+

WO2018211576A1 - Particle beam irradiation apparatus - Google Patents

Particle beam irradiation apparatus Download PDF

Info

Publication number
WO2018211576A1
WO2018211576A1 PCT/JP2017/018281 JP2017018281W WO2018211576A1 WO 2018211576 A1 WO2018211576 A1 WO 2018211576A1 JP 2017018281 W JP2017018281 W JP 2017018281W WO 2018211576 A1 WO2018211576 A1 WO 2018211576A1
Authority
WO
WIPO (PCT)
Prior art keywords
collimator
particle beam
irradiation
opening
shape
Prior art date
Application number
PCT/JP2017/018281
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 坂本
泰三 本田
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2017/018281 priority Critical patent/WO2018211576A1/en
Priority to TW107108261A priority patent/TWI659763B/en
Publication of WO2018211576A1 publication Critical patent/WO2018211576A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy

Definitions

  • the present invention relates to a particle beam treatment apparatus for performing treatment by irradiating an affected area such as a tumor with a particle beam, and relates to a particle beam irradiation apparatus used for irradiating a predetermined dose according to the three-dimensional shape of the affected area. .
  • Particle beam therapy uses a device such as an accelerator to accelerate charged particles such as protons or carbon ions to several hundred mega-electron volts, and irradiates the patient to give a dose to the tumor in the body to treat cancer. It is a method to do. At this time, it is important to form a dose distribution instructed by the doctor, that is, a dose distribution as close as possible to the target distribution for the tumor. In many cases, the target distribution is such that the dose is uniform within the tumor and is as low as possible outside the tumor than inside the tumor.
  • the three-dimensional dose distribution in the object has a characteristic that the dose has a maximum peak.
  • This maximum dose peak is called the Bragg peak.
  • the peak position is defined as the “irradiation position” of the particle beam.
  • a scanning electromagnet for horizontal scanning and vertical scanning for scanning a charged particle beam (particle beam) in the horizontal direction, and the irradiation field of the charged particle beam are substantially the same as the shape of each divided layer of the affected area.
  • Particles equipped with a multi-leaf collimator that squeezes to become a bolus that is a patient-specific tool for matching the dose distribution in the depth direction to the bottom shape of the affected area, and a range shifter for finely adjusting the arrival depth of the charged particle beam A line therapy device is disclosed.
  • Patent Document 1 Since the particle beam therapy apparatus of Patent Document 1 uses a bolus, the deepest layer irradiates the maximum outer periphery of the affected area as seen from the beam traveling direction, so the multi-leaf collimator opening of the deepest layer is maximized and shallow. The charged particle beam is irradiated while the aperture of the multi-leaf collimator is made smaller as the layers are formed. Patent Document 1 discloses that raster scanning, zigzag scanning, single-circle scanning, helical scanning, and line scanning can be used as scanning of charged particle beams in each layer. An example of performing a layered body irradiation method using a particle beam therapy system equipped with a multi-leaf collimator and a bolus is also disclosed in Patent Document 2 and Patent Document 3.
  • a scanning irradiation method there is a scanning irradiation method.
  • a mechanism for arbitrarily deflecting the particle beam in two directions perpendicular to the Z direction as the particle beam traveling direction, that is, in the X and Y directions, is used.
  • the function which adjusts arbitrarily the position where a Bragg peak is formed in a Z direction by adjustment of particle energy is required.
  • a particle beam generating and transporting apparatus that transports and blocks particle beams includes an accelerator that accelerates the particle beam, and this accelerator also has an energy adjustment function.
  • a plurality of irradiation positions (also referred to as spots) are set in the tumor, and particle beams are sequentially irradiated to the respective spots using the above two mechanisms.
  • the balance of doses to be given to each spot is adjusted and determined in advance, and the respective dose distributions given to each spot are added together, thereby forming a target distribution as a result.
  • the order of irradiating each irradiation position is to scan the particle beam in the XY direction with one energy, irradiate all the spots corresponding to the energy, and then switch to the next energy. Is common. At this time, a set of all spots corresponding to one energy is called a slice. When changing the slice (ie changing the energy), the irradiation of the particle beam must be stopped.
  • slice dose distribution The sum of the dose distributions to be given to all spots included in one slice.
  • slice dose distribution does not necessarily have to be a uniform distribution within the tumor.
  • the sum of all slice dose distributions only needs to be uniform within the tumor, and there is no particular restriction on the single slice dose distribution. There is a possibility that a small distribution can be formed.
  • spots can be arbitrarily arranged in three dimensions according to the shape of the tumor to be irradiated. Therefore, unlike the particle beam therapy apparatus of Patent Documents 1 to 3, XY two-dimensional Equipment such as a collimator that blocks unwanted doses outside the tumor in the direction is not necessary.
  • risk organs if there are healthy organs around the tumor that do not want to receive a dose as much as possible (called risk organs), do not place a spot near the risk organ, or if a spot is placed, Measures may be taken, such as adjusting the dose to a lesser extent.
  • Japanese Patent No. 5637055 (FIGS. 2 to 4) JP 2010-187900 A (FIG. 2) Japanese Patent No. 5059723 (FIG. 1)
  • the size of the dose distribution given to one spot in the XY direction (referred to as spot size) is approximately 5 mm to 10 mm, although it varies depending on the conditions. Therefore, if a sufficient dose is to be applied to the entire inside of the tumor, it is inevitable that the dose is applied to a portion close to the tumor in a healthy organ outside the tumor. In particular, when the distance between the tumor and the risk organ is about the same as or smaller than the spot size, that is, there is a trade-off relationship between giving a dose to the tumor and avoiding the dose to the risk organ, and at least one of them One goal may need to be relaxed.
  • the present invention solves the above-mentioned problems, and provides a particle beam irradiation apparatus that performs scanning irradiation so as to minimize the dose application to the outside of the tumor while giving a sufficient dose to the entire inside of the tumor.
  • One purpose It is also a second object of the present invention to provide a particle beam irradiation apparatus that performs scanning irradiation that achieves both dose application to the tumor and avoidance of dose application to the risk organ even when the distance between the tumor and the risk organ is short. The purpose.
  • the particle beam irradiation apparatus of the present invention is a particle beam irradiation apparatus that irradiates a particle beam for each cross section of an irradiation target perpendicular to the reference irradiation axis of the particle beam.
  • the particle beam irradiation apparatus of the present invention has an energy changing mechanism that changes the energy of the particle beam, and is transported from the particle beam generating and transporting apparatus that transports and blocks the accelerated particle beam and the particle beam generating and transporting apparatus.
  • a scanning device that deflects the particle beam in two directions perpendicular to the traveling direction and moves the irradiation position to irradiate the irradiation target, and an opening shape that has an opening in the direction perpendicular to the reference irradiation axis and is the shape of the opening
  • the particle beam irradiation apparatus of the present invention includes a collimator whose opening shape can be changed, and the opening shape of the collimator is set based on information on the opening shape of the collimator, so that a sufficient dose is given to the entire inside of the tumor. Scanning irradiation can be performed so as to minimize the external dose application.
  • FIG. 5 is a diagram for explaining a collimator opening projected onto the irradiation target slice of FIG.
  • FIG. 5 is a diagram for explaining a collimator opening projected onto the irradiation target slice in FIG. 4 and a cut surface at the center line in the irradiation target slice when the risk organ is in the vicinity.
  • movement of the particle beam irradiation apparatus of FIG. It is a schematic block diagram of the other particle beam irradiation apparatus by Embodiment 1 of this invention. It is a schematic block diagram of the other particle beam irradiation apparatus by Embodiment 1 of this invention. It is a schematic block diagram of the other particle beam irradiation apparatus by Embodiment 1 of this invention. It is a schematic block diagram of the other particle beam irradiation apparatus by Embodiment 1 of this invention.
  • FIG. 10 is a diagram for explaining a setting example of a collimator opening shape in the collimator of the second embodiment. It is a figure explaining the distribution to the Z direction of the irradiation dose with respect to the spot of FIG. It is a figure explaining the distribution to the X direction of the irradiation dose with respect to the spot of FIG. It is a figure explaining the distribution to the Y direction of the irradiation dose with respect to the spot of FIG. It is a figure explaining the subject in the positional relationship of a collimator opening shape, irradiation object, and a slice.
  • FIG. 1 It is a figure explaining the subject in the positional relationship of a collimator opening shape, irradiation object, and a slice. It is a figure explaining the overlap of the dose distribution of the X direction by the slice of FIG. 18, FIG. It is a figure explaining the specific example of the setting method of the collimator opening shape in the collimator of Embodiment 2.
  • FIG. It is a figure explaining the specific example of the setting method of the collimator opening shape in the collimator of Embodiment 2.
  • FIG. It is a figure explaining the collimator opening projected on the slice of irradiation object of FIG. 21, and the projection irradiation object outer periphery projected on the said slice.
  • FIG. It is a figure explaining the overlap of the dose distribution of the X direction by the some slice in the collimator of Embodiment 2.
  • FIG. It is a figure explaining the distribution of the X direction of the dose provided to the slice of irradiation object in case the energy of particle beam is high. It is a figure which shows the relationship between the energy of particle beam, and the lateral spread length of a dose.
  • FIG. 1 is a schematic configuration diagram of a particle beam irradiation apparatus according to Embodiment 1 of the present invention
  • FIG. 2 is a diagram illustrating an example of a collimator in FIG.
  • FIG. 3 is a flowchart showing the operation of the particle beam irradiation apparatus of FIG. 4 and 5 are schematic diagrams for explaining the positional relationship between the collimator in FIG. 1 and the irradiation target.
  • FIG. 6 is a diagram for explaining the distribution in the X direction of the dose given to the irradiation target slice of FIG.
  • FIG. 7 is a diagram for explaining the collimator opening projected onto the irradiation target slice of FIG.
  • FIG. 8 is a diagram for explaining a collimator opening projected onto the irradiation target slice of FIG. 4 and a cut surface at the center line of the irradiation target slice when the risk organ is in the vicinity.
  • the particle beam irradiation apparatus 50 accelerates charged particles to a required energy, generates the accelerated charged particles as the particle beam 10 and transports them to the scanning device 2. 1 and the particle beam 10 generated by the particle beam generating / transporting device 1 are deflected in two directions perpendicular to the Z direction, that is, the traveling direction of the particle beam, that is, in the X and Y directions, and is irradiated in the patient tumor, that is, irradiation A scanning device 2 that scans an arbitrary position of the object 11 is provided.
  • the particle beam generating and transporting apparatus 1 includes an accelerator for accelerating charged particles and a transport system for transporting the particle beam 10 from the accelerator to the scanning device 2.
  • the scanning device 2 includes an X-direction scanning device 21 that deflects the particle beam 10 in the X direction and a Y-direction scanning device 22 that deflects the particle beam 10 in the Y direction.
  • the particle beam irradiation apparatus 50 includes a spot information storage unit 31 that stores position information of each spot 12 in the irradiation object 11, a dose value of the particle beam 10 to be irradiated to each spot 12, and the particle beam generation and transportation apparatus 1.
  • the control device 4 that controls the start and interruption of the emission of the particle beam 10 by the scanning and the scanning of the particle beam 10 by the scanning device 2, and the particle beam 10 scanned by the scanning device 2 is irradiated to each spot 12 of the irradiation object 11.
  • a dose monitor 5 that measures the dose value to be measured, a collimator 6 that has an opening 74 that extends in the XY direction, blocks the passage of the particle beam 10 outside the opening 74, and can arbitrarily set the opening shape, and a collimator And a collimator information storage unit 32 for storing information on the six aperture shapes.
  • the position information of each spot 12 stored in the spot information storage unit 31 for example, the spot number (irradiation position number), the position information of each spot 12 in the XY coordinate system, and the particle beam 10 are the X position and Y of each spot 12.
  • There are an excitation current value of the scanning electromagnet of the scanning device 2 for deflecting to the position, energy corresponding to the Z position of each spot 12, and the like.
  • the control device 4 controls the particle beam generating and transporting device 1 including the energy changing mechanism 9, the scanning device 2, and the collimator 6.
  • the control device 4 controls the collimator 6 so as to control the shape of the opening 74 of the collimator 6.
  • the collimator 6 is, for example, a multi-leaf collimator. As shown in FIG. 2, the collimator 6 includes a plurality of leaves 7. In the collimator 6, a leaf pair composed of two leaves 7 is arranged in the longitudinal direction (X direction), and a plurality of leaf pairs of the leaf 7 are arranged in the respective thickness directions (Y direction). 7 is set, the opening 74 is formed. The collimator 6 forms the shape of the opening 74 based on the collimator control signal sig 1 output from the control device 4.
  • the spot information storage unit 31 and the collimator information storage unit 32 are collectively referred to as a storage unit 3.
  • the spot information storage unit 31 and the collimator information storage unit 32 may be the same as hardware or may be separate.
  • the collimator information storage unit 32 stores information on the shape of the openings 74 of at least two collimators 6, that is, information on the shape of the collimator openings.
  • Information about the collimator aperture shape is associated with the energy of the corresponding particle beam 10.
  • the collimator opening shape is a shape that is enlarged by adding a predetermined margin to the slice cross-sectional shape of the irradiation object 11. A method of determining the collimator opening shape will be described later.
  • the treatment planning device 51 determines the collimator opening shape and transmits collimator opening shape data data1 indicating the collimator opening shape to the collimator information storage unit 32.
  • the treatment planning device 51 includes an opening shape calculation unit 52 that determines a collimator opening shape and generates collimator opening shape data data1.
  • the particle beam generating and transporting apparatus 1 includes an energy changing mechanism 9 that changes the energy of the particle beam 10.
  • the type of accelerator that generates the particle beam 10 is a synchrotron
  • the energy of the particle beam can be changed by changing the operation pattern of the synchrotron.
  • the accelerator type is a cyclotron
  • the energy of the particle beam 10 can be changed by arranging an energy selection system (ESS) in the middle of the particle beam transport path.
  • the range shifter 14 which changes the energy of the particle beam 10 may be incorporated in the particle beam irradiation apparatus 50.
  • FIG. 12 is a schematic configuration diagram of another particle beam irradiation apparatus according to Embodiment 1 of the present invention.
  • the range shifter 14 can be used regardless of whether the type of accelerator is a synchrotron or a cyclotron, and the energy can be changed using only the range shifter 14, or the operation pattern of the synchrotron can be changed. It may be used in combination or in combination with an energy selection system. The present invention can be applied regardless of the type of the energy changing mechanism 9 and the presence or absence of the range shifter 14.
  • step F01 the irradiation operation to the irradiation object 11 is started.
  • step F02 the parameters of the particle beam generating and transporting apparatus 1 are set so that the energy of the particle beam 10 becomes energy corresponding to the first slice to be irradiated (energy setting procedure).
  • step F03 the opening shape of the collimator 6 is set to be the opening shape corresponding to the first slice (collimator opening setting procedure).
  • step F04 the particle beam 10 is generated to start irradiation (particle beam irradiation start procedure), and in step F05, slice irradiation which is particle beam irradiation for the set slice is executed (slice irradiation procedure).
  • the slice irradiation in the slice irradiation procedure is a repetition of the spot irradiation procedure (step F06) for irradiating each spot 12 in the slice and the spot scanning procedure (step F07) for scanning (moving) the position to be irradiated to the next spot 12. If irradiation to all the spots 12 in the slice is completed, the process proceeds to step F08.
  • step F08 the generation of the particle beam 10 by the particle beam generator / transporter 1 is interrupted to stop the particle beam irradiation (particle beam irradiation stop procedure).
  • step F09 it is determined whether or not the current slice is the last slice. If it is determined that the current slice is the last slice, the process ends (step F10).
  • step F09 If it is determined in step F09 that the current slice is not the last slice, the process returns to step F02.
  • step F02 the energy of the particle beam 10 is set to be energy corresponding to the next slice to be irradiated.
  • the opening shape of the collimator 6 is set to be the opening shape corresponding to the next slice (step F03), and particle beam irradiation to the next slice is started (step F04).
  • step F02 to step F09 are repeated until the slice irradiation for all slices is completed, and when completed, the process ends (step F10).
  • the opening shape corresponding to each slice may be different for each slice, or the same shape may exist. If the corresponding aperture shape in a certain slice does not change from the previous slice, the collimator aperture setting procedure (step F03) is omitted, that is, the process proceeds to step F04 without changing the collimator aperture setting.
  • the scanning starting point P0 of the particle beam 10 can be defined, and the path (beam path 62) of the particle beam 10 toward each spot 12 is the scanning starting point. It can be drawn so as to spread radially around P0.
  • the particle beam 10 advances along the reference irradiation axis 60.
  • the reference irradiation axis 60 is a reference axis that passes through an isocenter that is an irradiation reference of the particle beam irradiation apparatus 50.
  • the collimator 6 is used for the purpose of suppressing unnecessary dose application to the outside of the irradiation target 11, but when the opening shape of the opening 74 of the collimator 6 is set, the opening of the collimator 6 projected from the scanning origin P0 to the slice. Attention should be paid to the positional relationship between the position of the end portion 74, that is, the position of the projection opening end portion, and the cross section of the slice of the irradiation object 11.
  • the opening 74 of the collimator 6 extends in a direction perpendicular to the reference irradiation axis 60, and the opening shape of the opening 74 can be changed in a direction perpendicular to the reference irradiation axis 60.
  • the opening end line 63 is described at the position of the end of the opening 74 of the collimator 6, and the projected opening end line 64 is described at the position of the projecting opening end projected onto the slice.
  • the slice is a set of all the spots 12 corresponding to one energy as described above, the position of the slice in the Z direction is indicated by the slice center line 61 in FIG. Note that the slice is appropriately expressed as a slice 61 by using a symbol of the slice center line 61.
  • the slice center line 61 is perpendicular to the reference irradiation axis 60, and the slice is also perpendicular to the reference irradiation axis 60.
  • FIG. 4 also shows a risk organ (risk target) 13.
  • the symbol for the slice center line is generally 61, and 61a, 61b, 61c, 61d, 61e, and 61f are used in the case of distinction.
  • the reference numeral of the opening end line is generally 63, and 63a and 63b are used in the case of distinguishing the description.
  • FIG. 5 shows the positions of the opening of the collimator 6 and the end of the projection opening with respect to slices having different positions in the Z direction.
  • the slice center line 61a is the center line of the set of spots 12 on the deep side (the positive side of the Z axis, the downstream side of the particle beam path), and the slice center line 61b is the shallow side (the negative direction of the Z axis). Side, upstream of the particle beam path).
  • the leaf 7b of the collimator 6 corresponding to the shallow slice 61b is indicated by a solid line
  • the leaf 7a of the collimator 6 corresponding to the deep slice 61a is indicated by a broken line.
  • FIG. 5 also shows the opening 74a and opening end line 63a of the collimator 6 corresponding to the slice 61a, and the opening 74b and opening end line 63b of the collimator 6 corresponding to the slice 61b.
  • FIG. 5 shows an example in which the sizes of the openings 74 a and 74 b of the collimator 6 corresponding to the two slices 61 a and 61 b are different, that is, an example of the two collimator opening shapes of the collimator 6.
  • FIG. 5 shows an example in which the opening 74b of the collimator 6 corresponding to the shallow slice 61b is narrower than the opening 74a of the collimator 6 corresponding to the deep slice 61a.
  • the leaf code is 7 as a whole, and 7a and 7b are used in the case of distinction.
  • 74 is generally used as the symbol of the opening, and 74a and 74b are used in the case of distinction.
  • FIG. 6 is an example of the distribution in the X direction of the dose given to the slice.
  • the vertical axis represents the dose
  • the horizontal axis represents the position in the X direction.
  • the dose distribution 65 is a dose distribution when the collimator 6 is provided
  • the dose distribution 66 is a dose distribution when the collimator 6 is not provided.
  • the broken line 67 indicates the tumor, that is, the end of the irradiation target 11, and the position of the broken line 67 in the X direction is the irradiation target end position Xt.
  • the position in the X direction of the projected opening end line 64 indicating the position of the projected opening end projected onto the slice is the projected opening end position Xep.
  • the difference between the irradiation target end position Xt and the projection opening end position Xep is an opening margin tm in the X direction.
  • spot placement and irradiation dose for each spot are determined so that a sufficient dose is given to the tumor (11 to be irradiated) and the dose is not given to the outside of the tumor as much as possible.
  • a dose gradient in which the dose decreases from the portion toward the outside (from the broken line 67 to the positive side in the X direction) is formed.
  • the scanning irradiation using the collimator 6 shown in the dose distribution 65 can realize a steeper dose gradient. Therefore, even if the irradiation dose to the tumor is the same, use of the collimator 6 can reduce unnecessary dose application outside the tumor (outside the irradiation target).
  • the collimator opening is set so that the end of the collimator opening projected onto the slice (projection opening end line 64) is outside the tumor.
  • the method for determining the collimator aperture shape will be described.
  • the collimator opening is set so that the end of the collimator opening projected onto the slice (projection opening end line 64) is outside the tumor.
  • a setting example of the collimator opening will be described with reference to FIG. FIG. 7 shows a cut surface of one slice in the tumor (irradiation target 11) and the opening 74 of the collimator 6 projected onto the slice.
  • the irradiation target outer periphery 69 is the outer periphery of the cut surface in the slice of the tumor (irradiation target 11), and the projection opening end portion 68 is the end portion of the opening 74 of the collimator 6 projected onto the slice.
  • an enlarged shape obtained by adding the opening margin tm of the collimator 6 to the irradiation target outer periphery 69 that is the outer periphery of the cut surface of the tumor slice is projected onto the slice.
  • the shape of the collimator opening is set so as to coincide with the projection opening end 68 which is the end of the opening 74 of the collimator 6.
  • the opening margin tm of the collimator 6 is isotropic. That is, the size of the opening margin tm of the collimator 6 shown in two places in the figure is equal.
  • the risk organ (risk target) 13 is in the vicinity of the tumor (irradiation target 11)
  • the opening margin of the collimator 6 in the region close to the risk organ outer periphery 70 is tm2.
  • the opening margin of the collimator 6 in the region where the risk organ outer periphery 70 is not nearby is tm1.
