WO2019050335A1 - Nickel-based catalyst, and synthetic gas production system employing same - Google Patents
Nickel-based catalyst, and synthetic gas production system employing same Download PDFInfo
- Publication number
- WO2019050335A1 WO2019050335A1 PCT/KR2018/010505 KR2018010505W WO2019050335A1 WO 2019050335 A1 WO2019050335 A1 WO 2019050335A1 KR 2018010505 W KR2018010505 W KR 2018010505W WO 2019050335 A1 WO2019050335 A1 WO 2019050335A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- active
- metal
- oxide
- hours
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 118
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 229910052759 nickel Inorganic materials 0.000 title claims abstract description 15
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 106
- 239000007789 gas Substances 0.000 claims abstract description 53
- 239000000463 material Substances 0.000 claims abstract description 43
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 36
- 239000003345 natural gas Substances 0.000 claims abstract description 33
- 239000011149 active material Substances 0.000 claims abstract description 30
- 230000001737 promoting effect Effects 0.000 claims abstract description 28
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000002407 reforming Methods 0.000 claims abstract description 22
- 230000000694 effects Effects 0.000 claims abstract description 20
- 239000011777 magnesium Substances 0.000 claims abstract description 15
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 13
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 13
- 238000003860 storage Methods 0.000 claims abstract description 13
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 8
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims abstract description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims description 77
- 238000003786 synthesis reaction Methods 0.000 claims description 45
- 230000015572 biosynthetic process Effects 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 24
- 230000002194 synthesizing effect Effects 0.000 claims description 19
- 238000006057 reforming reaction Methods 0.000 claims description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims description 12
- 150000004706 metal oxides Chemical class 0.000 claims description 12
- 241000282326 Felis catus Species 0.000 claims description 11
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical class [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims description 10
- 239000013078 crystal Substances 0.000 claims description 8
- 229960001545 hydrotalcite Drugs 0.000 claims description 4
- 229910001701 hydrotalcite Inorganic materials 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- 229910052698 phosphorus Inorganic materials 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- 238000000629 steam reforming Methods 0.000 abstract description 7
- 230000000052 comparative effect Effects 0.000 description 36
- 239000000203 mixture Substances 0.000 description 16
- 239000002243 precursor Substances 0.000 description 16
- 239000000843 powder Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 12
- 229910003023 Mg-Al Inorganic materials 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 230000008021 deposition Effects 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 239000001257 hydrogen Substances 0.000 description 9
- 239000000047 product Substances 0.000 description 8
- 239000000376 reactant Substances 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- ZZBAGJPKGRJIJH-UHFFFAOYSA-N 7h-purine-2-carbaldehyde Chemical compound O=CC1=NC=C2NC=NC2=N1 ZZBAGJPKGRJIJH-UHFFFAOYSA-N 0.000 description 5
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 238000000498 ball milling Methods 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 230000036284 oxygen consumption Effects 0.000 description 4
- 238000001179 sorption measurement Methods 0.000 description 4
- 238000001694 spray drying Methods 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- 229910018590 Ni(NO3)2-6H2O Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000013543 active substance Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 229910018516 Al—O Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000002453 autothermal reforming Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000012695 Ce precursor Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- UBAZGMLMVVQSCD-UHFFFAOYSA-N carbon dioxide;molecular oxygen Chemical compound O=O.O=C=O UBAZGMLMVVQSCD-UHFFFAOYSA-N 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/78—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/10—Magnesium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/643—Pore diameter less than 2 nm
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/32—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
- C01B3/34—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
- C01B3/38—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
- C01B3/40—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0233—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/02—Processes for making hydrogen or synthesis gas
- C01B2203/0205—Processes for making hydrogen or synthesis gas containing a reforming step
- C01B2203/0227—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
- C01B2203/0238—Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/10—Catalysts for performing the hydrogen forming reactions
- C01B2203/1041—Composition of the catalyst
- C01B2203/1047—Group VIII metal catalysts
- C01B2203/1052—Nickel or cobalt catalysts
- C01B2203/1058—Nickel catalysts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present invention relates to a syngas production system for producing syngas by simultaneously modifying natural gas with steam and carbon dioxide using a reactor containing a catalyst for synthesis gas production.
- the syngas produced in the reforming process is a mixture of hydrogen and carbon monoxide and can be used as a reactant for the synthesis of expensive chemical products such as ammonia and methanol.
- the reforming process is an essential technology for the production of synthetic fuels because it is used as a reactant for next-generation DME (Dimethylesther) synthesis and FT (Fischer-Tropsch) synthesis process.
- SRM steam reforming of methane
- POM partial oxidation of methane
- CDR carbon dioxide reforming reaction of methane and carbon dioxide reforming of methane
- H 2 / CO carbon monoxide and hydrogen
- H 2 / CO ratio of 3 or more can be obtained, which is a reforming reaction suitable for hydrogen production and ammonia synthesis reaction.
- H 2 / CO ratio is about 2 Methanol reforming reaction and the Fischer-Tropsch reaction.
- This individual reforming process is also called auto-thermal reforming (ATR) and tri-reforming in which POM and SRM are mixed for maintaining the proper H 2 / CO ratio with increasing energy and carbon efficiency
- ATR auto-thermal reforming
- POM, SRM and CDR three reforming reactions
- synthetic gas having different H 2 / CO ratios can be prepared depending on the kind of the reforming reaction and the catalyst, and patents using the differentiation in which the subsequent synthesis process using the synthesis gas is appropriately changed are currently being filed [Korean Patent Open No. 2006-0132293; Korean Patent Publication No. 2005-0051820].
- the present invention relates to a nickel-based catalyst capable of simultaneously carrying out SRM and CDR as a mixed reforming process, and to provide a catalyst for synthesizing a synthetic gas, which can be used for synthesis of methanol and Fischer- do.
- Another object of the present invention is to provide a syngas production system for producing a syngas by simultaneously modifying natural gas with steam and carbon dioxide using a reactor containing the catalyst for synthesizing the synthesis gas.
- the present invention relates to a catalyst for use in the production of syngas from natural gas, comprising at least a support material comprising magnesium (Mg) and aluminum (Al), an activation promoting material comprising at least cerium (Ce) Characterized in that the O 2 storage amount of the oxide of the metal and the activity promoting material, which is the active material exposed on the surface of the catalyst, is 60 to 70 ⁇ mol O 2 / g cat .
- a catalyst for synthesis gas production is provided.
- At least of the metal (M 1), the oxide of the active material (M 1 O), metal active promoting material (M 2) and the oxide of the active promoting material (M 2 O) the active substance in the catalyst surface of the syngas for preparing And is a catalyst for exposing a part of the catalyst.
- the synthesis gas for producing the catalyst the active material of a metal (M 1) at least an oxide of some active promoting material of exposure to at least the surface of the catalyst portion is 1.3 to 5.6%, exposed to the catalyst surface of (M 2 O) and And is a catalyst which is in contact with the catalyst.
- the synthesis gas for producing the catalyst the molar ratio of the active material of a metal (M 1) and activity promoting material is a metal (M 2) exposed on the surface (M 1 / M 2) is from 0.2 to 2 of catalyst.
- the catalyst for synthesizing the synthesis gas is a catalyst having a molar ratio (M 1 / M 1 O) of the metal (M 1 ) as the active material to an oxide (M 1 O) of the active material in the range of 0.1 to 1.3.
- the support material is a metal oxide mixed with the support material and is included in the form of a hydrotalcite crystal structure.
- the crystal size of the support material is 14.4 to 64.3 nm.
- the present invention also provides a synthesis gas production system for producing a synthesis gas from natural gas, comprising: a supply part for supplying the natural gas; And a reforming reactor for receiving the catalyst for synthesizing the synthesis gas, wherein the steam reforming reaction of methane and the carbon dioxide reforming reaction of methane proceed at the same time.
- the present invention relates to a nickel-based catalyst capable of simultaneously carrying out SRM and CDR, and provides a shaped catalyst for synthesizing a synthetic gas, which can be used for synthesis and Fischer-Tropsch reaction, It is possible to provide a catalyst having excellent ability.
- the present invention also provides a syngas production system for producing syngas by simultaneously modifying natural gas with steam and carbon dioxide using a reactor containing a catalyst for synthesizing a synthesis gas, It is possible to provide an effect of maintaining stability.
- Fig. 1 shows images of catalysts according to Examples and Comparative Examples of the present invention.
- a syngas production system is a syngas production system for converting natural gas into syngas.
- the system includes a reactor for regulating the molar ratio of the reactants contained in the natural gas to obtain a synthesis gas containing the product of the required composition And a reforming reactor 20 for receiving a natural gas supply unit 10 for supplying natural gas and a catalyst for synthesis gas production and simultaneously performing a steam reforming reaction of methane and a carbon dioxide reforming reaction of methane.
- the catalyst for synthesis gas production is a catalyst used for producing a synthesis gas containing hydrogen and carbon monoxide from a natural gas containing methane and includes a support material, an activity promoting material and an active material.
- the catalyst for synthesizing a synthesis gas according to the present invention contains at least magnesium (Mg) and aluminum (Al) as a support material, at least cerium (Ce) as an activity promoting material and at least nickel .
- the catalyst for synthesizing the synthetic gas is a catalyst in which the active material is exposed to the surface at 1.3 to 5.6%. In other respects, when measuring the number of moles of hydrogen (H 2 ) adsorbed per g of the catalyst, 1.3 to 5.6%.
- the synthetic gas producing catalyst includes at least a part of an oxide of an active material and an oxide of an activity promoting material. More specifically, in the preparation of a catalyst for synthesizing a synthetic gas by impregnating a precursor of the precursor of the precursor and a precursor of the precursor of the precursor, followed by drying and firing, the precursor of the precursor and the precursor of the precursor are partially reduced and oxidized, At least a part of the metal (M 1 ) as the active material, the oxide (M 1 O) of the active material, the metal (M 2 ) as the activity promoting material and the oxide (M 2 O) as the activation promoting material are exposed.
- the catalyst for synthesizing the syngas is characterized in that at least a part of the metal as the active material is exposed to the catalyst surface at an amount of 1.3 to 5.6% and is in contact with at least a part of the oxide of the active promoting material exposed on the surface.
- the metal as the active material is exposed to less than 1.3% of the surface of the catalyst, the catalytic activity is too low.
- the metal is exposed to more than 5.6%, the catalyst activity is too high, have.
- the catalyst for synthesizing the synthesis gas is characterized in that the molar ratio (M 1 / M 1 O) of the metal (M 1 ) as the active material to the oxide (M 1 O) of the active material is 0.1 to 1.3.
- the molar ratio is less than 0.1 or more than 1.3, the selectivity of the product is low and various by-products are produced. More preferably, the molar ratio of the active material, the metal (M 1) with the active material oxide (M 1 O) (M 1 / M 1 O) is 0.8 to 1.0.
- the catalyst for synthesis gas is characterized in that the molar ratio of one (M 1 / M 2) of the active material of a metal (M 1) and activity promoting material is a metal (M 2) exposed at the surface it is 0.2 to 2.
- the molar ratio (M 1 / M 2 ) is less than 0.2, there is a problem that oxygen is difficult to supply to the active metal during the reaction and the activity is lowered.
- the mole ratio is more than 2, the metal oxide of the active promoter clogs the active metal .
- the molar ratio (M 1 / M 2 ) is in the above range, the resistance of the catalyst material to the poisoning material that may be contained in the reactant is considered to be high, and the stability is high, and the lifetime of the catalyst is also good.
- the activity promoting material is a substance that increases the oxygen storage ability and is included in the catalyst, so that the deactivation of the catalyst by carbon deposition during the reforming reaction can be suppressed.
- the catalyst for synthesizing the synthesis gas includes a mesopore having an average pore size of 18.6 to 33.5 nm and a micropore having a pore size of 1 nm or less. And preferably has a mesopore / micropore volume ratio of 92 to 115. If the mesopore / micropore volume ratio is too low, there is a problem that the dispersion of the metal on the surface of the support becomes low due to the large particles of the active material metal. If the mesopore / micropore volume ratio is too high, It can fall.
- the catalyst for synthesizing the synthesis gas includes a support having a hydrotalcite crystal structure as a metal oxide containing a support material.
- the support material is at least magnesium (Mg) and aluminum comprises (Al), if the support is formed of a MgO / Al 2 O 3 weight ratio is 3/7 to 7/3 of the hydrotalcite crystal structure as the active substance and the active form Thereby providing a supporting structure to which the promoting substance can bind.
- the crystal size of the metal oxide containing the support material is 14.4 to 64.3 nm.
- the concentration of the total base point / acid point is increased and the catalytic activity is negatively affected. 64.3 nm, there is a problem that the concentration of the total base point / acid point is lowered, resulting in carbon deposition during the reaction.
