+

WO2018207539A1 - Endoscope - Google Patents

Endoscope Download PDF

Info

Publication number
WO2018207539A1
WO2018207539A1 PCT/JP2018/015245 JP2018015245W WO2018207539A1 WO 2018207539 A1 WO2018207539 A1 WO 2018207539A1 JP 2018015245 W JP2018015245 W JP 2018015245W WO 2018207539 A1 WO2018207539 A1 WO 2018207539A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
center
endoscope
illumination optical
illumination
Prior art date
Application number
PCT/JP2018/015245
Other languages
French (fr)
Japanese (ja)
Inventor
小竿明彦
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2018207539A1 publication Critical patent/WO2018207539A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/07Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements using light-conductive means, e.g. optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/26Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes using light guides

Definitions

  • the present invention relates to an endoscope.
  • electronic endoscopes in the medical field treatment of minimally invasive lesions using an endoscope has been performed with the improvement of treatment ability in addition to improvement of diagnosis ability. Therefore, electronic endoscopes in the medical field are required to have an observation system and an illumination system that can ensure a good field of view both during observation and during treatment. For example, the following are known as endoscopes that can easily guide the treatment tool and endoscopes that control contrast.
  • JP 2001-13422 A Japanese Patent No. 5636922
  • TUL transurethral lithotripsy
  • an endoscope for example, a soft ureteroscope
  • Dusting is a technique in which stones are pulverized with a laser or the like and discharged outside the body. In this procedure, debris can be removed from the body by perfusion, so stones can be easily discharged and left behind.
  • the field of view may deteriorate due to the scattering of the illumination light to the powdered calculus.
  • an endoscope used for TUL it is necessary to design an optimal illumination system and observation system in consideration of this case.
  • the present invention has been made in view of the above, and an object of the present invention is to provide an endoscope capable of maintaining a good visual field when dusting in TUL.
  • an endoscope has an illumination optical system and an imaging optical system at the distal end, and the following conditions The expression (1) is satisfied.
  • L LI includes a center O L, the distance between the center O IM
  • OL is the center of the illumination optical system closest to the imaging optical system
  • O IM the center of the imaging optical system
  • L O is the observation distance of the object
  • f L is the absolute value of the focal length of the illumination optical system
  • ⁇ L is the beam diameter of illumination light incident on the illumination optical system from the light source side, It is.
  • the present invention has an effect of providing an endoscope that can maintain a good visual field during dusting in TUL.
  • (A) is a figure showing the tip composition which looked at the endoscope concerning an embodiment from the object side.
  • B) is a figure which shows the structure of the light-emitting body vicinity.
  • C) is sectional drawing which shows the front-end
  • D) is another figure which shows the structure of the light-emitting body vicinity.
  • E) is another sectional view showing the tip configuration of the endoscope according to the embodiment.
  • (A) is a figure which shows the structure and optical path of the light-emitting body vicinity of the endoscope which concerns on embodiment.
  • B) is a figure explaining the parameter of the endoscope concerning an embodiment.
  • (C) is another figure which shows the structure of the light-emitting body vicinity of the endoscope which concerns on embodiment, and an optical path.
  • (D) is another figure explaining the parameter of the endoscope concerning an embodiment. It is another sectional view showing the tip composition of the endoscope concerning an embodiment.
  • (A) is a figure which shows the front-end
  • FIG. 7B is a diagram illustrating a distal end configuration of the endoscope according to the third embodiment when viewed from the object side.
  • (C) is a diagram illustrating a distal end configuration of the endoscope according to the fourth embodiment when viewed from the object side.
  • (D) is a diagram showing a distal end configuration of the endoscope according to Examples 5, 6, and 7 when viewed from the object side.
  • FIG. 1A is a diagram illustrating a distal end configuration of the endoscope 100 according to the embodiment as viewed from the object side.
  • the endoscope 100 includes an illumination optical system 101 and an imaging optical system 102 at a distal end portion, and satisfies the following conditional expression (1).
  • f L is the absolute value of the focal length f L of the illumination optical system 101
  • ⁇ L is the luminous flux diameter of the illumination light IL incident on the illumination optical system 101 from the light source side (the light emitter 105 side), It is.
  • the observation distance L O to the object OBJ is preferably an “average distance”.
  • the “average distance” is, for example, a distance when performing dusting in the above-described TUL when the object OBJ is a calculus.
  • FIG. 1B is a diagram showing a configuration in the vicinity of the light emitter 105 when the illumination optical system 101 has negative refractive power.
  • the focal length f L of the illumination optical system 101 is a negative value.
  • phi L is a beam diameter of the illumination light IL incident from the light source side (light emitter 105 side) to the illumination optical system 101.
  • the light emitter 105 is, for example, a light emitting diode (LED), a glass fiber that guides illumination light from a light source (not shown), or the like.
  • the position where the illumination light IL illuminates the stone is separated from the imaging optical system 102 as much as possible. That is, the optical path of the strong light ones light intensity of the illumination light IL, the position crossing the optical axis AX IM of the imaging optical system 102, it is desirable that away from the object side of the imaging optical system 102.
  • FIG. 2A is a diagram showing a configuration and an optical path in the vicinity of the light emitter 105 of the endoscope 100.
  • FIG. 2B is a diagram for explaining parameters of the endoscope 100.
  • FIG. 2C is another diagram showing the configuration and the optical path in the vicinity of the light emitter 105 of the endoscope 100.
  • FIG. 2D is another diagram for explaining parameters of the endoscope 100.
  • FIGS. 2A and 2B show a configuration in the case where the illumination optical system 101 has a negative refractive power.
  • FIGS. 2C and 2D are configurations when the illumination optical system 101 has a positive refractive power.
  • Conditional expression (1) will be described. Of the light emitted from the illuminator 105, attention is focused on the light beam that diverges to the outermost side among the light beams having the strongest emission angle of 0 °, that is, the light beam near the peripheral edge of the effective diameter of the illumination optical system 101. .
  • the distance L from the front end of the imaging optical system 102 when this light beam crosses the optical axis AX IM (see FIGS. 1C and 1E) of the imaging optical system 102 is expressed by the following equation ( b) is satisfied (see FIG. 3).
  • the illumination light IL reaches a position separated from the imaging optical system 102 by about L LI ⁇ tan ⁇ .
  • the stone is then illuminated to produce scattered light.
