WO2018139863A1 - Heat exchanger of refrigerator - Google Patents
Heat exchanger of refrigerator Download PDFInfo
- Publication number
- WO2018139863A1 WO2018139863A1 PCT/KR2018/001098 KR2018001098W WO2018139863A1 WO 2018139863 A1 WO2018139863 A1 WO 2018139863A1 KR 2018001098 W KR2018001098 W KR 2018001098W WO 2018139863 A1 WO2018139863 A1 WO 2018139863A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat exchanger
- heat
- heat exchange
- flat tubes
- refrigerant
- Prior art date
Links
- 239000003507 refrigerant Substances 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 6
- 238000005057 refrigeration Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05383—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0417—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0426—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
- F28D1/0435—Combination of units extending one behind the other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05391—Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/126—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
- F28F3/048—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/043—Condensers made by assembling plate-like or laminated elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
- F28D1/05366—Assemblies of conduits connected to common headers, e.g. core type radiators
- F28D1/05375—Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0061—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for phase-change applications
- F28D2021/0063—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/0068—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/126—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
- F28F1/128—Fins with openings, e.g. louvered fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2210/00—Heat exchange conduits
- F28F2210/08—Assemblies of conduits having different features
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2260/00—Heat exchangers or heat exchange elements having special size, e.g. microstructures
- F28F2260/02—Heat exchangers or heat exchange elements having special size, e.g. microstructures having microchannels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
Definitions
- the present invention relates to a heat exchanger of a refrigerator.
- the heat exchanger may be used as a condenser or evaporator in a refrigeration cycle device consisting of a compressor, a condenser, an expansion device, and an evaporator.
- the heat exchanger is installed in a vehicle, a refrigerator, etc. to exchange the refrigerant with air.
- the heat exchanger may be classified into a fin tube type heat exchanger and a micro channel heat exchanger according to the structure.
- Finned tube heat exchangers are made of copper, and micro-channel heat exchangers are made of aluminum.
- the micro channel type heat exchanger has a good efficiency compared to the fin tube type heat exchanger because a fine flow path is formed therein.
- the small microchannel type heat exchanger used in a refrigerator or the like Since a small microchannel type heat exchanger used in a conventional refrigerator or the like is manufactured in a one turn method, only a simple refrigerant path can be designed, and there is a problem in that heat exchange efficiency is lowered.
- the small microchannel type heat exchanger used in a refrigerator or the like has the same number of refrigerant tubes at the inlet and the outlet, so that the temperature difference between the refrigerant and the air is large in the portion where the high temperature refrigerant flows in, so that the heat exchange amount is large but the heat exchange efficiency is high. Is low and the temperature difference between the refrigerant and the air is small in the outflow portion of the low-temperature refrigerant is small heat exchange amount, but the heat exchange efficiency is high, there is a disadvantage that the overall heat exchange efficiency is lowered.
- the conventional heat exchanger has the same cross-sectional area of the refrigerant tube in the inflow portion and the outflow portion, the change in the specific volume of the refrigerant, there is a problem that the heat exchange amount is lowered.
- An object of the present invention is to provide a heat exchanger of a refrigerator in which a coolant flows smoothly even when used as a condenser.
- Another object of the present invention is to provide a heat exchanger of a refrigerator having a plurality of heat and excellent heat exchange efficiency.
- Still another object of the present invention is to provide a heat exchanger of a refrigerator which minimizes a pressure difference between refrigerants in a plurality of rows.
- the heat exchanger of the refrigerator according to the present invention heats the second heat exchanger to the outside air before the first heat exchanger, and increases the sum of the cross-sectional areas of the flat tubes of the first heat exchanger and the cross-sectional area of the flat tubes of the second heat exchanger. It is done.
- the sum of the cross sectional areas of the flat tubes of the intermediate heat exchanger is less than or equal to the sum of the cross sectional areas of the flat tubes of the first heat exchanger.
- the heat exchanger of the refrigerator according to the present invention is the inner diameter of the flat tube of the first heat exchanger, the inner diameter of the second flat tube is the same, the number of the flat tube of the first heat exchanger is a large number of the flat tube of the second heat exchanger. It is characterized by.
- the heat exchanger of the refrigerator of the present invention has one or more of the following effects.
- the second heat exchanger is heat-exchanged with the outside air before the first heat exchanger, and the optimum heat exchange amount considering the specific volume by increasing the sum of the cross-sectional areas of the flat tubes of the first heat exchanger and the cross-sectional area of the flat tubes of the second heat exchanger.
- the intermediate heat exchange part can be used, and even when the intermediate heat exchange part is used, the heat exchange efficiency and the heat exchange amount can be improved.
- FIG. 1 is a block diagram showing a refrigeration cycle apparatus according to a first embodiment of the present invention.
- FIG. 2 is a perspective view illustrating the inside of the outdoor unit illustrated in FIG. 1.
- FIG. 3 is a perspective view of the outdoor heat exchanger shown in FIG. 2.
- FIG. 4 is an exploded perspective view of the outdoor heat exchanger illustrated in FIG. 2.
- FIG. 5 is a cross-sectional view of the first heat exchanger illustrated in FIG. 4.
- FIG. 6 is a cross-sectional view of the second heat exchanger illustrated in FIG. 4.
- FIG. 7 is a graph showing the amount of heat exchange according to the area ratio of the flat tubes of the first heat exchange part and the second heat exchange part.
- FIG 8 is a plan view of an outdoor heat exchanger according to a second embodiment of the present invention.
- FIG. 9 is a plan view of an outdoor heat exchanger according to a third embodiment of the present invention.
- FIG. 10 is a plan view of an outdoor heat exchanger according to a fourth embodiment of the present invention.
- spatially relative terms below “, “ beneath “, “ lower”, “ above “, “ upper” It may be used to easily describe the correlation of components with other components. Spatially relative terms are to be understood as including terms in different directions of the component in use or operation in addition to the directions shown in the figures. For example, when flipping a component shown in the drawing, a component described as “below” or “beneath” of another component may be placed “above” the other component. Can be. Thus, the exemplary term “below” can encompass both an orientation of above and below. The components can be oriented in other directions as well, so that spatially relative terms can be interpreted according to the orientation.
- each component is exaggerated, omitted, or schematically illustrated for convenience and clarity of description.
- the size and area of each component does not necessarily reflect the actual size or area.
- FIG. 1 is a block diagram showing a refrigeration cycle apparatus according to a first embodiment of the present invention
- Figure 2 is a perspective view showing the inside of the outdoor unit shown in FIG.
- the refrigeration cycle apparatus includes a compressor 10 for compressing a refrigerant, an outdoor heat exchanger 20 in which the refrigerant is heat-exchanged with outdoor air, and an expansion mechanism for expanding the refrigerant ( 12) and an indoor heat exchanger (13) in which the refrigerant exchanges heat with the indoor air.
- the refrigerant compressed by the compressor 10 may pass through the outdoor heat exchanger 20 to be condensed by heat exchange with outdoor air.
- the outdoor heat exchanger 20 may be used as a condenser.
- the refrigerant condensed in the outdoor heat exchanger 20 may flow to the expansion mechanism 12 and expand.
- the refrigerant expanded by the expansion mechanism 12 may be exchanged with the indoor air and evaporated while passing through the indoor heat exchanger 13.
- the indoor heat exchanger 12 may be used as an evaporator to evaporate the refrigerant.
- the refrigerant evaporated in the indoor heat exchanger 12 may be recovered by the compressor 10.
- the refrigerant is operated in a cooling cycle while circulating the compressor 10, the outdoor heat exchanger 20, the expansion mechanism 12, and the indoor heat exchanger 13.
- the compressor 10 may be connected to a suction channel of the compressor 10 for guiding the refrigerant passing through the indoor heat exchanger 13 to the compressor 10.
- the accumulator 14 in which the liquid refrigerant accumulates may be installed in the suction passage of the compressor 10.
- the indoor heat exchanger 13 may have a refrigerant passage through which the refrigerant passes.
- the refrigeration cycle apparatus may be a separate air conditioner in which the indoor unit I and the outdoor unit O are separated, and in this case, the compressor 10 and the outdoor heat exchanger 20 may be installed inside the outdoor unit I.
- the refrigeration cycle apparatus may be a refrigerator, the indoor heat exchanger (13) is arranged to heat exchange with the air in the food storage, the outdoor heat exchanger (20) machine 20 may heat exchange with the air outside the food storage.
- the indoor unit I and the outdoor unit O may be arranged together in the main body.
- the expansion mechanism 12 may be installed in either the indoor unit I or the outdoor unit O.
- the indoor heat exchanger 13 may be installed inside the indoor unit (I).
- the outdoor unit O may be provided with an outdoor fan 15 for blowing outdoor air to the outdoor heat exchanger 20.
- the indoor unit I may be provided with an indoor fan 16 for blowing indoor air to the indoor heat exchanger 13.
- FIG. 3 is a perspective view of the outdoor heat exchanger 20 shown in FIG. 2
- FIG. 4 is an exploded perspective view of the outdoor heat exchanger 20 shown in FIG. 2
- FIG. 5 is a first heat exchanger 100 shown in FIG. 4.
- 6 is a cross-sectional view of the second heat exchanger 200 shown in FIG. 4.
- the outdoor heat exchanger 20 is a micro channel type heat exchanger.
- the outdoor heat exchanger 20 is made of aluminum.
- the outdoor heat exchanger 20 includes a first heat exchanger 100 and a second heat exchanger 200. Unlike the present embodiment, the outdoor heat exchanger 20 may have two or more heat exchangers stacked.
- the outdoor heat exchanger 20 is connected to the first heat exchanger 100, the second heat exchanger 200 stacked with the first heat exchanger 100, and the first heat exchanger 100 to supply refrigerant.
- the tube 22 and the discharge tube 24 connected to the second heat exchange part 200 to discharge the refrigerant, the first heat exchange part 100 and the second heat exchange part 200 are connected, and the refrigerant is connected to the first refrigerant. It includes a connecting pipe 25 for flowing from the heat exchange unit 100 to the second heat exchange unit 200.
- the first heat exchange part 100 is disposed to exchange heat with air heat exchanged with the second heat exchange part 200.
- the first heat exchanger 100 and the second heat exchanger 200 are disposed on a path through which the external air flows, and the external air is primarily heat exchanged with the second heat exchanger 200, and the secondary air is secondary.
- heat exchange with the first heat exchanger 100 More specifically, the outdoor unit includes an air inlet part H1 through which external air is introduced, and an air outlet part H2 through which the inlet air exchanges heat with the heat exchange parts and flows out, and the second heat exchange part 200 includes a first heat exchanger. It is disposed adjacent to the air inlet portion H1 relative to the portion 100.
- the first heat exchange part 100 through which the high temperature refrigerant flows is disposed in a region having a high outside temperature
- the second heat exchange part 200 through which the low temperature refrigerant flows is disposed in a region where the temperature of the outside air is low
- the first heat exchange part 100 and the second heat exchange part 200 may be arranged to define a heat exchange surface P intersecting with the flow direction of air.
- the first heat exchanger 100 and the second heat exchanger 200 cross the air flow direction, and form a heat exchange surface through which the air can pass through the heat exchanger.
- the first heat exchange part 100 and the second heat exchange part 200 may be stacked along the flow direction of air.
- the first heat exchange part 100 and the second heat exchange part 200 are manufactured by stacking a plurality of flat tubes 50.
- the first heat exchange part 100 and the second heat exchange part 200 arrange the flat tube 50 horizontally to allow the refrigerant to move horizontally.
- the flat tubes 50 of the first heat exchange part 100 and the second heat exchange part 200 are horizontally disposed horizontally when the air flow direction is in the front-rear direction, and the plurality of flat tubes ( 50 may be stacked in a vertical direction. Heat is exchanged with the refrigerant in the flat tube 50 while air passes through the space between the plurality of flat tubes 50 stacked in the vertical direction (longitudinal direction).
- the plurality of flat tubes 50 stacked vertically define a heat exchange surface P1 together with fins 60 to be described later.
- the first heat exchange part 100 may include a flat tube 50, a left header, a right header, and a fin 60.
- the first heat exchange part 100 includes a plurality of first flat tubes 51 having a plurality of flow paths formed therein, and a first fin 61 connecting the first flat tubes 51 to conduct heat.
- the first left header 71 is coupled to one side of the plurality of first flat tubes 51 and communicates with one side of the plurality of first flat tubes 51, and the refrigerant flows, and the other side of the plurality of first flat tubes 51. It is coupled to, and the first right header 81 in communication with the other side of the plurality of first flat tube 51 flows the refrigerant.
- the first flat tube 51 is disposed to extend in the transverse direction. Inside the first flat tube 51, a flow path through which a refrigerant flows is formed.
- the first flat tube 51 is disposed horizontally, and a plurality of first flat tubes 51 are stacked in the vertical direction. A plurality of flow paths may be formed in the first flat tube 51.
- the left side of the first flat tube 51 communicates with the first left header 71, and the right side communicates with the first right header 81.
- the first fin 61 is formed by bending in the vertical direction, and connects two first flat tubes 51 stacked in the vertical direction to conduct heat.
- the first right header 81 is in communication with the other side of the plurality of first flat tubes 51.
- the first right header 81 extends in the vertical direction and is connected to the inflow pipe 22.
- the inside of the first right header 81 is formed as one space, and distributes and supplies the refrigerant introduced through the inflow pipe 22 to the plurality of first flat tubes 51.