- the catalyst for synthesizing a synthetic gas is a catalyst which is formed into a form including at least two or more holes having a metal oxide storage amount of 60 to 70 ⁇ mol O 2 / g cat as a metal and an activity promoting material exposed to the surface.
- the present invention provides a syngas production system for producing syngas by simultaneously modifying natural gas with steam and carbon dioxide using a reactor containing the catalyst for synthesizing a synthetic gas, Can be maintained. Preferably, it is molded in a 4-hole form.
- a method for preparing a catalyst for synthesis gas production comprises first preparing a precursor of an activity promoting material containing at least cerium (Ce) on a support formed of a support material containing at least magnesium (Mg) and aluminum (Al) And at the same time or in turn carrying a precursor of an active material containing at least nickel (Ni). And then dried at 100 to 150 ° C to obtain a powdery catalyst.
- the water and the catalyst of the powder type are mixed and ball-milling is carried out for 9 to 12 hours, followed by a spray drying process using a ball milled powder, followed by using a spherical spray-dried powder Thereby obtaining a catalyst-shaped body having at least two or more holes.
- the obtained shaped catalyst is calcined at a temperature of 950 to 1050 ⁇ to produce a catalyst for synthesizing a synthetic gas having the above physical properties.
- a Mg-Al metal oxide having a hydrotalcite structure having a MgO / Al 2 O 3 weight ratio of 3/7 to 7/3 as a support is used to prepare a Ce metal by impregnation using a cerium precursor
- a mixture of 3 to 20% by weight based on the total catalyst weight and 5 to 20% by weight based on the weight of the total catalyst prepared using the nickel precursor is prepared. Thereafter, the mixture is stirred at 50 to 100 ° C for 10 to 15 hours by using a vacuum drier, then water as a solvent is removed and dried at 100 to 150 ° C for 24 hours or more to obtain a powdery catalyst.
- the water and the catalyst of the powder type are mixed and ball-milling is carried out for 9 to 12 hours, followed by a spray drying process using a ball milled powder, followed by using a spherical spray-dried powder Thereby obtaining a catalyst-shaped body having at least two or more holes. And the obtained shaped catalyst is calcined at a temperature of 950 to 1050 ⁇ for 5 to 8 hours to prepare a synthetic gas producing catalyst having the above physical properties.
- a syngas production system is a syngas production system for converting natural gas to syngas.
- the natural gas supply unit 10 includes a natural gas supply unit 10 for supplying a natural gas To control the molar ratio of the reactants contained in the gas.
- the natural gas supply unit 10 may include a pretreatment process for supplying the natural gas with an optimized natural gas composition.
- the composition of the natural gas supplied through the natural gas supply unit is CH 4 , CO 2 , H 2 O and N 2 and is supplied such that the molar ratio of CH 4 / CO 2 / H 2 O / N 2 is in the range of 1 / 0.3-0.6 / 1.0-2.0 / 0.8-1.2.
- the natural gas supply unit 10 is connected to the reforming reactor 20 at a rate of 4,000 to 6,000 L / kg cat / hr based on the volume of methane (CH 4 ) .
- the feed rate may increase proportionally.
- the natural gas of the above composition is supplied to the reforming reactor 20 containing the catalyst for producing synthesis gas according to the present invention through the supply portion 10.
- the reaction conditions such as the reaction temperature and the reaction pressure are adjusted so that the steam reforming reaction of methane and the carbon dioxide reforming reaction of methane proceed simultaneously, thereby producing a synthesis gas having a desired composition.
- the reforming reactor 20 maintains a reaction temperature of 700 to 900 DEG C and a reaction pressure of 0.5 to 20 atm.
- the CH 4 conversion rate is 93% or more, and even when the reaction occurs at a relatively low temperature (700 to 800 ° C), the CH 4 conversion rate is 72% Can be confirmed by an experimental example to be described later.
- the composition of the natural gas supplied through the natural gas supply unit can be controlled by the carbon deposition conditions (including CH 4 , CO 2 , and N 2 , and the molar ratio of CH 4 / CO 2 / N 2 being 1 / 0.8-1.2 / 0.8-1.2
- the conversion rate is more than 87.1%, if the reaction at a relatively low temperature (700 to 800 °C) to take place even when the reaction 25 time, CH 4 conversion is The stability can be confirmed to be 79.5% or more by the following experimental examples.
- the catalyst for synthesizing a synthetic gas according to the present invention has a good oxygen storage capacity, it is resistant to carbon deposition even when it is reacted under the carbon deposition conditions, thereby maintaining stability during multiple reforming. This can be confirmed by an example.
- PURAL MG30 (a product of Sasol, having a specific surface area of at least 250 m 2 / g is Mg-Al metal oxide having a hydrotalcite structure with a weight ratio of MgO / Al 2 O 3 of 3/7 as a support of a catalyst for synthesis gas synthesis, hereinafter, "Mg-Al” means any) to use and also by using the cerium acetate precipitation and such that 6 wt% of the catalyst weight producing a Ce metal whole at the same time the nickel as nickel precursor nitrate (Ni (NO 3) 2 6H 2 O), and the mixture was stirred at 70 ° C for 12 hours using a vacuum drier.
- Ni (NO 3) 2 6H 2 O) nickel as nickel precursor nitrate
- a 4-hole catalyst was formed by using a spherical spray-dried powder and calcined at 1000 ° C for 6 hours to prepare a final catalyst, Ni-Ce / Mg-Al.
- PURAL MG30 (a product of Sasol, having a specific surface area of at least 250 m 2 / g is Mg-Al metal oxide having a hydrotalcite structure with a weight ratio of MgO / Al 2 O 3 of 3/7 as a support of a catalyst for synthesis gas synthesis, hereinafter, "Mg-Al” means any) to use and also by using the cerium acetate precipitation and such that 6 wt% of the catalyst weight producing a Ce metal whole at the same time the nickel as nickel precursor nitrate (Ni (NO 3) 2 6H 2 O), and the mixture was stirred at 70 ° C for 12 hours using a vacuum drier.
- Ni (NO 3) 2 6H 2 O) nickel as nickel precursor nitrate
- PURAL MG30 (a product of Sasol, having a specific surface area of at least 250 m 2 / g is Mg-Al metal oxide having a hydrotalcite structure with a weight ratio of MgO / Al 2 O 3 of 3/7 as a support of a catalyst for synthesis gas synthesis, hereinafter, "Mg-Al” means any) to use and also by using the cerium acetate precipitation and such that 6 wt% of the catalyst weight producing a Ce metal whole at the same time the nickel as nickel precursor nitrate (Ni (NO 3) 2 6H 2 O), and the mixture was stirred at 70 ° C for 12 hours using a vacuum drier.
- Ni (NO 3) 2 6H 2 O) nickel as nickel precursor nitrate
- the final catalyst, Ni-Ce / Mg-Al, was prepared by forming a 4-hole catalyst using a spherical spray-dried powder and calcining at 1200 ° C for 6 hours.
- PURAL MG30 product of Sasol having a hydrotalcite structure MgO Al metal oxide having a MgO / Al 2 O 3 weight ratio of 3/7 and a specific surface area of at least 250 m 2 / g (Hereinafter, referred to as " Mg-Al-O ") by means of impregnation method using cerium acetate so that the Ce metal is 6 wt% 3 ) 2 .6H 2 O), and the mixture was stirred at 70 ° C for 12 hours using a vacuum drier. Thereafter, water as a solvent was removed, and the mixture was heated in an oven at 100 ° C for 24 hours or more And dried.
- pellets of 1-hole were formed using the dried powder, and the obtained catalyst compact was sintered at 1000 ° C for 6 hours to obtain a compacted compact having a compacting density of 1.57 g / cc.
- the final catalyst Ni-Ce / Mg -Al.
- PURAL MG30 product of Sasol
- Mg-Al-O " a hydrotalcite structure MgO Al metal oxide having a MgO / Al 2 O 3 weight ratio of 3/7 and a specific surface area of at least 250 m 2 / g
- FIG. 1 shows an image of the catalyst prepared through the above Examples and Comparative Examples.
- Oxygen storage amount measurement is 750 o C in a hydrogen reduction and by measuring the oxygen consumption at 400 o C] After lowering the temperature after a 400 o C, to measure the oxygen reserves of oxygen consumption and cerium to the Ni NiO. After the reduction process, the oxygen consumption at NiO was measured at 400 ° C, and the difference in oxygen consumption between Ni and NiO was calculated as the oxygen content of cerium. Other physical properties measurement results are shown in Table 1 below.
- the molar ratio of CH 4 : CO 2 : H 2 O: N 2 as a reactant was fixed at a ratio of 1: 0.4: 1.6: 1 as a reactant in the feed part, and the reforming reaction was carried out by injecting into the reactor.
- 0.5 g of the catalyst and 0.5 g of alpha-alumina as a diluent were uniformly mixed, charged into a reforming reactor, reduced under hydrogen atmosphere (5 vol% H 2 / N 2 ) at 700 ° C for 3 hours, The reaction was carried out at 730 ° C. or 830 ° C. under a reaction pressure of 0.5 MPa and a space velocity of 5000 L (CH 4 ) / kgcat / hr.
- the conversion ratios were measured in the following Table 2 (reaction temperature 730 ° C.) 830 ⁇ ).
- the reforming reaction was carried out by injecting the reactant at a feed ratio of 1: 1: 1 in the molar ratio of CH 4 : CO 2 : N 2 to the reactor.
- 0.5 g of the catalyst and 0.5 g of alpha-alumina as a diluent were uniformly mixed, charged into a reforming reactor, reduced under hydrogen atmosphere (5 vol% H 2 / N 2 ) at 700 ° C for 3 hours, The reaction was carried out at 730 ° C. or 830 ° C. under a reaction pressure of 0.5 MPa and a space velocity of 5000 L (CH 4 ) / kg cat / hr.
- the conversion ratios were measured in the following Table 4 (reaction temperature 730 ° C.) 830 ⁇ ).
- Example 3 A thermogravimetric analyzer (SDT 600, TA instruments (USA)) was used to analyze the carbon deposition amount of the experimental catalyst. The weight loss of the sample was measured by supplying air from 30 ° C to 1000 ° C to calculate the carbon deposition amount. The results are shown in Table 6 (reaction temperature 730 ° C) and Table 7 (reaction temperature 830 ° C).
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Nanotechnology (AREA)
Abstract
The present invention is a synthetic gas production system for turning a natural gas into a synthetic gas, and can provide a synthetic gas production system comprising: a supply part for supplying a natural gas; and a reforming reactor which accommodates a catalyst for producing a synthetic gas, and in which steam reforming of methane and carbon dioxide reforming of methane occur simultaneously, wherein the catalyst is formed to include two or more holes and comprises: a support material comprising at least magnesium (Mg) and aluminum (Al); an activity promoting material comprising at least cerium (Ce); and an active material comprising at least nickel (Ni), wherein the O2 storage amount of a metal, which is the active material exposed on the surface of the catalyst, and of an oxide of the activity promoting material exposed on the surface of the catalyst is 60 to 70 μmol O2/gcat.
Description
본 발명은 합성가스 제조용 촉매가 수용된 반응기를 이용하여 천연가스를 수증기와 이산화탄소로 동시에 개질하여 합성가스를 제조하는 합성가스 제조 시스템에 관한 것이다.The present invention relates to a syngas production system for producing syngas by simultaneously modifying natural gas with steam and carbon dioxide using a reactor containing a catalyst for synthesis gas production.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다.Here, background art relating to the present disclosure is provided, and they are not necessarily meant to be known arts.
리포밍(reforming) 공정에서 생산되는 합성가스는 수소와 일산화탄소로 구성된 혼합물로서, 주로 암모니아, 메탄올 등과 같은 고가의 화학제품 합성의 반응물로 사용될 수 있다. 또한 차세대 연료인 DME(Dimethylesther) 합성, FT(Fischer-Tropsch) 합성공정의 반응물로써 사용되기 때문에 리포밍 공정은 합성연료 제조에 필수적인 기술이라 볼 수 있다.The syngas produced in the reforming process is a mixture of hydrogen and carbon monoxide and can be used as a reactant for the synthesis of expensive chemical products such as ammonia and methanol. In addition, the reforming process is an essential technology for the production of synthetic fuels because it is used as a reactant for next-generation DME (Dimethylesther) synthesis and FT (Fischer-Tropsch) synthesis process.
천연가스를 이용한 합성가스를 제조하기 위한 방법으로는 크게 메탄의 수증기 개질반응(steam reforming of methane; SRM), 산소를 이용한 메탄의 부분산화반응(partial oxidation of methane; POM), 메탄의 이산화탄소 개질반응(carbon dioxide reforming of methane; CDR)으로 크게 구분될 수 있으며 각 개질반응으로부터 생성되는 일산화탄소와 수소(H2/CO) 비는 후속 공정에서 최적으로 요구되는 비에 따라서 다르게 사용될 수 있다.As a method for producing synthesis gas using natural gas, steam reforming of methane (SRM), partial oxidation of methane (POM) using oxygen, carbon dioxide reforming reaction of methane and carbon dioxide reforming of methane (CDR), and the carbon monoxide and hydrogen (H 2 / CO) ratios generated from each reforming reaction can be used differently depending on the optimum ratio in subsequent processes.