  • the distance L is small, the field of view deteriorates due to scattered light during dusting. On the other hand, if the distance L is too large, the light distribution in the attention area (for example, calculus) will deteriorate.
  • Conditional expression (1) is a relational expression regarding the distance L and the distance L 2 O.
  • the light distribution of the illumination light IL and the distal end layout of the endoscope 100 are selected so as to exceed the lower limit value of the conditional expression (1).
  • the optical path of the strong illumination light IL can be directed to a position away from the imaging optical system 102.
  • the visual field deterioration due to the scattering of the illumination light IL can be suppressed.
  • the endoscope has two or more illumination optical systems at the distal end, and that all the illumination optical systems satisfy the conditional expression (1).
  • a favorable visual field can be provided at the time of endoscopic treatment such as urinary calculus crushing, and the operability of the endoscope at the time of treatment can be improved.
  • L LI includes a center O L, the distance between the center O IM, OL is the center of the illumination optical system closest to the imaging optical system, O IM is the center of the imaging optical system, fL is the absolute value of the focal length of the illumination optical system, ⁇ L is the beam diameter of illumination light incident on the illumination optical system from the light source side, It is. Thereby, a better visual field can be secured.
  • the distal end portion further has a channel, there is one illumination optical system, and the following conditional expression (3) is satisfied. 40 ° ⁇ ⁇ ⁇ 90 ° (3) here, ⁇ , when the center of the channel in the cross section of the tip was O CH, a line segment connecting the center O CH and the center O IM, the angle between the line connecting the center O CH and the center O L, It is.
  • the shadow of the crushing probe projected on the calculus is important for grasping the positional relationship between the crushing probe and the calculus.
  • the positional relationship among the illumination optical system, the imaging optical system, and the channel through which the crushing probe is inserted / removed is defined so as to satisfy the conditional expression (3).
  • Satisfying conditional expression (3) makes it easier to visually recognize the shadow of the crushing probe projected onto the calculus. Thereby, the sense of distance between the calculus and the crushing probe can be easily grasped, and the operability at the time of endoscopic treatment is improved.
  • conditional expression (3) When the lower limit value of conditional expression (3) is not reached, the shadow of the crushing probe is hidden behind the crushing probe itself, and the shadow cannot be recognized.
  • conditional expression (3) If the upper limit value of conditional expression (3) is exceeded, the shadow of the crushing probe will appear in the direction of the center of the endoscope field of interest, and the operability of the endoscope during treatment will be reduced.
  • FIG. 4A is a diagram illustrating a distal end configuration of the endoscope 200 according to the first embodiment when viewed from the object side.
  • the endoscope 200 has an illumination optical system 101a, an imaging optical system 102a, and a channel 103a at the distal end.
  • the illumination optical system 101a has one plano-convex positive lens with the plane facing the object side.
  • FIG. 4A is a diagram illustrating a distal end configuration of the endoscope 201 according to the second embodiment when viewed from the object side.
  • the endoscope 201 includes an illumination optical system 101a, an imaging optical system 102a, and a channel 103a at the distal end.
  • the illumination optical system 101a has one plano-concave negative lens with a plane facing the object side.
  • FIG. 4B is a diagram illustrating a distal end configuration of the endoscope 300 according to the third embodiment when viewed from the object side.
  • the endoscope 300 has an illumination optical system 101b, an imaging optical system 102b, and a channel 103b at the distal end.
  • the illumination optical system 101b has one plano-convex positive lens with the plane facing the object side.
  • FIG. 4C is a diagram illustrating a distal end configuration of the endoscope 400 according to the fourth embodiment when viewed from the object side.
  • the endoscope 400 has an illumination optical system 101c, an imaging optical system 102c, and a channel 103c at the distal end.
  • the illumination optical system 101c has one plano-convex positive lens with the plane facing the object side.
  • FIG. 4D is a diagram illustrating a distal end configuration of the endoscope 500 according to the fifth embodiment when viewed from the object side.
  • the endoscope 500 has two illumination optical systems 101d1 and 101d2, an imaging optical system 102d, and a channel 103d at the distal end.
  • Each of the two illumination optical systems 101d1 and 101d2 has a plano-convex positive lens with the plane facing the object side.
  • FIG. 4D is a diagram illustrating a distal end configuration of the endoscope 501 according to the sixth embodiment when viewed from the object side.
  • the endoscope 501 has two illumination optical systems 101d1, 101d2, an imaging optical system 102d, and a channel 103d at the distal end.
  • Each of the two illumination optical systems 101d1 and 101d2 has one plano-convex positive lens with the plane facing the aspherical object side.
  • the aspherical shape of the illumination optical systems 101d1 and 101d2 of the present embodiment is a surface shape represented by the following expression when the optical axis AX L is the X axis and the height from the optical axis AX L is h. is there.
  • C is a paraxial curvature
  • K is a conical coefficient
  • A4 and A6 are fourth-order and sixth-order aspheric coefficients, respectively.
  • E ⁇ n (n is an integer) indicates “10 ⁇ n ”.
  • FIG. 4D is a diagram illustrating a distal end configuration of the endoscope 502 according to the seventh embodiment when viewed from the object side.
  • the endoscope 502 has two illumination optical systems 101d1, 101d2, an imaging optical system 102d, and a channel 103d at the distal end.
  • Each of the two illumination optical systems 101d1 and 101d2 has one plano-concave negative lens having a plane facing the aspherical object side.
  • Conditional expression (1) (2 ⁇ L LI ⁇ f L / ⁇ L ) / L O Condition (2) 2 ⁇ L LI ⁇ f L / ⁇ L Conditional expression (3) ⁇ Example Conditional Expression (1)
  • Conditional Expression (2) Conditional Expression (3) 1 0.806 5.24 58.7 ° 2 0.494 3.21 58.7 ° 3 0.359 1.69 45.0 ° 4 0.596 2.65 38.7 ° 5 0.107 2.13 37.3 ° (right side) 41.1 ° (left side) 6 0.103 2.06 37.3 ° (right side) 41.1 ° (left side) 7 0.103 2.06 37.3 ° (right side) 41.1 ° (left side) 41.1 ° (left side) 41.1 ° (left side) 41.1 ° (left side) 41.1 ° (left side) 41.1 ° (left side) 41.1 ° (left side) 41.1 ° (left side) 41.1 ° (left side) 41.1 ° (left side) 41.1 ° (left side) 41.1
  • the endoscope described above may satisfy a plurality of configurations at the same time. This is preferable for obtaining a good endoscope. Moreover, the combination of a preferable structure is arbitrary. For each conditional expression, only the upper limit value or lower limit value of the numerical range of the more limited conditional expression may be limited.
  • the present invention is useful for an endoscope that provides a good visual field during an endoscopic procedure such as urinary calculus crushing and improves the operability of the endoscope during the procedure.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Lenses (AREA)
  • Endoscopes (AREA)

