+

WO2018221360A1 - Liquid crystal display device and method for manufacturing liquid crystal display device - Google Patents

Liquid crystal display device and method for manufacturing liquid crystal display device Download PDF

Info

Publication number
WO2018221360A1
WO2018221360A1 PCT/JP2018/019915 JP2018019915W WO2018221360A1 WO 2018221360 A1 WO2018221360 A1 WO 2018221360A1 JP 2018019915 W JP2018019915 W JP 2018019915W WO 2018221360 A1 WO2018221360 A1 WO 2018221360A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
monomer
group
display device
crystal display
Prior art date
Application number
PCT/JP2018/019915
Other languages
French (fr)
Japanese (ja)
Inventor
真伸 水▲崎▼
康司郎 谷池
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2018221360A1 publication Critical patent/WO2018221360A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device

Definitions

  • the present invention relates to a liquid crystal display device and a method for manufacturing the liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device having a photo-alignment film and a manufacturing method thereof.
  • a liquid crystal display device is a display device that uses a liquid crystal composition for display.
  • a typical display method is to irradiate light from a backlight onto a liquid crystal panel in which the liquid crystal composition is sealed between a pair of substrates. The amount of light transmitted through the liquid crystal panel is controlled by applying a voltage to the liquid crystal composition to change the orientation of the liquid crystal material.
  • Such a liquid crystal display device has features such as thinness, light weight, and low power consumption, and thus is used in electronic devices such as smartphones, tablet PCs, and car navigation systems.
  • a horizontal electric field type horizontal control in which the orientation of a liquid crystal material is controlled mainly in a plane parallel to the substrate surface for the purpose of easily obtaining a wide viewing angle characteristic.
  • the orientation mode is attracting attention.
  • Examples of the horizontal electric field type horizontal alignment mode include an in-plane switching (IPS: In-Plane Switching) mode and a fringe electric field switching (FFS: Fringe Field Switching) mode.
  • the alignment of a liquid crystal material in a state where no voltage is applied is generally controlled by an alignment film that has been subjected to an alignment treatment (see, for example, Patent Document 1).
  • the alignment film is formed, for example, by applying an alignment film material such as polyamic acid on a substrate and then baking it.
  • an alignment film material such as polyamic acid
  • a polymer-supported alignment technique Polymer
  • Polymer that polymerizes a polymerizable monomer added in the liquid crystal layer to form a polymer layer for controlling the alignment of the liquid crystal material on the surface of the alignment film.
  • Sustained Alignment has also been studied (see, for example, Non-Patent Document 1).
  • Yohei Nakanishi Yohei Nakanishi
  • three others "the relationship of the phenomenon sticking with the monomer structure of the polymer support alignment liquid crystal display (Relation between Monomer Structure and Image Sticking Phenomenon of Polymer-Sustained-Alignment Liquid Crystal Displays)", Japanese Journal of Applied Physics 2011, Vol. 50, p. 051702-1-051702-5
  • FIG. 7 is an enlarged schematic plan view of a liquid crystal display device according to a reference example, showing a liquid crystal compound and a linear portion of a pixel electrode and / or a common electrode.
  • the pixel electrode with respect to the initial alignment direction 31a of the liquid crystal compound 31 and It is necessary to make the inclination angle (Inclination Angle; IA) ⁇ of the linear portion 27 of the common electrode as small as possible. Therefore, the inclination angle ⁇ is normally set to less than 7 °.
  • the liquid crystal compound 31 rotates greatly from the initial alignment azimuth 31a when the tilt angle ⁇ is small.
  • the anchoring strength (especially the azimuth anchoring strength) of the horizontal photo-alignment film is relatively weak (low orientation regulation force), as shown in FIG.
  • the liquid crystal compound 31 does not return to the initial orientation azimuth 31a, and as a result, burn-in occurs.
  • an alignment film material having an azobenzene group (isomerization type) in the polymer main chain which is a kind of horizontal light alignment film material
  • the image sticking from the AC voltage becomes remarkable. This is presumably because the azimuth anchoring strength is particularly low in an alignment film formed from an alignment film material having an azobenzene group in the polymer main chain (hereinafter also referred to as an azobenzene group-containing photo-alignment film material).
  • the factors are (1) the weight-average molecular weight of the azobenzene group-containing photoalignment film material is relatively small (for example, 20,000 or less), and (2) some azobenzene groups by irradiation with polarized ultraviolet rays are expressed by the following reaction formula: As shown, because of photocleavage, the weight average molecular weight of the polymer is further reduced.
  • the azobenzene group-containing photo-alignment film material is designed to improve the molecular mobility by reducing the weight average molecular weight to some extent in order to align the polymer in one direction by irradiation with polarized ultraviolet rays.
  • the azobenzene group is susceptible to cleavage reaction in addition to isomerization by (polarized) ultraviolet irradiation.
  • polyamic acid and / or polyimide is used as the polymer and the one having a bent molecular structure is used as tetracarboxylic dianhydride, the absorption efficiency of polarized ultraviolet light is improved, so the number of cleavage of the azobenzene group is further increased. Become.
  • the present invention has been made in view of the above situation, and provides a liquid crystal display device capable of suppressing burn-in caused by application of an AC voltage and a method of manufacturing a liquid crystal display device capable of manufacturing such a liquid crystal display device. It is intended to do.
  • One embodiment of the present invention includes a liquid crystal layer containing a liquid crystal material having a positive dielectric anisotropy, a sealant disposed so as to surround the liquid crystal layer in a plan view, and a pair of sandwiching the liquid crystal layer A substrate and a photo-alignment film provided on at least one surface of the pair of substrates, wherein the photo-alignment film contains at least one of polyamic acid and polyimide, and contains the liquid crystal compound in the liquid crystal material.
  • One of the pair of substrates includes a pixel electrode and a common electrode, and at least one of the pixel electrode and the common electrode includes a linear portion,
  • the liquid crystal display device may have an inclination angle of the linear portion with respect to the initial alignment direction of the liquid crystal compound of 7 ° or more in plan view.
  • Another embodiment of the present invention is a preparatory step of preparing a pair of substrates, and an orientation containing at least one polymer of polyamic acid and polyimide and at least one monomer on at least one surface of the pair of substrates.
  • the at least one monomer may be a method for producing a liquid crystal display device that exhibits orientation by causing at least one of an isomerization reaction and a dimerization reaction by irradiation with polarized ultraviolet rays.
  • Patent Document 1 discloses a polyamic acid-based alignment film material having an azobenzene group in the main chain.
  • the inclination angle of the linear portion of the pixel electrode and / or the common electrode with respect to the initial alignment direction of the liquid crystal compound is 7 ° or more.
  • liquid crystal display device and the manufacturing method of the liquid crystal display device of the present invention, it is possible to suppress image sticking caused by application of an AC voltage.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 1.
  • FIG. 1 is a schematic plan view of a liquid crystal display device according to Embodiment 1.
  • FIG. 2 is an enlarged schematic plan view of the liquid crystal display device according to Embodiment 1, showing a liquid crystal compound and a linear portion of a pixel electrode and / or a common electrode.
  • FIG. 5 is an enlarged schematic plan view of a liquid crystal display device according to a modification of Embodiment 1, showing a liquid crystal compound and a linear portion of a pixel electrode and / or a common electrode.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 1.
  • FIG. 1 is a schematic plan view of a liquid crystal display device according to Embodiment 1.
  • FIG. 2 is an enlarged schematic plan view of the liquid crystal display device according to Embodiment 1, showing a liquid crystal compound and a linear portion of a pixel electrode and
  • FIG. 3 is a schematic diagram illustrating states of a polyimide polymer having an azobenzene group and a polymer of an alignment monomer in a photo-alignment film of the liquid crystal display device according to Embodiment 1. It is the schematic diagram explaining the state of the molecule
  • the “photoreactive monomer” means a monomer containing a photofunctional group.
  • the “photofunctional group” means a functional group capable of causing a photoreaction.
  • observation surface side means a side closer to the screen (display surface) of the liquid crystal display device
  • back side means the screen (display surface) of the liquid crystal display device. Means the farther side.
  • the “initial alignment direction of the liquid crystal compound” means the alignment direction of the liquid crystal compound in a state in which no voltage is applied between the pixel electrode and the common electrode.
  • the “alignment orientation of the liquid crystal compound” means the direction of the long axis (liquid crystal director) of the liquid crystal compound.
  • FIG. 1 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment.
  • FIG. 2 is a schematic plan view of the liquid crystal display device according to the first embodiment.
  • FIG. 3 is an enlarged schematic plan view of the liquid crystal display device according to Embodiment 1, and shows a liquid crystal compound and a linear portion of a pixel electrode and / or a common electrode.
  • the liquid crystal display device 100 of the present embodiment is an FFS mode that is a kind of horizontal electric field type horizontal alignment mode, and contains a liquid crystal material having positive dielectric anisotropy.
  • the liquid crystal display device 100 further includes a backlight 70 behind one of the pair of substrates 10 and 20.
  • one of the substrates 10 and 20 is arranged between the planar electrode 22, the slit electrode 24 provided with at least one slit 24 s, and the planar electrode 22 and the slit electrode 24.
  • a structure (FFS electrode structure) including the insulating film (interlayer insulating film) 23 is provided, and an oblique electric field (fringe electric field) including a lateral electric field component is formed in the liquid crystal layer 30.
  • the slit electrode 24 upper layer electrode
  • the insulating film 23 and the planar electrode 22 lower layer electrode
  • slit electrode 24 for example, a linear opening surrounded by an electrode around the entire circumference as the slit 24s, or a linear electrode provided with a plurality of comb teeth and disposed between the comb teeth.
  • a comb-shaped slit that forms the slit 24s can be used.
  • one of the slit electrode 24 and the planar electrode 22 functions as the pixel electrode 25 provided corresponding to each pixel, and the other functions as the common electrode 26.
  • one of the slit electrode 24, that is, the pixel electrode 25 and the common electrode 26 includes a plurality of linear portions 27 parallel to each other.
  • the linear portion 27 and the slit 24 s of the slit electrode 24 include the liquid crystal compound 31. They are alternately arranged in the direction orthogonal to the initial orientation direction 31a.
  • Each linear portion 27 is usually composed of one or more straight portions, and when composed of two straight portions, it is composed of three or more straight portions in a V shape as shown in FIG. If it is, it is formed in a zigzag shape.
  • FIG. 4 is an enlarged schematic plan view of a liquid crystal display device according to a modification of the first embodiment, and shows a liquid crystal compound and a linear portion of a pixel electrode and / or a common electrode.
  • each linear portion 27 may be composed of a plurality of linear portions having different inclination angles ⁇ with respect to the initial alignment azimuth 31 a of the liquid crystal compound 31. It is preferable that the smallest of these satisfy the numerical range described later.
  • the photo-alignment film 50 includes at least one polymer of polyamic acid and polyimide (hereinafter also referred to as polyimide polymer), and the liquid crystal compound 31 in the liquid crystal material is oriented in a horizontal direction with respect to the substrates 10 and 20. To be oriented.
  • a photo-alignment film usually has a lower anchoring strength (particularly azimuth angle anchoring strength) than a horizontal alignment film for rubbing treatment. Therefore, as described above, even in the liquid crystal display device 100, the liquid crystal panel (liquid crystal There is concern over the occurrence of burn-in due to the application of an AC voltage to the layer 30 and each pixel).
  • the inclination angle ⁇ of the linear portion 27 with respect to the initial alignment direction 31a of the liquid crystal compound 31 is large, specifically, set to 7 ° or more in plan view. .
  • the amount of change ⁇ d in the azimuth direction of the liquid crystal compound 31 due to the application of the AC voltage is reduced, so that burn-in due to the application of the AC voltage can be reduced.
  • the return of the liquid crystal compound 31 (liquid crystal director) to the initial alignment azimuth 31a at the time of removing the AC voltage becomes faster, a high-speed response is possible.
  • the upper limit of the tilt angle ⁇ is not particularly limited and can be set as appropriate from the viewpoint of reducing the burn-in resulting from the AC voltage application and increasing the response speed.
  • the tilt angle ⁇ is too large, the liquid crystal compound 31 A decrease in transmittance and contrast due to a small change ⁇ d in the azimuth direction may occur (although there are effects of low image sticking and high-speed response). Therefore, from the viewpoint of transmittance and contrast, the inclination angle ⁇ is preferably not too large, and specifically, it is preferably 13 ° or less in plan view.
  • Examples of the pair of substrates 10 and 20 include a combination of an active matrix substrate (TFT substrate) and a color filter (CF) substrate.
  • TFT substrate active matrix substrate
  • CF color filter
  • the active matrix substrate those normally used in the field of liquid crystal display devices can be used.
  • the transparent matrix 21 has a plurality of parallel gate signal lines; a plurality of parallel gate signal lines extending in a direction perpendicular to the gate signal lines and parallel to each other.
  • TFTs thin film transistors
  • a common electrode In the case of the horizontal electric field type horizontal alignment mode, a common electrode; a common electrode 26 that is connected to the common wire and applies a common voltage to a plurality of pixels (or all pixels) is provided.
  • the pixel electrode 25 and the common electrode 26 may be stacked via the insulating film 23.
  • an amorphous silicon, polysilicon, or an oxide semiconductor IGZO indium-gallium-zinc-oxygen
  • VHR voltage holding ratio
  • the color filter substrate those usually used in the field of liquid crystal display devices can be used.
  • the configuration of the color filter substrate include a configuration in which a black matrix formed in a lattice shape, a color filter formed inside a lattice, that is, a pixel, and the like are provided on a transparent substrate.
  • the color filter may include a red color filter, a green color filter, and a blue color filter.
  • the thickness of the blue color filter may be greater than the thickness of the red color filter or the green color filter. By increasing the blue color filter, the liquid crystal layer thickness can be reduced and the cell thickness can be optimized.
  • the pair of substrates 10 and 20 may be one in which both the color filter and the active matrix are formed on one substrate.
  • the sealing material 40 is disposed so as to surround the liquid crystal layer 30 in a plan view.
  • the sealing material 40 may be cured by light such as ultraviolet rays, may be cured by heat, or may be cured by both light and heat. Those that cure by both heat and heat are preferred.
  • Examples of the sealing material 40 include those containing an epoxy resin, a (meth) acrylic resin, and the like.
  • the sealing material 40 may contain a curing agent such as a silane coupling agent, an inorganic filler, an organic filler, and an epoxy curing material.
  • As the sealing material 40 for example, Sekisui Chemical Co., Ltd., Photorec, etc. can be used.
  • variety of the sealing material 40 in planar view is not specifically limited, According to the adhesive strength requested
  • the sealing material 40 before and after curing may contain a (meth) acrylic monomer, a radical polymerization initiator, an epoxy monomer, and an epoxy curing material. These components are contained in the sealing material 40 before curing, and are unreacted components remaining in the sealing material 40 after curing.
  • the liquid crystal layer is formed from the cured sealing material 40. 30 and is adsorbed on the surface of the photo-alignment film 50 to cause a decrease in the azimuth anchoring strength of the photo-alignment film 50.
  • the inclination angle ⁇ is set to 7 ° or more in plan view, even when such an unreacted component remains in the sealing material 40, it is attributed to the unreacted component.
  • the (meth) acrylic monomer and the radical polymerization initiator have higher solubility in the liquid crystal material than the epoxy monomer and the epoxy cured material, and therefore the orientation of the photo-alignment film 50 compared to the epoxy monomer and the epoxy cured material.
  • the possibility of reducing the angle anchoring strength is considered very high.
  • radical polymerization initiator a polymerization initiator that generates radicals upon irradiation with light (preferably ultraviolet rays), that is, a photo radical polymerization initiator is preferable, and a (meth) acrylic monomer contained in the sealant 40 before curing.
  • radical polymerization is performed by radicals generated from a radical polymerization initiator by light irradiation to form a (meth) acrylic resin.
  • the (meth) acrylic monomer may be of low polarity.
  • the (meth) acrylic monomer is not particularly limited, and examples thereof include urethane (meth) acrylate having a urethane bond, and epoxy (meth) acrylate derived from a compound having a glycidyl group and (meth) acrylic acid. . Any of these may be used alone or in combination of two or more.
  • (meth) acryl means acryl or methacryl.
  • the urethane (meth) acrylate is not particularly limited, and examples thereof include derivatives of diisocyanates such as isophorone diisocyanate and reactive compounds that undergo addition reaction with isocyanates such as acrylic acid and hydroxyethyl acrylate. These derivatives may be chain-extended with caprolactone or polyol. Examples of commercially available products include U-122P, U-340P, U-4HA, U-1084A (manufactured by Shin-Nakamura Chemical Co., Ltd.); KRM7595, KRM7610, KRM7619 (manufactured by Daicel UCB) and the like. .
  • the epoxy (meth) acrylate is not particularly limited, and examples thereof include an epoxy (meth) acrylate derived from an epoxy resin such as bisphenol A type epoxy resin or propylene glycol diglycidyl ether, and (meth) acrylic acid. It is done. Examples of commercially available products include EA-1020, EA-6320, EA-5520 (above, Shin-Nakamura Chemical Co., Ltd.); Epoxy ester 70PA, Epoxy ester 3002A (above, Kyoeisha Chemical Co., Ltd.) and the like. .
  • acrylic monomers include, for example, methyl methacrylate, tetrahydrofurfuryl methacrylate, benzyl methacrylate, isobornyl methacrylate, 2-hydroxyethyl methacrylate, glycidyl methacrylate, (poly) ethylene glycol dimethacrylate, 1,4-butane Examples thereof include diol dimethacrylate, 1,6-hexanediol dimethacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, and glycerin dimethacrylate.
  • the radical polymerization initiator is not particularly limited, and examples thereof include compounds represented by the following chemical formula (R-1) or (R-2). Moreover, as a commercial item, IRGACURE 651, IRGACURE189, IRGACURE-OXE01 (above, BASF Japan make) etc. are mentioned, for example. Any of these may be used alone or in combination of two or more.
  • R represents hydrogen or an aliphatic hydrocarbon residue having 4 or less carbon atoms
  • X represents a residue of a bifunctional isocyanate derivative having 13 or less carbon atoms
  • Y represents carbon. This represents an aliphatic hydrocarbon residue having a number of 4 or less or a residue having an atomic ratio of carbon to oxygen constituting the residue of 3 or less.
  • the epoxy monomer means a compound having a reactive epoxy group at both ends, and includes a prepolymer.
  • a prepolymer is a compound (intermediate product) having a repeating structure between two epoxy groups (may be glycidyl groups) at both ends.
  • Many of the epoxy monomers contained in the sealing material 40 before curing are cross-linked by an addition reaction of the epoxy curing material to form an epoxy resin when heated.
  • epoxy resin examples include a phenol novolac epoxy resin, a cresol novolac epoxy resin, a biphenyl novolac epoxy resin, a trisphenol novolac epoxy resin, a dicyclopentadiene novolac epoxy resin, a bisphenol A epoxy resin, and a bisphenol F type.
  • Epoxy resin, 2,2'-diallylbisphenol A type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, propylene oxide added bisphenol A type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, resorcinol type Examples include epoxy resins and glycidylamines. Any of these may be used alone or in combination of two or more.
  • those commercially available include, for example, NC-3000S (manufactured by Nippon Kayaku Co., Ltd.) as a phenyl novolac type epoxy resin, and EPPN-501H and EPPN-501H as trisphenol novolak type epoxy resins.
  • the epoxy curing material is not particularly limited, but preferably contains an amine and / or thiol group having excellent low-temperature reactivity in order to cure the sealing material 40 before curing at a curing temperature of 100 to 120 ° C.
  • an epoxy curing material is not particularly limited, but for example, hydrazide compounds such as 1,3-bis [hydrazinocarbonoethyl-5-isopropylhydantoin], adipic acid dihydrazide; dicyandiamide, guanidine derivatives, 1-cyanoethyl-2 -Phenylimidazole, N- [2- (2-methyl-1-imidazolyl) ethyl] urea, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, N , N′-bis (2-methyl-1-imidazolylethyl) urea, N, N ′-(2-methyl
  • the liquid crystal layer 30 contains a liquid crystal material including at least one liquid crystal compound (liquid crystal molecule) 31.
  • the liquid crystal material is a thermotropic liquid crystal, and preferably a liquid crystal material exhibiting a nematic phase (nematic liquid crystal).
  • the liquid crystal material preferably has a phase transition to an isotropic phase when the temperature rises from a nematic phase and reaches a certain critical temperature (nematic phase-isotropic phase transition point (T NI )) or higher.
  • T NI critical temperature
  • the liquid crystal layer 30 preferably exhibits a nematic phase under the usage environment of the liquid crystal display device (for example, ⁇ 40 ° C. to 90 ° C.).
  • the temperature of the nematic phase-isotropic phase transition point of the liquid crystal material is not particularly limited, but is, for example, 70 to 110 ° C., and preferably 95 ° C. or higher. By setting the temperature to 95 ° C. or higher, the liquid crystal display device 100 can be made suitable for in-vehicle use, marine use, aviation use, and the like.
  • the method for measuring the nematic phase-isotropic phase transition point of the liquid crystal material is, for example, by differential scanning calorimetry (DSC) or by directly observing the temperature dependence by enclosing the liquid crystal material in a capillary. can do.
  • the liquid crystal material and the liquid crystal compound 31 have a positive dielectric anisotropy ( ⁇ ) defined by the following formula. That is, the liquid crystal material and the liquid crystal compound 31 have positive dielectric anisotropy.
  • the liquid crystal material having positive dielectric anisotropy and the liquid crystal compound 31 have characteristics such as high T NI and high-speed response (low rotational viscosity).
  • As the liquid crystal material having positive dielectric anisotropy for example, a material having ⁇ of 1 to 20 can be used.
  • the liquid crystal layer 30 and the liquid crystal material may contain a liquid crystal compound (neutral liquid crystal compound) having no polarity, that is, ⁇ is substantially zero.
  • the neutral liquid crystal compound include a liquid crystal compound having an alkene structure.
  • a liquid crystal material and a liquid crystal compound having positive dielectric anisotropy are also referred to as a positive liquid crystal material and a positive liquid crystal compound, respectively.
  • (dielectric constant in the major axis direction)-(dielectric constant in the minor axis direction)
  • the liquid crystal material may have a dielectric anisotropy of 1 or more and less than 3.5 (preferably 1.5 or more and 3 or less, more preferably 1.8 or more and 2.7 or less). .
  • the liquid crystal display device 100 can achieve high-speed response and is suitable for in-vehicle use.
  • a high AC voltage for example, about 6 V
  • the burn-in derived from the AC voltage becomes remarkable. There is concern.
  • the inclination angle ⁇ is set to 7 ° or more in plan view, image sticking due to application of a high AC voltage occurs even when the dielectric anisotropy of the liquid crystal material is small. This can be effectively suppressed.
  • the liquid crystal material may contain a liquid crystal compound having an alkenyl group.
  • the liquid crystal compound having an alkenyl group is preferably a neutral liquid crystal compound.
  • the rotational viscosity of the liquid crystal material is improved, so that the response performance of the liquid crystal material can be improved and the speed can be increased. Accordingly, it is possible to introduce a liquid crystal compound having a liquid crystal phase at a high temperature and having a high viscosity at a low temperature into the liquid crystal material. As a result, the liquid crystal material has a fast response and exhibits a liquid crystal phase in a wide temperature range.
  • a liquid crystal material having a nematic phase-isotropic phase transition point of 95 ° C. or higher can be used.
  • the liquid crystal compound having an alkenyl group may be a compound represented by any of the following chemical formulas (L-1) to (L-4). Any of these may be used alone or in combination of two or more.
  • n are the same or different and are integers of 1 to 6)
  • liquid crystal compound having an alkenyl group examples include a compound represented by the following chemical formula (L-1-1).
  • the photo-alignment film 50 is disposed in contact with the liquid crystal layer 30 and aligns the liquid crystal compound 31 in the liquid crystal material included in the liquid crystal layer 30 in the horizontal direction with respect to the surfaces of the substrates 10 and 20.
  • the alignment of the liquid crystal material in a state where a voltage equal to or higher than the threshold value of the liquid crystal material is not applied to the liquid crystal layer 30 is controlled by the photo-alignment film 50.
  • aligning the liquid crystal compound 31 in the liquid crystal material in the horizontal direction with respect to the substrates 10 and 20 means that the pretilt angle of the liquid crystal material with respect to the substrates 10 and 20 is 10 ° or less.
  • the pretilt angle is more preferably 3 ° or less.
  • the pretilt angle refers to an angle formed by the major axis of the liquid crystal material (liquid crystal compound 31) with respect to the surface of the substrate when the applied voltage to the liquid crystal layer 30 is less than the threshold voltage (including no voltage applied).
  • the surface is 0 ° and the substrate normal is 90 °.
  • the photo-alignment film 50 includes at least one polymer (polyimide polymer) of polyimide and polyamic acid.
  • the polyimide that can be included in the photo-alignment film 50 may be a partially imidized polyamic acid, that is, a partially included polyamic acid structure, or a completely imidized polyamic acid. That is, it may not contain any polyamic acid structure.
  • the photo-alignment film 50 may contain only one type of polyimide polymer, or may contain two or more types of polyimide polymers.
  • the photo-alignment film 50 is subjected to photo-alignment treatment, and the polyimide polymer has a photofunctional group in the main chain.
  • the photofunctional group is irradiated with light (electromagnetic wave, preferably deflected light, more preferably deflected ultraviolet light, particularly preferably linearly polarized ultraviolet light) such as ultraviolet light and visible light, for example, dimerization (dimer formation). It is preferably a functional group capable of causing structural changes such as isomerization, light fleece transition, and decomposition (cleavage) and exhibiting orientation regulating power.
  • the photofunctional group include azobenzene group, chalcone group, cinnamate group, coumarin group, tolan group, stilbene group, and cyclobutane ring.
  • the photo-alignment film 50 By using the photo-alignment film 50, the liquid crystal display device 100 can have high contrast.
  • the polyimide-based polymer is a polymer having a structure derived from a diamine and a structure derived from a tetracarboxylic dianhydride as a repeating structure, and includes at least one diamine and at least one tetracarboxylic dianhydride. Polymerized.
  • the polyimide polymer includes a polyamic acid structure represented by the following chemical formula (P-1) and / or a polyimide structure represented by the following chemical formula (P-2).
  • X and Y may be one type or two or more types, respectively.
  • the polyimide polymer (the polyamic acid and the polyimide) those having a structure derived from a diamine having an azobenzene group and a structure derived from a tetracarboxylic dianhydride having a bent molecular structure are suitable.
  • the azobenzene group undergoes an isomerization reaction and a decomposition (cleavage) reaction upon irradiation with polarized ultraviolet rays (preferably linearly polarized ultraviolet rays).
  • the polyimide polymer is formed by polymerizing a diamine having an azobenzene group and a tetracarboxylic dianhydride having a bent molecular structure, an azobenzene group is present in the main chain of the polyimide polymer, Since the absorption efficiency of polarized ultraviolet rays of the polyimide-based polymer is improved, there is a concern that the burn-in derived from the AC voltage becomes significant as described above. However, in this embodiment, since the inclination angle ⁇ is set to 7 ° or more in plan view, even in such a case, the occurrence of image sticking due to the application of a high AC voltage is effectively suppressed. be able to.
  • a tetracarboxylic dianhydride having a bent molecular structure means that a plurality of conformations can be obtained and the molecular structure in at least the most energetically stable conformation is bent.
  • the molecular structure in a conformation other than the most energetically stable conformation may be bent or unbent.
  • the molecular structure is confirmed by mass spectrometry (ToF-SIMS, LC-MS, etc.), and the energy calculation by simulation is performed for the molecular structure. It can be determined by the method to be performed.
  • the tetracarboxylic dianhydride has a flexible (bent) molecular structure, so that the steric hindrance between the polyimide polymer molecules is suppressed, so that the isomerization reaction of the azobenzene group by light irradiation occurs efficiently.
  • a low molecular additive for improving the reaction efficiency is added in the photo-alignment film 50 (alignment agent therefor). There is no need to introduce it.
  • the low molecular additive When the low molecular additive is added, a part of the unreacted low molecular additive is eluted into the liquid crystal layer 30, and the orientation of the liquid crystal compound 31 is lowered or the VHR is lowered due to the increased concentration of ionic impurities. Therefore, in particular, in applications where the liquid crystal layer 30 needs to exhibit a liquid crystal phase even at high temperatures (preferably in-vehicle applications), a bent tetracarboxylic dianhydride is preferable. On the other hand, the steric hindrance between the azobenzene group-containing polyimide polymer molecules is suppressed, so that image sticking is likely to occur when an AC voltage is applied for a long time.
  • the low-molecular additive is a cross-linking agent that cross-links polyimide polymers and generally includes a low-molecular compound having 2 to 4 epoxy groups in one molecule.
  • a tetracarboxylic dianhydride that is not bent is used, if the polyimide polymer has a high molecular weight, intermolecular steric hindrance increases, and photoalignment control becomes difficult. Therefore, after performing photo-alignment treatment using a polyimide polymer with a relatively small molecular weight, the epoxy group of the low molecular additive and the carboxylic acid in the polyimide polymer are thermally reacted to increase the molecular weight of the polyimide polymer. .
  • the diamine having an azobenzene group (diamine for constituting Y in the above formulas (P-1) and (P-2)) is represented by any one of the following chemical formulas (Y-1) to (Y-5). It may be a compound. Any of these may be used alone or in combination of two or more.
  • the tetracarboxylic dianhydride having a bent molecular structure (tetracarboxylic dianhydride for constituting X in the above formulas (P-1) and (P-2)) is represented by the following chemical formula (X-1) It may be a compound represented by any one of (X-28). In particular, a compound represented by any of the following chemical formulas (X-6), (X-22), (X-23) or (X-27) is preferred. Any of these may be used alone or in combination of two or more.
  • the polyimide polymer (the polyamic acid and the polyimide) may have a structure derived from a cyclobutane ring.
  • the cyclobutane ring undergoes a decomposition (cleavage) reaction upon irradiation with polarized ultraviolet rays (preferably linearly polarized ultraviolet rays).
  • the cyclobutane ring is included in a structure derived from 1,2,3,4-cyclobutanetetracarboxylic dianhydride represented by the following chemical formula (Xa), and includes the above formulas (P-1) and (P-2). ) Included.
  • the structure derived from a diamine is not particularly limited, and is used for constituting Y in the above formulas (P-1) and (P-2).
  • the diamine may be, for example, a compound represented by the following chemical formula (Ya).
  • the photo-alignment film 50 further contains a polymer obtained by polymerizing at least one monomer (hereinafter also referred to as an alignment monomer), and the alignment monomer is subjected to at least isomerization reaction and dimerization reaction by irradiation with polarized ultraviolet rays. It is preferable that one of the reactions occurs to exhibit orientation.
  • the orientation monomer can be polymerized in a state in which the orientation is controlled and entangled with the main chain of the polyimide polymer, and the orientation state of the polyimide polymer can be more stably fixed, resulting in liquid crystal.
  • the orientation state of the compound 31 can be more stably fixed.
  • the polarized ultraviolet ray irradiated to the alignment monomer is preferably a linearly polarized ultraviolet ray.
  • the sealing material 40 when an unreacted component (for example, (meth) acrylic monomer or photo radical polymerization initiator) of the sealing material 40 eluted in the liquid crystal layer 30 is adsorbed on the surface of the photo-alignment film 50 without being controlled in orientation.
  • the alignment regulating force (azimuth angle anchoring strength) of the photo-alignment film 50 further decreases and causes burn-in due to further AC voltage application.
  • the photo-alignment film 50 is obtained by polymerizing the alignment monomer. By including the polymer, it is possible to effectively suppress image sticking resulting from application of the AC voltage.
  • the specific example of the said orientation monomer is not specifically limited, It has a monomer which has a chalcone group which may have a substituent, a monomer which has a cinnamate group which may have a substituent, and a substituent. It is preferable to include at least one photoreactive monomer selected from the group consisting of monomers having a good coumarin group.
  • the chalcone group, cinnamate group and coumarin group function as photofunctional groups.
  • the substituent preferably includes at least one substituent selected from the group consisting of a halogen group, a methyl group, a methoxy group, an ethyl group, and an ethoxy group.
  • the at least one alignment monomer may contain a photoreactive monomer having a photofunctional group having a substituent and a photoreactive monomer having a photofunctional group having no substituent.
  • halogen group a fluoro group and a chloro group are preferred.
  • a substituent is normally substituted by the at least 1 hydrogen atom which ring structures, such as a phenylene group of the said photofunctional group, have.
  • the photofunctional group may be a monovalent functional group, but is preferably a divalent cinnamate group represented by the following chemical formula (G-1), preferably represented by the following chemical formula (G-2).
  • G-1 divalent cinnamate group represented by the following chemical formula (G-2)
  • G-3 A divalent chalcone group and a divalent coumarin group represented by the following chemical formula (G-3).
  • the at least one orientation monomer preferably contains at least one monomer represented by the following chemical formula (1).
  • P 1 and P 2 are the same or different and each represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
  • Sp 1 and Sp 2 are the same or different and each represents a linear, branched or cyclic alkylene group or alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond. At least one hydrogen atom of each phenylene group may be substituted.
  • FIG. 5 is a schematic diagram illustrating a state of a polyimide polymer having an azobenzene group and a polymer of an alignment monomer in the photo-alignment film of the liquid crystal display device according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating a molecular state in the photo-alignment film of the liquid crystal display device according to the first embodiment.
  • FIG. 6A illustrates a polyimide polymer having an azobenzene group and an alignment monomer before irradiation with polarized ultraviolet rays.
  • B shows the polymer of the polyimide-type polymer which has an azobenzene group after polarized ultraviolet irradiation, and the polymer of an orientation monomer.
  • the orientation monomer represented by the chemical formula (1) has a chalcone group, and the chalcone group is oriented in the same direction as the azobenzene group by irradiation with linearly polarized ultraviolet rays, and is not only isomerized but also dimerized. Since the reaction also occurs, as shown in FIG. 5, the polymer 52 having a chalcone group is easily entangled in the main chain of the polyimide-based polymer 51 having an azobenzene group. Therefore, the alignment state of the liquid crystal compound 31 can be more stably fixed, and image sticking due to application of the AC voltage can be more effectively suppressed.
  • the chalcone group exhibits orientation by irradiation with linearly polarized ultraviolet rays
  • the orientation monomer 53 having a chalcone group is a polyimide having an azobenzene group. Similar to the system polymer 51, it is oriented in the direction of 90 ° (easily aligned) with respect to the polarization axis (polarization direction) of the linearly polarized ultraviolet light to be irradiated, and coincides with the orientation control direction of the azobenzene group by irradiation with the polarized ultraviolet light.
  • the chalcone group can cause isomerization reaction and dimerization reaction, but in particular, the orientation of the polyimide polymer 51 having an azobenzene group can be effectively fixed by dimerization of the orientation monomer 53 having the chalcone group. Can do. Furthermore, the orientation of the polyimide polymer 51 having an azobenzene group can also be fixed by polymerization of the orientation monomer 53 having a chalcone group. Accordingly, at least one kind of orientation monomer represented by the above chemical formula (1) is added to an orientation agent containing a polyimide polymer having an azobenzene group, and the orientation of the azobenzene group, the polymerization of the orientation monomer, and the chalconyl group. By performing the exposure for the orientation of the polyimide, the orientation state of the polyimide polymer having an azobenzene group can be more stably fixed.
  • the said effect by the orientation monomer represented by the said Chemical formula (1) can be acquired similarly, also when a polyimide-type polymer has a structure originating in a cyclobutane ring.
  • At least one hydrogen atom of the phenylene group is the same or different and is substituted with a halogen atom (preferably a fluorine atom or a chlorine atom), a methyl group, a methoxy group, an ethyl group, or an ethoxy group. May be.
  • a halogen atom preferably a fluorine atom or a chlorine atom
  • orientation monomer represented by the chemical formula (1) include a monomer represented by either the following chemical formula (1-1) or (1-2). Any of these may be used alone or in combination of two or more. Like these monomers, when an alkyl group is introduced between at least one polymerizable group and a chalconyl group, the flexibility in the molecular structure is improved and the degree of alignment control by irradiation with polarized ultraviolet rays can be improved. Is possible.
  • orientation monomer represented by the chemical formula (1) include monomers represented by any of the following chemical formulas (2-1) to (2-5). Any of these may be used alone or in combination of two or more.
  • a polarizing plate (linear polarizer) 60 may be disposed on the opposite side of the pair of substrates 10 and 20 from the liquid crystal layer 30.
  • the polarizing plate 60 typically includes a polyvinyl alcohol (PVA) film obtained by adsorbing and orienting an anisotropic material such as an iodine complex having dichroism.
  • PVA polyvinyl alcohol
  • a protective film such as a triacetyl cellulose film is laminated on both sides of the PVA film and put to practical use.
  • An optical film such as a retardation film may be disposed between the polarizing plate 60 and the pair of substrates 10 and 20.
  • the transmission axes of the pair of polarizing plates 60 are preferably orthogonal to each other. According to such a configuration, since the pair of polarizing plates 60 are arranged in crossed Nicols, a good black display state can be realized when no voltage is applied.
  • that two axes (directions) are orthogonal means that an angle (absolute value) between the two axes (direction) is within a range of 90 ⁇ 3 ° unless otherwise specified, preferably 90 ⁇ . It is within the range of 1 °, more preferably within the range of 90 ⁇ 0.5 °, and particularly preferably 90 ° (fully orthogonal).
  • the initial alignment direction 31 a of the liquid crystal compound 31 may be parallel to one polarization axis of the pair of polarizing plates 60 and may be orthogonal to the other polarization axis.
  • the control method of the liquid crystal display device 100 can be set to a so-called normally black mode in which black display is performed with no voltage applied.
  • a backlight 70 is disposed on the back side of the liquid crystal panel.
  • a liquid crystal display device having such a configuration is generally called a transmissive liquid crystal display device.
  • the backlight 70 is not particularly limited as long as it emits light including visible light, may emit light including only visible light, and emits light including both visible light and ultraviolet light. It may be.
  • the liquid crystal display device of the present embodiment includes an external circuit such as a TCP (tape carrier package) and a PCB (printed wiring board) in addition to the liquid crystal panel and the backlight 70; an optical film such as a viewing angle widening film and a brightness enhancement film.
  • An external circuit such as a TCP (tape carrier package) and a PCB (printed wiring board) in addition to the liquid crystal panel and the backlight 70; an optical film such as a viewing angle widening film and a brightness enhancement film.
  • a plurality of members such as a bezel (frame), and some members may be incorporated in other members.
  • Members other than those already described are not particularly limited, and those normally used in the field of liquid crystal display devices can be used, and thus description thereof is omitted.
  • the liquid crystal drive mode of the liquid crystal display device 100 is the FFS mode.
  • the liquid crystal drive mode according to the present embodiment is particularly limited as long as it is a horizontal electric field type horizontal alignment mode.
  • the IPS mode may be used.
  • a pair of comb electrodes is provided on at least one of the substrates 10 and 20, and a lateral electric field is formed in the liquid crystal layer 30.
  • the pair of comb-shaped electrodes for example, an electrode pair that includes a plurality of comb-tooth portions and is arranged so that the comb-tooth portions mesh with each other can be used.
  • a pair of comb electrodes functions as the pixel electrode 25 and the common electrode 26.
  • the linear part 27 is contained in each comb-tooth part of each comb-shaped electrode.
  • the manufacturing method of the liquid crystal display device of the present embodiment includes a preparation step of preparing a pair of substrates, at least one polymer of polyamic acid and polyimide, and at least one monomer on at least one surface of the pair of substrates.
  • Including at least one irradiation step, and the at least one monomer may be a method for producing a liquid crystal display device that exhibits orientation by causing at least one of an isomerization reaction and a dimerization reaction by irradiation with polarized ultraviolet rays.
  • a pair of substrates 10 and 20 are prepared.
  • At least one (preferably both) of the pair of substrates has at least one polymer (polyimide polymer) of polyamic acid and polyimide, and at least one monomer (alignment).
  • a film forming step of forming a photo-alignment film that is, a polyimide-based polymer has a photofunctional group
  • the at least one monomer is a polarized ultraviolet ray Irradiation causes at least one of an isomerization reaction and a dimerization reaction (preferably at least a dimerization reaction) to exhibit orientation.
  • an alignment agent is prepared by dissolving a polyimide polymer and an alignment monomer in a solvent (for example, an organic solvent).
  • the alignment agent may contain other optional components as necessary, and is preferably prepared as a solution-like composition in which each component is dissolved in a solvent.
  • a solvent for example, an organic solvent.
  • dissolves a polyimide-type polymer, an orientation monomer, and another arbitrary component, and does not react with these is suitable.
  • curing agent, a hardening accelerator, a catalyst etc. can be mentioned, for example.
  • Polymers other than the above polyimide-based polymers can be used to further improve the solution properties of the aligning agent and the electrical properties of the photo-alignment film. Examples of such polymers include no photofunctional groups.
  • General polymers for alignment films are listed.
  • the alignment monomer added to the alignment agent is 3% by weight or more and less than 30% by weight with respect to the polyimide polymer having a photofunctional group (when the polyimide polymer having a photofunctional group is 100% by weight). It is preferably 5 wt% or more and 25 wt% or less, more preferably 10 wt% or more and 20 wt% or less. If it is less than 3% by weight, there is a possibility that the effect of suppressing the AC image sticking is insufficient due to the orientation monomer, and if it exceeds 30% by weight, the contrast may be greatly lowered.
  • the coating method is not particularly limited, and examples thereof include a roll coater method, a spinner method, a printing method, and an ink jet method.
  • each substrate is heated.
  • the solvent in the aligning agent is volatilized and a photo-alignment film is formed.
  • Heating may be performed in two stages of pre-baking (pre-baking) and main baking (post-baking).
  • pre-baking pre-baking
  • post-baking main baking
  • the formed photo alignment film may have a two-layer structure, mainly from the alignment film polymer that does not have a photofunctional group.
  • You may have the comprised lower layer and the upper layer comprised mainly from the polyimide-type polymer which has a photofunctional group. The upper layer is in contact with the liquid crystal layer.
  • the photo-alignment film is irradiated with polarized ultraviolet rays to align the at least one polymer (polyimide polymer) and align the at least one monomer (orientation monomer). And an irradiation step for polymerization.
  • the orientation of the polyimide polymer having a photofunctional group is controlled, and the orientation monomer is polymerized in a controlled orientation, thereby fixing the orientation of the polyimide polymer having the photofunctional group. be able to. Therefore, since the azimuth anchoring strength of the photo-alignment film can be improved, it is possible to reduce image sticking due to application of an AC voltage.
  • the polarized ultraviolet light to be irradiated is preferably linearly polarized ultraviolet light.
  • the wavelength of the polarized ultraviolet light may be 200 nm or more and 430 nm or less. A more preferable lower limit of the wavelength is 250 nm, and a more preferable upper limit is 380 nm. Dose of the polarized ultraviolet is, 0.3 J / cm 2 or more, may be 20 J / cm 2 or less. A more preferable lower limit of the irradiation amount is 1 J / cm 2 , and a more preferable upper limit is 5 J / cm 2 .
  • One of the pair of substrates includes a pixel electrode and a common electrode, and at least one of the pixel electrode and the common electrode includes a linear portion.
  • the photo-alignment film is formed on the surface of the substrate including the pixel electrode and the common electrode (more preferably both substrates).
  • the angle formed by the polarization axis direction (polarization direction) with respect to the linear portion is 83. It is preferable to irradiate the above-mentioned photo-alignment film with polarized ultraviolet rays so that the temperature is not more than 0 °. Thereby, it can be easily made 7 ° or more in a plan view of the inclination angle of the linear portion with respect to the initial orientation direction of the liquid crystal compound. For this reason, it is possible to further reduce the burn-in resulting from the AC voltage application.
  • the irradiation step it is more preferable to irradiate the photo-alignment film with polarized ultraviolet rays so that an angle formed by a polarization axis direction (polarization direction) with respect to the linear portion is 77 ° or more.
  • an angle formed by a polarization axis direction (polarization direction) with respect to the linear portion is 77 ° or more.
  • the liquid crystal display device of this embodiment is completed through a liquid crystal layer forming step, a polarizing plate attaching step, and a control step, a power supply portion, a backlight attaching step, and the like.
  • a liquid crystal composition containing a liquid crystal material is usually sealed between a pair of substrates bonded by a sealing material.
  • the liquid crystal layer can be formed by, for example, filling a liquid crystal composition between a pair of substrates by a vacuum injection method or a drop injection method.
  • a liquid crystal layer is formed by applying a sealing material, bonding a pair of substrates, curing the sealing material, injecting a liquid crystal composition, and sealing the injection port in this order.
  • the dropping injection method is employed, a liquid crystal layer is formed by applying a sealing material, dropping a liquid crystal composition, bonding a pair of substrates, and curing the sealing material in this order.
  • the liquid crystal material has positive dielectric anisotropy.
  • the liquid crystal material may contain a liquid crystal compound having an alkenyl group.
  • the liquid crystal material may contain one or more liquid crystal compounds.
  • a pair of polarizing plates are arranged in crossed Nicols so that the absorption axes are orthogonal to each other, and the absorption axes of the pair of polarizing plates; It arrange
  • a voltage equal to or higher than the threshold is not applied to the liquid crystal layer, the light from the backlight does not pass through the liquid crystal layer and is displayed in black.
  • the angle formed between the absorption axis of the pair of polarizing plates arranged in the crossed Nicols and the liquid crystal director becomes larger than 0 ° (for example, 45 °), and the light from the backlight Transmits through the liquid crystal layer.
  • Example 1-1 (Production of liquid crystal panel) An FFS mode liquid crystal panel was actually produced by the following method. First, a planar electrode (lower layer electrode) having an FFS electrode structure made of indium tin oxide (ITO), a TFT substrate on which an insulating film and a slit electrode (upper layer electrode) are stacked, and a counter electrode having no electrode A substrate was prepared. Next, an aligning agent A containing polyamic acid having an azobenzene group in the main chain, represented by the following chemical formula (P-1a), was applied to both substrates.
  • ITO indium tin oxide
  • TFT substrate on which an insulating film and a slit electrode upper layer electrode
  • a counter electrode having no electrode A substrate was prepared.
  • an aligning agent A containing polyamic acid having an azobenzene group in the main chain represented by the following chemical formula (P-1a), was applied to both substrates.
  • preliminary baking is performed at 60 to 80 ° C. (2 minutes), followed by irradiation with 1 to 3 J / cm 2 of linearly polarized light (including 300 to 500 nm ultraviolet rays), and subsequently 170 to 180 ° C. (10 to 10 ° C.). 20 minutes) is performed (first stage firing) and 220 to 230 ° C. (20 to 30 minutes) firing (second stage firing).
  • first stage firing is performed (first stage firing)
  • second stage firing second stage firing
  • a UV and thermosetting sealant manufactured by Sekisui Chemical Co., Ltd., Photorec; this sealant is composed of (meth) acrylic monomer, photoradical polymerization initiator, epoxy monomer, epoxy A curing material, a silane coupling agent, and an inorganic filler are drawn.
  • This positive type liquid crystal material was composed of a compound having an alkenyl group and a positive type liquid crystal compound.
  • both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel.
  • the liquid crystal panel was heated at 110 to 140 ° C. for about 40 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature.
  • a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
  • the slit electrode 24 has a V-shaped structure, and the inclination angle ⁇ of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 7 ° in plan view.
  • Example 1-2 A liquid crystal panel of this example was produced in the same manner as in Example 1-1, except that the inclination angle ⁇ was 10 ° in plan view.
  • Example 1-3 A liquid crystal panel of this example was produced in the same manner as in Example 1-1 except that the inclination angle ⁇ was 13 ° in plan view.
  • Example 1-4 A liquid crystal panel of this example was produced in the same manner as in Example 1-1 except that the inclination angle ⁇ was 15 ° in plan view.
  • Example 2-1> (Production of liquid crystal panel) An FFS mode liquid crystal panel was actually produced by the following method. First, a planar electrode (lower electrode) having an FFS electrode structure made of indium tin oxide (ITO), a TFT substrate on which an insulating film and a slit electrode (upper electrode) are stacked, and a counter substrate having no electrode are prepared. did. Next, an aligning agent A containing a polyamic acid containing an azobenzene group in the main chain represented by the following chemical formula (P-1b) was applied to both substrates.
  • ITO indium tin oxide
  • P-1b an aligning agent A containing a polyamic acid containing an azobenzene group in the main chain represented by the following chemical formula (P-1b) was applied to both substrates.
  • X contains at least a structure derived from X2, and Y contains at least a structure derived from Y2.
  • preliminary baking is performed at 60 to 80 ° C. (2 minutes), followed by irradiation with 3 to 5 J / cm 2 of linearly polarized light (including 300 to 500 nm ultraviolet rays), and subsequently 110 to 130 ° C. (10 to 10 ° C.).
  • a photo-alignment film was formed on each substrate by performing main firing including firing at 20 minutes (first stage firing) and firing at 230 ° C. (30 to 40 minutes) (second stage firing). .
  • both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel.
  • the liquid crystal panel was heated at 110 to 140 ° C. for about 30 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature.
  • a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
  • the slit electrode 24 has a V-shaped structure, and the inclination angle ⁇ of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 7 ° in plan view.
  • Example 2-2 A liquid crystal panel of this example was fabricated in the same manner as in Example 2-1, except that the inclination angle ⁇ was 10 ° in plan view.
  • Example 2-3 A liquid crystal panel of this example was produced in the same manner as in Example 2-1, except that the inclination angle ⁇ was 13 ° in plan view.
  • Example 2-4 A liquid crystal panel of this example was produced in the same manner as in Example 2-1, except that the inclination angle ⁇ was 15 ° in plan view.
  • preliminary baking is performed at 60 to 80 ° C. (2 minutes), followed by irradiation with 1 to 3 J / cm 2 of linearly polarized light (including 300 to 500 nm ultraviolet rays), and subsequently 170 to 180 ° C. (10 to 10 ° C.). 20 minutes) is performed (first stage firing) and 220 to 230 ° C. (20 to 30 minutes) firing (second stage firing).
  • first stage firing is performed (first stage firing)
  • second stage firing second stage firing
  • both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel.
  • the liquid crystal panel was heated at 110 to 140 ° C. for about 40 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature.
  • a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
  • the slit electrode 24 has a V-shaped structure, and the inclination angle ⁇ of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 10 ° in plan view.
  • Example 3-2 A liquid crystal panel of this example was produced in the same manner as in Example 3-1, except that the dielectric anisotropy ⁇ of the positive liquid crystal material was 3.3.
  • Example 3-3 A liquid crystal panel of this example was produced in the same manner as in Example 3-1, except that the dielectric anisotropy ⁇ of the positive liquid crystal material was set to 4.0.
  • ⁇ of the positive liquid crystal material is preferably less than 3.5.
  • Example 4-1 (Alignment agent adjustment) A monomer (orienting monomer) having a chalconyl group represented by the following chemical formula (2-2) is added to the aligning agent A containing a polyamic acid having an azobenzene group in the main chain represented by the chemical formula (P-1a).
  • the alignment agent B1 was prepared by adding 10% by weight to the total weight of the solute of the alignment agent A (total weight of the polyamic acid represented by the chemical formula (P-1a)).
  • An FFS mode liquid crystal panel was actually produced by the following method. First, a planar electrode (lower electrode) having an FFS electrode structure made of indium tin oxide (ITO), a TFT substrate on which an insulating film and a slit electrode (upper electrode) are stacked, and a counter substrate having no electrode are prepared. did. Next, the alignment agent B1 was applied to both substrates.
  • pre-baking is performed at 60 to 80 ° C. (2 minutes), followed by irradiation with 4 to 7 J / cm 2 of linearly polarized light (including 300 to 500 nm ultraviolet rays) to perform uniaxial alignment treatment of the azobenzene group.
  • the monomer represented by the chemical formula (2-2) was polymerized.
  • main firing including firing at 170 to 180 ° C. (20 to 30 minutes) (first stage firing) and firing at 220 to 230 ° C. (20 to 30 minutes) (second stage firing).
  • main firing including firing at 170 to 180 ° C. (20 to 30 minutes) (first stage firing) and firing at 220 to 230 ° C. (20 to 30 minutes) (second stage firing).
  • a photo-alignment film was formed on each substrate.
  • a UV and thermosetting sealant manufactured by Sekisui Chemical Co., Ltd., Photorec; this sealant is composed of (meth) acrylic monomer, photoradical polymerization initiator, epoxy monomer, epoxy A curing material, a silane coupling agent, and an inorganic filler are drawn.
  • This positive type liquid crystal material was composed of a compound having an alkenyl group and a positive type liquid crystal compound.
  • both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel.
  • the liquid crystal panel was heated at 110 to 140 ° C. for about 40 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature.
  • a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
  • the slit electrode 24 has a V-shaped structure, and the inclination angle ⁇ of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 10 ° in plan view.
  • the aligning agent A containing a polyamic acid containing an azobenzene group in the main chain represented by the chemical formula (P-1a) has a chalcone group represented by the chemical formula (2-2).
  • a liquid crystal panel of this example was produced in the same manner as in Example 4-1, except that B2 was used.
  • the aligning agent A containing a polyamic acid containing an azobenzene group in the main chain represented by the chemical formula (P-1a) has a chalcone group represented by the chemical formula (2-2).
  • a liquid crystal panel of this example was produced in the same manner as in Example 4-1, except that B3 was used.
  • the aligning agent A containing a polyamic acid containing an azobenzene group in the main chain represented by the chemical formula (P-1a) has a chalcone group represented by the chemical formula (2-2).
  • a liquid crystal panel of this example was produced in the same manner as in Example 4-1, except that B4 was used.
  • Example 4-0> In the same manner as in Example 4-1, except that the aligning agent A containing a polyamic acid containing an azobenzene group in the main chain, represented by the chemical formula (P-1a), was used instead of the aligning agent B1.
  • the liquid crystal panel of the example was produced.
  • the burn-in rate was greatly reduced by adding the monomer having the chalconyl group to the photo-alignment film material and polymerizing the monomer during exposure of the photo-alignment film. From this, it was confirmed that the alignment control of the liquid crystal compound is stabilized by forming a polymer of a monomer having a chalcone group in the photo-alignment film. This is presumably because the anchoring strength (particularly the azimuth anchoring strength) of the photo-alignment film has increased. On the other hand, the response characteristics were almost constant with respect to the added amount of the monomer, but the contrast was greatly reduced when 30% by weight of the monomer was added.
  • concentration of less than 30 weight% with respect to the solute (polyamic acid) of an orientation agent it turned out that it is preferable to add the monomer which has a chalconyl group with the density
  • Example 5-1 (Alignment agent adjustment) A monomer (orienting monomer) having a chalcone group represented by the above chemical formula (2-2) is added to the aligning agent C containing a polyamic acid having a cyclobutane ring in the main chain represented by the following chemical formula (P-1c).
  • the alignment agent D1 was prepared by adding 10% by weight to the total weight of the solute of the alignment agent C (total weight of the polyamic acid represented by the following chemical formula (P-1c)).
  • An FFS mode liquid crystal panel was actually produced by the following method. First, a planar electrode (lower electrode) having an FFS electrode structure made of indium tin oxide (ITO), a TFT substrate on which an insulating film and a slit electrode (upper electrode) are stacked, and a counter substrate having no electrode are prepared. did. Next, the alignment agent D1 was applied to both substrates.
  • main baking is performed at 190 to 200 ° C. (20 to 30 minutes), followed by 0.5 to 2 J / cm 2 linearly polarized light (250 (Including ultraviolet rays of up to 360 nm) and uniaxial orientation treatment of the cyclobutane ring, and at the same time, polymerization of the monomer represented by the chemical formula (2-2) was performed. Subsequently, by baking at 220 to 220 ° C. (30 to 40 minutes), a photo-alignment film was formed on each substrate.
  • a UV and thermosetting sealant manufactured by Sekisui Chemical Co., Ltd., Photorec; this sealant is composed of (meth) acrylic monomer, photoradical polymerization initiator, epoxy monomer, epoxy A curing material, a silane coupling agent, and an inorganic filler are drawn.
  • This positive type liquid crystal material was composed of a compound having an alkenyl group and a positive type liquid crystal compound.
  • both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel.
  • the liquid crystal panel was heated at 110 to 140 ° C. for about 40 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature.
  • a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
  • the slit electrode 24 has a V-shaped structure, and the inclination angle ⁇ of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 10 ° in plan view.
  • the aligning agent C containing a polyamic acid containing a cyclobutane ring in the main chain represented by the chemical formula (P-1c) has a chalcone group represented by the chemical formula (2-2).
  • a liquid crystal panel of this example was produced in the same manner as in Example 5-1, except that D2 was used.
  • the aligning agent C containing a polyamic acid containing a cyclobutane ring in the main chain represented by the chemical formula (P-1c) has a chalcone group represented by the chemical formula (2-2).
  • a liquid crystal panel of this example was produced in the same manner as in Example 5-1, except that D3 was used.
  • the aligning agent C containing a polyamic acid containing a cyclobutane ring in the main chain represented by the chemical formula (P-1c) has a chalcone group represented by the chemical formula (2-2).
  • a liquid crystal panel of this example was produced in the same manner as in Example 5-1, except that D4 was used.
  • Example 5-0 In the same manner as in Example 5-1, except that the aligning agent C containing a polyamic acid containing a cyclobutane ring in the main chain, represented by the chemical formula (P-1c), was used instead of the aligning agent D1.
  • the liquid crystal panel of the example was produced.
  • the cyclobutane ring originally has a cyclobutane ring by adding the monomer having the chalconyl group to the photo-alignment film material having a cyclobutane ring and also polymerizing the monomer during the exposure of the photo-alignment film.
  • the degree of image sticking of the photo-alignment film was small, the image sticking rate was further reduced. From this, it was confirmed that the alignment control of the liquid crystal compound is stabilized also by forming a polymer of a monomer having a chalcone group in a photo-alignment film (decomposed type) having a cyclobutane ring.
  • the anchoring strength (particularly the azimuth anchoring strength) of the photo-alignment film is further increased.
  • the response characteristics were almost the same as in Example 4 and were almost constant with respect to the added amount of the monomer, but the contrast was greatly lowered when 30% by weight of the monomer was added. This is presumed that when the photo-alignment film having 30% by weight of the monomer was formed, it was not a transparent film but a white turbid film, so that a significant decrease in contrast due to scattering occurred.
  • the photo-alignment film having a cyclobutane ring was slightly lower than the photo-alignment film having an azobenzene group.
  • concentration of less than 30 weight% with respect to the solute (polyamic acid) of an orientation agent it turned out that it is preferable to add the monomer which has a chalconyl group with the density
  • preliminary baking is performed at 60 to 80 ° C. (2 minutes), followed by irradiation with 1 to 3 J / cm 2 of linearly polarized light (including 300 to 500 nm ultraviolet rays), and subsequently 170 to 180 ° C. (10 to 10 ° C.). 20 minutes) is performed (first stage firing) and 220 to 230 ° C. (20 to 30 minutes) firing (second stage firing).
  • first stage firing is performed (first stage firing)
  • second stage firing second stage firing
  • a UV and thermosetting sealant manufactured by Sekisui Chemical Co., Ltd., Photorec; this sealant is composed of (meth) acrylic monomer, photoradical polymerization initiator, epoxy monomer, epoxy A curing material, a silane coupling agent, and an inorganic filler are drawn.
  • This positive type liquid crystal material was composed of a compound having an alkenyl group and a positive type liquid crystal compound.
  • both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel.
  • the liquid crystal panel was heated at 110 to 140 ° C. for about 40 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature.
  • a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
  • the slit electrode 24 has a V-shaped structure, and the inclination angle ⁇ of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 10 ° in plan view.
  • Example 6-2 Except for using a polyamic acid represented by the following chemical formula (P-1d) represented by the following chemical formula (P-1a), a polyamic acid comprising an azobenzene group contained in the main chain, instead of the polyamic acid represented by the chemical formula (P-1a).
  • P-1d a polyamic acid represented by the following chemical formula (P-1a)
  • P-1a a polyamic acid comprising an azobenzene group contained in the main chain
  • X includes at least a structure derived from X3, and Y includes at least a structure derived from Y3.
  • the seizure resulting from the application of AC voltage over a long period of time was higher (bad) when the polyamic acid represented by the chemical formula (P-1a) was used.
  • the polyamic acid represented by the above chemical formula (P-1a) has low molecular steric hindrance due to the bending of the polymer, and therefore has high molecular mobility, and as a result, there is a slight seizure resulting from application of AC voltage over a long period of time. It got worse.
  • One embodiment of the present invention includes a liquid crystal layer containing a liquid crystal material having a positive dielectric anisotropy, a sealant disposed so as to surround the liquid crystal layer in a plan view, and a pair of sandwiching the liquid crystal layer A substrate and a photo-alignment film provided on at least one surface of the pair of substrates, the photo-alignment film containing at least one of polyamic acid and polyimide (polyimide polymer), and the liquid crystal material
  • the liquid crystal compound in the substrate is aligned horizontally with respect to the substrate surface, and one of the pair of substrates includes a pixel electrode and a common electrode, and at least one of the pixel electrode and the common electrode is linear.
  • the liquid crystal display device may be characterized in that an inclination angle of the linear portion with respect to an initial alignment direction of the liquid crystal compound is 7 ° or more in plan view.
  • the liquid crystal display device includes a photo-alignment film that aligns the liquid crystal compound in a horizontal direction with respect to the substrate surface, and the inclination angle of the linear portion with respect to the initial alignment direction of the liquid crystal compound is 7 ° or more in plan view. Therefore, image sticking due to the application of the AC voltage can be suppressed.
  • the inclination angle may be 13 ° or less. Thereby, it is possible to suppress a decrease in transmittance and contrast.
  • the polyamic acid and the polyimide may have a structure derived from a diamine having an azobenzene group and a structure derived from a tetracarboxylic dianhydride having a bent molecular structure. Even in this case, it is possible to effectively suppress the occurrence of image sticking due to application of a high AC voltage.
  • the tetracarboxylic dianhydride having a bent molecular structure may include at least one tetracarboxylic dianhydride represented by any one of the following chemical formulas (X-1) to (X-28).
  • the tetracarboxylic dianhydride having a bent molecular structure is at least one tetracarboxylic dianhydride represented by any one of the chemical formulas (X-6), (X-22), (X-23) or (X-27). Carboxylic dianhydrides may be included.
  • the polyamic acid and the polyimide may have a structure derived from a cyclobutane ring.
  • the liquid crystal material may have a dielectric anisotropy of 1 or more and less than 3.5. Even in this case, it is possible to effectively suppress the occurrence of image sticking due to application of a high AC voltage. Further, the response performance of the liquid crystal material can be improved and the speed can be increased.
  • the nematic phase-isotropic phase transition point of the liquid crystal material may be 95 ° C. or higher.
  • the said liquid crystal display device can be made suitable for a vehicle-mounted use, a ship use, an aviation use, etc.
  • the sealing material may contain a (meth) acrylic monomer, a radical polymerization initiator, an epoxy monomer, and an epoxy curing material. Even in this case, it is possible to effectively suppress the occurrence of image sticking due to application of a high AC voltage.
  • the photo-alignment film further contains a polymer obtained by polymerizing at least one monomer (alignment monomer), and the at least one monomer reacts with at least one of an isomerization reaction and a dimerization reaction by irradiation with polarized ultraviolet rays. May be produced to show the orientation.
  • the alignment state of the polyimide-based polymer can be more stably fixed, and as a result, the alignment state of the liquid crystal compound can be more stably fixed. That is, the azimuth anchoring strength of the photo-alignment film can be improved, and image sticking due to application of AC voltage can be more effectively suppressed.
  • the at least one monomer is a monomer having a chalcone group which may have a substituent, a monomer having a cinnamate group which may have a substituent, and a monomer having a coumarin group which may have a substituent. It may contain at least one photoreactive monomer selected from the group consisting of:
  • the at least one monomer may include at least one monomer represented by the following chemical formula (1).
  • P 1 and P 2 are the same or different and each represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
  • Sp 1 and Sp 2 are the same or different and each represents a linear, branched or cyclic alkylene group or alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond. At least one hydrogen atom of each phenylene group may be substituted.
  • the at least one monomer represented by the chemical formula (1) may include at least one monomer represented by any one of the following chemical formulas (2-1) to (2-5).
  • the display mode of the liquid crystal display device may be a fringe field switching (FFS) mode.
  • FFS fringe field switching
  • Another embodiment of the present invention is a preparatory step of preparing a pair of substrates, at least one surface of the pair of substrates, at least one polymer of polyamic acid and polyimide (polyimide polymer), and at least one monomer
  • the manufacturing method of a display apparatus may be sufficient.
  • the method for manufacturing the liquid crystal display device includes an irradiation step of irradiating the photo-alignment film with polarized ultraviolet rays to align the polyimide polymer and aligning and polymerizing the orientation monomer.
  • the polyimide polymer having a group is controlled in orientation, and the orientation monomer is polymerized in a state in which the orientation is controlled, so that the orientation of the polyimide polymer having a photofunctional group can be fixed. Therefore, since the azimuth anchoring strength of the photo-alignment film can be improved, it is possible to reduce image sticking due to application of an AC voltage.
  • One of the pair of substrates includes a pixel electrode and a common electrode, and at least one of the pixel electrode and the common electrode includes a linear portion.
  • the photo-alignment film is formed on the surface of the substrate including the pixel electrode and the common electrode.
  • the photo-alignment film is polarized so that an angle formed by the polarization axis direction with respect to the linear portion is 83 ° or less.
  • the photo-alignment film may be irradiated with polarized ultraviolet rays so that an angle formed by a polarization axis direction with respect to the linear portion is 77 ° or more.
  • the inclination angle of the linear portion with respect to the initial alignment direction of the liquid crystal compound can be easily reduced to 13 ° or less in plan view. Therefore, it is possible to suppress a decrease in transmittance and contrast.
  • the polyamic acid and the polyimide may have a structure derived from a diamine having an azobenzene group and a structure derived from a tetracarboxylic dianhydride having a bent molecular structure. Even in this case, it is possible to effectively suppress the occurrence of image sticking due to application of a high AC voltage.
  • the polyamic acid and the polyimide may have a structure derived from a cyclobutane ring.
  • the at least one monomer is a monomer having a chalcone group which may have a substituent, a monomer having a cinnamate group which may have a substituent, and a monomer having a coumarin group which may have a substituent. It may contain at least one photoreactive monomer selected from the group consisting of:

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)

Abstract

The present invention provides a liquid crystal display device whereby ghosting caused by application of AC voltage can be suppressed, and a method for manufacturing a liquid crystal display device whereby such a liquid crystal display device can be manufactured. The present invention is a liquid crystal display device provided with a liquid crystal layer containing a liquid crystal material having positive dielectric anisotropy, a seal material disposed so as to surround the liquid crystal layer in plan view, a pair of substrates sandwiching the liquid crystal layer, and an optical alignment film provided to a surface of at least one of the pair of substrates, the optical alignment film containing a polyamic acid and/or a polyimide and causing a liquid crystal compound in the liquid crystal material to align in the horizontal direction with respect to the substrate surface, at least one of the pair of substrates including a pixel electrode and a shared electrode, the pixel electrode and/or the shared electrode including a linear part, and the inclination angle of the linear part with respect to the initial alignment direction of the liquid crystal compound being 7° or greater in plan view.