- One inlet pipe 22 may be connected to the first right header 81, and a plurality of inlet pipes 22 may be connected to the first right header 81.
- the inlet pipe 22 may include a first inlet pipe 22a and a second inlet pipe 22b disposed below the first inlet pipe 22.
- the first left header 71 communicates with one side of the plurality of first flat tubes 51.
- the first left header 71 extends long in the vertical direction and is connected to the connecting pipe 25.
- the inside of the first left header 71 is formed as one space, and guides the refrigerant discharged to the other side of the plurality of first flat tubes 51 to the connection pipe 25.
- One connector 25 may be connected to the first left header 71, and a plurality of connectors 25 may be connected.
- one connecting pipe 25 is connected to the center of the first left header 71.
- One side of the connection pipe 25 is connected to the first left header 71 of the first heat exchange part 100, and the other side is connected to the second left header 70 of the second heat exchange part 200.
- the refrigerant introduced through the inlet pipe 22 is supplied to each of the first flat tubes 51 through the first right header 81, and the refrigerant passing through the first flat tube 51 exchanges heat with air. It is supplied to the connecting pipe 25 through the first left header 71.
- the inlet pipe 22 is connected to the compressor 10 to supply the high temperature and high pressure refrigerant to the first heat exchange unit 100.
- the second heat exchange part 200 may include a plurality of flat tubes 50, fins 60, a left header, and a right header.
- the second heat exchange part 200 includes a plurality of second flat tubes 52, a second fin 62, a second left header 70, and a second right header 80.
- the second heat exchange part 200 includes a plurality of second flat tubes 52 having a plurality of flow paths formed therein, a second fin 62 connecting the second flat tubes 52 to conduct heat, and a plurality of It is coupled to one side of the second flat tube 52, the second left header 70 and the plurality of second flat tube 52 and the other side of the second flat tube 52 is in communication with one side of the plurality of second flat tube 52, , A second right header 80 in communication with the other sides of the plurality of second flat tubes 52, through which the refrigerant flows.
- the second flat tube 52 is disposed to extend in the transverse direction. A flow path through which the refrigerant flows is formed in the second flat tube 52.
- the second flat tube 52 is disposed horizontally, and a plurality of second flat tubes 52 are stacked in the vertical direction. A plurality of flow paths may be formed in the second flat tube 52.
- the left side of the second flat tube 52 communicates with the second left header 70, and the right side communicates with the second right header 80.
- the second fin 62 is formed by bending in the vertical direction and connecting two second flat tubes 52 stacked in the vertical direction to conduct heat.
- the second right header 80 communicates with the other side of the plurality of second flat tubes 52.
- the second right header 80 extends long in the vertical direction and is connected to the outlet pipe 24.
- the inside of the second right header 80 is formed as one space, and supplies the refrigerant discharged from the plurality of second flat tubes 52 to the outlet pipe 24.
- One outlet pipe 24 may be connected to the second right header 80, and a plurality of outlet pipes 24 may be connected to the second right header 80.
- the second left header 70 communicates with one side of the plurality of second flat tubes 52.
- the second left header 70 extends long in the vertical direction and is connected to the connecting pipe 25.
- the inside of the second left header 70 is formed as one space, and supplies the refrigerant supplied through the connection pipe 25 to the plurality of second flat tubes 52.
- One connector 25 may be connected to the second left header 70, and a plurality of connectors 25 may be connected.
- one connecting pipe 25 is connected to the center of the second left header 70. Since the connecting pipe 25 connects the first left header 71 and the second left header 70, the connecting pipe 25 has a length and a manufacturing cost is reduced.
- the refrigerant heat-exchanged in the first heat exchange part 100 has a large specific volume because it is a gaseous state of high temperature and high pressure discharged from the compressor 10.
- Refrigerant heat exchanged in the second heat exchanger 200 is a heat exchange is completed in the first heat exchanger 100, a gas or a mixed state of the gas and liquid having a temperature relatively lower than the refrigerant of the first heat exchanger 100 Have. Therefore, the specific volume of the refrigerant heat exchanged in the second heat exchange part has a specific volume smaller than that of the refrigerant heat exchanged in the first heat exchange part 100.
- the first heat exchange part 100 may be due to the large specific volume of the refrigerant in the first heat exchange part 100. ), The amount of heat exchange and efficiency is greatly reduced.
- the sum of the cross-sectional areas of the flat tubes 50 of the first heat exchange part 100 is greater than the sum of the cross-sectional areas of the flat tubes 50 of the second heat exchange part 200, and thus, the first heat exchange part ( 100, it is possible to improve the heat exchange amount.
- the ratio of the sum of the cross sectional areas of the flat tubes 50 of the first heat exchange part 100 and the cross sectional areas of the flat tubes 50 of the second heat exchange part 200 is 7 to 9: 1 to 2.
- the ratio of the sum of the cross-sectional areas of the flat tubes 50 of the first heat exchange part 100 and the cross-sectional area of the flat tubes 50 of the second heat exchange part 200 is preferably 8: 2.
- the heat exchange surfaces of the first heat exchange unit 100 and the heat exchange surfaces P1 and P2 of the second heat exchange unit 200 are spaced apart from each other.
- the cross-sectional area of the flat tubes 50 of the first heat exchanger 100 and the cross-sectional area of the flat tubes 50 of the second heat exchanger 200 can be adjusted by varying the inner diameter of the flat tube 50, but In consideration of cost and convenience of manufacture, it is desirable to adjust the number of flat tubes 50 having the same inner diameter.
- the inner diameter of the flat tube 50 of the first heat exchange part 100 and the inner diameter of the second flat tube 52 are the same, and the number of the flat tubes 50 of the first heat exchange part 100 is the second heat exchange part. It may be larger than the number of flat tubes 50 of the (200).
- the inner diameter of the flat tube 50 of the first heat exchange part 100 and the inner diameter of the second flat tube 52 are the same, and the number of the flat tubes 50 of the first heat exchange part 100 and the second heat exchange part
- the ratio of the number of the flat tubes 50 of the 200 may be 7 to 9: 1 to 2.
- the inner diameter of the flat tube 50 of the first heat exchange part 100 and the inner diameter of the second flat tube 52 are the same, and the number of the flat tubes 50 of the first heat exchange part 100 and the second heat exchange part It is preferable that the ratio of the number of the flat tubes 50 of 200 is 8: 2.
- the first flat tube of the first heat exchange part 100 When the number of the flat tubes 50 of the first heat exchange part 100 is greater than the number of the flat tubes 50 of the second heat exchange part 200, the first flat tube of the first heat exchange part 100 ( The pitch between the 51 and the pitch between the second flat tube 52 of the second heat exchange part 200 is preferably the same. Of course, the pitch between the first flat tubes 51 of the first heat exchange part 100 may be smaller than the pitch between the second flat tubes 52 of the second heat exchange.
- the first flat tubes 51 of the first heat exchange part 100 and the second flat tube 52 of the second heat exchange are viewed in the air flow direction (front and rear direction). ) May be arranged not to overlap each other.
- the air passing between the first flat tubes 51 of the first heat exchange part 100 flows into the space between the second flat tubes 52 of the second heat exchange, changes its direction, and increases the time for which the air stays. do.
- FIG. 7 is a graph showing the heat exchange amount according to the area ratio of the flat tube 50 of the first heat exchange part 100 and the second heat exchange part 200.
- the inner diameter of the flat tube 50 of the first heat exchange part 100 and the inner diameter of the second flat tube 52 are the same, and the inner diameter of the flat tube 50 of the first heat exchange part 100 is the same.
- the ratio of the number and the number of the flat tubes 50 of the second heat exchange part 200 is 8: 2, it can be seen that it has the maximum heat exchange amount.
- FIG 8 is a plan view of an outdoor heat exchanger 20 according to a second embodiment of the present invention.
- the second embodiment has a difference in the number of heat exchange surfaces of the first heat exchange part 100 or the second heat exchange part 200.
- the flat tubes 50 of the first heat exchange part 100 or the second heat exchange part 200 are divided into a plurality of flat tube 50 groups, and the plurality of flat tube 50 groups are air.
- a plurality of columns may be formed along the flow direction of the.
- the flat tubes 50 of the first heat exchange part 100 are flat tubes of the second heat exchange part 200. Should have a number greater than (50). At this time, when the first heat exchanger 100 and the second heat exchanger 200 are arranged in one row, a problem arises in that the size of the first heat exchanger 100 becomes excessively large.
- the heat exchange surface of the first heat exchange part 100 is arranged in multiple rows.
- the first heat exchange part 100 defines a heat exchange surface P1 by forming a group by arranging a plurality of first flat tubes 51 having a predetermined pitch up and down.
- the plurality of flat tube groups 50 may form a plurality of rows along the air flow (front and rear) direction. That is, the heat exchange surfaces P1a, P1b, and P1c are spaced apart along the front and rear directions to form a plurality of rows.
- the left header or the right header may be arranged in plurality in correspondence with each heat exchange surface.
- the first right header 81 may be disposed on each of the heat exchange surfaces of the first heat exchange part 100.
- Three first right headers 81 are disposed on one side of three heat exchange surfaces of the first heat exchange unit 100.
- An inlet pipe 22 is connected to each first right header 81.
- the first left header 71 may be disposed on each of the heat exchange surfaces of the first heat exchange part 100.
- Three first left headers 71 are disposed on the other side of the three thermal bridge screens of the first heat exchanger 100.
- a connecting pipe 25 is connected to each first left header 71.
- the heat exchange area of the first heat exchange part 100 may be improved, and the first heat exchange part 100 may be arranged in multiple rows in a limited space, thereby maximizing space utilization.
- FIG. 9 is a plan view of an outdoor heat exchanger 20 according to a third embodiment of the present invention.
- the third embodiment has a difference in the structure of the left header or the right header.
- the left header or the right header of the third embodiment may be in communication with a plurality of flat tubes 50 disposed on each heat exchange surface.
- the first left header 71 of the first heat exchange part 100 communicates with the plurality of heat exchange surfaces.
- One first left header 71 and a plurality of heat exchange surfaces communicate with each other.
- the first right header 81 of the first heat exchange part 100 communicates with the plurality of heat exchange surfaces.
- One first right header 81 and a plurality of heat exchange surfaces communicate with each other.
- the manufacturing cost can be reduced.
- FIG. 10 is a plan view of an outdoor heat exchanger 20 according to a fourth embodiment of the present invention.
- the fourth embodiment further includes an intermediate heat exchanger 300.
- the intermediate heat exchange part 300 includes a plurality of flat tubes 50 for exchanging refrigerant and air, and heat exchanges the refrigerant discharged from the first heat exchange part 100 to the second heat exchange part 200. Supplies).
- the intermediate heat exchange part 300 is arranged to heat the refrigerant passing through the first heat exchange part 100 and to supply the second heat exchange part 200.
- the intermediate heat exchanger 300 may include a flat tube 50, a third left header 73, a third right header 83, and a fin 60, similarly to the first heat exchanger 100.
- the third left header 73 is connected to the left side of the flat tube 50 of the intermediate heat exchanger 300, and the third right header 83 is connected to the right side thereof.
- the flat tube 50 of the intermediate heat exchange part 300 defines a heat exchange surface P3.
- the third left header 73 is connected via the first left header 71 and the first connector 25a, and the third right header 83 is the second right header 80 and the second connector 25b. Is connected via).
- the specific volume of the refrigerant in the intermediate heat exchange part 300 is smaller than the specific volume of the refrigerant in the first heat exchange part 100 and larger than the specific volume of the refrigerant in the second heat exchange part 200.
- the sum of the cross-sectional areas of the flat tubes 50 of the intermediate heat exchange part 300 is less than or equal to the sum of the cross-sectional areas of the flat tubes 50 of the first heat exchange part 100, and the flat tubes of the second heat exchange part 200. 50) can be larger than the sum of the cross-sectional areas.
- the ratio of the sum of the cross-sectional areas may be composed of 7-9: 7-9: 1-2.
- the inner diameter of the flat tube 50 of the first heat exchange part 100, the inner diameter of the second flat tube 52 and the flat tube of the intermediate heat exchange part 300 ( The inner diameter of the 50 is the same, the number of the flat tube 50 of the intermediate heat exchange unit 300 is less than or equal to the number of the flat tube 50 of the first heat exchange unit 100, the second heat exchange unit 200 ) May be greater than the number of flat tubes 50.
- the intermediate heat exchange part 300 can be used, and even when the intermediate heat exchange part 300 is used, the heat exchange efficiency and the heat exchange amount can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
A heat exchanger of a refrigerator according to the present invention is a micro-channel type heat exchanger of a refrigerator comprising: a first heat exchanging unit including a plurality of flat tubes for exchanging heat between a refrigerant and air and connected to an inlet pipe through which the refrigerant flows; a second heat exchanging unit including a plurality of flat tubes for exchanging heat between the refrigerant and air, disposed on the outside of the first heat exchanging unit and connected to a discharge tube through which the refrigerant is discharged; and a connection pipe for connecting the first heat exchanging unit and the second heat exchanging unit and supplying the refrigerant discharged from the first heat exchanging unit to the second heat exchanging unit, wherein the first heat exchanging unit is arranged to exchange heat with air that has been heat-exchanged with the second heat exchanging unit, and the sum of the cross sectional areas of the flat tubes of the first heat exchanging unit is larger than the sum of the cross sectional areas of the flat tubes of the second heat exchanging unit.