Abstract

The present invention provides an endoscope capable of maintaining a favorable field of view during dusting in transurethral lithotripsy. The endoscope has a lighting system 101 and an imaging optical system 102 at the tip end and satisfies the following conditional expression (1): 0.1 ≤ (2 × LLI × fL / φL) / LO ≤ 0.9 (1) Where LLI represents the distance between the center OL and the center OIM, OL represents the center of the lighting system 101 closest to the imaging optical system 102, OIM represents the center of the imaging optical system 102, LO represents the observation distance to an object, fL represents the absolute value of the focal length of the lighting system 101, and φL represents the diameter of the light flux of the illumination light incident on the lighting system 101 from a light source.

Description

内視鏡Endoscope
 本発明は、内視鏡に関するものである。 The present invention relates to an endoscope.
 近年医療分野の電子内視鏡において、診断能力の向上に加えて、処置能力の向上に伴い、内視鏡による低侵襲な病変の処置が行われるようになっている。そのため、医療分野の電子内視鏡には、観察時と共に処置時も良好な視野を確保できる観察系、及び照明系が要求されている。例えば処置具の誘導を行いやすい内視鏡や、コントラストを制御する内視鏡として、以下のものが知られている。 In recent years, in electronic endoscopes in the medical field, treatment of minimally invasive lesions using an endoscope has been performed with the improvement of treatment ability in addition to improvement of diagnosis ability. Therefore, electronic endoscopes in the medical field are required to have an observation system and an illumination system that can ensure a good field of view both during observation and during treatment. For example, the following are known as endoscopes that can easily guide the treatment tool and endoscopes that control contrast.
特開2001-13422号公報JP 2001-13422 A 特許第5639522号公報Japanese Patent No. 5636922
 また、近年腎結石・尿管結石の治療法として内視鏡、例えば軟性腎盂尿管鏡を用いた経尿道的結石砕石術(Transurethral lithotripsy、以下適宜「TUL」という。)が注目されている。 In recent years, transurethral lithotripsy (hereinafter referred to as “TUL” as appropriate) using an endoscope, for example, a soft ureteroscope, has attracted attention as a method for treating renal stones and ureteral stones.
 通常のTULでは、結石をレーザー等の破砕手段で砕き、破片をバスケット鉗子等で体外に抽石する。一方で、最近ではダスティングといわれる手技も注目されている。ダスティングとは、結石をレーザー等で粉状に粉砕し体外に排出させる手技である。この手技では、灌流で破片を体外に出すことが出来るため、結石の排出が容易で取り残しが少ない。 In normal TUL, stones are crushed with a crushing means such as laser, and fragments are extracted outside the body with basket forceps. On the other hand, a technique called dusting has recently attracted attention. Dusting is a technique in which stones are pulverized with a laser or the like and discharged outside the body. In this procedure, debris can be removed from the body by perfusion, so stones can be easily discharged and left behind.
 しかしながら、粉状になった結石に照明光が散乱されることにより、視野が悪化する場合がある。TULに使用される内視鏡には、この場合を考慮した上、最適な照明系、及び観察系を設計する必要がある。 However, the field of view may deteriorate due to the scattering of the illumination light to the powdered calculus. For an endoscope used for TUL, it is necessary to design an optimal illumination system and observation system in consideration of this case.
 なお、上述した特許文献1、2を初めとして、上述する課題を解決する手段は、今までは公知になっていない。 In addition, the means for solving the above-described problems starting from Patent Documents 1 and 2 described above have not been publicly known.
 本発明は、上記に鑑みてなされたものであって、TULにおけるダスティング時に良好な視野を保つことの出来る内視鏡を提供することを目的としている。 The present invention has been made in view of the above, and an object of the present invention is to provide an endoscope capable of maintaining a good visual field when dusting in TUL.
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る内視鏡は、先端部に照明光学系と、撮像光学系と、を有し、以下の条件式(1)を満足することを特徴とする。
 0.1≦(2×LLI×f/φ)/L≦0.9   (1)
 ここで、
 LLIは、中心Oと、中心OIMとの間の距離、
 Oは、撮像光学系に最も近接した照明光学系の中心、
 OIMは、撮像光学系の中心、
 Lは、物体の観察距離、
 fは、照明光学系の焦点距離の絶対値、
 φは、光源側から照明光学系へ入射する照明光の光束径、
である。
In order to solve the above-described problems and achieve the object, an endoscope according to at least some embodiments of the present invention has an illumination optical system and an imaging optical system at the distal end, and the following conditions The expression (1) is satisfied.
0.1 ≦ (2 × L LI × f L / φ L ) / L O ≦ 0.9 (1)
here,
L LI includes a center O L, the distance between the center O IM,
OL is the center of the illumination optical system closest to the imaging optical system,
O IM, the center of the imaging optical system,
L O is the observation distance of the object,
f L is the absolute value of the focal length of the illumination optical system,
φ L is the beam diameter of illumination light incident on the illumination optical system from the light source side,
It is.
 本発明は、TULにおけるダスティング時に良好な視野を保つことの出来る内視鏡を提供できるという効果を奏する。 The present invention has an effect of providing an endoscope that can maintain a good visual field during dusting in TUL.
(a)は、実施形態に係る内視鏡を物体側から見た先端構成を示す図である。(b)は、発光体近傍の構成を示す図である。(c)は、実施形態に係る内視鏡の先端構成を示す断面図である。(d)は、発光体近傍の構成を示す他の図である。(e)は、実施形態に係る内視鏡の先端構成を示す他の断面図である。(A) is a figure showing the tip composition which looked at the endoscope concerning an embodiment from the object side. (B) is a figure which shows the structure of the light-emitting body vicinity. (C) is sectional drawing which shows the front-end | tip structure of the endoscope which concerns on embodiment. (D) is another figure which shows the structure of the light-emitting body vicinity. (E) is another sectional view showing the tip configuration of the endoscope according to the embodiment. (a)は、実施形態に係る内視鏡の発光体近傍の構成と光路を示す図である。(b)は、実施形態に係る内視鏡のパラメーターを説明する図である。(c)は、実施形態に係る内視鏡の発光体近傍の構成と光路を示す他の図である。(d)は、実施形態に係る内視鏡のパラメーターを説明する他の図である。(A) is a figure which shows the structure and optical path of the light-emitting body vicinity of the endoscope which concerns on embodiment. (B) is a figure explaining the parameter of the endoscope concerning an embodiment. (C) is another figure which shows the structure of the light-emitting body vicinity of the endoscope which concerns on embodiment, and an optical path. (D) is another figure explaining the parameter of the endoscope concerning an embodiment. 実施形態に係る内視鏡の先端構成を示す別の断面図である。It is another sectional view showing the tip composition of the endoscope concerning an embodiment. (a)は、実施例1、2に係る内視鏡を物体側から見た先端構成を示す図である。(b)は、実施例3に係る内視鏡を物体側から見た先端構成を示す図である。(c)は、実施例4に係る内視鏡を物体側から見た先端構成を示す図である。(d)は、実施例5、6、7に係る内視鏡を物体側から見た先端構成を示す図である。(A) is a figure which shows the front-end | tip structure which looked at the endoscope which concerns on Example 1, 2 from the object side. FIG. 7B is a diagram illustrating a distal end configuration of the endoscope according to the third embodiment when viewed from the object side. (C) is a diagram illustrating a distal end configuration of the endoscope according to the fourth embodiment when viewed from the object side. (D) is a diagram showing a distal end configuration of the endoscope according to Examples 5, 6, and 7 when viewed from the object side.