Description

液晶表示装置、及び、液晶表示装置の製造方法Liquid crystal display device and method of manufacturing liquid crystal display device
本発明は、液晶表示装置、及び、液晶表示装置の製造方法に関する。より詳しくは、光配向膜を有する液晶表示装置と、その製造方法とに関するものである。 The present invention relates to a liquid crystal display device and a method for manufacturing the liquid crystal display device. More specifically, the present invention relates to a liquid crystal display device having a photo-alignment film and a manufacturing method thereof.
液晶表示装置は、表示のために液晶組成物を利用する表示装置であり、その代表的な表示方式は、一対の基板間に液晶組成物を封入した液晶パネルに対してバックライトから光を照射し、液晶組成物に電圧を印加して液晶材料の配向を変化させることにより、液晶パネルを透過する光の量を制御するものである。このような液晶表示装置は、薄型、軽量及び低消費電力といった特長を有することから、スマートフォン、タブレットPC、カーナビゲーション等の電子機器に利用されている。 A liquid crystal display device is a display device that uses a liquid crystal composition for display. A typical display method is to irradiate light from a backlight onto a liquid crystal panel in which the liquid crystal composition is sealed between a pair of substrates. The amount of light transmitted through the liquid crystal panel is controlled by applying a voltage to the liquid crystal composition to change the orientation of the liquid crystal material. Such a liquid crystal display device has features such as thinness, light weight, and low power consumption, and thus is used in electronic devices such as smartphones, tablet PCs, and car navigation systems.
また、液晶表示装置の表示方式として、広視野角特性を得やすい等の理由から、液晶材料の配向を基板面に対して平行な面内で主に回転させることによって制御を行う横電界型水平配向モードが注目を集めている。横電界型水平配向モードとしては、例えば、面内スイッチング(IPS:In-Plane Switching)モードや、フリンジ電界スイッチング(FFS:Fringe Field Switching)モードが挙げられる。 In addition, as a display method of a liquid crystal display device, a horizontal electric field type horizontal control in which the orientation of a liquid crystal material is controlled mainly in a plane parallel to the substrate surface for the purpose of easily obtaining a wide viewing angle characteristic. The orientation mode is attracting attention. Examples of the horizontal electric field type horizontal alignment mode include an in-plane switching (IPS: In-Plane Switching) mode and a fringe electric field switching (FFS: Fringe Field Switching) mode.
液晶表示装置において、電圧が印加されていない状態における液晶材料の配向は、配向処理が施された配向膜によって制御されるのが一般的である(例えば、特許文献1等参照)。上記配向膜は、例えば、基板上にポリアミック酸等の配向膜材料を塗布し、その後焼成して製膜する。液晶材料の配向を制御する他の方法としては、液晶層中に添加した重合性モノマーを重合させて、配向膜の表面に液晶材料の配向を制御するポリマー層を形成するポリマー支持配向技術(Polymer Sustained Alignment)も検討されている(例えば、非特許文献1等参照)。 In a liquid crystal display device, the alignment of a liquid crystal material in a state where no voltage is applied is generally controlled by an alignment film that has been subjected to an alignment treatment (see, for example, Patent Document 1). The alignment film is formed, for example, by applying an alignment film material such as polyamic acid on a substrate and then baking it. As another method for controlling the alignment of the liquid crystal material, a polymer-supported alignment technique (Polymer) that polymerizes a polymerizable monomer added in the liquid crystal layer to form a polymer layer for controlling the alignment of the liquid crystal material on the surface of the alignment film. Sustained Alignment) has also been studied (see, for example, Non-Patent Document 1).
特開2009-173792号公報JP 2009-173792 A
しかしながら、FFSモード等の横電界型水平配向モードにおいて、偏光光が照射されることによって水平配向制御能を発揮する配向膜材料(以下、水平光配向膜材料とも言う。)から形成された配向膜(以下、水平光配向膜とも言う。)と、ポジ型液晶材料を用いた場合、液晶パネル(液晶層、各画素)へのAC(交流)電圧印加による焼き付きが発生することがあった。その原因については、次のように考えられる。図7は、参考例に係る液晶表示装置の拡大平面模式図であり、液晶化合物と、画素電極及び/又は共通電極の線状部とを示し、(a)は、AC電圧印加前を、(b)は、AC電圧印加時を、(c)は、AC電圧印加後をそれぞれ示す。ポジ型液晶材料を用いた横電界型水平配向モードでは、透過率と視野角を向上させる観点からは、図7(a)に示したように、液晶化合物31の初期配向方位31aに対する画素電極及び/又は共通電極の線状部27の傾斜角度(Inclination Angle;IA)αをできるだけ小さくする必要がある。そのため、傾斜角度αは、通常、7°未満に設定される。しかしながら、水平光配向膜を用いた液晶パネルへ高AC電圧を印加すると、図7(b)に示したように、傾斜角度αが小さい場合、液晶化合物31が初期配向方位31aから大きく回転することになるが、水平光配向膜のアンカリング強度(特に方位角アンカリング強度)が比較的弱いため(低配向規制力)、図7(c)に示したように、高AC電圧印加を解除しても液晶化合物31が初期配向方位31aに戻らず、その結果、焼き付きとなるためと推測される。 However, in a horizontal electric field type horizontal alignment mode such as FFS mode, an alignment film formed from an alignment film material (hereinafter also referred to as a horizontal light alignment film material) that exhibits a horizontal alignment control ability when irradiated with polarized light. When a positive liquid crystal material is used (hereinafter also referred to as a horizontal light alignment film), image sticking may occur due to application of an AC (alternating current) voltage to a liquid crystal panel (liquid crystal layer, each pixel). The cause is considered as follows. FIG. 7 is an enlarged schematic plan view of a liquid crystal display device according to a reference example, showing a liquid crystal compound and a linear portion of a pixel electrode and / or a common electrode. FIG. b) shows when the AC voltage is applied, and (c) shows after the AC voltage is applied. In the horizontal electric field type horizontal alignment mode using the positive type liquid crystal material, from the viewpoint of improving the transmittance and the viewing angle, as shown in FIG. 7A, the pixel electrode with respect to the initial alignment direction 31a of the liquid crystal compound 31 and It is necessary to make the inclination angle (Inclination Angle; IA) α of the linear portion 27 of the common electrode as small as possible. Therefore, the inclination angle α is normally set to less than 7 °. However, when a high AC voltage is applied to the liquid crystal panel using the horizontal light alignment film, as shown in FIG. 7B, the liquid crystal compound 31 rotates greatly from the initial alignment azimuth 31a when the tilt angle α is small. However, since the anchoring strength (especially the azimuth anchoring strength) of the horizontal photo-alignment film is relatively weak (low orientation regulation force), as shown in FIG. However, it is presumed that the liquid crystal compound 31 does not return to the initial orientation azimuth 31a, and as a result, burn-in occurs.
特にポジ型液晶材料の誘電率異方性(Δε)を小さく(例えば3.5未満に)し、その分透過率を向上させるため高AC電圧(例えば6V程度)を液晶パネルへ印加する車載用途の液晶表示装置では、上記AC電圧由来の焼き付きは顕著となる。なお、ポジ型液晶材料の誘電率異方性を小さくするのは液晶パネルの応答特性を高速化するためである。 In particular, in-vehicle applications in which a high AC voltage (for example, about 6 V) is applied to a liquid crystal panel in order to reduce the dielectric anisotropy (Δε) of a positive liquid crystal material (for example, less than 3.5) and improve the transmittance accordingly In the liquid crystal display device, image sticking derived from the AC voltage is significant. The reason why the dielectric anisotropy of the positive liquid crystal material is reduced is to increase the response characteristic of the liquid crystal panel.
また、水平光配向膜材料の一種である、アゾベンゼン基(異性化型)を高分子主鎖に有する配向膜材料を用いた場合も上記AC電圧由来の焼き付きは顕著となる。これは、アゾベンゼン基を高分子主鎖に有する配向膜材料(以下、アゾベンゼン基含有光配向膜材料とも言う。)から形成された配向膜において方位角アンカリング強度が特に低いためと考えられる。その要因としては、(1)アゾベンゼン基含有光配向膜材料の重量平均分子量が比較的小さいこと(例えば20,000以下)、(2)偏光紫外線照射により一部のアゾベンゼン基は、下記反応式に示すように、光開裂するため、高分子の重量平均分子量が更に小さくなること、が挙げられる。 Also, when an alignment film material having an azobenzene group (isomerization type) in the polymer main chain, which is a kind of horizontal light alignment film material, is used, the image sticking from the AC voltage becomes remarkable. This is presumably because the azimuth anchoring strength is particularly low in an alignment film formed from an alignment film material having an azobenzene group in the polymer main chain (hereinafter also referred to as an azobenzene group-containing photo-alignment film material). The factors are (1) the weight-average molecular weight of the azobenzene group-containing photoalignment film material is relatively small (for example, 20,000 or less), and (2) some azobenzene groups by irradiation with polarized ultraviolet rays are expressed by the following reaction formula: As shown, because of photocleavage, the weight average molecular weight of the polymer is further reduced.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
上記(1)に関して、アゾベンゼン基含有光配向膜材料では、偏光紫外線照射により高分子を一方向に配向させるため、重量平均分子量をある程度小さくして分子運動性を向上させる設計を行う。上記(2)について、アゾベンゼン基は(偏光)紫外線照射で異性化以外に開裂反応も起こり易い。また、高分子としてポリアミック酸及び/又はポリイミドを用い、テトラカルボン酸二無水物として分子構造が屈曲したものを用いた場合、偏光紫外線の吸収効率は向上するため、アゾベンゼン基の開裂数が更に多くなる。 With respect to the above (1), the azobenzene group-containing photo-alignment film material is designed to improve the molecular mobility by reducing the weight average molecular weight to some extent in order to align the polymer in one direction by irradiation with polarized ultraviolet rays. Regarding (2) above, the azobenzene group is susceptible to cleavage reaction in addition to isomerization by (polarized) ultraviolet irradiation. In addition, when polyamic acid and / or polyimide is used as the polymer and the one having a bent molecular structure is used as tetracarboxylic dianhydride, the absorption efficiency of polarized ultraviolet light is improved, so the number of cleavage of the azobenzene group is further increased. Become.
また、水平光配向膜において方位角アンカリング強度が低くなる他の要因としては、(3)シール周辺部では、滴下注入法用シール材の構成化合物(未反応成分)である(メタ)アクリル樹脂のモノマー((メタ)アクリルモノマー)及び重合開始剤がシールから液晶層に溶出し、溶出したこれらの未反応成分が、水平光配向膜表面に吸着することが挙げられる。上記(3)について、シール中の(メタ)アクリルモノマー及び重合開始剤(なかでもラジカル重合開始剤、特に光ラジカル重合開始剤)は、低極性であるため、上記のように高速応答化のために液晶材料の誘電率異方性を小さく(例えば3.5未満に)すると、液晶材料の極性も小さくなり、未反応成分は液晶層中に更に溶出し易くなる。 In addition, other factors that lower the azimuth anchoring strength in the horizontal photo-alignment film include (3) (meth) acrylic resin, which is a constituent compound (unreacted component) of the sealing material for the dropping injection method, at the seal peripheral portion. The monomer ((meth) acrylic monomer) and the polymerization initiator are eluted from the seal into the liquid crystal layer, and the eluted unreacted components are adsorbed on the surface of the horizontal photo-alignment film. Regarding (3) above, since the (meth) acrylic monomer and the polymerization initiator (especially radical polymerization initiator, especially photoradical polymerization initiator) in the seal are of low polarity, as described above, for high speed response. If the dielectric anisotropy of the liquid crystal material is decreased (for example, less than 3.5), the polarity of the liquid crystal material also decreases, and the unreacted components are more easily eluted in the liquid crystal layer.
本発明は、上記現状に鑑みてなされたものであり、AC電圧印加に起因する焼き付きを抑制可能な液晶表示装置と、そのような液晶表示装置を製造可能な液晶表示装置の製造方法とを提供することを目的とするものである。 The present invention has been made in view of the above situation, and provides a liquid crystal display device capable of suppressing burn-in caused by application of an AC voltage and a method of manufacturing a liquid crystal display device capable of manufacturing such a liquid crystal display device. It is intended to do.
本発明の一態様は、正の誘電率異方性を有する液晶材料を含有する液晶層と、平面視において上記液晶層を囲むように配置されたシール材と、上記液晶層を挟持する一対の基板と、上記一対の基板の少なくとも一方の表面に設けられた光配向膜とを備え、上記光配向膜は、ポリアミック酸及びポリイミドの少なくとも一方を含有し、かつ、上記液晶材料中の液晶化合物を上記基板面に対して水平方向に配向させるものであり、上記一対の基板の一方は、画素電極及び共通電極を含み、上記画素電極及び上記共通電極の少なくとも一方は、線状部を含み、上記液晶化合物の初期配向方位に対する上記線状部の傾斜角度は、平面視において7°以上である液晶表示装置であってもよい。 One embodiment of the present invention includes a liquid crystal layer containing a liquid crystal material having a positive dielectric anisotropy, a sealant disposed so as to surround the liquid crystal layer in a plan view, and a pair of sandwiching the liquid crystal layer A substrate and a photo-alignment film provided on at least one surface of the pair of substrates, wherein the photo-alignment film contains at least one of polyamic acid and polyimide, and contains the liquid crystal compound in the liquid crystal material. One of the pair of substrates includes a pixel electrode and a common electrode, and at least one of the pixel electrode and the common electrode includes a linear portion, The liquid crystal display device may have an inclination angle of the linear portion with respect to the initial alignment direction of the liquid crystal compound of 7 ° or more in plan view.
本発明の他の一態様は、一対の基板を準備する準備工程と、上記一対の基板の少なくとも一方の表面に、ポリアミック酸及びポリイミドの少なくとも一方のポリマーと、少なくとも一種のモノマーとを含有する配向剤を塗布して光配向膜を形成する成膜工程と、上記光配向膜に偏光紫外線を照射して、上記少なくとも一方のポリマーを配向させるとともに上記少なくとも一種のモノマーを配向及び重合させる照射工程とを含み、上記少なくとも一種のモノマーは、偏光紫外線の照射により異性化反応及び二量化反応の少なくとも一方の反応を生じて配向性を示す液晶表示装置の製造方法であってもよい。 Another embodiment of the present invention is a preparatory step of preparing a pair of substrates, and an orientation containing at least one polymer of polyamic acid and polyimide and at least one monomer on at least one surface of the pair of substrates. A film forming step of forming a photo-alignment film by applying an agent; and an irradiation step of irradiating the photo-alignment film with polarized ultraviolet rays to align the at least one polymer and align and polymerize the at least one monomer. The at least one monomer may be a method for producing a liquid crystal display device that exhibits orientation by causing at least one of an isomerization reaction and a dimerization reaction by irradiation with polarized ultraviolet rays.
上記特許文献1には、アゾベンゼン基を主鎖に有するポリアミック酸系の配向膜材料が開示されている。しかしながら、上記特許文献1では、液晶化合物の初期配向方位に対する画素電極及び/又は共通電極の線状部の傾斜角度を7°以上とすることは検討されておらず、また、ポリアミック酸及びポリイミドの少なくとも一方のポリマーと、少なくとも一種のモノマーとを含有する配向剤を塗布して光配向膜を形成することは全く開示されていない。 Patent Document 1 discloses a polyamic acid-based alignment film material having an azobenzene group in the main chain. However, in the above-mentioned Patent Document 1, it is not considered that the inclination angle of the linear portion of the pixel electrode and / or the common electrode with respect to the initial alignment direction of the liquid crystal compound is 7 ° or more. There is no disclosure at all of forming an optical alignment film by applying an alignment agent containing at least one polymer and at least one monomer.
本発明の液晶表示装置、及び、液晶表示装置の製造方法によれば、AC電圧印加に起因する焼き付きを抑制することが可能である。 According to the liquid crystal display device and the manufacturing method of the liquid crystal display device of the present invention, it is possible to suppress image sticking caused by application of an AC voltage.
実施形態1に係る液晶表示装置の断面模式図である。1 is a schematic cross-sectional view of a liquid crystal display device according to Embodiment 1. FIG. 実施形態1に係る液晶表示装置の平面模式図である。1 is a schematic plan view of a liquid crystal display device according to Embodiment 1. FIG. 実施形態1に係る液晶表示装置の拡大平面模式図であり、液晶化合物と、画素電極及び/又は共通電極の線状部とを示す。FIG. 2 is an enlarged schematic plan view of the liquid crystal display device according to Embodiment 1, showing a liquid crystal compound and a linear portion of a pixel electrode and / or a common electrode. 実施形態1の変形形態に係る液晶表示装置の拡大平面模式図であり、液晶化合物と、画素電極及び/又は共通電極の線状部とを示す。FIG. 5 is an enlarged schematic plan view of a liquid crystal display device according to a modification of Embodiment 1, showing a liquid crystal compound and a linear portion of a pixel electrode and / or a common electrode. 実施形態1に係る液晶表示装置の光配向膜におけるアゾベンゼン基を有するポリイミド系ポリマーと配向性モノマーのポリマーとの状態を説明した模式図である。FIG. 3 is a schematic diagram illustrating states of a polyimide polymer having an azobenzene group and a polymer of an alignment monomer in a photo-alignment film of the liquid crystal display device according to Embodiment 1. 実施形態1に係る液晶表示装置の光配向膜における分子の状態を説明した模式図であり、(a)は、偏光紫外線照射前のアゾベンゼン基を有するポリイミド系ポリマー及び配向性モノマーを示し、(b)は、偏光紫外線照射後のアゾベンゼン基を有するポリイミド系ポリマー及び配向性モノマーのポリマーを示す。It is the schematic diagram explaining the state of the molecule | numerator in the photo-alignment film | membrane of the liquid crystal display device which concerns on Embodiment 1, (a) shows the polyimide-type polymer and orientation monomer which have an azobenzene group before polarized ultraviolet irradiation, (b ) Shows a polyimide polymer having an azobenzene group after irradiation with polarized ultraviolet rays and a polymer of an orientation monomer. 参考例に係る液晶表示装置の拡大平面模式図であり、液晶化合物と、画素電極及び/又は共通電極の線状部とを示し、(a)は、AC電圧印加前を、(b)は、AC電圧印加時を、(c)は、AC電圧印加後をそれぞれ示す。It is an expansion plane schematic diagram of the liquid crystal display device concerning a reference example, and shows a liquid crystal compound and the linear part of a pixel electrode and / or a common electrode, (a) is before an AC voltage application, (b) is When the AC voltage is applied, (c) shows after the AC voltage is applied.
以下、本発明の実施形態について説明する。本発明は、以下の実施形態に記載された内容に限定されるものではなく、本発明の構成を充足する範囲内で、適宜設計変更を行うことが可能である。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the contents described in the following embodiments, and appropriate design changes can be made within a range that satisfies the configuration of the present invention.
本明細書中、「光反応性モノマー」とは、光官能基を含むモノマーを意味する。 In the present specification, the “photoreactive monomer” means a monomer containing a photofunctional group.
本明細書中、「光官能基」とは、光反応を生じ得る官能基を意味する。 In the present specification, the “photofunctional group” means a functional group capable of causing a photoreaction.
本明細書中、「観察面側」とは、液晶表示装置の画面(表示面)に対してより近い側を意味し、「背面側」とは、液晶表示装置の画面(表示面)に対してより遠い側を意味する。 In this specification, “observation surface side” means a side closer to the screen (display surface) of the liquid crystal display device, and “back side” means the screen (display surface) of the liquid crystal display device. Means the farther side.
本明細書において、「液晶化合物の初期配向方位」とは、画素電極と共通電極との間に電圧が印加されない電圧無印加状態における液晶化合物の配向方位を意味する。また、「液晶化合物の配向方位」とは、液晶化合物の長軸(液晶ダイレクター)の向きを意味する。 In the present specification, the “initial alignment direction of the liquid crystal compound” means the alignment direction of the liquid crystal compound in a state in which no voltage is applied between the pixel electrode and the common electrode. Further, the “alignment orientation of the liquid crystal compound” means the direction of the long axis (liquid crystal director) of the liquid crystal compound.
<実施形態1>
<液晶表示装置>
図1は、実施形態1に係る液晶表示装置の断面模式図である。図2は、実施形態1に係る液晶表示装置の平面模式図である。図3は、実施形態1に係る液晶表示装置の拡大平面模式図であり、液晶化合物と、画素電極及び/又は共通電極の線状部とを示す。図1及び図2に示したように、本実施形態の液晶表示装置100は、横電界型水平配向モードの一種であるFFSモードであり、正の誘電率異方性を有する液晶材料を含有する液晶層30と、平面視において液晶層30を囲むように配置されたシール材40と、シール材40によって互いに接合され、液晶層30を挟持する一対の基板10及び20と、各基板10、20の液晶層30側の表面上に設けられた光配向膜50とを備える。液晶表示装置100は、更に一対の基板10、20のいずれか一方の後方にバックライト70を備える。
<Embodiment 1>
<Liquid crystal display device>
FIG. 1 is a schematic cross-sectional view of the liquid crystal display device according to the first embodiment. FIG. 2 is a schematic plan view of the liquid crystal display device according to the first embodiment. FIG. 3 is an enlarged schematic plan view of the liquid crystal display device according to Embodiment 1, and shows a liquid crystal compound and a linear portion of a pixel electrode and / or a common electrode. As shown in FIGS. 1 and 2, the liquid crystal display device 100 of the present embodiment is an FFS mode that is a kind of horizontal electric field type horizontal alignment mode, and contains a liquid crystal material having positive dielectric anisotropy. The liquid crystal layer 30, the sealing material 40 disposed so as to surround the liquid crystal layer 30 in plan view, the pair of substrates 10 and 20 that are bonded to each other by the sealing material 40 and sandwich the liquid crystal layer 30, and the substrates 10 and 20 And a photo-alignment film 50 provided on the surface of the liquid crystal layer 30 side. The liquid crystal display device 100 further includes a backlight 70 behind one of the pair of substrates 10 and 20.
図1に示したように、基板10及び20の一方には、面状電極22と、少なくとも一本のスリット24sが設けられたスリット電極24と、面状電極22及びスリット電極24の間に配置された絶縁膜(層間絶縁膜)23とを含む構造(FFS電極構造)が設けられ、液晶層30中に横電界成分を含む斜め電界(フリンジ電界)が形成される。通常では、液晶層30側から、スリット電極24(上層電極)、絶縁膜23、面状電極22(下層電極)の順に配置される。スリット電極24としては、例えば、その全周を電極に囲まれた線状の開口部をスリット24sとして備えるものや、複数の櫛歯部を備え、かつ櫛歯部間に配置された線状の切れ込みがスリット24sを構成する櫛型形状のものを用いることができる。 As shown in FIG. 1, one of the substrates 10 and 20 is arranged between the planar electrode 22, the slit electrode 24 provided with at least one slit 24 s, and the planar electrode 22 and the slit electrode 24. A structure (FFS electrode structure) including the insulating film (interlayer insulating film) 23 is provided, and an oblique electric field (fringe electric field) including a lateral electric field component is formed in the liquid crystal layer 30. Usually, from the liquid crystal layer 30 side, the slit electrode 24 (upper layer electrode), the insulating film 23, and the planar electrode 22 (lower layer electrode) are arranged in this order. As the slit electrode 24, for example, a linear opening surrounded by an electrode around the entire circumference as the slit 24s, or a linear electrode provided with a plurality of comb teeth and disposed between the comb teeth. A comb-shaped slit that forms the slit 24s can be used.
FFSモードでは、スリット電極24及び面状電極22の一方が各画素に対応して設けられた画素電極25として機能し、他方が共通電極26として機能する。また、スリット電極24、すなわち画素電極25及び共通電極26の一方は、互いに平行な複数の線状部27を含んでおり、線状部27とスリット電極24のスリット24sとは、液晶化合物31の初期配向方位31aに直交する方向において、交互に配置されている。各線状部27は、通常、一本以上の直線部分から構成され、二本の直線部分から構成される場合は図3に示したようなVの字状に、三本以上の直線部分から構成される場合はジグザグ状に形成される。 In the FFS mode, one of the slit electrode 24 and the planar electrode 22 functions as the pixel electrode 25 provided corresponding to each pixel, and the other functions as the common electrode 26. In addition, one of the slit electrode 24, that is, the pixel electrode 25 and the common electrode 26 includes a plurality of linear portions 27 parallel to each other. The linear portion 27 and the slit 24 s of the slit electrode 24 include the liquid crystal compound 31. They are alternately arranged in the direction orthogonal to the initial orientation direction 31a. Each linear portion 27 is usually composed of one or more straight portions, and when composed of two straight portions, it is composed of three or more straight portions in a V shape as shown in FIG. If it is, it is formed in a zigzag shape.
図4は、実施形態1の変形形態に係る液晶表示装置の拡大平面模式図であり、液晶化合物と、画素電極及び/又は共通電極の線状部とを示す。図4に示したように、各線状部27は、液晶化合物31の初期配向方位31aに対する傾斜角度αが異なる複数の直線部分から構成されてもよいが、その場合は、複数の傾斜角度αのうちの最小のものが後述する数値範囲を満たすことが好ましい。 FIG. 4 is an enlarged schematic plan view of a liquid crystal display device according to a modification of the first embodiment, and shows a liquid crystal compound and a linear portion of a pixel electrode and / or a common electrode. As shown in FIG. 4, each linear portion 27 may be composed of a plurality of linear portions having different inclination angles α with respect to the initial alignment azimuth 31 a of the liquid crystal compound 31. It is preferable that the smallest of these satisfy the numerical range described later.
光配向膜50は、ポリアミック酸及びポリイミドの少なくとも一方のポリマー(以下、ポリイミド系ポリマーとも言う。)を含んでおり、かつ、液晶材料中の液晶化合物31を基板10、20面に対して水平方向に配向させるものである。このような光配向膜は、通常、ラビング処理用の水平配向膜に比べて、アンカリング強度(特に方位角アンカリング強度)が弱いため、上述のように、液晶表示装置100でも液晶パネル(液晶層30、各画素)へのAC電圧印加による焼き付きが発生することが懸念される。 The photo-alignment film 50 includes at least one polymer of polyamic acid and polyimide (hereinafter also referred to as polyimide polymer), and the liquid crystal compound 31 in the liquid crystal material is oriented in a horizontal direction with respect to the substrates 10 and 20. To be oriented. Such a photo-alignment film usually has a lower anchoring strength (particularly azimuth angle anchoring strength) than a horizontal alignment film for rubbing treatment. Therefore, as described above, even in the liquid crystal display device 100, the liquid crystal panel (liquid crystal There is concern over the occurrence of burn-in due to the application of an AC voltage to the layer 30 and each pixel).
しかしながら、本実施形態では、図3に示したように、液晶化合物31の初期配向方位31aに対する線状部27の傾斜角度αを大きく、具体的には平面視において7°以上に設定している。傾斜角度αを大きくすると、AC電圧印加による液晶化合物31の方位方向の変化量Δdは小さくなるため、AC電圧印加由来の焼き付きを軽減することができる。また、AC電圧除去時の液晶化合物31(液晶ダイレクター)の初期配向方位31aへの戻りも速くなるため、高速応答化が可能である。 However, in this embodiment, as shown in FIG. 3, the inclination angle α of the linear portion 27 with respect to the initial alignment direction 31a of the liquid crystal compound 31 is large, specifically, set to 7 ° or more in plan view. . When the inclination angle α is increased, the amount of change Δd in the azimuth direction of the liquid crystal compound 31 due to the application of the AC voltage is reduced, so that burn-in due to the application of the AC voltage can be reduced. In addition, since the return of the liquid crystal compound 31 (liquid crystal director) to the initial alignment azimuth 31a at the time of removing the AC voltage becomes faster, a high-speed response is possible.
他方、AC電圧印加由来の焼き付き低減と高速応答化との観点からは、傾斜角度αの上限は特に限定されず、適宜設定可能であるが、傾斜角度αを大きくし過ぎると、液晶化合物31の方位方向の変化量Δdが小さいことによる透過率及びコントラストの低下が発生し得る(低焼き付き及び高速応答の効果はあるが)。したがって、透過率及びコントラストの観点からは、傾斜角度αは、大き過ぎないことが好ましく、具体的には平面視において13°以下であることが好ましい。 On the other hand, the upper limit of the tilt angle α is not particularly limited and can be set as appropriate from the viewpoint of reducing the burn-in resulting from the AC voltage application and increasing the response speed. However, if the tilt angle α is too large, the liquid crystal compound 31 A decrease in transmittance and contrast due to a small change Δd in the azimuth direction may occur (although there are effects of low image sticking and high-speed response). Therefore, from the viewpoint of transmittance and contrast, the inclination angle α is preferably not too large, and specifically, it is preferably 13 ° or less in plan view.
<基板>
一対の基板10、20としては、例えば、アクティブマトリクス基板(TFT基板)及びカラーフィルタ(CF)基板の組み合わせが挙げられる。
<Board>
Examples of the pair of substrates 10 and 20 include a combination of an active matrix substrate (TFT substrate) and a color filter (CF) substrate.
上記アクティブマトリクス基板としては、液晶表示装置の分野において通常使用されるものを用いることができる。アクティブマトリクス基板を平面視したときの構成としては、透明基板21上に、複数本の平行なゲート信号線;ゲート信号線に対して直交する方向に伸び、かつ互いに平行に形成された複数本のソース信号線;ゲート信号線とソース信号線との交点に対応して配置された薄膜トランジスタ(TFT)等のアクティブ素子;ゲート信号線とソース信号線とによって区画された領域にマトリクス状に配置された画素電極25等が設けられた構成が挙げられる。横電界型水平配向モードの場合には、更に、共通配線;共通配線に接続され、複数の画素(全ての画素でもよい)に共通の電圧を印加する共通電極26等が設けられる。画素電極25と共通電極26とは、絶縁膜23を介して積層されてもよい。上記TFTは、アモルファスシリコン、ポリシリコン、又は、酸化物半導体であるIGZO(インジウム-ガリウム-亜鉛-酸素)によって、チャネルを形成したものが好適に用いられる。 As the active matrix substrate, those normally used in the field of liquid crystal display devices can be used. When the active matrix substrate is viewed in plan, the transparent matrix 21 has a plurality of parallel gate signal lines; a plurality of parallel gate signal lines extending in a direction perpendicular to the gate signal lines and parallel to each other. Source signal lines; active elements such as thin film transistors (TFTs) arranged corresponding to the intersections of the gate signal lines and the source signal lines; arranged in a matrix in a region partitioned by the gate signal lines and the source signal lines A configuration in which the pixel electrode 25 and the like are provided can be given. In the case of the horizontal electric field type horizontal alignment mode, a common electrode; a common electrode 26 that is connected to the common wire and applies a common voltage to a plurality of pixels (or all pixels) is provided. The pixel electrode 25 and the common electrode 26 may be stacked via the insulating film 23. As the TFT, an amorphous silicon, polysilicon, or an oxide semiconductor IGZO (indium-gallium-zinc-oxygen) is preferably used.
アクティブマトリクス型の表示方式では、通常、各画素に設けられたTFTがオンのときに、TFTを通じて信号電圧が画素電極25に印加され、このときに画素に充電された電荷を、TFTがオフの期間中に保持する。充電された電荷を1フレーム期間(例えば、16.7ms)中に保持した割合を示すのが電圧保持率(VHR:Voltage Holding Ratio)である。すなわち、VHRが低いということは、液晶層に印加される電圧が時間とともに減衰しやすいことを意味し、アクティブマトリクス型の表示方式においては、VHRを高くすることが求められる。 In the active matrix display method, normally, when the TFT provided in each pixel is turned on, a signal voltage is applied to the pixel electrode 25 through the TFT, and the charge charged in the pixel at this time is turned off. Hold during the period. A voltage holding ratio (VHR) indicates a ratio of holding the charged charge during one frame period (for example, 16.7 ms). That is, a low VHR means that the voltage applied to the liquid crystal layer tends to decay with time. In the active matrix display method, it is required to increase the VHR.
上記カラーフィルタ基板としては、液晶表示装置の分野において通常使用されるものを用いることができる。カラーフィルタ基板の構成としては、透明基板上に、格子状に形成されたブラックマトリクス、格子すなわち画素の内側に形成されたカラーフィルタ等が設けられた構成が挙げられる。カラーフィルタは、赤色のカラーフィルタ、緑色のカラーフィルタ及び青色のカラーフィルタを含んでもよい。青色のカラーフィルタの厚さは、赤色のカラーフィルタの厚さ、緑色のカラーフィルタ厚さより厚くてもよい。青色のカラーフィルタを厚くすることで、液晶層厚を薄くすることができ、セル厚の最適化を行える。カラーフィルタの表面は、凹凸面を平坦化するオーバーコート層(誘電率ε=3~4)を配置してもよい。 As the color filter substrate, those usually used in the field of liquid crystal display devices can be used. Examples of the configuration of the color filter substrate include a configuration in which a black matrix formed in a lattice shape, a color filter formed inside a lattice, that is, a pixel, and the like are provided on a transparent substrate. The color filter may include a red color filter, a green color filter, and a blue color filter. The thickness of the blue color filter may be greater than the thickness of the red color filter or the green color filter. By increasing the blue color filter, the liquid crystal layer thickness can be reduced and the cell thickness can be optimized. An overcoat layer (dielectric constant ε = 3 to 4) for flattening the uneven surface may be disposed on the surface of the color filter.
なお、一対の基板10、20は、カラーフィルタ及びアクティブマトリクスの両方が片側の基板に形成されたものであってもよい。 The pair of substrates 10 and 20 may be one in which both the color filter and the active matrix are formed on one substrate.
<シール材>
シール材40は、図2に示したように、平面視において液晶層30の周囲を囲むように配置されている。シール材40は、紫外線等の光によって硬化するものであってもよいし、熱により硬化ものであってもよいし、光及び熱の両方によって硬化するものであってもよいが、なかでも光及び熱の両方によって硬化するものが好適である。シール材40は、例えば、エポキシ樹脂、(メタ)アクリル樹脂等を含有するものが挙げられる。シール材40は、シランカップリング剤、無機フィラー、有機フィラー、エポキシ硬化材等の硬化剤等を含有してもよい。シール材40としては、例えば、積水化学工業社製、フォトレック等を用いることができる。なお、平面視におけるシール材40の幅は、特に限定されず、要求される接着強度に応じて適宜設定可能である。
<Seal material>