Description
본 발명은 냉장고의 열교환기에 관한 것이다. The present invention relates to a heat exchanger of a refrigerator.
일반적으로 열교환기는 압축기와 응축기와 팽창기구와 증발기로 이루어지는 냉동사이클 장치에서 응축기 또는 증발기로 사용될 수 있다. In general, the heat exchanger may be used as a condenser or evaporator in a refrigeration cycle device consisting of a compressor, a condenser, an expansion device, and an evaporator.
또한 열교환기는 차량, 냉장고 등에 설치되어 냉매를 공기와 열교환시킨다. In addition, the heat exchanger is installed in a vehicle, a refrigerator, etc. to exchange the refrigerant with air.
열교환기는 구조에 따라 핀 튜브형 열교환기, 마이크로 채널형 열교환기 등으로 구분될 수 있다. The heat exchanger may be classified into a fin tube type heat exchanger and a micro channel heat exchanger according to the structure.
핀 튜브형 열교환기는 구리 재질로 제작되고, 마이크로 채널형 열교환기는 알루미늄 재질로 제작된다.Finned tube heat exchangers are made of copper, and micro-channel heat exchangers are made of aluminum.
마이크로 채널형 열교환기는 내부에 미세한 유로가 형성되기 때문에 핀 튜브형 열교환기에 비해 효율이 좋은 장점이 존재한다.The micro channel type heat exchanger has a good efficiency compared to the fin tube type heat exchanger because a fine flow path is formed therein.
종래의 냉장고 등에 사용되는 소형의 마이크로 채널형 열교환기는 원턴(one turn) 방식으로 제작되기 때문에 단순한 냉매 패스만 설계가 가능하고, 열교환 효율이 저하되는 문제점이 존재한다. 또한, 냉장고 등에 사용되는 소형의 마이크로 채널형 열교환기는 입구와 출구의 냉매튜브의 개수를 동일하게 배치하게 되어서, 고온의 냉매가 유입되는 부분에서는 냉매와 공기의 온도차이가 커서 열교환량은 많으나 열교환 효율은 낮고, 저온의 냉매가 유출되는 부분에서는 냉매와 공기의 온도차이가 적어서 열교환량은 작으나, 열교환 효율은 높게 되므로, 전체적인 열교환 효율이 떨어지는 단점이 존재한다.Since a small microchannel type heat exchanger used in a conventional refrigerator or the like is manufactured in a one turn method, only a simple refrigerant path can be designed, and there is a problem in that heat exchange efficiency is lowered. In addition, the small microchannel type heat exchanger used in a refrigerator or the like has the same number of refrigerant tubes at the inlet and the outlet, so that the temperature difference between the refrigerant and the air is large in the portion where the high temperature refrigerant flows in, so that the heat exchange amount is large but the heat exchange efficiency is high. Is low and the temperature difference between the refrigerant and the air is small in the outflow portion of the low-temperature refrigerant is small heat exchange amount, but the heat exchange efficiency is high, there is a disadvantage that the overall heat exchange efficiency is lowered.
또한, 종래 열교환기는 냉매가 유입되는 부분과 유출되는 부분의 냉매튜브의 단면적이 동일하여서, 냉매의 비체적에 변화를 고려하지 못하므로, 열교환량이 저하되는 문제점이 존재한다.In addition, the conventional heat exchanger has the same cross-sectional area of the refrigerant tube in the inflow portion and the outflow portion, the change in the specific volume of the refrigerant, there is a problem that the heat exchange amount is lowered.
본 발명의 해결하려고 하는 과제는, 응축기로 사용되어도 냉매의 유동이 원활하게 이루어지는 냉장고의 열교환기를 제공하는 것이다.An object of the present invention is to provide a heat exchanger of a refrigerator in which a coolant flows smoothly even when used as a condenser.
본 발명의 다른 과제는 복수개의 열을 갖되, 열교환 효율이 우수한 냉장고의 열교환기를 제공하는 것이다. Another object of the present invention is to provide a heat exchanger of a refrigerator having a plurality of heat and excellent heat exchange efficiency.
본 발명의 또 다른 과제는 복수개의 열에서 냉매의 압력차를 최소화시키는 냉장고의 열교환기를 제공하는 것이다. Still another object of the present invention is to provide a heat exchanger of a refrigerator which minimizes a pressure difference between refrigerants in a plurality of rows.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명에 따른 냉장고의 열교환기는 제 2 열교환부를 제 1 열교환부 보다 먼저 외기와 열교환시키고, 제 1 열교환부의 플랫튜브 들의 단면적의 합과 상기 제 2 열교환부의 플랫튜브 들의 단면적의 합 보다 크게 하는 것 특징으로 한다.The heat exchanger of the refrigerator according to the present invention heats the second heat exchanger to the outside air before the first heat exchanger, and increases the sum of the cross-sectional areas of the flat tubes of the first heat exchanger and the cross-sectional area of the flat tubes of the second heat exchanger. It is done.
제 1 열교환부와 제 2 열교환부 사이에 중간 열교환부가 배치되는 경우 상기 중간 열교환부의 플랫튜브 들의 단면적의 합은 상기 제 1 열교환부의 플랫튜브 들의 단면적의 합 보다 작거나 같은 것을 특징으로 한다.When the intermediate heat exchanger is disposed between the first heat exchanger and the second heat exchanger, the sum of the cross sectional areas of the flat tubes of the intermediate heat exchanger is less than or equal to the sum of the cross sectional areas of the flat tubes of the first heat exchanger.
또한, 본 발명에 따른 냉장고의 열교환기는 제 1 열교환부의 플랫튜브의 내경과, 제 2 플랫튜브의 내경은 동일하고, 제 1 열교환부의 플랫튜브의 개수는 상기 제 2 열교환부의 플랫튜브의 개수의 많은 것을 특징으로 한다.In addition, the heat exchanger of the refrigerator according to the present invention is the inner diameter of the flat tube of the first heat exchanger, the inner diameter of the second flat tube is the same, the number of the flat tube of the first heat exchanger is a large number of the flat tube of the second heat exchanger. It is characterized by.
본 발명의 냉장고의 열교환기는 다음과 같은 효과가 하나 혹은 그 이상 있다.The heat exchanger of the refrigerator of the present invention has one or more of the following effects.
첫째, 제 2 열교환부를 제 1 열교환부 보다 먼저 외기와 열교환시키고, 제 1 열교환부의 플랫튜브 들의 단면적의 합과 상기 제 2 열교환부의 플랫튜브 들의 단면적의 합 보다 크게 하여서, 비체적을 고려한 최적의 열교환량과 열교환 효율을 구현할 수 있는 이점이 존재한다.First, the second heat exchanger is heat-exchanged with the outside air before the first heat exchanger, and the optimum heat exchange amount considering the specific volume by increasing the sum of the cross-sectional areas of the flat tubes of the first heat exchanger and the cross-sectional area of the flat tubes of the second heat exchanger. There is an advantage to realize the heat exchange efficiency.
둘째, 제 1 열교환부의 열교환면을 다열로 배치하여서, 공간 활용을 극대화할 수 있다.Second, by arranging the heat exchange surface of the first heat exchanger in multiple rows, it is possible to maximize space utilization.
셋째, 마이크로 채널 타입 열교환기를 복수개 적층하여도 제 1 열교환부 및 제 2 열교환부 사이에 냉매 압력차가 적게 형성되어 냉매가 원활하게 유동되는 장점이 있다. Third, even when a plurality of micro channel type heat exchangers are stacked, a small refrigerant pressure difference is formed between the first heat exchange part and the second heat exchange part, so that the refrigerant flows smoothly.
넷째, 열교환량이 크게 요구되는 환경에서는 중간 열교환부를 사용할 수 있고, 중간 열교환부를 사용하는 경우에도, 열교환 효율과, 열교환량을 향상시킬 수 있다.Fourth, in an environment where a large heat exchange amount is required, the intermediate heat exchange part can be used, and even when the intermediate heat exchange part is used, the heat exchange efficiency and the heat exchange amount can be improved.
도 1은 본 발명의 제 1 실시예에 따른 냉동사이클 장치가 도시된 블럭도이다.1 is a block diagram showing a refrigeration cycle apparatus according to a first embodiment of the present invention.
도 2는 도 1에 도시된 실외기 내부가 도시된 사시도이다.FIG. 2 is a perspective view illustrating the inside of the outdoor unit illustrated in FIG. 1.
도 3은 도 2에 도시된 실외열교환기의 사시도이다. 3 is a perspective view of the outdoor heat exchanger shown in FIG. 2.
도 4는 도 2에 도시된 실외열교환기의 분해 사시도이다.4 is an exploded perspective view of the outdoor heat exchanger illustrated in FIG. 2.
도 5은 도 4에 도시된 제 1 열교환부의 단면도이다. 5 is a cross-sectional view of the first heat exchanger illustrated in FIG. 4.
도 6은 도 4에 도시된 제 2 열교환부의 단면도이다. 6 is a cross-sectional view of the second heat exchanger illustrated in FIG. 4.
도 7은 제 1 열교환부와 제 2 열교환부의 플랫튜브의 면적비에 따른 열교환량을 도시한 그래프이다. FIG. 7 is a graph showing the amount of heat exchange according to the area ratio of the flat tubes of the first heat exchange part and the second heat exchange part.
도 8은 본 발명의 제 2 실시예에 따른 실외열교환기의 평면도이다.8 is a plan view of an outdoor heat exchanger according to a second embodiment of the present invention.
도 9는 본 발명의 제 3 실시예에 따른 실외열교환기의 평면도이다.9 is a plan view of an outdoor heat exchanger according to a third embodiment of the present invention.
도 10은 본 발명의 제 4 실시예에 따른 실외열교환기의 평면도이다.10 is a plan view of an outdoor heat exchanger according to a fourth embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but can be implemented in various different forms, and only the embodiments make the disclosure of the present invention complete, and the general knowledge in the art to which the present invention belongs. It is provided to fully inform the person having the scope of the invention, which is defined only by the scope of the claims. Like reference numerals refer to like elements throughout.
공간적으로 상대적인 용어인 "아래(below)", "아래(beneath)", "하부(lower)", "위(above)", "상부(upper)" 등은 도면에 도시되어 있는 바와 같이 하나의 구성 요소들과 다른 구성 요소들과의 상관관계를 용이하게 기술하기 위해 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시되어 있는 방향에 더하여 사용시 또는 동작 시 구성요소의 서로 다른 방향을 포함하는 용어로 이해되어야 한다. 예를 들면, 도면에 도시되어 있는 구성요소를 뒤집을 경우, 다른 구성요소의 "아래(below)"또는 "아래(beneath)"로 기술된 구성요소는 다른 구성요소의 "위(above)"에 놓여질 수 있다. 따라서, 예시적인 용어인 "아래"는 아래와 위의 방향을 모두 포함할 수 있다. 구성요소는 다른 방향으로도 배향될 수 있고, 이에 따라 공간적으로 상대적인 용어들은 배향에 따라 해석될 수 있다.The spatially relative terms " below ", " beneath ", " lower ", " above ", " upper " It may be used to easily describe the correlation of components with other components. Spatially relative terms are to be understood as including terms in different directions of the component in use or operation in addition to the directions shown in the figures. For example, when flipping a component shown in the drawing, a component described as "below" or "beneath" of another component may be placed "above" the other component. Can be. Thus, the exemplary term "below" can encompass both an orientation of above and below. The components can be oriented in other directions as well, so that spatially relative terms can be interpreted according to the orientation.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계 및/또는 동작은 하나 이상의 다른 구성요소, 단계 및/또는 동작의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, “comprises” and / or “comprising” refers to a component, step, and / or operation that excludes the presence or addition of one or more other components, steps, and / or operations. I never do that.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used in a sense that can be commonly understood by those skilled in the art. In addition, the terms defined in the commonly used dictionaries are not ideally or excessively interpreted unless they are specifically defined clearly.
도면에서 각 구성요소의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장되거나 생략되거나 또는 개략적으로 도시되었다. 또한 각 구성요소의 크기와 면적은 실제크기나 면적을 전적으로 반영하는 것은 아니다. In the drawings, the thickness or size of each component is exaggerated, omitted, or schematically illustrated for convenience and clarity of description. In addition, the size and area of each component does not necessarily reflect the actual size or area.
또한, 실시예의 구조를 설명하는 과정에서 언급하는 각도와 방향은 도면에 기재된 것을 기준으로 한다. 명세서에서 실시예를 이루는 구조에 대한 설명에서, 각도에 대한 기준점과 위치관계를 명확히 언급하지 않은 경우, 관련 도면을 참조하도록 한다.In addition, the angle and direction mentioned in the process of demonstrating the structure of an Example are based on what was described in drawing. In the description of the structure constituting an embodiment in the specification, if the reference point and the positional relationship with respect to the angle is not clearly mentioned, reference is made to related drawings.
이하 첨부된 도면을 참조하여 본 발명에 대해 구체적으로 살펴보기로 한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 제 1 실시예에 따른 냉동사이클 장치가 도시된 블럭도, 도 2는 도 1에 도시된 실외기 내부가 도시된 사시도이다.1 is a block diagram showing a refrigeration cycle apparatus according to a first embodiment of the present invention, Figure 2 is a perspective view showing the inside of the outdoor unit shown in FIG.
