+

WO2018139597A1 - 電解槽、電解装置、電解方法 - Google Patents

電解槽、電解装置、電解方法 Download PDF

Info

Publication number
WO2018139597A1
WO2018139597A1 PCT/JP2018/002541 JP2018002541W WO2018139597A1 WO 2018139597 A1 WO2018139597 A1 WO 2018139597A1 JP 2018002541 W JP2018002541 W JP 2018002541W WO 2018139597 A1 WO2018139597 A1 WO 2018139597A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
cathode
electrolytic cell
bipolar
electric capacity
Prior art date
Application number
PCT/JP2018/002541
Other languages
English (en)
French (fr)
Inventor
陽介 内野
伸司 長谷川
悠介 鈴木
亮 小村
則和 藤本
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2018564657A priority Critical patent/JP6803406B2/ja
Publication of WO2018139597A1 publication Critical patent/WO2018139597A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a bipolar electrolyzer, an electrolyzer, and a water electrolysis method.
  • renewable energy has the characteristic that its output varies greatly because it depends on climatic conditions. For this reason, it is not always possible to transport the power obtained by power generation using renewable energy to the general power system, and there are concerns about social impacts such as imbalance in power supply and demand and instability of the power system. Yes.
  • Hydrogen is widely used industrially in scenes such as petroleum refining, chemical synthesis, and metal refining. In recent years, hydrogen can be used in hydrogen stations for fuel cell vehicles (FCV), smart communities, hydrogen power plants, etc. Sex is also spreading. For this reason, there is high expectation for the development of a technology for obtaining particularly high-purity hydrogen from renewable energy.
  • FCV fuel cell vehicles
  • Sex is also spreading. For this reason, there is high expectation for the development of a technology for obtaining particularly high-purity hydrogen from renewable energy.
  • Water electrolysis methods include solid polymer water electrolysis, high temperature steam electrolysis, alkaline water electrolysis and the like.
  • alkaline water electrolysis is one of the most promising because it has been industrialized for several decades or more, it can be implemented on a large scale, and it is cheaper than other water electrolysis devices. Has been.
  • the structure of the electrolysis cell in particular, the structure in which the gap between the diaphragm and the electrode is substantially eliminated
  • a zero gap structure see Patent Documents 1 and 2.
  • the generated gas is quickly released to the opposite side of the electrode through the pores of the electrode, thereby reducing the distance between the electrodes and suppressing the occurrence of gas accumulation near the electrodes as much as possible.
  • the voltage is kept low.
  • the zero gap structure is extremely effective for suppressing the electrolysis voltage, and is used in various electrolysis apparatuses.
  • the present invention has an object of enabling hydrogen production with high efficiency during operation with a variable power source such as renewable energy, and further stabilizing the electric control system when the power supply is stopped. .
  • the gist of the present invention is as follows.
  • the bipolar electrolytic cell according to the present invention includes a plurality of bipolar elements each including an anode, a cathode, a partition wall that separates the anode and the cathode, and an outer frame that borders the partition wall with a diaphragm interposed therebetween.
  • a bipolar electrolytic cell comprising a header communicating with an electrode chamber defined by the partition wall, the outer frame, and the diaphragm, outside the outer frame,
  • the electric capacity of the anode is in the range of 4825 C / m 2 to 965000 C / m 2
  • the electric capacity of the cathode is in the range of 4825 C / m 2 to 965000 C / m 2 . It is characterized by that.
  • the bipolar electrolytic cell of the present invention is preferably a bipolar electrolytic cell for alkaline water electrolysis.
  • the area of the current-carrying surface of the bipolar element is S1
  • the sectional area of the header channel is S2
  • the length of the header channel is L2.
  • (S2 / S1) / L2 is preferably in the range of 1.5 ⁇ 10 ⁇ 6 m ⁇ 1 to 2.3 ⁇ 10 ⁇ 4 m ⁇ 1 .
  • the lower one of the electric capacity of the anode and the electric capacity of the cathode is in the range of 9650 C / m 2 to 955350 C / m 2 .
  • the electric capacity of the anode is larger than the electric capacity of the cathode. Furthermore, in the bipolar electrolytic cell of the present invention, it is preferable that the electric capacity of the cathode is more than 0.1 times and not more than 0.99 times the electric capacity of the anode. Furthermore, in the bipolar electrolytic cell of the present invention, it is preferable that the electric capacity of the cathode exceeds 0.1 times the electric capacity of the anode and is not more than 0.49 times. In the bipolar electrolytic cell of the present invention, the actual electrode surface area per 1 m 2 of the geometric cell area of the anode is preferably in the range of 90 m 2 to 10000 m 2 .
  • the bipolar electrolytic cell of the present invention preferably has 50 to 500 bipolar elements.
  • the S1 is preferably 0.1 m 2 to 10 m 2 .
  • the thickness d of the electrolytic cell is preferably 10 mm to 100 mm.