 以下に、実施形態に係る内視鏡を図面に基づいて詳細に説明する。なお、この実施形態により、この発明が限定されるものではない。 Hereinafter, the endoscope according to the embodiment will be described in detail based on the drawings. In addition, this invention is not limited by this embodiment.
 図1(a)は、実施形態に係る内視鏡100を物体側から見た先端構成を示す図である。内視鏡100は、先端部に照明光学系101と、撮像光学系102と、を有し、以下の条件式(1)を満足することを特徴とする。
 0.1≦(2×LLI×f/φ)/L≦0.9   (1)
 ここで、
 LLIは、中心Oと、中心OIMとの間の距離、
 Oは、撮像光学系102に最も近接した照明光学系101の中心、
 OIMは、撮像光学系102の中心、
 Lは、物体OBJ(図1(c)、(e)参照)の観察距離、
 fは、照明光学系101の焦点距離fの絶対値、
 φは、光源側(発光体105側)から照明光学系101へ入射する照明光ILの光束径、
である。
FIG. 1A is a diagram illustrating a distal end configuration of the endoscope 100 according to the embodiment as viewed from the object side. The endoscope 100 includes an illumination optical system 101 and an imaging optical system 102 at a distal end portion, and satisfies the following conditional expression (1).
0.1 ≦ (2 × L LI × f L / φ L ) / L O ≦ 0.9 (1)
here,
L LI includes a center O L, the distance between the center O IM,
OL is the center of the illumination optical system 101 closest to the imaging optical system 102,
O IM is the center of the imaging optical system 102,
L O is the observation distance of the object OBJ (see FIGS. 1C and 1E),
f L is the absolute value of the focal length f L of the illumination optical system 101,
φ L is the luminous flux diameter of the illumination light IL incident on the illumination optical system 101 from the light source side (the light emitter 105 side),
It is.
 ここで、物体OBJ(図1(c)、(e))までの観察距離Lは、好ましくは、「平均的な距離」であることが望ましい。「平均的な距離」とは、例えば、物体OBJを結石としたとき、上述のTULにおいてダスティングを行う場合における距離である。 Here, the observation distance L O to the object OBJ (FIGS. 1C and 1E) is preferably an “average distance”. The “average distance” is, for example, a distance when performing dusting in the above-described TUL when the object OBJ is a calculus.
 ここで、照明光学系101は、正の屈折力を有する場合と、負の屈折力を有する場合と、がある。図1(b)は、照明光学系101が、負の屈折力を有する場合の発光体105近傍の構成を示す図である。照明光学系101の焦点距離fは、マイナスの値である。φは、光源側(発光体105側)から照明光学系101へ入射する照明光ILの光束径である。発光体105は、例えば、発光ダイオード(LED)、不図示の光源からの照明光を導光するガラスファイバー等である。 Here, the illumination optical system 101 has a case where it has a positive refractive power and a case where it has a negative refractive power. FIG. 1B is a diagram showing a configuration in the vicinity of the light emitter 105 when the illumination optical system 101 has negative refractive power. The focal length f L of the illumination optical system 101 is a negative value. phi L is a beam diameter of the illumination light IL incident from the light source side (light emitter 105 side) to the illumination optical system 101. The light emitter 105 is, for example, a light emitting diode (LED), a glass fiber that guides illumination light from a light source (not shown), or the like.
 結石(物体OBJ)を破砕して粉状になった破片DSTは、照明光ILを散乱させる。散乱光による視野の悪化を防ぐには、照明光ILが結石を照明する位置を撮像光学系102からなるべく離すことが望ましい。即ち、照明光ILのうち光強度の強い光の光路が、撮像光学系102の光軸AXIMを横切る位置を、撮像光学系102の物体側面から遠ざけることが望ましい。 Debris DST that is pulverized from the calculus (object OBJ) scatters the illumination light IL. In order to prevent the field of view from being deteriorated by the scattered light, it is desirable that the position where the illumination light IL illuminates the stone is separated from the imaging optical system 102 as much as possible. That is, the optical path of the strong light ones light intensity of the illumination light IL, the position crossing the optical axis AX IM of the imaging optical system 102, it is desirable that away from the object side of the imaging optical system 102.
 図2(a)は、内視鏡100の発光体105近傍の構成と光路を示す図である。図2(b)は、内視鏡100のパラメーターを説明する図である。図2(c)は、内視鏡100の発光体105近傍の構成と光路を示す他の図である。図2(d)は、内視鏡100のパラメーターを説明する他の図である。 FIG. 2A is a diagram showing a configuration and an optical path in the vicinity of the light emitter 105 of the endoscope 100. FIG. 2B is a diagram for explaining parameters of the endoscope 100. FIG. 2C is another diagram showing the configuration and the optical path in the vicinity of the light emitter 105 of the endoscope 100. FIG. 2D is another diagram for explaining parameters of the endoscope 100.
 図2(a)、(b)は、照明光学系101が負の屈折力を有する場合の構成である。図2(c)、(d)は、照明光学系101が正の屈折力を有する場合の構成である。 FIGS. 2A and 2B show a configuration in the case where the illumination optical system 101 has a negative refractive power. FIGS. 2C and 2D are configurations when the illumination optical system 101 has a positive refractive power.
 条件式(1)について説明する。発光体105からの出射光のうち、最も強度の強い出射角0°方向の光線のうち、最も外側に発散される光線、即ち照明光学系101の有効径の周辺端部付近の光線に着目する。 Conditional expression (1) will be described. Of the light emitted from the illuminator 105, attention is focused on the light beam that diverges to the outermost side among the light beams having the strongest emission angle of 0 °, that is, the light beam near the peripheral edge of the effective diameter of the illumination optical system 101. .
 図2(b)、(d)において、照明光学系101から拡散する角度βは、以下の式(a)を満足する。
 tanβ=2f/φ   (a)
2B and 2D, the angle β diffused from the illumination optical system 101 satisfies the following expression (a).
tan β = 2f L / φ L (a)
 さらに、この光線が撮像光学系102の光軸AXIM(図1(c)、(e)参照)を横切る際の撮像光学系102の先端からの距離Lはtanβを用いて、以下の式(b)を満足する(図3参照)。照明光ILは、撮像光学系102から約LLI×tanβ離れた位置に届く。そして、結石を照明して散乱光を生ずる。
 距離L=LLI×tanβ
  =2×LLI×fL/φ   (b)
Furthermore, the distance L from the front end of the imaging optical system 102 when this light beam crosses the optical axis AX IM (see FIGS. 1C and 1E) of the imaging optical system 102 is expressed by the following equation ( b) is satisfied (see FIG. 3). The illumination light IL reaches a position separated from the imaging optical system 102 by about L LI × tan β. The stone is then illuminated to produce scattered light.