일례로, 강한 흡열반응인 SRM 반응의 경우에는 H2/CO 비가 3 이상으로 얻어 질 수 있어서 수소 생산 및 암모니아 합성반응에 적합한 개질 반응이며, POM 반응의 경우에는 H2/CO 비가 2 정도로 얻어져서 메탄올 합성 반응 및 피셔-트롭쉬 반응에 의한 탄화수소 생성에 유리한 개질반응으로 알려져 있다.For example, in the SRM reaction, which is a strong endothermic reaction, a H 2 / CO ratio of 3 or more can be obtained, which is a reforming reaction suitable for hydrogen production and ammonia synthesis reaction. In the case of POM reaction, H 2 / CO ratio is about 2 Methanol reforming reaction and the Fischer-Tropsch reaction.
상기의 개별 개질공정은 에너지 및 카본 효율 증대와 함께 적절한 H2/CO비의 유지를 위하여 POM과 SRM이 혼합된 자열개질 반응(auto-thermal reforming; ATR) 및 삼중개질반응(tri-reforming)이라고도 불리우는 POM, SRM 및 CDR의 3가지 개질반응이 혼합된 방법 등이 잘 알려져 있다. 또한, 개질반응의 종류 및 촉매에 따라서 H2/CO 비가 상이한 합성가스를 제조할 수 있으며, 이를 적절하게 이용하는 후속 합성 공정이 변화되는 차별성을 이용한 특허들이 현재 많이 출원되어지고 있는 실정이다[한국특허공개 제2006-0132293호; 한국특허공개 제2005-0051820호].This individual reforming process is also called auto-thermal reforming (ATR) and tri-reforming in which POM and SRM are mixed for maintaining the proper H 2 / CO ratio with increasing energy and carbon efficiency And a method in which three reforming reactions called POM, SRM and CDR are mixed is well known. In addition, synthetic gas having different H 2 / CO ratios can be prepared depending on the kind of the reforming reaction and the catalyst, and patents using the differentiation in which the subsequent synthesis process using the synthesis gas is appropriately changed are currently being filed [Korean Patent Open No. 2006-0132293; Korean Patent Publication No. 2005-0051820].
본 발명은 혼합개질공정으로서 SRM과 CDR이 동시에 진행될 수 있는 니켈 계열의 촉매로서, 합성가스를 제조하고 이를 이용하여 메탄올을 합성 및 피셔-트롭쉬 반응 공정에 활용할 수 있는 합성가스 제조용 촉매를 제공하고자 한다. The present invention relates to a nickel-based catalyst capable of simultaneously carrying out SRM and CDR as a mixed reforming process, and to provide a catalyst for synthesizing a synthetic gas, which can be used for synthesis of methanol and Fischer- do.
또한 본 발명은 상기 합성가스 제조용 촉매가 수용된 반응기를 이용하여 천연가스를 수증기와 이산화탄소로 동시에 개질하여 합성가스를 제조하는 합성가스 제조 시스템을 제공하고자 한다.Another object of the present invention is to provide a syngas production system for producing a syngas by simultaneously modifying natural gas with steam and carbon dioxide using a reactor containing the catalyst for synthesizing the synthesis gas.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.
본 발명은 천연가스로부터 합성가스를 제조하는데 사용되는 촉매로서, 적어도 마그네슘(Mg) 및 알루미늄(Al)을 포함하는 지지물질, 적어도 세륨(Ce)을 포함하는 활성촉진물질 및 적어도 니켈(Ni)을 포함하는 활성물질을 포함하고, 상기 촉매의 표면에 노출된 활성물질인 금속 및 활성촉진물질의 산화물의 O2 저장량이 60 내지 70 μmol O2/gcat 인 것을 특징으로 하는 적어도 2 이상의 홀을 포함하는 형태로 성형된 합성가스 제조용 촉매를 제공한다. The present invention relates to a catalyst for use in the production of syngas from natural gas, comprising at least a support material comprising magnesium (Mg) and aluminum (Al), an activation promoting material comprising at least cerium (Ce) Characterized in that the O 2 storage amount of the oxide of the metal and the activity promoting material, which is the active material exposed on the surface of the catalyst, is 60 to 70 μmol O 2 / g cat . A catalyst for synthesis gas production is provided.
또한 상기 합성가스 제조용 촉매는 표면에 활성물질인 금속(M1), 활성물질의 산화물(M1O), 활성촉진물질인 금속(M2) 및 활성촉진물질의 산화물(M2O)의 적어도 일부를 노출시키는 촉매인 것을 특징으로 한다.In addition, at least of the metal (M 1), the oxide of the active material (M 1 O), metal active promoting material (M 2) and the oxide of the active promoting material (M 2 O) the active substance in the catalyst surface of the syngas for preparing And is a catalyst for exposing a part of the catalyst.
또한 상기 합성가스 제조용 촉매는 상기 활성물질인 금속(M1)의 적어도 일부가 상기 촉매 표면에 1.3 내지 5.6% 노출되어 상기 촉매 표면에 노출된 적어도 일부의 활성촉진물질의 산화물(M2O)과 접촉하는 촉매인 것을 특징으로 한다.In addition, the synthesis gas for producing the catalyst the active material of a metal (M 1) at least an oxide of some active promoting material of exposure to at least the surface of the catalyst portion is 1.3 to 5.6%, exposed to the catalyst surface of (M 2 O) and And is a catalyst which is in contact with the catalyst.
또한 상기 합성가스 제조용 촉매는 표면에 노출된 활성물질인 금속(M1)과 활성촉진물질인 금속(M2)의 몰비(M1/M2)가 0.2 내지 2인 촉매인 것을 특징으로 한다.Also it characterized in that the synthesis gas for producing the catalyst the molar ratio of the active material of a metal (M 1) and activity promoting material is a metal (M 2) exposed on the surface (M 1 / M 2) is from 0.2 to 2 of catalyst.
또한 상기 합성가스 제조용 촉매는 상기 활성물질인 금속(M1)과 활성물질의 산화물(M1O)의 몰비(M1/M1O)가 0.1 내지 1.3인 촉매인 것을 특징으로 한다.The catalyst for synthesizing the synthesis gas is a catalyst having a molar ratio (M 1 / M 1 O) of the metal (M 1 ) as the active material to an oxide (M 1 O) of the active material in the range of 0.1 to 1.3.
또한 상기 지지물질은 상기 지지물질이 혼합된 금속산화물로서 하이드로탈사이트 결정구조의 형태로 포함되는 것을 특징으로 한다.Further, the support material is a metal oxide mixed with the support material and is included in the form of a hydrotalcite crystal structure.
또한 상기 지지물질의 결정 크기는 14.4 내지 64.3nm인 것을 특징으로 한다.And the crystal size of the support material is 14.4 to 64.3 nm.
또한 본 발명은 천연가스로부터 합성가스를 제조하는 합성가스 제조 시스템으로서, 상기 천연가스를 공급하는 공급부; 및 상기 합성가스 제조용 촉매를 수용하여, 메탄의 수증기 개질반응과 메탄의 이산화탄소 개질반응이 동시에 진행되는 개질반응기;를 포함하는 합성가스 제조 시스템을 제공한다. The present invention also provides a synthesis gas production system for producing a synthesis gas from natural gas, comprising: a supply part for supplying the natural gas; And a reforming reactor for receiving the catalyst for synthesizing the synthesis gas, wherein the steam reforming reaction of methane and the carbon dioxide reforming reaction of methane proceed at the same time.
본 발명은 SRM과 CDR이 동시에 진행될 수 있는 니켈 계열의 촉매로서, 합성가스를 제조하고 이를 이용하여 메탄올을 합성 및 피셔-트롭쉬 반응 공정에 활용할 수 있는 합성가스 제조용 성형 촉매를 제공함으로써, 산소저장능력이 우수한 촉매를 제공할 수 있다.The present invention relates to a nickel-based catalyst capable of simultaneously carrying out SRM and CDR, and provides a shaped catalyst for synthesizing a synthetic gas, which can be used for synthesis and Fischer-Tropsch reaction, It is possible to provide a catalyst having excellent ability.
또한 본 발명은 합성가스 제조용 촉매가 수용된 반응기를 이용하여 천연가스를 수증기와 이산화탄소로 동시에 개질하여 합성가스를 제조하는 합성가스 제조 시스템을 제공함으로써, 산소 저장 능력이 좋기 때문에 탄소 침적에 강하여 복합 리포밍을 하더라도 안정성을 유지할 수 있는 효과를 제공할 수 있다.The present invention also provides a syngas production system for producing syngas by simultaneously modifying natural gas with steam and carbon dioxide using a reactor containing a catalyst for synthesizing a synthesis gas, It is possible to provide an effect of maintaining stability.
도 1은 본 발명의 실시예 및 비교예에 따른 촉매의 이미지를 나타낸 것이다. Fig. 1 shows images of catalysts according to Examples and Comparative Examples of the present invention.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.Before describing the present invention in detail, it is to be understood that the terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the invention, which is defined solely by the appended claims. shall. All technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art unless otherwise stated.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.Throughout this specification and claims, the word "comprise", "comprises", "comprising" means including a stated article, step or group of articles, and steps, , Step, or group of objects, or a group of steps.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.On the contrary, the various embodiments of the present invention can be combined with any other embodiments as long as there is no clear counterpoint. Any feature that is specifically or advantageously indicated as being advantageous may be combined with any other feature or feature that is indicated as being preferred or advantageous. Hereinafter, embodiments of the present invention and effects thereof will be described with reference to the accompanying drawings.
본 발명의 일실시예에 따른 합성가스 제조 시스템은 천연가스를 합성가스로 전환하는 합성가스 제조 시스템으로서, 요구되는 조성의 생성물을 포함하는 합성가스를 얻기 위하여 천연가스에 포함된 반응물들의 몰비를 조절하여 천연가스를 공급하는 천연가스 공급부(10) 및 합성가스 제조용 촉매를 수용하여, 메탄의 수증기 개질반응과 메탄의 이산화탄소 개질반응이 동시에 진행되는 개질 반응기(20)를 포함한다.A syngas production system according to an embodiment of the present invention is a syngas production system for converting natural gas into syngas. The system includes a reactor for regulating the molar ratio of the reactants contained in the natural gas to obtain a synthesis gas containing the product of the required composition And a reforming reactor 20 for receiving a natural gas supply unit 10 for supplying natural gas and a catalyst for synthesis gas production and simultaneously performing a steam reforming reaction of methane and a carbon dioxide reforming reaction of methane.
본 발명의 일실시예에 따른 합성가스 제조용 촉매는 메탄을 포함하는 천연가스로부터 수소 및 일산화탄소를 포함하는 합성가스를 제조하는데 사용되는 촉매로서, 지지물질, 활성촉진물질 및 활성물질을 포함한다. 본 발명에 따른 합성가스 제조용 촉매는 지지물질로서 적어도 마그네슘(Mg) 및 알루미늄(Al)을 포함하며, 활성촉진물질로서 적어도 세륨(Ce)을 포함하고, 활성물질로서 적어도 니켈(Ni)을 포함한다. The catalyst for synthesis gas production according to an embodiment of the present invention is a catalyst used for producing a synthesis gas containing hydrogen and carbon monoxide from a natural gas containing methane and includes a support material, an activity promoting material and an active material. The catalyst for synthesizing a synthesis gas according to the present invention contains at least magnesium (Mg) and aluminum (Al) as a support material, at least cerium (Ce) as an activity promoting material and at least nickel .
본 발명의 일실시예에 따른 합성가스 제조용 촉매는 하기 반응식 1 및 반응식 2로 표현되는 메탄(CH4)을 포함하는 천연가스의 수증기 개질반응(Steam reforming of methane; SRM)과, 메탄(CH4)의 이산화탄소(CO2) 개질반응(Carbon dioxide reforming of methane; CDR)을 동시에 수행하는 혼합 개질반응을 수행하여 일산화탄소(CO) 및 수소(H2)를 포함하는 합성가스를 제조하는데 이용되는 니켈계 촉매이다. Steam reforming of natural gas containing methane (CH 4), expressed to the syngas catalyst for in Scheme 1 and Scheme 2, according to one embodiment of the present invention (Steam reforming of methane; SRM) and methane (CH 4 (CO) and hydrogen (H 2 ) by performing a mixed reforming reaction which simultaneously performs carbon dioxide reforming of methane (CO 2 ) and carbon dioxide reforming of methane Catalyst.