  • the anode contains at least one nickel compound selected from the group consisting of nickel oxide, metallic nickel, nickel hydroxide and nickel alloy.
  • the anode has a conductive substrate and a catalyst layer disposed on the conductive substrate, and the catalyst layer includes a metal crystal of nickel,
  • the specific surface area of the first pores having pores in the range of 2 to 5 nm among the pores of the catalyst layer is 0.6 to 2.0 m 2 / g
  • the pore volume of one pore is 3 ⁇ 10 ⁇ 4 to 9 ⁇ 10 ⁇ 4 ml / g, and among the pores, the second pore having a pore diameter in the range of 0.01 to 2.00 ⁇ m
  • the specific surface area is 2.0 to 5.0 m 2 / g
  • the pore volume of the second pore is 0.04 to 0.2 ml / g
  • the thickness of the catalyst layer is 50 to 800 ⁇ m.
  • the cathode is Ru—La—Pt, Ru—Ce, Pt—Ce, Pt—Ir, Ir—Pt—Pd, Pt—Ni. It is preferable to include at least one Pt group compound selected from the group consisting of: Further, in the bipolar electrolytic cell of the present invention, the structure of the cathode and anode has a catalyst layer on the surface of the conductive substrate, and the conductive substrate is made of nickel metal, nickel oxide, hydroxide It is preferable to contain at least one nickel compound selected from the group consisting of nickel and nickel alloys.
  • the cathode and the anode have a mesh structure.
  • the cathode base material has a wire diameter in the range of 0.05 mm to 0.5 mm, and the opening has a range of 30 mesh to 80 mesh.
  • the anode base material has a mesh structure having an opening ratio in the range of 20% to 60%.
  • the bipolar electrolytic cell of the present invention is preferably one in which electrolytic cells are electrically connected in series.
  • the bipolar electrolytic cell of the present invention comprises a bipolar element having the cathode, the anode, the diaphragm, and a partition partitioning the anode chamber and the cathode chamber, and the diaphragm is located between the cathode and the anode.
  • the diaphragm is preferably in contact with the cathode and the anode.
  • the electrolytic apparatus of the present invention includes a bipolar electrolytic cell of the present invention, an electrolytic solution circulation pump for circulating the electrolytic solution, a gas-liquid separation tank for separating the electrolytic solution from hydrogen and / or oxygen, and water. And a water supply pump for replenishment.
  • the electrolysis apparatus of the present invention may further include a detector that detects the stop of power supply when the power supply to the electrolysis apparatus of the present invention is stopped, and a controller that automatically stops the electrolyte circulation pump. preferable.
  • the water electrolysis method of the present invention is characterized in that when the power supply to the electrolyzer of the present invention is stopped, the electrolyte circulation pump is stopped.
  • the hydrogen production method of the present invention is a hydrogen production method in which water containing an alkali is electrolyzed in an electrolytic cell to produce hydrogen, wherein the electrolytic cell isolates the anode, the cathode, and the anode and the cathode.
  • a plurality of bipolar elements including a partition and an outer frame that borders the partition are stacked with a diaphragm interposed therebetween, and are defined by the partition, the outer frame, and the diaphragm on the outer side of the outer frame.
  • anode has an electric capacity in the range of 4825 C / m 2 to 965000 C / m 2
  • the cathode has an electric capacity of 4825 C / m 2 to 965000 C. / M 2 range.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • FIG. 1 the side view about the whole example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment is shown.
  • FIG. 2 shows a perspective view of an electrolysis chamber, a header, and a conduit as an example of the bipolar electrolytic cell for alkaline water electrolysis according to the present embodiment.
  • FIG. 3 the perspective view about the flow of the electrolyte solution in an example of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment is shown.
  • a bipolar electrolytic cell 50 for alkaline water electrolysis according to this embodiment includes an anode 2a, a cathode 2c, a partition wall 1 that separates the anode 2a and the cathode 2c, and an outer frame that borders the partition wall 1.
  • 3 is a bipolar electrolyzer 50 in which a plurality of bipolar elements 60 including 3 are overlapped with a diaphragm 4 interposed therebetween.
  • the bipolar method is one of the methods for connecting a large number of cells to a power source.
  • a plurality of bipolar elements 60 one side of which is an anode 2a and one side of which is a cathode 2c, are arranged in the same direction and connected in series, and only at both ends. Is connected to a power source.
  • the bipolar electrolytic cell 50 has a feature that the current of the power source can be reduced, and can produce a large amount of a compound, a predetermined substance, etc. in a short time by electrolysis. As long as the output of the power supply equipment is the same, the constant current and high voltage are cheaper and more compact, so the bipolar type is preferable to the single pole type industrially.