  • the opening margin tm2 is smaller than the opening margin tm1.
  • a region obtained by removing the irradiation target outer periphery 69 from the projection opening end portion 68 is an opening margin region.
  • the opening margin region includes three types of regions, that is, a margin region Am1, a margin region Am2, and a margin transition region Am3.
  • the margin area Am1 is an area having an opening margin of tm1, and is an area from the broken line 71a to the broken line 71d counterclockwise.
  • the margin area Am2 is an area having an opening margin of tm2, and is an area from the broken line 71b to the broken line 71c in the clockwise direction.
  • the margin transition area Am3 is an area where the opening margin is between tm1 and tm2, and is an area from the broken line 71a to the broken line 71b and an area from the broken line 71c to the broken line 71d.
  • the particle beam irradiation apparatus 50 sets the opening margin tm2 of the collimator 6 in the region close to the risk organ outer periphery 70 to be smaller than the opening margin tm1 in the region not close to the risk organ outer periphery 70. It is also possible to set a collimator aperture shape that blocks the irradiation of the particle beam 13. In this case, the irradiation dose is reduced inside the tumor in the vicinity of the risk organ 13 as compared with the case where the margin is set isotropically. However, in order to avoid giving the dose to the risk organ 13, stop. There are cases where you cannot get.
  • the particle beam irradiation apparatus 50 according to the first embodiment if used, a medical worker such as a doctor considers the balance between the disadvantage of reducing the irradiation dose to the tumor and the disadvantage of giving the dose to the risk organ 13. Then, an optimal solution (optimal treatment plan) can be determined using the treatment planning device 51.
  • the particle beam irradiation apparatus 50 according to the first embodiment cannot help giving a dose to the risk organ 13
  • the opening margin tm2 of the collimator 6 in the region near the risk organ outer periphery 70 of the risk organ 13 is unavoidable. Is set to be smaller than the opening margin tm1 in the region not close to the risk organ outer periphery 70, it is possible to avoid giving a dose to the risk organ 13.
  • the setting method of the opening margin tm2 of the collimator 6 in the region near the risk organ outer periphery 70 of the risk organ 13 is performed as follows. For example, first, an enlarged shape is created by adding the same predetermined margin (opening margin tm1) to the slice cross-sectional shape of the irradiation object 11. Next, the enlarged shape with the opening margin tm1 added is reduced based on the position of the risk organ 13 in the same cross section, and the irradiation dose in the tumor in the vicinity of the risk organ 13 and the exposure dose to the risk organ 13 In consideration of the above, an opening margin tm2 smaller than the opening margin tm1 is set. In addition, although the example using two opening margins tm1 and tm2 has been described, three or more opening margins may be set.
  • the particle beam irradiation apparatus 50 sets the opening shape of the collimator 6 (the shape of the opening 74) based on the cross-sectional shape of the tumor (irradiation target 11) in each slice, that is, the irradiation target outer periphery 69. A sufficient dose can be applied to the entire interior of the tumor while suppressing unnecessary dose application outside the tumor three-dimensionally. In addition, when the distance between the tumor (irradiation target 11) and the risk organ (risk target) 13 is short, the particle beam irradiation apparatus 50 according to the first embodiment is not close to the risk organ (risk target) 13.
  • the opening margin tm2 smaller than the opening margin tm1 in the part is set, even when the distance between the tumor (irradiation target 11) and the risk organ (risk target) 13 is close, the dose imparted to the tumor (irradiation target 11) and the risk
  • the particle beam 10 can be irradiated by the scanning irradiation method so as to achieve both dose avoidance to the organ (risk target) 13.
  • FIG. 9 is another flowchart showing the operation of the particle beam irradiation apparatus of FIG.
  • step F11 particle beam irradiation temporary stop procedure
  • step F12 particle beam irradiation restarting procedure
  • FIG. 10 is a schematic configuration diagram of another particle beam irradiation apparatus according to Embodiment 1 of the present invention.
  • the particle beam irradiation apparatus 50 in FIG. 10 is different from the treatment planning apparatus 51 in that the collimator opening shape data data1 is input to the collimator information storage unit 32 from the opening shape calculation device 53 which is a terminal. Different from the device 50.
  • the opening shape calculation device 53 includes an opening shape calculation unit 52, and the opening shape calculation unit 52 generates collimator opening shape data data1.
  • the opening shape calculation device 53 determines the collimator opening shape by the opening shape calculation unit 52 based on information such as spot arrangement and tumor shape transmitted from the treatment planning device 51 or a patient information server (not shown), and this collimator opening shape. Is transmitted to the collimator information storage unit 32.
  • the particle beam irradiation apparatus 50 may have the configuration shown in FIG. FIG. 11 is a schematic configuration diagram of another particle beam irradiation apparatus according to Embodiment 1 of the present invention.
  • An opening shape calculation device 53 in FIG. 11 includes a collimator information storage unit 32 and an opening shape calculation unit 52, and the particle beam irradiation device 50 in FIG. 11 is an example in which the storage unit 3 includes only the spot information storage unit 31. .
  • the control device 4 generates a collimator control signal sig1 based on the collimator opening shape data data1 stored in the spot information storage unit 31 of the opening shape calculation device 53.
  • FIG. 13 is a diagram illustrating a hardware configuration that implements the functional blocks of the opening shape calculation unit illustrated in FIGS. 1, 10, 11, and 12.
  • the opening shape calculation unit 52 is realized by the processor 98 executing a program stored in the memory 99. Further, the plurality of processors 98 and the plurality of memories 99 may execute the above functions in cooperation.
  • the particle beam irradiation apparatus 50 is a particle beam irradiation apparatus that irradiates the particle beam 10 for each cross section of the irradiation target 11 perpendicular to the reference irradiation axis 60 of the particle beam.
  • the particle beam irradiation apparatus 50 includes an energy changing mechanism 9 that changes the energy of the particle beam 10, and the particle beam generating and transporting apparatus 1 that transports and blocks the accelerated particle beam 10, and the particle beam
  • the scanning device 2 that moves the irradiation position (spot 12) for irradiating the irradiation object 11 by deflecting the particle beam 10 transported from the generating and transporting device 1 in two directions perpendicular to the traveling direction, and the reference irradiation axis 60
  • the collimator 6 has an aperture 74 in the vertical direction, the aperture shape that is the shape of the aperture 74 can be changed, and blocks the passage of the particle beam 10 outside the aperture 74, and information on the aperture shape of the collimator 6 (collimator aperture shape
  • a collimator information storage unit 32 for storing data (data 1), a particle beam generating and transporting device 1 including an energy changing mechanism 9, a scanning device 2 and a control device 4 for controlling the collimator 6.
  • the collimator control signal sig1 sets the opening shape of the collimator 6 based on the opening shape information (collimator opening shape data data1) of the collimator 6 when the control device 4 irradiates the irradiation target 11 with the particle beam 10. Is output to the collimator 6.
  • the opening shape of the collimator 6 is set based on the opening shape information (collimator opening shape data data1) of the collimator 6 due to this feature. Scanning irradiation can be performed so as to minimize the dose application to the outside of the tumor while giving a sufficient dose to the whole.
  • FIG. FIG. 14 is a diagram for explaining a setting example of a collimator opening shape in the collimator of the second embodiment.
  • FIG. 15 is a view for explaining the distribution in the Z direction of the irradiation dose for the spot of FIG. 16 is a diagram for explaining the distribution in the X direction of the irradiation dose for the spot in FIG. 1, and
  • FIG. 17 is a diagram for explaining the distribution in the Y direction of the irradiation dose for the spot in FIG.
  • FIG. 18 and FIG. 19 are diagrams for explaining a problem in the positional relationship between the collimator aperture shape, the irradiation target, and the slice.
  • FIG. 15 is a view for explaining the distribution in the Z direction of the irradiation dose for the spot of FIG. 16 is a diagram for explaining the distribution in the X direction of the irradiation dose for the spot in FIG. 1
  • FIG. 17 is a diagram for explaining the distribution in the Y direction of the irradiation dose
  • FIGS. 20 is a diagram for explaining the overlap of dose distributions in the X direction by the slices of FIGS. 18 and 19.
  • FIGS. 21 and 22 are diagrams for explaining a specific example of a collimator opening shape setting method in the collimator of the second embodiment.
  • FIG. 23 is a diagram for explaining the collimator opening projected onto the irradiation target slice in FIG. 21 and the projection irradiation target outer periphery projected onto the slice.
  • FIG. 24 is a diagram for explaining overlap of dose distributions in the X direction by a plurality of slices in the collimator of the second embodiment.
  • the irradiation dose distribution for one spot 12 has a sharp peak at the spot position, but the dose distribution has not only one point but also a spatial spread.
  • 15 to 17 are examples of distributions of the irradiation dose with respect to one spot 12 in the X, Y, and Z directions.
  • the vertical axis in FIGS. 15 to 17 is the dose
  • the horizontal axes in FIGS. 15 to 17 are the positions in the X, Y, and Z directions, respectively.
  • the positions of the spot 12 in the X direction, the Y direction, and the Z direction are P1x, P1y, and P1z, respectively.
  • the dose given to the shallow part of the tumor is the dose from the spot placed in the shallow part and the dose from the spot placed in the deeper part. It becomes the total value.
  • FIGS. 18 and 19 are views of the positional relationship between the collimator 6, the tumor (irradiation target 11), and the slice from the Y direction.
  • slice 61a and slice 61b are two slices, slice 61a and slice 61b, and slice 61a is more than slice 61b. It is in a deep position.
  • the cross section of the tumor in the slice 61a is smaller than the cross section of the tumor in the slice 61b.
  • the opening 74a of the collimator 6 when irradiating the slice 61a is set smaller than the opening 74b of the collimator 6 when irradiating the slice 61b. It is assumed that At this time, in the total dose distribution that is the sum of the irradiation doses for the two slices, the distribution in the X direction (total dose distribution 76) at the depth at which the slice 61b exists is transferred to the slice 61b as shown in FIG. And the contribution of the component (dose distribution 75a) in the depth of the slice 61b of the dose distribution due to the irradiation to the slice 61a.
  • FIG. 20 is a diagram for explaining the dose distribution in the X direction at the depth at which the slice 61b exists.
  • the vertical axis in FIG. 20 is the dose at the depth of the slice 61b
  • the horizontal axis in FIG. 20 is the position in the X direction.
  • the position X1 is a projected opening end position on the slice 61b at the end of the opening 74a of the collimator 6 when the slice 61a is irradiated with the particle beam.
  • the position X2 is a projected opening end position on the slice 61b at the end of the opening 74b of the collimator 6 when the slice 61b is irradiated with the particle beam.
  • the ends of the openings 74a and 74b corresponding to the positions X1 and X2 are the right end of the opening 74a in FIG. 18 and the right end of the opening 74b in FIG.
  • the dose distribution 75a which is a component at the depth of the slice 61b, in the irradiation dose of the particle beam to the slice 61a is the end of the opening 74a of the collimator 6 when the particle beam is irradiated to the slice 61a due to the shielding effect of the collimator 6.
  • a steep dose gradient is present in the vicinity of the projection opening end position (position X1).
  • the tumor cross section of the slice 61b is larger than the slice 61a, it is necessary to supplement the dose at a position farther from the position X1 of the dose distribution 75a in order to make the total dose distribution at the depth of the slice 61b closer uniformly.
  • the dose distribution 75b of the particle beam irradiation to the slice 61b needs to be a non-uniform distribution that is larger in the vicinity of the edge than in the vicinity of the center.
  • the collimator opening shape is also set based on the cross section of the tumor in the slice 61b when the slice 61b is irradiated with the particle beam. At this time, a steep dose distribution is formed because of the particle beam irradiation to the slice 61b. At this time, the end of the opening 74b of the collimator 6 is in the vicinity of the projected opening end position (position X2) to the slice 61b and outside the position X1 (positive direction of the X coordinate).
  • the total dose distribution 76 obtained by adding up the dose distribution 75b and the dose distribution 75a can be a factor that hinders the uniformity in the vicinity of the position X1.
  • the number of slices is greater than two and the contribution from more slices must be taken into account, including the condition that the collimator aperture in the deep slice is smaller than the collimator aperture in the shallow slice
  • the steep dose gradient near the opening edge in the irradiation of the deep slice and the slow dose gradient in the irradiation of the shallow slice may be added
  • FIG. 21 is a setting example of a collimator opening shape corresponding to a deep slice (slice 61a)
  • FIG. 22 is a setting example of a collimator opening shape corresponding to a shallow slice (slice 61b).
  • a method for setting a collimator aperture shape corresponding to a shallow slice (slice 61b) will be described.
  • the collimator opening shape corresponding to the shallow slice (slice 61b) is the collimator 6 with respect to the irradiation target outer periphery 69, which is the outer periphery of the cut surface of the slice 61b of the tumor (irradiation target 11), as described with reference to FIG.
  • the shape of the collimator opening is set so that the enlarged shape by adding the opening margin tm matches the projected opening end 68 that is the end of the opening 74b of the collimator 6 projected onto the slice 61b.
  • the irradiation target outer peripheral positions Xtb1 and Xtb2 indicate the outer peripheral positions in the X direction on the irradiation target outer peripheral 69
  • the projection opening end positions Xepb1 and Xepb2 indicate the end positions in the X direction on the projection opening end 68.
  • the outer peripheral beam path 79b is a path of the particle beam 10 from the scanning starting point P0 to the irradiation target outer peripheral positions Xtb1 and Xtb2
  • the outer peripheral beam path 80b is a path of the particle beam 10 from the scanning starting point P0 to the projection opening end position Xepb1 and Xepb2. It is.
  • the two-dimensional shape projected onto the slice 61a shallower than the cross section of the slice 61a of the tumor (irradiation target 11) is considered. . That is, consider the two-dimensional shape of the projection irradiation outer periphery 81 (see FIG. 23) obtained by projecting the shallow tumor cross section onto the plane of the slice 61a.
  • the projection irradiation target outer periphery 81 is the maximum outer periphery when the irradiation target 11 is viewed from the scanning starting point P0.
  • a projection opening which is an end of the opening 74a of the collimator 6 projected onto the slice 61a, is a shape obtained by adding a predetermined opening margin tm of the collimator 6 to the two-dimensional shape of the projection target outer periphery 81.
  • the shape of the collimator opening is set so as to coincide with the end 68.
  • the projection irradiation target outer peripheral positions Xtpa1 and Xtpa2 indicate the outer peripheral positions in the X direction of the projection irradiation target outer periphery 81.
  • Projected opening end positions Xepa 1 and Xepa 2 indicate end positions in the X direction at the projected opening end 68.
  • the outer peripheral beam path 79a is a path of the particle beam 10 from the scanning start point P0 to the projection irradiation target outer peripheral positions Xtpa1 and Xtpa2
  • the outer peripheral beam path 80a is the path of the particle beam 10 from the scanning start point P0 to the projection opening end position Xepa1 and Xepa2. It is a route.
  • FIG. 14 is an example in which the collimator mouth shape is determined by the above method when the tumor (irradiation target 11) is spherical.
  • the slice center lines 61a, 61b, 61c, 61d, 61e, and 61f indicating the positions of the six slices, and the collimator projections 8a, 8b, 8c, 8d, 8e, and 8f of the collimator 6 projected onto the respective slices. showed that.
  • the outer peripheral beam path 79 is a path of the particle beam 10 from the scanning start point P0 toward the projection irradiation target outer periphery 81 in each of the slices 61a, 61b, 61c.
  • the slices 61a, 61b, and 61c are slices deeper than the center of the spherical tumor, and the slices 61d, 61e, and 61f are slices shallower than the center of the spherical tumor.
  • the reference symbol of the outer peripheral beam path is 79 as a whole, and 79a and 79b are used in the case of distinction.
  • an enlarged shape by adding an opening margin tm of the collimator 6 to the outer periphery of the cross section (irradiation target outer periphery 69) of the tumor slice, and the opening 74 of the collimator 6
  • the collimator aperture is set so that the projections on the slices at the ends of the collimator coincide.
  • FIG. 24 shows the dose distribution 77b in the X direction at the depth where the slice 61d in FIG. 14 exists, and the contribution component (dose distribution 77a) in the slice 61d of the dose distribution by irradiation to the deep slice 61a.
  • the vertical axis in FIG. 24 is the dose at the depth of the slice 61d
  • the horizontal axis in FIG. 24 is the position in the X direction.
  • the position X1 is a projected opening end position on the slice 61d at the end of the opening 74 of the collimator 6 when the particle beam is irradiated onto the slice 61a.
  • the position X2 is the position of the projection opening end portion of the end portion of the opening 74 of the collimator 6 onto the slice 61d at the time of particle beam irradiation to the slice 61d.
  • the dose distribution 77b which is a component at the depth of the slice 61d, in the irradiation dose of the particle beam to the slice 61d is the end of the opening 74 of the collimator 6 when the particle beam is irradiated to the slice 61d due to the shielding effect of the collimator 6.
  • the dose distribution 77a which is a component at the depth of the slice 61d in the irradiation dose of the particle beam to the slice 61a is a uniform distribution in the irradiation target 11, and is slow from the irradiation target outer periphery 69 to the position X2. It is a distribution that decreases.
  • the uniform part is inside the irradiation target 11, and the part where the dose starts to decrease corresponds to the outer periphery 69 of the irradiation target.
  • the total dose distribution 78 obtained by adding the dose distribution 77a and the dose distribution 77b does not greatly increase or decrease, and the uniformity of the distribution can be improved.
  • the shape of the opening 74 of the collimator 6 corresponding to the deep slice is set to be the same as or wider than the shape of the collimator opening corresponding to the shallow slice. Since the steep dose gradient in the vicinity of the opening end in the irradiation and the slow dose gradient in the irradiation to the shallow slice are not added together, the combined dose distribution can be made uniform.
  • the opening margin tm is one has been described.
  • the two opening margins tm1 and tm2 described in FIG. 8 may be set.
  • Three or more opening margins may be set.
  • the combined dose distribution to the tumor (irradiation target 11) is uniform, and even when the distance between the tumor (irradiation target 11) and the risk organ (risk target) 13 is short, the tumor (irradiation target 11)
  • the particle beam 10 can be irradiated by the scanning irradiation method so as to achieve both dose application and avoidance of dose application to the risk organ (risk target) 13.
  • Embodiment 3 FIG.
  • the collimator 6 has been described on the assumption that the particle beam 10 is always blocked except for the opening 74. That is, the thickness of the collimator 6 in the Z direction is based on the premise that the maximum energy particle beam 10 that can be generated and transported in the particle beam generating and transporting apparatus 1 can be completely stopped. In the present embodiment, it is not always necessary to have a thickness capable of completely stopping the particle beam 10 having the maximum energy, and it is possible to completely stop the particle beam 10 having a predetermined energy or less that can be generated and transported. It may be a thickness that can be made.
  • the cause of the spread in the horizontal direction (XY direction) of the dose distribution given by the particle beam 10 to the irradiation object 11 is roughly classified into two.
  • the first factor (first factor) is the lateral spreading component of the particle beam 10 existing at the time of generation in the particle beam generating and transporting device 1, and the component downstream of the particle beam irradiation device 50 (scanning device 2).
  • the second factor (second factor) mainly passes through the collimator 6 such as multiple scattering due to collision with the irradiation object 11 when the particle beam 10 travels inside the irradiation object (patient body) 11. It is the spread that occurs after.
  • the role of the collimator 6 in the present invention is to invalidate or suppress the influence of the first factor, the collimator 6 cannot exert the effect against the second factor.
  • the contribution of the first factor and the second factor to the lateral spread of the particle beam 10 without the collimator 6 is compared, generally, when the energy of the particle beam 10 is low, the contribution of the first factor is large and the particle When the energy of the line 10 is high, the contribution of the second factor is large. This is because the higher the energy of the particle beam 10, the longer the distance traveled inside the irradiation object 11, and thus more influence of multiple scattering due to the collision with the irradiation object 11. Therefore, in many cases, as shown in FIG. 6, by using the collimator 6, the spread of the dose in the lateral direction is improved from the dose distribution 66 to the dose distribution 65, but there is energy of the particle beam 10. When the value is higher than a certain value, as shown in FIG.
  • FIG. 25 is a diagram for explaining the X-direction distribution of the dose given to the slice to be irradiated when the energy of the particle beam is high.
  • the vertical axis represents the dose
  • the horizontal axis represents the position in the X direction.
  • the dose distribution 65a is a dose distribution when the collimator 6 is present
  • the dose distribution 66a is a dose distribution when the collimator 6 is not present.
  • the broken line 67 is the same as FIG.
  • the spread of the particle beam 10 in the lateral direction is reduced, for example, from the end of the irradiation target 11 (portion indicated by the broken line 67) to the inner half of the irradiation target 11 (broken line 82). Is defined as a distance Xp.
  • FIG. 26 is a diagram showing the relationship between the energy of the particle beam and the lateral spread length of the dose.
  • the lateral extension length when the collimator 6 is provided is Xp1
  • the lateral extension length when the collimator 6 is not provided is Xp2.
  • the vertical axis represents the lateral spread length of the dose
  • the horizontal axis represents the energy of the particle beam.
  • the lateral extension length when the collimator 6 is not used is a characteristic 83
  • the lateral extension length when the collimator 6 is used is a characteristic 84.
  • the lateral spread (lateral spread length Xp) can be remarkably suppressed by using the collimator 6.
  • the energy value Ec is a value at which the difference between the value of the characteristic 83 and the value of the characteristic 84 is 5% or less. Therefore, when the energy of the particle beam 10 is greater than or equal to the energy value Ec, the opening 74 of the collimator 6 may be set to be fully opened.
  • full open refers to a setting in which the opening area possible is widest in the drive range of each leaf 7 of the collimator 6. In such an operation, it is sufficient that the collimator 6 has a thickness in the Z direction that can completely stop the particle beam 10 whose energy is the energy value Ec.
  • the collimator 6 can be manufactured with a smaller thickness than the thickness that can completely stop 10, and the entire apparatus of the particle beam irradiation apparatus 50 can be reduced in weight and size.
  • the collimator 6 is sufficiently more than the maximum scanning region of the particle beam 10 even if not fully opened. Needless to say, if the aperture 74 is wide and the particle beam 10 does not come into contact with the leaf 7 of the collimator 6, a dose distribution similar to that when fully opened can be obtained.
  • SYMBOLS 1 Particle beam generation transport apparatus, 2 ... Scanning device, 4 ... Control apparatus, 6 ... Collimator, 9 ... Energy change mechanism, 10 ... Particle beam, 11 ... Irradiation object, 12 ... Spot (irradiation position), 13 ... Risk organ (Risk object), 32 ... collimator information storage unit, 50 ... particle beam irradiation device, 60 ... reference irradiation axis, 74, 74a, 74b ... opening, data1 ... collimator opening shape data, sig1 ... collimator control signal, tm, tm1, tm2 ... opening margin, Am1, Am2 ... margin area