Distance L = L LI × tan β
= 2 × L LI × fL / φ L (b)
 距離Lが小さいと、ダスティング時の散乱光により視野が悪化してしまう。また、距離Lが大きすぎると、注目領域(例えば結石)の配光が悪化してしまう。 If the distance L is small, the field of view deteriorates due to scattered light during dusting. On the other hand, if the distance L is too large, the light distribution in the attention area (for example, calculus) will deteriorate.
 条件式(1)は、距離Lと距離Lに関する関係式である。条件式(1)の下限値を上回るように、照明光ILの配光及び内視鏡100の先端レイアウトを選択する。これにより、撮像光学系102から離れた位置に対して、強い強度の照明光ILの光路を向けることができる。この結果、照明光ILの散乱による視野の悪化を抑制できる。 Conditional expression (1) is a relational expression regarding the distance L and the distance L 2 O. The light distribution of the illumination light IL and the distal end layout of the endoscope 100 are selected so as to exceed the lower limit value of the conditional expression (1). Thereby, the optical path of the strong illumination light IL can be directed to a position away from the imaging optical system 102. As a result, the visual field deterioration due to the scattering of the illumination light IL can be suppressed.
 条件式(1)の上限値を下回ることで、観察領域の配光特性が悪化することを防ぐことができる。 It can prevent that the light distribution characteristic of an observation area deteriorates by being less than the upper limit of conditional expression (1).
 また、本実施形態の好ましい態様によれば、内視鏡は、先端部において、2以上の照明光学系を有し、全ての照明光学系は、条件式(1)を満足することが望ましい。これにより、尿路結石破砕等の内視鏡処置時に良好な視野を提供し、処置時の内視鏡操作性を向上させることが出来る。 Also, according to a preferred aspect of the present embodiment, it is desirable that the endoscope has two or more illumination optical systems at the distal end, and that all the illumination optical systems satisfy the conditional expression (1). Thereby, a favorable visual field can be provided at the time of endoscopic treatment such as urinary calculus crushing, and the operability of the endoscope at the time of treatment can be improved.
 また、本実施形態の好ましい態様によれば、さらに、以下の条件式(2)を満足することが望ましい。
 1mm≦2×LLI×fL/φ≦20mm   (2)
 ここで、
 LLIは、中心Oと、中心OIMとの間の距離、
 Oは、撮像光学系に最も近接した照明光学系の中心、
 OIMは、撮像光学系の中心、
 fLは、照明光学系の焦点距離の絶対値、
 φは、光源側から照明光学系へ入射する照明光の光束径、
である。
 これにより、より良好な視野を確保できる。
Moreover, according to the preferable aspect of this embodiment, it is further desirable to satisfy the following conditional expression (2).
1 mm ≦ 2 × L LI × fL / φ L ≦ 20 mm (2)
here,
L LI includes a center O L, the distance between the center O IM,
OL is the center of the illumination optical system closest to the imaging optical system,
O IM is the center of the imaging optical system,
fL is the absolute value of the focal length of the illumination optical system,
φ L is the beam diameter of illumination light incident on the illumination optical system from the light source side,
It is.
Thereby, a better visual field can be secured.
 また、本実施形態の好ましい態様によれば、先端部に、さらにチャンネルを有し、照明光学系は1つであり、以下の条件式(3)を満足することが望ましい。
 40°≦θ≦90°   …(3)
 ここで、
 θは、先端部の断面におけるチャンネルの中心をOCHとしたとき、中心OCHと中心OIMとを結ぶ線分と、中心OCHと中心Oを結ぶ線分とのなす角、
である。
Further, according to a preferable aspect of the present embodiment, it is desirable that the distal end portion further has a channel, there is one illumination optical system, and the following conditional expression (3) is satisfied.
40 ° ≦ θ ≦ 90 ° (3)
here,
θ, when the center of the channel in the cross section of the tip was O CH, a line segment connecting the center O CH and the center O IM, the angle between the line connecting the center O CH and the center O L,
It is.
 結石を破砕するためには、内視鏡のチャンネル殻破砕プローブを挿脱することで、結石との距離感を把握しながら破砕作業を行う。そして、ダスティング時、内視鏡の視野は、破砕された結石の破片により曇ってしまう。そのため、チャンネルより突出した破砕プローブと、結石と、の位置関係を把握するのが難しくなる。一方で、ダスティング時にも結石に投影される破砕プローブの照明光により生ずる影を認識することで、結石と、破砕プローブと、の位置関係の把握が容易になる。 To crush the calculus, insert and remove the channel shell crushing probe of the endoscope, and perform the crushing operation while grasping the distance from the calculus. At the time of dusting, the field of view of the endoscope becomes cloudy due to crushed stone fragments. Therefore, it is difficult to grasp the positional relationship between the crushing probe protruding from the channel and the calculus. On the other hand, by recognizing the shadow generated by the illumination light of the crushing probe projected onto the calculus even during dusting, it becomes easy to grasp the positional relationship between the calculus and the crushing probe.
 そのため、結石に投影される破砕プローブの影は、破砕プローブと、結石と、の位置関係を把握する上で重要である。本実施形態では、照明光学系と、撮像光学系と、破砕プローブを挿脱するチャンネルと、の位置関係を、条件式(3)を満足するように規定している。 Therefore, the shadow of the crushing probe projected on the calculus is important for grasping the positional relationship between the crushing probe and the calculus. In the present embodiment, the positional relationship among the illumination optical system, the imaging optical system, and the channel through which the crushing probe is inserted / removed is defined so as to satisfy the conditional expression (3).
 条件式(3)を満足することで、結石に投影される破砕プローブの影が視認しやすくなる。これにより、結石と、破砕プローブと、の距離感が容易に把握でき、内視鏡処置時の操作性が向上する。 Satisfying conditional expression (3) makes it easier to visually recognize the shadow of the crushing probe projected onto the calculus. Thereby, the sense of distance between the calculus and the crushing probe can be easily grasped, and the operability at the time of endoscopic treatment is improved.
 条件式(3)の下限値を下回ると、破砕プローブの影が、破砕プローブ自身に隠れてしまい、影を認識できなくなってしまう。 When the lower limit value of conditional expression (3) is not reached, the shadow of the crushing probe is hidden behind the crushing probe itself, and the shadow cannot be recognized.
 条件式(3)の上限値を上回ると、破砕プローブの影は、注目領域である内視鏡の視野中心方向に見えてしまい、処置時の内視鏡の操作性が低下してしまう。 If the upper limit value of conditional expression (3) is exceeded, the shadow of the crushing probe will appear in the direction of the center of the endoscope field of interest, and the operability of the endoscope during treatment will be reduced.
 以下、各実施例について説明する。 Hereinafter, each example will be described.
(実施例1)
 図4(a)は、実施例1に係る内視鏡200を物体側から見た先端構成を示す図である。内視鏡200は、先端部に照明光学系101aと、撮像光学系102aと、チャンネル103aと、を有する。照明光学系101aは、物体側に平面を向けた平凸正レンズ1枚を有する。
 