  • a bipolar element 60 used in a bipolar electrolytic cell 50 for alkaline water electrolysis is provided with a partition wall 1 that separates an anode 2a and a cathode 2c, and an outer frame that borders the partition wall 1 3 is provided. More specifically, the partition wall 1 has conductivity, and the outer frame 3 is provided so as to surround the partition wall 1 along the outer edge of the partition wall 1.
  • the bipolar element 60 may be used so that a given direction D1 along the partition wall 1 is usually a vertical direction.
  • a given direction D1 along the partition wall 1 is usually a vertical direction.
  • FIG. 2 and FIG. As shown in the figure, when the shape of the partition wall 1 is rectangular, it is used so that a given direction D1 along the partition wall 1 is the same direction as the direction of one of the two pairs of facing edges. (See FIGS. 1 to 5). And in this specification, the said perpendicular direction is also called electrolyte solution passage direction.
  • the bipolar electrolytic cell 50 is configured by stacking a necessary number of bipolar elements 60.
  • the bipolar electrolytic cell 50 has a fast head 51g, an insulating plate 51i, and an anode terminal element 51a arranged in order from one end, and further, an anode side gasket portion 7, a diaphragm 4, and a cathode side gasket portion. 7.
  • Bipolar elements 60 are arranged in this order. At this time, the bipolar element 60 is arranged so that the cathode 2c faces the anode terminal element 51a side.
  • the anode gasket portion 7 to the bipolar element 60 are repeatedly arranged as many times as necessary for the design production amount.
  • the bipolar electrolyzer 50 is formed into a single body by tightening the whole by a tightening mechanism such as a tie rod method 51r (see FIG. 1) or a hydraulic cylinder method.
  • the arrangement constituting the bipolar electrolytic cell 50 can be arbitrarily selected from the anode 2a side or the cathode 2c side, and is not limited to the order described above.
  • the bipolar element 60 is disposed between the anode terminal element 51a and the cathode terminal element 51c.
  • the diaphragm 4 is disposed between the anode terminal element 51a and the bipolar element 60, between the adjacent bipolar elements 60, and between the bipolar element 60 and the cathode terminal element 51c. .
  • an electrode chamber 5 through which an electrolytic solution passes is defined by the partition wall 1, the outer frame 3, and the diaphragm 4.
  • a portion between the partition walls 1 is referred to as an electrolysis cell 65.
  • the electrolysis cell 65 includes a partition 1 of one element, an anode chamber 5a, an anode 2a, and a diaphragm 4, and a cathode 2c, a cathode chamber 5c, and a partition 1 of the other element.
  • the electrode chamber 5 has an electrolyte inlet 5 i for introducing an electrolyte into the electrode chamber 5 and an electrolyte outlet 5 o for leading the electrolyte from the electrode chamber 5 at the boundary with the outer frame 3.
  • the anode chamber 5a is provided with an anode electrolyte inlet 5ai that introduces an electrolyte into the anode chamber 5a and an anode electrolyte outlet 5ao that leads out the electrolyte derived from the anode chamber 5a.
  • the cathode chamber 5c is provided with a cathode electrolyte inlet 5ci that introduces an electrolyte into the cathode chamber 5c and a cathode electrolyte outlet 5co that leads out the electrolyte led out from the cathode chamber 5c.
  • the bipolar electrolytic cell 50 in the present embodiment includes a header 10 communicating with the electrode chamber 5 outside the outer frame 3 (see FIGS. 2 and 3).
  • the header 10 which is a pipe for distributing or collecting a gas or an electrolytic solution, is attached to the bipolar electrolytic cell 50.
  • the header 10 includes an inlet header for introducing an electrolytic solution into the electrode chamber 5 and an outlet header for discharging a gas and an electrolytic solution from the electrode chamber 5.
  • an anode inlet header 10Oai that puts the electrolyte into the anode chamber 5a and a cathode inlet header 10Oci that puts the electrolyte into the cathode chamber 5c are provided below the outer frame 3 at the edge of the partition wall 1.
  • an anode outlet header 10Oao for discharging the electrode solution from the anode chamber 5a and a cathode outlet header 10Oco for discharging the electrolyte solution from the cathode chamber 5c are provided.
  • the inlet header and the outlet header are provided so as to face each other with the central portion of the electrode chamber 5 interposed therebetween.
  • the bipolar electrolytic cell 50 of this example employs an external header 10O type in which the bipolar electrolytic cell 50 and the header 10 are independent.
  • FIG. 4 is a plan view showing an example of the external header type bipolar electrolytic cell for alkaline water electrolysis according to this embodiment.
  • header 10 attached to the bipolar electrolytic cell shown in FIGS. 1 to 3
  • a mold may be adopted and is not particularly limited.
  • the conduit 20 includes a liquid distribution pipe that communicates with the inlet header and a liquid collection pipe that communicates with the outlet header.
  • the anode liquid distribution tube 20Oai communicating with the anode inlet header 10Oai and the cathode liquid distribution tube 20Oci communicating with the cathode inlet header 10Oci are provided below the outer frame 3, the anode liquid distribution tube 20Oai communicating with the anode inlet header 10Oai and the cathode liquid distribution tube 20Oci communicating with the cathode inlet header 10Oci are provided.