[반응식 1][Reaction Scheme 1]
CH4 + H2O = 3H2 + COCH 4 + H 2 O = 3H 2 + CO
[반응식 2][Reaction Scheme 2]
CH4 + CO2 = 2H2 + 2COCH 4 + CO 2 = 2H 2 + 2CO
상기 합성가스 제조용 촉매는 활성물질이 표면에 1.3 내지 5.6 % 노출된 촉매로서, 다른 측면에서 설명하면 상기 촉매의 g당 흡착되는 수소(H2)의 몰수 측정 시 이론 수소흡착량 대비 측정 수소흡착량이 1.3 내지 5.6 %인 촉매이다. The catalyst for synthesizing the synthetic gas is a catalyst in which the active material is exposed to the surface at 1.3 to 5.6%. In other respects, when measuring the number of moles of hydrogen (H 2 ) adsorbed per g of the catalyst, 1.3 to 5.6%.
상기 합성가스 제조용 촉매는 활성물질의 산화물 및 활성촉진물질의 산화물을 적어도 일부 포함한다. 더욱 구체적으로 상기 활성물질의 전구체 및 활성촉진물질의 전구체에 지지물질을 함침시킨 후 건조 및 소성하여 합성가스 제조용 촉매를 제조함에 있어서 상기 활성물질 및 활성촉진물질이 부분적으로 환원되고 산화됨으로써 촉매 표면에 활성물질인 금속(M1), 활성물질의 산화물(M1O), 활성촉진물질인 금속(M2) 및 활성촉진물질의 산화물(M2O)의 적어도 일부를 노출시키게 된다. 촉매 요소성분의 상호작용에 따라서 활성물질-활성촉진물질(M1-M2), 활성물질-지지물질(M1-S), 활성촉진물질-지지물질(M2-S)의 혼합산화물이 생성될 수 있다. The synthetic gas producing catalyst includes at least a part of an oxide of an active material and an oxide of an activity promoting material. More specifically, in the preparation of a catalyst for synthesizing a synthetic gas by impregnating a precursor of the precursor of the precursor and a precursor of the precursor of the precursor, followed by drying and firing, the precursor of the precursor and the precursor of the precursor are partially reduced and oxidized, At least a part of the metal (M 1 ) as the active material, the oxide (M 1 O) of the active material, the metal (M 2 ) as the activity promoting material and the oxide (M 2 O) as the activation promoting material are exposed. A mixed oxide of an active substance-activity promoting substance (M 1 -M 2 ), an active substance-supporting substance (M 1 -S) and an activity promoting substance-supporting substance (M 2 -S) Lt; / RTI >
상기 합성가스 제조용 촉매는 상기 활성물질인 금속의 적어도 일부가 촉매 표면에 1.3 내지 5.6% 노출되어 상기 표면에 노출된 적어도 일부의 활성촉진물질의 산화물과 접촉하는 것을 일 특징으로 한다. 상기 활성물질인 금속이 촉매 표면에 1.3% 미만으로 노출되는 경우 촉매 활성이 너무 낮은 문제점이 있고, 5.6% 초과하여 노출되는 경우 촉매 활성이 너무 높아 탄소침적과 소결로 인해 촉매 수명이 감소되는 문제점이 있다. Wherein the catalyst for synthesizing the syngas is characterized in that at least a part of the metal as the active material is exposed to the catalyst surface at an amount of 1.3 to 5.6% and is in contact with at least a part of the oxide of the active promoting material exposed on the surface. When the metal as the active material is exposed to less than 1.3% of the surface of the catalyst, the catalytic activity is too low. When the metal is exposed to more than 5.6%, the catalyst activity is too high, have.
상기 합성가스 제조용 촉매는 활성물질인 금속(M1)과 활성물질의 산화물(M1O)의 몰비(M1/M1O)가 0.1 내지 1.3인 것을 일 특징으로 한다. 상기 몰비가 0.1 미만이거나 1.3 초과하는 경우 생성물의 선택도가 낮아 여러 가지 부산물이 생성되는 문제점이 있다. 더욱 바람직하게는 활성물질 금속(M1)과 활성물질 산화물(M1O)의 몰비(M1/M1O)가 0.8 내지 1.0인 것이 좋다.The catalyst for synthesizing the synthesis gas is characterized in that the molar ratio (M 1 / M 1 O) of the metal (M 1 ) as the active material to the oxide (M 1 O) of the active material is 0.1 to 1.3. When the molar ratio is less than 0.1 or more than 1.3, the selectivity of the product is low and various by-products are produced. More preferably, the molar ratio of the active material, the metal (M 1) with the active material oxide (M 1 O) (M 1 / M 1 O) is 0.8 to 1.0.
상기 합성가스 제조용 촉매는 표면에 노출된 활성물질인 금속(M1)과 활성촉진물질인 금속(M2)의 몰비(M1/M2)가 0.2 내지 2인 것을 일 특징으로 한다. 상기 몰비(M1/M2)가 0.2 미만인 경우 반응 중 활성금속으로 산소공급이 어려워 활성이 낮아지는 문제점이 있고, 2 초과하는 경우 활성 촉진제 금속 산화물이 활성금속을 막거나 분산도를 떨어뜨리는 문제점이 있다. 상기 몰비(M1/M2)가 상기 범위인 경우 반응물에 포함되어 있을 수 있는 피독 물질에 대한 촉매 물질의 저항성이 높을 것으로 생각되며 안정성도 높아져 촉매의 수명도 좋다. The catalyst for synthesis gas is characterized in that the molar ratio of one (M 1 / M 2) of the active material of a metal (M 1) and activity promoting material is a metal (M 2) exposed at the surface it is 0.2 to 2. When the molar ratio (M 1 / M 2 ) is less than 0.2, there is a problem that oxygen is difficult to supply to the active metal during the reaction and the activity is lowered. When the mole ratio is more than 2, the metal oxide of the active promoter clogs the active metal . When the molar ratio (M 1 / M 2 ) is in the above range, the resistance of the catalyst material to the poisoning material that may be contained in the reactant is considered to be high, and the stability is high, and the lifetime of the catalyst is also good.
상기 활성촉진물질은 산소 저장 능력을 상승시키는 물질로서 촉매에 포함되어 개질 반응 중에 탄소 침적에 의한 촉매의 비활성화를 억제할 수 있다. The activity promoting material is a substance that increases the oxygen storage ability and is included in the catalyst, so that the deactivation of the catalyst by carbon deposition during the reforming reaction can be suppressed.
상기 합성가스 제조용 촉매는 평균 기공크기가 18.6 내지 33.5nm인 메조 세공(mesopore) 및 공경이 1nm 이하인 마이크로 세공(micropore)을 포함하는 것을 일 특징으로 한다. 바람직하게는 메조 세공/마이크로 세공 부피비가 92 내지 115인 것을 특징으로 한다. 메조 세공/마이크로 세공 부피비가 너무 낮으면 활성물질 금속의 입자가 커 지지체 표면에서의 분산도가 낮아지는 문제점이 있고, 메조 세공/마이크로 세공 부피비가 너무 높으면 활성물질과 활성촉진물질의 산화물의 근접성이 떨어질 수 있다.The catalyst for synthesizing the synthesis gas includes a mesopore having an average pore size of 18.6 to 33.5 nm and a micropore having a pore size of 1 nm or less. And preferably has a mesopore / micropore volume ratio of 92 to 115. If the mesopore / micropore volume ratio is too low, there is a problem that the dispersion of the metal on the surface of the support becomes low due to the large particles of the active material metal. If the mesopore / micropore volume ratio is too high, It can fall.
상기 합성가스 제조용 촉매는 지지물질이 포함된 금속산화물로서 하이드로탈사이트(hydrotalcite) 결정구조의 지지체를 포함한다. 지지물질은 적어도 마그네슘(Mg) 및 알루미늄(Al)을 포함하며, 지지체로 형성되는 경우 MgO/Al2O3 중량비가 3/7 내지 7/3인 하이드로탈사이트 결정구조 형태로서 상기 활성물질 및 활성촉진물질이 결합할 수 있는 지지구조를 제공한다.The catalyst for synthesizing the synthesis gas includes a support having a hydrotalcite crystal structure as a metal oxide containing a support material. The support material is at least magnesium (Mg) and aluminum comprises (Al), if the support is formed of a MgO / Al 2 O 3 weight ratio is 3/7 to 7/3 of the hydrotalcite crystal structure as the active substance and the active form Thereby providing a supporting structure to which the promoting substance can bind.
상기 지지물질이 포함된 금속산화물의 결정크기는 14.4 내지 64.3nm 이다. 금속산화물의 결정크기에 따라서 표면에 존재하는 산점과 염기점의 농도가 변화하는데, 결정크기가 14.4nm 미만인 경우 총 염기점/산점의 농도가 높아져서 촉매 반응활성에 부정적인 영향을 끼치는 문제점이 있고, 64.3nm 초과하는 경우 총 염기점/산점의 농도가 낮아져서 반응 중 탄소침적을 야기하는 문제점이 있다. The crystal size of the metal oxide containing the support material is 14.4 to 64.3 nm. When the crystal size is less than 14.4 nm, the concentration of the total base point / acid point is increased and the catalytic activity is negatively affected. 64.3 nm, there is a problem that the concentration of the total base point / acid point is lowered, resulting in carbon deposition during the reaction.
상기 합성가스 제조용 촉매는 표면에 노출된 활성물질인 금속 및 활성촉진물질의 금속산화물 산소 저장량이 60 내지 70 μmol O2/gcat 인 적어도 2이상의 홀을 포함하는 형태로 성형된 촉매이다. 상기 합성가스 제조용 촉매가 수용된 반응기를 이용하여 천연가스를 수증기와 이산화탄소로 동시에 개질하여 합성가스를 제조하는 합성가스 제조 시스템을 제공함으로써, 산소 저장 능력이 좋기 때문에 탄소 침적에 강하여 복합 리포밍을 하더라도 안정성을 유지할 수 있는 효과를 제공할 수 있다. 바람직하게는 4-hole 형태로 성형된 것이 좋다. The catalyst for synthesizing a synthetic gas is a catalyst which is formed into a form including at least two or more holes having a metal oxide storage amount of 60 to 70 μmol O 2 / g cat as a metal and an activity promoting material exposed to the surface. The present invention provides a syngas production system for producing syngas by simultaneously modifying natural gas with steam and carbon dioxide using a reactor containing the catalyst for synthesizing a synthetic gas, Can be maintained. Preferably, it is molded in a 4-hole form.
본 발명의 일실시예에 따른 합성가스 제조용 촉매의 제조방법은 먼저 적어도 마그네슘(Mg) 및 알루미늄(Al)을 포함하는 지지물질로 형성되는 지지체에 적어도 세륨(Ce)을 포함하는 활성촉진물질의 전구체를 담지하고 동시에 또는 차례로 적어도 니켈(Ni)을 포함하는 활성물질의 전구체를 담지한 혼합물을 제조한다. 이후 100 내지 150℃에서 건조시켜 파우더 형태의 촉매를 얻는다. 물과 상기 파우더 형태의 촉매를 혼합하여 볼밀 작업(ball-milling)을 9 내지 12시간 진행하고, 볼밀된 파우더를 이용하여 스프레이 드라이(spray dry) 공정을 진행한 후 구형의 스프레이 드라이된 파우더를 이용하여 적어도 2 개 이상의 홀(hole)을 갖는 촉매 형상체를 수득한다. 수득된 성형 촉매를 950 내지 1050℃의 온도에서 소성함으로써 상기 물성을 갖는 합성가스 제조용 촉매를 제조할 수 있다.A method for preparing a catalyst for synthesis gas production according to an embodiment of the present invention comprises first preparing a precursor of an activity promoting material containing at least cerium (Ce) on a support formed of a support material containing at least magnesium (Mg) and aluminum (Al) And at the same time or in turn carrying a precursor of an active material containing at least nickel (Ni). And then dried at 100 to 150 ° C to obtain a powdery catalyst. The water and the catalyst of the powder type are mixed and ball-milling is carried out for 9 to 12 hours, followed by a spray drying process using a ball milled powder, followed by using a spherical spray-dried powder Thereby obtaining a catalyst-shaped body having at least two or more holes. The obtained shaped catalyst is calcined at a temperature of 950 to 1050 캜 to produce a catalyst for synthesizing a synthetic gas having the above physical properties.