As shown in FIG. 2, the sealing material 40 is disposed so as to surround the liquid crystal layer 30 in a plan view. The sealing material 40 may be cured by light such as ultraviolet rays, may be cured by heat, or may be cured by both light and heat. Those that cure by both heat and heat are preferred. Examples of the sealing material 40 include those containing an epoxy resin, a (meth) acrylic resin, and the like. The sealing material 40 may contain a curing agent such as a silane coupling agent, an inorganic filler, an organic filler, and an epoxy curing material. As the sealing material 40, for example, Sekisui Chemical Co., Ltd., Photorec, etc. can be used. In addition, the width | variety of the sealing material 40 in planar view is not specifically limited, According to the adhesive strength requested | required, it can set suitably.
硬化前後のシール材40は、(メタ)アクリルモノマー、ラジカル重合開始剤、エポキシモノマー、及び、エポキシ硬化材を含有していてもよい。これらの成分は、硬化前のシール材40に含まれていたものであって、硬化後のシール材40にも残存する未反応成分であり、上述のように、硬化したシール材40から液晶層30に溶出し、光配向膜50の表面に吸着して光配向膜50の方位角アンカリング強度を低下させる要因となる。しかしながら、本実施形態では、傾斜角度αが平面視において7°以上に設定されていることから、シール材40にそのような未反応成分が残存する場合であっても、未反応成分に起因してAC電圧印加により焼き付きが発生することを効果的に抑制することができる。上記成分のなかでも(メタ)アクリルモノマー及びラジカル重合開始剤は、液晶材料への溶解性がエポキシモノマー及びエポキシ硬化材より高いため、エポキシモノマー及びエポキシ硬化材に比べて、光配向膜50の方位角アンカリング強度を低下させる可能性が非常に高いと考えられる。 The sealing material 40 before and after curing may contain a (meth) acrylic monomer, a radical polymerization initiator, an epoxy monomer, and an epoxy curing material. These components are contained in the sealing material 40 before curing, and are unreacted components remaining in the sealing material 40 after curing. As described above, the liquid crystal layer is formed from the cured sealing material 40. 30 and is adsorbed on the surface of the photo-alignment film 50 to cause a decrease in the azimuth anchoring strength of the photo-alignment film 50. However, in this embodiment, since the inclination angle α is set to 7 ° or more in plan view, even when such an unreacted component remains in the sealing material 40, it is attributed to the unreacted component. Thus, it is possible to effectively suppress the occurrence of image sticking due to application of an AC voltage. Among the above components, the (meth) acrylic monomer and the radical polymerization initiator have higher solubility in the liquid crystal material than the epoxy monomer and the epoxy cured material, and therefore the orientation of the photo-alignment film 50 compared to the epoxy monomer and the epoxy cured material. The possibility of reducing the angle anchoring strength is considered very high.
上記ラジカル重合開始剤としては、光(好適には紫外線)照射によりラジカルを発生する重合開始剤、すなわち光ラジカル重合開始剤が好適であり、硬化前のシール材40に含まれる(メタ)アクリルモノマーの多くは、光照射によってラジカル重合開始剤から生じるラジカルによりラジカル重合して(メタ)アクリル樹脂を形成する。(メタ)アクリルモノマーは、低極性のものであってもよい。 As the radical polymerization initiator, a polymerization initiator that generates radicals upon irradiation with light (preferably ultraviolet rays), that is, a photo radical polymerization initiator is preferable, and a (meth) acrylic monomer contained in the sealant 40 before curing. In many cases, radical polymerization is performed by radicals generated from a radical polymerization initiator by light irradiation to form a (meth) acrylic resin. The (meth) acrylic monomer may be of low polarity.
上記(メタ)アクリルモノマーとしては特に限定されず、例えば、ウレタン結合を有するウレタン(メタ)アクリレート、グリシジル基を有する化合物と(メタ)アクリル酸とから誘導されるエポキシ(メタ)アクリレート等が挙げられる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。なお、本明細書において(メタ)アクリルとは、アクリル又はメタクリルのことをいう。 The (meth) acrylic monomer is not particularly limited, and examples thereof include urethane (meth) acrylate having a urethane bond, and epoxy (meth) acrylate derived from a compound having a glycidyl group and (meth) acrylic acid. . Any of these may be used alone or in combination of two or more. In addition, in this specification, (meth) acryl means acryl or methacryl.
上記ウレタン(メタ)アクリレートとしては特に限定されず、例えば、イソホロンジイソシアネート等のジイソシアネートと、アクリル酸、ヒドロキシエチルアクリレート等のイソシアネートと付加反応する反応性化合物との誘導体等が挙げられる。これらの誘導体はカプロラクトンやポリオール等で鎖延長させてもよい。市販品としては、例えば、U-122P、U-340P、U-4HA、U-1084A(以上、新中村化学工業社製);KRM7595、KRM7610、KRM7619(以上、ダイセルUCB社製)等が挙げられる。 The urethane (meth) acrylate is not particularly limited, and examples thereof include derivatives of diisocyanates such as isophorone diisocyanate and reactive compounds that undergo addition reaction with isocyanates such as acrylic acid and hydroxyethyl acrylate. These derivatives may be chain-extended with caprolactone or polyol. Examples of commercially available products include U-122P, U-340P, U-4HA, U-1084A (manufactured by Shin-Nakamura Chemical Co., Ltd.); KRM7595, KRM7610, KRM7619 (manufactured by Daicel UCB) and the like. .
上記エポキシ(メタ)アクリレートとしては特に限定されず、例えば、ビスフェノールA型エポキシ樹脂やプロピレングリコールジグリシジルエーテル等のエポキシ樹脂と、(メタ)アクリル酸とから誘導されたエポキシ(メタ)アクリレート等が挙げられる。また、市販品としては、例えば、EA-1020、EA-6320、EA-5520(以上、新中村化学工業社製);エポキシエステル70PA、エポキシエステル3002A(以上、共栄社化学社製)等が挙げられる。 The epoxy (meth) acrylate is not particularly limited, and examples thereof include an epoxy (meth) acrylate derived from an epoxy resin such as bisphenol A type epoxy resin or propylene glycol diglycidyl ether, and (meth) acrylic acid. It is done. Examples of commercially available products include EA-1020, EA-6320, EA-5520 (above, Shin-Nakamura Chemical Co., Ltd.); Epoxy ester 70PA, Epoxy ester 3002A (above, Kyoeisha Chemical Co., Ltd.) and the like. .
その他の(メタ)アクリルモノマーとしては、例えば、メチルメタクリレート、テトラヒドロフルフリルメタクリレート、ベンジルメタクリレート、イソボルニルメタクリレート、2-ヒドロキシエチルメタクリレート、グリシジルメタクリレート、(ポリ)エチレングリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、トリメチロールプロパントリアクリレート、ペンタエリストールトリアクリレート、グリセリンジメタクリレート等が挙げられる。 Other (meth) acrylic monomers include, for example, methyl methacrylate, tetrahydrofurfuryl methacrylate, benzyl methacrylate, isobornyl methacrylate, 2-hydroxyethyl methacrylate, glycidyl methacrylate, (poly) ethylene glycol dimethacrylate, 1,4-butane Examples thereof include diol dimethacrylate, 1,6-hexanediol dimethacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, and glycerin dimethacrylate.
上記ラジカル重合開始剤としては特に限定されず、例えば、下記化学式(R-1)又は(R-2)で表される化合物等が挙げられる。また、市販品としては、例えば、IRGACURE 651、IRGACURE189、IRGACURE-OXE01(以上、BASFジャパン社製)等が挙げられる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 The radical polymerization initiator is not particularly limited, and examples thereof include compounds represented by the following chemical formula (R-1) or (R-2). Moreover, as a commercial item, IRGACURE 651, IRGACURE189, IRGACURE-OXE01 (above, BASF Japan make) etc. are mentioned, for example. Any of these may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000006
(式(R-2)中、Rは、水素又は炭素数4以下の脂肪族炭化水素残基を表し、Xは、炭素数13以下の2官能イソシアネート誘導体の残基を表し、Yは、炭素数4以下の脂肪族炭化水素残基又は残基を構成する炭素と酸素の原子数比が3以下の残基を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the formula (R-2), R represents hydrogen or an aliphatic hydrocarbon residue having 4 or less carbon atoms, X represents a residue of a bifunctional isocyanate derivative having 13 or less carbon atoms, and Y represents carbon. This represents an aliphatic hydrocarbon residue having a number of 4 or less or a residue having an atomic ratio of carbon to oxygen constituting the residue of 3 or less.)
上記エポキシモノマーは、両端に反応性のエポキシ基を持つ化合物を意味し、プレポリマーを包含するものである。プレポリマーとは、両端の2つのエポキシ基(グリシジル基でもよい。)間に繰り返し構造を有する化合物(中間生成物)である。硬化前のシール材40に含まれるエポキシモノマーの多くは、加熱されるとエポキシ硬化材の付加反応によって架橋し、エポキシ樹脂を形成する。 The epoxy monomer means a compound having a reactive epoxy group at both ends, and includes a prepolymer. A prepolymer is a compound (intermediate product) having a repeating structure between two epoxy groups (may be glycidyl groups) at both ends. Many of the epoxy monomers contained in the sealing material 40 before curing are cross-linked by an addition reaction of the epoxy curing material to form an epoxy resin when heated.
上記エポキシ樹脂としては、例えば、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、トリスフェノールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、レゾルシノール型エポキシ樹脂、グリシジルアミン類等が挙げられる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 Examples of the epoxy resin include a phenol novolac epoxy resin, a cresol novolac epoxy resin, a biphenyl novolac epoxy resin, a trisphenol novolac epoxy resin, a dicyclopentadiene novolac epoxy resin, a bisphenol A epoxy resin, and a bisphenol F type. Epoxy resin, 2,2'-diallylbisphenol A type epoxy resin, bisphenol S type epoxy resin, hydrogenated bisphenol A type epoxy resin, propylene oxide added bisphenol A type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, resorcinol type Examples include epoxy resins and glycidylamines. Any of these may be used alone or in combination of two or more.
上記エポキシ樹脂のうち市販されているものとしては、例えば、フェニルノボラック型エポキシ樹脂としては、NC-3000S(日本化薬社製)、トリスフェノールノボラック型エポキシ樹脂としては、EPPN-501H、EPPN-501H(以上、日本化薬社製)、ジシクロペンタジエンノボラック型エポキシ樹脂としては、NC-7000L(日本化薬社製)、ビスフェノールA型エポキシ樹脂としては、エピクロン840S、エピクロン850CRP(以上、DIC社製)、ビスフェノールF型エポキシ樹脂としては、エピコート807(ジャパンエポキシレジン社製)、エピクロン830(DIC社製)、2,2’-ジアリルビスフェノールA型エポキシ樹脂としては、RE310NM(日本化薬社製)、水添ビスフェノール型エポキシ樹脂としては、エピクロン7015(DIC社製)、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂としては、エポキシエステル3002A(共栄社化学社製)、ビフェニル型エポキシ樹脂としては、エピコートYX-4000H、YL-6121H(以上、ジャパンエポキシレジン社製)、ナフタレン型エポキシ樹脂としては、エピクロンHP-4032(DIC社製)、レゾルシノール型エポキシ樹脂としては、デナコールEX-201(ナガセケムテックス社製)、グリシジルアミン類としては、エピクロン430(DIC社製)、エピコート630(ジャパンエポキシレジン社製)等が挙げられる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 Among the above epoxy resins, those commercially available include, for example, NC-3000S (manufactured by Nippon Kayaku Co., Ltd.) as a phenyl novolac type epoxy resin, and EPPN-501H and EPPN-501H as trisphenol novolak type epoxy resins. (Nippon Kayaku Co., Ltd.), NC-7000L (Nippon Kayaku Co., Ltd.) as the dicyclopentadiene novolak type epoxy resin, and Epicron 840S and Epicron 850CRP (above, DIC Corporation) as the bisphenol A type epoxy resin ), Bisphenol F type epoxy resin, Epicoat 807 (manufactured by Japan Epoxy Resin Co., Ltd.), Epicron 830 (manufactured by DIC), and 2,2′-diallyl bisphenol A type epoxy resin, RE310NM (manufactured by Nippon Kayaku Co., Ltd.) , Hydrogenated bisphenol As an epoxy resin, Epicron 7015 (manufactured by DIC), as a propylene oxide-added bisphenol A type epoxy resin, as an epoxy ester 3002A (manufactured by Kyoeisha Chemical Co., Ltd.), as a biphenyl type epoxy resin, as Epicoat YX-4000H, YL-6121H ( As described above, manufactured by Japan Epoxy Resin Co., Ltd., as naphthalene type epoxy resin, Epicron HP-4032 (manufactured by DIC), as resorcinol type epoxy resin, Denacol EX-201 (manufactured by Nagase ChemteX Corporation), as glycidylamines , Epicron 430 (manufactured by DIC), Epicoat 630 (manufactured by Japan Epoxy Resin), and the like. Any of these may be used alone or in combination of two or more.
上記エポキシ硬化材としては特に限定されないが、硬化前のシール材40を100~120℃の硬化温度にて硬化させるため、低温反応性に優れるアミン及び/又はチオール基を含有することが好ましい。このようなエポキシ硬化材としては特に限定されないが、例えば1,3-ビス[ヒドラジノカルボノエチル-5-イソプロピルヒダントイン]、アジピン酸ジヒドラジド等のヒドラジド化合物;ジシアンジアミド、グアニジン誘導体、1-シアノエチル-2-フェニルイミダゾール、N-[2-(2-メチル-1-イミダゾリル)エチル]尿素、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、N,N’-ビス(2-メチル-1-イミダゾリルエチル)尿素、N,N’-(2-メチル-1-イミダゾリルエチル)-アジポアミド、2-フェニルー4-メチル-5-ヒドロキシメチルイミダゾール、2-イミダゾリン-2-チオール、2-2’-チオジエタンチオール、各種アミンとエポキシ樹脂との付加生成物等が挙げられる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 The epoxy curing material is not particularly limited, but preferably contains an amine and / or thiol group having excellent low-temperature reactivity in order to cure the sealing material 40 before curing at a curing temperature of 100 to 120 ° C. Such an epoxy curing material is not particularly limited, but for example, hydrazide compounds such as 1,3-bis [hydrazinocarbonoethyl-5-isopropylhydantoin], adipic acid dihydrazide; dicyandiamide, guanidine derivatives, 1-cyanoethyl-2 -Phenylimidazole, N- [2- (2-methyl-1-imidazolyl) ethyl] urea, 2,4-diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine, N , N′-bis (2-methyl-1-imidazolylethyl) urea, N, N ′-(2-methyl-1-imidazolylethyl) -adipamide, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2- Imidazoline-2-thiol, 2-2'-thiodiethanethiol, various amines and epoxy resin Include addition products, etc. are. Any of these may be used alone or in combination of two or more.
<液晶層>
液晶層30は、少なくとも一種の液晶化合物(液晶分子)31を含む液晶材料を含有する。液晶材料は、サーモトロピック液晶であり、好適には、ネマティック相を呈する液晶材料(ネマチック液晶)であることが好ましい。上記液晶材料は、ネマティック相から温度を上げていくと、ある臨界温度(ネマティック相-等方相転移点(TNI))以上になると等方相に相転移するものが好ましい。液晶層30は、液晶表示装置の使用環境下(例えば、-40℃~90℃)で、ネマティック相を呈することが好ましい。上記液晶材料のネマティック相-等方相転移点の温度は特に限定されないが、例えば、70~110℃であり、95℃以上であることが好ましい。95℃以上とすることにより、液晶表示装置100を車載用途、船舶用途、航空用途等に好適なものとすることができる。液晶材料のネマティック相-等方相転移点の測定方法は、例えば、示差走査熱量測定(DSC:Differential Scanning Calorimetry)、又は、キャピラリーに液晶材料を封入し直接温度依存性を観察する方法等により測定することができる。
<Liquid crystal layer>
The liquid crystal layer 30 contains a liquid crystal material including at least one liquid crystal compound (liquid crystal molecule) 31. The liquid crystal material is a thermotropic liquid crystal, and preferably a liquid crystal material exhibiting a nematic phase (nematic liquid crystal). The liquid crystal material preferably has a phase transition to an isotropic phase when the temperature rises from a nematic phase and reaches a certain critical temperature (nematic phase-isotropic phase transition point (T NI )) or higher. The liquid crystal layer 30 preferably exhibits a nematic phase under the usage environment of the liquid crystal display device (for example, −40 ° C. to 90 ° C.). The temperature of the nematic phase-isotropic phase transition point of the liquid crystal material is not particularly limited, but is, for example, 70 to 110 ° C., and preferably 95 ° C. or higher. By setting the temperature to 95 ° C. or higher, the liquid crystal display device 100 can be made suitable for in-vehicle use, marine use, aviation use, and the like. The method for measuring the nematic phase-isotropic phase transition point of the liquid crystal material is, for example, by differential scanning calorimetry (DSC) or by directly observing the temperature dependence by enclosing the liquid crystal material in a capillary. can do.
上記液晶材料及び液晶化合物31は、下記式で定義される誘電率異方性(Δε)が正の値を有するものである。すなわち、液晶材料及び液晶化合物31は、正の誘電率異方性を有するものである。正の誘電率異方性を有する液晶材料及び液晶化合物31は、高TNI、高速応答(低回転粘性)といった特徴を有する。正の誘電率異方性を有する液晶材料としては、例えば、Δεが1~20のものを用いることができる。更に、液晶層30及び液晶材料は、極性を有さない、すなわちΔεが実質的に0である液晶化合物(ニュートラル液晶化合物)を含有していてもよい。ニュートラル液晶化合物としては、アルケン構造を有する液晶化合物が挙げられる。以下、正の誘電率異方性を有する液晶材料及び液晶化合物をそれぞれポジ型液晶材料及びポジ型液晶化合物とも言う。
Δε=(長軸方向の誘電率)-(短軸方向の誘電率)
The liquid crystal material and the liquid crystal compound 31 have a positive dielectric anisotropy (Δε) defined by the following formula. That is, the liquid crystal material and the liquid crystal compound 31 have positive dielectric anisotropy. The liquid crystal material having positive dielectric anisotropy and the liquid crystal compound 31 have characteristics such as high T NI and high-speed response (low rotational viscosity). As the liquid crystal material having positive dielectric anisotropy, for example, a material having Δε of 1 to 20 can be used. Furthermore, the liquid crystal layer 30 and the liquid crystal material may contain a liquid crystal compound (neutral liquid crystal compound) having no polarity, that is, Δε is substantially zero. Examples of the neutral liquid crystal compound include a liquid crystal compound having an alkene structure. Hereinafter, a liquid crystal material and a liquid crystal compound having positive dielectric anisotropy are also referred to as a positive liquid crystal material and a positive liquid crystal compound, respectively.
Δε = (dielectric constant in the major axis direction)-(dielectric constant in the minor axis direction)
上記液晶材料は、1以上、3.5未満(好ましくは1.5以上、3以下、より好ましくは1.8以上、2.7以下)の誘電率異方性を有するものであってもよい。これにより、液晶表示装置100は、高速応答化が可能となり、車載用途に適したものとなる。他方、この場合、白表示の透過率を向上するためには、液晶パネルへは高AC電圧(例えば6V程度)を印加する必要が生じ、上述のように、AC電圧由来の焼き付きが顕著となることが懸念される。しかしながら、本実施形態では、傾斜角度αが平面視において7°以上に設定されていることから、液晶材料の誘電率異方性が小さい場合であっても、高AC電圧印加による焼き付きが発生することを効果的に抑制することができる。 The liquid crystal material may have a dielectric anisotropy of 1 or more and less than 3.5 (preferably 1.5 or more and 3 or less, more preferably 1.8 or more and 2.7 or less). . As a result, the liquid crystal display device 100 can achieve high-speed response and is suitable for in-vehicle use. On the other hand, in this case, in order to improve the transmittance of white display, it is necessary to apply a high AC voltage (for example, about 6 V) to the liquid crystal panel, and as described above, the burn-in derived from the AC voltage becomes remarkable. There is concern. However, in the present embodiment, since the inclination angle α is set to 7 ° or more in plan view, image sticking due to application of a high AC voltage occurs even when the dielectric anisotropy of the liquid crystal material is small. This can be effectively suppressed.
上記液晶材料は、アルケニル基を有する液晶化合物を含有してもよい。アルケニル基を有する液晶化合物は、ニュートラル液晶化合物であることが好ましい。アルケニル基を有する液晶化合物を含有することで、液晶材料の回転粘性が改善するため、液晶材料の応答性能を向上し、高速化することができる。したがって、高温で液晶相を示す一方で低温では粘度が大きい液晶化合物を液晶材料に導入することが可能となり、その結果、高速応答性を有し、かつ、広い温度範囲で液晶相を示す液晶材料(好ましくはネマティック相-等方相転移点が95℃以上である液晶材料)を用いることができる。 The liquid crystal material may contain a liquid crystal compound having an alkenyl group. The liquid crystal compound having an alkenyl group is preferably a neutral liquid crystal compound. By including the liquid crystal compound having an alkenyl group, the rotational viscosity of the liquid crystal material is improved, so that the response performance of the liquid crystal material can be improved and the speed can be increased. Accordingly, it is possible to introduce a liquid crystal compound having a liquid crystal phase at a high temperature and having a high viscosity at a low temperature into the liquid crystal material. As a result, the liquid crystal material has a fast response and exhibits a liquid crystal phase in a wide temperature range. (Preferably, a liquid crystal material having a nematic phase-isotropic phase transition point of 95 ° C. or higher) can be used.
上記アルケニル基を有する液晶化合物は、下記化学式(L-1)~(L-4)のいずれかで表される化合物であってもよい。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 The liquid crystal compound having an alkenyl group may be a compound represented by any of the following chemical formulas (L-1) to (L-4). Any of these may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000007
(式中、m及びnは、同一又は異なって、1~6の整数である。)
Figure JPOXMLDOC01-appb-C000007
(Wherein, m and n are the same or different and are integers of 1 to 6)
上記アルケニル基を有する液晶化合物の具体的な例としては、例えば、下記化学式(L-1-1)で表される化合物が挙げられる。 Specific examples of the liquid crystal compound having an alkenyl group include a compound represented by the following chemical formula (L-1-1).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
<光配向膜>
光配向膜50は、液晶層30と接するように配置されており、液晶層30に含まれる液晶材料中の液晶化合物31を基板10及び20面に対して水平方向に配向させる。液晶層30に液晶材料の閾値以上の電圧が印加されていない状態(例えば、電圧無印可状態)における液晶材料の配向は、光配向膜50により制御される。なお、液晶材料中の液晶化合物31を基板10及び20面に対して水平方向に配向させるとは、基板10及び20面に対する液晶材料のプレチルト角が、10°以下であることを言う。上記プレチルト角は、3°以下であることがより好ましい。上記プレチルト角とは、液晶層30への印加電圧が閾値電圧未満(電圧無印加を含む)における、基板の表面に対して液晶材料(液晶化合物31)の長軸が形成する角度を言い、基板面を0°、基板法線を90°とする。
<Photo-alignment film>
The photo-alignment film 50 is disposed in contact with the liquid crystal layer 30 and aligns the liquid crystal compound 31 in the liquid crystal material included in the liquid crystal layer 30 in the horizontal direction with respect to the surfaces of the substrates 10 and 20. The alignment of the liquid crystal material in a state where a voltage equal to or higher than the threshold value of the liquid crystal material is not applied to the liquid crystal layer 30 (for example, a voltage non-applied state) is controlled by the photo-alignment film 50. In addition, aligning the liquid crystal compound 31 in the liquid crystal material in the horizontal direction with respect to the substrates 10 and 20 means that the pretilt angle of the liquid crystal material with respect to the substrates 10 and 20 is 10 ° or less. The pretilt angle is more preferably 3 ° or less. The pretilt angle refers to an angle formed by the major axis of the liquid crystal material (liquid crystal compound 31) with respect to the surface of the substrate when the applied voltage to the liquid crystal layer 30 is less than the threshold voltage (including no voltage applied). The surface is 0 ° and the substrate normal is 90 °.
光配向膜50は、ポリイミド及びポリアミック酸の少なくとも一方のポリマー(ポリイミド系ポリマー)を含んでいる。なお、光配向膜50に含まれ得るポリイミドは、ポリアミック酸が部分的にイミド化したもの、すなわちポリアミック酸構造を部分的に含むものであってもよいし、ポリアミック酸が完全にイミド化したもの、すなわちポリアミック酸構造を全く含まないものであってもよい。また、光配向膜50は、ポリイミド系ポリマーを一種のみ含有してもよいし、ポリイミド系ポリマーを二種以上含有してもよい。 The photo-alignment film 50 includes at least one polymer (polyimide polymer) of polyimide and polyamic acid. The polyimide that can be included in the photo-alignment film 50 may be a partially imidized polyamic acid, that is, a partially included polyamic acid structure, or a completely imidized polyamic acid. That is, it may not contain any polyamic acid structure. Moreover, the photo-alignment film 50 may contain only one type of polyimide polymer, or may contain two or more types of polyimide polymers.
光配向膜50は、光配向処理を施されたものであり、上記ポリイミド系ポリマーは、光官能基を主鎖に有する。光官能基は、紫外線、可視光等の光(電磁波、好ましくは偏向光、より好ましくは偏向紫外線、特に好ましくは直線偏光紫外線)が照射されることによって、例えば、二量化(二量体形成)、異性化、光フリース転移、分解(開裂)等の構造変化を生じ、配向規制力を発現できる官能基であることが好ましい。光官能基の具体例としては、例えば、アゾベンゼン基、カルコン基、シンナメート基、クマリン基、トラン基、スチルベン基、シクロブタン環等が挙げられる。光配向膜50を用いることによって、液晶表示装置100の高コントラスト化が可能である。 The photo-alignment film 50 is subjected to photo-alignment treatment, and the polyimide polymer has a photofunctional group in the main chain. The photofunctional group is irradiated with light (electromagnetic wave, preferably deflected light, more preferably deflected ultraviolet light, particularly preferably linearly polarized ultraviolet light) such as ultraviolet light and visible light, for example, dimerization (dimer formation). It is preferably a functional group capable of causing structural changes such as isomerization, light fleece transition, and decomposition (cleavage) and exhibiting orientation regulating power. Specific examples of the photofunctional group include azobenzene group, chalcone group, cinnamate group, coumarin group, tolan group, stilbene group, and cyclobutane ring. By using the photo-alignment film 50, the liquid crystal display device 100 can have high contrast.
上記ポリイミド系ポリマーは、ジアミンに由来する構造と、テトラカルボン酸二無水物に由来する構造とを繰り返し構造として有するポリマーであり、少なくとも一種のジアミンと、少なくとも一種のテトラカルボン酸二無水物とを重合させたものである。ポリイミド系ポリマーは、下記化学式(P-1)で表されるポリアミック酸構造、及び/又は、下記化学式(P-2)で表されるポリイミド構造を含んでいる。 The polyimide-based polymer is a polymer having a structure derived from a diamine and a structure derived from a tetracarboxylic dianhydride as a repeating structure, and includes at least one diamine and at least one tetracarboxylic dianhydride. Polymerized. The polyimide polymer includes a polyamic acid structure represented by the following chemical formula (P-1) and / or a polyimide structure represented by the following chemical formula (P-2).
Figure JPOXMLDOC01-appb-C000009
(式中、Xは4価の有機基を表し、Yは3価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000009
(In the formula, X represents a tetravalent organic group, and Y represents a trivalent organic group.)
Figure JPOXMLDOC01-appb-C000010
(式中、Xは4価の有機基を表し、Yは3価の有機基を表す。)
Figure JPOXMLDOC01-appb-C000010
(In the formula, X represents a tetravalent organic group, and Y represents a trivalent organic group.)
なお、ポリイミド系ポリマーの一分子において、X及びYは、それぞれ、一種であっても二種類以上であってもよい。 In one molecule of the polyimide polymer, X and Y may be one type or two or more types, respectively.
上記ポリイミド系ポリマー(上記ポリアミック酸及び上記ポリイミド)としては、アゾベンゼン基を有するジアミンに由来する構造と、分子構造が屈曲したテトラカルボン酸二無水物に由来する構造とを有するものが好適である。アゾベンゼン基は、偏光紫外線(好適には直線偏光紫外線)の照射により異性化反応及び分解(開裂)反応を生じる。このようにポリイミド系ポリマーがアゾベンゼン基を有するジアミンと分子構造が屈曲したテトラカルボン酸二無水物とを重合させてなるものである場合、ポリイミド系ポリマーの主鎖にアゾベンゼン基が存在し、また、ポリイミド系ポリマーの偏光紫外線の吸収効率が向上するため、上述のように、AC電圧由来の焼き付きは顕著となることが懸念される。しかしながら、本実施形態では、傾斜角度αが平面視において7°以上に設定されていることから、そのような場合であっても、高AC電圧印加による焼き付きが発生することを効果的に抑制することができる。本明細書中、分子構造が屈曲したテトラカルボン酸二無水物とは、複数のコンフォーメーションを取り得え、かつ、それらのうちの少なくとも最もエネルギー的に安定なコンフォーメーションでの分子構造が屈曲しているテトラカルボン酸二無水物であればよく、最もエネルギー的に安定なコンフォーメーション以外のコンフォーメーションでの分子構造は、屈曲していてもよいし、屈曲していなくてもよい。なお、複数のコンフォーメーションのうちのいずれが最もエネルギー的に安定であるかは、分子構造を質量分析(ToF-SIMS、LC-MS等)にて確認し、その分子構造についてシミュレーションによるエネルギー計算を行う方法により判断することができる。 As the polyimide polymer (the polyamic acid and the polyimide), those having a structure derived from a diamine having an azobenzene group and a structure derived from a tetracarboxylic dianhydride having a bent molecular structure are suitable. The azobenzene group undergoes an isomerization reaction and a decomposition (cleavage) reaction upon irradiation with polarized ultraviolet rays (preferably linearly polarized ultraviolet rays). When the polyimide polymer is formed by polymerizing a diamine having an azobenzene group and a tetracarboxylic dianhydride having a bent molecular structure, an azobenzene group is present in the main chain of the polyimide polymer, Since the absorption efficiency of polarized ultraviolet rays of the polyimide-based polymer is improved, there is a concern that the burn-in derived from the AC voltage becomes significant as described above. However, in this embodiment, since the inclination angle α is set to 7 ° or more in plan view, even in such a case, the occurrence of image sticking due to the application of a high AC voltage is effectively suppressed. be able to. In the present specification, a tetracarboxylic dianhydride having a bent molecular structure means that a plurality of conformations can be obtained and the molecular structure in at least the most energetically stable conformation is bent. The molecular structure in a conformation other than the most energetically stable conformation may be bent or unbent. In order to determine which of the multiple conformations is the most energetically stable, the molecular structure is confirmed by mass spectrometry (ToF-SIMS, LC-MS, etc.), and the energy calculation by simulation is performed for the molecular structure. It can be determined by the method to be performed.
上記テトラカルボン酸二無水物が屈曲性(折れ曲がり型)の分子構造を有する場合、ポリイミド系ポリマー分子間の立体障害が抑制されるため、光照射によるアゾベンゼン基の異性化反応が効率良く起こるようになる。アゾベンゼン基の異性化反応が効率よく起こることで、液晶表示装置100のコントラスト向上に繋がると同時に、光配向膜50(そのための配向剤)中に、反応効率を向上させるための低分子添加剤を導入しなくてもよくなる。低分子添加剤が入ると、未反応の一部の低分子添加剤が液晶層30中に溶出し、液晶化合物31の配向低下、又は、イオン性不純物の濃度増加によるVHR低下が起こる。したがって、特に、液晶層30が高温でも液晶相を示す必要がある用途(好適には車載用途)では、屈曲型のテトラカルボン酸二無水物が好ましい。他方、アゾベンゼン基含有のポリイミド系ポリマー分子間の立体障害が抑制されることで、AC電圧を長期間印加したときに焼き付きが発生し易くなる。これは、光配向膜50でポリマー分子間の密度が低下することによると考えられる。より詳細に説明すると、AC電圧印加による焼き付きは、電圧印加を止めた後、直ぐに液晶化合物31が元の(0V印加時)の初期配向状態に戻らないために発生する。ここで、液晶化合物31の配向が元に戻りにくい(戻るのに時間が掛かる)のは、レオロジー的な考え方をすると、伸びたバネが元に戻りにくいためである。したがって、液晶配向を制御する光配向膜50を構成する高分子鎖の密度が低下すると、バネ定数が小さくなる(液晶化合物31の配向が元に戻り難くなる)と考えられ、AC電圧印加による焼き付きが発生し易くなると考えられる。しかしながら、本実施形態では、傾斜角度αが平面視において7°以上に設定されていることから、そのような場合であっても、高AC電圧印加による焼き付きが発生することを効果的に抑制することができる。 When the tetracarboxylic dianhydride has a flexible (bent) molecular structure, the steric hindrance between the polyimide polymer molecules is suppressed, so that the isomerization reaction of the azobenzene group by light irradiation occurs efficiently. Become. Since the isomerization reaction of the azobenzene group occurs efficiently, the contrast of the liquid crystal display device 100 is improved, and at the same time, a low molecular additive for improving the reaction efficiency is added in the photo-alignment film 50 (alignment agent therefor). There is no need to introduce it. When the low molecular additive is added, a part of the unreacted low molecular additive is eluted into the liquid crystal layer 30, and the orientation of the liquid crystal compound 31 is lowered or the VHR is lowered due to the increased concentration of ionic impurities. Therefore, in particular, in applications where the liquid crystal layer 30 needs to exhibit a liquid crystal phase even at high temperatures (preferably in-vehicle applications), a bent tetracarboxylic dianhydride is preferable. On the other hand, the steric hindrance between the azobenzene group-containing polyimide polymer molecules is suppressed, so that image sticking is likely to occur when an AC voltage is applied for a long time. This is considered to be due to a decrease in density between polymer molecules in the photo-alignment film 50. More specifically, image sticking due to AC voltage application occurs because the liquid crystal compound 31 does not return to the original initial alignment state (when 0 V is applied) immediately after the voltage application is stopped. Here, the reason why the alignment of the liquid crystal compound 31 is difficult to return to the original state (it takes time to return) is that the stretched spring is difficult to return to the original state in the rheological way of thinking. Therefore, when the density of the polymer chains constituting the photo-alignment film 50 that controls the liquid crystal alignment is decreased, the spring constant is considered to be small (the alignment of the liquid crystal compound 31 is difficult to return to the original state), and image sticking by applying an AC voltage is considered. Is likely to occur. However, in this embodiment, since the inclination angle α is set to 7 ° or more in plan view, even in such a case, the occurrence of image sticking due to the application of a high AC voltage is effectively suppressed. be able to.
なお、上記低分子添加剤とは、ポリイミド系ポリマー同士を架橋する架橋剤であり、一般に一分子中にエポキシ基を2~4つ有する低分子化合物が挙げられる。屈曲型でないテトラカルボン酸二無水物を用いる場合、ポリイミド系ポリマーを高分子量にすると、分子間立体障害が大きくなり、光配向制御が難しくなる。そのため、分子量の比較的小さいポリイミド系ポリマーを用いて光配向処理を行った後、低分子添加剤のエポキシ基とポリイミド系ポリマー中のカルボン酸とを熱反応させ、ポリイミド系ポリマーの分子量を大きくする。 The low-molecular additive is a cross-linking agent that cross-links polyimide polymers and generally includes a low-molecular compound having 2 to 4 epoxy groups in one molecule. When a tetracarboxylic dianhydride that is not bent is used, if the polyimide polymer has a high molecular weight, intermolecular steric hindrance increases, and photoalignment control becomes difficult. Therefore, after performing photo-alignment treatment using a polyimide polymer with a relatively small molecular weight, the epoxy group of the low molecular additive and the carboxylic acid in the polyimide polymer are thermally reacted to increase the molecular weight of the polyimide polymer. .