  • an anode liquid collecting tube 20Oao communicating with the anode outlet header 10Oao and a cathode liquid collecting tube 20Oco communicating with the cathode outlet header 10Oco are provided.
  • the inlet header and the outlet header are preferably provided at separate positions from the viewpoint of water electrolysis efficiency, and face each other across the central portion of the electrode chamber 5.
  • the partition wall 1 has a rectangular shape in plan view, it is preferably provided so as to be symmetric with respect to the center of the rectangle.
  • the anode inlet header 10Oai, the cathode inlet header 10Oci, the anode outlet header 10Oao, and the cathode outlet header 10Oco are provided one by one in each electrode chamber 5, but in this embodiment, However, the present invention is not limited to this, and a plurality of electrode chambers 5 may be provided. Further, normally, the anode liquid distribution pipe 20Oai, the cathode liquid distribution pipe 20Oci, the anode liquid collection pipe 20Oao, and the cathode liquid collection pipe 20Oco are provided one by one in each electrode chamber 5, but in this embodiment, However, the present invention is not limited to this, and a plurality of electrode chambers 5 may be shared.
  • the rectangular partition wall 1 in plan view and the rectangular diaphragm 4 in plan view are arranged in parallel, and the rectangular parallelepiped outer frame provided on the edge of the partition wall 1 side. Since the inner surface of the electrode chamber 5 is perpendicular to the partition wall 1, the shape of the electrode chamber 5 is a rectangular parallelepiped.
  • the shape of the electrode chamber 5 is not limited to the rectangular parallelepiped in the illustrated example, and the shape of the partition wall 1 and the diaphragm 4 in a plan view, the inner surface of the outer frame 3 on the partition wall 1 side, and the partition wall 1.
  • the shape may be appropriately changed depending on the angle or the like, and may be any shape as long as the effect of the present invention is obtained.
  • the extending direction of the header 10 is not particularly limited.
  • the extending direction of the conduit 20 is not particularly limited.
  • the distribution pipe anode liquid distribution
  • the pipe 20Oai, the cathode liquid distribution pipe 20Oci) and the liquid collection pipe preferably extend in a direction perpendicular to the partition wall 1, respectively. It is more preferable that any of these extend in a direction perpendicular to the partition wall 1.
  • the electrolytic cell 65 undergoes a self-discharge reaction via a leakage current circuit formed by the electrolyte supply pipe when electrolysis is stopped.
  • a structure having electric capacity for holding the cell voltage of the electrolysis cell 65 even when the self-discharge occurs is called a charge holding body.
  • the charge holding body can be electrically connected to the cathode 2c or the anode 2a inside the cathode chamber 5c or the anode chamber 5a, and the electrochemical potential of the cathode 2c or the anode 2a can be stabilized for a long time.
  • the electrolytic cell can be used as an emergency storage battery when power supply is stopped.
  • the cathode 2c or the anode 2a is composed of a catalyst layer and a substrate that supports the catalyst layer, and the catalyst layer and the substrate have a function of a charge holding body.
  • the electric capacity of the anode 2a is in the range of 4825 C / m 2 to 965000 C / m 2 (0.05 Fd / m 2 to 10 Fd / m 2 ).
  • the electric capacity of the cathode 2c is in the range of 4825 C / m 2 to 965000 C / m 2 (0.05 Fd / m 2 to 10 Fd / m 2 ).
  • the amount of electricity held in the electrolytic cell is increased and balanced by the function of the charge holding body of the electrode chamber 5, and further, by improving the structure of the electrolyte supply pipe, By reducing the self-discharge generated when the power supply is stopped, the electrolytic cell can be used as an emergency storage battery when the power supply is stopped, and the electric control system can be stabilized even in an emergency.
  • a variable power source such as renewable energy
  • the capacitance of the anode 2a is more preferably in a range of 9650C / m 2 ⁇ 772000C / m 2, the range of 48250C / m 2 ⁇ 482500C / m 2 Most preferably.
  • Capacitance of the cathode 2c is more preferably in a range of 9650C / m 2 ⁇ 772000C / m 2, and most preferably in the range of 48250C / m 2 ⁇ 482500C / m 2.
  • the lower one of the electric capacity of the anode 2a and the electric capacity of the cathode 2c is preferably in the range of 9650 C / m 2 to 955350 C / m 2 , and 48250 C / A range of m 2 to 772000 C / m 2 is more preferable, and a range of 96500 C / m 2 to 482500 C / m 2 is particularly preferable. If the lower one of the electric capacities is too small, it will be difficult to function as a power source, and if the lower one of the electric capacities is too large, it will be difficult to manufacture substantially.
  • the electric capacity of the anode is preferably larger than the electric capacity of the cathode.