더욱 구체적으로 설명하면, 지지체로서 MgO/Al2O3 중량비가 3/7 내지 7/3인 하이드로탈사이트 구조의 Mg-Al 금속산화물을 이용하여 함침법으로 세륨전구체를 이용하여 Ce 금속이 제조된 전체 촉매 무게 대하여 3 내지 20 중량%가 되도록 하고 동시에 니켈 전구체를 이용하여 제조된 전체 촉매 무게 대비 5 내지 20 중량%를 담지한 혼합물을 제조한다. 이후 진공건조기를 이용하여 50 내지 100℃에서 10 내지 15시간 교반한 후에 용매인 물을 제거하고 100 내지 150℃에서 24시간 이상 건조시켜 파우더 형태의 촉매를 얻는다. 물과 상기 파우더 형태의 촉매를 혼합하여 볼밀 작업(ball-milling)을 9 내지 12시간 진행하고, 볼밀된 파우더를 이용하여 스프레이 드라이(spray dry) 공정을 진행한 후 구형의 스프레이 드라이된 파우더를 이용하여 적어도 2 개 이상의 홀(hole)을 갖는 촉매 형상체를 수득한다. 수득된 성형 촉매를 950 내지 1050℃의 온도에서 5 내지 8시간 동안 소성함으로써 상기 물성을 갖는 합성가스 제조용 촉매를 제조할 수 있다.More specifically, a Mg-Al metal oxide having a hydrotalcite structure having a MgO / Al 2 O 3 weight ratio of 3/7 to 7/3 as a support is used to prepare a Ce metal by impregnation using a cerium precursor A mixture of 3 to 20% by weight based on the total catalyst weight and 5 to 20% by weight based on the weight of the total catalyst prepared using the nickel precursor is prepared. Thereafter, the mixture is stirred at 50 to 100 ° C for 10 to 15 hours by using a vacuum drier, then water as a solvent is removed and dried at 100 to 150 ° C for 24 hours or more to obtain a powdery catalyst. The water and the catalyst of the powder type are mixed and ball-milling is carried out for 9 to 12 hours, followed by a spray drying process using a ball milled powder, followed by using a spherical spray-dried powder Thereby obtaining a catalyst-shaped body having at least two or more holes. And the obtained shaped catalyst is calcined at a temperature of 950 to 1050 캜 for 5 to 8 hours to prepare a synthetic gas producing catalyst having the above physical properties.
본 발명의 일실시예에 따른 합성가스 제조 시스템은 천연가스를 합성가스로 전환하는 합성가스 제조 시스템으로서, 상기 천연가스 공급부(10)는 요구되는 조성의 생성물을 포함하는 합성가스를 얻기 위하여 천연가스에 포함된 반응물들의 몰비를 조절하여 천연가스를 공급한다.A syngas production system according to an embodiment of the present invention is a syngas production system for converting natural gas to syngas. The natural gas supply unit 10 includes a natural gas supply unit 10 for supplying a natural gas To control the molar ratio of the reactants contained in the gas.
상기 천연가스 공급부(10)는 최적화된 천연가스의 조성으로 공급하기 위한 전처리 공정이 포함되어 이루어질 수 있다. 천연가스 공급부를 통해 공급되는 천연가스의 조성은 CH4, CO2, H2O 및 N2를 포함하고, CH4/CO2/H2O/N2의 몰비가 1 / 0.3 ~ 0.6 / 1.0 ~ 2.0 / 0.8 ~ 1.2 의 범위를 유지하도록 공급된다. The natural gas supply unit 10 may include a pretreatment process for supplying the natural gas with an optimized natural gas composition. The composition of the natural gas supplied through the natural gas supply unit is CH 4 , CO 2 , H 2 O and N 2 and is supplied such that the molar ratio of CH 4 / CO 2 / H 2 O / N 2 is in the range of 1 / 0.3-0.6 / 1.0-2.0 / 0.8-1.2.
상기 천연가스 공급부(10)는 개질 반응기(20)에 수용된 촉매 1kg 에 대하여 천연가스에 포함된 메탄(CH4)이 시간당 공급되는 부피를 기준으로 4000 내지 6000 L/kgcat/hr의 속도로 개질 반응기로 공급되도록 한다. 개질 반응기의 크기 및 촉매의 수용량에 따라 상기 공급속도는 비례하여 증가할 수 있다. The natural gas supply unit 10 is connected to the reforming reactor 20 at a rate of 4,000 to 6,000 L / kg cat / hr based on the volume of methane (CH 4 ) . Depending on the size of the reforming reactor and the capacity of the catalyst, the feed rate may increase proportionally.
상기 조성의 천연가스가 공급부(10)를 통해 본 발명에 따른 합성가스 제조용 촉매가 수용된 개질 반응기(20)에 공급된다. 개질 반응기(10)는 반응온도 및 반응압력 등 반응 조건을 조절하여 메탄의 수증기 개질반응과 메탄의 이산화탄소 개질반응이 동시에 진행되어 요구되는 조성의 합성가스가 제조되도록 한다. 개질 반응기(20)는 반응온도 700 ∼ 900 ℃와 반응 압력 0.5 ∼ 20 atm을 유지한다.The natural gas of the above composition is supplied to the reforming reactor 20 containing the catalyst for producing synthesis gas according to the present invention through the supply portion 10. In the reforming reactor 10, the reaction conditions such as the reaction temperature and the reaction pressure are adjusted so that the steam reforming reaction of methane and the carbon dioxide reforming reaction of methane proceed simultaneously, thereby producing a synthesis gas having a desired composition. The reforming reactor 20 maintains a reaction temperature of 700 to 900 DEG C and a reaction pressure of 0.5 to 20 atm.
본 발명에 따른 합성가스 제조용 촉매를 이용하여 합성가스를 제조하는 경우 CH4 전환율이 93% 이상이며, 상대적으로 저온(700 내지 800 ℃)에서 반응이 일어나는 경우에도 CH4 전환율이 72% 이상으로 안정성을 유지하는 것을 후술할 실험예에 의해 확인할 수 있다. When the synthesis gas is produced using the catalyst for synthesizing the synthesis gas according to the present invention, the CH 4 conversion rate is 93% or more, and even when the reaction occurs at a relatively low temperature (700 to 800 ° C), the CH 4 conversion rate is 72% Can be confirmed by an experimental example to be described later.
또한 천연가스 공급부를 통해 공급되는 천연가스의 조성을 탄소 침적 조건( CH4, CO2, 및 N2를 포함하고, CH4/CO2/N2의 몰비가 1 / 0.8 ~ 1.2 / 0.8 ~ 1.2 의 범위를 유지하도록 공급)으로 하여 반응시키는 경우 반응 25시간이 경과 하더라도 CH4 전환율이 87.1% 이상이며, 상대적으로 저온(700 내지 800 ℃)에서 반응이 일어나는 경우 반응 25시간이 경과 하더라도 CH4 전환율이 79.5% 이상으로 안정성을 유지하는 것을 후술할 실험예에 의해 확인할 수 있다. In addition, the composition of the natural gas supplied through the natural gas supply unit can be controlled by the carbon deposition conditions (including CH 4 , CO 2 , and N 2 , and the molar ratio of CH 4 / CO 2 / N 2 being 1 / 0.8-1.2 / 0.8-1.2 Although the reaction 25 time when reacting to the feed) to maintain a range of CH and 4, the conversion rate is more than 87.1%, if the reaction at a relatively low temperature (700 to 800 ℃) to take place even when the reaction 25 time, CH 4 conversion is The stability can be confirmed to be 79.5% or more by the following experimental examples.
또한 본 발명에 따른 합성가스 제조용 촉매는 산소 저장 능력이 좋기 때문에 상기 탄소 침적 조건에서 반응시키더라도 탄소 침적에 강하여 복합 리포밍 시 안정성을 유지할 수 있는 효과를 제공하며 탄소 침적량이 매우 낮은 것을 후술할 실험예에 의해 확인할 수 있다. Also, since the catalyst for synthesizing a synthetic gas according to the present invention has a good oxygen storage capacity, it is resistant to carbon deposition even when it is reacted under the carbon deposition conditions, thereby maintaining stability during multiple reforming. This can be confirmed by an example.
실시예 1 - 합성가스 제조용 촉매의 제조Example 1 - Preparation of catalyst for synthesis gas production
(1) 실시예 1(1) Example 1
먼저, 합성가스 제조용 촉매의 지지체로서 MgO/Al2O3 중량비가 3/7 인 하이드로탈사이트 구조의 Mg-Al 금속산화물인 PURAL MG30(sasol사 제품, 비표면적은 최소 250 m2/g 이상임, 이하, "Mg-Al"이라 함)을 이용하여 함침법으로 세륨아세테이트를 이용하여 Ce 금속이 전체 제조된 촉매 무게 대비 6 중량%가 되도록 하고 동시에 니켈 전구체로서 니켈나이트레이트(Ni(NO3)2·6H2O)를 이용하여 전체 제조된 촉매 무게 대비 15 중량%를 담지하고 진공건조기를 이용하여 70 ℃에서 12시간 교반한 후에 용매인 물을 제거하고 100 ℃의 오븐에서 24시간 이상 건조하였다. 이후, 물과 파우더를 혼합하여 ball-milling 작업을 10시간 진행하고, Ball-milled 파우더를 이용하여 spray dry 공정을 진행하였다. 이어 구형의 spray-dried 파우더를 이용하여 4-hole 형태의 촉매를 성형하고, 1000 ℃에 6시간동안 소성하여 최종 촉매인 Ni-Ce/Mg-Al를 제조하였다. First, PURAL MG30 (a product of Sasol, having a specific surface area of at least 250 m 2 / g is Mg-Al metal oxide having a hydrotalcite structure with a weight ratio of MgO / Al 2 O 3 of 3/7 as a support of a catalyst for synthesis gas synthesis, hereinafter, "Mg-Al" means any) to use and also by using the cerium acetate precipitation and such that 6 wt% of the catalyst weight producing a Ce metal whole at the same time the nickel as nickel precursor nitrate (Ni (NO 3) 2 6H 2 O), and the mixture was stirred at 70 ° C for 12 hours using a vacuum drier. Then, water as a solvent was removed and dried in an oven at 100 ° C for over 24 hours. Then, the ball-milling process was performed for 10 hours by mixing the water and the powder, and the spray-drying process was performed using the ball-milled powder. A 4-hole catalyst was formed by using a spherical spray-dried powder and calcined at 1000 ° C for 6 hours to prepare a final catalyst, Ni-Ce / Mg-Al.
(2) 비교예 1(2) Comparative Example 1
먼저, 합성가스 제조용 촉매의 지지체로서 MgO/Al2O3 중량비가 3/7 인 하이드로탈사이트 구조의 Mg-Al 금속산화물인 PURAL MG30(sasol사 제품, 비표면적은 최소 250 m2/g 이상임, 이하, "Mg-Al"이라 함)을 이용하여 함침법으로 세륨아세테이트를 이용하여 Ce 금속이 전체 제조된 촉매 무게 대비 6 중량%가 되도록 하고 동시에 니켈 전구체로서 니켈나이트레이트(Ni(NO3)2·6H2O)를 이용하여 전체 제조된 촉매 무게 대비 15 중량%를 담지하고 진공건조기를 이용하여 70 ℃에서 12시간 교반한 후에 용매인 물을 제거하고 100 ℃의 오븐에서 24시간 이상 건조하였다. 이후, 건조된 촉매 파우더를 이용하여 4-hole 형태의 촉매를 성형하고, 1100 ℃에 6시간동안 소성하여 최종 촉매인 Ni-Ce/Mg-Al를 제조하였다.First, PURAL MG30 (a product of Sasol, having a specific surface area of at least 250 m 2 / g is Mg-Al metal oxide having a hydrotalcite structure with a weight ratio of MgO / Al 2 O 3 of 3/7 as a support of a catalyst for synthesis gas synthesis, hereinafter, "Mg-Al" means any) to use and also by using the cerium acetate precipitation and such that 6 wt% of the catalyst weight producing a Ce metal whole at the same time the nickel as nickel precursor nitrate (Ni (NO 3) 2 6H 2 O), and the mixture was stirred at 70 ° C for 12 hours using a vacuum drier. Then, water as a solvent was removed and dried in an oven at 100 ° C for over 24 hours. Then, a catalyst of 4-hole type was formed using the dried catalyst powder and calcined at 1100 ° C for 6 hours to prepare a final catalyst, Ni-Ce / Mg-Al.