上記アゾベンゼン基を有するジアミン(上記式(P-1)及び(P-2)中のYを構成するためのジアミン)は、下記化学式(Y-1)~(Y-5)のいずれかで表される化合物であってもよい。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 The diamine having an azobenzene group (diamine for constituting Y in the above formulas (P-1) and (P-2)) is represented by any one of the following chemical formulas (Y-1) to (Y-5). It may be a compound. Any of these may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
上記分子構造が屈曲したテトラカルボン酸二無水物(上記式(P-1)及び(P-2)中のXを構成するためのテトラカルボン酸二無水物)は、下記化学式(X-1)~(X-28)のいずれかで表される化合物であってもよい。特に、下記化学式(X-6)、(X-22)、(X-23)又は(X-27)のいずれかで表される化合物が好適である。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 The tetracarboxylic dianhydride having a bent molecular structure (tetracarboxylic dianhydride for constituting X in the above formulas (P-1) and (P-2)) is represented by the following chemical formula (X-1) It may be a compound represented by any one of (X-28). In particular, a compound represented by any of the following chemical formulas (X-6), (X-22), (X-23) or (X-27) is preferred. Any of these may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
上記ポリイミド系ポリマー(上記ポリアミック酸及び上記ポリイミド)は、シクロブタン環に由来する構造を有するものであってもよい。シクロブタン環は、偏光紫外線(好適には直線偏光紫外線)の照射により分解(開裂)反応を生じる。シクロブタン環は、下記化学式(X-a)で表される1,2,3,4-シクロブタンテトラカルボン酸二無水物に由来する構造に含まれ、上記式(P-1)及び(P-2)中に含まれる。なお、上記ポリイミド系ポリマーがシクロブタン環に由来する構造を有する場合は、ジアミンに由来する構造は特に限定されず、上記式(P-1)及び(P-2)中のYを構成するためのジアミンは、例えば、下記化学式(Y-a)で表される化合物であってもよい。 The polyimide polymer (the polyamic acid and the polyimide) may have a structure derived from a cyclobutane ring. The cyclobutane ring undergoes a decomposition (cleavage) reaction upon irradiation with polarized ultraviolet rays (preferably linearly polarized ultraviolet rays). The cyclobutane ring is included in a structure derived from 1,2,3,4-cyclobutanetetracarboxylic dianhydride represented by the following chemical formula (Xa), and includes the above formulas (P-1) and (P-2). ) Included. In the case where the polyimide polymer has a structure derived from a cyclobutane ring, the structure derived from a diamine is not particularly limited, and is used for constituting Y in the above formulas (P-1) and (P-2). The diamine may be, for example, a compound represented by the following chemical formula (Ya).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
光配向膜50は、少なくとも一種のモノマー(以下、配向性モノマーとも言う。)を重合させてなるポリマーを更に含有し、配向性モノマーは、偏光紫外線の照射により異性化反応及び二量化反応の少なくとも一方の反応を生じて配向性を示すものであることが好ましい。これにより、配向性モノマーが、配向制御された状態で、かつ、ポリイミド系ポリマーの主鎖に絡みついた状態で、重合可能となり、ポリイミド系ポリマーの配向状態をより安定に固定化でき、結果として液晶化合物31の配向状態をより安定に固定化させることができる。すなわち、光配向膜50の方位角アンカリング強度を向上でき、AC電圧印加由来の焼き付きをより効果的に抑制することができる。配向性モノマーに照射される偏光紫外線は、直線偏光紫外線であることが好ましい。 The photo-alignment film 50 further contains a polymer obtained by polymerizing at least one monomer (hereinafter also referred to as an alignment monomer), and the alignment monomer is subjected to at least isomerization reaction and dimerization reaction by irradiation with polarized ultraviolet rays. It is preferable that one of the reactions occurs to exhibit orientation. As a result, the orientation monomer can be polymerized in a state in which the orientation is controlled and entangled with the main chain of the polyimide polymer, and the orientation state of the polyimide polymer can be more stably fixed, resulting in liquid crystal. The orientation state of the compound 31 can be more stably fixed. That is, the azimuth anchoring strength of the photo-alignment film 50 can be improved, and image sticking due to application of AC voltage can be more effectively suppressed. The polarized ultraviolet ray irradiated to the alignment monomer is preferably a linearly polarized ultraviolet ray.
上述のように、液晶層30中に溶出したシール材40の未反応成分(例えば、(メタ)アクリルモノマーや光ラジカル重合開始剤)が、配向制御されずに光配向膜50の表面に吸着すると、光配向膜50の配向規制力(方位角アンカリング強度)は更に低下し、さらなるAC電圧印加由来の焼き付きを引き起こすが、そのような場合も光配向膜50が配向性モノマーを重合させてなるポリマーを含むことによって、AC電圧印加由来の焼き付きを効果的に抑制することができる。 As described above, when an unreacted component (for example, (meth) acrylic monomer or photo radical polymerization initiator) of the sealing material 40 eluted in the liquid crystal layer 30 is adsorbed on the surface of the photo-alignment film 50 without being controlled in orientation. The alignment regulating force (azimuth angle anchoring strength) of the photo-alignment film 50 further decreases and causes burn-in due to further AC voltage application. In such a case, the photo-alignment film 50 is obtained by polymerizing the alignment monomer. By including the polymer, it is possible to effectively suppress image sticking resulting from application of the AC voltage.
上記配向性モノマーの具体例は、特に限定されないが、置換基を有してもよいカルコン基を有するモノマー、置換基を有してもよいシンナメート基を有するモノマー、及び、置換基を有してもよいクマリン基を有するモノマーからなる群より選択される少なくとも一種の光反応性モノマーを含むことが好ましい。カルコン基、シンナメート基及びクマリン基は、光官能基として機能する。 Although the specific example of the said orientation monomer is not specifically limited, It has a monomer which has a chalcone group which may have a substituent, a monomer which has a cinnamate group which may have a substituent, and a substituent. It is preferable to include at least one photoreactive monomer selected from the group consisting of monomers having a good coumarin group. The chalcone group, cinnamate group and coumarin group function as photofunctional groups.
上記置換基の種類は特に限定されないが、ハロゲン基、メチル基、メトキシ基、エチル基及びエトキシ基を好適な例として挙げることができる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。すなわち、上記置換基は、ハロゲン基、メチル基、メトキシ基、エチル基及びエトキシ基からなる群より選択される少なくとも一種の置換基を含むことが好ましい。上記少なくとも一種の配向性モノマーは、置換基を有する光官能基を有する光反応性モノマーと、置換基を有さない光官能基を有する光反応性モノマーとを含んでいてもよい。ハロゲン基としては、フルオロ基及びクロロ基が好適である。なお、上記光官能基が置換基を有する場合、置換基は、通常、上記光官能基のフェニレン基等の環構造が有する少なくとも一つの水素原子と置換される。上記光官能基は、1価の官能基であってもよいが、好適には下記化学式(G-1)で表される2価のシンナメート基、下記化学式(G-2)で表される2価のカルコン基、及び、下記化学式(G-3)で表される2価のクマリン基である。 Although the kind of said substituent is not specifically limited, A halogen group, a methyl group, a methoxy group, an ethyl group, and an ethoxy group can be mentioned as a suitable example. Any of these may be used alone or in combination of two or more. That is, the substituent preferably includes at least one substituent selected from the group consisting of a halogen group, a methyl group, a methoxy group, an ethyl group, and an ethoxy group. The at least one alignment monomer may contain a photoreactive monomer having a photofunctional group having a substituent and a photoreactive monomer having a photofunctional group having no substituent. As the halogen group, a fluoro group and a chloro group are preferred. In addition, when the said photofunctional group has a substituent, a substituent is normally substituted by the at least 1 hydrogen atom which ring structures, such as a phenylene group of the said photofunctional group, have. The photofunctional group may be a monovalent functional group, but is preferably a divalent cinnamate group represented by the following chemical formula (G-1), preferably represented by the following chemical formula (G-2). A divalent chalcone group and a divalent coumarin group represented by the following chemical formula (G-3).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
上記少なくとも一種の配向性モノマーは、下記化学式(1)で表される少なくとも一種のモノマーを含むことが好ましい。 The at least one orientation monomer preferably contains at least one monomer represented by the following chemical formula (1).
Figure JPOXMLDOC01-appb-C000016
(式中、P及びPは、同一又は異なって、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
Sp及びSpは、同一又は異なって、炭素数1~6の、直鎖状、分岐状若しくは環状のアルキレン基若しくアルキレンオキシ基、又は、直接結合を表す。
各フェニレン基が有する少なくとも一つの水素原子は、置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000016
(In the formula, P 1 and P 2 are the same or different and each represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
Sp 1 and Sp 2 are the same or different and each represents a linear, branched or cyclic alkylene group or alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
At least one hydrogen atom of each phenylene group may be substituted. )
図5は、実施形態1に係る液晶表示装置の光配向膜におけるアゾベンゼン基を有するポリイミド系ポリマーと配向性モノマーのポリマーとの状態を説明した模式図である。図6は、実施形態1に係る液晶表示装置の光配向膜における分子の状態を説明した模式図であり、(a)は、偏光紫外線照射前のアゾベンゼン基を有するポリイミド系ポリマー及び配向性モノマーを示し、(b)は、偏光紫外線照射後のアゾベンゼン基を有するポリイミド系ポリマー及び配向性モノマーのポリマーを示す。上記化学式(1)で表される配向性モノマーは、カルコニル基を有するが、カルコニル基は、直線偏光紫外線の照射により、アゾベンゼン基と同じ方向に配向し、かつ、異性化反応だけでなく二量化反応も起こるため、図5に示したように、アゾベンゼン基を有するポリイミド系ポリマー51の主鎖にカルコニル基を有するポリマー52が絡みやすい。したがって、液晶化合物31の配向状態を更に安定に固定化させることができ、AC電圧印加由来の焼き付きを更に効果的に抑制することができる。 FIG. 5 is a schematic diagram illustrating a state of a polyimide polymer having an azobenzene group and a polymer of an alignment monomer in the photo-alignment film of the liquid crystal display device according to the first embodiment. FIG. 6 is a schematic diagram illustrating a molecular state in the photo-alignment film of the liquid crystal display device according to the first embodiment. FIG. 6A illustrates a polyimide polymer having an azobenzene group and an alignment monomer before irradiation with polarized ultraviolet rays. (B) shows the polymer of the polyimide-type polymer which has an azobenzene group after polarized ultraviolet irradiation, and the polymer of an orientation monomer. The orientation monomer represented by the chemical formula (1) has a chalcone group, and the chalcone group is oriented in the same direction as the azobenzene group by irradiation with linearly polarized ultraviolet rays, and is not only isomerized but also dimerized. Since the reaction also occurs, as shown in FIG. 5, the polymer 52 having a chalcone group is easily entangled in the main chain of the polyimide-based polymer 51 having an azobenzene group. Therefore, the alignment state of the liquid crystal compound 31 can be more stably fixed, and image sticking due to application of the AC voltage can be more effectively suppressed.
より詳細には、図6(a)及び(b)に示したように、カルコニル基は、直線偏光紫外線の照射により配向性を示し、カルコニル基を有する配向性モノマー53は、アゾベンゼン基を有するポリイミド系ポリマー51と同様に、照射される直線偏光紫外線の偏光軸(偏光方向)に対して90°方向に配向し(並びやすく)、アゾベンゼン基の偏光紫外線照射による配向制御方向と一致する。また、カルコニル基は、異性化反応及び二量化反応を起こし得るが、特にカルコニル基を有する配向性モノマー53の二量化により、アゾベンゼン基を有するポリイミド系ポリマー51の配向を効果的に固定化することができる。更に、カルコニル基を有する配向性モノマー53の重合によっても、アゾベンゼン基を有するポリイミド系ポリマー51の配向を固定化することができる。したがって、アゾベンゼン基を有するポリイミド系ポリマーを含有する配向剤中に、上記化学式(1)で表される少なくとも一種の配向性モノマーを添加し、アゾベンゼン基の配向と、配向性モノマーの重合かつカルコニル基の配向とのための露光を行うことにより、アゾベンゼン基を有するポリイミド系ポリマーの配向状態をより安定に固定化することができる。 More specifically, as shown in FIGS. 6A and 6B, the chalcone group exhibits orientation by irradiation with linearly polarized ultraviolet rays, and the orientation monomer 53 having a chalcone group is a polyimide having an azobenzene group. Similar to the system polymer 51, it is oriented in the direction of 90 ° (easily aligned) with respect to the polarization axis (polarization direction) of the linearly polarized ultraviolet light to be irradiated, and coincides with the orientation control direction of the azobenzene group by irradiation with the polarized ultraviolet light. Further, the chalcone group can cause isomerization reaction and dimerization reaction, but in particular, the orientation of the polyimide polymer 51 having an azobenzene group can be effectively fixed by dimerization of the orientation monomer 53 having the chalcone group. Can do. Furthermore, the orientation of the polyimide polymer 51 having an azobenzene group can also be fixed by polymerization of the orientation monomer 53 having a chalcone group. Accordingly, at least one kind of orientation monomer represented by the above chemical formula (1) is added to an orientation agent containing a polyimide polymer having an azobenzene group, and the orientation of the azobenzene group, the polymerization of the orientation monomer, and the chalconyl group. By performing the exposure for the orientation of the polyimide, the orientation state of the polyimide polymer having an azobenzene group can be more stably fixed.
上記化学式(1)で表される配向性モノマーによる上記効果は、ポリイミド系ポリマーがシクロブタン環に由来する構造を有するものである場合も同様に得ることができる。 The said effect by the orientation monomer represented by the said Chemical formula (1) can be acquired similarly, also when a polyimide-type polymer has a structure originating in a cyclobutane ring.
上記化学式(1)中、フェニレン基が有する少なくとも一つの水素原子は、同一又は異なって、ハロゲン原子(好ましくはフッ素原子若しくは塩素原子)、メチル基、メトキシ基、エチル基又はエトキシ基に置換されていてもよい。 In the chemical formula (1), at least one hydrogen atom of the phenylene group is the same or different and is substituted with a halogen atom (preferably a fluorine atom or a chlorine atom), a methyl group, a methoxy group, an ethyl group, or an ethoxy group. May be.
上記化学式(1)で表される配向性モノマーのより具体的かつ好適な例としては、例えば、下記化学式(1-1)又は(1-2)のいずれかで表されるモノマーが挙げられる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。これらのモノマーのように、少なくとも一方の重合性基とカルコニル基との間にアルキル基が導入されると、分子構造における柔軟性が向上し、偏光紫外線照射による配向制御の程度を向上することが可能である。 More specific and preferred examples of the orientation monomer represented by the chemical formula (1) include a monomer represented by either the following chemical formula (1-1) or (1-2). Any of these may be used alone or in combination of two or more. Like these monomers, when an alkyl group is introduced between at least one polymerizable group and a chalconyl group, the flexibility in the molecular structure is improved and the degree of alignment control by irradiation with polarized ultraviolet rays can be improved. Is possible.
Figure JPOXMLDOC01-appb-C000017
(式中、p及びqは、同一又は異なって、0又は1であり、m及びnは、同一又は異なって、0~6の整数である。)
Figure JPOXMLDOC01-appb-C000017
(Wherein p and q are the same or different and are 0 or 1, and m and n are the same or different and are integers of 0 to 6)
上記化学式(1)で表される配向性モノマーの更に具体的かつ好適な例としては、下記化学式(2-1)~(2-5)のいずれかで表されるモノマーが挙げられる。これらは何れかを単独で用いることもでき、二種以上を併用することもできる。 More specific and preferred examples of the orientation monomer represented by the chemical formula (1) include monomers represented by any of the following chemical formulas (2-1) to (2-5). Any of these may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
<その他の構成>
一対の基板10、20の液晶層30とは反対側にはそれぞれ、偏光板(直線偏光子)60が配置されてもよい。偏光板60としては、典型的には、ポリビニルアルコール(PVA)フィルムに、二色性を有するヨウ素錯体等の異方性材料を、吸着配向させたものが挙げられる。通常は、PVAフィルムの両面にトリアセチルセルロースフィルム等の保護フィルムをラミネートして実用に供される。また、偏光板60と一対の基板10、20との間には、位相差フィルム等の光学フィルムが配置されていてもよい。
<Other configurations>
A polarizing plate (linear polarizer) 60 may be disposed on the opposite side of the pair of substrates 10 and 20 from the liquid crystal layer 30. The polarizing plate 60 typically includes a polyvinyl alcohol (PVA) film obtained by adsorbing and orienting an anisotropic material such as an iodine complex having dichroism. Usually, a protective film such as a triacetyl cellulose film is laminated on both sides of the PVA film and put to practical use. An optical film such as a retardation film may be disposed between the polarizing plate 60 and the pair of substrates 10 and 20.
一対の偏光板60の透過軸とは、互いに直交することが好ましい。このような構成によれば、一対の偏光板60がクロスニコルに配置されるため、電圧無印加時に、良好な黒表示状態を実現することができる。 The transmission axes of the pair of polarizing plates 60 are preferably orthogonal to each other. According to such a configuration, since the pair of polarizing plates 60 are arranged in crossed Nicols, a good black display state can be realized when no voltage is applied.
なお、本明細書中、2つの軸(方向)が直交するとは、特に断りがなければ、両者のなす角度(絶対値)が90±3°の範囲内であることを指し、好ましくは90±1°の範囲内であり、より好ましくは90±0.5°の範囲内であり、特に好ましくは90°(完全に直交)である。 In the present specification, that two axes (directions) are orthogonal means that an angle (absolute value) between the two axes (direction) is within a range of 90 ± 3 ° unless otherwise specified, preferably 90 ±. It is within the range of 1 °, more preferably within the range of 90 ± 0.5 °, and particularly preferably 90 ° (fully orthogonal).
平面視において、液晶化合物31の初期配向方位31aは、一対の偏光板60の一方の偏光軸と平行であり、他方の偏光軸と直交してもよい。これにより、液晶表示装置100の制御方式を、電圧無印加状態で黒表示を行う、いわゆるノーマリーブラックモードとすることが可能である。 In plan view, the initial alignment direction 31 a of the liquid crystal compound 31 may be parallel to one polarization axis of the pair of polarizing plates 60 and may be orthogonal to the other polarization axis. As a result, the control method of the liquid crystal display device 100 can be set to a so-called normally black mode in which black display is performed with no voltage applied.
図1及び図3に示したように、本実施形態の液晶表示装置においては、バックライト70が液晶パネルの背面側に配置されている。このような構成を有する液晶表示装置は、一般的に、透過型の液晶表示装置と呼ばれる。バックライト70としては、可視光を含む光を発するものであれば特に限定されず、可視光のみを含む光を発するものであってもよく、可視光及び紫外光の両方を含む光を発するものであってもよい。 As shown in FIGS. 1 and 3, in the liquid crystal display device of the present embodiment, a backlight 70 is disposed on the back side of the liquid crystal panel. A liquid crystal display device having such a configuration is generally called a transmissive liquid crystal display device. The backlight 70 is not particularly limited as long as it emits light including visible light, may emit light including only visible light, and emits light including both visible light and ultraviolet light. It may be.
本実施形態の液晶表示装置は、液晶パネル及びバックライト70の他、TCP(テープ・キャリア・パッケージ)、PCB(プリント配線基板)等の外部回路;視野角拡大フィルム、輝度向上フィルム等の光学フィルム;ベゼル(フレーム)等の複数の部材により構成されるものであり、部材によっては、他の部材に組み込まれていてもよい。既に説明した部材以外の部材については特に限定されず、液晶表示装置の分野において通常使用されるものを用いることができるので、説明を省略する。 The liquid crystal display device of the present embodiment includes an external circuit such as a TCP (tape carrier package) and a PCB (printed wiring board) in addition to the liquid crystal panel and the backlight 70; an optical film such as a viewing angle widening film and a brightness enhancement film. A plurality of members such as a bezel (frame), and some members may be incorporated in other members. Members other than those already described are not particularly limited, and those normally used in the field of liquid crystal display devices can be used, and thus description thereof is omitted.
なお、本実施形態では、液晶表示装置100の液晶駆動モードがFFSモードである場合について詳述しているが、本実施形態に係る液晶駆動モードは、横電界型水平配向モードであれば特に限定されず、IPSモードであってもよい。 In the present embodiment, the case where the liquid crystal drive mode of the liquid crystal display device 100 is the FFS mode is described in detail. However, the liquid crystal drive mode according to the present embodiment is particularly limited as long as it is a horizontal electric field type horizontal alignment mode. Alternatively, the IPS mode may be used.
IPSモードでは、例えば、基板10及び20の少なくとも一方に一対の櫛形電極が設けられ、液晶層30中に横電界が形成される。一対の櫛形電極としては、例えば、それぞれ複数の櫛歯部を備え、かつ櫛歯部が互いに噛み合うように配置された電極対を用いることができる。IPSモードでは、一対の櫛形電極が画素電極25及び共通電極26として機能する。また、各櫛形電極の各櫛歯部に線状部27が含まれる。 In the IPS mode, for example, a pair of comb electrodes is provided on at least one of the substrates 10 and 20, and a lateral electric field is formed in the liquid crystal layer 30. As the pair of comb-shaped electrodes, for example, an electrode pair that includes a plurality of comb-tooth portions and is arranged so that the comb-tooth portions mesh with each other can be used. In the IPS mode, a pair of comb electrodes functions as the pixel electrode 25 and the common electrode 26. Moreover, the linear part 27 is contained in each comb-tooth part of each comb-shaped electrode.
<液晶表示装置の製造方法>
次に、本実施形態の液晶表示装置の製造方法について説明する。本実施形態の液晶表示装置の製造方法は、一対の基板を準備する準備工程と、上記一対の基板の少なくとも一方の表面に、ポリアミック酸及びポリイミドの少なくとも一方のポリマーと、少なくとも一種のモノマーとを含有する配向剤を塗布して光配向膜を形成する成膜工程と、上記光配向膜に偏光紫外線を照射して、上記少なくとも一方のポリマーを配向させるとともに上記少なくとも一種のモノマーを配向及び重合させる照射工程とを含み、上記少なくとも一種のモノマーは、偏光紫外線の照射により異性化反応及び二量化反応の少なくとも一方の反応を生じて配向性を示す液晶表示装置の製造方法であってもよい。
<Method for manufacturing liquid crystal display device>
Next, a manufacturing method of the liquid crystal display device of this embodiment will be described. The manufacturing method of the liquid crystal display device of the present embodiment includes a preparation step of preparing a pair of substrates, at least one polymer of polyamic acid and polyimide, and at least one monomer on at least one surface of the pair of substrates. A film forming step of forming a photo-alignment film by applying an alignment agent contained therein, and irradiating the photo-alignment film with polarized ultraviolet rays to align the at least one polymer and align and polymerize the at least one monomer. Including at least one irradiation step, and the at least one monomer may be a method for producing a liquid crystal display device that exhibits orientation by causing at least one of an isomerization reaction and a dimerization reaction by irradiation with polarized ultraviolet rays.
以下、各工程ついて更に説明するが、各部材、ポリマー及びモノマーについては上述した通りであるので説明を省略する。 Hereinafter, although each process is further demonstrated, since each member, a polymer, and a monomer are as having mentioned above, description is abbreviate | omitted.
一対の基板を準備する準備工程では、例えば、一対の基板10、20を準備する。 In the preparation step of preparing a pair of substrates, for example, a pair of substrates 10 and 20 are prepared.
本実施形態の液晶表示装置の製造方法は、上記一対の基板の少なくとも一方(好ましくは両方)の表面に、ポリアミック酸及びポリイミドの少なくとも一方のポリマー(ポリイミド系ポリマー)と、少なくとも一種のモノマー(配向性モノマー)とを含有する配向剤を塗布して光配向膜(すなわちポリイミド系ポリマーは、光官能基を有する。)を形成する成膜工程を有し、上記少なくとも一種のモノマーは、偏光紫外線の照射により異性化反応及び二量化反応の少なくとも一方の反応(好ましくは少なくとも二量化反応)を生じて配向性を示す。 In the method of manufacturing a liquid crystal display device according to the present embodiment, at least one (preferably both) of the pair of substrates has at least one polymer (polyimide polymer) of polyamic acid and polyimide, and at least one monomer (alignment). A film forming step of forming a photo-alignment film (that is, a polyimide-based polymer has a photofunctional group) by applying an aligning agent containing a photopolymerizable monomer), and the at least one monomer is a polarized ultraviolet ray Irradiation causes at least one of an isomerization reaction and a dimerization reaction (preferably at least a dimerization reaction) to exhibit orientation.
成膜工程では、まず、ポリイミド系ポリマー及び配向性モノマーを溶剤(例えば有機溶媒)に溶解させて配向剤を準備する。配向剤は、必要に応じて他の任意成分を含有してもよく、好ましくは各成分が溶媒に溶解された溶液状の組成物として調製される。上記有機溶媒としては、ポリイミド系ポリマー、配向性モノマー、及び、他の任意成分を溶解し、これらと反応しないものが好適である。上記他の任意成分としては、例えば、上記ポリイミド系ポリマー以外のポリマー、硬化剤、硬化促進剤、触媒等を挙げることができる。上記ポリイミド系ポリマー以外のポリマーは、配向剤の溶液特性や、光配向膜の電気特性をより向上するために使用することができ、そのようなポリマーとしては、例えば、光官能基を有さない一般的な配向膜用ポリマーが挙げられる。 In the film forming step, first, an alignment agent is prepared by dissolving a polyimide polymer and an alignment monomer in a solvent (for example, an organic solvent). The alignment agent may contain other optional components as necessary, and is preferably prepared as a solution-like composition in which each component is dissolved in a solvent. As said organic solvent, the thing which melt | dissolves a polyimide-type polymer, an orientation monomer, and another arbitrary component, and does not react with these is suitable. As said other arbitrary component, polymers other than the said polyimide-type polymer, a hardening | curing agent, a hardening accelerator, a catalyst etc. can be mentioned, for example. Polymers other than the above polyimide-based polymers can be used to further improve the solution properties of the aligning agent and the electrical properties of the photo-alignment film. Examples of such polymers include no photofunctional groups. General polymers for alignment films are listed.
配向剤に添加される配向性モノマーは、光官能基を有するポリイミド系ポリマーに対して(光官能基を有するポリイミド系ポリマーを100重量%としたときに)、3重量%以上、30重量%未満であることが好ましく、5重量%以上、25重量%以下であることがより好ましく、10重量%以上、20重量%以下であることが更に好ましい。3重量%未満であると、配向性モノマーによりAC焼き付き抑制効果が充分でない可能性があり、30重量%を超えると、コントラストが大幅に低下する可能性がある。 The alignment monomer added to the alignment agent is 3% by weight or more and less than 30% by weight with respect to the polyimide polymer having a photofunctional group (when the polyimide polymer having a photofunctional group is 100% by weight). It is preferably 5 wt% or more and 25 wt% or less, more preferably 10 wt% or more and 20 wt% or less. If it is less than 3% by weight, there is a possibility that the effect of suppressing the AC image sticking is insufficient due to the orientation monomer, and if it exceeds 30% by weight, the contrast may be greatly lowered.
次に、各基板の表面上に配向剤を塗布する。塗布方法としては特に限定されず、ロールコーター法、スピンナー法、印刷法、インクジェット法等が挙げられる。 Next, an alignment agent is applied on the surface of each substrate. The coating method is not particularly limited, and examples thereof include a roll coater method, a spinner method, a printing method, and an ink jet method.
次に、各基板を加熱する。これにより、配向剤中の溶剤が揮発し、光配向膜が形成される。加熱は、仮焼成(プリベーク)及び本焼成(ポストベーク)の2段階で行ってもよい。配向剤が光官能基を有さない配向膜用ポリマーを含有する場合、形成される光配向膜は、二層構造であってもよく、光官能基を有さない配向膜用ポリマーから主に構成される下層と、光官能基を有するポリイミド系ポリマーから主に構成される上層とを有してもよい。上層が液晶層と接することになる。 Next, each substrate is heated. Thereby, the solvent in the aligning agent is volatilized and a photo-alignment film is formed. Heating may be performed in two stages of pre-baking (pre-baking) and main baking (post-baking). When the alignment agent contains an alignment film polymer that does not have a photofunctional group, the formed photo alignment film may have a two-layer structure, mainly from the alignment film polymer that does not have a photofunctional group. You may have the comprised lower layer and the upper layer comprised mainly from the polyimide-type polymer which has a photofunctional group. The upper layer is in contact with the liquid crystal layer.
本実施形態の液晶表示装置の製造方法は、上記光配向膜に偏光紫外線を照射して、上記少なくとも一方のポリマー(ポリイミド系ポリマー)を配向させるとともに上記少なくとも一種のモノマー(配向性モノマー)を配向及び重合させる照射工程とを有する。この結果、上述のように、光官能基を有するポリイミド系ポリマーが配向制御されるとともに、配向性モノマーが配向制御された状態で重合し、光官能基を有するポリイミド系ポリマーの配向を固定化することができる。そのため、光配向膜の方位角アンカリング強度を向上できるため、AC電圧印加による焼き付きを低減することができる。照射する偏光紫外線は、直線偏光紫外線であることが好ましい。 In the method of manufacturing a liquid crystal display device according to this embodiment, the photo-alignment film is irradiated with polarized ultraviolet rays to align the at least one polymer (polyimide polymer) and align the at least one monomer (orientation monomer). And an irradiation step for polymerization. As a result, as described above, the orientation of the polyimide polymer having a photofunctional group is controlled, and the orientation monomer is polymerized in a controlled orientation, thereby fixing the orientation of the polyimide polymer having the photofunctional group. be able to. Therefore, since the azimuth anchoring strength of the photo-alignment film can be improved, it is possible to reduce image sticking due to application of an AC voltage. The polarized ultraviolet light to be irradiated is preferably linearly polarized ultraviolet light.
上記偏光紫外線の波長は、200nm以上、430nm以下であってもよい。上記波長のより好ましい下限は250nmであり、より好ましい上限は380nmである。上記偏光紫外線の照射量は、0.3J/cm以上、20J/cm以下であってもよい。上記照射量のより好ましい下限は1J/cmであり、より好ましい上限は5J/cmである。 The wavelength of the polarized ultraviolet light may be 200 nm or more and 430 nm or less. A more preferable lower limit of the wavelength is 250 nm, and a more preferable upper limit is 380 nm. Dose of the polarized ultraviolet is, 0.3 J / cm 2 or more, may be 20 J / cm 2 or less. A more preferable lower limit of the irradiation amount is 1 J / cm 2 , and a more preferable upper limit is 5 J / cm 2 .
上記一対の基板の一方は、画素電極及び共通電極を含み、上記画素電極及び上記共通電極の少なくとも一方は、線状部を含み、上記成膜工程において、上記一対の基板のうち、少なくとも、上記画素電極及び上記共通電極を含む基板(より好ましくは両方の基板)の表面に上記光配向膜を形成し、上記照射工程において、上記線状部に対する偏光軸方向(偏光方向)のなす角が83°以下となるように上記光配向膜に偏光紫外線を照射することが好ましい。これにより、液晶化合物の初期配向方位に対する線状部の傾斜角度平面視において7°以上に容易にすることができる。そのため、AC電圧印加由来の焼き付きをより軽減することができる。 One of the pair of substrates includes a pixel electrode and a common electrode, and at least one of the pixel electrode and the common electrode includes a linear portion. The photo-alignment film is formed on the surface of the substrate including the pixel electrode and the common electrode (more preferably both substrates). In the irradiation step, the angle formed by the polarization axis direction (polarization direction) with respect to the linear portion is 83. It is preferable to irradiate the above-mentioned photo-alignment film with polarized ultraviolet rays so that the temperature is not more than 0 °. Thereby, it can be easily made 7 ° or more in a plan view of the inclination angle of the linear portion with respect to the initial orientation direction of the liquid crystal compound. For this reason, it is possible to further reduce the burn-in resulting from the AC voltage application.
上記照射工程において、上記線状部に対する偏光軸方向(偏光方向)のなす角が77°以上となるように上記光配向膜に偏光紫外線を照射することがより好ましい。これにより、液晶化合物の初期配向方位に対する線状部の傾斜角度平面視において13°以下に容易にすることができる。そのため、透過率及びコントラストの低下を抑制することができる。 In the irradiation step, it is more preferable to irradiate the photo-alignment film with polarized ultraviolet rays so that an angle formed by a polarization axis direction (polarization direction) with respect to the linear portion is 77 ° or more. As a result, the inclination angle of the linear portion with respect to the initial alignment direction of the liquid crystal compound can be easily reduced to 13 ° or less in plan view. Therefore, it is possible to suppress a decrease in transmittance and contrast.
上記工程の後、液晶層の形成工程、偏光板の貼り付け工程、及び、制御部、電源部、バックライト等の取り付け工程を経て、本実施形態の液晶表示装置が完成する。 After the above steps, the liquid crystal display device of this embodiment is completed through a liquid crystal layer forming step, a polarizing plate attaching step, and a control step, a power supply portion, a backlight attaching step, and the like.
なお、上記液晶層の形成工程では、通常、シール材によって接合した一対の基板間に、液晶材料を含有する液晶組成物を封止する。 Note that, in the liquid crystal layer forming step, a liquid crystal composition containing a liquid crystal material is usually sealed between a pair of substrates bonded by a sealing material.