  • the ratio of the electric capacity of the cathode to the electric capacity of the anode is 0. It is preferably in the range of more than 1 times and not more than 0.99 times, and more preferably in the range of more than 0.1 times and not more than 0.49 times.
  • an electrode complex including a conductive elastic body 2e and a current collector 2r an electrode complex including a conductive elastic body 2e and a current collector 2r
  • the above-described capacitance may be determined for the electrode composite (anode composite, cathode composite).
  • the effect of the present invention is not easily subject to physical restrictions regarding header design, and it is structurally easy to shut off the electrolyte discharge line (exit header) on the electrolyte outlet 5o side when electrolysis is stopped. It is easy to obtain in an external header 10O type alkaline water electrolytic cell in which an electrolyte supply header to each electrolytic cell 65 is disposed outside the electrolytic cell 65.
  • the area of the energization surface of the bipolar element 60 is S1
  • the cross-sectional area of the flow path of the header 10 is S2
  • the length of the flow path of the header 10 is L2.
  • (S2 / S1) / L2 is preferably in the range of 1.5 ⁇ 10 ⁇ 6 m ⁇ 1 to 2.3 ⁇ 10 ⁇ 4 m ⁇ 1 , and 4.0 ⁇ 10 ⁇ 6 m. More preferably, it is in the range of ⁇ 1 to 2.0 ⁇ 10 ⁇ 4 m ⁇ 1, particularly in the range of 8.0 ⁇ 10 ⁇ 6 m ⁇ 1 to 1.0 ⁇ 10 ⁇ 4 m ⁇ 1. preferable.
  • the area S1 of the current-carrying surface of the bipolar element 60 refers to the area on the plane parallel to the partition walls of the electrodes (anode 2a and cathode 2c) of the bipolar element 60. In addition, when the said area differs in the anode 2a and the cathode 2c, it shall mean the average.
  • the cross-sectional area S2 of the flow path of the header 10 refers to the cross-sectional area of the internal space of the header 10 through which the electrolyte solution passes. In addition, when there exists a change in a cross-sectional area about the extending direction of the header 10, it shall mean the average of the cross-sectional area.
  • the length L2 of the flow path of the header 10 refers to the extension length of the internal space through which the electrolyte solution passes.
  • the conduit 20 communicating with the header 10 the connection from the electrolyte inlet 5i of the header 10 to the liquid distribution pipe (conduit 20) or from the electrolyte outlet 5o to the liquid collection pipe (conduit).
  • the length of the part up to the connection part when the said length differs in anode inlet header 10Oai, cathode inlet header 10Oci, anode outlet header 10Oao, and cathode outlet header 10Oco, the average shall be said.
  • the area S1 of the current-carrying surface of the bipolar element 60 is preferably 0.1 m 2 to 10 m 2 , and preferably 0.15 m 2 to 8 m. 2 is more preferable, and 0.2 m 2 to 5 m 2 is particularly preferable. If the current-carrying surface is too small, the electrolyte supply header also becomes small, making it difficult to manufacture the electrolytic cell 50. On the other hand, if the energizing surface is too large, the seal surface pressure is likely to be non-uniform, causing electrolyte leakage and gas leakage.
  • the thickness d of the electrolytic cell 65 is preferably 10 mm to 100 mm, more preferably 15 mm to 50 mm, and 20 mm to 40 mm. It is particularly preferred.
  • the thickness d of the electrolysis cell 65 is the thickness of the portion between the partition walls 1 between the two adjacent bipolar elements 60, and between the adjacent bipolar element 60 and the terminal elements 51a and 51c.
  • the thickness of the portion between the partition walls 1 between each other, and the distance in the direction perpendicular to the partition wall 1 between the partition walls 1 of the two adjacent bipolar elements 60 and the adjacent bipolar system The distance in the direction perpendicular to the partition wall 1 between the partition wall 1 of the element 60 and the partition walls 1 of the terminal elements 51a and 51c.
  • the thickness d is not constant in the entire bipolar electrolytic cell 50, the average may be referred to. If the thickness d of the electrolysis cell is too small, the gas ratio in the gas liquid chamber of the electrolysis cell 65 tends to increase, and the cell voltage tends to increase. If the thickness d is too large, uniform distribution becomes difficult due to the pressure loss of the header 10, and the installation area becomes too large.
  • S2 is selected from the viewpoint of further purifying the gas purity and suppressing the blockage of the channel due to the solids present in the circulation channel. 7.00 ⁇ 10 ⁇ 7 m 2 to 3.14 ⁇ 10 ⁇ 4 m 2 , preferably 1.0 ⁇ 10 ⁇ 6 m 2 to 2.0 ⁇ 10 ⁇ 4 m 2. preferable.
  • L2 is 0.2 to 10 m from the same viewpoint as in the preferred range of S2. It is preferable that the distance is 0.4 to 8 m.