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

The purpose of the present invention is to perform scanning irradiation in such a way as to deliver a sufficient dose throughout the interior of a tumor while keeping the dose delivered outside the tumor as low as possible. This particle beam irradiation apparatus (50) is provided with: a particle beam generation/delivery device (1) for delivering and blocking an accelerated particle beam (10) and changing the energy thereof; a scanning device (2) for deflecting the particle beam (10) in two directions which are perpendicular to the direction of the propagation thereof, and thereby moving an irradiation spot (12); a collimator (6) which has an opening (74) extending in a direction perpendicular to a reference irradiation axis (60) and blocks the passage of the particle beam (10) outside of the opening (74), the opening (74) having a changeable shape; a collimator information storage unit (32) for storing information (data1) relating to the opening shape of the collimator (6); and a control device (4) for controlling the particle beam generation/delivery device (1), the scanning device (2) and the collimator (6). When the particle beam (10) is emitted at an object (11) to be irradiated, the control device (4) outputs, to the collimator (6), a collimator control signal (sig1) for setting the opening shape of the collimator (6) on the basis of the information (data1) relating to the opening shape of the collimator (6).

Description

粒子線照射装置Particle beam irradiation equipment
 本発明は、粒子線を腫瘍など患部に照射して治療を行う粒子線治療装置であって、粒子線を患部の三次元形状に合わせて所定の線量を照射するために用いる粒子線照射装置に関する。 The present invention relates to a particle beam treatment apparatus for performing treatment by irradiating an affected area such as a tumor with a particle beam, and relates to a particle beam irradiation apparatus used for irradiating a predetermined dose according to the three-dimensional shape of the affected area. .
 粒子線治療は、加速器等の機器を用いて陽子または炭素イオンなどの荷電粒子を数百メガ電子ボルト程度まで加速し、患者に照射することで体内の腫瘍に線量を付与し、がんを治療する方法である。このとき腫瘍に対して、医師により指示される線量分布、すなわち目標分布にできるだけ近い線量分布を形成することが重要である。多くの場合、目標分布は、腫瘍内において線量が均一であり、かつ腫瘍外において腫瘍内よりも線量ができるだけ低くなるような分布である。 Particle beam therapy uses a device such as an accelerator to accelerate charged particles such as protons or carbon ions to several hundred mega-electron volts, and irradiates the patient to give a dose to the tumor in the body to treat cancer. It is a method to do. At this time, it is important to form a dose distribution instructed by the doctor, that is, a dose distribution as close as possible to the target distribution for the tumor. In many cases, the target distribution is such that the dose is uniform within the tumor and is as low as possible outside the tumor than inside the tumor.
 一般的に、加速器で加速された粒子線を物体(人体含む)に照射した場合、物体内での三次元線量分布はある一点で線量最大ピークを持つという特性がある。この線量最大ピークをブラッグピークと呼ぶ。また、三次元空間において一点で線量最大ピークを持つ場合、そのピーク位置をその粒子線の「照射位置」として定義する。以上のようなピーク構造を持つ粒子線を用いて、三次元的に目標分布を形成するためには何らかの工夫が必要である。 Generally, when an object (including a human body) is irradiated with a particle beam accelerated by an accelerator, the three-dimensional dose distribution in the object has a characteristic that the dose has a maximum peak. This maximum dose peak is called the Bragg peak. In addition, when there is a maximum dose peak at one point in the three-dimensional space, the peak position is defined as the “irradiation position” of the particle beam. In order to form the target distribution three-dimensionally using the particle beam having the peak structure as described above, some device is required.
 目標分布を形成する方法は複数ある。目標分布を形成する方法の一つに、積層原体照射法がある。特許文献1には、荷電粒子ビーム(粒子線)を横方向に走査するための水平走査用、垂直走査用の走査電磁石と、荷電粒子ビームの照射野を患部の各分割層における形状と略同一になるように絞るマルチリーフコリメータと、深さ方向の線量分布を患部底形状に合わせるための患者固有具であるボーラスと、荷電粒子ビームの到達深さを微調整するためのレンジシフタを備えた粒子線治療装置が開示されている。特許文献1の粒子線治療装置は、ボーラスを使用するため、一番深い層はビーム進行方向から見た患部の最大外周を照射するので、一番深い層のマルチリーフコリメータ開口を最大にし、浅い層につれてマルチリーフコリメータの開口を小さくしながら、荷電粒子ビームを照射する。特許文献1には、各層における荷電粒子ビームの走査として、ラスター走査、ジグザグ走査、単円走査、らせん走査、ライン走査を用いることができることが開示されている。マルチリーフコリメータ及びボーラスを備えた粒子線治療装置により積層原体照射法を行う例が、特許文献2及び特許文献3にも開示されている。 There are multiple ways to form a target distribution. One of the methods for forming the target distribution is a layered product irradiation method. In Patent Document 1, a scanning electromagnet for horizontal scanning and vertical scanning for scanning a charged particle beam (particle beam) in the horizontal direction, and the irradiation field of the charged particle beam are substantially the same as the shape of each divided layer of the affected area. Particles equipped with a multi-leaf collimator that squeezes to become a bolus that is a patient-specific tool for matching the dose distribution in the depth direction to the bottom shape of the affected area, and a range shifter for finely adjusting the arrival depth of the charged particle beam A line therapy device is disclosed. Since the particle beam therapy apparatus of Patent Document 1 uses a bolus, the deepest layer irradiates the maximum outer periphery of the affected area as seen from the beam traveling direction, so the multi-leaf collimator opening of the deepest layer is maximized and shallow. The charged particle beam is irradiated while the aperture of the multi-leaf collimator is made smaller as the layers are formed. Patent Document 1 discloses that raster scanning, zigzag scanning, single-circle scanning, helical scanning, and line scanning can be used as scanning of charged particle beams in each layer. An example of performing a layered body irradiation method using a particle beam therapy system equipped with a multi-leaf collimator and a bolus is also disclosed in Patent Document 2 and Patent Document 3.
 また、目標分布を形成する方法の他の一つに、スキャニング照射法がある。この方法を使用するためにはまず、電磁石等を用いて、粒子線を、粒子線の進行方向であるZ方向に対して垂直な二方向、すなわちXおよびY方向に任意に偏向する機構を用いる。さらに、粒子エネルギーの調整により、ブラッグピークが形成される位置をZ方向に任意に調整する機能が必要である。一般的に、粒子線の輸送及び遮断を行う粒子線発生輸送装置は、粒子線を加速する加速器を備え、この加速器はエネルギー調整機能も備えている。そして腫瘍内に複数の照射位置(スポットとも呼ぶ)を設定し、上記二つの機構を用いて、それぞれのスポットに対して粒子線を順に照射していく。各スポットにそれぞれ付与する線量のバランスをあらかじめ調整し決めておき、各スポットに付与したそれぞれの線量分布を合算することで、結果的に目標分布を形成する。 Also, as another method for forming the target distribution, there is a scanning irradiation method. In order to use this method, first, using an electromagnet or the like, a mechanism for arbitrarily deflecting the particle beam in two directions perpendicular to the Z direction as the particle beam traveling direction, that is, in the X and Y directions, is used. . Furthermore, the function which adjusts arbitrarily the position where a Bragg peak is formed in a Z direction by adjustment of particle energy is required. Generally, a particle beam generating and transporting apparatus that transports and blocks particle beams includes an accelerator that accelerates the particle beam, and this accelerator also has an energy adjustment function. A plurality of irradiation positions (also referred to as spots) are set in the tumor, and particle beams are sequentially irradiated to the respective spots using the above two mechanisms. The balance of doses to be given to each spot is adjusted and determined in advance, and the respective dose distributions given to each spot are added together, thereby forming a target distribution as a result.
 一般的に、粒子線の照射方向をXY方向に偏向させて、あるスポットから次のスポットへ移動させるのにかかる時間は1ms以下であり、エネルギー変更によりブラッグピーク位置をZ方向に動かすのにかかる時間は100ms程度である。このため、各照射位置に照射する順序としては、まず一つのエネルギーでXY方向に粒子線を走査してそのエネルギーに対応する全てのスポットにビームを照射した後、次のエネルギーに切り替える、というのが一般的である。このとき、一つのエネルギーに対応する全てのスポットの集合をスライスと呼ぶ。スライスを変更する(すなわち、エネルギーを変更する)ときは粒子線の照射を停止しなければならない。 Generally, it takes 1 ms or less to move the irradiation direction of the particle beam in the XY direction and move from one spot to the next spot, and it takes time to move the Bragg peak position in the Z direction by changing the energy. The time is about 100 ms. For this reason, the order of irradiating each irradiation position is to scan the particle beam in the XY direction with one energy, irradiate all the spots corresponding to the energy, and then switch to the next energy. Is common. At this time, a set of all spots corresponding to one energy is called a slice. When changing the slice (ie changing the energy), the irradiation of the particle beam must be stopped.
 各スポットにそれぞれ付与する線量のバランスは、治療計画装置によって決定される。このとき、一つのスライスに含まれる全てのスポットへ付与する線量分布の合算(スライス線量分布と呼ぶ)が、必ずしも腫瘍内で均一な分布となっている必要はない。全てのスライス線量分布の合算が腫瘍内で均一な分布となっていれば良く、単一のスライス線量分布に対しては特に制約を設けないほうが、合算で見た時に腫瘍外の不要な線量が少ない分布を形成できる可能性がある。 The balance of the dose given to each spot is determined by the treatment planning device. At this time, the sum of the dose distributions to be given to all spots included in one slice (referred to as slice dose distribution) does not necessarily have to be a uniform distribution within the tumor. The sum of all slice dose distributions only needs to be uniform within the tumor, and there is no particular restriction on the single slice dose distribution. There is a possibility that a small distribution can be formed.
 一般的に、スキャニング照射法においては照射対象である腫瘍の形状に合わせてスポットを三次元に任意に配置することができるため、特許文献1~3の粒子線治療装置とは異なり、XY二次元方向において腫瘍外への不要な線量を遮るコリメータのような機器は必要ではない。また、腫瘍周辺の健全な臓器で、なるべく線量を付与したくない臓器(リスク臓器と呼ぶ)がある場合には、リスク臓器近傍にスポットを配置しない、あるいはスポットを配置しても当該スポットへの付与線量を少なめに調整する等の措置が取られることがある。 In general, in the scanning irradiation method, spots can be arbitrarily arranged in three dimensions according to the shape of the tumor to be irradiated. Therefore, unlike the particle beam therapy apparatus of Patent Documents 1 to 3, XY two-dimensional Equipment such as a collimator that blocks unwanted doses outside the tumor in the direction is not necessary. In addition, if there are healthy organs around the tumor that do not want to receive a dose as much as possible (called risk organs), do not place a spot near the risk organ, or if a spot is placed, Measures may be taken, such as adjusting the dose to a lesser extent.
特許第5637055号公報(図2~図4)Japanese Patent No. 5637055 (FIGS. 2 to 4) 特開2010-187900号公報(図2)JP 2010-187900 A (FIG. 2) 特許第5059723号公報(図1)Japanese Patent No. 5059723 (FIG. 1)
 スキャニング照射法において、一つのスポットへ付与される線量分布の、XY方向への広がりの大きさ(スポットサイズと呼ぶ)は、条件により異なるが概ね5mmから10mm程度である。したがって腫瘍の内部全体に十分な線量を付与しようとすると、腫瘍の外部の健常な臓器において腫瘍に近接する部分に対して線量付与は避けられない。特に、腫瘍とリスク臓器との距離がスポットサイズと同程度あるいはそれより小さい場合には、すなわち腫瘍への線量付与と、リスク臓器への線量付与回避とのトレードオフ関係が発生し、少なくともどちらか一方の目標設定を緩和しなければならない可能性がある。 In the scanning irradiation method, the size of the dose distribution given to one spot in the XY direction (referred to as spot size) is approximately 5 mm to 10 mm, although it varies depending on the conditions. Therefore, if a sufficient dose is to be applied to the entire inside of the tumor, it is inevitable that the dose is applied to a portion close to the tumor in a healthy organ outside the tumor. In particular, when the distance between the tumor and the risk organ is about the same as or smaller than the spot size, that is, there is a trade-off relationship between giving a dose to the tumor and avoiding the dose to the risk organ, and at least one of them One goal may need to be relaxed.
 本発明は上記課題を解決するものであり、腫瘍内部全体へ十分な線量を付与しつつ腫瘍外部への線量付与を極力小さくするようなスキャニング照射を実行する粒子線照射装置を提供することを第一の目的とする。また、特に腫瘍とリスク臓器との距離が近い場合においても腫瘍への線量付与とリスク臓器への線量付与回避とを両立するようなスキャニング照射を実行する粒子線照射装置を提供することを第二の目的とする。 The present invention solves the above-mentioned problems, and provides a particle beam irradiation apparatus that performs scanning irradiation so as to minimize the dose application to the outside of the tumor while giving a sufficient dose to the entire inside of the tumor. One purpose. It is also a second object of the present invention to provide a particle beam irradiation apparatus that performs scanning irradiation that achieves both dose application to the tumor and avoidance of dose application to the risk organ even when the distance between the tumor and the risk organ is short. The purpose.
 本発明の粒子線照射装置は、粒子線の基準照射軸に垂直な照射対象の断面毎に粒子線を照射する粒子線照射装置である。本発明の粒子線照射装置は、粒子線のエネルギーを変更するエネルギー変更機構を有し、加速させた粒子線の輸送及び遮断を行う粒子線発生輸送装置と、粒子線発生輸送装置から輸送された粒子線を進行方向に対して垂直な二方向に偏向させて照射対象に照射する照射位置を移動させる走査装置と、基準照射軸に垂直な方向に開口を有し、開口の形状である開口形状が変更可能で、かつ開口外で粒子線の通過を遮るコリメータと、コリメータの開口形状の情報を記憶するコリメータ情報記憶部と、エネルギー変更機構を含む粒子線発生輸送装置、走査装置及びコリメータを制御する制御装置と、を備えており、制御装置が、照射対象に粒子線を照射する際に、コリメータの開口形状の情報に基づいて、コリメータの開口形状を設定するコリメータ制御信号をコリメータに出力することを特徴とする。 The particle beam irradiation apparatus of the present invention is a particle beam irradiation apparatus that irradiates a particle beam for each cross section of an irradiation target perpendicular to the reference irradiation axis of the particle beam. The particle beam irradiation apparatus of the present invention has an energy changing mechanism that changes the energy of the particle beam, and is transported from the particle beam generating and transporting apparatus that transports and blocks the accelerated particle beam and the particle beam generating and transporting apparatus. A scanning device that deflects the particle beam in two directions perpendicular to the traveling direction and moves the irradiation position to irradiate the irradiation target, and an opening shape that has an opening in the direction perpendicular to the reference irradiation axis and is the shape of the opening Can control the collimator that blocks the passage of the particle beam outside the aperture, the collimator information storage unit that stores information about the aperture shape of the collimator, and the particle beam generation and transport device, the scanning device, and the collimator including the energy change mechanism A collimator for setting the collimator aperture shape based on information on the collimator aperture shape when the control device irradiates the irradiation target with the particle beam. And outputs the motor control signal to the collimator.
 本発明の粒子線照射装置は、開口形状が変更可能なコリメータを備え、コリメータの開口形状の情報に基づいてコリメータの開口形状が設定されるので、腫瘍内部全体へ十分な線量を付与しつつ腫瘍外部への線量付与を極力小さくするようにスキャニング照射を実行することができる。 The particle beam irradiation apparatus of the present invention includes a collimator whose opening shape can be changed, and the opening shape of the collimator is set based on information on the opening shape of the collimator, so that a sufficient dose is given to the entire inside of the tumor. Scanning irradiation can be performed so as to minimize the external dose application.
本発明の実施の形態1による粒子線照射装置の概略構成図である。It is a schematic block diagram of the particle beam irradiation apparatus by Embodiment 1 of this invention. 図1のコリメータの一例を示す図である。It is a figure which shows an example of the collimator of FIG. 図1の粒子線照射装置の動作を示すフロー図である。It is a flowchart which shows operation | movement of the particle beam irradiation apparatus of FIG. 図1のコリメータと照射対象の位置関係を説明する模式図である。It is a schematic diagram explaining the positional relationship of the collimator of FIG. 1 and irradiation object. 図1のコリメータと照射対象の位置関係を説明する模式図である。It is a schematic diagram explaining the positional relationship of the collimator of FIG. 1 and irradiation object. 図4の照射対象のスライスに付与される線量のX方向の分布を説明する図である。It is a figure explaining the distribution of the X direction of the dose provided to the slice of the irradiation object of FIG. 図4の照射対象のスライスへ射影されたコリメータ開口と、照射対象のスライスにおける中心線での切断面を説明する図である。FIG. 5 is a diagram for explaining a collimator opening projected onto the irradiation target slice of FIG. 4 and a cut surface at the center line of the irradiation target slice; リスク臓器が近傍にある場合における、図4の照射対象のスライスへ射影されたコリメータ開口と、照射対象のスライスにおける中心線での切断面を説明する図である。FIG. 5 is a diagram for explaining a collimator opening projected onto the irradiation target slice in FIG. 4 and a cut surface at the center line in the irradiation target slice when the risk organ is in the vicinity. 図1の粒子線照射装置の動作を示す他のフロー図である。It is another flowchart which shows operation | movement of the particle beam irradiation apparatus of FIG. 本発明の実施の形態1による他の粒子線照射装置の概略構成図である。It is a schematic block diagram of the other particle beam irradiation apparatus by Embodiment 1 of this invention. 本発明の実施の形態1による他の粒子線照射装置の概略構成図である。It is a schematic block diagram of the other particle beam irradiation apparatus by Embodiment 1 of this invention. 本発明の実施の形態1による他の粒子線照射装置の概略構成図である。It is a schematic block diagram of the other particle beam irradiation apparatus by Embodiment 1 of this invention. 図1、図10、図11、図12の開口形状演算部の機能ブロックを実現するハードウェア構成を示す図である。It is a figure which shows the hardware constitutions which implement | achieve the functional block of the opening shape calculating part of FIG.1, FIG.10, FIG.11 and FIG. 実施の形態2のコリメータにおけるコリメータ開口形状の設定例を説明する図である。FIG. 10 is a diagram for explaining a setting example of a collimator opening shape in the collimator of the second embodiment. 図1のスポットに対する照射線量の、Z方向への分布を説明する図である。It is a figure explaining the distribution to the Z direction of the irradiation dose with respect to the spot of FIG. 図1のスポットに対する照射線量の、X方向への分布を説明する図である。It is a figure explaining the distribution to the X direction of the irradiation dose with respect to the spot of FIG. 図1のスポットに対する照射線量の、Y方向への分布を説明する図である。It is a figure explaining the distribution to the Y direction of the irradiation dose with respect to the spot of FIG. コリメータ開口形状と照射対象、スライスの位置関係における課題を説明する図である。It is a figure explaining the subject in the positional relationship of a collimator opening shape, irradiation object, and a slice. コリメータ開口形状と照射対象、スライスの位置関係における課題を説明する図である。It is a figure explaining the subject in the positional relationship of a collimator opening shape, irradiation object, and a slice. 図18、図19のスライスによるX方向の線量分布の重なりを説明する図である。It is a figure explaining the overlap of the dose distribution of the X direction by the slice of FIG. 18, FIG. 実施の形態2のコリメータにおける、コリメータ開口形状の設定方法の具体例を説明する図である。It is a figure explaining the specific example of the setting method of the collimator opening shape in the collimator of Embodiment 2. FIG. 実施の形態2のコリメータにおける、コリメータ開口形状の設定方法の具体例を説明する図である。It is a figure explaining the specific example of the setting method of the collimator opening shape in the collimator of Embodiment 2. FIG. 図21の照射対象のスライスへ射影されたコリメータ開口と、当該スライスに射影された射影照射対象外周を説明する図である。It is a figure explaining the collimator opening projected on the slice of irradiation object of FIG. 21, and the projection irradiation object outer periphery projected on the said slice. 実施の形態2のコリメータにおける複数のスライスによるX方向の線量分布の重なりを説明する図である。It is a figure explaining the overlap of the dose distribution of the X direction by the some slice in the collimator of Embodiment 2. FIG. 粒子線のエネルギーが高い場合における、照射対象のスライスに付与される線量のX方向の分布を説明する図である。It is a figure explaining the distribution of the X direction of the dose provided to the slice of irradiation object in case the energy of particle beam is high. 粒子線のエネルギーと線量の横方向広がり長との関係を示す図である。It is a figure which shows the relationship between the energy of particle beam, and the lateral spread length of a dose.
実施の形態1.
 図1は本発明の実施の形態1による粒子線照射装置の概略構成図であり、図2は図1のコリメータの一例を示す図である。図3は、図1の粒子線照射装置の動作を示すフロー図である。図4、図5は、図1のコリメータと照射対象の位置関係を説明する模式図である。図6は図4の照射対象のスライスに付与される線量のX方向の分布を説明する図である。図7は、図4の照射対象のスライスへ射影されたコリメータ開口と、照射対象のスライスにおける中心線での切断面を説明する図である。図8は、リスク臓器が近傍にある場合における、図4の照射対象のスライスへ射影されたコリメータ開口と、照射対象のスライスにおける中心線での切断面を説明する図である。
Embodiment 1 FIG.
FIG. 1 is a schematic configuration diagram of a particle beam irradiation apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a diagram illustrating an example of a collimator in FIG. FIG. 3 is a flowchart showing the operation of the particle beam irradiation apparatus of FIG. 4 and 5 are schematic diagrams for explaining the positional relationship between the collimator in FIG. 1 and the irradiation target. FIG. 6 is a diagram for explaining the distribution in the X direction of the dose given to the irradiation target slice of FIG. FIG. 7 is a diagram for explaining the collimator opening projected onto the irradiation target slice of FIG. 4 and the cut surface at the center line of the irradiation target slice. FIG. 8 is a diagram for explaining a collimator opening projected onto the irradiation target slice of FIG. 4 and a cut surface at the center line of the irradiation target slice when the risk organ is in the vicinity.
 本発明の実施の形態1による粒子線照射装置50は、荷電粒子を必要なエネルギーまで加速して、加速された荷電粒子を粒子線10として発生させ、走査装置2に輸送する粒子線発生輸送装置1と、粒子線発生輸送装置1により発生された粒子線10を粒子線の進行方向であるZ方向に対して垂直な二方向、すなわちXおよびY方向に偏向させて、患者腫瘍内、すなわち照射対象11の任意の位置に走査させる走査装置2を備えている。通常、粒子線発生輸送装置1は、荷電粒子を加速する加速器と加速器から走査装置2まで粒子線10を輸送するための輸送系を備えている。走査装置2は、粒子線10をX方向に偏向させるX方向走査装置21と、粒子線10をY方向に偏向させるY方向走査装置22を備えている。 The particle beam irradiation apparatus 50 according to the first embodiment of the present invention accelerates charged particles to a required energy, generates the accelerated charged particles as the particle beam 10 and transports them to the scanning device 2. 1 and the particle beam 10 generated by the particle beam generating / transporting device 1 are deflected in two directions perpendicular to the Z direction, that is, the traveling direction of the particle beam, that is, in the X and Y directions, and is irradiated in the patient tumor, that is, irradiation A scanning device 2 that scans an arbitrary position of the object 11 is provided. Usually, the particle beam generating and transporting apparatus 1 includes an accelerator for accelerating charged particles and a transport system for transporting the particle beam 10 from the accelerator to the scanning device 2. The scanning device 2 includes an X-direction scanning device 21 that deflects the particle beam 10 in the X direction and a Y-direction scanning device 22 that deflects the particle beam 10 in the Y direction.