도 1 및 도 2를 참조하면, 본 실시예에 따른 냉동사이클 장치는 냉매를 압축하는 압축기(10)와, 냉매가 실외 공기와 열교환되는 실외열교환기(20)와, 냉매가 팽창되는 팽창기구(12)와, 냉매가 실내 공기와 열교환되는 실내열교환기(13)를 포함할 수 있다. 1 and 2, the refrigeration cycle apparatus according to the present embodiment includes a compressor 10 for compressing a refrigerant, an outdoor heat exchanger 20 in which the refrigerant is heat-exchanged with outdoor air, and an expansion mechanism for expanding the refrigerant ( 12) and an indoor heat exchanger (13) in which the refrigerant exchanges heat with the indoor air.
압축기(10)에서 압축된 냉매는 실외열교환기(20)를 통과하면서 실외 공기와 열교환되어 응축될 수 있다. The refrigerant compressed by the compressor 10 may pass through the outdoor heat exchanger 20 to be condensed by heat exchange with outdoor air.
실외열교환기(20)는 응축기로 사용될 수 있다. The outdoor heat exchanger 20 may be used as a condenser.
실외열교환기(20)에서 응축된 냉매는 팽창기구(12)로 유동되어 팽창될 수 있다. 팽창기구(12)에 의해 팽창된 냉매는 실내열교환기(13)를 통과하면서 실내 공기와 열교환되어 증발될 수 있다. The refrigerant condensed in the outdoor heat exchanger 20 may flow to the expansion mechanism 12 and expand. The refrigerant expanded by the expansion mechanism 12 may be exchanged with the indoor air and evaporated while passing through the indoor heat exchanger 13.
실내열교환기(12)는 냉매를 증발시키는 증발기로 사용될 수 있다. The indoor heat exchanger 12 may be used as an evaporator to evaporate the refrigerant.
실내열교환기(12)에서 증발된 냉매는 압축기(10)로 회수될 수 있다. The refrigerant evaporated in the indoor heat exchanger 12 may be recovered by the compressor 10.
냉매는 압축기(10), 실외열교환기(20), 팽창기구(12) 및 실내열교환기(13)를 순환하면서 냉방사이클로 작동된다. The refrigerant is operated in a cooling cycle while circulating the compressor 10, the outdoor heat exchanger 20, the expansion mechanism 12, and the indoor heat exchanger 13.
압축기(10)에는 실내열교환기(13)를 통과한 냉매를 압축기(10)로 안내하는 압축기(10) 흡입유로가 연결될 수 있다. 압축기(10) 흡입유로에는 액냉매가 축적되는 어큐물레이터(14)가 설치될 수 있다.The compressor 10 may be connected to a suction channel of the compressor 10 for guiding the refrigerant passing through the indoor heat exchanger 13 to the compressor 10. The accumulator 14 in which the liquid refrigerant accumulates may be installed in the suction passage of the compressor 10.
실내열교환기(13)는 냉매가 통과하는 냉매 유로가 형성될 수 있다. The indoor heat exchanger 13 may have a refrigerant passage through which the refrigerant passes.
냉동사이클 장치는 실내기(I)와 실외기(O)가 분리된 분리형 공기조화기일 수 있고, 이 경우 압축기(10) 및 실외열교환기(20)는 실외기(I)의 내부에 설치될 수 있다. 또한, 냉동 사이클 장치는 냉장고일 수 있고, 실내열교환기가(13)가 식품저장소 내의 공기와 열교환하게 배치되고, 실외열교환기(20)기(20)가 식품저장소 외의 공기와 열교환할 수 있다. 냉장고의 경우, 실내기(I)와 실외기(O)가 본체에 함께 배치될 수 있다.The refrigeration cycle apparatus may be a separate air conditioner in which the indoor unit I and the outdoor unit O are separated, and in this case, the compressor 10 and the outdoor heat exchanger 20 may be installed inside the outdoor unit I. In addition, the refrigeration cycle apparatus may be a refrigerator, the indoor heat exchanger (13) is arranged to heat exchange with the air in the food storage, the outdoor heat exchanger (20) machine 20 may heat exchange with the air outside the food storage. In the case of the refrigerator, the indoor unit I and the outdoor unit O may be arranged together in the main body.
팽창기구(12)는 실내기(I) 또는 실외기(O) 중 어디에 설치되어도 무방하다. The expansion mechanism 12 may be installed in either the indoor unit I or the outdoor unit O.
실내열교환기(13)는 실내기(I)의 내부에 설치될 수 있다.The indoor heat exchanger 13 may be installed inside the indoor unit (I).
실외기(O)에는 실외열교환기(20)로 실외 공기를 송풍시키는 실외팬(15)이 설치될 수 있다. The outdoor unit O may be provided with an outdoor fan 15 for blowing outdoor air to the outdoor heat exchanger 20.
실내기(I)에는 실내 열교환기(13)로 실내 공기를 송풍시키는 실내팬(16)이 설치될 수 있다. The indoor unit I may be provided with an indoor fan 16 for blowing indoor air to the indoor heat exchanger 13.
도 3은 도 2에 도시된 실외열교환기(20)의 사시도, 도 4는 도 2에 도시된 실외열교환기(20)의 분해 사시도, 도 5은 도 4에 도시된 제 1 열교환부(100)의 단면도, 도 6은 도 4에 도시된 제 2 열교환부(200)의 단면도이다.3 is a perspective view of the outdoor heat exchanger 20 shown in FIG. 2, FIG. 4 is an exploded perspective view of the outdoor heat exchanger 20 shown in FIG. 2, and FIG. 5 is a first heat exchanger 100 shown in FIG. 4. 6 is a cross-sectional view of the second heat exchanger 200 shown in FIG. 4.
실외열교환기(20)는 마이크로 채널 타입 열교환기이다. 실외열교환기(20)는 알루미늄 재질로 형성된다.The outdoor heat exchanger 20 is a micro channel type heat exchanger. The outdoor heat exchanger 20 is made of aluminum.
실외열교환기(20)는 제 1 열교환부(100) 및 제 2 열교환부(200)로 구성된다. 본 실시예와 달리 실외열교환기(20)는 2개 이상의 열교환부가 적층되어도 무방하다. The outdoor heat exchanger 20 includes a first heat exchanger 100 and a second heat exchanger 200. Unlike the present embodiment, the outdoor heat exchanger 20 may have two or more heat exchangers stacked.
실외열교환기(20)는 제 1 열교환부(100)와, 제 1 열교환부(100)와 적층되는 제 2 열교환부(200)와, 제 1 열교환부(100)에 연결되어 냉매를 공급하는 유입관(22)과, 제 2 열교환부(200)에 연결되어 냉매를 토출시키는 토출관(24)과, 제 1 열교환부(100) 및 제 2 열교환부(200)를 연결하고, 냉매를 제 1 열교환부(100)에서 제 2 열교환부(200)로 유동시키는 연결관(25)을 포함한다. The outdoor heat exchanger 20 is connected to the first heat exchanger 100, the second heat exchanger 200 stacked with the first heat exchanger 100, and the first heat exchanger 100 to supply refrigerant. The tube 22 and the discharge tube 24 connected to the second heat exchange part 200 to discharge the refrigerant, the first heat exchange part 100 and the second heat exchange part 200 are connected, and the refrigerant is connected to the first refrigerant. It includes a connecting pipe 25 for flowing from the heat exchange unit 100 to the second heat exchange unit 200.
제 1 열교환부(100)는 제 2 열교환부(200)와 열교환된 공기와 열교환되게 배치된다. 구체적으로, 외부공기가 유동되는 경로 상에 제 1 열교환부(100)와 제 2 열교환부(200)가 배치되게 되고, 외부공기는 1차적으로 제 2 열교환부(200)와 열교환되고, 2차적으로, 제 1 열교환부(100)와 열교환된다. 더욱 구체적으로, 실외기에는 외부공기가 유입되는 공기유입부(H1) 및 유입된 공기가 열교환부들과 열교환하고 유출되는 공기유출부(H2)가 형성되고, 제 2 열교환부(200)는 제 1 열교환부(100)에 비해 상대적으로 공기 유입부(H1)에 인접하여 배치된다.The first heat exchange part 100 is disposed to exchange heat with air heat exchanged with the second heat exchange part 200. Specifically, the first heat exchanger 100 and the second heat exchanger 200 are disposed on a path through which the external air flows, and the external air is primarily heat exchanged with the second heat exchanger 200, and the secondary air is secondary. Thus, heat exchange with the first heat exchanger 100. More specifically, the outdoor unit includes an air inlet part H1 through which external air is introduced, and an air outlet part H2 through which the inlet air exchanges heat with the heat exchange parts and flows out, and the second heat exchange part 200 includes a first heat exchanger. It is disposed adjacent to the air inlet portion H1 relative to the portion 100.
따라서, 고온의 냉매가 유동되는 제 1 열교환부(100)를 외기의 온도가 높은 영역에 배치하고, 저온의 냉매가 유동되는 제 2 열교환부(200)를 외기의 온도가 낮은 영역에 배치하여서, 실외열교환기(20)의 열교환 효율이 향상되게 된다.Therefore, the first heat exchange part 100 through which the high temperature refrigerant flows is disposed in a region having a high outside temperature, and the second heat exchange part 200 through which the low temperature refrigerant flows is disposed in a region where the temperature of the outside air is low, The heat exchange efficiency of the outdoor heat exchanger 20 is improved.
제 1 열교환부(100) 및 제 2 열교환부(200)는 공기의 흐름 방향과 교차되는 열교환면(P)을 정의하게 배치될 수 있다. 제 1 열교환부(100) 및 제 2 열교환부(200)는 공기의 흐름 방향과 교차되고, 공기가 열교환하며 통과할 수 있는 열교환면을 형성한다. 제 1 열교환부(100) 및 제 2 열교환부(200)는 공기의 흐름 방향을 따라 적층될 수 있다.The first heat exchange part 100 and the second heat exchange part 200 may be arranged to define a heat exchange surface P intersecting with the flow direction of air. The first heat exchanger 100 and the second heat exchanger 200 cross the air flow direction, and form a heat exchange surface through which the air can pass through the heat exchanger. The first heat exchange part 100 and the second heat exchange part 200 may be stacked along the flow direction of air.
제 1 열교환부(100) 및 제 2 열교환부(200)는 복수개의 플랫튜브(50)를 적층하여 제작한다. 제 1 열교환부(100) 및 제 2 열교환부(200)는 플랫튜브(50)를 수평으로 배치하여, 냉매가 수평으로 이동되게 한다. The first heat exchange part 100 and the second heat exchange part 200 are manufactured by stacking a plurality of flat tubes 50. The first heat exchange part 100 and the second heat exchange part 200 arrange the flat tube 50 horizontally to allow the refrigerant to move horizontally.
구체적으로, 제 1 열교환부(100) 및 제 2 열교환부(200)의 플랫튜브(50)는 공기의 흐름방향이 전후방향일 때, 수평(횡방향)으로 길게 배치되고, 복수 개의 플랫튜브(50)는 수직방향으로 적층될 수 있다. 수직방향(종방향)으로 적층된 복수 개의 플랫튜브(50)들 사이의 공간으로 공기가 통과하면서 플랫튜브(50) 내의 냉매와 열교환된다. 수직으로 적층된 복수 개의 플랫튜브(50)들은 후술하는 핀(60)과 함께 열교환면(P1)을 정의한다.Specifically, the flat tubes 50 of the first heat exchange part 100 and the second heat exchange part 200 are horizontally disposed horizontally when the air flow direction is in the front-rear direction, and the plurality of flat tubes ( 50 may be stacked in a vertical direction. Heat is exchanged with the refrigerant in the flat tube 50 while air passes through the space between the plurality of flat tubes 50 stacked in the vertical direction (longitudinal direction). The plurality of flat tubes 50 stacked vertically define a heat exchange surface P1 together with fins 60 to be described later.
제 1 열교환부(100)는 플랫튜브(50), 좌측헤더, 우측헤더 및 핀(60)을 포함할 수 있다. 구체적으로, 제 1 열교환부(100)는 내부에 복수개의 유로가 형성된 복수개의 제 1 플랫튜브(51)와, 제 1 플랫튜브(51)를 연결하여 열을 전도시키는 제 1 핀(61)과, 복수개의 제 1 플랫튜브(51) 일측에 결합되고, 복수개 제 1 플랫튜브(51) 일측과 연통되어 냉매가 유동되는 제 1 좌측헤더(71)와, 복수개의 제 1 플랫튜브(51) 타측에 결합되고, 복수 개의 제 1 플랫튜브(51)의 타측과 연통되어 냉매가 유동되는 제 1 우측헤더(81)를 포함한다. The first heat exchange part 100 may include a flat tube 50, a left header, a right header, and a fin 60. In detail, the first heat exchange part 100 includes a plurality of first flat tubes 51 having a plurality of flow paths formed therein, and a first fin 61 connecting the first flat tubes 51 to conduct heat. The first left header 71 is coupled to one side of the plurality of first flat tubes 51 and communicates with one side of the plurality of first flat tubes 51, and the refrigerant flows, and the other side of the plurality of first flat tubes 51. It is coupled to, and the first right header 81 in communication with the other side of the plurality of first flat tube 51 flows the refrigerant.
제 1 플랫튜브(51)는 횡방향으로 길게 연장되어 배치된다. 제 1 플랫튜브(51)의 내부에는 냉매가 유동되는 유로가 형성된다.The first flat tube 51 is disposed to extend in the transverse direction. Inside the first flat tube 51, a flow path through which a refrigerant flows is formed.