(3) 비교예 2(3) Comparative Example 2
먼저, 합성가스 제조용 촉매의 지지체로서 MgO/Al2O3 중량비가 3/7 인 하이드로탈사이트 구조의 Mg-Al 금속산화물인 PURAL MG30(sasol사 제품, 비표면적은 최소 250 m2/g 이상임, 이하, "Mg-Al"이라 함)을 이용하여 함침법으로 세륨아세테이트를 이용하여 Ce 금속이 전체 제조된 촉매 무게 대비 6 중량%가 되도록 하고 동시에 니켈 전구체로서 니켈나이트레이트(Ni(NO3)2·6H2O)를 이용하여 전체 제조된 촉매 무게 대비 15 중량%를 담지하고 진공건조기를 이용하여 70 ℃에서 12시간 교반한 후에 용매인 물을 제거하고 100 ℃의 오븐에서 24시간 이상 건조하였다. 이후, 물과 파우더를 혼합하여 ball-milling 작업을 10시간 진행하고, Ball-milled 파우더를 이용하여 spray dry 공정을 진행하였다. 구형의 spray-dried 파우더를 이용하여 4-hole 형태의 촉매를 성형하고, 1200 ℃에 6시간동안 소성하여 최종 촉매인 Ni-Ce/Mg-Al를 제조하였다.First, PURAL MG30 (a product of Sasol, having a specific surface area of at least 250 m 2 / g is Mg-Al metal oxide having a hydrotalcite structure with a weight ratio of MgO / Al 2 O 3 of 3/7 as a support of a catalyst for synthesis gas synthesis, hereinafter, "Mg-Al" means any) to use and also by using the cerium acetate precipitation and such that 6 wt% of the catalyst weight producing a Ce metal whole at the same time the nickel as nickel precursor nitrate (Ni (NO 3) 2 6H 2 O), and the mixture was stirred at 70 ° C for 12 hours using a vacuum drier. Then, water as a solvent was removed and dried in an oven at 100 ° C for over 24 hours. Then, the ball-milling process was performed for 10 hours by mixing the water and the powder, and the spray-drying process was performed using the ball-milled powder. The final catalyst, Ni-Ce / Mg-Al, was prepared by forming a 4-hole catalyst using a spherical spray-dried powder and calcining at 1200 ° C for 6 hours.
(4) 비교예 3(4) Comparative Example 3
먼저, 비교예에 따른 촉매의 지지체로서 MgO/Al2O3 중량비가 3/7 인 하이드로탈사이트 구조의 Mg-Al 금속산화물인 PURAL MG30(sasol사 제품, 비표면적은 최소 250 m2/g 이상임, 이하, "Mg-Al-O"이라 함)을 이용하여 함침법으로 세륨아세테이트를 이용하여 Ce 금속이 전체 제조된 촉매 무게 대비 6 중량%가 되도록 하고 동시에 니켈 전구체로서 니켈나이트레이트(Ni(NO3)2·6H2O)를 이용하여 전체 제조된 촉매 무게 대비 15 중량%를 담지하고 진공건조기를 이용하여 70 ℃에서 12시간 교반한 후에 용매인 물을 제거하고 100 ℃의 오븐에서 24시간 이상 건조하였다. 이후에 건조한 파우더를 이용하여 1-hole의 펠렛을 성형하고, 이 때 수득된 촉매 성형체의 성형 밀도가 1.57g/cc 되도록 하여, 이후 1000 ℃에 6시간동안 소성하여 최종 촉매인 Ni-Ce/Mg-Al를 제조하였다.First, as a support of the catalyst according to the comparative example, PURAL MG30 (product of Sasol) having a hydrotalcite structure MgO Al metal oxide having a MgO / Al 2 O 3 weight ratio of 3/7 and a specific surface area of at least 250 m 2 / g (Hereinafter, referred to as " Mg-Al-O ") by means of impregnation method using cerium acetate so that the Ce metal is 6 wt% 3 ) 2 .6H 2 O), and the mixture was stirred at 70 ° C for 12 hours using a vacuum drier. Thereafter, water as a solvent was removed, and the mixture was heated in an oven at 100 ° C for 24 hours or more And dried. Thereafter, pellets of 1-hole were formed using the dried powder, and the obtained catalyst compact was sintered at 1000 ° C for 6 hours to obtain a compacted compact having a compacting density of 1.57 g / cc. The final catalyst, Ni-Ce / Mg -Al.
(5) 비교예 4(5) Comparative Example 4
먼저, 비교예에 따른 촉매의 지지체로서 MgO/Al2O3 중량비가 3/7 인 하이드로탈사이트 구조의 Mg-Al 금속산화물인 PURAL MG30(sasol사 제품, 비표면적은 최소 250 m2/g 이상임, 이하, "Mg-Al-O"이라 함)을 이용하여 함침법으로 세륨아세테이트를 이용하여 Ce 금속이 전체 제조된 촉매 무게 대비 6 중량%가 되도록 하고 동시에 니켈 전구체로서 니켈나이트레이트(Ni(NO3)2·6H2O)를 이용하여 전체 제조된 촉매 무게 대비 15 중량%를 담지하고 진공건조기를 이용하여 70 ℃에서 12시간 교반한 후에 용매인 물을 제거하고 100 ℃의 오븐에서 24시간 이상 건조한 후에 850 ℃에 6시간동안 소성하여 최종 촉매인 Ni-Ce/Mg-Al를 제조하였다.First, as a support of the catalyst according to the comparative example, PURAL MG30 (product of Sasol) having a hydrotalcite structure MgO Al metal oxide having a MgO / Al 2 O 3 weight ratio of 3/7 and a specific surface area of at least 250 m 2 / g (Hereinafter, referred to as " Mg-Al-O ") by means of impregnation method using cerium acetate so that the Ce metal is 6 wt% 3 ) 2 .6H 2 O), and the mixture was stirred at 70 ° C for 12 hours using a vacuum drier. Thereafter, water as a solvent was removed, and the mixture was heated in an oven at 100 ° C for 24 hours or more Dried and then calcined at 850 ° C for 6 hours to prepare a final catalyst, Ni-Ce / Mg-Al.
상기 실시예 및 비교예를 통해 제조된 촉매의 이미지를 도 1에 나타내었다. FIG. 1 shows an image of the catalyst prepared through the above Examples and Comparative Examples.
실험예 1 - 합성가스 제조용 촉매의 물성 측정Experimental Example 1 - Measurement of physical properties of a catalyst for synthesis gas production
촉매의 비표면적을 포함한 물리적 특성값을 분석하기 위해 Surface Area Analyzer (BEL Sorp Mini Ⅱ, Japan., Inc)를 사용하였다. 200℃, 진공상태에서 시료 표면의 불순물과 수분을 제거하기 위한 전처리과정을 거친 후 77 K의 낮은 온도에서 질소를 흡·탈착시키며 그 양을 측정하여 촉매의 비표면적과 세공의 물리적인 특성값을 측정하였다. Surface area analyzer (BEL Sorp Mini II, Japan, Inc) was used to analyze the physical properties including the specific surface area of the catalyst. After pre-treatment to remove impurities and moisture from the surface of the sample at 200 ° C and vacuum, the nitrogen was adsorbed and desorbed at a low temperature of 77 K. The amount of the nitrogen was measured to determine the specific surface area of the catalyst and the physical properties Respectively.
산소 저장량을 분석하기 위해 ASAP 2020 (micromeritics) 장비를 사용하였다. 산소 저장량 측정법은 750oC에서 수소를 환원하고 이후 온도를 400oC로 하강시킨 이후 400oC에서 산소 소모량을 측정하여, Ni의 NiO 으로의 산소소모량과 세륨의 산소보유량을 측정하였다. 이후 다시 환원 과정을 거쳐서 400oC에서 산소 소모량을 측정함으로써, Ni의 NiO 으로의 산소소모량만을 측정하여, 두 번의 산소 소모량 차이를 세륨의 산소 보유량으로 계산하였다. 기타 물성 측정 결과를 하기 표 1에 나타내었다.
An ASAP 2020 (micromeritics) instrument was used to analyze oxygen storage. Oxygen storage amount measurement is 750 o C in a hydrogen reduction and by measuring the oxygen consumption at 400 o C] After lowering the temperature after a 400 o C, to measure the oxygen reserves of oxygen consumption and cerium to the Ni NiO. After the reduction process, the oxygen consumption at NiO was measured at 400 ° C, and the difference in oxygen consumption between Ni and NiO was calculated as the oxygen content of cerium. Other physical properties measurement results are shown in Table 1 below.
실시예 1Example 1 | 비교예 1Comparative Example 1 | 비교예 2Comparative Example 2 | 비교예 3Comparative Example 3 | 비교예 4Comparative Example 4 | |
촉매 성형 여부Whether the catalyst is formed | 성형O4-holeMolded O4-hole | 성형O4-holeMolded O4-hole | 성형O4-holeMolded O4-hole | 성형O1-holeMolded O1-hole | 성형XpowderMolding Xpowder |
Ni/Ce(mol/mol)Ni / Ce (mol / mol) | 0.2~20.2 to 2 | 1.8~2.81.8 to 2.8 | 2~32 to 3 | 0.1~10.1 to 1 | 0.05~3.00.05 to 3.0 |
Ni/NiO(mol/mol)Ni / NiO (mol / mol) | 0.1~1.30.1 to 1.3 | 0.02~0.30.02 to 0.3 | 0.02~0.080.02 to 0.08 | 1.5~2.71.5 to 2.7 | 0.001~0.050.001 to 0.05 |
압축강도(Mpa)Compressive strength (Mpa) | 39.5239.52 | 54.854.8 | 72.272.2 | 39.639.6 | -- |
비표면적(m2/g)Specific surface area (m 2 / g) | 55.1955.19 | 10.8010.80 | 3.333.33 | 33.133.1 | 8585 |
마이크로 세공 표면적(m2/g)Micropore surface area (m 2 / g) | 6.426.42 | 2.002.00 | 0.700.70 | 5.695.69 | 7.227.22 |
총기공량(cc/g)Fire capacity (cc / g) | 0.2750.275 | 0.0790.079 | 0.0250.025 | 0.155 0.155 | 0.210.21 |
평균기공 크기(nm)Average pore size (nm) | 18.6518.65 | 32.6532.65 | 33.4633.46 | 19.8819.88 | 11.511.5 |
H2 화학흡착량(μmol H2/gcat)H 2 Chemical adsorption amount (μmol H 2 / g cat ) | 40.440.4 | 5.40 5.40 | 2.482.48 | 30.930.9 | 33.533.5 |
Ni 분산도 (%)Ni dispersion (%) | 3.163.16 | 0.84 0.84 | 0.190.19 | 2.372.37 | 2.632.63 |
CO 화학 흡착량 (μmol CO/gcat)CO chemisorption (μmol CO / g cat ) | 64.964.9 | 5.45.4 | 2.192.19 | 48.948.9 | 53.4553.45 |
CO/H2비CO / H 2 ratio | 1.611.61 | 0.980.98 | 0.880.88 | 1.2171.217 | 1.341.34 |
총 산점(μmol NH3/gcat)Total acid sites (μmol NH 3 / g cat ) | 191.0191.0 | 48.05 48.05 | 27.227.2 | 145.1145.1 | 179.6179.6 |
총 염기점 (μmol CO2/gcat)Total base point (μmol CO 2 / g cat ) | 177.0177.0 | 33.2333.23 | 15.615.6 | 34.9634.96 | 142.6142.6 |
총 환원양(μmol H2/gcat)Total reduction amount (μmol H 2 / g cat ) | 1323.31323.3 | 1189.71189.7 | 1168.81168.8 | 1280.81280.8 | 1309.41309.4 |
총 O2 흡착량(μmol O2/gcat)Total O 2 adsorption (μmol O 2 / g cat ) | 721.6721.6 | 258.7258.7 | 182.1182.1 | 558.1558.1 | 581.4581.4 |
O2 저장량* (μmol O2/gcat)O 2 storage amount * (μmol O 2 / g cat ) | 6464 | 8.968.96 | 00 | 33.233.2 | 39.239.2 |
* (산소 저장량) = (750oC에서 촉매 환원 후 400oC 에서의 총 O2 흡착량)-(400oC에서 촉매 재 환원 400oC 에서의 총 O2 흡착량)* (Oxygen storage amount) = (750 o Total O 2 adsorption amount of from 400 o C after the catalytic reduction at C) - (total O 2 adsorption amount of the catalyst at 400 o C in the re-reduced to 400 o C)
실시예 2 - 합성가스 제조 시스템Example 2 Synthesis Gas Production System
공급부에서 반응물로는 CH4 : CO2 : H2O : N2 의 몰 비를 1 : 0.4 : 1.6 : 1의 비율로 고정하여 반응기로 주입하여 개질반응을 수행하였다. 반응을 수행하기 전에 촉매 0.5 g과 희석제인 알파-알루미나 0.5g을 균일하게 혼합하여 개질반응기에 장입하고 700 ℃의 수소(5 부피%H2/N2) 분위기 하에서 3시간 환원 처리한 후에 반응온도 730 ℃ 또는 830 ℃, 반응압력 0.5 MPa, 공간속도 5000 L(CH4)/kgcat/hr의 조건에서 반응을 수행하였으며, 전환율 측정 결과를 하기 표 2(반응 온도 730℃) 및 표 3(반응온도 830℃)에 나타내었다. The molar ratio of CH 4 : CO 2 : H 2 O: N 2 as a reactant was fixed at a ratio of 1: 0.4: 1.6: 1 as a reactant in the feed part, and the reforming reaction was carried out by injecting into the reactor. Before carrying out the reaction, 0.5 g of the catalyst and 0.5 g of alpha-alumina as a diluent were uniformly mixed, charged into a reforming reactor, reduced under hydrogen atmosphere (5 vol% H 2 / N 2 ) at 700 ° C for 3 hours, The reaction was carried out at 730 ° C. or 830 ° C. under a reaction pressure of 0.5 MPa and a space velocity of 5000 L (CH 4 ) / kgcat / hr. The conversion ratios were measured in the following Table 2 (reaction temperature 730 ° C.) 830 캜).