  • the bipolar electrolytic cell 50 for alkaline water electrolysis of this embodiment preferably has 50 to 500 bipolar elements 60, more preferably 70 to 300 bipolar elements 60, and more preferably 100 to 200. It is particularly preferable to have the bipolar element 60. If it is less than the lower limit, the ratio of the tightening mechanism to the cell becomes relatively large, which increases the manufacturing cost and increases the installation area of the equipment, which may not be a realistic equipment. In the case of exceeding the upper limit, the self-discharge generated when the power supply is stopped is reduced, the effect of enabling the stabilization of the electric control system, and the storage of power with high efficiency, specifically, the pump It becomes difficult to align effects that enable reduction of power and reduction of leakage current.
  • the number (logarithm) of the bipolar element 60 is excessively increased, it may be difficult to manufacture the electrolytic cell 50.
  • the seal surface pressure is increased. Tends to be non-uniform, and electrolyte leakage and gas leakage are likely to occur.
  • the shape of the partition wall 1 in the present embodiment may be a plate shape having a predetermined thickness, but is not particularly limited.
  • the shape of the partition wall 1 in plan view is not particularly limited, and may be a rectangle (square, rectangle, etc.) or a circle (circle, ellipse, etc.). Here, the rectangle may have rounded corners.
  • the partition wall 1 and the outer frame 3 may be integrated by welding or other methods.
  • the flange portion in the partition wall 1 projecting in a direction perpendicular to the plane of the partition wall 1) ( An anode flange portion protruding to the anode 2 a side and a cathode flange portion protruding to the cathode 2 c side) may be provided, and the flange portion may be a part of the outer frame 3.
  • the partition wall 1 may be used so that a given direction D1 along the partition wall 1 is usually a vertical direction. Specifically, as shown in FIGS. When the shape is a rectangle, a given direction D1 along the partition wall 1 may be used so as to be in the same direction as the direction of one of the two sets of sides facing each other. And in this specification, the said perpendicular direction is also called electrolyte solution passage direction.
  • the material of the partition wall 1 is preferably a conductive material from the viewpoint of realizing uniform power supply, and nickel, nickel alloy, mild steel, and nickel alloy are plated with nickel from the viewpoint of alkali resistance and heat resistance. Is preferred.
  • the electrolysis voltage of alkaline water electrolysis is the overvoltage of the anode reaction (oxygen generation), the overvoltage of the cathode reaction (hydrogen generation), the anode 2a and the cathode 2c. It is divided into the voltage depending on the distance between the electrodes 2.
  • the overvoltage refers to a voltage that needs to be applied excessively beyond the theoretical decomposition potential when a certain current flows, and the value depends on the current value. When the same current flows, the power consumption can be reduced by using the electrode 2 having a low overvoltage.
  • the requirements for the electrode 2 include high conductivity, high oxygen generation capability (or hydrogen generation capability), and high wettability of the electrolyte on the electrode 2 surface. Can be mentioned.
  • the structure of the conductive substrate of the anode and the cathode is preferably a mesh structure from the viewpoint of ensuring a specific surface area as a carrier and achieving both defoaming properties.
  • the material of the conductive substrate may be at least one selected from the group consisting of nickel iron, vanadium, molybdenum, copper, silver, manganese, platinum group, graphite, chromium and the like.
  • An alloy composed of two or more kinds of metals or a mixture of two or more kinds of conductive substances may be used for the conductive substrate. It is preferable to use metallic nickel for the conductive substrate.
  • the anode 2a includes a conductive substrate and a catalyst layer that covers the conductive substrate, and the catalyst layer is preferably a porous body.
  • the catalyst layer preferably covers the entire surface of the conductive substrate.
  • the anode catalyst layer preferably contains nickel as an element from the viewpoint of durability against alkalis and high activity against oxygen generation.
  • the catalyst layer preferably contains at least one nickel compound selected from nickel oxide, metallic nickel, nickel hydroxide, and nickel alloy.
  • the actual electrode surface area (actual specific surface area) per 1 m 2 of geometric cell area per anode is preferably in the range of 90 to 10000 m 2 .
  • the actual electrode surface is in a range of less than 90 m 2 / m 2 , the surface area of the entire catalyst layer is small, so that the oxygen overvoltage is expected to increase.
  • the catalyst layer contains a fine porous material, so that it becomes very brittle, has poor durability, and oxygen overvoltage is expected to increase with oxygen generation.
  • the geometric cell area refers to an area when the electrolytic cell 65 is projected in a direction perpendicular to the partition wall 1.
  • the specific surface area of the first pore having a pore diameter in the range of 2 to 5 nm is 0.6 to 2.0 m 2 / g.
  • the volume is preferably 3 ⁇ 10 ⁇ 4 to 9 ⁇ 10 ⁇ 4 ml / g.