제 1 플랫튜브(51)는 수평하게 배치되고, 상하 방향으로 복수개의 제 1 플랫튜브(51)가 적층된다. 제 1 플랫튜브(51)의 내부에는 다수개의 유로가 형성될 수 있다.The first flat tube 51 is disposed horizontally, and a plurality of first flat tubes 51 are stacked in the vertical direction. A plurality of flow paths may be formed in the first flat tube 51.
제 1 플랫튜브(51)의 좌측은 제 1 좌측헤더(71)와 연통되고, 우측은 제 1 우측헤더(81)와 연통된다.The left side of the first flat tube 51 communicates with the first left header 71, and the right side communicates with the first right header 81.
제 1 핀(61)은 상하 방향으로 절곡되어 형성되고, 상하 방향으로 적층된 2개의 제 1 플랫튜브(51)를 연결하여 열을 전도시킨다.The first fin 61 is formed by bending in the vertical direction, and connects two first flat tubes 51 stacked in the vertical direction to conduct heat.
제 1 우측헤더(81)는 복수개 제 1 플랫튜브(51)의 타측과 연통된다. 제 1 우측헤더(81)는 상하 방향으로 길게 연장되어 배치되고, 유입관(22)과 연결된다. 제 1 우측헤더(81)의 내부는 하나의 공간으로 형성되어서, 유입관(22)을 통해 유입된 냉매를 복수의 제 1 플랫튜브(51)에 배분하여 공급한다.The first right header 81 is in communication with the other side of the plurality of first flat tubes 51. The first right header 81 extends in the vertical direction and is connected to the inflow pipe 22. The inside of the first right header 81 is formed as one space, and distributes and supplies the refrigerant introduced through the inflow pipe 22 to the plurality of first flat tubes 51.
제 1 우측헤더(81)에는 하나의 유입관(22)이 연결될 수 있고, 다수의 유입관(22)이 연결될 수 있다. 제 1 실시예에서, 유입관(22)은 제 1 유입관(22a)과 제 1 유입관(22) 보다 하부에 배치되는 제 2 유입관(22b)을 포함할 수 있다.One inlet pipe 22 may be connected to the first right header 81, and a plurality of inlet pipes 22 may be connected to the first right header 81. In the first embodiment, the inlet pipe 22 may include a first inlet pipe 22a and a second inlet pipe 22b disposed below the first inlet pipe 22.
제 1 좌측헤더(71)는 복수개 제 1 플랫튜브(51)의 일측과 연통된다. 제 1 좌측헤더(71)는 상하 방향으로 길게 연장되어 배치되고, 연결관(25)과 연결된다. 제 1 좌측헤더(71)의 내부는 하나의 공간으로 형성되어서, 복수의 제 1 플랫튜브(51)의 타측으로 배출된 냉매를 연결관(25)으로 안내한다. The first left header 71 communicates with one side of the plurality of first flat tubes 51. The first left header 71 extends long in the vertical direction and is connected to the connecting pipe 25. The inside of the first left header 71 is formed as one space, and guides the refrigerant discharged to the other side of the plurality of first flat tubes 51 to the connection pipe 25.
제 1 좌측헤더(71)에는 하나의 연결관(25)이 연결될 수도 있고, 다수의 연결관(25)이 연결될 수 있다. 제 1 실시예에서, 제 1 좌측헤더(71)의 중앙에 하나의 연결관(25)이 연결된다. 연결관(25)의 일측은 제 1 열교환부(100)의 제 1 좌측헤더(71)에 연결되고, 타측은 제 2 열교환부(200)의 제 2 좌측헤더(70)에 연결된다.One connector 25 may be connected to the first left header 71, and a plurality of connectors 25 may be connected. In the first embodiment, one connecting pipe 25 is connected to the center of the first left header 71. One side of the connection pipe 25 is connected to the first left header 71 of the first heat exchange part 100, and the other side is connected to the second left header 70 of the second heat exchange part 200.
유입관(22)을 통해 유입된 냉매는 제 1 우측헤더(81)를 통해 각각의 제 1 플랫튜브(51)에 공급되고, 제 1 플랫튜브(51)를 통과하는 냉매는 공기와 열교환하고, 제 1 좌측헤더(71)를 통해 연결관(25)으로 공급된다. 유입관(22)은 압축기(10)와 연결되어 제 1 열교환부(100)에 고온 고압의 냉매를 공급한다.The refrigerant introduced through the inlet pipe 22 is supplied to each of the first flat tubes 51 through the first right header 81, and the refrigerant passing through the first flat tube 51 exchanges heat with air. It is supplied to the connecting pipe 25 through the first left header 71. The inlet pipe 22 is connected to the compressor 10 to supply the high temperature and high pressure refrigerant to the first heat exchange unit 100.
제 2 열교환부(200)는 제 1 열교환부(100)와 같이, 복수개의 플랫튜브(50), 핀(60), 좌측헤더 및 우측헤더를 포함할 수 있다.The second heat exchange part 200, like the first heat exchange part 100, may include a plurality of flat tubes 50, fins 60, a left header, and a right header.
구체적으로, 제 2 열교환부(200)는 복수개의 제 2 플랫튜브(52), 제 2 핀(62), 제 2 좌측헤더(70), 제 2 우측헤더(80)로 구성된다.In detail, the second heat exchange part 200 includes a plurality of second flat tubes 52, a second fin 62, a second left header 70, and a second right header 80.
제 2 열교환부(200)는 내부에 복수개의 유로가 형성된 복수개의 제 2 플랫튜브(52)와, 제 2 플랫튜브(52)를 연결하여 열을 전도시키는 제 2 핀(62)과, 복수개의 제 2 플랫튜브(52) 일측에 결합되고, 복수개 제 2 플랫튜브(52) 일측과 연통되어 냉매가 유동되는 제 2 좌측헤더(70)와, 복수개의 제 2 플랫튜브(52) 타측에 결합되고, 복수 개의 제 2 플랫튜브(52)의 타측과 연통되어 냉매가 유동되는 제 2 우측헤더(80)를 포함한다. The second heat exchange part 200 includes a plurality of second flat tubes 52 having a plurality of flow paths formed therein, a second fin 62 connecting the second flat tubes 52 to conduct heat, and a plurality of It is coupled to one side of the second flat tube 52, the second left header 70 and the plurality of second flat tube 52 and the other side of the second flat tube 52 is in communication with one side of the plurality of second flat tube 52, , A second right header 80 in communication with the other sides of the plurality of second flat tubes 52, through which the refrigerant flows.
제 2 플랫튜브(52)의 횡방향으로 길게 연장되어 배치된다. 제 2 플랫튜브(52)의 내부에는 냉매가 유동되는 유로가 형성된다.The second flat tube 52 is disposed to extend in the transverse direction. A flow path through which the refrigerant flows is formed in the second flat tube 52.
제 2 플랫튜브(52)는 수평하게 배치되고, 상하 방향으로 복수개의 제 2 플랫튜브(52)가 적층된다. 제 2 플랫튜브(52)의 내부에는 다수개의 유로가 형성될 수 있다.The second flat tube 52 is disposed horizontally, and a plurality of second flat tubes 52 are stacked in the vertical direction. A plurality of flow paths may be formed in the second flat tube 52.
제 2 플랫튜브(52)의 좌측은 제 2 좌측헤더(70)와 연통되고, 우측은 제 2 우측헤더(80)와 연통된다.The left side of the second flat tube 52 communicates with the second left header 70, and the right side communicates with the second right header 80.
제 2 핀(62)은 상하 방향으로 절곡되어 형성되고, 상하 방향으로 적층된 2개의 제 2 플랫튜브(52)를 연결하여 열을 전도시킨다.The second fin 62 is formed by bending in the vertical direction and connecting two second flat tubes 52 stacked in the vertical direction to conduct heat.
제 2 우측헤더(80)는 복수 개 제 2 플랫튜브(52)의 타측과 연통된다. 제 2 우측헤더(80)는 상하 방향으로 길게 연장되어 배치되고, 유출관(24)과 연결된다. 제 2 우측헤더(80)의 내부는 하나의 공간으로 형성되어서, 복수의 제 2 플랫튜브(52)에서 토출된 냉매를 유출관(24)으로 공급한다.The second right header 80 communicates with the other side of the plurality of second flat tubes 52. The second right header 80 extends long in the vertical direction and is connected to the outlet pipe 24. The inside of the second right header 80 is formed as one space, and supplies the refrigerant discharged from the plurality of second flat tubes 52 to the outlet pipe 24.
제 2 우측헤더(80)에는 하나의 유출관(24)이 연결될 수 있고, 다수의 유출관(24)이 연결될 수 있다. One outlet pipe 24 may be connected to the second right header 80, and a plurality of outlet pipes 24 may be connected to the second right header 80.
제 2 좌측헤더(70)는 복수의 제 2 플랫튜브(52)의 일측과 연통된다. 제 2 좌측헤더(70)는 상하 방향으로 길게 연장되어 배치되고, 연결관(25)과 연결된다. 제 2 좌측헤더(70)의 내부는 하나의 공간으로 형성되어서, 연결관(25)을 통해 공급된 냉매를 복수의 제 2 플랫튜브(52)로 공급한다.The second left header 70 communicates with one side of the plurality of second flat tubes 52. The second left header 70 extends long in the vertical direction and is connected to the connecting pipe 25. The inside of the second left header 70 is formed as one space, and supplies the refrigerant supplied through the connection pipe 25 to the plurality of second flat tubes 52.
제 2 좌측헤더(70)에는 하나의 연결관(25)이 연결될 수도 있고, 다수의 연결관(25)이 연결될 수 있다. 제 1 실시예에서, 제 2 좌측헤더(70)의 중앙에 하나의 연결관(25)이 연결된다. 연결관(25)이 제 1 좌측헤더(71)와 제 2 좌측헤더(70)를 연결하므로, 연결관(25)이 길이가 줄게 되고 제조비용이 줄어드는 이점이 존재한다.One connector 25 may be connected to the second left header 70, and a plurality of connectors 25 may be connected. In the first embodiment, one connecting pipe 25 is connected to the center of the second left header 70. Since the connecting pipe 25 connects the first left header 71 and the second left header 70, the connecting pipe 25 has a length and a manufacturing cost is reduced.
제 1 열교환부(100)에서 열교환되는 냉매는 압축기(10)에서 토출되는 고온 고압의 기체상태므로 큰 비체적을 가진다. 제 2 열교환부(200)에서 열교환되는 냉매는 제 1 열교환부(100)에서 열교환이 완료되고, 제 1 열교환부(100)의 냉매 보다 상대적으로 낮은 온도를 가지는 기체 또는 기체 및 액체의 혼합상태를 가지게 된다. 따라서, 제2 열교환부에서 열교환되는 냉매의 비체적은 제 1 열교환부(100)에서 열교환되는 냉매 보다 작은 비체적을 가진다.The refrigerant heat-exchanged in the first heat exchange part 100 has a large specific volume because it is a gaseous state of high temperature and high pressure discharged from the compressor 10. Refrigerant heat exchanged in the second heat exchanger 200 is a heat exchange is completed in the first heat exchanger 100, a gas or a mixed state of the gas and liquid having a temperature relatively lower than the refrigerant of the first heat exchanger 100 Have. Therefore, the specific volume of the refrigerant heat exchanged in the second heat exchange part has a specific volume smaller than that of the refrigerant heat exchanged in the first heat exchange part 100.
이 때, 제 1 열교환부(100)의 열교환 면적과 제 2 열교환부(200)의 열교환 면적을 동일하게 하면, 제 1 열교환부(100) 내의 냉매의 큰 비체적 때문에, 제 1 열교환부(100)에서 열교환 량 및 효율이 크게 감소되는 문제가 발생한다.At this time, if the heat exchange area of the first heat exchange part 100 and the heat exchange area of the second heat exchange part 200 are the same, the first heat exchange part 100 may be due to the large specific volume of the refrigerant in the first heat exchange part 100. ), The amount of heat exchange and efficiency is greatly reduced.
따라서, 실시예에서는, 제 1 열교환부(100)의 플랫튜브(50) 들의 단면적의 합은 제 2 열교환부(200)의 플랫튜브(50) 들의 단면적의 합 보다 크게 하여서, 제 1 열교환부(100)에서 열교환량을 향상시킬 수 있다.Therefore, in the embodiment, the sum of the cross-sectional areas of the flat tubes 50 of the first heat exchange part 100 is greater than the sum of the cross-sectional areas of the flat tubes 50 of the second heat exchange part 200, and thus, the first heat exchange part ( 100, it is possible to improve the heat exchange amount.
예를 들면, 제 1 열교환부(100)의 플랫튜브(50) 들의 단면적의 합과 제 2 열교환부(200)의 플랫튜브(50) 들의 단면적의 합의 비율은 7~9 : 1~2 로 구성될 수 있다. 제 1 열교환부(100)의 플랫튜브(50) 들의 단면적의 합과 제 2 열교환부(200)의 플랫튜브(50) 들의 단면적의 합의 비율은 8 : 2 인 것이 바람직하다. 이 때, 제 1 열교환부(100)와 제 2 열교환부(200) 사이에 열교환은 최소하는 것이 바람직하다. 구체적으로, 제 1 열교환부(100)의 열교환면과 제 2 열교환부(200)의 열교환면(P1, P2)은 이격되어 배치된다.For example, the ratio of the sum of the cross sectional areas of the flat tubes 50 of the first heat exchange part 100 and the cross sectional areas of the flat tubes 50 of the second heat exchange part 200 is 7 to 9: 1 to 2. Can be. The ratio of the sum of the cross-sectional areas of the flat tubes 50 of the first heat exchange part 100 and the cross-sectional area of the flat tubes 50 of the second heat exchange part 200 is preferably 8: 2. At this time, it is preferable to minimize the heat exchange between the first heat exchange part 100 and the second heat exchange part 200. Specifically, the heat exchange surfaces of the first heat exchange unit 100 and the heat exchange surfaces P1 and P2 of the second heat exchange unit 200 are spaced apart from each other.