 さらに、粒子線照射装置50は、照射対象11における各スポット12の位置情報、各スポット12に照射すべき粒子線10の線量値などを記憶するスポット情報記憶部31と、粒子線発生輸送装置1による粒子線10の出射開始および遮断と、走査装置2による粒子線10の走査とを制御する制御装置4と、走査装置2で走査された粒子線10が照射対象11の各スポット12に照射される線量値を測定する線量モニタ5と、XY方向に広がる開口74を持ち、開口74の外において粒子線10の通過を遮り、かつ開口形状を任意に設定することが可能なコリメータ6と、コリメータ6の開口形状に関する情報を記憶するコリメータ情報記憶部32とを備えている。スポット情報記憶部31に記憶する各スポット12の位置情報としては、例えばスポット番号(照射位置番号)、各スポット12のXY座標系における位置情報、および粒子線10を各スポット12のX位置及びY位置に偏向させるための走査装置2の走査電磁石の励磁電流値、および各スポット12のZ位置に対応するエネルギーなどがある。制御装置4は、エネルギー変更機構9を含む粒子線発生輸送装置1、走査装置2、コリメータ6を制御する。制御装置4は、コリメータ6の開口74の形状を制御するようにコリメータ6を制御する。 Furthermore, the particle beam irradiation apparatus 50 includes a spot information storage unit 31 that stores position information of each spot 12 in the irradiation object 11, a dose value of the particle beam 10 to be irradiated to each spot 12, and the particle beam generation and transportation apparatus 1. The control device 4 that controls the start and interruption of the emission of the particle beam 10 by the scanning and the scanning of the particle beam 10 by the scanning device 2, and the particle beam 10 scanned by the scanning device 2 is irradiated to each spot 12 of the irradiation object 11. A dose monitor 5 that measures the dose value to be measured, a collimator 6 that has an opening 74 that extends in the XY direction, blocks the passage of the particle beam 10 outside the opening 74, and can arbitrarily set the opening shape, and a collimator And a collimator information storage unit 32 for storing information on the six aperture shapes. As the position information of each spot 12 stored in the spot information storage unit 31, for example, the spot number (irradiation position number), the position information of each spot 12 in the XY coordinate system, and the particle beam 10 are the X position and Y of each spot 12. There are an excitation current value of the scanning electromagnet of the scanning device 2 for deflecting to the position, energy corresponding to the Z position of each spot 12, and the like. The control device 4 controls the particle beam generating and transporting device 1 including the energy changing mechanism 9, the scanning device 2, and the collimator 6. The control device 4 controls the collimator 6 so as to control the shape of the opening 74 of the collimator 6.
 コリメータ6は、例えばマルチリーフコリメータである。図2に示したように、コリメータ6は、複数のリーフ7を備えている。コリメータ6は、2つのリーフ7からなるリーフ対が長手方向(X方向)に配置されており、このリーフ7のリーフ対の複数がそれぞれの厚み方向(Y方向)に配置されており、各リーフ7のX方向の位置を設定することで、開口74を形成する。コリメータ6は、制御装置4が出力するコリメータ制御信号sig1に基づいて、開口74の形状を形成する。スポット情報記憶部31とコリメータ情報記憶部32をまとめて、記憶部3と呼ぶことにする。スポット情報記憶部31とコリメータ情報記憶部32とはハードウェアとして同一であっても構わないし、別個であっても構わない。 The collimator 6 is, for example, a multi-leaf collimator. As shown in FIG. 2, the collimator 6 includes a plurality of leaves 7. In the collimator 6, a leaf pair composed of two leaves 7 is arranged in the longitudinal direction (X direction), and a plurality of leaf pairs of the leaf 7 are arranged in the respective thickness directions (Y direction). 7 is set, the opening 74 is formed. The collimator 6 forms the shape of the opening 74 based on the collimator control signal sig 1 output from the control device 4. The spot information storage unit 31 and the collimator information storage unit 32 are collectively referred to as a storage unit 3. The spot information storage unit 31 and the collimator information storage unit 32 may be the same as hardware or may be separate.
 コリメータ情報記憶部32は、少なくとも2つのコリメータ6の開口74の形状に関する情報、すなわちコリメータ開口形状に関する情報を記憶する。コリメータ開口形状に関する情報は、対応する粒子線10のエネルギーに関連付けされている。コリメータ開口形状は、照射対象11のスライス断面形状に対しあらかじめ定められたマージンが付加されて拡大された形状である。コリメータ開口形状の決定方法は後述する。 The collimator information storage unit 32 stores information on the shape of the openings 74 of at least two collimators 6, that is, information on the shape of the collimator openings. Information about the collimator aperture shape is associated with the energy of the corresponding particle beam 10. The collimator opening shape is a shape that is enlarged by adding a predetermined margin to the slice cross-sectional shape of the irradiation object 11. A method of determining the collimator opening shape will be described later.
 図1では、治療計画装置51がコリメータ開口形状を決定し、このコリメータ開口形状を示すコリメータ開口形状データdata1をコリメータ情報記憶部32に送信する例を示した。治療計画装置51は、コリメータ開口形状を決定し、コリメータ開口形状データdata1を生成する開口形状演算部52を備えている。 1 shows an example in which the treatment planning device 51 determines the collimator opening shape and transmits collimator opening shape data data1 indicating the collimator opening shape to the collimator information storage unit 32. The treatment planning device 51 includes an opening shape calculation unit 52 that determines a collimator opening shape and generates collimator opening shape data data1.
 なお、粒子線発生輸送装置1には、粒子線10のエネルギーを変更するエネルギー変更機構9が内蔵されている。一般的には粒子線10を発生させる加速器の種類がシンクロトロンである場合には、シンクロトロンの運転パターンを変化させることで粒子線のエネルギーを変更することが可能である。また加速器の種類がサイクロトロンである場合には、粒子線輸送路の途中にエネルギー選択システム(ESS:Energy Selection System)を配置することで粒子線10のエネルギーを変更することが可能である。また、図12に示すように、粒子線照射装置50に、粒子線10のエネルギーを変更するレンジシフタ14が内蔵されていてもよい。図12は、本発明の実施の形態1による他の粒子線照射装置の概略構成図である。レンジシフタ14は、加速器の種類がシンクロトロンであっても、サイクロトロンであっても使用することができ、またレンジシフタ14のみを用いてエネルギーの変更を行ってもよいし、シンクロトロンの運転パターン変化と組み合わせて使用しても、エネルギー選択システムと組み合わせて使用してもよい。本発明はエネルギー変更機構9の種別や、レンジシフタ14の有無に関係なく適用できる。 The particle beam generating and transporting apparatus 1 includes an energy changing mechanism 9 that changes the energy of the particle beam 10. In general, when the type of accelerator that generates the particle beam 10 is a synchrotron, the energy of the particle beam can be changed by changing the operation pattern of the synchrotron. When the accelerator type is a cyclotron, the energy of the particle beam 10 can be changed by arranging an energy selection system (ESS) in the middle of the particle beam transport path. Moreover, as shown in FIG. 12, the range shifter 14 which changes the energy of the particle beam 10 may be incorporated in the particle beam irradiation apparatus 50. FIG. 12 is a schematic configuration diagram of another particle beam irradiation apparatus according to Embodiment 1 of the present invention. The range shifter 14 can be used regardless of whether the type of accelerator is a synchrotron or a cyclotron, and the energy can be changed using only the range shifter 14, or the operation pattern of the synchrotron can be changed. It may be used in combination or in combination with an energy selection system. The present invention can be applied regardless of the type of the energy changing mechanism 9 and the presence or absence of the range shifter 14.
 実施の形態1の粒子線照射装置50によるスキャニング照射の動作を、図3を用いて説明する。ステップF01にて照射対象11への照射動作を開始する。まず、ステップF02にて、粒子線発生輸送装置1のパラメータを、粒子線10のエネルギーが、照射する最初のスライスに対応するエネルギーになるよう設定する(エネルギー設定手順)。ステップF03にて、コリメータ6の開口形状を、最初のスライスに対応する開口形状となるよう設定する(コリメータ開口設定手順)。その後、ステップF04にて、粒子線10を発生させて照射を開始し(粒子線照射開始手順)、ステップF05にて、設定されたスライスに対する粒子線照射であるスライス照射を実行する(スライス照射手順)。 The operation of scanning irradiation by the particle beam irradiation apparatus 50 of the first embodiment will be described with reference to FIG. In step F01, the irradiation operation to the irradiation object 11 is started. First, in step F02, the parameters of the particle beam generating and transporting apparatus 1 are set so that the energy of the particle beam 10 becomes energy corresponding to the first slice to be irradiated (energy setting procedure). In step F03, the opening shape of the collimator 6 is set to be the opening shape corresponding to the first slice (collimator opening setting procedure). Thereafter, in step F04, the particle beam 10 is generated to start irradiation (particle beam irradiation start procedure), and in step F05, slice irradiation which is particle beam irradiation for the set slice is executed (slice irradiation procedure). ).
 スライス照射手順におけるスライス照射は、スライス内の各スポット12へ照射するスポット照射手順(ステップF06)と、次のスポット12へ照射する位置を走査する(移動する)スポット走査手順(ステップF07)の繰り返しで構成され、当該スライス内の全てのスポット12への照射が完了すれば、ステップF08に進む。ステップF08にて、粒子線発生輸送装置1による粒子線10の発生を中断させて粒子線照射を停止する(粒子線照射停止手順)。ステップF09にて、現在のスライスが最後のスライスかどうかを判定し、最後のスライスであると判定した場合は終了(ステップF10)する。ステップF09にて、現在のスライスが最後のスライスでないと判定した場合はステップF02に戻る。このステップF02にて、粒子線10のエネルギーが、照射する次のスライスに対応するエネルギーになるよう設定する。その後、コリメータ6の開口形状が、次のスライスに対応する開口形状となるよう設定し(ステップF03)、次のスライスへの粒子線照射を開始する(ステップF04)。ステップF02からステップF09の動作を全てのスライスに対するスライス照射が完了するまで繰り返し、完了したら終了(ステップF10)となる。 The slice irradiation in the slice irradiation procedure is a repetition of the spot irradiation procedure (step F06) for irradiating each spot 12 in the slice and the spot scanning procedure (step F07) for scanning (moving) the position to be irradiated to the next spot 12. If irradiation to all the spots 12 in the slice is completed, the process proceeds to step F08. In step F08, the generation of the particle beam 10 by the particle beam generator / transporter 1 is interrupted to stop the particle beam irradiation (particle beam irradiation stop procedure). In step F09, it is determined whether or not the current slice is the last slice. If it is determined that the current slice is the last slice, the process ends (step F10). If it is determined in step F09 that the current slice is not the last slice, the process returns to step F02. In step F02, the energy of the particle beam 10 is set to be energy corresponding to the next slice to be irradiated. Thereafter, the opening shape of the collimator 6 is set to be the opening shape corresponding to the next slice (step F03), and particle beam irradiation to the next slice is started (step F04). The operations from step F02 to step F09 are repeated until the slice irradiation for all slices is completed, and when completed, the process ends (step F10).
 ここで、各々のスライスに対応する開口形状は、スライス毎に異なっても構わないし、同一なものが存在しても良い。あるスライスにおいて対応する開口形状が、その前のスライスから変化しない場合は、コリメータ開口設定手順(ステップF03)が省略される、すなわちコリメータ開口設定を変更しないでステップF04に進む。 Here, the opening shape corresponding to each slice may be different for each slice, or the same shape may exist. If the corresponding aperture shape in a certain slice does not change from the previous slice, the collimator aperture setting procedure (step F03) is omitted, that is, the process proceeds to step F04 without changing the collimator aperture setting.
 図4、図5を用いて、粒子線10の照射におけるコリメータ6と照射対象11の位置関係を説明する。電磁石等の走査装置2を用いて粒子線10を走査する場合、粒子線10の走査起点P0を定義することができ、各々のスポット12へ向かう粒子線10の進路(ビーム経路62)は走査起点P0を中心に放射状に広がるように描くことができる。また、粒子線10を走査装置2により走査しない場合は、基準照射軸60に沿って粒子線10は進行する。この基準照射軸60は粒子線照射装置50の照射基準であるアイソセンターを通過する基準軸である。コリメータ6は照射対象11の外側への不要な線量付与を抑制する目的で使用されるが、コリメータ6の開口74の開口形状を設定するときには、走査起点P0からスライスへ射影されたコリメータ6の開口74の端部の位置、すなわち射影開口端部の位置と、照射対象11のスライスでの断面との位置関係に注意しなければならない。コリメータ6の開口74は、基準照射軸60に垂直な方向に広がりを有しており、開口74の開口形状は基準照射軸60に垂直な方向に変更可能である。 The positional relationship between the collimator 6 and the irradiation object 11 in the irradiation of the particle beam 10 will be described with reference to FIGS. When scanning the particle beam 10 using the scanning device 2 such as an electromagnet, the scanning starting point P0 of the particle beam 10 can be defined, and the path (beam path 62) of the particle beam 10 toward each spot 12 is the scanning starting point. It can be drawn so as to spread radially around P0. When the particle beam 10 is not scanned by the scanning device 2, the particle beam 10 advances along the reference irradiation axis 60. The reference irradiation axis 60 is a reference axis that passes through an isocenter that is an irradiation reference of the particle beam irradiation apparatus 50. The collimator 6 is used for the purpose of suppressing unnecessary dose application to the outside of the irradiation target 11, but when the opening shape of the opening 74 of the collimator 6 is set, the opening of the collimator 6 projected from the scanning origin P0 to the slice. Attention should be paid to the positional relationship between the position of the end portion 74, that is, the position of the projection opening end portion, and the cross section of the slice of the irradiation object 11. The opening 74 of the collimator 6 extends in a direction perpendicular to the reference irradiation axis 60, and the opening shape of the opening 74 can be changed in a direction perpendicular to the reference irradiation axis 60.
 図4では、コリメータ6の開口74の端部の位置に開口端部線63を記載し、スライスへ射影された射影開口端部の位置に射影開口端部線64に記載した。スライスは、前述したように一つのエネルギーに対応する全てのスポット12の集合なので、図4ではスライスのZ方向の位置をスライス中心線61で示した。なお、スライスは、スライス中心線61の符号を用いて、適宜スライス61と表現する。スライス中心線61は基準照射軸60に垂直であり、スライスも基準照射軸60に垂直である。また、図4には、リスク臓器(リスク対象)13も示した。スライス中心線の符号は、総括的に61を用い、区別して説明する場合に61a、61b、61c、61d、61e、61fを用いる。開口端部線の符号は、総括的に63を用い、区別して説明する場合に63a、63bを用いる。 In FIG. 4, the opening end line 63 is described at the position of the end of the opening 74 of the collimator 6, and the projected opening end line 64 is described at the position of the projecting opening end projected onto the slice. Since the slice is a set of all the spots 12 corresponding to one energy as described above, the position of the slice in the Z direction is indicated by the slice center line 61 in FIG. Note that the slice is appropriately expressed as a slice 61 by using a symbol of the slice center line 61. The slice center line 61 is perpendicular to the reference irradiation axis 60, and the slice is also perpendicular to the reference irradiation axis 60. FIG. 4 also shows a risk organ (risk target) 13. The symbol for the slice center line is generally 61, and 61a, 61b, 61c, 61d, 61e, and 61f are used in the case of distinction. The reference numeral of the opening end line is generally 63, and 63a and 63b are used in the case of distinguishing the description.
 図5には、Z方向の位置が異なるスライスに対するコリメータ6の開口と射影開口端部の位置を示した。スライス中心線61aは、深い側(Z軸の正方向の側、粒子線経路の下流側)のスポット12の集合の中心線であり、スライス中心線61bは、浅い側(Z軸の負方向の側、粒子線経路の上流側)のスポット12の集合の中心線である。図5では、浅い側のスライス61bに対応するコリメータ6のリーフ7bを実線で示し、深い側のスライス61aに対応するコリメータ6のリーフ7aを破線で示した。また、図5では、スライス61aに対応するコリメータ6の開口74a、開口端部線63aと、スライス61bに対応するコリメータ6の開口74b、開口端部線63bも示した。図5では、2つのスライス61a、61bに対応するコリメータ6の開口74a、74bの大きさが異なる例、すなわちコリメータ6の2つのコリメータ開口形状の例を示した。具体的には、図5では、浅い側のスライス61bに対応するコリメータ6の開口74bは、深い側のスライス61aに対応するコリメータ6の開口74aよりも狭くなっている例を示した。リーフの符号は、総括的に7を用い、区別して説明する場合に7a、7bを用いる。開口の符号は、総括的に74を用い、区別して説明する場合に74a、74bを用いる。 FIG. 5 shows the positions of the opening of the collimator 6 and the end of the projection opening with respect to slices having different positions in the Z direction. The slice center line 61a is the center line of the set of spots 12 on the deep side (the positive side of the Z axis, the downstream side of the particle beam path), and the slice center line 61b is the shallow side (the negative direction of the Z axis). Side, upstream of the particle beam path). In FIG. 5, the leaf 7b of the collimator 6 corresponding to the shallow slice 61b is indicated by a solid line, and the leaf 7a of the collimator 6 corresponding to the deep slice 61a is indicated by a broken line. FIG. 5 also shows the opening 74a and opening end line 63a of the collimator 6 corresponding to the slice 61a, and the opening 74b and opening end line 63b of the collimator 6 corresponding to the slice 61b. FIG. 5 shows an example in which the sizes of the openings 74 a and 74 b of the collimator 6 corresponding to the two slices 61 a and 61 b are different, that is, an example of the two collimator opening shapes of the collimator 6. Specifically, FIG. 5 shows an example in which the opening 74b of the collimator 6 corresponding to the shallow slice 61b is narrower than the opening 74a of the collimator 6 corresponding to the deep slice 61a. The leaf code is 7 as a whole, and 7a and 7b are used in the case of distinction. 74 is generally used as the symbol of the opening, and 74a and 74b are used in the case of distinction.
 図6は、スライスに付与される線量のX方向の分布の例である。図6において、縦軸は線量であり、横軸はX方向の位置である。線量分布65はコリメータ6が有る場合の線量分布であり、線量分布66はコリメータ6が無い場合の線量分布である。破線67は腫瘍、すなわち照射対象11の端を示しており、この破線67のX方向の位置は照射対象端部位置Xtである。スライスへ射影された射影開口端部の位置を示す射影開口端部線64のX方向の位置は、射影開口端部位置Xepである。照射対象端部位置Xtと射影開口端部位置Xepの差分は、X方向における開口マージンtmである。 FIG. 6 is an example of the distribution in the X direction of the dose given to the slice. In FIG. 6, the vertical axis represents the dose, and the horizontal axis represents the position in the X direction. The dose distribution 65 is a dose distribution when the collimator 6 is provided, and the dose distribution 66 is a dose distribution when the collimator 6 is not provided. The broken line 67 indicates the tumor, that is, the end of the irradiation target 11, and the position of the broken line 67 in the X direction is the irradiation target end position Xt. The position in the X direction of the projected opening end line 64 indicating the position of the projected opening end projected onto the slice is the projected opening end position Xep. The difference between the irradiation target end position Xt and the projection opening end position Xep is an opening margin tm in the X direction.
 治療計画においては、腫瘍(照射対象11)へ十分な線量を付与し、かつ腫瘍の外部へは極力線量を付与しないようにスポット配置やスポット毎の照射線量が決定されるため、腫瘍の辺縁部から外部(破線67からX方向の正側)へ向けて線量が減少していく線量勾配が形成される。線量分布66に示す、従来のコリメータ6を使用しないスキャニング照射に比べ、線量分布65に示す、コリメータ6を使用するスキャニング照射のほうが、より急峻な線量勾配を実現することができる。そのため、腫瘍への照射線量が同じでも、コリメータ6を使用するほうが腫瘍外(照射対象外)への不要な線量付与を減らすことができる。 In the treatment plan, spot placement and irradiation dose for each spot are determined so that a sufficient dose is given to the tumor (11 to be irradiated) and the dose is not given to the outside of the tumor as much as possible. A dose gradient in which the dose decreases from the portion toward the outside (from the broken line 67 to the positive side in the X direction) is formed. Compared to the conventional scanning irradiation that does not use the collimator 6 shown in the dose distribution 66, the scanning irradiation using the collimator 6 shown in the dose distribution 65 can realize a steeper dose gradient. Therefore, even if the irradiation dose to the tumor is the same, use of the collimator 6 can reduce unnecessary dose application outside the tumor (outside the irradiation target).
 コリメータ開口形状の決定方法について説明する。腫瘍全体(照射対象11の全体)へ十分な線量を付与するためには、スライスへ射影されたコリメータ開口の端部(射影開口端部線64)が腫瘍よりも外側になるよう、コリメータ開口を設定する必要がある。図7を用いてコリメータ開口の設定例を説明する。図7は、腫瘍(照射対象11)における一つのスライスでの切断面と、スライスへ射影されたコリメータ6の開口74を示している。照射対象外周69は腫瘍(照射対象11)のスライスでの切断面の外周であり、射影開口端部68はスライスへ射影されたコリメータ6の開口74の端部である。実施の形態1の粒子線照射装置50は、腫瘍のスライスでの切断面の外周である照射対象外周69に対して、コリメータ6の開口マージンtmを付加して拡大した形状が、スライスへ射影されたコリメータ6の開口74の端部である射影開口端部68と一致するように、コリメータ開口の形状を設定する。このようにすることで、実施の形態1の粒子線照射装置50は、腫瘍外への不要な線量付与を抑制しつつ、腫瘍の内部全体へ十分な線量を付与することができる。 The method for determining the collimator aperture shape will be described. In order to give a sufficient dose to the entire tumor (the entire irradiation object 11), the collimator opening is set so that the end of the collimator opening projected onto the slice (projection opening end line 64) is outside the tumor. Must be set. A setting example of the collimator opening will be described with reference to FIG. FIG. 7 shows a cut surface of one slice in the tumor (irradiation target 11) and the opening 74 of the collimator 6 projected onto the slice. The irradiation target outer periphery 69 is the outer periphery of the cut surface in the slice of the tumor (irradiation target 11), and the projection opening end portion 68 is the end portion of the opening 74 of the collimator 6 projected onto the slice. In the particle beam irradiation apparatus 50 according to the first embodiment, an enlarged shape obtained by adding the opening margin tm of the collimator 6 to the irradiation target outer periphery 69 that is the outer periphery of the cut surface of the tumor slice is projected onto the slice. The shape of the collimator opening is set so as to coincide with the projection opening end 68 which is the end of the opening 74 of the collimator 6. By doing in this way, the particle beam irradiation apparatus 50 of Embodiment 1 can provide a sufficient dose to the entire inside of the tumor while suppressing unnecessary dose application outside the tumor.
 図7の例においては、コリメータ6の開口マージンtmは等方的である。すなわち、図中の二箇所に示されコリメータ6の開口マージンtmの大きさは等しい。しかし、リスク臓器(リスク対象)13が腫瘍(照射対象11)の近傍にある場合には、図8のように、コリメータ6の開口マージンtmを変える方が望まし場合がある。図8では、リスク臓器13の外周であるリスク臓器外周70が腫瘍(照射対象11)の照射対象外周69の近くにあるので、リスク臓器外周70に近い領域におけるコリメータ6の開口マージンがtm2であり、リスク臓器外周70が近くにない領域におけるコリメータ6の開口マージンがtm1である例を示した。開口マージンtm2は開口マージンtm1よりも小さくなっている。 In the example of FIG. 7, the opening margin tm of the collimator 6 is isotropic. That is, the size of the opening margin tm of the collimator 6 shown in two places in the figure is equal. However, when the risk organ (risk target) 13 is in the vicinity of the tumor (irradiation target 11), it may be desirable to change the opening margin tm of the collimator 6 as shown in FIG. In FIG. 8, since the risk organ outer periphery 70 that is the outer periphery of the risk organ 13 is near the irradiation target outer periphery 69 of the tumor (irradiation target 11), the opening margin of the collimator 6 in the region close to the risk organ outer periphery 70 is tm2. In the example, the opening margin of the collimator 6 in the region where the risk organ outer periphery 70 is not nearby is tm1. The opening margin tm2 is smaller than the opening margin tm1.
 射影開口端部68から照射対象外周69を除いた領域は開口マージン領域である。この開口マージン領域は、3種類の領域、すなわちマージン領域Am1、マージン領域Am2、マージン遷移領域Am3がある。マージン領域Am1は開口マージンがtm1である領域であり、反時計周りで破線71aから破線71dまでの領域である。マージン領域Am2は開口マージンがtm2である領域であり、時計周りで破線71bから破線71cまでの領域である。マージン遷移領域Am3は、開口マージンがtm1からtm2の間の領域であり、破線71aから破線71bまでの領域と破線71cから破線71dまでの領域である。 A region obtained by removing the irradiation target outer periphery 69 from the projection opening end portion 68 is an opening margin region. The opening margin region includes three types of regions, that is, a margin region Am1, a margin region Am2, and a margin transition region Am3. The margin area Am1 is an area having an opening margin of tm1, and is an area from the broken line 71a to the broken line 71d counterclockwise. The margin area Am2 is an area having an opening margin of tm2, and is an area from the broken line 71b to the broken line 71c in the clockwise direction. The margin transition area Am3 is an area where the opening margin is between tm1 and tm2, and is an area from the broken line 71a to the broken line 71b and an area from the broken line 71c to the broken line 71d.