各種データ
 レンズ曲率半径R=-0.600 mm
 L=6.50 mm
 f=0.935 mm
 
Example 1
FIG. 4A is a diagram illustrating a distal end configuration of the endoscope 200 according to the first embodiment when viewed from the object side. The endoscope 200 has an illumination optical system 101a, an imaging optical system 102a, and a channel 103a at the distal end. The illumination optical system 101a has one plano-convex positive lens with the plane facing the object side.

Various data Lens radius of curvature R = -0.600 mm
L O = 6.50 mm
f L = 0.935 mm
(実施例2)
 図4(a)は、実施例2に係る内視鏡201を物体側から見た先端構成を示す図である。内視鏡201は、実施例1と同様に、先端部に照明光学系101aと、撮像光学系102aと、チャンネル103aと、を有する。照明光学系101aは、物体側に平面を向けた平凹負レンズ1枚を有する。
 
各種データ
 レンズ曲率半径R=0.368 mm
 L=6.50 mm
 f=0.574 mm
 
(Example 2)
FIG. 4A is a diagram illustrating a distal end configuration of the endoscope 201 according to the second embodiment when viewed from the object side. Like the first embodiment, the endoscope 201 includes an illumination optical system 101a, an imaging optical system 102a, and a channel 103a at the distal end. The illumination optical system 101a has one plano-concave negative lens with a plane facing the object side.

Various data Lens radius of curvature R = 0.368 mm
L O = 6.50 mm
f L = 0.574 mm
(実施例3)
 図4(b)は、実施例3に係る内視鏡300を物体側から見た先端構成を示す図である。内視鏡300は、先端部に照明光学系101bと、撮像光学系102bと、チャンネル103bと、を有する。照明光学系101bは、物体側に平面を向けた平凸正レンズ1枚を有する。
 
各種データ
 レンズ曲率半径R=-0.475 mm
 L=4.70 mm
 f=0.535 mm
 
(Example 3)
FIG. 4B is a diagram illustrating a distal end configuration of the endoscope 300 according to the third embodiment when viewed from the object side. The endoscope 300 has an illumination optical system 101b, an imaging optical system 102b, and a channel 103b at the distal end. The illumination optical system 101b has one plano-convex positive lens with the plane facing the object side.

Various data Lens curvature radius R = -0.475 mm
L O = 4.70 mm
f L = 0.535 mm
(実施例4)
 図4(c)は、実施例4に係る内視鏡400を物体側から見た先端構成を示す図である。内視鏡400は、先端部に照明光学系101cと、撮像光学系102cと、チャンネル103cと、を有する。照明光学系101cは、物体側に平面を向けた平凸正レンズ1枚を有する。
 
各種データ
 レンズ曲率半径R=-0.600 mm
 L=4.45 mm
 f=0.935 mm
 
Example 4
FIG. 4C is a diagram illustrating a distal end configuration of the endoscope 400 according to the fourth embodiment when viewed from the object side. The endoscope 400 has an illumination optical system 101c, an imaging optical system 102c, and a channel 103c at the distal end. The illumination optical system 101c has one plano-convex positive lens with the plane facing the object side.

Various data Lens radius of curvature R = -0.600 mm
L O = 4.45 mm
f L = 0.935 mm
(実施例5)
 図4(d)は、実施例5に係る内視鏡500を物体側から見た先端構成を示す図である。内視鏡500は、先端部に2つの照明光学系101d1、101d2と、撮像光学系102dと、チャンネル103dと、を有する。2つの照明光学系101d1、101d2は、それぞれ物体側に平面を向けた平凸正レンズを有する。
 
各種データ
 レンズ曲率半径R=-0.370 mm
 L=20.0 mm
 fは、左右照明光学系ともに0.577 mm
 
(Example 5)
FIG. 4D is a diagram illustrating a distal end configuration of the endoscope 500 according to the fifth embodiment when viewed from the object side. The endoscope 500 has two illumination optical systems 101d1 and 101d2, an imaging optical system 102d, and a channel 103d at the distal end. Each of the two illumination optical systems 101d1 and 101d2 has a plano-convex positive lens with the plane facing the object side.