실시예 1Example 1 | 비교예 1Comparative Example 1 | 비교예 2Comparative Example 2 | 비교예 3Comparative Example 3 | 비교예 4Comparative Example 4 | ||||||
CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | |
0시간0 hours | 72.1 72.1 | -13.1 -13.1 | 67.8 67.8 | -14.4-14.4 | 63.2 63.2 | -15.1 -15.1 | 69.4 69.4 | -13.9 -13.9 | 71.2 71.2 | -13.4 -13.4 |
5시간5 hours | 72.0 72.0 | -13.0 -13.0 | 67.6 67.6 | -14.3 -14.3 | 63.1 63.1 | -15.0 -15.0 | 69.5 69.5 | -14.0 -14.0 | 71.1 71.1 | -13.3 -13.3 |
10시간10 hours | 72.1 72.1 | -13.1 -13.1 | 67.8 67.8 | -14.3 -14.3 | 63.2 63.2 | -15.2 -15.2 | 69.5 69.5 | -14.0 -14.0 | 71.3 71.3 | -13.5 -13.5 |
15시간15 hours | 72.0 72.0 | -13.0 -13.0 | 67.7 67.7 | -14.2 -14.2 | 63.1 63.1 | -14.9 -14.9 | 69.3 69.3 | -13.7 -13.7 | 71.1 71.1 | -13.4 -13.4 |
20시간20 hours | 72.2 72.2 | -13.2 -13.2 | 67.9 67.9 | -14.5 -14.5 | 63.0 63.0 | -15.2 -15.2 | 69.4 69.4 | -13.9 -13.9 | 71.1 71.1 | -13.4 -13.4 |
25시간25 hours | 72.2 72.2 | -13.3 -13.3 | 67.9 67.9 | -14.5 -14.5 | 63.3 63.3 | -15.2 -15.2 | 69.5 69.5 | -14.0 -14.0 | 71.2 71.2 | -13.5 -13.5 |
30시간30 hours | 72.0 72.0 | -13.2 -13.2 | 67.7 67.7 | -14.5 -14.5 | 63.4 63.4 | -15.2 -15.2 | 69.5 69.5 | -14.0 -14.0 | 71.3 71.3 | -13.6 -13.6 |
35시간35 hours | 72.3 72.3 | -13.0 -13.0 | 67.9 67.9 | -14.3 -14.3 | 63.3 63.3 | -15.2 -15.2 | 69.5 69.5 | -13.9 -13.9 | 71.4 71.4 | -13.4 -13.4 |
40시간40 hours | 72.2 72.2 | -13.2 -13.2 | 67.6 67.6 | -14.5 -14.5 | 63.0 63.0 | -15.0 -15.0 | 69.2 69.2 | -13.8 -13.8 | 71.1 71.1 | -13.4 -13.4 |
45시간45 hours | 72.2 72.2 | -13.2 -13.2 | 67.9 67.9 | -14.5 -14.5 | 63.3 63.3 | -15.2 -15.2 | 69.3 69.3 | -14.0 -14.0 | 71.1 71.1 | -13.5 -13.5 |
50시간50 hours | 72.2 72.2 | -13.2 -13.2 | 67.9 67.9 | -14.5 -14.5 | 63.3 63.3 | -15.0 -15.0 | 69.4 69.4 | -13.8 -13.8 | 71.2 71.2 | -13.4 -13.4 |
구분division | 실시예 1Example 1 | 비교예 1Comparative Example 1 | 비교예 2Comparative Example 2 | 비교예 3Comparative Example 3 | 비교예 4Comparative Example 4 | |||||
CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | |
0시간0 hours | 93.3 93.3 | 18.5 18.5 | 87.7 87.7 | 16.9 16.9 | 82.2 82.2 | 16.2 16.2 | 89.8 89.8 | 17.6 17.6 | 92.1 92.1 | 18.2 18.2 |
5시간5 hours | 93.4 93.4 | 18.4 18.4 | 87.6 87.6 | 17.0 17.0 | 82.3 82.3 | 16.1 16.1 | 89.7 89.7 | 17.6 17.6 | 92.0 92.0 | 18.3 18.3 |
10시간10 hours | 93.4 93.4 | 18.4 18.4 | 87.7 87.7 | 16.9 16.9 | 82.3 82.3 | 16.1 16.1 | 89.9 89.9 | 17.4 17.4 | 92.1 92.1 | 18.1 18.1 |
15시간15 hours | 93.2 93.2 | 18.7 18.7 | 87.6 87.6 | 17.0 17.0 | 82.1 82.1 | 16.4 16.4 | 89.7 89.7 | 17.6 17.6 | 92.0 92.0 | 18.4 18.4 |
20시간20 hours | 93.3 93.3 | 18.5 18.5 | 87.8 87.8 | 16.8 16.8 | 82.2 82.2 | 16.2 16.2 | 89.7 89.7 | 17.5 17.5 | 91.9 91.9 | 18.1 18.1 |
25시간25 hours | 93.4 93.4 | 18.4 18.4 | 87.8 87.8 | 16.7 16.7 | 82.3 82.3 | 16.1 16.1 | 89.8 89.8 | 17.5 17.5 | 92.2 92.2 | 18.1 18.1 |
30시간30 hours | 93.4 93.4 | 18.4 18.4 | 87.6 87.6 | 16.8 16.8 | 82.3 82.3 | 16.1 16.1 | 89.9 89.9 | 17.4 17.4 | 92.3 92.3 | 18.1 18.1 |
35시간35 hours | 93.4 93.4 | 18.5 18.5 | 87.9 87.9 | 17.0 17.0 | 82.3 82.3 | 16.2 16.2 | 90.0 90.0 | 17.5 17.5 | 92.2 92.2 | 18.1 18.1 |
40시간40 hours | 93.1 93.1 | 18.6 18.6 | 87.8 87.8 | 16.8 16.8 | 82.0 82.0 | 16.3 16.3 | 89.7 89.7 | 17.5 17.5 | 91.9 91.9 | 18.3 18.3 |
45시간45 hours | 93.2 93.2 | 18.4 18.4 | 87.8 87.8 | 16.8 16.8 | 82.1 82.1 | 16.1 16.1 | 89.7 89.7 | 17.4 17.4 | 92.2 92.2 | 18.1 18.1 |
50시간50 hours | 93.3 93.3 | 18.6 18.6 | 87.8 87.8 | 16.8 16.8 | 82.2 82.2 | 16.3 16.3 | 89.8 89.8 | 17.5 17.5 | 92.2 92.2 | 18.4 18.4 |
실시예 3 - 탄소 침적 조건 합성가스 제조 시스템Example 3 - Carbon Deposition Conditions Synthetic gas production system
공급부에서 반응물로는 CH4 : CO2 : N2의 몰 비를 1 : 1 : 1 의 비율로 고정하여 반응기로 주입하여 개질반응을 수행하였다. 반응을 수행하기 전에 촉매 0.5 g과 희석제인 알파-알루미나 0.5g을 균일하게 혼합하여 개질반응기에 장입하고 700 ℃의 수소(5 부피%H2/N2) 분위기 하에서 3시간 환원 처리한 후에 반응온도 730 ℃ 또는 830 ℃, 반응압력 0.5 MPa, 공간속도 5000 L(CH4)/kgcat/hr의 조건에서 반응을 수행하였으며, 전환율 측정 결과를 하기 표 4(반응 온도 730℃) 및 표 5(반응온도 830℃)에 나타내었다. The reforming reaction was carried out by injecting the reactant at a feed ratio of 1: 1: 1 in the molar ratio of CH 4 : CO 2 : N 2 to the reactor. Before carrying out the reaction, 0.5 g of the catalyst and 0.5 g of alpha-alumina as a diluent were uniformly mixed, charged into a reforming reactor, reduced under hydrogen atmosphere (5 vol% H 2 / N 2 ) at 700 ° C for 3 hours, The reaction was carried out at 730 ° C. or 830 ° C. under a reaction pressure of 0.5 MPa and a space velocity of 5000 L (CH 4 ) / kg cat / hr. The conversion ratios were measured in the following Table 4 (reaction temperature 730 ° C.) 830 캜).
구분division | 실시예 1Example 1 | 비교예 1Comparative Example 1 | 비교예 2Comparative Example 2 | 비교예 3Comparative Example 3 | 비교예 4Comparative Example 4 | |||||
CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | |
5시간5 hours | 81.6 81.6 | 58.6 58.6 | 76.7 76.7 | 55.4 55.4 | 71.5 71.5 | 52.1 52.1 | 78.5 78.5 | 56.6 56.6 | 80.6 80.6 | 57.7 57.7 |
10시간10 hours | 81.3 81.3 | 58.4 58.4 | 75.8 75.8 | 54.6 54.6 | 70.4 70.4 | 51.1 51.1 | 77.5 77.5 | 55.7 55.7 | 80.0 80.0 | 57.1 57.1 |
15시간15 hours | 80.9 80.9 | 57.9 57.9 | 74.4 74.4 | 53.3 53.3 | 68.8 68.8 | 49.6 49.6 | 76.5 76.5 | 54.8 54.8 | 79.5 79.5 | 56.7 56.7 |
20시간20 hours | 80.5 80.5 | 57.6 57.6 | 73.2 73.2 | 52.3 52.3 | 67.4 67.4 | 48.4 48.4 | 75.3 75.3 | 53.7 53.7 | 78.6 78.6 | 55.9 55.9 |
25시간25 hours | 79.5 79.5 | 56.8 56.8 | 72.1 72.1 | 51.3 51.3 | 66.1 66.1 | 47.2 47.2 | 74.4 74.4 | 52.9 52.9 | 77.5 77.5 | 54.9 54.9 |
구분division | 실시예 1Example 1 | 비교예 1Comparative Example 1 | 비교예 2Comparative Example 2 | 비교예 3Comparative Example 3 | 비교예 4Comparative Example 4 | |||||
CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | CH4전환율CH 4 conversion rate | CO2전환율CO 2 conversion rate | |
5시간5 hours | 89.4 89.4 | 79.0 79.0 | 84.1 84.1 | 74.3 74.3 | 78.7 78.7 | 70.0 70.0 | 86.0 86.0 | 75.0 75.0 | 88.3 88.3 | 77.9 77.9 |
10시간10 hours | 89.1 89.1 | 78.8 78.8 | 83.1 83.1 | 73.4 73.4 | 77.5 77.5 | 68.9 68.9 | 84.9 84.9 | 74.0 74.0 | 87.6 87.6 | 77.3 77.3 |
15시간15 hours | 88.5 88.5 | 78.3 78.3 | 81.5 81.5 | 72.0 72.0 | 75.8 75.8 | 67.3 67.3 | 83.8 83.8 | 73.0 73.0 | 87.0 87.0 | 76.8 76.8 |
20시간20 hours | 88.2 88.2 | 78.0 78.0 | 80.2 80.2 | 70.8 70.8 | 74.2 74.2 | 65.9 65.9 | 82.5 82.5 | 71.8 71.8 | 86.1 86.1 | 75.9 75.9 |
25시간25 hours | 87.1 87.1 | 77.1 77.1 | 79.0 79.0 | 69.8 69.8 | 72.8 72.8 | 64.7 64.7 | 81.5 81.5 | 71.0 71.0 | 84.8 84.8 | 74.8 74.8 |
실험예 2 - 탄소 침적 조건 합성가스 제조시 탄소 침적량Experimental Example 2 - Carbon deposition conditions Carbon deposition amount
실시예 3 실험 촉매의 탄소 침적량을 분석하기 위해 Thermogravimetric Analyzer (SDT 600, TA instruments (USA)) 사용하였다. 30℃에서 1000℃ 까지 air를 공급하여 시료의 무게 감소량을 측정하여 탄소 침적량을 계산하였으며, 하기 표 6(반응 온도 730℃) 및 표 7(반응온도 830℃)에 나타내었다. Example 3 A thermogravimetric analyzer (SDT 600, TA instruments (USA)) was used to analyze the carbon deposition amount of the experimental catalyst. The weight loss of the sample was measured by supplying air from 30 ° C to 1000 ° C to calculate the carbon deposition amount. The results are shown in Table 6 (reaction temperature 730 ° C) and Table 7 (reaction temperature 830 ° C).