 実施の形態1の粒子線照射装置50は、リスク臓器外周70に近い領域におけるコリメータ6の開口マージンtm2をリスク臓器外周70に近くない領域における開口マージンtm1よりも小さくなるように設定し、リスク臓器13への粒子線照射を遮るようなコリメータ開口形状を設定することも可能である。このようにした場合は、等方的にマージンを設定する場合に比べ、リスク臓器13の近傍の腫瘍内部において照射線量が少なくなるが、リスク臓器13への線量付与を回避するためには止むを得ない場合もある。この場合は、実施の形態1の粒子線照射装置50を用いれば、腫瘍への照射線量が少なくなるデメリットとリスク臓器13へ線量が付与されるデメリットとのバランスを医師等の医療従事者が考慮し、治療計画装置51を利用して最適な解(最適な治療計画)を決定することができる。実施の形態1の粒子線照射装置50は、リスク臓器13への線量付与を回避するために止むを得ない場合には、リスク臓器13のリスク臓器外周70に近い領域におけるコリメータ6の開口マージンtm2をリスク臓器外周70に近くない領域における開口マージンtm1よりも小さくなるように設定することで、リスク臓器13への線量付与を回避することができる。 The particle beam irradiation apparatus 50 according to the first embodiment sets the opening margin tm2 of the collimator 6 in the region close to the risk organ outer periphery 70 to be smaller than the opening margin tm1 in the region not close to the risk organ outer periphery 70. It is also possible to set a collimator aperture shape that blocks the irradiation of the particle beam 13. In this case, the irradiation dose is reduced inside the tumor in the vicinity of the risk organ 13 as compared with the case where the margin is set isotropically. However, in order to avoid giving the dose to the risk organ 13, stop. There are cases where you cannot get. In this case, if the particle beam irradiation apparatus 50 according to the first embodiment is used, a medical worker such as a doctor considers the balance between the disadvantage of reducing the irradiation dose to the tumor and the disadvantage of giving the dose to the risk organ 13. Then, an optimal solution (optimal treatment plan) can be determined using the treatment planning device 51. When the particle beam irradiation apparatus 50 according to the first embodiment cannot help giving a dose to the risk organ 13, the opening margin tm2 of the collimator 6 in the region near the risk organ outer periphery 70 of the risk organ 13 is unavoidable. Is set to be smaller than the opening margin tm1 in the region not close to the risk organ outer periphery 70, it is possible to avoid giving a dose to the risk organ 13.
 リスク臓器13のリスク臓器外周70に近い領域におけるコリメータ6の開口マージンtm2の設定方法は、次のように行う。例えば、まず照射対象11のスライス断面形状に対しあらかじめ定められた同一のマージン(開口マージンtm1)を追加して拡大した形状を作成する。次に、この開口マージンtm1が追加された拡大形状から、同断面におけるリスク臓器13の位置に基づいて縮小させて、リスク臓器13の近傍の腫瘍内部における照射線量とリスク臓器13への照射線量とを考慮して、開口マージンtm1よりも小さい開口マージンtm2を設定する。なお、2つの開口マージンtm1、tm2を用いる例を説明したが、3つ以上の開口マージンを設定しても構わない。 The setting method of the opening margin tm2 of the collimator 6 in the region near the risk organ outer periphery 70 of the risk organ 13 is performed as follows. For example, first, an enlarged shape is created by adding the same predetermined margin (opening margin tm1) to the slice cross-sectional shape of the irradiation object 11. Next, the enlarged shape with the opening margin tm1 added is reduced based on the position of the risk organ 13 in the same cross section, and the irradiation dose in the tumor in the vicinity of the risk organ 13 and the exposure dose to the risk organ 13 In consideration of the above, an opening margin tm2 smaller than the opening margin tm1 is set. In addition, although the example using two opening margins tm1 and tm2 has been described, three or more opening margins may be set.
 実施の形態1の粒子線照射装置50は、それぞれのスライスにおける腫瘍(照射対象11)の断面形状、すなわち照射対象外周69に基づいてコリメータ6の開口形状(開口74の形状)を設定することで、三次元的に腫瘍外への不要な線量付与を抑制しつつ、腫瘍の内部全体へ十分な線量を付与することができる。また、実施の形態1の粒子線照射装置50は、腫瘍(照射対象11)とリスク臓器(リスク対象)13との距離が近い場合には、リスク臓器(リスク対象)13との距離が近くない部分における開口マージンtm1よりも小さい開口マージンtm2を設定するので、腫瘍(照射対象11)とリスク臓器(リスク対象)13との距離が近い場合においても腫瘍(照射対象11)への線量付与とリスク臓器(リスク対象)13への線量付与回避とを両立するように粒子線10をスキャニング照射法にて照射することができる。 The particle beam irradiation apparatus 50 according to the first embodiment sets the opening shape of the collimator 6 (the shape of the opening 74) based on the cross-sectional shape of the tumor (irradiation target 11) in each slice, that is, the irradiation target outer periphery 69. A sufficient dose can be applied to the entire interior of the tumor while suppressing unnecessary dose application outside the tumor three-dimensionally. In addition, when the distance between the tumor (irradiation target 11) and the risk organ (risk target) 13 is short, the particle beam irradiation apparatus 50 according to the first embodiment is not close to the risk organ (risk target) 13. Since the opening margin tm2 smaller than the opening margin tm1 in the part is set, even when the distance between the tumor (irradiation target 11) and the risk organ (risk target) 13 is close, the dose imparted to the tumor (irradiation target 11) and the risk The particle beam 10 can be irradiated by the scanning irradiation method so as to achieve both dose avoidance to the organ (risk target) 13.
 なお、図3に示したフロー図は、スライス内においてスポット12から次のスポット12へ粒子線10を走査するときに粒子線10の照射を停止しないラスタースキャニング方式を前提に記載したが、スポット12から次のスポット12へ粒子線10を走査するときに粒子線10の照射を一旦停止するディスクリートスポットスキャニング方式であっても構わない。図9は、図1の粒子線照射装置の動作を示す他のフロー図である。図9に示したディスクリートスポットスキャニング方式の場合は、ステップF05のスライス照射手順において、ステップF06からステップF07への移行の間に粒子線照射一時停止のステップF11(粒子線照射一時停止手順)が追加され、ステップF07からステップF06への移行の間に粒子線照射再開のステップF12(粒子線照射再開手順)が追加される。 The flow chart shown in FIG. 3 is described on the premise of a raster scanning method in which irradiation of the particle beam 10 is not stopped when the particle beam 10 is scanned from the spot 12 to the next spot 12 in the slice. A discrete spot scanning method in which irradiation of the particle beam 10 is temporarily stopped when the particle beam 10 is scanned from one spot 12 to the next spot 12 may be used. FIG. 9 is another flowchart showing the operation of the particle beam irradiation apparatus of FIG. In the case of the discrete spot scanning method shown in FIG. 9, in the slice irradiation procedure of step F05, step F11 (particle beam irradiation temporary stop procedure) of particle beam irradiation suspension is added during the transition from step F06 to step F07. Then, step F12 (particle beam irradiation restarting procedure) for restarting particle beam irradiation is added during the transition from step F07 to step F06.
 なお、図1において、コリメータ開口形状データdata1が治療計画装置51により生成される例を説明したが、治療計画装置51とは異なる端末である開口形状演算装置53によりコリメータ開口形状データdata1が生成されても良い。図10は、本発明の実施の形態1による他の粒子線照射装置の概略構成図である。図10の粒子線照射装置50は、治療計画装置51とは異なる端末である開口形状演算装置53からコリメータ情報記憶部32にコリメータ開口形状データdata1が入力される点で、図1の粒子線照射装置50と異なる。開口形状演算装置53は開口形状演算部52を備えており、開口形状演算部52がコリメータ開口形状データdata1を生成する。開口形状演算装置53は、治療計画装置51または図示しない患者情報サーバーから送信されるスポット配置や腫瘍形状などの情報に基づき、開口形状演算部52によりコリメータ開口形状を決定して、このコリメータ開口形状を示すコリメータ開口形状データdata1コリメータ情報記憶部32に送信する。 In FIG. 1, the example in which the collimator opening shape data data1 is generated by the treatment planning device 51 has been described. However, the collimator opening shape data data1 is generated by the opening shape calculation device 53 which is a terminal different from the treatment planning device 51. May be. FIG. 10 is a schematic configuration diagram of another particle beam irradiation apparatus according to Embodiment 1 of the present invention. The particle beam irradiation apparatus 50 in FIG. 10 is different from the treatment planning apparatus 51 in that the collimator opening shape data data1 is input to the collimator information storage unit 32 from the opening shape calculation device 53 which is a terminal. Different from the device 50. The opening shape calculation device 53 includes an opening shape calculation unit 52, and the opening shape calculation unit 52 generates collimator opening shape data data1. The opening shape calculation device 53 determines the collimator opening shape by the opening shape calculation unit 52 based on information such as spot arrangement and tumor shape transmitted from the treatment planning device 51 or a patient information server (not shown), and this collimator opening shape. Is transmitted to the collimator information storage unit 32.
 さらに、粒子線照射装置50は図11に示す構成でも構わない。図11は、本発明の実施の形態1による他の粒子線照射装置の概略構成図である。図11の開口形状演算装置53は、コリメータ情報記憶部32と開口形状演算部52を備えており、図11の粒子線照射装置50は記憶部3がスポット情報記憶部31のみを備える例である。制御装置4は、開口形状演算装置53のスポット情報記憶部31に記憶されたコリメータ開口形状データdata1に基づいてコリメータ制御信号sig1を生成する。 Furthermore, the particle beam irradiation apparatus 50 may have the configuration shown in FIG. FIG. 11 is a schematic configuration diagram of another particle beam irradiation apparatus according to Embodiment 1 of the present invention. An opening shape calculation device 53 in FIG. 11 includes a collimator information storage unit 32 and an opening shape calculation unit 52, and the particle beam irradiation device 50 in FIG. 11 is an example in which the storage unit 3 includes only the spot information storage unit 31. . The control device 4 generates a collimator control signal sig1 based on the collimator opening shape data data1 stored in the spot information storage unit 31 of the opening shape calculation device 53.
 図1、図10、図11、図12の開口形状演算部52は、図13に示すプロセッサ98、メモリ99により機能が実現される。図13は、図1、図10、図11、図12の開口形状演算部の機能ブロックを実現するハードウェア構成を示す図である。開口形状演算部52は、プロセッサ98がメモリ99に記憶されたプログラムを実行することにより、実現される。また、複数のプロセッサ98および複数のメモリ99が連携して上記機能を実行してもよい。 1, 10, 11, and 12 have functions realized by the processor 98 and the memory 99 shown in FIG. 13. FIG. 13 is a diagram illustrating a hardware configuration that implements the functional blocks of the opening shape calculation unit illustrated in FIGS. 1, 10, 11, and 12. The opening shape calculation unit 52 is realized by the processor 98 executing a program stored in the memory 99. Further, the plurality of processors 98 and the plurality of memories 99 may execute the above functions in cooperation.
 以上のように、実施の形態1の粒子線照射装置50は、粒子線の基準照射軸60に垂直な照射対象11の断面毎に粒子線10を照射する粒子線照射装置である。実施の形態1の粒子線照射装置50は、粒子線10のエネルギーを変更するエネルギー変更機構9を有し、加速させた粒子線10の輸送及び遮断を行う粒子線発生輸送装置1と、粒子線発生輸送装置1から輸送された粒子線10を進行方向に対して垂直な二方向に偏向させて照射対象11に照射する照射位置(スポット12)を移動させる走査装置2と、基準照射軸60に垂直な方向に開口74を有し、開口74の形状である開口形状が変更可能で、かつ開口74外で粒子線10の通過を遮るコリメータ6と、コリメータ6の開口形状の情報(コリメータ開口形状データdata1)を記憶するコリメータ情報記憶部32と、エネルギー変更機構9を含む粒子線発生輸送装置1、走査装置2及びコリメータ6を制御する制御装置4と、を備えており、制御装置4が、照射対象11に粒子線10を照射する際に、コリメータ6の開口形状の情報(コリメータ開口形状データdata1)に基づいて、コリメータ6の開口形状を設定するコリメータ制御信号sig1をコリメータ6に出力することを特徴とする。実施の形態1の粒子線照射装置50は、この特徴によりコリメータ6の開口形状の情報(コリメータ開口形状データdata1)に基づいてコリメータ6の開口形状が設定されるので、腫瘍内部(照射対象11内部)の全体へ十分な線量を付与しつつ腫瘍外部への線量付与を極力小さくするようにスキャニング照射を実行することができる。 As described above, the particle beam irradiation apparatus 50 according to the first embodiment is a particle beam irradiation apparatus that irradiates the particle beam 10 for each cross section of the irradiation target 11 perpendicular to the reference irradiation axis 60 of the particle beam. The particle beam irradiation apparatus 50 according to the first embodiment includes an energy changing mechanism 9 that changes the energy of the particle beam 10, and the particle beam generating and transporting apparatus 1 that transports and blocks the accelerated particle beam 10, and the particle beam The scanning device 2 that moves the irradiation position (spot 12) for irradiating the irradiation object 11 by deflecting the particle beam 10 transported from the generating and transporting device 1 in two directions perpendicular to the traveling direction, and the reference irradiation axis 60 The collimator 6 has an aperture 74 in the vertical direction, the aperture shape that is the shape of the aperture 74 can be changed, and blocks the passage of the particle beam 10 outside the aperture 74, and information on the aperture shape of the collimator 6 (collimator aperture shape A collimator information storage unit 32 for storing data (data 1), a particle beam generating and transporting device 1 including an energy changing mechanism 9, a scanning device 2 and a control device 4 for controlling the collimator 6. The collimator control signal sig1 sets the opening shape of the collimator 6 based on the opening shape information (collimator opening shape data data1) of the collimator 6 when the control device 4 irradiates the irradiation target 11 with the particle beam 10. Is output to the collimator 6. In the particle beam irradiation apparatus 50 according to the first embodiment, the opening shape of the collimator 6 is set based on the opening shape information (collimator opening shape data data1) of the collimator 6 due to this feature. Scanning irradiation can be performed so as to minimize the dose application to the outside of the tumor while giving a sufficient dose to the whole.
実施の形態2.
 図14は、実施の形態2のコリメータにおけるコリメータ開口形状の設定例を説明する図である。図15は図1のスポットに対する照射線量の、Z方向への分布を説明する図である。図16は図1のスポットに対する照射線量の、X方向への分布を説明する図であり、図17は図1のスポットに対する照射線量の、Y方向への分布を説明する図である。図18、図19は、コリメータ開口形状と照射対象、スライスの位置関係における課題を説明する図である。図20は、図18、図19のスライスによるX方向の線量分布の重なりを説明する図である。図21、図22は、実施の形態2のコリメータにおける、コリメータ開口形状の設定方法の具体例を説明する図である。図23は、図21の照射対象のスライスへ射影されたコリメータ開口と、当該スライスに射影された射影照射対象外周を説明する図である。図24は、実施の形態2のコリメータにおける複数のスライスによるX方向の線量分布の重なりを説明する図である。
Embodiment 2. FIG.
FIG. 14 is a diagram for explaining a setting example of a collimator opening shape in the collimator of the second embodiment. FIG. 15 is a view for explaining the distribution in the Z direction of the irradiation dose for the spot of FIG. 16 is a diagram for explaining the distribution in the X direction of the irradiation dose for the spot in FIG. 1, and FIG. 17 is a diagram for explaining the distribution in the Y direction of the irradiation dose for the spot in FIG. FIG. 18 and FIG. 19 are diagrams for explaining a problem in the positional relationship between the collimator aperture shape, the irradiation target, and the slice. FIG. 20 is a diagram for explaining the overlap of dose distributions in the X direction by the slices of FIGS. 18 and 19. FIGS. 21 and 22 are diagrams for explaining a specific example of a collimator opening shape setting method in the collimator of the second embodiment. FIG. 23 is a diagram for explaining the collimator opening projected onto the irradiation target slice in FIG. 21 and the projection irradiation target outer periphery projected onto the slice. FIG. 24 is a diagram for explaining overlap of dose distributions in the X direction by a plurality of slices in the collimator of the second embodiment.
 図15~図17に示すように、スキャニング照射において、1つのスポット12に対する照射線量分布はそのスポット位置において鋭いピークを持つものの、線量分布はその1点のみだけでなく空間的広がりを持つ。図15~図17は、1つのスポット12に対する照射線量の、X、Y、Z各方向への分布の例である。図15~図17の縦軸は線量であり、図15~図17の横軸はそれぞれX方向、Y方向、Z方向の位置である。スポット12のスポット位置における、X方向、Y方向、Z方向の位置は、それぞれP1x、P1y、P1zである。特にZ方向においては、ビームの進行方向をZ軸の正の方向とし、Z軸の正の方向を深い、負の方向を浅い、と呼ぶことにすると、線量分布がスポットより浅い側と深い側とで非対称になるので、スポットより浅い側への線量付与は0にはならない。三次元に広がりを持つ腫瘍へのスキャニング照射を考えると、腫瘍の浅い部分に付与される線量は、浅い部分に配置されたスポットによる線量と、それより深い部分に配置されたスポットによる線量との合算値になる。 As shown in FIGS. 15 to 17, in the scanning irradiation, the irradiation dose distribution for one spot 12 has a sharp peak at the spot position, but the dose distribution has not only one point but also a spatial spread. 15 to 17 are examples of distributions of the irradiation dose with respect to one spot 12 in the X, Y, and Z directions. The vertical axis in FIGS. 15 to 17 is the dose, and the horizontal axes in FIGS. 15 to 17 are the positions in the X, Y, and Z directions, respectively. The positions of the spot 12 in the X direction, the Y direction, and the Z direction are P1x, P1y, and P1z, respectively. In particular, in the Z direction, if the beam traveling direction is the positive direction of the Z axis, the positive direction of the Z axis is called deep, and the negative direction is shallow, the dose distribution is shallower and deeper than the spot. As a result, the dose applied to the side shallower than the spot is not zero. Considering scanning irradiation to a tumor that spreads in three dimensions, the dose given to the shallow part of the tumor is the dose from the spot placed in the shallow part and the dose from the spot placed in the deeper part. It becomes the total value.
 Z方向の非対称な線量分布が、実施の形態1のようにコリメータ開口形状をスライス毎に変化させる場合に問題になる場合がある。簡略化のためスライスが2つのみの場合の例を、図18~図20を用いて説明する。図18、図19はコリメータ6と腫瘍(照射対象11)、スライスの位置関係をY方向から見た図であり、スライス61a、スライス61bの2つのスライスが存在し、スライス61aはスライス61bよりも深い位置にある。またスライス61aにおける腫瘍の断面は、スライス61bにおける腫瘍の断面よりも小さく、したがってスライス61aへの照射時のコリメータ6の開口74aは、スライス61bへの照射時のコリメータ6の開口74bよりも小さく設定されているものとする。このとき2つのスライスに対する照射線量の合算された分布である合計線量分布において、スライス61bの存在する深さにおけるX方向の分布(合計線量分布76)は、図20に示すように、スライス61bへの照射による線量分布75bの寄与によるものと、スライス61aへの照射による線量分布の、スライス61bの深さにおける成分(線量分布75a)の寄与によるものとに分けられる。 The asymmetric dose distribution in the Z direction may cause a problem when the collimator aperture shape is changed for each slice as in the first embodiment. For simplification, an example in which there are only two slices will be described with reference to FIGS. FIGS. 18 and 19 are views of the positional relationship between the collimator 6, the tumor (irradiation target 11), and the slice from the Y direction. There are two slices, slice 61a and slice 61b, and slice 61a is more than slice 61b. It is in a deep position. In addition, the cross section of the tumor in the slice 61a is smaller than the cross section of the tumor in the slice 61b. Therefore, the opening 74a of the collimator 6 when irradiating the slice 61a is set smaller than the opening 74b of the collimator 6 when irradiating the slice 61b. It is assumed that At this time, in the total dose distribution that is the sum of the irradiation doses for the two slices, the distribution in the X direction (total dose distribution 76) at the depth at which the slice 61b exists is transferred to the slice 61b as shown in FIG. And the contribution of the component (dose distribution 75a) in the depth of the slice 61b of the dose distribution due to the irradiation to the slice 61a.
 図20は、スライス61bの存在する深さにおけるX方向の線量分布を説明する図である。図20の縦軸はスライス61bの深さにおける線量であり、図20の横軸はX方向の位置である。位置X1は、スライス61aへの粒子線照射の際における、コリメータ6の開口74aの端部のスライス61bへの射影開口端部位置である。位置X2は、スライス61bへの粒子線照射の際における、コリメータ6の開口74bの端部のスライス61bへの射影開口端部位置である。位置X1、X2に対応する開口74a、74bの端部は、それぞれ図18の開口74aの右側端部、図19の開口74bの右側端部である。スライス61aへの粒子線の照射線量における、スライス61bの深さにおける成分である線量分布75aは、コリメータ6の遮蔽効果により、スライス61aへの粒子線照射の際における、コリメータ6の開口74aの端部の射影開口端部位置(位置X1)の付近に、急峻な線量勾配を持っている。一方、スライス61bの腫瘍断面はスライス61aよりも大きいため、スライス61bの深さにおける合計線量分布を均一に近づけるためには、線量分布75aの位置X1よりも遠い位置における線量を補う必要がある。このため、スライス61bへの粒子線照射の線量分布75bは、中心付近よりも辺縁部付近のほうが大きいような、不均一な分布とする必要がある。 FIG. 20 is a diagram for explaining the dose distribution in the X direction at the depth at which the slice 61b exists. The vertical axis in FIG. 20 is the dose at the depth of the slice 61b, and the horizontal axis in FIG. 20 is the position in the X direction. The position X1 is a projected opening end position on the slice 61b at the end of the opening 74a of the collimator 6 when the slice 61a is irradiated with the particle beam. The position X2 is a projected opening end position on the slice 61b at the end of the opening 74b of the collimator 6 when the slice 61b is irradiated with the particle beam. The ends of the openings 74a and 74b corresponding to the positions X1 and X2 are the right end of the opening 74a in FIG. 18 and the right end of the opening 74b in FIG. The dose distribution 75a, which is a component at the depth of the slice 61b, in the irradiation dose of the particle beam to the slice 61a is the end of the opening 74a of the collimator 6 when the particle beam is irradiated to the slice 61a due to the shielding effect of the collimator 6. A steep dose gradient is present in the vicinity of the projection opening end position (position X1). On the other hand, since the tumor cross section of the slice 61b is larger than the slice 61a, it is necessary to supplement the dose at a position farther from the position X1 of the dose distribution 75a in order to make the total dose distribution at the depth of the slice 61b closer uniformly. For this reason, the dose distribution 75b of the particle beam irradiation to the slice 61b needs to be a non-uniform distribution that is larger in the vicinity of the edge than in the vicinity of the center.
 スライス61bへの粒子線照射の際にも、スライス61bにおける腫瘍断面に基づいてコリメータ開口形状が設定されるが、このとき急峻な線量分布が形成されるのは、スライス61bへの粒子線照射の際における、コリメータ6の開口74bの端部のスライス61bへの射影開口端部位置(位置X2)の付近であり、位置X1よりも外側(X座標の正の方向)である。このような場合、スライス61bへの粒子線照射の線量分布75bにおいて、位置X1の付近での線量勾配と、スライス61aへの粒子線照射による線量分布75aの、スライス61bの深さにおける成分のX1の付近での線量勾配を同等の急峻さにすることは困難である。このため、図20に示すように、線量分布75bと線量分布75aとを合算した合計線量分布76を、位置X1の付近において均一にすることを阻害する要因となり得る。 The collimator opening shape is also set based on the cross section of the tumor in the slice 61b when the slice 61b is irradiated with the particle beam. At this time, a steep dose distribution is formed because of the particle beam irradiation to the slice 61b. At this time, the end of the opening 74b of the collimator 6 is in the vicinity of the projected opening end position (position X2) to the slice 61b and outside the position X1 (positive direction of the X coordinate). In such a case, in the dose distribution 75b of the particle beam irradiation to the slice 61b, the dose gradient in the vicinity of the position X1 and the X1 of the component at the depth of the slice 61b of the dose distribution 75a by the particle beam irradiation to the slice 61a. It is difficult to make the dose gradient near the same steep. Therefore, as shown in FIG. 20, the total dose distribution 76 obtained by adding up the dose distribution 75b and the dose distribution 75a can be a factor that hinders the uniformity in the vicinity of the position X1.
 現実的なスキャニング照射においては、スライス数は2よりも多く、より多くのスライスによる寄与を考慮しなければならないが、浅いスライスのコリメータ開口よりも深いスライスのコリメータ開口が小さいような条件が含まれる場合は、腫瘍の浅い部分における合算線量分布においては、深いスライスへの照射における開口端部付近の急峻な線量勾配と、浅いスライスへの照射における緩慢な線量勾配とが合算される可能性が存在し、そのような位置の付近においては合算線量分布を均一化することがさらに困難になる恐れがある。 In realistic scanning illumination, the number of slices is greater than two and the contribution from more slices must be taken into account, including the condition that the collimator aperture in the deep slice is smaller than the collimator aperture in the shallow slice In the case of the combined dose distribution in the shallow part of the tumor, there is a possibility that the steep dose gradient near the opening edge in the irradiation of the deep slice and the slow dose gradient in the irradiation of the shallow slice may be added However, in the vicinity of such a position, it may become more difficult to make the total dose distribution uniform.