  • the specific surface area of the second pores having a pore diameter in the range of 0.01 to 2.00 ⁇ m is 2.0 to 5.0 m 2 / g
  • the pore volume is preferably 0.04 to 0.2 ml / g.
  • the thickness of the catalyst layer is preferably 50 to 800 ⁇ m, more preferably 100 to 400 ⁇ m.
  • the second pore having a pore diameter in the range of 0.01 to 2.00 ⁇ m has a small specific surface area but a large pore volume, so that the first pore exists on the inner wall of the second pore.
  • the first pores greatly increase the surface area of the catalyst layer.
  • the surface of the first pore functions as a reaction field (reaction interface) of the hydroxide ion oxidation reaction (oxygen generation reaction).
  • reaction interface reaction interface
  • oxygen generation reaction oxygen generation reaction
  • nickel hydroxide will be generated during the generation of oxygen and therefore make the pores smaller.
  • oxygen generated in the first pore easily escapes out of the catalyst layer through the second pore and hardly inhibits electrolysis. . Therefore, in this embodiment, it is estimated that the oxygen generation overvoltage hardly increases during electrolysis.
  • the specific surface area of the first pore is preferably 0.6 to 1.5 m 2 / g, and more preferably 0.6 to 1.0 m 2 / g.
  • the specific surface area of the first pore may be 0.62 to 0.98 m 2 / g.
  • the oxygen generation potential decreases as the specific surface area of the first pore increases.
  • the specific surface area of the first pores decreases, the surface area of the entire catalyst layer also tends to decrease. As the surface area of the entire catalyst layer decreases, the oxygen generation potential tends to increase.
  • the volume of the first pore is preferably 3.3 ⁇ 10 ⁇ 4 to 8.5 ⁇ 10 ⁇ 4 ml / g.
  • the volume of the first pore may be 3.6 ⁇ 10 ⁇ 4 ml / g to 7.9 ⁇ 10 ⁇ 4 ml / g.
  • the specific surface area of the second pore is preferably 2.3 to 4.5 m 2 / g.
  • the specific surface area of the second pore may be 2.5 to 4.2 m 2 / g.
  • the pore volume of the entire catalyst layer tends to decrease. Further, the pore volume of the entire catalyst layer tends to increase as the specific surface area of the second pore decreases.
  • the volume of the second pore is preferably 0.04 to 0.15 ml / g, and more preferably 0.04 to 0.1 ml / g.
  • the volume of the second pore may be 0.04 to 0.09 ml / g.
  • the thickness is less than 50 ⁇ m, since the catalyst layer is thin, the surface area of the entire catalyst layer is reduced, and the oxygen overvoltage is expected to be increased. In addition, when the thickness exceeds 800 ⁇ m, the catalyst layer becomes too thick, and peeling or the like may easily occur, and the manufacturing cost of the anode may become too high.
  • the catalyst layer contains nickel metal crystals, the peak intensity of the X-ray diffracted by the (1,1,1) plane of the nickel metal crystals in the catalyst layer is I Ni , and the NiO in the catalyst layer is (0 , 1, 2)
  • the peak intensity of the X-ray diffracted by the plane is I NiO
  • the value of [I Ni / (I Ni + I NiO )] ⁇ 100 is preferably 75 to 100%.
  • I [I Ni / (I Ni + I NiO )] ⁇ 100 is more preferably 90 to 100%, and particularly preferably 95 to 100%.
  • the catalyst layer may include an alloy composed of nickel and other metals.
  • the catalyst layer is particularly preferably made of metallic nickel. It may further include at least one selected from the group consisting of titanium, chromium, molybdenum, cobalt, tantalum, zirconium, aluminum, zinc, platinum group and rare earth elements.
  • the surface of the catalyst layer may be modified with at least one catalyst selected from the group consisting of rhodium, palladium, iridium, ruthenium and the like.
  • Method of manufacturing anode for alkaline water electrolysis-- The manufacturing method of the anode for alkaline water electrolysis which concerns on this embodiment is not specifically limited.
  • a preferable production method there is a method in which expanded nickel is used as a base material, Raney nickel is coated by dispersion plating, and developed with 32 wt% alkali.
  • the cathode 2c is not particularly limited. It contains at least one Pt group compound selected from the group consisting of Ru—La—Pt, Ru—Ce, Pt—Ce, and Pt—Ir, Ir—Pt—Pd, and Pt—Ni. Is preferred. Further, a pyrolytic active cathode is preferable.
  • the structure of the base material of the cathode is preferably a mesh structure from the viewpoint of ensuring a specific surface area as a carrier and defoaming.
  • the cathode catalyst layer preferably contains nickel as an element from the viewpoint of durability against alkalis and high activity against hydrogen generation.
  • the catalyst layer preferably contains at least one nickel compound selected from nickel oxide, metallic nickel, nickel hydroxide, and nickel alloy.
  • the cathode substrate preferably has a linear shape in the range of 0.05 to 0.5 mm, and the mesh opening has a range of 30 to 80 mesh.