구분division | 실시예 1Example 1 | 비교예 1Comparative Example 1 | 비교예 2Comparative Example 2 | 비교예 3Comparative Example 3 | 비교예 4Comparative Example 4 |
코크 생성량 (wt.%)Coke production (wt.%) | 1.2301.230 | 1.7931.793 | 2.1952.195 | 1.4861.486 | 1.3091.309 |
구분division | 실시예 1Example 1 | 비교예 1Comparative Example 1 | 비교예 2Comparative Example 2 | 비교예 3Comparative Example 3 | 비교예 4Comparative Example 4 |
코크 생성량 (wt.%)Coke production (wt.%) | 1.3681.368 | 2.2392.239 | 2.8252.825 | 1.7671.767 | 1.4711.471 |
산소 저장 능력이 좋을수록 저온과 고온의 혼합 개질 반응과 CDR 반응에서 전환율이 더 높은 것을 확인할 수 있으며, 산소 저장 능력이 좋은 촉매일수록 침적되는 탄소를 가스화시켜 일산화탄소 또는 이산화탄소를 생성시키기 때문에 코크 생성양이 적은 것을 확인 할 수 있다. The higher the oxygen storage capacity, the higher the conversion ratio in the mixed reforming reaction and the CDR reaction at low temperature and high temperature. The more the oxygen storage capacity of the catalyst is, the higher the carbonation amount of the deposited carbon becomes to carbon monoxide or carbon dioxide. I can confirm that the number is small.
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The features, structures, effects, and the like illustrated in the above-described embodiments can be combined and modified in other embodiments by those skilled in the art to which the embodiments belong. Therefore, it should be understood that the present invention is not limited to these combinations and modifications.
[부호의 설명][Description of Symbols]
10 : 천연가스 공급부10: natural gas supply
20 : 개질 반응기20: Reforming Reactor
Claims (8)
- 천연가스로부터 합성가스를 제조하는데 사용되는 촉매로서,As a catalyst used to produce syngas from natural gas,적어도 마그네슘(Mg) 및 알루미늄(Al)을 포함하는 지지물질, 적어도 세륨(Ce)을 포함하는 활성촉진물질 및 적어도 니켈(Ni)을 포함하는 활성물질을 포함하고, A support material comprising at least magnesium (Mg) and aluminum (Al), an activity promoting material comprising at least cerium (Ce) and an active material comprising at least nickel (Ni)상기 촉매의 표면에 노출된 활성물질인 금속 및 활성촉진물질의 산화물의 O2 저장량이 60 내지 70 μmol O2/gcat 인 것을 특징으로 하는 적어도 2이상의 홀을 포함하는 형태로 성형된 합성가스 제조용 촉매.Characterized in that the O 2 storage amount of the metal and the oxide of the active promoting material, which are the active materials exposed on the surface of the catalyst, is 60 to 70 μmol O 2 / g cat . catalyst.
- 제1항에 있어서,The method according to claim 1,상기 합성가스 제조용 촉매는 표면에 활성물질인 금속(M1), 활성물질의 산화물(M1O), 활성촉진물질인 금속(M2) 및 활성촉진물질의 산화물(M2O)의 적어도 일부를 노출시키는 촉매인 것을 특징으로 하는 합성가스 제조용 촉매.The syngas catalyst for at least a portion of the metal (M 1) the active material on the surface, the oxide of the active material (M 1 O), metal active promoting material (M 2) and the oxide of the active promoting material (M 2 O) Wherein the catalyst is a catalyst for exposing the catalyst.
- 제2항에 있어서,3. The method of claim 2,상기 합성가스 제조용 촉매는 상기 활성물질인 금속(M1)의 적어도 일부가 상기 촉매 표면에 1.3 내지 5.6% 노출되어 상기 촉매 표면에 노출된 적어도 일부의 활성촉진물질의 산화물(M2O)과 접촉하는 촉매인 것을 특징으로 하는 합성가스 제조용 촉매.Wherein the catalyst for synthesis gas comprises at least a portion of the active metal M 1 exposed to the surface of the catalyst in an amount of 1.3 to 5.6% to contact at least a portion of the oxide of the active promoting material (M 2 O) By weight based on the total weight of the catalyst.
- 제2항에 있어서,3. The method of claim 2,상기 합성가스 제조용 촉매는 표면에 노출된 활성물질인 금속(M1)과 활성촉진물질인 금속(M2)의 몰비(M1/M2)가 0.2 내지 2인 촉매인 것을 특징으로 하는 합성가스 제조용 촉매.Wherein the catalyst for synthesizing a synthetic gas is a catalyst having a molar ratio (M 1 / M 2 ) of a metal (M 1 ) as an active material exposed on a surface thereof to a metal (M 2 ) Catalyst for manufacture.
- 제2항에 있어서,3. The method of claim 2,상기 합성가스 제조용 촉매는 상기 활성물질인 금속(M1)과 활성물질의 산화물(M1O)의 몰비(M1/M1O)가 0.1 내지 1.3인 촉매인 것을 특징으로 하는 합성가스 제조용 촉매.Wherein the catalyst for synthesis gas is a catalyst having a molar ratio (M 1 / M 1 O) of the metal (M 1 ) as the active material to an oxide (M 1 O) of the active material of 0.1 to 1.3. .
- 제1항에 있어서,The method according to claim 1,상기 지지물질은 상기 지지물질이 혼합된 금속산화물로서 하이드로탈사이트 결정구조의 형태로 포함되는 것을 특징으로 하는 합성가스 제조용 촉매.Wherein the support material is a metal oxide mixed with the support material in the form of a hydrotalcite crystal structure.
- 제6항에 있어서,The method according to claim 6,상기 지지물질의 결정 크기는 14.4 내지 64.3nm인 것을 특징으로 하는 합성가스 제조용 촉매.Wherein the support material has a crystal size of 14.4 to 64.3 nm.
- 천연가스로부터 합성가스를 제조하는 합성가스 제조 시스템으로서, 1. A syngas production system for producing syngas from natural gas,상기 천연가스를 공급하는 공급부; 및A supply unit for supplying the natural gas; And적어도 마그네슘(Mg) 및 알루미늄(Al)을 포함하는 지지물질, 적어도 세륨(Ce)을 포함하는 활성촉진물질 및 적어도 니켈(Ni)을 포함하는 활성물질을 포함하고, 촉매의 표면에 노출된 활성물질인 금속 및 활성촉진물질의 산화물의 O2 저장량이 60 내지 70 μmol O2/gcat 인 것을 특징으로 하는 적어도 2이상의 홀을 포함하는 형태로 성형된 합성가스 제조용 촉매를 수용하여, 메탄의 수증기 개질반응과 메탄의 이산화탄소 개질반응이 동시에 진행되는 개질반응기;를 포함하는 합성가스 제조 시스템.A catalyst comprising a support material comprising at least magnesium (Mg) and aluminum (Al), an active promoting material comprising at least cerium (Ce) and an active material comprising at least nickel (Ni) Characterized in that the O 2 storage amount of the phosphorus metal and the oxide of the active promoting material is 60 to 70 μmol O 2 / g cat , characterized in that it contains a catalyst for synthesis gas production molded in a form including at least two or more holes, And a reforming reactor in which the reaction and the carbon dioxide reforming reaction of methane proceed at the same time.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170114245 | 2017-09-07 | ||
KR10-2017-0114245 | 2017-09-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019050335A1 true WO2019050335A1 (en) | 2019-03-14 |
Family
ID=65635012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/010505 WO2019050335A1 (en) | 2017-09-07 | 2018-09-07 | Nickel-based catalyst, and synthetic gas production system employing same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102178146B1 (en) |
WO (1) | WO2019050335A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112206789A (en) * | 2020-09-03 | 2021-01-12 | 天津大学 | Catalyst for preparing synthesis gas by reforming methane and carbon dioxide and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1013603A1 (en) * | 1998-12-22 | 2000-06-28 | Haldor Topsoe A/S | Process for catalytical steam reforming of a hydrocarbon feedstock |
US20040043900A1 (en) * | 2002-08-12 | 2004-03-04 | Combs Glenn A. | Heterogeneous gaseous chemical reactor catalyst |
KR20100014012A (en) * | 2008-08-01 | 2010-02-10 | 한국화학연구원 | Catalyst for the preparation of synthesis gas from natural gas with carbon dioxide and the preparation method there of |
KR20110057228A (en) * | 2008-09-12 | 2011-05-31 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Molded Heterogeneous Catalyst |
KR20130028024A (en) * | 2011-09-08 | 2013-03-18 | 한국에너지기술연구원 | Reforming catalyst for manufacturing synthesis gas, method for manufacturing synthesis gas using the same, and reactor for manufacturing synthesis gas |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002126528A (en) | 2000-10-18 | 2002-05-08 | Japan National Oil Corp | Method for producing reforming catalyst |
JP4316323B2 (en) | 2002-10-04 | 2009-08-19 | 独立行政法人石油天然ガス・金属鉱物資源機構 | Hydrocarbon reforming catalyst and method for producing the same |
-
2018
- 2018-09-07 KR KR1020180107306A patent/KR102178146B1/en active Active
- 2018-09-07 WO PCT/KR2018/010505 patent/WO2019050335A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1013603A1 (en) * | 1998-12-22 | 2000-06-28 | Haldor Topsoe A/S | Process for catalytical steam reforming of a hydrocarbon feedstock |
US20040043900A1 (en) * | 2002-08-12 | 2004-03-04 | Combs Glenn A. | Heterogeneous gaseous chemical reactor catalyst |
KR20100014012A (en) * | 2008-08-01 | 2010-02-10 | 한국화학연구원 | Catalyst for the preparation of synthesis gas from natural gas with carbon dioxide and the preparation method there of |
KR20110057228A (en) * | 2008-09-12 | 2011-05-31 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Molded Heterogeneous Catalyst |
KR20130028024A (en) * | 2011-09-08 | 2013-03-18 | 한국에너지기술연구원 | Reforming catalyst for manufacturing synthesis gas, method for manufacturing synthesis gas using the same, and reactor for manufacturing synthesis gas |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112206789A (en) * | 2020-09-03 | 2021-01-12 | 天津大学 | Catalyst for preparing synthesis gas by reforming methane and carbon dioxide and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
KR102178146B1 (en) | 2020-11-13 |
KR20190027762A (en) | 2019-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010013958A2 (en) | Catalyst for preparing synthesis gas from natural gas and carbon dioxide, and preparation method thereof | |
EP0979799B1 (en) | Process for preparing synthesis gas by autothermal reforming | |
EP0974551B1 (en) | Process for preparing synthesis gas | |
US6749828B1 (en) | Process for reforming hydrocarbon | |
WO2010067945A1 (en) | Methanol synthesis method using synthesis gas generated by a mixed reforming of natural gas and carbon dioxide | |
EP0974550B1 (en) | Catalyst for preparation of synthesis gas and process for preparing carbon monoxide | |
KR101529906B1 (en) | Process for operating hts reactor | |
US20050164890A1 (en) | Supported perovskite-type oxides and methods for preparation thereof | |
KR100732784B1 (en) | Process for the production of dimethylether from hydrocarbon | |
WO2019054557A1 (en) | Perovskite metal oxide catalyst, in which metal ion is substituted, for reducing carbon deposition, preparation method therefor, and methane reforming reaction method using same | |
WO2015183061A1 (en) | Method for preparing highly active fischer-tropsch catalyst | |
WO2014092474A1 (en) | Catalyst for manufacturing synthetic gas through steam-carbon dioxide reforming, and method for manufacturing synthetic gas by using same | |
WO2015183059A1 (en) | Method for preparing fischer-tropsch catalyst having improved activity and lifespan properties | |
WO2014092278A1 (en) | Process for preparing fisher-tropsch catalyst | |
WO2019050337A1 (en) | Nickel-based catalyst subjected to alkali treatment, and method for producing same | |
US20060111456A1 (en) | Process for the selective methanation of carbonmonoxide (CO) contained in a hydrogen-rich reformate gas | |
WO2019050335A1 (en) | Nickel-based catalyst, and synthetic gas production system employing same | |
US6242380B1 (en) | Process for preparing supported nickel catalyst for reforming hydrocarbons | |
WO2018048236A1 (en) | Nickel-based catalyst molded body for steam methane reforming and use thereof | |
WO2014092482A1 (en) | Catalyst containing lanthanum for manufacturing synthetic gas through steam-carbon dioxide reforming, and method for manufacturing synthetic gas by using same | |
WO2022124799A1 (en) | Supported catalyst for manufacturing carbon nanotube | |
KR101386418B1 (en) | Catalyst for the steam reforming of methane, method for preparing thereof and method for the steam reforming of methane included in by-product gas of iron manufacture using the catalyst | |
WO2019050336A1 (en) | Reactor with dual catalyst layer and synthetic gas preparation system using same | |
KR20170047815A (en) | Catalyst for Steam Reformation | |
WO2024096507A1 (en) | Methane reforming catalyst and preparation method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18853544 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18853544 Country of ref document: EP Kind code of ref document: A1 |