy of epitaxial TiO2 (B) thin films | |
Lee et al. | Facile microwave assisted synthesis of vastly edge exposed 1T/2H-MoS 2 with enhanced activity for hydrogen evolution catalysis | |
Thomas et al. | Boron carbon nitride (BCN): an emerging two-dimensional nanomaterial for supercapacitors | |
Xu et al. | Micron-sized hexagonal single-crystalline rods of metal nitride clusterfullerene: preparation, characterization, and photoelectrochemical application | |
Li et al. | Al-Doped SiC nanowires wrapped by the nanowire network: excellent field emission property and robust stability at high current density | |
KR20110084627A (ko) | 신규한 구조의 탄소계 나노복합체 및 이의 제조방법 | |
Li et al. | Improving oxygen vacancies by cobalt doping in MoO2 nanorods for efficient electrocatalytic hydrogen evolution reaction | |
Fan et al. | Graphene/graphene nanoribbon aerogels decorated with S-doped MoSe 2 nanosheets as an efficient electrocatalyst for hydrogen evolution | |
Wu et al. | ZnO nanorods/ZnS·(1, 6-hexanediamine) 0.5 hybrid nanoplates hierarchical heteroarchitecture with improved electrochemical catalytic properties for hydrazine | |
Derrouiche et al. | Optimization of routes for the synthesis of bismuth nanotubes: implications for nanostructure form and selectivity | |
Harke et al. | Solution-based in situ deposition of Sb 2 S 3 from a single source precursor for resistive random-access memory devices | |
Parmar et al. | Stabilizing metastable polymorphs of van der Waals solid MoS2 on single crystal oxide substrates: exploring the possible role of surface chemistry and structure | |
Hemmat et al. | Unprecedented Multifunctionality in 1D Nb1‐xTaxS3 Transition Metal Trichalcogenide Alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18860508 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019545161 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20207011964 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018860508 Country of ref document: EP Effective date: 20200429 |