 上記のような問題は、深いスライスに対するコリメータ開口は必ず、浅いスライスに対するコリメータ開口と同じか、または大きくなるように設定することで、解決することができる。図21、図22を用いて、上記のような問題を解決するコリメータ開口形状の設定方法の具体例を説明する。図21は深いスライス(スライス61a)対応するコリメータ開口形状の設定例であり、図22は浅いスライス(スライス61b)対応するコリメータ開口形状の設定例である。初めに、浅いスライス(スライス61b)対応するコリメータ開口形状の設定方法を説明する。 The above problem can be solved by setting the collimator opening for the deep slice to be the same as or larger than the collimator opening for the shallow slice. A specific example of a collimator aperture shape setting method that solves the above problem will be described with reference to FIGS. 21 and 22. FIG. 21 is a setting example of a collimator opening shape corresponding to a deep slice (slice 61a), and FIG. 22 is a setting example of a collimator opening shape corresponding to a shallow slice (slice 61b). First, a method for setting a collimator aperture shape corresponding to a shallow slice (slice 61b) will be described.
 浅いスライス(スライス61b)対応するコリメータ開口形状は、図7を用いて説明したように、腫瘍(照射対象11)のスライス61bでの切断面の外周である照射対象外周69に対して、コリメータ6の開口マージンtmを付加して拡大した形状が、スライス61bへ射影されたコリメータ6の開口74bの端部である射影開口端部68と一致するように、コリメータ開口の形状を設定する。図22では、照射対象外周位置Xtb1、Xtb2が照射対象外周69におけるX方向の外周位置を示しており、射影開口端部位置Xepb1、Xepb2が射影開口端部68におけるX方向の端部位置を示している。外周ビーム経路79bは走査起点P0から照射対象外周位置Xtb1、Xtb2へ向かう粒子線10の経路であり、外周ビーム経路80bは走査起点P0から射影開口端部位置Xepb1、Xepb2へ向かう粒子線10の経路である。 The collimator opening shape corresponding to the shallow slice (slice 61b) is the collimator 6 with respect to the irradiation target outer periphery 69, which is the outer periphery of the cut surface of the slice 61b of the tumor (irradiation target 11), as described with reference to FIG. The shape of the collimator opening is set so that the enlarged shape by adding the opening margin tm matches the projected opening end 68 that is the end of the opening 74b of the collimator 6 projected onto the slice 61b. In FIG. 22, the irradiation target outer peripheral positions Xtb1 and Xtb2 indicate the outer peripheral positions in the X direction on the irradiation target outer peripheral 69, and the projection opening end positions Xepb1 and Xepb2 indicate the end positions in the X direction on the projection opening end 68. ing. The outer peripheral beam path 79b is a path of the particle beam 10 from the scanning starting point P0 to the irradiation target outer peripheral positions Xtb1 and Xtb2, and the outer peripheral beam path 80b is a path of the particle beam 10 from the scanning starting point P0 to the projection opening end position Xepb1 and Xepb2. It is.
 次に、深いスライス(スライス61a)対応するコリメータ開口形状の設定方法を説明する。スライス61aに対応するコリメータ開口形状を設定する際には、まず図21のように、腫瘍(照射対象11)のスライス61aにおける断面よりも浅い側のスライス61aへの射影された二次元形状を考える。すなわち浅い側の腫瘍断面をスライス61aの平面へ射影した射影照射対象外周81(図23参照)の二次元形状を考える。射影照射対象外周81は、走査起点P0から照射対象11を見た場合の最大外周である。この射影照射対象外周81の二次元形状に対し、あらかじめ定められたコリメータ6の開口マージンtmを付加して拡大した形状が、スライス61aへ射影されたコリメータ6の開口74aの端部である射影開口端部68と一致するように、コリメータ開口の形状を設定する。 Next, a method for setting the collimator aperture shape corresponding to the deep slice (slice 61a) will be described. When setting the collimator aperture shape corresponding to the slice 61a, first, as shown in FIG. 21, the two-dimensional shape projected onto the slice 61a shallower than the cross section of the slice 61a of the tumor (irradiation target 11) is considered. . That is, consider the two-dimensional shape of the projection irradiation outer periphery 81 (see FIG. 23) obtained by projecting the shallow tumor cross section onto the plane of the slice 61a. The projection irradiation target outer periphery 81 is the maximum outer periphery when the irradiation target 11 is viewed from the scanning starting point P0. A projection opening, which is an end of the opening 74a of the collimator 6 projected onto the slice 61a, is a shape obtained by adding a predetermined opening margin tm of the collimator 6 to the two-dimensional shape of the projection target outer periphery 81. The shape of the collimator opening is set so as to coincide with the end 68.
 図21では、射影照射対象外周位置Xtpa1、Xtpa2が射影照射対象外周81におけるX方向の外周位置を示している。射影開口端部位置Xepa1、Xepa2が射影開口端部68におけるX方向の端部位置を示している。外周ビーム経路79aは走査起点P0から射影照射対象外周位置Xtpa1、Xtpa2へ向かう粒子線10の経路であり、外周ビーム経路80aは走査起点P0から射影開口端部位置Xepa1、Xepa2へ向かう粒子線10の経路である。 In FIG. 21, the projection irradiation target outer peripheral positions Xtpa1 and Xtpa2 indicate the outer peripheral positions in the X direction of the projection irradiation target outer periphery 81. Projected opening end positions Xepa 1 and Xepa 2 indicate end positions in the X direction at the projected opening end 68. The outer peripheral beam path 79a is a path of the particle beam 10 from the scanning start point P0 to the projection irradiation target outer peripheral positions Xtpa1 and Xtpa2, and the outer peripheral beam path 80a is the path of the particle beam 10 from the scanning start point P0 to the projection opening end position Xepa1 and Xepa2. It is a route.
 図14は、腫瘍(照射対象11)が球形の場合に上記の方法によりコリメータ口形状を定めた例である。図14では、6つのスライスの位置を示すスライス中心線61a、61b、61c、61d、61e、61fと、それぞれのスライスに射影されたコリメータ6のコリメータ射影8a、8b、8c、8d、8e、8fを示した。外周ビーム経路79は、走査起点P0から各スライス61a、61b、61cにおける射影照射対象外周81へ向かう粒子線10の経路である。スライス61a、61b、61cは球形の腫瘍の中心よりも深いスライスであり、スライス61d、61e、61fは球形の腫瘍の中心よりも浅いスライスである。外周ビーム経路の符号は、総括的に79を用い、区別して説明する場合に79a、79bを用いる。なお、スライスの照射対象外周69が当該スライスよりも浅いスライスの照射対象外周69よりも大きい場合は、当該スライスに射影された射影照射対象外周81はないので、図22に示した外周ビーム経路79bはスライス61bにおける照射対象外周69へのビーム経路である。 FIG. 14 is an example in which the collimator mouth shape is determined by the above method when the tumor (irradiation target 11) is spherical. In FIG. 14, the slice center lines 61a, 61b, 61c, 61d, 61e, and 61f indicating the positions of the six slices, and the collimator projections 8a, 8b, 8c, 8d, 8e, and 8f of the collimator 6 projected onto the respective slices. showed that. The outer peripheral beam path 79 is a path of the particle beam 10 from the scanning start point P0 toward the projection irradiation target outer periphery 81 in each of the slices 61a, 61b, 61c. The slices 61a, 61b, and 61c are slices deeper than the center of the spherical tumor, and the slices 61d, 61e, and 61f are slices shallower than the center of the spherical tumor. The reference symbol of the outer peripheral beam path is 79 as a whole, and 79a and 79b are used in the case of distinction. When the irradiation target outer periphery 69 of the slice is larger than the irradiation target outer periphery 69 of the slice shallower than the slice, there is no projection irradiation target outer periphery 81 projected onto the slice, and therefore the outer peripheral beam path 79b shown in FIG. Is a beam path to the outer periphery 69 to be irradiated in the slice 61b.
 球形の腫瘍の中心よりも浅いスライス61d、61e、61fでは、腫瘍のスライスでの断面外周(照射対象外周69)にコリメータ6の開口マージンtmを付加して拡大した形状と、コリメータ6の開口74の端部のスライスへの射影が一致するように、コリメータ開口が設定される。一方、腫瘍の中心よりも深いスライス61a、61b、61cでは、腫瘍の中心を通るXY平面での断面、すなわち球の半径と等しい半径を持つ円を、スライスへ射影した形状(射影照射対象外周81)にコリメータ6の開口マージンtmを付加して拡大した形状と、コリメータ6の開口74の端部のスライスへの射影が一致するように、コリメータ開口が設定される。このような設定にすることで、どの2つのスライスを選択しても必ず、深いスライスに対応するコリメータ開口形状は、浅いスライスに対応するコリメータ開口形状と同じか、それよりも広く設定される。 In slices 61d, 61e, and 61f shallower than the center of the spherical tumor, an enlarged shape by adding an opening margin tm of the collimator 6 to the outer periphery of the cross section (irradiation target outer periphery 69) of the tumor slice, and the opening 74 of the collimator 6 The collimator aperture is set so that the projections on the slices at the ends of the collimator coincide. On the other hand, in slices 61a, 61b, 61c deeper than the center of the tumor, a cross-section on the XY plane passing through the center of the tumor, that is, a shape having a circle having a radius equal to the radius of the sphere is projected onto the slice (projection irradiation target outer periphery 81 The collimator opening is set so that the shape expanded by adding the opening margin tm of the collimator 6 matches the projection onto the slice of the end of the opening 74 of the collimator 6. With this setting, regardless of which two slices are selected, the collimator aperture shape corresponding to the deep slice is always set to be the same as or wider than the collimator aperture shape corresponding to the shallow slice.
 図24を用いて、実施の形態2のコリメータにおける複数のスライスによるX方向の線量分布の重なりを説明する。簡略化のため2つのスライスのみのX方向の線量分布の重なりを説明する。図24では、図14のスライス61dの存在する深さにおけるX方向の線量分布77bと、深いスライス61aへの照射による線量分布のスライス61dにおける寄与成分(線量分布77a)を示した。図24の縦軸はスライス61dの深さにおける線量であり、図24の横軸はX方向の位置である。位置X1は、スライス61aへの粒子線照射の際における、コリメータ6の開口74の端部のスライス61dへの射影開口端部位置である。位置X2は、スライス61dへの粒子線照射の際における、コリメータ6の開口74の端部のスライス61dへの射影開口端部位置である。スライス61dへの粒子線の照射線量における、スライス61dの深さにおける成分である線量分布77bは、コリメータ6の遮蔽効果により、スライス61dへの粒子線照射の際における、コリメータ6の開口74の端部のスライス61dへの射影開口端部位置(位置X2)の付近に、急峻な線量勾配を持っている。一方、スライス61aへの粒子線の照射線量における、スライス61dの深さにおける成分である線量分布77aは、照射対象11の内部は均一な分布であり、かつ照射対象外周69から位置X2へは緩慢に減少する分布である。図24の線量分布77aにおいて、均一な部分が照射対象11の内部であり、線量が減少に転じる部分が照射対象外周69に相当する。線量分布77aと線量分布77bを合算した合計線量分布78は、図20に示した合計線量分布76に比べて、大きく増減する部分がなく、分布の均一性を高めることができる。 Referring to FIG. 24, the overlap of dose distributions in the X direction due to a plurality of slices in the collimator of the second embodiment will be described. For simplicity, the overlap of dose distributions in the X direction of only two slices will be described. FIG. 24 shows the dose distribution 77b in the X direction at the depth where the slice 61d in FIG. 14 exists, and the contribution component (dose distribution 77a) in the slice 61d of the dose distribution by irradiation to the deep slice 61a. The vertical axis in FIG. 24 is the dose at the depth of the slice 61d, and the horizontal axis in FIG. 24 is the position in the X direction. The position X1 is a projected opening end position on the slice 61d at the end of the opening 74 of the collimator 6 when the particle beam is irradiated onto the slice 61a. The position X2 is the position of the projection opening end portion of the end portion of the opening 74 of the collimator 6 onto the slice 61d at the time of particle beam irradiation to the slice 61d. The dose distribution 77b, which is a component at the depth of the slice 61d, in the irradiation dose of the particle beam to the slice 61d is the end of the opening 74 of the collimator 6 when the particle beam is irradiated to the slice 61d due to the shielding effect of the collimator 6. A steep dose gradient is present in the vicinity of the projection opening end position (position X2) to the slice 61d. On the other hand, the dose distribution 77a which is a component at the depth of the slice 61d in the irradiation dose of the particle beam to the slice 61a is a uniform distribution in the irradiation target 11, and is slow from the irradiation target outer periphery 69 to the position X2. It is a distribution that decreases. In the dose distribution 77a of FIG. 24, the uniform part is inside the irradiation target 11, and the part where the dose starts to decrease corresponds to the outer periphery 69 of the irradiation target. Compared with the total dose distribution 76 shown in FIG. 20, the total dose distribution 78 obtained by adding the dose distribution 77a and the dose distribution 77b does not greatly increase or decrease, and the uniformity of the distribution can be improved.
 実施の形態2の粒子線照射装置50は、深いスライスに対応するコリメータ6の開口74の形状が浅いスライスに対応するコリメータ開口形状と同じか、それよりも広く設定されるので、深いスライスへの照射における開口端部付近の急峻な線量勾配と、浅いスライスへの照射における緩慢な線量勾配とが合算されないので、合算線量分布を均一化することができる。 In the particle beam irradiation apparatus 50 according to the second embodiment, the shape of the opening 74 of the collimator 6 corresponding to the deep slice is set to be the same as or wider than the shape of the collimator opening corresponding to the shallow slice. Since the steep dose gradient in the vicinity of the opening end in the irradiation and the slow dose gradient in the irradiation to the shallow slice are not added together, the combined dose distribution can be made uniform.
 なお、実施の形態2では、開口マージンtmが1つの場合で説明したが、図8で説明した2つの開口マージンtm1、tm2を設定しても構わない。また、3つ以上の開口マージンを設定しても構わない。この場合は、腫瘍(照射対象11)への合算線量分布を均一であり、腫瘍(照射対象11)とリスク臓器(リスク対象)13との距離が近い場合においても腫瘍(照射対象11)への線量付与とリスク臓器(リスク対象)13への線量付与回避とを両立するように粒子線10をスキャニング照射法にて照射することができる。 In the second embodiment, the case where the opening margin tm is one has been described. However, the two opening margins tm1 and tm2 described in FIG. 8 may be set. Three or more opening margins may be set. In this case, the combined dose distribution to the tumor (irradiation target 11) is uniform, and even when the distance between the tumor (irradiation target 11) and the risk organ (risk target) 13 is short, the tumor (irradiation target 11) The particle beam 10 can be irradiated by the scanning irradiation method so as to achieve both dose application and avoidance of dose application to the risk organ (risk target) 13.
実施の形態3.
 実施の形態1及び2においては、コリメータ6は常に、開口74を除いて粒子線10の全てを遮ることを前提として説明した。すなわち、コリメータ6のZ方向の厚さは、粒子線発生輸送装置1において発生及び輸送が可能な最大エネルギーの粒子線10を完全に停止させることができる厚さであることを前提としているが、本実施形態では、必ずしも最大エネルギーの粒子線10を完全に停止させることができる厚さである必要はなく、発生及び輸送が可能なある所定のエネルギー以下の粒子線10を完全に停止させることができる厚さであっても構わない。
Embodiment 3 FIG.
In the first and second embodiments, the collimator 6 has been described on the assumption that the particle beam 10 is always blocked except for the opening 74. That is, the thickness of the collimator 6 in the Z direction is based on the premise that the maximum energy particle beam 10 that can be generated and transported in the particle beam generating and transporting apparatus 1 can be completely stopped. In the present embodiment, it is not always necessary to have a thickness capable of completely stopping the particle beam 10 having the maximum energy, and it is possible to completely stop the particle beam 10 having a predetermined energy or less that can be generated and transported. It may be a thickness that can be made.
 粒子線10が照射対象11に付与する線量分布の横方向(XY方向)への広がりの要因は、大きく分けて2つに分類される。1つ目の要因(第一要因)は粒子線発生輸送装置1において発生した時点で存在する粒子線10の横方向の広がり成分や、粒子線照射装置50の下流側の構成物(走査装置2、線量モニタ5等)を通過するときに粒子線照射装置50の下流側の構成物との衝突による散乱など、コリメータ6を通過する前に発生する広がりである。2つ目の要因(第二要因)は、主に粒子線10が照射対象(患者の身体)11の内部を進行するときに、照射対象11との衝突による多重散乱などの、コリメータ6を通過した後に発生する広がりである。本発明におけるコリメータ6の役割は第一要因による影響を無効化または抑制することであるが、コリメータ6は第二要因に対しては効力を発揮することはできない。 The cause of the spread in the horizontal direction (XY direction) of the dose distribution given by the particle beam 10 to the irradiation object 11 is roughly classified into two. The first factor (first factor) is the lateral spreading component of the particle beam 10 existing at the time of generation in the particle beam generating and transporting device 1, and the component downstream of the particle beam irradiation device 50 (scanning device 2). , A dose monitor 5 or the like) that occurs before passing through the collimator 6, such as scattering due to collision with a component on the downstream side of the particle beam irradiation device 50. The second factor (second factor) mainly passes through the collimator 6 such as multiple scattering due to collision with the irradiation object 11 when the particle beam 10 travels inside the irradiation object (patient body) 11. It is the spread that occurs after. Although the role of the collimator 6 in the present invention is to invalidate or suppress the influence of the first factor, the collimator 6 cannot exert the effect against the second factor.
 コリメータ6が無い場合の粒子線10の横方向の広がりに対する第一要因と第二要因の寄与を比較すると、一般的に、粒子線10のエネルギーが低い場合は第一要因の寄与が大きく、粒子線10のエネルギーが高い場合は第二要因の寄与が大きい。これは、粒子線10のエネルギーが高いほど照射対象11の内部を進行する距離が長くなるため、照射対象11との衝突による多重散乱の影響を多く受けるためである。したがって、多くの場合は図6で示したように、コリメータ6を使用することにより線量の横方向への広がりは線量分布66から線量分布65のように改善するが、粒子線10のエネルギーがある一定値よりも高い場合には、図25に示すように、コリメータ6を使用しても大きな分布改善が見られないことがある。図25は、粒子線のエネルギーが高い場合における、照射対象のスライスに付与される線量のX方向の分布を説明する図である。図25において、縦軸は線量であり、横軸はX方向の位置である。線量分布65aはコリメータ6が有る場合の線量分布であり、線量分布66aはコリメータ6が無い場合の線量分布である。破線67は、図6と同じである。 When the contribution of the first factor and the second factor to the lateral spread of the particle beam 10 without the collimator 6 is compared, generally, when the energy of the particle beam 10 is low, the contribution of the first factor is large and the particle When the energy of the line 10 is high, the contribution of the second factor is large. This is because the higher the energy of the particle beam 10, the longer the distance traveled inside the irradiation object 11, and thus more influence of multiple scattering due to the collision with the irradiation object 11. Therefore, in many cases, as shown in FIG. 6, by using the collimator 6, the spread of the dose in the lateral direction is improved from the dose distribution 66 to the dose distribution 65, but there is energy of the particle beam 10. When the value is higher than a certain value, as shown in FIG. 25, even if the collimator 6 is used, a large distribution improvement may not be seen. FIG. 25 is a diagram for explaining the X-direction distribution of the dose given to the slice to be irradiated when the energy of the particle beam is high. In FIG. 25, the vertical axis represents the dose, and the horizontal axis represents the position in the X direction. The dose distribution 65a is a dose distribution when the collimator 6 is present, and the dose distribution 66a is a dose distribution when the collimator 6 is not present. The broken line 67 is the same as FIG.
 粒子線10の横方向への広がり(横方向広がり長)を、例えば、照射対象11の端部(破線67で示した部分)から線量が照射対象11の内部の半分(破線82)に減少するまで距離Xpとして定義する。この場合に、粒子線10のエネルギーと、線量の横方向への広がりとの関係は、図26のようになる。図26は、粒子線のエネルギーと線量の横方向広がり長との関係を示す図である。図25において、コリメータ6が有る場合の横方向広がり長はXp1であり、コリメータ6が無い場合の横方向広がり長はXp2である。図26において、縦軸は線量の横方向広がり長であり、横軸は粒子線のエネルギーである。コリメータ6を使用しないときの横方向広がり長は特性83であり、コリメータ6を使用するときの横方向広がり長は特性84である。 The spread of the particle beam 10 in the lateral direction (lateral spread length) is reduced, for example, from the end of the irradiation target 11 (portion indicated by the broken line 67) to the inner half of the irradiation target 11 (broken line 82). Is defined as a distance Xp. In this case, the relationship between the energy of the particle beam 10 and the spread of the dose in the lateral direction is as shown in FIG. FIG. 26 is a diagram showing the relationship between the energy of the particle beam and the lateral spread length of the dose. In FIG. 25, the lateral extension length when the collimator 6 is provided is Xp1, and the lateral extension length when the collimator 6 is not provided is Xp2. In FIG. 26, the vertical axis represents the lateral spread length of the dose, and the horizontal axis represents the energy of the particle beam. The lateral extension length when the collimator 6 is not used is a characteristic 83, and the lateral extension length when the collimator 6 is used is a characteristic 84.
 粒子線10のエネルギーが、図26に示したエネルギー値Ecよりも低い場合にはコリメータ6を使用することで横方向の広がり(横方向広がり長Xp)を顕著に抑えることができる。しかし、粒子線10のエネルギーが、エネルギー値Ec以上の場合には、コリメータ6を使用することによる恩恵がそれほど大きくない。例えば、エネルギー値Ecは、特性83の値と特性84の値との差が5%以下となる値である。したがって、粒子線10のエネルギーがエネルギー値Ec以上の場合には、コリメータ6の開口74が全開になるように設定しても良い。ここで全開とは、コリメータ6の各リーフ7の駆動範囲の中で可能な最も開口面積が広くなる設定のことを指す。このような運用をする場合には、コリメータ6のZ方向の厚みは、エネルギーがエネルギー値Ecの粒子線10を完全に停止させることができる厚さがあれば十分であり、最大エネルギーの粒子線10を完全に停止させることができる厚さに比べて、小さい厚みでコリメータ6を製造することができ、粒子線照射装置50の装置全体の軽量化及びコンパクト化ができるというメリットがある。 When the energy of the particle beam 10 is lower than the energy value Ec shown in FIG. 26, the lateral spread (lateral spread length Xp) can be remarkably suppressed by using the collimator 6. However, when the energy of the particle beam 10 is equal to or higher than the energy value Ec, the benefit of using the collimator 6 is not so great. For example, the energy value Ec is a value at which the difference between the value of the characteristic 83 and the value of the characteristic 84 is 5% or less. Therefore, when the energy of the particle beam 10 is greater than or equal to the energy value Ec, the opening 74 of the collimator 6 may be set to be fully opened. Here, “full open” refers to a setting in which the opening area possible is widest in the drive range of each leaf 7 of the collimator 6. In such an operation, it is sufficient that the collimator 6 has a thickness in the Z direction that can completely stop the particle beam 10 whose energy is the energy value Ec. The collimator 6 can be manufactured with a smaller thickness than the thickness that can completely stop 10, and the entire apparatus of the particle beam irradiation apparatus 50 can be reduced in weight and size.
 なお、粒子線10のエネルギーがエネルギー値Ec以上の場合にはコリメータ6の開口74を全開にする例を示したが、例えば全開でなくとも、粒子線10の最大走査領域よりも十分にコリメータ6の開口74が広く、粒子線10がコリメータ6のリーフ7に接触しないような設定にすれば、全開にしたのと同様の線量分布とが得られるのは言うまでもない。 Although the example in which the aperture 74 of the collimator 6 is fully opened when the energy of the particle beam 10 is equal to or higher than the energy value Ec has been shown, for example, the collimator 6 is sufficiently more than the maximum scanning region of the particle beam 10 even if not fully opened. Needless to say, if the aperture 74 is wide and the particle beam 10 does not come into contact with the leaf 7 of the collimator 6, a dose distribution similar to that when fully opened can be obtained.
 なお、本発明は、その発明の範囲内において、各実施の形態を組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 It should be noted that the present invention can be combined with each other within the scope of the invention, and each embodiment can be modified or omitted as appropriate.
 1…粒子線発生輸送装置、2…走査装置、4…制御装置、6…コリメータ、9…エネルギー変更機構、10…粒子線、11…照射対象、12…スポット(照射位置)、13…リスク臓器(リスク対象)、32…コリメータ情報記憶部、50…粒子線照射装置、60…基準照射軸、74、74a、74b…開口、data1…コリメータ開口形状データ、sig1…コリメータ制御信号、tm、tm1、tm2…開口マージン、Am1、Am2…マージン領域 DESCRIPTION OF SYMBOLS 1 ... Particle beam generation transport apparatus, 2 ... Scanning device, 4 ... Control apparatus, 6 ... Collimator, 9 ... Energy change mechanism, 10 ... Particle beam, 11 ... Irradiation object, 12 ... Spot (irradiation position), 13 ... Risk organ (Risk object), 32 ... collimator information storage unit, 50 ... particle beam irradiation device, 60 ... reference irradiation axis, 74, 74a, 74b ... opening, data1 ... collimator opening shape data, sig1 ... collimator control signal, tm, tm1, tm2 ... opening margin, Am1, Am2 ... margin area