上記液晶層は、例えば、真空注入法又は滴下注入法により、一対の基板間に液晶組成物を充填することで形成できる。真空注入法を採用する場合は、シール材の塗布、一対の基板の貼り合せ、シール材の硬化、液晶組成物の注入、及び、注入口の封止をこの順に行うことで、液晶層を形成する。滴下注入法を採用する場合は、シール材の塗布、液晶組成物の滴下、一対の基板の貼り合せ、及び、シール材の硬化をこの順に行うことで、液晶層を形成する。 The liquid crystal layer can be formed by, for example, filling a liquid crystal composition between a pair of substrates by a vacuum injection method or a drop injection method. When the vacuum injection method is adopted, a liquid crystal layer is formed by applying a sealing material, bonding a pair of substrates, curing the sealing material, injecting a liquid crystal composition, and sealing the injection port in this order. To do. When the dropping injection method is employed, a liquid crystal layer is formed by applying a sealing material, dropping a liquid crystal composition, bonding a pair of substrates, and curing the sealing material in this order.
上記液晶材料は、上述したように、正の誘電率異方性を有するものである。液晶材料は、アルケニル基を有する液晶化合物を含有してもよい。液晶材料は、液晶化合物を一種又は二種以上含有してもよい。 As described above, the liquid crystal material has positive dielectric anisotropy. The liquid crystal material may contain a liquid crystal compound having an alkenyl group. The liquid crystal material may contain one or more liquid crystal compounds.
上記液晶表示装置がノーマリーブラックモードの場合、例えば、上記一対の基板の外側に、吸収軸が互いに直交するように一対の偏光板をクロスニコルに配置し、一対の偏光板の吸収軸と、光配向膜に照射する偏光紫外線(好ましくは直線偏光紫外線)の偏光軸方向(偏光方向)とのなす角度が0°又は90°となるように配置する。液晶層に閾値以上の電圧が印加されていない状態では、バックライトからの光が液晶層を透過せずに黒表示となる。液晶層に閾値以上の電圧を印加すると、上記クロスニコルに配置した一対の偏光板の吸収軸と、液晶ダイレクターとのなす角度が0°より大きく(例えば45°)となり、バックライトからの光が液晶層を透過する。 When the liquid crystal display device is in a normally black mode, for example, on the outside of the pair of substrates, a pair of polarizing plates are arranged in crossed Nicols so that the absorption axes are orthogonal to each other, and the absorption axes of the pair of polarizing plates; It arrange | positions so that the angle which the polarization axis direction (polarization direction) of the polarized ultraviolet rays (preferably linearly polarized ultraviolet rays) irradiated to a photo-alignment film may be 0 degree or 90 degrees. In a state where a voltage equal to or higher than the threshold is not applied to the liquid crystal layer, the light from the backlight does not pass through the liquid crystal layer and is displayed in black. When a voltage higher than the threshold is applied to the liquid crystal layer, the angle formed between the absorption axis of the pair of polarizing plates arranged in the crossed Nicols and the liquid crystal director becomes larger than 0 ° (for example, 45 °), and the light from the backlight Transmits through the liquid crystal layer.
以上、本発明の実施形態について説明したが、説明された個々の事項は、すべて本発明全般に対して適用され得るものである。 As mentioned above, although embodiment of this invention was described, each described matter can be applied with respect to this invention altogether.
以下に実施例及び比較例を掲げて本発明を更に詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
<実施例1-1>
(液晶パネルの作製)
FFSモードの液晶パネルを以下の方法により実際に作製した。まず、酸化インジウム錫(Indium Tin Oxide:ITO)製のFFS電極構造を有する面状電極(下層電極)と絶縁膜とスリット電極(上層電極)が積層されたTFT基板と、電極を有さない対向基板とを用意した。次に、下記化学式(P-1a)で示される、アゾベンゼン基を主鎖に含むポリアミック酸を含有する配向剤Aを両基板に塗布した。
<Example 1-1>
(Production of liquid crystal panel)
An FFS mode liquid crystal panel was actually produced by the following method. First, a planar electrode (lower layer electrode) having an FFS electrode structure made of indium tin oxide (ITO), a TFT substrate on which an insulating film and a slit electrode (upper layer electrode) are stacked, and a counter electrode having no electrode A substrate was prepared. Next, an aligning agent A containing polyamic acid having an azobenzene group in the main chain, represented by the following chemical formula (P-1a), was applied to both substrates.
Figure JPOXMLDOC01-appb-C000019
(式中、Xには少なくともX1由来の構造が含まれており、Yには少なくともY1由来の構造が含まれている。)
Figure JPOXMLDOC01-appb-C000019
(Wherein X includes at least a structure derived from X1, and Y includes at least a structure derived from Y1.)
次に、60~80℃(2分)で仮焼成を行い、続いて1~3J/cmの直線偏光(300~500nmの紫外線を含む)照射を行い、続いて170~180℃(10~20分)での焼成(第一段階焼成)と220~230℃(20~30分)での焼成(第二段階焼成)とを含む本焼成を行うことで、各基板上に光配向膜を形成した。 Next, preliminary baking is performed at 60 to 80 ° C. (2 minutes), followed by irradiation with 1 to 3 J / cm 2 of linearly polarized light (including 300 to 500 nm ultraviolet rays), and subsequently 170 to 180 ° C. (10 to 10 ° C.). 20 minutes) is performed (first stage firing) and 220 to 230 ° C. (20 to 30 minutes) firing (second stage firing). Thus, the photo-alignment film is formed on each substrate. Formed.
続いて一方の基板に、ディスペンサを使用して紫外線及び熱硬化性シール材(積水化学工業社製、フォトレック;このシール材は、(メタ)アクリルモノマー、光ラジカル重合開始剤、エポキシモノマー、エポキシ硬化材、シランカップリング剤、無機フィラーを含む)を描画した。また、他方の基板上の所定の位置に、誘電率異方性が正(Δε=2.8)で、液晶相-等方相転移点(TNI)が95℃であるポジ型液晶材料を滴下した。このポジ型液晶材料は、アルケニル基を有する化合物、及び、ポジ型液晶化合物からなるものであった。続いて、真空下にて両基板を貼り合わせ、シール材に紫外線(300~500nmの紫外線を含む)を照射して硬化させ、液晶パネルを作製した。更に続けて液晶パネルを110~140℃で40分程度加熱し、シール材を熱硬化させるとともに液晶層を等方相にする再配向処理を行い、その後、液晶パネルを室温まで冷却した。最後に液晶パネルに一対の偏光板を貼り付け、ノーマリーブラックモードかつFFSモードの液晶パネルを完成させた。 Subsequently, on one substrate, a UV and thermosetting sealant (manufactured by Sekisui Chemical Co., Ltd., Photorec; this sealant is composed of (meth) acrylic monomer, photoradical polymerization initiator, epoxy monomer, epoxy A curing material, a silane coupling agent, and an inorganic filler are drawn. In addition, a positive type liquid crystal material having a positive dielectric anisotropy (Δε = 2.8) and a liquid crystal phase-isotropic phase transition point (T NI ) of 95 ° C. at a predetermined position on the other substrate. It was dripped. This positive type liquid crystal material was composed of a compound having an alkenyl group and a positive type liquid crystal compound. Subsequently, both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel. Subsequently, the liquid crystal panel was heated at 110 to 140 ° C. for about 40 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature. Finally, a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
図3に示したように、スリット電極24は、Vの字構造とし、液晶化合物の初期配向方位31aに対する線状部27の傾斜角度αは、平面視において7°とした。 As shown in FIG. 3, the slit electrode 24 has a V-shaped structure, and the inclination angle α of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 7 ° in plan view.
<実施例1-2>
傾斜角度αを平面視において10°とした点以外は、実施例1-1と同様にして本実施例の液晶パネルを作製した。
<Example 1-2>
A liquid crystal panel of this example was produced in the same manner as in Example 1-1, except that the inclination angle α was 10 ° in plan view.
<実施例1-3>
傾斜角度αを平面視において13°とした点以外は、実施例1-1と同様にして本実施例の液晶パネルを作製した。
<Example 1-3>
A liquid crystal panel of this example was produced in the same manner as in Example 1-1 except that the inclination angle α was 13 ° in plan view.
<実施例1-4>
傾斜角度αを平面視において15°とした点以外は、実施例1-1と同様にして本実施例の液晶パネルを作製した。
<Example 1-4>
A liquid crystal panel of this example was produced in the same manner as in Example 1-1 except that the inclination angle α was 15 ° in plan view.
<比較例1>
傾斜角度αを平面視において5°とした点以外は、実施例1-1と同様にして本比較例の液晶パネルを作製した。
<Comparative Example 1>
A liquid crystal panel of this comparative example was produced in the same manner as in Example 1-1 except that the inclination angle α was 5 ° in plan view.
<特性評価1>
実施例1-1~1-4及び比較例1で作製したFFSモードの液晶パネルについて、下記特性評価を行った。
<Characteristic evaluation 1>
The FFS mode liquid crystal panels produced in Examples 1-1 to 1-4 and Comparative Example 1 were evaluated for the following characteristics.
(応答特性)
Photal5200(大塚電子社製)を用いて、25℃で、0.5V印加時と透過率が最大となる電圧印加時との間で応答速度(立ち上がり時間(τr)及び立ち下がり時間(τd))を測定し、合計した。
(Response characteristics)
Using a Photo 5200 (manufactured by Otsuka Electronics Co., Ltd.), response speed (rise time (τr) and fall time (τd)) at 25 ° C. between application of 0.5 V and application of voltage with maximum transmittance. Were measured and summed.
(コントラスト測定)
トプコンテクノハウス社製の分光放射計SR-1を用いて、25℃、暗室で測定した。
(Contrast measurement)
The measurement was performed in a dark room at 25 ° C. using a spectroradiometer SR-1 manufactured by Topcon Technohouse.
(高温通電試験によるAC焼き付き観察)
オーブンを用いて90℃環境下で、表示領域の二つ領域にそれぞれ6VのAC電圧及び0.5VのAC電圧を印加した状態で1000時間放置した後、両領域に2.5VのAC電圧(中間電圧)を印加したときの焼き付きの程度を観察し、焼き付き率を決定した。焼き付き率は、非特許文献1に記載の方法に基づき決定した。
(AC burn-in observation by high temperature current test)
In an oven at 90 ° C., the display area was left for 1000 hours with an AC voltage of 6 V and an AC voltage of 0.5 V applied to each of the two display areas. The degree of image sticking when an intermediate voltage was applied was observed to determine the image sticking rate. The burn-in rate was determined based on the method described in Non-Patent Document 1.
結果を下記表1に示した。 The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
表1に示す結果より、傾斜角度αを5°から15°にかけて大きくするほど、応答速度は速くなったが、コントラストは低下傾向を示した。応答速度が速くなったのは、電圧印加に伴う液晶ダイレクターの回転角度(液晶化合物の方位方向の変化量)が、傾斜角度αの増加とともに小さくなったからであり、同様の理由でコントラストは逆に低下した。コントラスト低下については、傾斜角度αの増加とともに低電圧側での黒透過率の上昇も要因として挙げられる。一方、高温通電試験における焼き付き率は、傾斜角度αの増加とともに小さくなった。これも傾斜角度αの増加とともに、電圧印加時の液晶ダイレクターの回転角度が小さくなったためと推測される。以上の結果より、高速応答、高コントラスト、低焼き付きとなる傾斜角度αが7°以上、13°以下の範囲が好適であることが確認された。 From the results shown in Table 1, the response speed increased as the inclination angle α increased from 5 ° to 15 °, but the contrast tended to decrease. The response speed increased because the rotation angle of the liquid crystal director (change in the azimuth direction of the liquid crystal compound) with voltage application decreased with increasing tilt angle α. For the same reason, the contrast was reversed. Declined. Contrast reduction is also caused by an increase in black transmittance on the low voltage side as the tilt angle α increases. On the other hand, the image sticking rate in the high-temperature energization test decreased as the inclination angle α increased. This is also presumed to be because the rotation angle of the liquid crystal director at the time of voltage application became smaller as the tilt angle α increased. From the above results, it was confirmed that the inclination angle α at which high-speed response, high contrast, and low image sticking are in the range of 7 ° to 13 ° is suitable.
<実施例2-1>
(液晶パネルの作製)
FFSモードの液晶パネルを以下の方法により実際に作製した。まず、酸化インジウム錫(ITO)製のFFS電極構造を有する面状電極(下層電極)と絶縁膜とスリット電極(上層電極)が積層されたTFT基板と、電極を有さない対向基板とを用意した。次に、下記化学式(P-1b)で示される、アゾベンゼン基を主鎖に含むポリアミック酸を含有する配向剤Aを両基板に塗布した。
<Example 2-1>
(Production of liquid crystal panel)
An FFS mode liquid crystal panel was actually produced by the following method. First, a planar electrode (lower electrode) having an FFS electrode structure made of indium tin oxide (ITO), a TFT substrate on which an insulating film and a slit electrode (upper electrode) are stacked, and a counter substrate having no electrode are prepared. did. Next, an aligning agent A containing a polyamic acid containing an azobenzene group in the main chain represented by the following chemical formula (P-1b) was applied to both substrates.
Figure JPOXMLDOC01-appb-C000021
(式中、Xには少なくともX2由来の構造が含まれており、Yには少なくともY2由来の構造が含まれている。)
Figure JPOXMLDOC01-appb-C000021
(In the formula, X contains at least a structure derived from X2, and Y contains at least a structure derived from Y2.)
次に、60~80℃(2分)で仮焼成を行い、続いて3~5J/cmの直線偏光(300~500nmの紫外線を含む)照射を行い、続いて110~130℃(10~20分)での焼成(第一段階焼成)と230℃(30~40分)での焼成(第二段階焼成)とを含む本焼成を行うことで、各基板上に光配向膜を形成した。 Next, preliminary baking is performed at 60 to 80 ° C. (2 minutes), followed by irradiation with 3 to 5 J / cm 2 of linearly polarized light (including 300 to 500 nm ultraviolet rays), and subsequently 110 to 130 ° C. (10 to 10 ° C.). A photo-alignment film was formed on each substrate by performing main firing including firing at 20 minutes (first stage firing) and firing at 230 ° C. (30 to 40 minutes) (second stage firing). .
続いて一方の基板に、ディスペンサを使用して紫外線及び熱硬化性シール材(積水化学工業社製、フォトレック;このシール材は、(メタ)アクリルモノマー、光ラジカル重合開始剤、エポキシモノマー、エポキシ硬化材、シランカップリング剤、無機フィラーを含む)を描画した。また、他方の基板上の所定の位置に、誘電率異方性が正(Δε=3.3)で、液晶相-等方相転移点(TNI)が97.5℃であるポジ型液晶材料を滴下した。このポジ型液晶材料は、アルケニル基を有する化合物、及び、ポジ型液晶化合物からなるものであった。続いて、真空下にて両基板を貼り合わせ、シール材に紫外線(300~500nmの紫外線を含む)を照射して硬化させ、液晶パネルを作製した。更に続けて液晶パネルを110~140℃で30分程度加熱し、シール材を熱硬化させるとともに液晶層を等方相にする再配向処理を行い、その後、液晶パネルを室温まで冷却した。最後に液晶パネルに一対の偏光板を貼り付け、ノーマリーブラックモードかつFFSモードの液晶パネルを完成させた。 Subsequently, on one substrate, a UV and thermosetting sealant (manufactured by Sekisui Chemical Co., Ltd., Photorec; this sealant is composed of (meth) acrylic monomer, photoradical polymerization initiator, epoxy monomer, epoxy A curing material, a silane coupling agent, and an inorganic filler are drawn. Further, a positive type liquid crystal having a positive dielectric anisotropy (Δε = 3.3) and a liquid crystal phase-isotropic phase transition point (T NI ) of 97.5 ° C. at a predetermined position on the other substrate. The material was added dropwise. This positive type liquid crystal material was composed of a compound having an alkenyl group and a positive type liquid crystal compound. Subsequently, both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel. Subsequently, the liquid crystal panel was heated at 110 to 140 ° C. for about 30 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature. Finally, a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
図3に示したように、スリット電極24は、Vの字構造とし、液晶化合物の初期配向方位31aに対する線状部27の傾斜角度αは、平面視において7°とした。 As shown in FIG. 3, the slit electrode 24 has a V-shaped structure, and the inclination angle α of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 7 ° in plan view.
<実施例2-2>
傾斜角度αを平面視において10°とした点以外は、実施例2-1と同様にして本実施例の液晶パネルを作製した。
<Example 2-2>
A liquid crystal panel of this example was fabricated in the same manner as in Example 2-1, except that the inclination angle α was 10 ° in plan view.
<実施例2-3>
傾斜角度αを平面視において13°とした点以外は、実施例2-1と同様にして本実施例の液晶パネルを作製した。
<Example 2-3>
A liquid crystal panel of this example was produced in the same manner as in Example 2-1, except that the inclination angle α was 13 ° in plan view.
<実施例2-4>
傾斜角度αを平面視において15°とした点以外は、実施例2-1と同様にして本実施例の液晶パネルを作製した。
<Example 2-4>
A liquid crystal panel of this example was produced in the same manner as in Example 2-1, except that the inclination angle α was 15 ° in plan view.
<比較例2>
傾斜角度αを平面視において5°とした点以外は、実施例2-1と同様にして本比較例の液晶パネルを作製した。
<Comparative example 2>
A liquid crystal panel of this comparative example was produced in the same manner as in Example 2-1, except that the inclination angle α was 5 ° in plan view.
<特性評価2>
実施例2-1~2-4及び比較例2で作製したFFSモードの液晶パネルについて、実施例1-1等と同様に、上記特性評価を行った。結果を下記表2に示した。
<Characteristic evaluation 2>
For the FFS mode liquid crystal panels produced in Examples 2-1 to 2-4 and Comparative Example 2, the above characteristic evaluation was performed in the same manner as in Example 1-1. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
表2に示す結果より、液晶材料TNIを97.5℃にした場合でも、実施例1-1~1-4及び比較例1と同様に、傾斜角度αを5°から15°にかけて大きくするほど、応答速度は速くなり、一方、コントラストは低下傾向を示した。また、高温通電試験における焼き付き率についても、実施例1-1~1-4及び比較例1と同じ傾向を示し、傾斜角度αの増加とともに小さくなった。以上の結果より、高速応答、高コントラスト、低焼き付きとなる傾斜角度αが7°以上13°以下の範囲が好適であることが確認された。 From the results shown in Table 2, even when the liquid crystal material T NI is set to 97.5 ° C., the inclination angle α is increased from 5 ° to 15 ° as in the case of Examples 1-1 to 1-4 and Comparative Example 1. As the response speed increased, the contrast decreased. Further, the burn-in rate in the high-temperature energization test showed the same tendency as in Examples 1-1 to 1-4 and Comparative Example 1, and became smaller as the inclination angle α increased. From the above results, it was confirmed that the inclination angle α at which high-speed response, high contrast, and low image sticking are in the range of 7 ° to 13 ° is suitable.
<実施例3-1>
(液晶パネルの作製)
FFSモードの液晶パネルを以下の方法により実際に作製した。まず、酸化インジウム錫(ITO)製のFFS電極構造を有する面状電極(下層電極)と絶縁膜とスリット電極(上層電極)が積層されたTFT基板と、電極を有さない対向基板とを用意した。次に、上記化学式(P-1a)で示される、アゾベンゼン基を主鎖に含むポリアミック酸を含有する配向剤Aを両基板に塗布した。
<Example 3-1>
(Production of liquid crystal panel)
An FFS mode liquid crystal panel was actually produced by the following method. First, a planar electrode (lower electrode) having an FFS electrode structure made of indium tin oxide (ITO), a TFT substrate on which an insulating film and a slit electrode (upper electrode) are stacked, and a counter substrate having no electrode are prepared. did. Next, an aligning agent A containing polyamic acid having an azobenzene group in the main chain, represented by the above chemical formula (P-1a), was applied to both substrates.
次に、60~80℃(2分)で仮焼成を行い、続いて1~3J/cmの直線偏光(300~500nmの紫外線を含む)照射を行い、続いて170~180℃(10~20分)での焼成(第一段階焼成)と220~230℃(20~30分)での焼成(第二段階焼成)とを含む本焼成を行うことで、各基板上に光配向膜を形成した。 Next, preliminary baking is performed at 60 to 80 ° C. (2 minutes), followed by irradiation with 1 to 3 J / cm 2 of linearly polarized light (including 300 to 500 nm ultraviolet rays), and subsequently 170 to 180 ° C. (10 to 10 ° C.). 20 minutes) is performed (first stage firing) and 220 to 230 ° C. (20 to 30 minutes) firing (second stage firing). Thus, the photo-alignment film is formed on each substrate. Formed.
続いて一方の基板に、ディスペンサを使用して紫外線及び熱硬化性シール材(積水化学工業社製、フォトレック;このシール材は、(メタ)アクリルモノマー、光ラジカル重合開始剤、エポキシモノマー、エポキシ硬化材、シランカップリング剤、無機フィラーを含む)を描画した。また、他方の基板上の所定の位置に、誘電率異方性が正(Δε=2.5)で、液晶相-等方相転移点(TNI)が95℃であるポジ型液晶材料を滴下した。このポジ型液晶材料は、アルケニル基を有する化合物、及び、ポジ型液晶化合物からなるものであった。続いて、真空下にて両基板を貼り合わせ、シール材に紫外線(300~500nmの紫外線を含む)を照射して硬化させ、液晶パネルを作製した。更に続けて液晶パネルを110~140℃で40分程度加熱し、シール材を熱硬化させるとともに液晶層を等方相にする再配向処理を行い、その後、液晶パネルを室温まで冷却した。最後に液晶パネルに一対の偏光板を貼り付け、ノーマリーブラックモードかつFFSモードの液晶パネルを完成させた。 Subsequently, on one substrate, a UV and thermosetting sealant (manufactured by Sekisui Chemical Co., Ltd., Photorec; this sealant is composed of (meth) acrylic monomer, photoradical polymerization initiator, epoxy monomer, epoxy A curing material, a silane coupling agent, and an inorganic filler are drawn. Further, a positive type liquid crystal material having a positive dielectric anisotropy (Δε = 2.5) and a liquid crystal phase-isotropic phase transition point (T NI ) of 95 ° C. at a predetermined position on the other substrate. It was dripped. This positive type liquid crystal material was composed of a compound having an alkenyl group and a positive type liquid crystal compound. Subsequently, both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel. Subsequently, the liquid crystal panel was heated at 110 to 140 ° C. for about 40 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature. Finally, a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
図3に示したように、スリット電極24は、Vの字構造とし、液晶化合物の初期配向方位31aに対する線状部27の傾斜角度αは、平面視において10°とした。 As shown in FIG. 3, the slit electrode 24 has a V-shaped structure, and the inclination angle α of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 10 ° in plan view.
<実施例3-2>
ポジ型液晶材料の誘電率異方性Δεを3.3とした点以外は、実施例3-1と同様にして本実施例の液晶パネルを作製した。
<Example 3-2>
A liquid crystal panel of this example was produced in the same manner as in Example 3-1, except that the dielectric anisotropy Δε of the positive liquid crystal material was 3.3.
<実施例3-3>
ポジ型液晶材料の誘電率異方性Δεを4.0とした点以外は、実施例3-1と同様にして本実施例の液晶パネルを作製した。
<Example 3-3>
A liquid crystal panel of this example was produced in the same manner as in Example 3-1, except that the dielectric anisotropy Δε of the positive liquid crystal material was set to 4.0.
<特性評価3>
実施例3-1~3-3で作製したFFSモードの液晶パネルについて、実施例1-1等と同様に、上記特性評価を行った。結果を下記表3に示した。
<Characteristic evaluation 3>
With respect to the FFS mode liquid crystal panels manufactured in Examples 3-1 to 3-3, the above characteristic evaluation was performed in the same manner as in Example 1-1. The results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
表3に示す結果より、液晶材料のΔεが大きくなるにしたがって、応答特性、コントラスト、焼き付き率とも悪化した。Δεが大きくなると液晶材料の極性は大きくなるため、シール材中の未反応成分(主に(メタ)アクリルモノマー又はラジカル重合開始剤と推測)が液晶層中に溶出し易くなり、溶出した未反応成分が光配向膜表面に吸着した結果、更に配向規制力(アンカリング強度)が低下し、焼き付き率が増加したと考えられる。また、一般に、Δεが大きくなると液晶材料の回転粘性係数も大きくなるため、液晶材料のΔεが大きくなるにしたがって応答速度は遅くなった。更に、低電圧印加時の黒透過率についても、Δεの増加とともに若干悪化するため、液晶材料のΔεが大きくなるにしたがってコントラストが低下したと考えられる。以上の結果より、ポジ型液晶材料のΔεは3.5未満が好ましいと考えられる。 From the results shown in Table 3, the response characteristics, contrast, and burn-in rate deteriorated as Δε of the liquid crystal material increased. Since the polarity of the liquid crystal material increases as Δε increases, unreacted components in the seal material (presumably mainly (meth) acrylic monomers or radical polymerization initiators) are likely to elute into the liquid crystal layer, and the eluted unreacted components As a result of the components adsorbed on the surface of the photo-alignment film, it is considered that the alignment regulating force (anchoring strength) is further reduced and the image sticking rate is increased. In general, as Δε increases, the rotational viscosity coefficient of the liquid crystal material also increases. Therefore, the response speed decreases as Δε of the liquid crystal material increases. Further, the black transmittance when a low voltage is applied is slightly deteriorated with an increase in Δε, so that it is considered that the contrast decreases as Δε of the liquid crystal material increases. From the above results, it is considered that Δε of the positive liquid crystal material is preferably less than 3.5.
<実施例4-1>
(配向剤の調整)
上記化学式(P-1a)で示される、アゾベンゼン基を主鎖に含むポリアミック酸を含有する配向剤Aに、下記化学式(2-2)で示される、カルコニル基を有するモノマー(配向性モノマー)を、配向剤Aの溶質の総重量(上記化学式(P-1a)で示されるポリアミック酸の総重量)に対して10重量%となるように添加して配向剤B1を調整した。
<Example 4-1>
(Alignment agent adjustment)
A monomer (orienting monomer) having a chalconyl group represented by the following chemical formula (2-2) is added to the aligning agent A containing a polyamic acid having an azobenzene group in the main chain represented by the chemical formula (P-1a). The alignment agent B1 was prepared by adding 10% by weight to the total weight of the solute of the alignment agent A (total weight of the polyamic acid represented by the chemical formula (P-1a)).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
(液晶パネルの作製)
FFSモードの液晶パネルを以下の方法により実際に作製した。まず、酸化インジウム錫(ITO)製のFFS電極構造を有する面状電極(下層電極)と絶縁膜とスリット電極(上層電極)が積層されたTFT基板と、電極を有さない対向基板とを用意した。次に、上記配向剤B1を両基板に塗布した。
(Production of liquid crystal panel)
An FFS mode liquid crystal panel was actually produced by the following method. First, a planar electrode (lower electrode) having an FFS electrode structure made of indium tin oxide (ITO), a TFT substrate on which an insulating film and a slit electrode (upper electrode) are stacked, and a counter substrate having no electrode are prepared. did. Next, the alignment agent B1 was applied to both substrates.
次に、60~80℃(2分)で仮焼成を行い、続いて4~7J/cmの直線偏光(300~500nmの紫外線を含む)照射を行い、アゾベンゼン基の一軸配向処理を行うと同時に、上記化学式(2-2)で示されるモノマーの重合を行った。続いて170~180℃(20~30分)での焼成(第一段階焼成)と220~230℃(20~30分)での焼成(第二段階焼成)とを含む本焼成を行うことで、各基板上に光配向膜を形成した。 Next, pre-baking is performed at 60 to 80 ° C. (2 minutes), followed by irradiation with 4 to 7 J / cm 2 of linearly polarized light (including 300 to 500 nm ultraviolet rays) to perform uniaxial alignment treatment of the azobenzene group. At the same time, the monomer represented by the chemical formula (2-2) was polymerized. Subsequently, by performing main firing including firing at 170 to 180 ° C. (20 to 30 minutes) (first stage firing) and firing at 220 to 230 ° C. (20 to 30 minutes) (second stage firing). A photo-alignment film was formed on each substrate.
続いて一方の基板に、ディスペンサを使用して紫外線及び熱硬化性シール材(積水化学工業社製、フォトレック;このシール材は、(メタ)アクリルモノマー、光ラジカル重合開始剤、エポキシモノマー、エポキシ硬化材、シランカップリング剤、無機フィラーを含む)を描画した。また、他方の基板上の所定の位置に、誘電率異方性が正(Δε=2.8)で、液晶相-等方相転移点(TNI)が95℃であるポジ型液晶材料を滴下した。このポジ型液晶材料は、アルケニル基を有する化合物、及び、ポジ型液晶化合物からなるものであった。続いて、真空下にて両基板を貼り合わせ、シール材に紫外線(300~500nmの紫外線を含む)を照射して硬化させ、液晶パネルを作製した。更に続けて液晶パネルを110~140℃で40分程度加熱し、シール材を熱硬化させるとともに液晶層を等方相にする再配向処理を行い、その後、液晶パネルを室温まで冷却した。最後に液晶パネルに一対の偏光板を貼り付け、ノーマリーブラックモードかつFFSモードの液晶パネルを完成させた。 Subsequently, on one substrate, a UV and thermosetting sealant (manufactured by Sekisui Chemical Co., Ltd., Photorec; this sealant is composed of (meth) acrylic monomer, photoradical polymerization initiator, epoxy monomer, epoxy A curing material, a silane coupling agent, and an inorganic filler are drawn. In addition, a positive type liquid crystal material having a positive dielectric anisotropy (Δε = 2.8) and a liquid crystal phase-isotropic phase transition point (T NI ) of 95 ° C. at a predetermined position on the other substrate. It was dripped. This positive type liquid crystal material was composed of a compound having an alkenyl group and a positive type liquid crystal compound. Subsequently, both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel. Subsequently, the liquid crystal panel was heated at 110 to 140 ° C. for about 40 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature. Finally, a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
図3に示したように、スリット電極24は、Vの字構造とし、液晶化合物の初期配向方位31aに対する線状部27の傾斜角度αは、平面視において10°とした。 As shown in FIG. 3, the slit electrode 24 has a V-shaped structure, and the inclination angle α of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 10 ° in plan view.
<実施例4-2>
配向剤B1の代わりに、上記化学式(P-1a)で示される、アゾベンゼン基を主鎖に含むポリアミック酸を含有する配向剤Aに、上記化学式(2-2)で示される、カルコニル基を有するモノマー(配向性モノマー)を、配向剤Aの溶質の総重量(上記化学式(P-1a)で示されるポリアミック酸の総重量)に対して20重量%となるように添加して調整した配向剤B2を用いた点以外は、実施例4-1と同様にして本実施例の液晶パネルを作製した。
<Example 4-2>
Instead of the aligning agent B1, the aligning agent A containing a polyamic acid containing an azobenzene group in the main chain represented by the chemical formula (P-1a) has a chalcone group represented by the chemical formula (2-2). An aligning agent prepared by adding a monomer (orienting monomer) to 20 wt% with respect to the total weight of the solute of the aligning agent A (the total weight of the polyamic acid represented by the chemical formula (P-1a)). A liquid crystal panel of this example was produced in the same manner as in Example 4-1, except that B2 was used.
<実施例4-3>
配向剤B1の代わりに、上記化学式(P-1a)で示される、アゾベンゼン基を主鎖に含むポリアミック酸を含有する配向剤Aに、上記化学式(2-2)で示される、カルコニル基を有するモノマー(配向性モノマー)を、配向剤Aの溶質の総重量(上記化学式(P-1a)で示されるポリアミック酸の総重量)に対して30重量%となるように添加して調整した配向剤B3を用いた点以外は、実施例4-1と同様にして本実施例の液晶パネルを作製した。
<Example 4-3>
Instead of the aligning agent B1, the aligning agent A containing a polyamic acid containing an azobenzene group in the main chain represented by the chemical formula (P-1a) has a chalcone group represented by the chemical formula (2-2). An aligning agent prepared by adding a monomer (orienting monomer) to 30% by weight with respect to the total weight of the solute of the aligning agent A (the total weight of the polyamic acid represented by the chemical formula (P-1a)). A liquid crystal panel of this example was produced in the same manner as in Example 4-1, except that B3 was used.
<実施例4-4>
配向剤B1の代わりに、上記化学式(P-1a)で示される、アゾベンゼン基を主鎖に含むポリアミック酸を含有する配向剤Aに、上記化学式(2-2)で示される、カルコニル基を有するモノマー(配向性モノマー)を、配向剤Aの溶質の総重量(上記化学式(P-1a)で示されるポリアミック酸の総重量)に対して40重量%となるように添加して調整した配向剤B4を用いた点以外は、実施例4-1と同様にして本実施例の液晶パネルを作製した。
<Example 4-4>
Instead of the aligning agent B1, the aligning agent A containing a polyamic acid containing an azobenzene group in the main chain represented by the chemical formula (P-1a) has a chalcone group represented by the chemical formula (2-2). An aligning agent prepared by adding a monomer (orienting monomer) to 40% by weight with respect to the total weight of the solute of the aligning agent A (the total weight of the polyamic acid represented by the chemical formula (P-1a)). A liquid crystal panel of this example was produced in the same manner as in Example 4-1, except that B4 was used.
<実施例4-0>
配向剤B1の代わりに、上記化学式(P-1a)で示される、アゾベンゼン基を主鎖に含むポリアミック酸を含有する配向剤Aを用いた点以外は、実施例4-1と同様にして本実施例の液晶パネルを作製した。
<Example 4-0>
In the same manner as in Example 4-1, except that the aligning agent A containing a polyamic acid containing an azobenzene group in the main chain, represented by the chemical formula (P-1a), was used instead of the aligning agent B1. The liquid crystal panel of the example was produced.
<特性評価4>
実施例4-0~4-4で作製したFFSモードの液晶パネルについて、実施例1-1等と同様に、上記特性評価を行った。結果を下記表4に示した。
<Characteristic evaluation 4>
With respect to the FFS mode liquid crystal panels manufactured in Examples 4-0 to 4-4, the above characteristic evaluation was performed in the same manner as in Example 1-1. The results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
表4に示す結果より、光配向膜材料中に、上記カルコニル基を有するモノマーを添加し、光配向膜の露光時に上記モノマーの重合も行うことによって、焼き付き率が大きく低減した。これより、カルコニル基を有するモノマーのポリマーを光配向膜中に形成することによって、液晶化合物の配向制御が安定化されることが確認された。これは、光配向膜のアンカリング強度(特に方位角アンカリング強度)が大きくなったためと推測される。一方、応答特性は、上記モノマーの添加量に対してほぼ一定であったが、コントラストは、上記モノマーを30重量%添加した場合に大きく低下した。これは、上記モノマーを30重量%有する光配向膜を成膜した段階で、透明な膜ではなく、白濁した膜であったため、散乱によるコントラストの大幅な低下が起こったものと推測される。40重量%では更に光配向膜は白濁したため、散乱によるコントラスト低下は更に顕著になった。以上より、光配向膜中にカルコニル基を有するモノマーを添加することにより、配向制御力が向上し、AC電圧印加由来の焼き付きが低下することが確認された。また、散乱によるコントラストの大幅な低下を抑制するためには、配向剤の溶質(ポリアミック酸)に対して30重量%未満の濃度でカルコニル基を有するモノマーを添加することが好ましいことが分かった。 From the results shown in Table 4, the burn-in rate was greatly reduced by adding the monomer having the chalconyl group to the photo-alignment film material and polymerizing the monomer during exposure of the photo-alignment film. From this, it was confirmed that the alignment control of the liquid crystal compound is stabilized by forming a polymer of a monomer having a chalcone group in the photo-alignment film. This is presumably because the anchoring strength (particularly the azimuth anchoring strength) of the photo-alignment film has increased. On the other hand, the response characteristics were almost constant with respect to the added amount of the monomer, but the contrast was greatly reduced when 30% by weight of the monomer was added. This is presumed that when the photo-alignment film having 30% by weight of the monomer was formed, it was not a transparent film but a white turbid film, so that a significant decrease in contrast due to scattering occurred. At 40% by weight, the photo-alignment film became more turbid, and the contrast reduction due to scattering became more remarkable. From the above, it was confirmed that by adding a monomer having a chalconyl group to the photo-alignment film, the alignment control power is improved and the image sticking due to the application of the AC voltage is reduced. Moreover, in order to suppress the significant fall of the contrast by scattering, it turned out that it is preferable to add the monomer which has a chalconyl group with the density | concentration of less than 30 weight% with respect to the solute (polyamic acid) of an orientation agent.