Various data Lens radius of curvature R = -0.370 mm
L O = 20.0 mm
f L is 0.577 mm for both left and right illumination optical systems.
(実施例6)
 図4(d)は、実施例6に係る内視鏡501を物体側から見た先端構成を示す図である。内視鏡501は、先端部に2つの照明光学系101d1、101d2と、撮像光学系102dと、チャンネル103dと、を有する。2つの照明光学系101d1、101d2は、それぞれ非球面形状の物体側に平面を向けた平凸正レンズ1枚を有する。
 
各種データ
 レンズ近軸曲率半径R=-0.358 mm
 L=20.0 mm
 fは左右照明光学系ともに0.558 mm
 
(Example 6)
FIG. 4D is a diagram illustrating a distal end configuration of the endoscope 501 according to the sixth embodiment when viewed from the object side. The endoscope 501 has two illumination optical systems 101d1, 101d2, an imaging optical system 102d, and a channel 103d at the distal end. Each of the two illumination optical systems 101d1 and 101d2 has one plano-convex positive lens with the plane facing the aspherical object side.

Various data Lens paraxial radius of curvature R = -0.358 mm
L O = 20.0 mm
f L is 0.558 mm for both left and right illumination optics
 また、本実施例の照明光学系101d1、101d2の非球面形状については、光軸AXをX軸、光軸AXからの高さをhとしたときに次式で表される面形状である。 In addition, the aspherical shape of the illumination optical systems 101d1 and 101d2 of the present embodiment is a surface shape represented by the following expression when the optical axis AX L is the X axis and the height from the optical axis AX L is h. is there.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 K=0
 A4=1.2000E+00      
 A6=1.2000E+01
K = 0
A4 = 1.2,000E + 00
A6 = 1.2,000E + 01
 ここで、Cは近軸曲率、Kは円錐係数、A4、A6はそれぞれ4次、6次の非球面係数である。また、非球面係数において、「E-n」(nは整数)は、「10-n」を示して
いる。
Here, C is a paraxial curvature, K is a conical coefficient, and A4 and A6 are fourth-order and sixth-order aspheric coefficients, respectively. In the aspheric coefficient, “E−n” (n is an integer) indicates “10 −n ”.
(実施例7)
 図4(d)は、実施例7に係る内視鏡502を物体側から見た先端構成を示す図である。内視鏡502は、先端部に2つの照明光学系101d1、101d2と、撮像光学系102dと、チャンネル103dと、を有する。2つの照明光学系101d1、101d2は、それぞれ非球面形状の物体側に平面を向けた平凹負レンズ1枚を有する。
 
各種データ
 レンズ曲率半径R=0.358 mm
 L=20.0 mm
 fは、左右照明光学系ともに0.558 mm
 
(Example 7)
FIG. 4D is a diagram illustrating a distal end configuration of the endoscope 502 according to the seventh embodiment when viewed from the object side. The endoscope 502 has two illumination optical systems 101d1, 101d2, an imaging optical system 102d, and a channel 103d at the distal end. Each of the two illumination optical systems 101d1 and 101d2 has one plano-concave negative lens having a plane facing the aspherical object side.

Various data Lens curvature radius R = 0.358 mm
L O = 20.0 mm
f L is 0.558 mm for both left and right illumination optical systems.
 以下、各実施例の条件式対応値を示す。
 
条件式(1) (2×LLI×f/φ)/L
条件式(2) 2×LLI×f/φ
条件式(3) θ
 
実施例     条件式(1)      条件式(2)      条件式(3)
1          0.806          5.24            58.7°
2          0.494          3.21            58.7°
3          0.359          1.69            45.0°
4          0.596          2.65            38.7°
5          0.107          2.13            37.3°(右側)  41.1°(左側)
6          0.103          2.06            37.3°(右側)  41.1°(左側)
7          0.103          2.06            37.3°(右側)  41.1°(左側)
 
The values corresponding to the conditional expressions in the respective examples are shown below.

Conditional expression (1) (2 × L LI × f L / φ L ) / L O
Condition (2) 2 × L LI × f L / φ L
Conditional expression (3) θ

Example Conditional Expression (1) Conditional Expression (2) Conditional Expression (3)
1 0.806 5.24 58.7 °
2 0.494 3.21 58.7 °
3 0.359 1.69 45.0 °
4 0.596 2.65 38.7 °
5 0.107 2.13 37.3 ° (right side) 41.1 ° (left side)
6 0.103 2.06 37.3 ° (right side) 41.1 ° (left side)
7 0.103 2.06 37.3 ° (right side) 41.1 ° (left side)
 なお、上述の内視鏡は、複数の構成を同時に満足してもよい。このようにすることが、良好な内視鏡を得る上で好ましい。また、好ましい構成の組み合わせは任意である。また、各条件式について、より限定した条件式の数値範囲の上限値あるいは下限値のみを限定しても構わない。 The endoscope described above may satisfy a plurality of configurations at the same time. This is preferable for obtaining a good endoscope. Moreover, the combination of a preferable structure is arbitrary. For each conditional expression, only the upper limit value or lower limit value of the numerical range of the more limited conditional expression may be limited.
 以上、本発明の種々の実施形態について説明したが、本発明は、これらの実施形態のみに限られるものではなく、その趣旨を逸脱しない範囲で、これら実施形態の構成を適宜組合せて構成した実施形態も本発明の範疇となるものである。 Although various embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and may be implemented by appropriately combining the configurations of these embodiments without departing from the spirit of the present invention. The form is also within the scope of the present invention.
 本発明は尿路結石破砕等の内視鏡処置時に良好な視野を提供し、処置時の内視鏡操作性を向上させる内視鏡に有用である。 The present invention is useful for an endoscope that provides a good visual field during an endoscopic procedure such as urinary calculus crushing and improves the operability of the endoscope during the procedure.
 100、200、201、300、400、500、501、502 内視鏡
 101、101a~101d2 照明光学系
 102 102a~102d 撮像光学系
 103、103a~103d チャンネル
 OIM、OCH、O 中心 
 IL 照明光
 104 撮像ユニット
 105 発光体
 DST 破片
 OBJ 物体
100, 200, 201, 300, 400, 500, 501, 502 Endoscope 101, 101a to 101d2 Illumination optical system 102 102a to 102d Imaging optical system 103, 103a to 103d Channels O IM , O CH , O I center
IL illumination light 104 imaging unit 105 illuminant DST fragment OBJ object