구체적으로, 제 1 열교환부(100)의 플랫튜브(50) 들의 단면적과 제 2 열교환부(200)의 플랫튜브(50) 들의 단면적은 플랫튜브(50)의 내경을 달리하여 조절할 수 있지만, 제조비용 및 제조의 편의성을 고려하면, 내경이 동일한 플랫튜브(50)의 개수를 달리하여 조절하는 것이 바람직하다. Specifically, the cross-sectional area of the flat tubes 50 of the first heat exchanger 100 and the cross-sectional area of the flat tubes 50 of the second heat exchanger 200 can be adjusted by varying the inner diameter of the flat tube 50, but In consideration of cost and convenience of manufacture, it is desirable to adjust the number of flat tubes 50 having the same inner diameter.
제 1 열교환부(100)의 플랫튜브(50)의 내경과, 제 2 플랫튜브(52)의 내경은 동일하고, 제 1 열교환부(100)의 플랫튜브(50)의 개수는 제 2 열교환부(200)의 플랫튜브(50)의 개수 보다 많을 수 있다. 제 1 열교환부(100)의 플랫튜브(50)의 내경과, 제 2 플랫튜브(52)의 내경은 동일하고, 제 1 열교환부(100)의 플랫튜브(50)의 개수와 제 2 열교환부(200)의 플랫튜브(50)의 개수의 비율은 7~9 : 1~2 일 수 있다. 제 1 열교환부(100)의 플랫튜브(50)의 내경과, 제 2 플랫튜브(52)의 내경은 동일하고, 제 1 열교환부(100)의 플랫튜브(50)의 개수와 제 2 열교환부(200)의 플랫튜브(50)의 개수의 비율은 8 : 2 인 것이 바람직하다. The inner diameter of the flat tube 50 of the first heat exchange part 100 and the inner diameter of the second flat tube 52 are the same, and the number of the flat tubes 50 of the first heat exchange part 100 is the second heat exchange part. It may be larger than the number of flat tubes 50 of the (200). The inner diameter of the flat tube 50 of the first heat exchange part 100 and the inner diameter of the second flat tube 52 are the same, and the number of the flat tubes 50 of the first heat exchange part 100 and the second heat exchange part The ratio of the number of the flat tubes 50 of the 200 may be 7 to 9: 1 to 2. The inner diameter of the flat tube 50 of the first heat exchange part 100 and the inner diameter of the second flat tube 52 are the same, and the number of the flat tubes 50 of the first heat exchange part 100 and the second heat exchange part It is preferable that the ratio of the number of the flat tubes 50 of 200 is 8: 2.
제 1 열교환부(100)의 플랫튜브(50)의 개수가 제 2 열교환부(200)의 플랫튜브(50)의 개수 보다 많게 배치되는 경우, 제 1 열교환부(100)의 제 1 플랫튜브(51)들 사이의 피치와 제 2 열교환부(200)의 제 2 플랫튜브(52) 사이의 피치(Pitch)는 동일한 것이 바람직하다. 물론, , 제 1 열교환부(100)의 제 1 플랫튜브(51)들 사이의 피치는 제 2 열교환의 제 2 플랫튜브(52) 사이의 피치(Pitch) 보다 작을 수 있다.When the number of the flat tubes 50 of the first heat exchange part 100 is greater than the number of the flat tubes 50 of the second heat exchange part 200, the first flat tube of the first heat exchange part 100 ( The pitch between the 51 and the pitch between the second flat tube 52 of the second heat exchange part 200 is preferably the same. Of course, the pitch between the first flat tubes 51 of the first heat exchange part 100 may be smaller than the pitch between the second flat tubes 52 of the second heat exchange.
더욱 효율적인 열교환과, 공기의 흐름을 위해, 공기의 흐름 방향(전후방향)에서 보아, , 제 1 열교환부(100)의 제 1 플랫튜브(51)들과 제 2 열교환의 제 2 플랫튜브(52)는 서로 중첩되지 않게 배치될 수 있다. 제 1 열교환부(100)의 제 1 플랫튜브(51)들 사이를 통과한 공기는 제 2 열교환의 제 2 플랫튜브(52) 사이의 공간으로 유동되며 방향이 변경되고, 공기가 머무르는 시간이 증대된다.For more efficient heat exchange and air flow, the first flat tubes 51 of the first heat exchange part 100 and the second flat tube 52 of the second heat exchange are viewed in the air flow direction (front and rear direction). ) May be arranged not to overlap each other. The air passing between the first flat tubes 51 of the first heat exchange part 100 flows into the space between the second flat tubes 52 of the second heat exchange, changes its direction, and increases the time for which the air stays. do.
도 7은 제 1 열교환부(100)와 제 2 열교환부(200)의 플랫튜브(50)의 면적비에 따른 열교환량을 도시한 그래프이다. FIG. 7 is a graph showing the heat exchange amount according to the area ratio of the flat tube 50 of the first heat exchange part 100 and the second heat exchange part 200.
도 7을 참조하면, 제 1 열교환부(100)의 플랫튜브(50)의 내경과, 제 2 플랫튜브(52)의 내경은 동일하고, 제 1 열교환부(100)의 플랫튜브(50)의 개수와 제 2 열교환부(200)의 플랫튜브(50)의 개수의 비가 8 : 2 인 경우, 최대의 열교환량을 가지는 것을 알 수 있다. Referring to FIG. 7, the inner diameter of the flat tube 50 of the first heat exchange part 100 and the inner diameter of the second flat tube 52 are the same, and the inner diameter of the flat tube 50 of the first heat exchange part 100 is the same. When the ratio of the number and the number of the flat tubes 50 of the second heat exchange part 200 is 8: 2, it can be seen that it has the maximum heat exchange amount.
도 8은 본 발명의 제 2 실시예에 따른 실외열교환기(20)의 평면도이다.8 is a plan view of an outdoor heat exchanger 20 according to a second embodiment of the present invention.
제 2 실시예는 제 1 실시예와 비교하면, 제 1 열교환부(100) 또는 제 2 열교환부(200)의 열교환면의 개수에 차이가 존재한다.Compared to the first embodiment, the second embodiment has a difference in the number of heat exchange surfaces of the first heat exchange part 100 or the second heat exchange part 200.
도 8을 참조하면, 제 1 열교환부(100) 또는 제 2 열교환부(200)의 플랫튜브(50)들은 복수 개의 플랫튜브(50) 그룹으로 구분되고, 복수 개의 플랫튜브(50) 그룹들은 공기의 흐름 방향을 따라 복수 개의 열을 형성할 수 있다.Referring to FIG. 8, the flat tubes 50 of the first heat exchange part 100 or the second heat exchange part 200 are divided into a plurality of flat tube 50 groups, and the plurality of flat tube 50 groups are air. A plurality of columns may be formed along the flow direction of the.
제 1 열교환부(100) 내의 냉매는 제 2 열교환부(200) 내의 냉매 보다 큰 비체적을 가지므로, 제 1 열교환부(100)의 플랫튜브(50)들은 제 2 열교환부(200)의 플랫튜브(50)들 보다 많은 개수를 가져야 한다. 이 때, 제 1 열교환부(100)와 제 2 열교환부(200)가 각각 1열로 배치되는 경우, 제 1 열교환부(100)의 크기가 과도하게 커지는 문제점이 발생한다.Since the refrigerant in the first heat exchange part 100 has a larger specific volume than the refrigerant in the second heat exchange part 200, the flat tubes 50 of the first heat exchange part 100 are flat tubes of the second heat exchange part 200. Should have a number greater than (50). At this time, when the first heat exchanger 100 and the second heat exchanger 200 are arranged in one row, a problem arises in that the size of the first heat exchanger 100 becomes excessively large.
따라서, 제 2 실시예에서, 제 1 열교환부(100)의 열교환면을 다열로 배치한다. 구체적으로, 제 1 열교환부(100)는 복수 개의 제 1 플랫튜브(51)들이 상하로 일정한 피치를 가지고 배치되어 하나의 그룹을 형성하여, 하나의 열교환면(P1)을 정의한다. 복수 개의 플랫튜브(50) 그룹들은 공기의 흐름(전후) 방향을 따라 복수 개의 열을 형성할 수 있다. 즉, 열교환면(P1a. P1b, P1c)은 전후 방향을 따라 이격되어 복수 개의 열을 형성한다.Therefore, in the second embodiment, the heat exchange surface of the first heat exchange part 100 is arranged in multiple rows. In detail, the first heat exchange part 100 defines a heat exchange surface P1 by forming a group by arranging a plurality of first flat tubes 51 having a predetermined pitch up and down. The plurality of flat tube groups 50 may form a plurality of rows along the air flow (front and rear) direction. That is, the heat exchange surfaces P1a, P1b, and P1c are spaced apart along the front and rear directions to form a plurality of rows.
이 때, 좌측헤더 또는 우측헤더는 각각의 열교환면에 대응되게 복수 개로 배치될 수 있다. 구체적으로, 제 1 우측헤더(81)는 제 1 열교환부(100)의 열교환면 각각에 배치될 수 있다. 제 1 우측헤더(81)는 제 1 열교환부(100)의 3개의 열교환면의 일측에 3개가 배치된다. 각각의 제 1 우측헤더(81)에는 유입관(22)이 연결된다. 제 1 좌측헤더(71)는 제 1 열교환부(100)의 열교환면 각각에 배치될 수 있다. 제 1 좌측헤더(71)는 제 1 열교환부(100)의 3개의 열교화면의 타측에 3개가 배치된다. 각각의 제 1 좌측헤더(71)에는 연결관(25)이 연결된다.At this time, the left header or the right header may be arranged in plurality in correspondence with each heat exchange surface. Specifically, the first right header 81 may be disposed on each of the heat exchange surfaces of the first heat exchange part 100. Three first right headers 81 are disposed on one side of three heat exchange surfaces of the first heat exchange unit 100. An inlet pipe 22 is connected to each first right header 81. The first left header 71 may be disposed on each of the heat exchange surfaces of the first heat exchange part 100. Three first left headers 71 are disposed on the other side of the three thermal bridge screens of the first heat exchanger 100. A connecting pipe 25 is connected to each first left header 71.
따라서, 제 1 열교환부(100)의 열교환 면적은 향상시키면서, 한정된 공간에 제 1 열교환부(100)를 다열로 배치하여서, 공간 활용을 극대화할 수 있다. Therefore, the heat exchange area of the first heat exchange part 100 may be improved, and the first heat exchange part 100 may be arranged in multiple rows in a limited space, thereby maximizing space utilization.
도 9는 본 발명의 제 3 실시예에 따른 실외열교환기(20)의 평면도이다.9 is a plan view of an outdoor heat exchanger 20 according to a third embodiment of the present invention.
제 3 실시예는 제 2 실시예와 비교하면, 좌측헤더 또는 우측헤더의 구조에 차이점이 존재한다.Compared to the second embodiment, the third embodiment has a difference in the structure of the left header or the right header.
도 9를 참조하면, 제 3 실시예의 좌측헤더 또는 우측헤더는 각각의 열교환면에 배치된 복수 개의 플랫튜브(50)와 연통될 수 있다. 구체적으로, 제 1 열교환부(100)의 제 1 좌측헤더(71)는 복수의 열교환면과 연통된다. 1 개의 제 1 좌측헤더(71)와 다수 개의 열교환면이 연통되는 구조를 가진다. 제 1 열교환부(100)의 제 1 우측헤더(81)는 복수 개의 열교환면과 연통된다. 1 개의 제 1 우측헤더(81)와 다수 개의 열교환면이 연통되는 구조를 가진다.Referring to FIG. 9, the left header or the right header of the third embodiment may be in communication with a plurality of flat tubes 50 disposed on each heat exchange surface. Specifically, the first left header 71 of the first heat exchange part 100 communicates with the plurality of heat exchange surfaces. One first left header 71 and a plurality of heat exchange surfaces communicate with each other. The first right header 81 of the first heat exchange part 100 communicates with the plurality of heat exchange surfaces. One first right header 81 and a plurality of heat exchange surfaces communicate with each other.
따라서, 좌측헤더 또는 우측헤더를 공유할 수 있으므로, 제조비용이 절감될 수 있다.Therefore, since the left header or the right header can be shared, the manufacturing cost can be reduced.
도 10은 본 발명의 제 4 실시예에 따른 실외열교환기(20)의 평면도이다.10 is a plan view of an outdoor heat exchanger 20 according to a fourth embodiment of the present invention.
제 4 실시예는 제 3 실시예와 비교하면, 중간 열교환부(300)를 더 포함하는 차이점이 존재한다.Compared to the third embodiment, the fourth embodiment further includes an intermediate heat exchanger 300.