<実施例5-1>
(配向剤の調整)
下記化学式(P-1c)で示される、シクロブタン環を主鎖に含むポリアミック酸を含有する配向剤Cに、上記化学式(2-2)で示される、カルコニル基を有するモノマー(配向性モノマー)を、配向剤Cの溶質の総重量(下記化学式(P-1c)で示されるポリアミック酸の総重量)に対して10重量%となるように添加して配向剤D1を調整した。
<Example 5-1>
(Alignment agent adjustment)
A monomer (orienting monomer) having a chalcone group represented by the above chemical formula (2-2) is added to the aligning agent C containing a polyamic acid having a cyclobutane ring in the main chain represented by the following chemical formula (P-1c). The alignment agent D1 was prepared by adding 10% by weight to the total weight of the solute of the alignment agent C (total weight of the polyamic acid represented by the following chemical formula (P-1c)).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
(液晶パネルの作製)
FFSモードの液晶パネルを以下の方法により実際に作製した。まず、酸化インジウム錫(ITO)製のFFS電極構造を有する面状電極(下層電極)と絶縁膜とスリット電極(上層電極)が積層されたTFT基板と、電極を有さない対向基板とを用意した。次に、上記配向剤D1を両基板に塗布した。
(Production of liquid crystal panel)
An FFS mode liquid crystal panel was actually produced by the following method. First, a planar electrode (lower electrode) having an FFS electrode structure made of indium tin oxide (ITO), a TFT substrate on which an insulating film and a slit electrode (upper electrode) are stacked, and a counter substrate having no electrode are prepared. did. Next, the alignment agent D1 was applied to both substrates.
次に、60~80℃(2分)で仮焼成を行った後、190~200℃(20~30分)で本焼成を行い、続いて0.5~2J/cmの直線偏光(250~360nmの紫外線を含む)照射を行い、シクロブタン環の一軸配向処理を行うと同時に、上記化学式(2-2)で示されるモノマーの重合を行った。続いて220~220℃(30~40分)での焼成を行うことで、各基板上に光配向膜を形成した。 Next, after pre-baking at 60 to 80 ° C. (2 minutes), main baking is performed at 190 to 200 ° C. (20 to 30 minutes), followed by 0.5 to 2 J / cm 2 linearly polarized light (250 (Including ultraviolet rays of up to 360 nm) and uniaxial orientation treatment of the cyclobutane ring, and at the same time, polymerization of the monomer represented by the chemical formula (2-2) was performed. Subsequently, by baking at 220 to 220 ° C. (30 to 40 minutes), a photo-alignment film was formed on each substrate.
続いて一方の基板に、ディスペンサを使用して紫外線及び熱硬化性シール材(積水化学工業社製、フォトレック;このシール材は、(メタ)アクリルモノマー、光ラジカル重合開始剤、エポキシモノマー、エポキシ硬化材、シランカップリング剤、無機フィラーを含む)を描画した。また、他方の基板上の所定の位置に、誘電率異方性が正(Δε=2.8)で、液晶相-等方相転移点(TNI)が95℃であるポジ型液晶材料を滴下した。このポジ型液晶材料は、アルケニル基を有する化合物、及び、ポジ型液晶化合物からなるものであった。続いて、真空下にて両基板を貼り合わせ、シール材に紫外線(300~500nmの紫外線を含む)を照射して硬化させ、液晶パネルを作製した。更に続けて液晶パネルを110~140℃で40分程度加熱し、シール材を熱硬化させるとともに液晶層を等方相にする再配向処理を行い、その後、液晶パネルを室温まで冷却した。最後に液晶パネルに一対の偏光板を貼り付け、ノーマリーブラックモードかつFFSモードの液晶パネルを完成させた。 Subsequently, on one substrate, a UV and thermosetting sealant (manufactured by Sekisui Chemical Co., Ltd., Photorec; this sealant is composed of (meth) acrylic monomer, photoradical polymerization initiator, epoxy monomer, epoxy A curing material, a silane coupling agent, and an inorganic filler are drawn. In addition, a positive type liquid crystal material having a positive dielectric anisotropy (Δε = 2.8) and a liquid crystal phase-isotropic phase transition point (T NI ) of 95 ° C. at a predetermined position on the other substrate. It was dripped. This positive type liquid crystal material was composed of a compound having an alkenyl group and a positive type liquid crystal compound. Subsequently, both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel. Subsequently, the liquid crystal panel was heated at 110 to 140 ° C. for about 40 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature. Finally, a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
図3に示したように、スリット電極24は、Vの字構造とし、液晶化合物の初期配向方位31aに対する線状部27の傾斜角度αは、平面視において10°とした。 As shown in FIG. 3, the slit electrode 24 has a V-shaped structure, and the inclination angle α of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 10 ° in plan view.
<実施例5-2>
配向剤D1の代わりに、上記化学式(P-1c)で示される、シクロブタン環を主鎖に含むポリアミック酸を含有する配向剤Cに、上記化学式(2-2)で示される、カルコニル基を有するモノマー(配向性モノマー)を、配向剤Cの溶質の総重量(上記化学式(P-1c)で示されるポリアミック酸の総重量)に対して20重量%となるように添加して調整した配向剤D2を用いた点以外は、実施例5-1と同様にして本実施例の液晶パネルを作製した。
<Example 5-2>
Instead of the aligning agent D1, the aligning agent C containing a polyamic acid containing a cyclobutane ring in the main chain represented by the chemical formula (P-1c) has a chalcone group represented by the chemical formula (2-2). An aligning agent prepared by adding a monomer (orienting monomer) to 20 wt% with respect to the total weight of the solute of the aligning agent C (the total weight of the polyamic acid represented by the chemical formula (P-1c)). A liquid crystal panel of this example was produced in the same manner as in Example 5-1, except that D2 was used.
<実施例5-3>
配向剤D1の代わりに、上記化学式(P-1c)で示される、シクロブタン環を主鎖に含むポリアミック酸を含有する配向剤Cに、上記化学式(2-2)で示される、カルコニル基を有するモノマー(配向性モノマー)を、配向剤Cの溶質の総重量(上記化学式(P-1c)で示されるポリアミック酸の総重量)に対して30重量%となるように添加して調整した配向剤D3を用いた点以外は、実施例5-1と同様にして本実施例の液晶パネルを作製した。
<Example 5-3>
Instead of the aligning agent D1, the aligning agent C containing a polyamic acid containing a cyclobutane ring in the main chain represented by the chemical formula (P-1c) has a chalcone group represented by the chemical formula (2-2). An aligning agent prepared by adding a monomer (orienting monomer) to 30% by weight with respect to the total weight of the solute of the aligning agent C (the total weight of the polyamic acid represented by the chemical formula (P-1c)). A liquid crystal panel of this example was produced in the same manner as in Example 5-1, except that D3 was used.
<実施例5-4>
配向剤D1の代わりに、上記化学式(P-1c)で示される、シクロブタン環を主鎖に含むポリアミック酸を含有する配向剤Cに、上記化学式(2-2)で示される、カルコニル基を有するモノマー(配向性モノマー)を、配向剤Cの溶質の総重量(上記化学式(P-1c)で示されるポリアミック酸の総重量)に対して40重量%となるように添加して調整した配向剤D4を用いた点以外は、実施例5-1と同様にして本実施例の液晶パネルを作製した。
<Example 5-4>
Instead of the aligning agent D1, the aligning agent C containing a polyamic acid containing a cyclobutane ring in the main chain represented by the chemical formula (P-1c) has a chalcone group represented by the chemical formula (2-2). An aligning agent prepared by adding a monomer (orienting monomer) so as to be 40% by weight with respect to the total weight of the solute of the aligning agent C (the total weight of the polyamic acid represented by the chemical formula (P-1c)). A liquid crystal panel of this example was produced in the same manner as in Example 5-1, except that D4 was used.
<実施例5-0>
配向剤D1の代わりに、上記化学式(P-1c)で示される、シクロブタン環を主鎖に含むポリアミック酸を含有する配向剤Cを用いた点以外は、実施例5-1と同様にして本実施例の液晶パネルを作製した。
<Example 5-0>
In the same manner as in Example 5-1, except that the aligning agent C containing a polyamic acid containing a cyclobutane ring in the main chain, represented by the chemical formula (P-1c), was used instead of the aligning agent D1. The liquid crystal panel of the example was produced.
<特性評価5>
実施例5-0~5-4で作製したFFSモードの液晶パネルについて、実施例1-1等と同様に、上記特性評価を行った。結果を下記表5に示した。
<Characteristic evaluation 5>
With respect to the FFS mode liquid crystal panels manufactured in Examples 5-0 to 5-4, the above characteristic evaluation was performed in the same manner as in Example 1-1. The results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
表5に示す結果より、シクロブタン環を有する光配向膜材料中に、上記カルコニル基を有するモノマーを添加し、光配向膜の露光時に上記モノマーの重合も行うことによっても、元来シクロブタン環を有する光配向膜の焼き付きの程度は小さいが、更に焼き付き率が低減した。これより、シクロブタン環を有する光配向膜(分解型)中にカルコニル基を有するモノマーのポリマーを形成することでも、液晶化合物の配向制御が安定化されることが確認された。これは、光配向膜のアンカリング強度(特に方位角アンカリング強度)が更に大きくなったためと推測される。一方、応答特性は、実施例4ともほぼ同等傾向であり、上記モノマーの添加量に対してほぼ一定であったが、コントラストは、上記モノマーを30重量%添加した場合に大きく低下した。これは、上記モノマーを30重量%有する光配向膜を成膜した段階で、透明な膜ではなく、白濁した膜であったため、散乱によるコントラストの大幅な低下が起こったものと推測される。コントラストに関しては、シクロブタン環を有する光配向膜の方が、アゾベンゼン基を有する光配向膜より若干低くなった。これは、偏光紫外線による光配向膜の配向方位制御の程度の違いによるものと考えられる。40重量%では更に光配向膜は白濁したため、散乱によるコントラスト低下は更に顕著になった。以上より、シクロブタン環を有する光配向膜中にカルコニル基を有するモノマーを添加することにより、配向制御力が向上し、AC電圧印加由来の焼き付きが低下することが確認された。また、散乱によるコントラストの大幅な低下を抑制するためには、配向剤の溶質(ポリアミック酸)に対して30重量%未満の濃度でカルコニル基を有するモノマーを添加することが好ましいことが分かった。 From the results shown in Table 5, the cyclobutane ring originally has a cyclobutane ring by adding the monomer having the chalconyl group to the photo-alignment film material having a cyclobutane ring and also polymerizing the monomer during the exposure of the photo-alignment film. Although the degree of image sticking of the photo-alignment film was small, the image sticking rate was further reduced. From this, it was confirmed that the alignment control of the liquid crystal compound is stabilized also by forming a polymer of a monomer having a chalcone group in a photo-alignment film (decomposed type) having a cyclobutane ring. This is presumably because the anchoring strength (particularly the azimuth anchoring strength) of the photo-alignment film is further increased. On the other hand, the response characteristics were almost the same as in Example 4 and were almost constant with respect to the added amount of the monomer, but the contrast was greatly lowered when 30% by weight of the monomer was added. This is presumed that when the photo-alignment film having 30% by weight of the monomer was formed, it was not a transparent film but a white turbid film, so that a significant decrease in contrast due to scattering occurred. Regarding the contrast, the photo-alignment film having a cyclobutane ring was slightly lower than the photo-alignment film having an azobenzene group. This is thought to be due to the difference in the degree of orientation control of the photo-alignment film by polarized ultraviolet rays. At 40% by weight, the photo-alignment film became more turbid, and the contrast reduction due to scattering became more remarkable. From the above, it was confirmed that by adding a monomer having a chalconyl group to the photo-alignment film having a cyclobutane ring, the alignment control power is improved and the image sticking due to the AC voltage application is reduced. Moreover, in order to suppress the significant fall of the contrast by scattering, it turned out that it is preferable to add the monomer which has a chalconyl group with the density | concentration of less than 30 weight% with respect to the solute (polyamic acid) of an orientation agent.
<実施例6-1>
(液晶パネルの作製)
FFSモードの液晶パネルを以下の方法により実際に作製した。まず、酸化インジウム錫(ITO)製のFFS電極構造を有する面状電極(下層電極)と絶縁膜とスリット電極(上層電極)が積層されたTFT基板と、電極を有さない対向基板とを用意した。次に、上記化学式(P-1a)で示される、アゾベンゼン基を主鎖に含むポリアミック酸を含有する配向剤(上記低分子添加剤は導入していない)を両基板に塗布した。
<Example 6-1>
(Production of liquid crystal panel)
An FFS mode liquid crystal panel was actually produced by the following method. First, a planar electrode (lower electrode) having an FFS electrode structure made of indium tin oxide (ITO), a TFT substrate on which an insulating film and a slit electrode (upper electrode) are stacked, and a counter substrate having no electrode are prepared. did. Next, an orientation agent containing polyamic acid represented by the chemical formula (P-1a) and containing an azobenzene group in the main chain (the low molecular additive was not introduced) was applied to both substrates.
次に、60~80℃(2分)で仮焼成を行い、続いて1~3J/cmの直線偏光(300~500nmの紫外線を含む)照射を行い、続いて170~180℃(10~20分)での焼成(第一段階焼成)と220~230℃(20~30分)での焼成(第二段階焼成)とを含む本焼成を行うことで、各基板上に光配向膜を形成した。 Next, preliminary baking is performed at 60 to 80 ° C. (2 minutes), followed by irradiation with 1 to 3 J / cm 2 of linearly polarized light (including 300 to 500 nm ultraviolet rays), and subsequently 170 to 180 ° C. (10 to 10 ° C.). 20 minutes) is performed (first stage firing) and 220 to 230 ° C. (20 to 30 minutes) firing (second stage firing). Thus, the photo-alignment film is formed on each substrate. Formed.
続いて一方の基板に、ディスペンサを使用して紫外線及び熱硬化性シール材(積水化学工業社製、フォトレック;このシール材は、(メタ)アクリルモノマー、光ラジカル重合開始剤、エポキシモノマー、エポキシ硬化材、シランカップリング剤、無機フィラーを含む)を描画した。また、他方の基板上の所定の位置に、誘電率異方性が正(Δε=2.8)で、液晶相-等方相転移点(TNI)が95℃であるポジ型液晶材料を滴下した。このポジ型液晶材料は、アルケニル基を有する化合物、及び、ポジ型液晶化合物からなるものであった。続いて、真空下にて両基板を貼り合わせ、シール材に紫外線(300~500nmの紫外線を含む)を照射して硬化させ、液晶パネルを作製した。更に続けて液晶パネルを110~140℃で40分程度加熱し、シール材を熱硬化させるとともに液晶層を等方相にする再配向処理を行い、その後、液晶パネルを室温まで冷却した。最後に液晶パネルに一対の偏光板を貼り付け、ノーマリーブラックモードかつFFSモードの液晶パネルを完成させた。 Subsequently, on one substrate, a UV and thermosetting sealant (manufactured by Sekisui Chemical Co., Ltd., Photorec; this sealant is composed of (meth) acrylic monomer, photoradical polymerization initiator, epoxy monomer, epoxy A curing material, a silane coupling agent, and an inorganic filler are drawn. In addition, a positive type liquid crystal material having a positive dielectric anisotropy (Δε = 2.8) and a liquid crystal phase-isotropic phase transition point (T NI ) of 95 ° C. at a predetermined position on the other substrate. It was dripped. This positive type liquid crystal material was composed of a compound having an alkenyl group and a positive type liquid crystal compound. Subsequently, both the substrates were bonded together under vacuum, and the sealing material was cured by irradiating with ultraviolet rays (including 300 to 500 nm ultraviolet rays) to produce a liquid crystal panel. Subsequently, the liquid crystal panel was heated at 110 to 140 ° C. for about 40 minutes to thermally cure the sealing material and to make the liquid crystal layer isotropic, and then the liquid crystal panel was cooled to room temperature. Finally, a pair of polarizing plates was attached to the liquid crystal panel to complete a normally black mode and FFS mode liquid crystal panel.
図3に示したように、スリット電極24は、Vの字構造とし、液晶化合物の初期配向方位31aに対する線状部27の傾斜角度αは、平面視において10°とした。 As shown in FIG. 3, the slit electrode 24 has a V-shaped structure, and the inclination angle α of the linear portion 27 with respect to the initial alignment azimuth 31a of the liquid crystal compound is 10 ° in plan view.
<実施例6-2>
上記化学式(P-1a)で示される、アゾベンゼン基を主鎖に含むポリアミック酸の代わりに、下記化学式(P-1d)で示される、アゾベンゼン基を主鎖に含むポリアミック酸を用いた点以外は、実施例6-1と同様にして本実施例の液晶パネルを作製した。本実施例においても配光剤には低分子添加剤は導入しなかった。
<Example 6-2>
Except for using a polyamic acid represented by the following chemical formula (P-1d) represented by the following chemical formula (P-1a), a polyamic acid comprising an azobenzene group contained in the main chain, instead of the polyamic acid represented by the chemical formula (P-1a). In the same manner as in Example 6-1, a liquid crystal panel of this example was produced. Also in this example, no low molecular additive was introduced into the light distribution agent.
Figure JPOXMLDOC01-appb-C000028
(式中、Xには少なくともX3由来の構造が含まれており、Yには少なくともY3由来の構造が含まれている。)
Figure JPOXMLDOC01-appb-C000028
(In the formula, X includes at least a structure derived from X3, and Y includes at least a structure derived from Y3.)
<特性評価6>
実施例6-1及び6-2で作製したFFSモードの液晶パネルについて、実施例1-1等と同様に、上記特性評価を行った。結果を下記表6に示した。
<Characteristic evaluation 6>
With respect to the FFS mode liquid crystal panels produced in Examples 6-1 and 6-2, the above characteristic evaluation was performed in the same manner as in Example 1-1. The results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
表6に示す結果より、上記化学式(P-1a)で示される屈曲型構造のテトラカルボン酸二無水物を用いた場合、上記化学式(P-1d)で示される屈曲型構造でないテトラカルボン酸二無水物を用いた場合に比べて高コントラストとなった。偏光紫外線照射によるアゾベンゼン基の異性化による配向状態が、上記化学式(P-1a)で示されるポリアミック酸の方が上記化学式(P-1d)で示されるポリアミック酸より高かったためと考えられる。一方、長期間でのAC電圧印加由来の焼き付きも上記化学式(P-1a)で示されるポリアミック酸を用いた場合の方が高かった(悪かった)。上記化学式(P-1a)で示されるポリアミック酸は、ポリマーが屈曲していることにより分子の立体障害が少ないため、分子の運動性も高く、結果として長期でのAC電圧印加由来の焼き付きは若干悪くなった。 From the results shown in Table 6, when the tetracarboxylic dianhydride having the bent structure represented by the chemical formula (P-1a) is used, the tetracarboxylic acid dihydrate having no bent structure represented by the chemical formula (P-1d) is used. High contrast was obtained compared to the case of using an anhydride. This is probably because the polyamic acid represented by the chemical formula (P-1a) was higher in the orientation state due to isomerization of the azobenzene group by irradiation with polarized ultraviolet rays than the polyamic acid represented by the chemical formula (P-1d). On the other hand, the seizure resulting from the application of AC voltage over a long period of time was higher (bad) when the polyamic acid represented by the chemical formula (P-1a) was used. The polyamic acid represented by the above chemical formula (P-1a) has low molecular steric hindrance due to the bending of the polymer, and therefore has high molecular mobility, and as a result, there is a slight seizure resulting from application of AC voltage over a long period of time. It got worse.
[付記]
本発明の一態様は、正の誘電率異方性を有する液晶材料を含有する液晶層と、平面視において上記液晶層を囲むように配置されたシール材と、上記液晶層を挟持する一対の基板と、上記一対の基板の少なくとも一方の表面に設けられた光配向膜とを備え、上記光配向膜は、ポリアミック酸及びポリイミドの少なくとも一方(ポリイミド系ポリマー)を含有し、かつ、上記液晶材料中の液晶化合物を上記基板面に対して水平方向に配向させるものであり、上記一対の基板の一方は、画素電極及び共通電極を含み、上記画素電極及び上記共通電極の少なくとも一方は、線状部を含み、上記液晶化合物の初期配向方位に対する上記線状部の傾斜角度は、平面視において7°以上であることを特徴とする液晶表示装置であってもよい。上記液晶表示装置は、液晶化合物を上記基板面に対して水平方向に配向させる光配向膜を備えるが、液晶化合物の初期配向方位に対する上記線状部の傾斜角度は、平面視において7°以上であるため、AC電圧印加に起因する焼き付きを抑制することができる。
[Appendix]
One embodiment of the present invention includes a liquid crystal layer containing a liquid crystal material having a positive dielectric anisotropy, a sealant disposed so as to surround the liquid crystal layer in a plan view, and a pair of sandwiching the liquid crystal layer A substrate and a photo-alignment film provided on at least one surface of the pair of substrates, the photo-alignment film containing at least one of polyamic acid and polyimide (polyimide polymer), and the liquid crystal material The liquid crystal compound in the substrate is aligned horizontally with respect to the substrate surface, and one of the pair of substrates includes a pixel electrode and a common electrode, and at least one of the pixel electrode and the common electrode is linear. The liquid crystal display device may be characterized in that an inclination angle of the linear portion with respect to an initial alignment direction of the liquid crystal compound is 7 ° or more in plan view. The liquid crystal display device includes a photo-alignment film that aligns the liquid crystal compound in a horizontal direction with respect to the substrate surface, and the inclination angle of the linear portion with respect to the initial alignment direction of the liquid crystal compound is 7 ° or more in plan view. Therefore, image sticking due to the application of the AC voltage can be suppressed.
上記傾斜角度は、13°以下であってもよい。これにより、透過率及びコントラストの低下の抑制が可能となる。 The inclination angle may be 13 ° or less. Thereby, it is possible to suppress a decrease in transmittance and contrast.
上記ポリアミック酸及び上記ポリイミドは、アゾベンゼン基を有するジアミンに由来する構造と、分子構造が屈曲したテトラカルボン酸二無水物に由来する構造とを有してもよい。この場合であっても、高AC電圧印加による焼き付きが発生することを効果的に抑制することができる。 The polyamic acid and the polyimide may have a structure derived from a diamine having an azobenzene group and a structure derived from a tetracarboxylic dianhydride having a bent molecular structure. Even in this case, it is possible to effectively suppress the occurrence of image sticking due to application of a high AC voltage.
上記分子構造が屈曲したテトラカルボン酸二無水物は、下記化学式(X-1)~(X-28)のいずれかで表される少なくとも一種のテトラカルボン酸二無水物を含んでもよい。 The tetracarboxylic dianhydride having a bent molecular structure may include at least one tetracarboxylic dianhydride represented by any one of the following chemical formulas (X-1) to (X-28).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
上記分子構造が屈曲したテトラカルボン酸二無水物は、上記化学式(X-6)、(X-22)、(X-23)又は(X-27)のいずれかで表される少なくとも一種のテトラカルボン酸二無水物を含んでもよい。 The tetracarboxylic dianhydride having a bent molecular structure is at least one tetracarboxylic dianhydride represented by any one of the chemical formulas (X-6), (X-22), (X-23) or (X-27). Carboxylic dianhydrides may be included.
上記ポリアミック酸及び上記ポリイミドは、シクロブタン環に由来する構造を有してもよい。 The polyamic acid and the polyimide may have a structure derived from a cyclobutane ring.
上記液晶材料は、1以上、3.5未満の誘電率異方性を有してもよい。この場合であっても、高AC電圧印加による焼き付きが発生することを効果的に抑制することができる。また、液晶材料の応答性能を向上し、高速化することができる。 The liquid crystal material may have a dielectric anisotropy of 1 or more and less than 3.5. Even in this case, it is possible to effectively suppress the occurrence of image sticking due to application of a high AC voltage. Further, the response performance of the liquid crystal material can be improved and the speed can be increased.
上記液晶材料のネマティック相-等方相転移点は、95℃以上であってもよい。これにより、上記液晶表示装置を車載用途、船舶用途、航空用途等に好適なものとすることができる。 The nematic phase-isotropic phase transition point of the liquid crystal material may be 95 ° C. or higher. Thereby, the said liquid crystal display device can be made suitable for a vehicle-mounted use, a ship use, an aviation use, etc.
上記シール材は、(メタ)アクリルモノマー、ラジカル重合開始剤、エポキシモノマー、及び、エポキシ硬化材を含有してもよい。この場合であっても、高AC電圧印加による焼き付きが発生することを効果的に抑制することができる。 The sealing material may contain a (meth) acrylic monomer, a radical polymerization initiator, an epoxy monomer, and an epoxy curing material. Even in this case, it is possible to effectively suppress the occurrence of image sticking due to application of a high AC voltage.
上記光配向膜は、少なくとも一種のモノマー(配向性モノマー)を重合させてなるポリマーを更に含有し、上記少なくとも一種のモノマーは、偏光紫外線の照射により異性化反応及び二量化反応の少なくとも一方の反応を生じて配向性を示してもよい。これにより、ポリイミド系ポリマーの配向状態をより安定に固定化でき、結果として液晶化合物の配向状態をより安定に固定化させることができる。すなわち、光配向膜の方位角アンカリング強度を向上でき、AC電圧印加由来の焼き付きをより効果的に抑制することができる。 The photo-alignment film further contains a polymer obtained by polymerizing at least one monomer (alignment monomer), and the at least one monomer reacts with at least one of an isomerization reaction and a dimerization reaction by irradiation with polarized ultraviolet rays. May be produced to show the orientation. As a result, the alignment state of the polyimide-based polymer can be more stably fixed, and as a result, the alignment state of the liquid crystal compound can be more stably fixed. That is, the azimuth anchoring strength of the photo-alignment film can be improved, and image sticking due to application of AC voltage can be more effectively suppressed.
上記少なくとも一種のモノマーは、置換基を有してもよいカルコン基を有するモノマー、置換基を有してもよいシンナメート基を有するモノマー、及び、置換基を有してもよいクマリン基を有するモノマーからなる群より選択される少なくとも一種の光反応性モノマーを含んでもよい。 The at least one monomer is a monomer having a chalcone group which may have a substituent, a monomer having a cinnamate group which may have a substituent, and a monomer having a coumarin group which may have a substituent. It may contain at least one photoreactive monomer selected from the group consisting of:
上記少なくとも一種のモノマーは、下記化学式(1)で表される少なくとも一種のモノマーを含んでもよい。これにより、ポリイミド系ポリマーの配向状態を更に安定に固定化でき、結果として液晶化合物の配向状態を更に安定に固定化させることができる。したがって、液晶化合物の配向状態を更に安定に固定化させることができ、AC電圧印加由来の焼き付きを更に効果的に抑制することができる。 The at least one monomer may include at least one monomer represented by the following chemical formula (1). As a result, the alignment state of the polyimide-based polymer can be more stably fixed, and as a result, the alignment state of the liquid crystal compound can be more stably fixed. Therefore, the alignment state of the liquid crystal compound can be more stably fixed, and image sticking resulting from application of the AC voltage can be more effectively suppressed.
Figure JPOXMLDOC01-appb-C000032
(式中、P及びPは、同一又は異なって、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
Sp及びSpは、同一又は異なって、炭素数1~6の、直鎖状、分岐状若しくは環状のアルキレン基若しくアルキレンオキシ基、又は、直接結合を表す。
各フェニレン基が有する少なくとも一つの水素原子は、置換されていてもよい。)
Figure JPOXMLDOC01-appb-C000032
(In the formula, P 1 and P 2 are the same or different and each represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
Sp 1 and Sp 2 are the same or different and each represents a linear, branched or cyclic alkylene group or alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
At least one hydrogen atom of each phenylene group may be substituted. )
上記化学式(1)で表される少なくとも一種のモノマーは、下記化学式(2-1)~(2-5)のいずれかで表される少なくとも一種のモノマーを含んでもよい。 The at least one monomer represented by the chemical formula (1) may include at least one monomer represented by any one of the following chemical formulas (2-1) to (2-5).
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
上記液晶表示装置の表示モードは、フリンジ・フィールド・スイッチング(FFS)モードであってもよい。 The display mode of the liquid crystal display device may be a fringe field switching (FFS) mode.
本発明の他の一態様は、一対の基板を準備する準備工程と、上記一対の基板の少なくとも一方の表面に、ポリアミック酸及びポリイミドの少なくとも一方のポリマー(ポリイミド系ポリマー)と、少なくとも一種のモノマー(配向性モノマー)とを含有する配向剤を塗布して光配向膜を形成する成膜工程と、上記光配向膜に偏光紫外線を照射して、上記少なくとも一方のポリマーを配向させるとともに上記少なくとも一種のモノマーを配向及び重合させる照射工程とを含み、上記少なくとも一種のモノマーは、偏光紫外線の照射により異性化反応及び二量化反応の少なくとも一方の反応を生じて配向性を示すことを特徴とする液晶表示装置の製造方法であってもよい。上記液晶表示装置の製造方法は、上記光配向膜に偏光紫外線を照射してポリイミド系ポリマーを配向させるとともに配向性モノマーを配向及び重合させる照射工程とを有することから、上述のように、光官能基を有するポリイミド系ポリマーが配向制御されるとともに、配向性モノマーが配向制御された状態で重合し、光官能基を有するポリイミド系ポリマーの配向を固定化することができる。そのため、光配向膜の方位角アンカリング強度を向上できるため、AC電圧印加による焼き付きを低減することができる。 Another embodiment of the present invention is a preparatory step of preparing a pair of substrates, at least one surface of the pair of substrates, at least one polymer of polyamic acid and polyimide (polyimide polymer), and at least one monomer A film forming step of forming a photo-alignment film by applying an aligning agent containing (orienting monomer), and irradiating the photo-alignment film with polarized ultraviolet rays to align the at least one polymer and at least the one type And an irradiation step of aligning and polymerizing the monomer, wherein the at least one monomer exhibits orientation by causing at least one of an isomerization reaction and a dimerization reaction by irradiation with polarized ultraviolet rays. The manufacturing method of a display apparatus may be sufficient. The method for manufacturing the liquid crystal display device includes an irradiation step of irradiating the photo-alignment film with polarized ultraviolet rays to align the polyimide polymer and aligning and polymerizing the orientation monomer. The polyimide polymer having a group is controlled in orientation, and the orientation monomer is polymerized in a state in which the orientation is controlled, so that the orientation of the polyimide polymer having a photofunctional group can be fixed. Therefore, since the azimuth anchoring strength of the photo-alignment film can be improved, it is possible to reduce image sticking due to application of an AC voltage.
上記一対の基板の一方は、画素電極及び共通電極を含み、上記画素電極及び上記共通電極の少なくとも一方は、線状部を含み、上記成膜工程において、上記一対の基板のうち、少なくとも、上記画素電極及び上記共通電極を含む基板の表面に上記光配向膜を形成し、上記照射工程において、上記線状部に対する偏光軸方向のなす角が83°以下となるように上記光配向膜に偏光紫外線を照射してもよい。これにより、液晶化合物の初期配向方位に対する線状部の傾斜角度平面視において7°以上に容易にすることができる。そのため、AC電圧印加由来の焼き付きをより軽減することができる。 One of the pair of substrates includes a pixel electrode and a common electrode, and at least one of the pixel electrode and the common electrode includes a linear portion. The photo-alignment film is formed on the surface of the substrate including the pixel electrode and the common electrode. In the irradiation step, the photo-alignment film is polarized so that an angle formed by the polarization axis direction with respect to the linear portion is 83 ° or less. You may irradiate with an ultraviolet-ray. Thereby, it can be easily made 7 ° or more in a plan view of the inclination angle of the linear portion with respect to the initial orientation direction of the liquid crystal compound. For this reason, it is possible to further reduce the burn-in resulting from the AC voltage application.
上記照射工程において、上記線状部に対する偏光軸方向のなす角が77°以上となるように上記光配向膜に偏光紫外線を照射してもよい。これにより、液晶化合物の初期配向方位に対する線状部の傾斜角度平面視において13°以下に容易にすることができる。そのため、透過率及びコントラストの低下を抑制することができる。 In the irradiation step, the photo-alignment film may be irradiated with polarized ultraviolet rays so that an angle formed by a polarization axis direction with respect to the linear portion is 77 ° or more. As a result, the inclination angle of the linear portion with respect to the initial alignment direction of the liquid crystal compound can be easily reduced to 13 ° or less in plan view. Therefore, it is possible to suppress a decrease in transmittance and contrast.
上記ポリアミック酸及び上記ポリイミドは、アゾベンゼン基を有するジアミンに由来する構造と、分子構造が屈曲したテトラカルボン酸二無水物に由来する構造とを有してもよい。この場合であっても、高AC電圧印加による焼き付きが発生することを効果的に抑制することができる。 The polyamic acid and the polyimide may have a structure derived from a diamine having an azobenzene group and a structure derived from a tetracarboxylic dianhydride having a bent molecular structure. Even in this case, it is possible to effectively suppress the occurrence of image sticking due to application of a high AC voltage.
上記ポリアミック酸及び上記ポリイミドは、シクロブタン環に由来する構造を有してもよい。 The polyamic acid and the polyimide may have a structure derived from a cyclobutane ring.
上記少なくとも一種のモノマーは、置換基を有してもよいカルコン基を有するモノマー、置換基を有してもよいシンナメート基を有するモノマー、及び、置換基を有してもよいクマリン基を有するモノマーからなる群より選択される少なくとも一種の光反応性モノマーを含んでもよい。 The at least one monomer is a monomer having a chalcone group which may have a substituent, a monomer having a cinnamate group which may have a substituent, and a monomer having a coumarin group which may have a substituent. It may contain at least one photoreactive monomer selected from the group consisting of:
以上に示した本発明の各態様は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。 Each aspect of the present invention described above may be appropriately combined without departing from the scope of the present invention.
10、20:基板
21:透明基板
22:面状電極
23:絶縁膜
24:スリット電極
24s:スリット
25:画素電極
26:共通電極
27:線状部
30:液晶層
31:液晶化合物(液晶分子)
31a:初期配向方位
40:シール材
50:光配向膜
51:アゾベンゼン基を有するポリイミド系ポリマー
52:カルコニル基を有するポリマー
53:カルコニル基を有する配向性モノマー
60:偏光板
70:バックライト
100:液晶表示装置
α:液晶化合物の初期配向方位に対する線状部の傾斜角度
10, 20: Substrate 21: Transparent substrate 22: Planar electrode 23: Insulating film 24: Slit electrode 24s: Slit 25: Pixel electrode 26: Common electrode 27: Linear portion 30: Liquid crystal layer 31: Liquid crystal compound (liquid crystal molecule)
31a: initial orientation orientation 40: sealing material 50: photo-alignment film 51: polyimide polymer having azobenzene group 52: polymer having chalconyl group 53: orientation monomer having chalconyl group 60: polarizing plate 70: backlight 100: liquid crystal Display device α: angle of inclination of the linear portion with respect to the initial orientation of the liquid crystal compound