Claims (7)

  1.  粒子線の基準照射軸に垂直な照射対象の断面毎に前記粒子線を照射する粒子線照射装置であって、
    前記粒子線のエネルギーを変更するエネルギー変更機構を有し、加速させた前記粒子線の輸送及び遮断を行う粒子線発生輸送装置と、前記粒子線発生輸送装置から輸送された前記粒子線を進行方向に対して垂直な二方向に偏向させて前記照射対象に照射する照射位置を移動させる走査装置と、前記基準照射軸に垂直な方向に開口を有し、前記開口の形状である開口形状が変更可能で、かつ前記開口外で前記粒子線の通過を遮るコリメータと、前記コリメータの前記開口形状の情報を記憶するコリメータ情報記憶部と、前記エネルギー変更機構を含む前記粒子線発生輸送装置、前記走査装置及び前記コリメータを制御する制御装置と、を備え、
    前記制御装置は、前記照射対象に前記粒子線を照射する際に、前記コリメータの前記開口形状の情報に基づいて、前記コリメータの前記開口形状を設定するコリメータ制御信号を前記コリメータに出力することを特徴とする粒子線照射装置。
    A particle beam irradiation apparatus that irradiates the particle beam for each cross section of an irradiation object perpendicular to the reference irradiation axis of the particle beam,
    A particle beam generating / transporting device having an energy changing mechanism for changing the energy of the particle beam and transporting and blocking the accelerated particle beam, and a traveling direction of the particle beam transported from the particle beam generating / transporting device A scanning device that moves the irradiation position irradiated to the irradiation target by deflecting in two directions perpendicular to the aperture, and an opening shape in the direction perpendicular to the reference irradiation axis, and the shape of the opening is changed A collimator capable of blocking the passage of the particle beam outside the opening, a collimator information storage unit for storing information on the opening shape of the collimator, the particle beam generating and transporting device including the energy changing mechanism, and the scanning And a control device for controlling the collimator,
    The control device outputs a collimator control signal for setting the opening shape of the collimator to the collimator based on information on the opening shape of the collimator when irradiating the irradiation target with the particle beam. A characteristic particle beam irradiation apparatus.
  2.  前記コリメータ情報記憶部は、少なくとも2つの前記コリメータの前記開口形状の情報を記憶し、
    前記制御装置は、前記粒子線のエネルギーを変更する際に、当該エネルギーに対応した前記コリメータの前記開口形状の情報に基づいて、前記コリメータの前記開口形状を設定するコリメータ制御信号を前記コリメータに出力することを特徴とする請求項1記載の粒子線照射装置。
    The collimator information storage unit stores information on the opening shape of at least two of the collimators,
    When the energy of the particle beam is changed, the control device outputs a collimator control signal for setting the aperture shape of the collimator to the collimator based on information on the aperture shape of the collimator corresponding to the energy The particle beam irradiation apparatus according to claim 1.
  3.  前記コリメータ情報記憶部は、少なくとも2つの前記コリメータの前記開口形状の情報を、前記粒子線のエネルギーに対応付けて記憶し、
    前記制御装置は、前記粒子線のエネルギーを変更する際に、当該エネルギーに対応した前記コリメータの前記開口形状の情報に基づいて、前記コリメータの前記開口形状を設定するコリメータ制御信号を前記コリメータに出力することを特徴とする請求項1記載の粒子線照射装置。
    The collimator information storage unit stores information on the opening shape of at least two collimators in association with energy of the particle beam,
    When the energy of the particle beam is changed, the control device outputs a collimator control signal for setting the aperture shape of the collimator to the collimator based on information on the aperture shape of the collimator corresponding to the energy The particle beam irradiation apparatus according to claim 1.
  4.  前記コリメータの前記開口形状は、前記照射対象の前記断面の形状に対してあらかじめ定められたマージンが付加されて拡大された形状であることを特徴とする請求項2または3に記載の粒子線照射装置。 4. The particle beam irradiation according to claim 2, wherein the opening shape of the collimator is a shape expanded by adding a predetermined margin to the shape of the cross section of the irradiation target. 5. apparatus.
  5.  前記照射対象に前記粒子線を照射する際に、前記粒子線の照射を極力避けたいリスク対象が存在している場合に、
    前記コリメータの前記開口形状は、前記照射対象の前記断面の形状に対しあらかじめ定められたマージンが付加されて拡大された形状であり、前記照射対象の前記断面における前記リスク対象の位置に基づいて前記マージンが異なっており、
    前記開口における前記リスク対象に近い領域のマージンは、前記開口におけるその他の領域のマージンよりも小さいことを特徴とする請求項2または3に記載の粒子線照射装置。
    When there is a risk target to avoid the irradiation of the particle beam as much as possible when irradiating the irradiation target with the particle beam,
    The opening shape of the collimator is a shape expanded by adding a predetermined margin to the shape of the cross section of the irradiation target, and based on the position of the risk target in the cross section of the irradiation target The margins are different,
    4. The particle beam irradiation apparatus according to claim 2, wherein a margin of a region near the risk target in the opening is smaller than a margin of other regions in the opening.
  6.  前記粒子線のエネルギーが高い場合の前記コリメータの前記開口形状は、当該粒子線のエネルギーよりも低い場合の前記コリメータの前記開口形状と同じか、またはそれよりも広くなるように設定されることを特徴とする請求項2から5のいずれか1項に記載の粒子線照射装置。 The opening shape of the collimator when the energy of the particle beam is high is set to be the same as or wider than the opening shape of the collimator when the energy of the particle beam is lower. The particle beam irradiation apparatus according to any one of claims 2 to 5, wherein the particle beam irradiation apparatus is characterized.
  7.  前記コリメータの前記開口形状は、前記粒子線のエネルギーが所定の値以上の場合に、前記粒子線の最大走査領域よりも広い形状に変更されることを特徴とする請求項1から6のいずれか1項に記載の粒子線照射装置。 The opening shape of the collimator is changed to a shape wider than the maximum scanning region of the particle beam when the energy of the particle beam is a predetermined value or more. 2. The particle beam irradiation apparatus according to item 1.
PCT/JP2017/018281 2017-05-16 2017-05-16 Particle beam irradiation apparatus WO2018211576A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/018281 WO2018211576A1 (en) 2017-05-16 2017-05-16 Particle beam irradiation apparatus
TW107108261A TWI659763B (en) 2017-05-16 2018-03-12 Particle beam irradiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018281 WO2018211576A1 (en) 2017-05-16 2017-05-16 Particle beam irradiation apparatus