도 10을 참조하면, 중간 열교환부(300)는 냉매 및 공기를 열교환시키는 복수개의 플랫튜브(50)를 포함하고, 제 1 열교환부(100)에서 토출된 냉매를 열교환하여 제 2 열교환부(200)에 공급한다.Referring to FIG. 10, the intermediate heat exchange part 300 includes a plurality of flat tubes 50 for exchanging refrigerant and air, and heat exchanges the refrigerant discharged from the first heat exchange part 100 to the second heat exchange part 200. Supplies).
중간 열교환부(300)는 제 1 열교환부(100)를 통과한 냉매를 열교환시킨 후 제 2 열교환부(200)로 공급하게 배치된다.The intermediate heat exchange part 300 is arranged to heat the refrigerant passing through the first heat exchange part 100 and to supply the second heat exchange part 200.
중간 열교환부(300)는 제 1 열교환부(100)와 마찬가지로, 플랫튜브(50), 제 3 좌측헤더(73), 제 3 우측헤더(83) 및 핀(60)을 포함할 수 있다.The intermediate heat exchanger 300 may include a flat tube 50, a third left header 73, a third right header 83, and a fin 60, similarly to the first heat exchanger 100.
구체적으로, 중간 열교환부(300)의 플랫튜브(50)의 좌측에는 제 3 좌측헤더(73)가 연결되고, 우측에는 제 3 우측헤더(83)가 연결된다. 중간 열교환부(300)의 플랫튜브(50)은 열교환면(P3)을 정의한다.Specifically, the third left header 73 is connected to the left side of the flat tube 50 of the intermediate heat exchanger 300, and the third right header 83 is connected to the right side thereof. The flat tube 50 of the intermediate heat exchange part 300 defines a heat exchange surface P3.
제 3 좌측헤더(73)는 제 1 좌측헤더(71)와 제 1 연결관(25a)을 통해 연결되고, 제 3 우측헤더(83)는 제 2 우측헤더(80)와 제 2 연결관(25b)을 통해 연결된다. The third left header 73 is connected via the first left header 71 and the first connector 25a, and the third right header 83 is the second right header 80 and the second connector 25b. Is connected via).
중간 열교환부(300) 내의 냉매의 비체적은 제 1 열교환부(100) 내의 냉매의 비체적 보다 작고, 제 2 열교환부(200) 내의 냉매의 비체적 보다 크다.The specific volume of the refrigerant in the intermediate heat exchange part 300 is smaller than the specific volume of the refrigerant in the first heat exchange part 100 and larger than the specific volume of the refrigerant in the second heat exchange part 200.
중간 열교환부(300)의 플랫튜브(50) 들의 단면적의 합은 제 1 열교환부(100)의 플랫튜브(50) 들의 단면적의 합 보다 작거나 같고, 제 2 열교환부(200)의 플랫튜브(50) 들의 단면적의 합 보다 크게 할 수 있다. The sum of the cross-sectional areas of the flat tubes 50 of the intermediate heat exchange part 300 is less than or equal to the sum of the cross-sectional areas of the flat tubes 50 of the first heat exchange part 100, and the flat tubes of the second heat exchange part 200. 50) can be larger than the sum of the cross-sectional areas.
제 1 열교환부(100)의 플랫튜브(50) 들의 단면적의 합과 중간 열교환부(300)의 플랫튜브(50) 들의 단면적의 합과, 제 2 열교환부(200)의 플랫튜브(50) 들의 단면적의 합의 비율은 7~9 : 7~9 : 1~2 로 구성될 수 있다.The sum of the cross-sectional areas of the flat tubes 50 of the first heat exchange part 100 and the sum of the cross-sectional areas of the flat tubes 50 of the intermediate heat exchange part 300, and the flat tubes 50 of the second heat exchange part 200. The ratio of the sum of the cross-sectional areas may be composed of 7-9: 7-9: 1-2.
구체적으로, 상술한 바와 같이, 제조의 편의성을 위해, 제 1 열교환부(100)의 플랫튜브(50)의 내경, 제 2 플랫튜브(52)의 내경 및 중간 열교환부(300)의 플랫튜브(50)의 내경은 서로 동일하고, 중간 열교환부(300)의 플랫튜브(50)의 개수는 제 1 열교환부(100)의 플랫튜브(50)의 개수 보다 작거나 같고, 제 2 열교환부(200)의 플랫튜브(50)의 개수 보다 클 수 있다.Specifically, as described above, for convenience of manufacture, the inner diameter of the flat tube 50 of the first heat exchange part 100, the inner diameter of the second flat tube 52 and the flat tube of the intermediate heat exchange part 300 ( The inner diameter of the 50 is the same, the number of the flat tube 50 of the intermediate heat exchange unit 300 is less than or equal to the number of the flat tube 50 of the first heat exchange unit 100, the second heat exchange unit 200 ) May be greater than the number of flat tubes 50.
따라서, 열교환량이 크게 요구되는 환경에서는 중간 열교환부(300)를 사용할 수 있고, 중간 열교환부(300)를 사용하는 경우에도, 열교환 효율과, 열교환 량을 향상시킬 수 있다.Therefore, in an environment where a large heat exchange amount is required, the intermediate heat exchange part 300 can be used, and even when the intermediate heat exchange part 300 is used, the heat exchange efficiency and the heat exchange amount can be improved.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.Although the embodiments of the present invention have been described above with reference to the accompanying drawings, the present invention is not limited to the above embodiments but may be manufactured in various forms, and having ordinary skill in the art to which the present invention pertains. It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without changing the technical spirit or essential features of the present invention. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
Claims (15)
- 마이크로 채널 타입으로 구성된 냉장고의 열교환기에 있어서, In the heat exchanger of the refrigerator composed of a micro-channel type,냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 냉매가 유입되는 유입관이 연결된 제 1 열교환부;A first heat exchanger including a plurality of flat tubes configured to exchange heat between the refrigerant and the air, and connected with an inlet pipe through which the refrigerant flows;냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 상기 제 1 열교환부의 외측에 배치되고, 냉매가 토출되는 토출관이 연결된 제 2 열교환부;A second heat exchange part including a plurality of flat tubes for exchanging a refrigerant and air, the second heat exchange part being disposed outside the first heat exchange part and connected to a discharge tube through which the refrigerant is discharged;상기 제 1 열교환부 및 제 2 열교환부를 연결하고, 상기 제 1 열교환부에서 토출된 냉매를 상기 제 2 열교환부에 공급하는 연결관;을 포함하고,And a connecting pipe connecting the first heat exchanger and the second heat exchanger and supplying the refrigerant discharged from the first heat exchanger to the second heat exchanger.상기 제 1 열교환부는 상기 제 2 열교환부와 열교환된 공기와 열교환되게 배치되고,The first heat exchanger is arranged to exchange heat with air heat exchanged with the second heat exchanger,상기 제 1 열교환부의 플랫튜브 들의 단면적의 합과 상기 제 2 열교환부의 플랫튜브 들의 단면적의 합의 비율은 7~9 : 1~2 인 냉장고의 열교환기.The ratio of the sum of the cross-sectional areas of the flat tubes of the first heat exchange unit and the cross-sectional area of the flat tubes of the second heat exchange unit is 7 to 9: 1 to 2 heat exchanger of the refrigerator.
- 청구항 1에 있어서, The method according to claim 1,외부공기가 유입되는 공기유입부; 및An air inlet unit through which external air is introduced; And유입된 공기가 열교환부들과 열교환하고 유출되는 공기유출부를 더 포함하고,Further, the air flowing in and the heat exchange with the heat exchange portion further comprises an air outlet portion,상기 제 2 열교환부는 상기 제 1 열교환부에 비해 상대적으로 상기 공기 유입부에 인접하여 배치되는 냉장고의 열교환기.And the second heat exchange part is disposed adjacent to the air inlet part relative to the first heat exchange part.
- 청구항 1에 있어서, The method according to claim 1,상기 제 1 열교환부의 플랫튜브들은 복수 개의 플랫튜브 그룹으로 구분되고, 상기 복수 개의 플랫튜브 그룹들은 공기의 흐름 방향을 따라 복수 개의 열을 형성하는 냉장고의 열교환기.The flat tubes of the first heat exchanger are divided into a plurality of flat tube groups, and the plurality of flat tube groups form a plurality of rows along a flow direction of air.
- 청구항 1에 있어서, The method according to claim 1,상기 제 1 열교환부 또는 제 2 열교환부는, The first heat exchanger or the second heat exchanger,횡방향으로 연장되고, 종방향으로 이격되어 배치된 복수개의 상기 플랫튜브;A plurality of said flat tubes extending laterally and spaced apart in the longitudinal direction;상기 플랫튜브를 연결하여 열을 전도시키는 핀; A pin connecting the flat tube to conduct heat;상기 복수개의 플랫튜브 일측에 결합되고, 상기 복수개 플랫튜브 일측과 연통되어 냉매가 유동되는 좌측헤더; A left header coupled to one side of the plurality of flat tubes and in communication with one side of the plurality of flat tubes;상기 복수개의 플랫튜브 타측에 결합되고, 상기 복수개 플랫튜브의 타측과 연통되어 냉매가 유동되는 우측헤더;를 포함하는 냉장고의 열교환기. And a right header coupled to the other side of the plurality of flat tubes and communicating with the other side of the plurality of flat tubes so that the refrigerant flows.
- 청구항 4에 있어서, The method according to claim 4,상기 제 1 열교환부에서,In the first heat exchanger,복수개의 상기 플랫튜브들과 상기 복수 개의 플랫튜브를 연결하는 복수 개의 핀은 공기의 흐름 방향과 교차되는 열교환면을 정의하고,A plurality of fins connecting the plurality of flat tubes and the plurality of flat tubes defines a heat exchange surface that intersects the flow direction of air,상기 열교환면은 복수 개가 이격되어 배치되는 냉장고의 열교환기.The heat exchange surface is a heat exchanger of the refrigerator which is arranged a plurality of spaced apart.
- 청구항 5에 있어서, The method according to claim 5,상기 좌측헤더 또는 상기 우측헤더는 상기 각각의 열교환면에 대응되게 복수 개로 배치되는 냉장고의 열교환기.The left header or the right header is a plurality of heat exchangers of the refrigerator disposed to correspond to each of the heat exchange surface.
- 청구항 5에 있어서, The method according to claim 5,상기 좌측헤더 또는 상기 우측헤더는 상기 각각의 열교환면에 배치된 복수 개의 플랫튜브와 연통되는 냉장고의 열교환기.And the left header or the right header communicates with a plurality of flat tubes disposed on the respective heat exchange surfaces.
- 청구항 4에 있어서, The method according to claim 4,상기 연결관은 상기 제 1 열교환부의 좌측헤더와 상기 제 2 열교환부의 우측헤더를 연결하는 냉장고의 열교환기.The connecting pipe is a heat exchanger of the refrigerator connecting the left header of the first heat exchange part and the right header of the second heat exchange part.
- 청구항 1에 있어서, The method according to claim 1,냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 상기 제 1 열교환부에서 토출된 냉매를 열교환하여 상기 제 2 열교환부에 공급하는 중간 열교환부를 더 포함하고,It further comprises a plurality of flat tubes for heat exchange between the refrigerant and air, and further comprises an intermediate heat exchanger for heat-exchanging the refrigerant discharged from the first heat exchanger to supply to the second heat exchanger,상기 중간 열교환부의 플랫튜브 들의 단면적의 합은 상기 제 1 열교환부의 플랫튜브 들의 단면적의 합 보다 작거나 같고, 상기 제 2 열교환부의 플랫튜브 들의 단면적의 합 보다 큰 냉장고의 열교환기.The sum of the cross sectional areas of the flat tubes of the intermediate heat exchange part is less than or equal to the sum of the cross sectional areas of the flat tubes of the first heat exchange part, and the sum of the cross sectional areas of the flat tubes of the second heat exchange part.
- 마이크로 채널 타입으로 구성된 냉장고의 열교환기에 있어서, In the heat exchanger of the refrigerator composed of a micro-channel type,냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 냉매가 유입되는 유입관이 연결된 제 1 열교환부;A first heat exchanger including a plurality of flat tubes configured to exchange heat between the refrigerant and the air, and connected with an inlet pipe through which the refrigerant flows;냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 상기 제 1 열교환부의 외측에 배치되고, 냉매가 토출되는 토출관이 연결된 제 2 열교환부;A second heat exchange part including a plurality of flat tubes for exchanging a refrigerant and air, the second heat exchange part being disposed outside the first heat exchange part and connected to a discharge tube through which the refrigerant is discharged;상기 제 1 열교환부 및 제 2 열교환부를 연결하고, 상기 제 1 열교환부에서 토출된 냉매를 상기 제 2 열교환부에 공급하는 연결관;을 포함하고,And a connecting pipe connecting the first heat exchanger and the second heat exchanger and supplying the refrigerant discharged from the first heat exchanger to the second heat exchanger.상기 제 1 열교환부는 상기 제 2 열교환부와 열교환된 공기와 열교환되게 배치되고,The first heat exchanger is arranged to exchange heat with air heat exchanged with the second heat exchanger,상기 제 1 열교환부의 플랫튜브의 내경과, 상기 제 2 플랫튜브의 내경은 동일하고, The inner diameter of the flat tube of the first heat exchange part and the inner diameter of the second flat tube are the same,상기 제 1 열교환부의 플랫튜브의 개수와 상기 제 2 열교환부의 플랫튜브의 개수의 비율은 7~9 : 1~2 인 냉장고의 열교환기.The ratio of the number of the flat tubes of the first heat exchange unit and the number of the flat tubes of the second heat exchange unit is 7 ~ 9: 1 ~ 2 heat exchanger of the refrigerator.