Claims (20)

  1. 正の誘電率異方性を有する液晶材料を含有する液晶層と、
    平面視において前記液晶層を囲むように配置されたシール材と、
    前記液晶層を挟持する一対の基板と、
    前記一対の基板の少なくとも一方の表面に設けられた光配向膜とを備え、
    前記光配向膜は、ポリアミック酸及びポリイミドの少なくとも一方を含有し、かつ、前記液晶材料中の液晶化合物を前記基板面に対して水平方向に配向させるものであり、
    前記一対の基板の一方は、画素電極及び共通電極を含み、
    前記画素電極及び前記共通電極の少なくとも一方は、線状部を含み、
    前記液晶化合物の初期配向方位に対する前記線状部の傾斜角度は、平面視において7°以上であることを特徴とする液晶表示装置。
    A liquid crystal layer containing a liquid crystal material having positive dielectric anisotropy;
    A sealing material disposed so as to surround the liquid crystal layer in plan view;
    A pair of substrates sandwiching the liquid crystal layer;
    A photo-alignment film provided on at least one surface of the pair of substrates,
    The photo-alignment film contains at least one of polyamic acid and polyimide, and aligns the liquid crystal compound in the liquid crystal material in a horizontal direction with respect to the substrate surface.
    One of the pair of substrates includes a pixel electrode and a common electrode,
    At least one of the pixel electrode and the common electrode includes a linear portion,
    An inclination angle of the linear portion with respect to an initial alignment direction of the liquid crystal compound is 7 ° or more in a plan view.
  2. 前記傾斜角度は、13°以下であることを特徴とする請求項1記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the tilt angle is 13 ° or less.
  3. 前記ポリアミック酸及び前記ポリイミドは、アゾベンゼン基を有するジアミンに由来する構造と、分子構造が屈曲したテトラカルボン酸二無水物に由来する構造とを有することを特徴とする請求項1又は2記載の液晶表示装置。 3. The liquid crystal according to claim 1, wherein the polyamic acid and the polyimide have a structure derived from a diamine having an azobenzene group and a structure derived from a tetracarboxylic dianhydride having a bent molecular structure. Display device.
  4. 前記分子構造が屈曲したテトラカルボン酸二無水物は、下記化学式(X-1)~(X-28)のいずれかで表される少なくとも一種のテトラカルボン酸二無水物を含むことを特徴とする請求項3記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    The tetracarboxylic dianhydride having a bent molecular structure includes at least one tetracarboxylic dianhydride represented by any one of the following chemical formulas (X-1) to (X-28): The liquid crystal display device according to claim 3.
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
  5. 前記分子構造が屈曲したテトラカルボン酸二無水物は、上記化学式(X-6)、(X-22)、(X-23)又は(X-27)のいずれかで表される少なくとも一種のテトラカルボン酸二無水物を含むことを特徴とする請求項4記載の液晶表示装置。 The tetracarboxylic dianhydride having a bent molecular structure is at least one tetracarboxylic dianhydride represented by any one of the chemical formulas (X-6), (X-22), (X-23) or (X-27). 5. The liquid crystal display device according to claim 4, comprising carboxylic dianhydride.
  6. 前記ポリアミック酸及び前記ポリイミドは、シクロブタン環に由来する構造を有することを特徴とする請求項1又は2記載の液晶表示装置。 The liquid crystal display device according to claim 1, wherein the polyamic acid and the polyimide have a structure derived from a cyclobutane ring.
  7. 前記液晶材料は、1以上、3.5未満の誘電率異方性を有することを特徴とする請求項1~6のいずれかに記載の液晶表示装置。 7. The liquid crystal display device according to claim 1, wherein the liquid crystal material has a dielectric anisotropy of 1 or more and less than 3.5.
  8. 前記液晶材料のネマティック相-等方相転移点は、95℃以上であることを特徴とする請求項1~7のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 7, wherein the liquid crystal material has a nematic phase-isotropic phase transition point of 95 ° C or higher.
  9. 前記シール材は、(メタ)アクリルモノマー、ラジカル重合開始剤、エポキシモノマー、及び、エポキシ硬化材を含有することを特徴とする請求項1~7のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 7, wherein the sealing material contains a (meth) acrylic monomer, a radical polymerization initiator, an epoxy monomer, and an epoxy curing material.
  10. 前記光配向膜は、少なくとも一種のモノマーを重合させてなるポリマーを更に含有し、
    前記少なくとも一種のモノマーは、偏光紫外線の照射により異性化反応及び二量化反応の少なくとも一方の反応を生じて配向性を示すことを特徴とする請求項1~9のいずれかに記載の液晶表示装置。
    The photo-alignment film further contains a polymer obtained by polymerizing at least one monomer,
    10. The liquid crystal display device according to claim 1, wherein the at least one monomer exhibits orientation by causing at least one of an isomerization reaction and a dimerization reaction by irradiation with polarized ultraviolet rays. .
  11. 前記少なくとも一種のモノマーは、置換基を有してもよいカルコン基を有するモノマー、置換基を有してもよいシンナメート基を有するモノマー、及び、置換基を有してもよいクマリン基を有するモノマーからなる群より選択される少なくとも一種の光反応性モノマーを含むことを特徴とする請求項10記載の液晶表示装置。 The at least one monomer is a monomer having a chalcone group which may have a substituent, a monomer having a cinnamate group which may have a substituent, and a monomer having a coumarin group which may have a substituent. The liquid crystal display device according to claim 10, comprising at least one photoreactive monomer selected from the group consisting of:
  12. 前記少なくとも一種のモノマーは、下記化学式(1)で表される少なくとも一種のモノマーを含むことを特徴とする請求項11記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000003
    (式中、P及びPは、同一又は異なって、アクリロイルオキシ基、メタクリロイルオキシ基、アクリロイルアミノ基、メタクリロイルアミノ基、ビニル基、又は、ビニルオキシ基を表す。
    Sp及びSpは、同一又は異なって、炭素数1~6の、直鎖状、分岐状若しくは環状のアルキレン基若しくアルキレンオキシ基、又は、直接結合を表す。
    各フェニレン基が有する少なくとも一つの水素原子は、置換されていてもよい。)
    The liquid crystal display device according to claim 11, wherein the at least one monomer includes at least one monomer represented by the following chemical formula (1).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, P 1 and P 2 are the same or different and each represents an acryloyloxy group, a methacryloyloxy group, an acryloylamino group, a methacryloylamino group, a vinyl group, or a vinyloxy group.
    Sp 1 and Sp 2 are the same or different and each represents a linear, branched or cyclic alkylene group or alkyleneoxy group having 1 to 6 carbon atoms, or a direct bond.
    At least one hydrogen atom of each phenylene group may be substituted. )
  13. 前記化学式(1)で表される少なくとも一種のモノマーは、下記化学式(2-1)~(2-5)のいずれかで表される少なくとも一種のモノマーを含むことを特徴とする請求項12記載の液晶表示装置。
    Figure JPOXMLDOC01-appb-C000004
    13. The at least one monomer represented by the chemical formula (1) includes at least one monomer represented by any one of the following chemical formulas (2-1) to (2-5). Liquid crystal display device.
    Figure JPOXMLDOC01-appb-C000004
  14. 前記液晶表示装置の表示モードは、フリンジ・フィールド・スイッチング(FFS)モードであることを特徴とする請求項1~13のいずれかに記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 13, wherein a display mode of the liquid crystal display device is a fringe field switching (FFS) mode.
  15. 一対の基板を準備する準備工程と、
    前記一対の基板の少なくとも一方の表面に、ポリアミック酸及びポリイミドの少なくとも一方のポリマーと、少なくとも一種のモノマーとを含有する配向剤を塗布して光配向膜を形成する成膜工程と、
    前記光配向膜に偏光紫外線を照射して、前記少なくとも一方のポリマーを配向させるとともに前記少なくとも一種のモノマーを配向及び重合させる照射工程とを含み、
    前記少なくとも一種のモノマーは、偏光紫外線の照射により異性化反応及び二量化反応の少なくとも一方の反応を生じて配向性を示すことを特徴とする液晶表示装置の製造方法。
    A preparation step of preparing a pair of substrates;
    A film forming step of forming an optical alignment film by applying an alignment agent containing at least one polymer of polyamic acid and polyimide and at least one monomer on at least one surface of the pair of substrates;
    An irradiation step of irradiating the photo-alignment film with polarized ultraviolet rays to align the at least one polymer and align and polymerize the at least one monomer;
    The method for producing a liquid crystal display device, wherein the at least one monomer exhibits orientation by causing at least one of an isomerization reaction and a dimerization reaction by irradiation with polarized ultraviolet rays.
  16. 前記一対の基板の一方は、画素電極及び共通電極を含み、
    前記画素電極及び前記共通電極の少なくとも一方は、線状部を含み、
    前記成膜工程において、前記一対の基板のうち、少なくとも、前記画素電極及び前記共通電極を含む基板の表面に前記光配向膜を形成し、
    前記照射工程において、前記線状部に対する偏光軸方向のなす角が83°以下となるように前記光配向膜に偏光紫外線を照射することを特徴とする請求項15記載の液晶表示装置の製造方法。
    One of the pair of substrates includes a pixel electrode and a common electrode,
    At least one of the pixel electrode and the common electrode includes a linear portion,
    In the film-forming step, the photo-alignment film is formed on the surface of at least the substrate including the pixel electrode and the common electrode among the pair of substrates.
    16. The method of manufacturing a liquid crystal display device according to claim 15, wherein, in the irradiating step, the photo-alignment film is irradiated with polarized ultraviolet rays so that an angle formed by a polarization axis direction with respect to the linear portion is 83 ° or less. .
  17. 前記照射工程において、前記線状部に対する偏光軸方向のなす角が77°以上となるように前記光配向膜に偏光紫外線を照射することを特徴とする請求項16記載の液晶表示装置の製造方法。 17. The method of manufacturing a liquid crystal display device according to claim 16, wherein, in the irradiating step, the photo-alignment film is irradiated with polarized ultraviolet rays so that an angle formed by a polarization axis direction with respect to the linear portion is 77 ° or more. .
  18. 前記ポリアミック酸及び前記ポリイミドは、アゾベンゼン基を有するジアミンに由来する構造と、分子構造が屈曲したテトラカルボン酸二無水物に由来する構造とを有することを特徴とする請求項15~17のいずれかに記載の液晶表示装置の製造方法。 18. The polyamic acid and the polyimide each have a structure derived from a diamine having an azobenzene group and a structure derived from a tetracarboxylic dianhydride having a bent molecular structure. A method for producing a liquid crystal display device according to claim 1.
  19. 前記ポリアミック酸及び前記ポリイミドは、シクロブタン環に由来する構造を有することを特徴とする請求項15~17のいずれかに記載の液晶表示装置の製造方法。 The method for producing a liquid crystal display device according to claim 15, wherein the polyamic acid and the polyimide have a structure derived from a cyclobutane ring.
  20. 前記少なくとも一種のモノマーは、置換基を有してもよいカルコン基を有するモノマー、置換基を有してもよいシンナメート基を有するモノマー、及び、置換基を有してもよいクマリン基を有するモノマーからなる群より選択される少なくとも一種の光反応性モノマーを含むことを特徴とする請求項15~19のいずれかに記載の液晶表示装置の製造方法。 The at least one monomer is a monomer having a chalcone group which may have a substituent, a monomer having a cinnamate group which may have a substituent, and a monomer having a coumarin group which may have a substituent. 20. The method for producing a liquid crystal display device according to claim 15, comprising at least one photoreactive monomer selected from the group consisting of:
PCT/JP2018/019915 2017-05-31 2018-05-24 Liquid crystal display device and method for manufacturing liquid crystal display device WO2018221360A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017108452 2017-05-31
JP2017-108452 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221360A1 true WO2018221360A1 (en) 2018-12-06