Publications (1)

Publication Number Publication Date
WO2018211576A1 true WO2018211576A1 (en) 2018-11-22

Family

ID=64273658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018281 WO2018211576A1 (en) 2017-05-16 2017-05-16 Particle beam irradiation apparatus

Country Status (2)

Country Link
TW (1) TWI659763B (en)
WO (1) WO2018211576A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013017500A (en) * 2011-07-07 2013-01-31 Mitsubishi Electric Corp Scattering-body switching device and particle beam treatment apparatus
JP2016526452A (en) * 2013-07-05 2016-09-05 ユニヴァーシティ オブ アイオワ リサーチ ファウンデーションUniversity of Iowa Research Foundation Dynamic trimming spot scanning method and system for ion therapy
JP2017501799A (en) * 2013-12-20 2017-01-19 メビオン・メディカル・システムズ・インコーポレーテッド Collimator and energy degrader
US20170087386A1 (en) * 2015-09-25 2017-03-30 Varian Medican Systems, Inc. Proton therapy multi-leaf collimator beam shaping
US20170128746A1 (en) * 2015-11-10 2017-05-11 Mevion Medical Systems, Inc. Adaptive aperture

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5637055B2 (en) * 2011-04-18 2014-12-10 株式会社日立製作所 Particle beam therapy planning apparatus and particle beam therapy apparatus
CN103945901A (en) * 2011-10-14 2014-07-23 住友重机械工业株式会社 Charged particle beam irradiation system and charged particle beam irradiation planning method
EP3093045A4 (en) * 2014-01-10 2017-11-01 Mitsubishi Electric Corporation Particle beam irradiation apparatus
EP3193567A4 (en) * 2014-09-12 2018-05-09 Mitsubishi Electric Corporation Beam delivery system and particle beam therapy device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013017500A (en) * 2011-07-07 2013-01-31 Mitsubishi Electric Corp Scattering-body switching device and particle beam treatment apparatus
JP2016526452A (en) * 2013-07-05 2016-09-05 ユニヴァーシティ オブ アイオワ リサーチ ファウンデーションUniversity of Iowa Research Foundation Dynamic trimming spot scanning method and system for ion therapy
JP2017501799A (en) * 2013-12-20 2017-01-19 メビオン・メディカル・システムズ・インコーポレーテッド Collimator and energy degrader
US20170087386A1 (en) * 2015-09-25 2017-03-30 Varian Medican Systems, Inc. Proton therapy multi-leaf collimator beam shaping
US20170128746A1 (en) * 2015-11-10 2017-05-11 Mevion Medical Systems, Inc. Adaptive aperture

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Hitotsu no Shosha Nozzle de, Kanbu ni Awasete 3 Shurui no Shosha o Jitsugen shi, Kanja no Futan o Keigen Ryushisen Chiryo Sochi (Yoshi Type) Muke Takino Shosha Nozzle o Kaihatsu", MITSUBISHI ELECTRIC CORP., 17 February 2015 (2015-02-17), XP055553140, Retrieved from the Internet <URL:http://www.mitsubishielectric.co.jp/news/2015/pdf/0217-b.pdf> [retrieved on 20170714] *
BUES, M. ET AL.: "Therapeutic step and shoot proton beam spot-scanning with a multi-leaf collimator: a Monte Carlo study", RADIATION PROTECTION DOSIMETRY, vol. 115, no. 1-4, 2005, pages 164 - 169, XP055553132 *
MOIGNIER, ALEXANDRA ET AL.: "Theoretical Benefits of Dynamic Collimation in Pencil Beam Scanning Proton Therapy for Brain Tumors: Dosimetric and Radiobiological Metrics", INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, vol. 95, no. 1, 2016, pages 171 - 180, XP029501743 *

Also Published As

Publication number Publication date
TWI659763B (en) 2019-05-21
TW201900235A (en) 2019-01-01

Similar Documents

Publication Publication Date Title
US11529532B2 (en) Radiation therapy systems and methods
JP5496414B2 (en) Particle beam therapy system
JP5641857B2 (en) Particle beam irradiation apparatus and particle beam therapy apparatus
JP4273502B2 (en) Radiation irradiation equipment
US9694207B2 (en) Control device for scanning electromagnet and particle beam therapy apapratus
WO2018211576A1 (en) Particle beam irradiation apparatus
KR20210122128A (en) Irradiation apparatus of charged particle ray
JP5619462B2 (en) Treatment planning device and particle beam treatment device using treatment plan of treatment planning device
US12064644B2 (en) Pinhole collimator systems and methods
JP5784808B2 (en) Particle beam therapy system
JP7583019B2 (en) COMPUTER PROGRAM PRODUCT AND COMPUTER SYSTEM FOR PLANNING AND DELIVERING RADIATION THERAPY AND METHOD FOR PLANNING RADIATION THERAPY - Patent application
JP6755208B2 (en) Charged particle beam therapy device
JP2011050660A (en) Particle beam medical treatment system and particle beam irradiation method
US11058894B2 (en) Particle beam therapy device and irradiation field forming method
US10381195B2 (en) Charged particle beam treatment apparatus
WO2018181595A1 (en) Charged particle beam treatment device
TWI816312B (en) Charged particle beam irradiation system
JP2018196625A (en) Charged particle beam treatment apparatus
WO2025100455A1 (en) Treatment planning system
JP2018143591A (en) Charged particle beam treatment device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910127

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载