- 청구항 10에 있어서, The method according to claim 10,냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 상기 제 1 열교환부에서 토출된 냉매를 열교환하고 상기 제 2 열교환부에 공급하는 중간 열교환부를 더 포함하고,A plurality of flat tubes for heat exchange between the refrigerant and air, further comprising an intermediate heat exchanger for heat-exchanging the refrigerant discharged from the first heat exchanger and supplying to the second heat exchanger,상기 중간 열교환부의 플랫튜브의 개수는 상기 제 1 열교환부의 플랫튜브의 개수 보다 작거나 같고, 상기 제 2 열교환부의 플랫튜브의 개수 보다 큰 냉장고의 열교환기.The number of flat tubes of the intermediate heat exchanger is less than or equal to the number of flat tubes of the first heat exchanger, and is greater than the number of flat tubes of the second heat exchanger.
- 마이크로 채널 타입으로 구성된 냉장고의 열교환기에 있어서, In the heat exchanger of the refrigerator composed of a micro-channel type,냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 냉매가 유입되는 유입관이 연결된 제 1 열교환부;A first heat exchanger including a plurality of flat tubes configured to exchange heat between the refrigerant and the air, and connected with an inlet pipe through which the refrigerant flows;냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 상기 제 1 열교환부의 외측에 배치되고, 냉매가 토출되는 토출관이 연결된 제 2 열교환부;A second heat exchange part including a plurality of flat tubes for exchanging a refrigerant and air, the second heat exchange part being disposed outside the first heat exchange part and connected to a discharge tube through which the refrigerant is discharged;상기 제 1 열교환부 및 제 2 열교환부를 연결하고, 상기 제 1 열교환부에서 토출된 냉매를 상기 제 2 열교환부에 공급하는 연결관;을 포함하고,And a connecting pipe connecting the first heat exchanger and the second heat exchanger and supplying the refrigerant discharged from the first heat exchanger to the second heat exchanger.상기 제 1 열교환부는 상기 제 2 열교환부와 열교환된 공기와 열교환되게 배치되고,The first heat exchanger is arranged to exchange heat with air heat exchanged with the second heat exchanger,상기 제 1 열교환부의 플랫튜브 들의 단면적의 합은 상기 제 2 열교환부의 플랫튜브 들의 단면적의 합 보다 큰 것을 특징으로 하는 냉장고의 열교환기.The sum of the cross sectional areas of the flat tubes of the first heat exchange unit is greater than the sum of the cross sectional areas of the flat tubes of the second heat exchange unit.
- 청구항 12에 있어서, The method according to claim 12,냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 상기 제 1 열교환부에서 토출된 냉매를 열교환하여 상기 제 2 열교환부에 공급하는 중간 열교환부를 더 포함하고,It further comprises a plurality of flat tubes for heat exchange between the refrigerant and air, and further comprises an intermediate heat exchanger for heat-exchanging the refrigerant discharged from the first heat exchanger to supply to the second heat exchanger,상기 중간 열교환부의 플랫튜브 들의 단면적의 합은 상기 제 1 열교환부의 플랫튜브 들의 단면적의 합 보다 작거나 같고, 상기 제 2 열교환부의 플랫튜브 들의 단면적의 합 보다 큰 냉장고의 열교환기.The sum of the cross sectional areas of the flat tubes of the intermediate heat exchange part is less than or equal to the sum of the cross sectional areas of the flat tubes of the first heat exchange part, and the sum of the cross sectional areas of the flat tubes of the second heat exchange part.
- 마이크로 채널 타입으로 구성된 냉장고의 열교환기에 있어서, In the heat exchanger of the refrigerator composed of a micro-channel type,냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 냉매가 유입되는 유입관이 연결된 제 1 열교환부;A first heat exchanger including a plurality of flat tubes configured to exchange heat between the refrigerant and the air, and connected with an inlet pipe through which the refrigerant flows;냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 상기 제 1 열교환부의 외측에 배치되고, 냉매가 토출되는 토출관이 연결된 제 2 열교환부;A second heat exchange part including a plurality of flat tubes for exchanging a refrigerant and air, the second heat exchange part being disposed outside the first heat exchange part and connected to a discharge tube through which the refrigerant is discharged;상기 제 1 열교환부 및 제 2 열교환부를 연결하고, 상기 제 1 열교환부에서 토출된 냉매를 상기 제 2 열교환부에 공급하는 연결관;을 포함하고,And a connecting pipe connecting the first heat exchanger and the second heat exchanger and supplying the refrigerant discharged from the first heat exchanger to the second heat exchanger.상기 제 1 열교환부는 상기 제 2 열교환부와 열교환된 공기와 열교환되게 배치되고,The first heat exchanger is arranged to exchange heat with air heat exchanged with the second heat exchanger,상기 제 1 열교환부의 플랫튜브의 내경과, 상기 제 2 플랫튜브의 내경은 동일하고, The inner diameter of the flat tube of the first heat exchange part and the inner diameter of the second flat tube are the same,상기 제 1 열교환부의 플랫튜브의 개수는 상기 제 2 열교환부의 플랫튜브 보다 큰 것을 특징으로 하는 냉장고의 열교환기.The number of flat tubes of the first heat exchanger is larger than the flat tubes of the second heat exchanger.
- 청구항 12에 있어서, The method according to claim 12,냉매 및 공기를 열교환시키는 복수개의 플랫튜브를 포함하고, 상기 제 1 열교환부에서 토출된 냉매를 열교환하여 상기 제 2 열교환부에 공급하는 중간 열교환부를 더 포함하고,It further comprises a plurality of flat tubes for heat exchange between the refrigerant and air, and further comprises an intermediate heat exchanger for heat-exchanging the refrigerant discharged from the first heat exchanger to supply to the second heat exchanger,상기 제 3 열교환부의 플랫튜브의 내경과, 상기 제 1 플랫튜브의 내경은 동일하고, The inner diameter of the flat tube of the third heat exchange part and the inner diameter of the first flat tube are the same,상기 제 3 열교환부의 플랫튜브의 개수는 상기 제 1 열교환부의 플랫튜브의 개수 보다 작거나 같고, 상기 제 2 열교환부의 플랫튜브의 개수 보다 큰 냉장고의 열교환기.The number of flat tubes of the third heat exchange unit is less than or equal to the number of flat tubes of the first heat exchange unit, the heat exchanger of the refrigerator larger than the number of flat tubes of the second heat exchange unit.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18745341.0A EP3575723A4 (en) | 2017-01-25 | 2018-01-25 | Heat exchanger of refrigerator |
US16/480,855 US20210131749A1 (en) | 2017-01-25 | 2018-01-25 | Heat exchanger of refrigerator |
CN201880021276.4A CN110494709A (en) | 2017-01-25 | 2018-01-25 | The heat exchanger of refrigerator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2017-0012262 | 2017-01-25 | ||
KR1020170012262A KR20180087775A (en) | 2017-01-25 | 2017-01-25 | Heat exchanger for refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018139863A1 true WO2018139863A1 (en) | 2018-08-02 |
Family
ID=62979599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/001098 WO2018139863A1 (en) | 2017-01-25 | 2018-01-25 | Heat exchanger of refrigerator |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210131749A1 (en) |
EP (1) | EP3575723A4 (en) |
KR (1) | KR20180087775A (en) |
CN (1) | CN110494709A (en) |
WO (1) | WO2018139863A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111780459A (en) * | 2019-04-03 | 2020-10-16 | 浙江三花智能控制股份有限公司 | Heat exchanger and heat exchange system |
EP4328534A4 (en) * | 2021-04-20 | 2024-06-05 | Mitsubishi Electric Corporation | Heat exchanger |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20240027110A1 (en) * | 2020-11-27 | 2024-01-25 | Kyungdong Navien Co., Ltd | Evaporative condenser and air conditioner including same |
WO2023166612A1 (en) * | 2022-03-02 | 2023-09-07 | 三菱電機株式会社 | Heat exchanger and method for manufacturing heat exchanger |
KR20240110353A (en) * | 2023-01-06 | 2024-07-15 | 엘지전자 주식회사 | Heat exchanger |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005009808A (en) * | 2003-06-20 | 2005-01-13 | Shinko Kogyo Co Ltd | Air conditioner heat exchanger. |
JP2006284134A (en) * | 2005-04-04 | 2006-10-19 | Matsushita Electric Ind Co Ltd | Heat exchanger |
KR20140000987A (en) * | 2012-06-27 | 2014-01-06 | 한국교통대학교산학협력단 | Heat exchanger and method for manufacturing thereof |
CN204421425U (en) * | 2014-12-10 | 2015-06-24 | 杭州三花研究院有限公司 | Heat-exchanger rig |
KR20160131577A (en) * | 2015-05-08 | 2016-11-16 | 엘지전자 주식회사 | Heat exchanger for air conditioner |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02140166U (en) * | 1989-04-24 | 1990-11-22 | ||
JP2000220979A (en) * | 1999-01-29 | 2000-08-08 | Zexel Corp | Heat exchanger |
KR100913141B1 (en) * | 2004-09-15 | 2009-08-19 | 삼성전자주식회사 | Evaporator Using Microchannel Tube |
JP2012225634A (en) * | 2011-04-04 | 2012-11-15 | Denso Corp | Heat exchanger |
KR101989096B1 (en) * | 2013-06-18 | 2019-06-13 | 엘지전자 주식회사 | Heat exchanger |
CN105378397B (en) * | 2013-07-11 | 2017-09-19 | Smc株式会社 | Constant temperature liquid circulating device |
JP5741657B2 (en) * | 2013-09-11 | 2015-07-01 | ダイキン工業株式会社 | Heat exchanger and air conditioner |
-
2017
- 2017-01-25 KR KR1020170012262A patent/KR20180087775A/en not_active Withdrawn
-
2018
- 2018-01-25 WO PCT/KR2018/001098 patent/WO2018139863A1/en unknown
- 2018-01-25 US US16/480,855 patent/US20210131749A1/en not_active Abandoned
- 2018-01-25 EP EP18745341.0A patent/EP3575723A4/en not_active Withdrawn
- 2018-01-25 CN CN201880021276.4A patent/CN110494709A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005009808A (en) * | 2003-06-20 | 2005-01-13 | Shinko Kogyo Co Ltd | Air conditioner heat exchanger. |
JP2006284134A (en) * | 2005-04-04 | 2006-10-19 | Matsushita Electric Ind Co Ltd | Heat exchanger |
KR20140000987A (en) * | 2012-06-27 | 2014-01-06 | 한국교통대학교산학협력단 | Heat exchanger and method for manufacturing thereof |
CN204421425U (en) * | 2014-12-10 | 2015-06-24 | 杭州三花研究院有限公司 | Heat-exchanger rig |
KR20160131577A (en) * | 2015-05-08 | 2016-11-16 | 엘지전자 주식회사 | Heat exchanger for air conditioner |
Non-Patent Citations (1)
Title |
---|
See also references of EP3575723A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111780459A (en) * | 2019-04-03 | 2020-10-16 | 浙江三花智能控制股份有限公司 | Heat exchanger and heat exchange system |
CN111780459B (en) * | 2019-04-03 | 2022-04-01 | 浙江三花智能控制股份有限公司 | Heat exchanger and heat exchange system |
EP4328534A4 (en) * | 2021-04-20 | 2024-06-05 | Mitsubishi Electric Corporation | Heat exchanger |
Also Published As
Publication number | Publication date |
---|---|
KR20180087775A (en) | 2018-08-02 |
CN110494709A (en) | 2019-11-22 |
EP3575723A1 (en) | 2019-12-04 |
US20210131749A1 (en) | 2021-05-06 |
EP3575723A4 (en) | 2021-04-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018139863A1 (en) | Heat exchanger of refrigerator | |
WO2015009028A1 (en) | Heat exchanger | |
WO2015016605A1 (en) | Heat exchanger and corrugated fin thereof | |
WO2011108780A1 (en) | Chiller | |
WO2022169202A1 (en) | Header tank of heat exchanger | |
US9551539B2 (en) | Heat exchanger and manufacturing method thereof | |
WO2016204392A1 (en) | Refrigeration cycle of a vehicle air conditioner | |
WO2020022738A1 (en) | Integrated liquid air cooled condenser and low temperature radiator | |
KR100765557B1 (en) | heat transmitter | |
EP3458789A1 (en) | Double tube for heat-exchange | |
WO2012002698A2 (en) | Heat exchanger | |
US11885570B2 (en) | Cooling system | |
WO2011105662A1 (en) | Chiller | |
WO2017069484A1 (en) | Air conditioner | |
WO2014204066A1 (en) | Heat exchanger for an air conditioner and an air conditioner having the same | |
WO2016010389A1 (en) | Heat exchanger and heat pump having same | |
WO2020004884A1 (en) | Condenser | |
WO2019203621A1 (en) | Cooling system of low temperature storage | |
WO2012057493A2 (en) | Air conditioner | |
CN105737453B (en) | Cooling device and method of use thereof | |
WO2010131877A2 (en) | Air conditioner | |
US20230392870A1 (en) | Heat exchanger for a heating, ventilation, and air-conditioning system | |
JPH0914698A (en) | Outdoor machine of air conditioner | |
WO2014112814A1 (en) | Heat exchanger and method for manufacturing the same | |
WO2022139195A1 (en) | Heat exchanger and air conditioner having same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18745341 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018745341 Country of ref document: EP Effective date: 20190826 |