Family

ID=64454590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019915 WO2018221360A1 (en) 2017-05-31 2018-05-24 Liquid crystal display device and method for manufacturing liquid crystal display device

Country Status (1)

Country Link
WO (1) WO2018221360A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240104A (en) * 2020-03-19 2020-06-05 Tcl华星光电技术有限公司 Display panel and preparation method thereof
CN111704717A (en) * 2020-05-21 2020-09-25 东华大学 A novel organic anode material for sodium-ion batteries based on azo-based polyimide
CN111752048A (en) * 2019-03-29 2020-10-09 夏普株式会社 Liquid crystal display device having a plurality of pixel electrodes
WO2022147943A1 (en) * 2021-01-05 2022-07-14 Tcl华星光电技术有限公司 Pixel electrode, driving method therefor, and liquid crystal display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275364A (en) * 2004-02-27 2005-10-06 Chisso Corp Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
JP2009175180A (en) * 2008-01-21 2009-08-06 Mitsui Chemicals Inc Curable resin composition for liquid crystal seal and method for producing liquid crystal display panel using the same
JP2013117700A (en) * 2011-12-05 2013-06-13 Sharp Corp Liquid crystal display device
JP2016041683A (en) * 2014-08-14 2016-03-31 Jnc株式会社 Triazole-containing tetracarboxylic dianhydride, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005275364A (en) * 2004-02-27 2005-10-06 Chisso Corp Liquid crystal alignment film, liquid crystal alignment agent, and liquid crystal display element
JP2009175180A (en) * 2008-01-21 2009-08-06 Mitsui Chemicals Inc Curable resin composition for liquid crystal seal and method for producing liquid crystal display panel using the same
JP2013117700A (en) * 2011-12-05 2013-06-13 Sharp Corp Liquid crystal display device
JP2016041683A (en) * 2014-08-14 2016-03-31 Jnc株式会社 Triazole-containing tetracarboxylic dianhydride, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111752048A (en) * 2019-03-29 2020-10-09 夏普株式会社 Liquid crystal display device having a plurality of pixel electrodes
CN111752048B (en) * 2019-03-29 2023-07-04 夏普株式会社 Liquid crystal display device having a light shielding layer
CN111240104A (en) * 2020-03-19 2020-06-05 Tcl华星光电技术有限公司 Display panel and preparation method thereof
CN111704717A (en) * 2020-05-21 2020-09-25 东华大学 A novel organic anode material for sodium-ion batteries based on azo-based polyimide
CN111704717B (en) * 2020-05-21 2021-07-02 东华大学 A novel organic anode material for sodium-ion batteries based on azo-based polyimide
WO2022147943A1 (en) * 2021-01-05 2022-07-14 Tcl华星光电技术有限公司 Pixel electrode, driving method therefor, and liquid crystal display panel
US11880107B2 (en) 2021-01-05 2024-01-23 Tcl China Star Optoelectronics Technology Co., Ltd. Pixel electrode, driving method of pixel electrode, and liquid display panel

Similar Documents

Publication Publication Date Title
US9557605B2 (en) Method of producing liquid crystal display device
JP5525108B2 (en) Liquid crystal display
WO2013103153A1 (en) Liquid crystal display device and method for manufacturing same
CN109416486B (en) Liquid crystal display device and method for manufacturing the same
WO2018221360A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
US8455062B2 (en) Liquid crystal display panel and process for production thereof
JP5113869B2 (en) Liquid crystal display device and manufacturing method thereof
US8411238B2 (en) Liquid crystal display panel and process for production thereof
JP2019056825A (en) Liquid crystal diffraction grating, liquid crystal composition, method for manufacturing liquid crystal diffraction grating, and wire grid polarizer
US20190271867A1 (en) Method of producing liquid crystal display device and alignment film material
US9488869B2 (en) Liquid crystal display device and method for manufacturing same
WO2011089653A1 (en) Liquid crystal/polymer composite, liquid crystal display device using the same, and method for producing liquid crystal/polymer composite
US20130342798A1 (en) Liquid crystal display panel, liquid crystal display apparatus, and liquid crystal display cell
CN108027538B (en) Liquid crystal display device and method for manufacturing the same
CN104603682B (en) Liquid crystal display device and method for manufacturing same
WO2017119376A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
CN109416484B (en) Liquid crystal display device and method for manufacturing liquid crystal display device
WO2018216605A1 (en) Liquid crystal composition, liquid crystal display device, and production method for liquid crystal display device
WO2019009222A1 (en) Liquid crystal composition, liquid crystal display device, and production method for liquid crystal display device
WO2018030249A1 (en) Liquid crystal display device and method for manufacturing same
WO2018216769A1 (en) Composition and liquid crystal display device
WO2017221817A1 (en) Liquid crystal cell, liquid crystal display device and method for producing liquid crystal cell
WO2017110704A1 (en) Liquid crystal display device and method for manufacturing liquid crystal display device
WO2019026775A1 (en) Liquid crystal composition, liquid crystal display device and method for producing liquid crystal display device
CN111373319A (en) Liquid crystal display device and method for manufacturing liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18810629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载