Claims (4)

  1.  先端部に照明光学系と、撮像光学系と、を有し、
     以下の条件式(1)を満足することを特徴とする内視鏡。
     0.1≦(2×LLI×f/φ)/L≦0.9   (1)
     ここで、
     LLIは、中心Oと、中心OIMとの間の距離、
     Oは、前記撮像光学系に最も近接した前記照明光学系の中心、
     OIMは、前記撮像光学系の中心、
     Lは、物体の観察距離、
     fは、前記照明光学系の焦点距離の絶対値、
     φは、光源側から前記照明光学系へ入射する照明光の光束径、
    である。
    It has an illumination optical system and an imaging optical system at the tip,
    An endoscope satisfying the following conditional expression (1):
    0.1 ≦ (2 × L LI × f L / φ L ) / L O ≦ 0.9 (1)
    here,
    L LI includes a center O L, the distance between the center O IM,
    OL is the center of the illumination optical system closest to the imaging optical system,
    O IM is the center of the imaging optical system,
    L O is the observation distance of the object,
    f L is the absolute value of the focal length of the illumination optical system,
    φ L is the beam diameter of illumination light incident on the illumination optical system from the light source side,
    It is.
  2.  前記内視鏡は、前記先端部において、2以上の前記照明光学系を有し、
     全ての前記照明光学系は、前記条件式(1)を満足することを特徴とする請求項1に記載の内視鏡。
    The endoscope has two or more illumination optical systems at the distal end,
    The endoscope according to claim 1, wherein all the illumination optical systems satisfy the conditional expression (1).
  3.  さらに、以下の条件式(2)を満足することを特徴とする請求項1または2に記載の内視鏡。
     1mm≦2×LLI×f/φ≦20mm   (2)
     ここで、
     LLIは、中心Oと、中心OIMとの間の距離、
     Oは、前記撮像光学系に最も近接した前記照明光学系の中心、
     OIMは、前記撮像光学系の中心、
     fは、前記照明光学系の焦点距離の絶対値、
     φは、光源側から前記照明光学系へ入射する照明光の光束径、
    である。
    Furthermore, the following conditional expression (2) is satisfied, The endoscope according to claim 1 or 2 characterized by things.
    1 mm ≦ 2 × L LI × f L / φ L ≦ 20 mm (2)
    here,
    L LI includes a center O L, the distance between the center O IM,
    OL is the center of the illumination optical system closest to the imaging optical system,
    O IM, the center of the imaging optical system,
    f L is the absolute value of the focal length of the illumination optical system,
    φ L is the beam diameter of illumination light incident on the illumination optical system from the light source side,
    It is.
  4.  前記先端部に、チャンネルを有し、
     前記照明光学系は1つであり、
     以下の条件式(3)を満足することを特徴とする請求項1に記載の内視鏡。
     40°≦θ≦90°   …(3)
     ここで、
     θは、前記先端部の断面における前記チャンネルの中心をOCHとしたとき、中心OCHと中心OIMとを結ぶ線分と、中心OCHと中心Oを結ぶ線分とのなす角、
    である。
      
    A channel at the tip,
    The illumination optical system is one,
    The endoscope according to claim 1, wherein the following conditional expression (3) is satisfied.
    40 ° ≦ θ ≦ 90 ° (3)
    here,
    θ, when the center of the channel in a cross section of the tip portion was O CH, a line segment connecting the center O CH and the center O IM, the angle between the line connecting the center O CH and the center O L,
    It is.
PCT/JP2018/015245 2017-05-12 2018-04-11 Endoscope WO2018207539A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-095943 2017-05-12
JP2017095943 2017-05-12

Publications (1)

Publication Number Publication Date
WO2018207539A1 true WO2018207539A1 (en) 2018-11-15

Family

ID=64104525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015245 WO2018207539A1 (en) 2017-05-12 2018-04-11 Endoscope

Country Status (1)

Country Link
WO (1) WO2018207539A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166014A1 (en) * 2020-02-17 2021-08-26

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200428A (en) * 2010-03-25 2011-10-13 Olympus Medical Systems Corp Endoscope
WO2013080831A1 (en) * 2011-12-01 2013-06-06 オリンパスメディカルシステムズ株式会社 Endoscope device
WO2015107844A1 (en) * 2014-01-15 2015-07-23 オリンパス株式会社 Endoscope device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200428A (en) * 2010-03-25 2011-10-13 Olympus Medical Systems Corp Endoscope
WO2013080831A1 (en) * 2011-12-01 2013-06-06 オリンパスメディカルシステムズ株式会社 Endoscope device
WO2015107844A1 (en) * 2014-01-15 2015-07-23 オリンパス株式会社 Endoscope device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021166014A1 (en) * 2020-02-17 2021-08-26
WO2021166014A1 (en) * 2020-02-17 2021-08-26 オリンパス株式会社 Endoscope device and endoscope system
JP7256923B2 (en) 2020-02-17 2023-04-12 オリンパス株式会社 Endoscope device and endoscope system

Similar Documents

Publication Publication Date Title
US7585274B2 (en) Optical system for endoscopes
US20170215714A1 (en) Endoscope illumination device and endoscope
JP5330628B1 (en) Endoscope device
JP6728480B2 (en) Endoscope
JP5897224B2 (en) Endoscope device
AU2017405805A1 (en) Endoscopes and methods of treatment
WO2018207539A1 (en) Endoscope
WO2015015996A1 (en) Illumination optical system for endoscope
JP5075658B2 (en) Endoscope
JPWO2016027634A1 (en) Endoscope device
JP2012011145A (en) Medical equipment
JP2009198736A (en) Illuminating device and endoscope
JP4011673B2 (en) Endoscope optical system
US9474437B2 (en) Endoscope having a shaft tube
JP5283463B2 (en) Endoscope
JP5258227B2 (en) Endoscope lighting system
US11487101B2 (en) Endoscope objective lens unit and endoscope
US20180078125A1 (en) Surgical instrument, in particular ureteroscope
JP7010865B2 (en) Illumination lenses, illumination optics, and endoscopes
JP2994229B2 (en) Endoscope
JP6501995B1 (en) Imaging optical system and endoscope
US11974725B2 (en) Optical system having tapered light transmission element
JP4657013B2 (en) End of the endoscope
JP2024010967A (en) Endoscope
JP4024322B2 (en) Endoscope light source optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18799112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18799112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载