  • the specific surface area and defoaming properties required for the carrier can be expressed as the cathode while maintaining the mechanical strength of the mesh.
  • the opening ratio of the mesh of the conductive substrate of the anode in the range of 20% to 60%, the specific surface area and defoaming properties necessary for the carrier can be expressed while maintaining the mechanical strength of the mesh.
  • the aperture ratio of an electrode can be measured with the following method.
  • An electrode based on expanded metal is cut out to a size of about 5 mm ⁇ 5 mm, and a desktop microscope Miniscope TM3000 (manufactured by Hitachi High-Technologies Corporation) is used to measure the center distance SW in the short direction and the center distance in the long direction.
  • the LW, the bond length B, the monocular direction length SWO of the opening, and the long direction length LWO of the opening were measured. Using these values, the aperture ratio was calculated according to the following formula.
  • Opening ratio SWO ⁇ (LWO + B) ⁇ 100 / (SW ⁇ LW)
  • the calculation method of the aperture ratio of an electrode differs between an electrode using an expanded metal as a base material and an electrode using a plain woven mesh as a base material.
  • the manufacturing method of the alkaline water electrolysis cathode according to this embodiment may be the same as the above-described manufacturing method of the anode.
  • the shape of the outer frame 3 in the present embodiment is not particularly limited as long as the partition wall 1 can be bordered.
  • an ion permeable diaphragm 4 is used to isolate generated hydrogen gas and oxygen gas while conducting ions.
  • the ion permeable diaphragm 4 an ion exchange membrane having ion exchange ability and a porous membrane capable of permeating an electrolytic solution can be used.
  • the ion-permeable diaphragm 4 is preferably one having low gas permeability, high ionic conductivity, low electronic conductivity, and high strength.
  • an electrode chamber 5 through which an electrolytic solution passes is defined by the partition wall 1, the outer frame 3, and the diaphragm 4.
  • the gasket 7 having the diaphragm 4 is sandwiched between the outer frames 3 that border the partition wall 1.
  • the gasket 7 is used for sealing between the bipolar element 60 and the diaphragm 4 and between the bipolar element 60 against the electrolytic solution and the generated gas. Gas mixing between the bipolar chambers can be prevented.
  • the conductive elastic body 2 e and the current collector 2 r are electrically conductive between the cathode 2 c or the anode 2 a and the partition wall 1.
  • the elastic body 2e is provided so as to be sandwiched between the cathode 2c or the anode 2a and the current collector 2r to form an electrolytic holding body.
  • the charge holding body preferably contains nickel in the base material because it has high durability against alkali, has a redox potential with respect to the anode, and can reduce the anode when electrolysis is stopped.
  • the base may contain at least one selected from nickel oxide, metallic nickel, nickel hydroxide and nickel alloy.
  • the cathode chamber further includes a conductive elastic body 2e and a current collector 2g, and the conductive elastic body 2e is compressed and accommodated in an electrically connected state between the cathode chamber and the current collector.
  • a part of the cathode current collector may be composed of the charge holding body.
  • the surface layer of the charge holding body preferably further contains nickel as an element.
  • the surface layer preferably contains at least one selected from the group consisting of nickel oxide, metallic nickel (nickel metal crystal), nickel hydroxide, and the like.
  • the surface layer may include an alloy composed of nickel and another metal. It is particularly preferable that the surface layer is made of metallic nickel.
  • the surface layer may further include at least one selected from the group consisting of titanium, chromium, molybdenum, cobalt, tantalum, zirconium, aluminum, zinc, a platinum group, a rare earth element, and the like.
  • the method for producing the charge holding member is not particularly limited, and the same production method as that for the anode can be used.
  • the bipolar electrolytic cell 50 for alkaline water electrolysis has a cathode chamber 5 c and an anode chamber 5 a for each electrolytic cell 65.
  • an electrolytic solution sufficiently containing raw materials consumed by electrolysis to the cathode chamber 5c and the anode chamber 5a of each electrolysis cell 65.
  • the electrolytic cell 65 is connected to an electrolyte supply / discharge pipe called a header 10 common to the plurality of electrolytic cells 65.
  • the anode distribution pipe is called an anode inlet header 10ai
  • the cathode distribution pipe is called a cathode inlet header 10ci
  • the anode collection pipe is called an anode outlet header 10ao
  • the cathode collection pipe is called a cathode outlet header 10co.
  • the electrolysis cell 65 is connected to each electrode liquid distribution pipe and each electrode liquid collection pipe through a hose or the like.
  • the material of the header 10 is not particularly limited, but it is necessary to adopt a material that can sufficiently withstand the corrosiveness of the electrolyte used and the operating conditions such as pressure and temperature.
  • the header 10 may be made of iron, nickel, cobalt, PTFE, ETFE, PFA, polyvinyl chloride, polyethylene, or the like.
  • the range of the electrode chamber 5 varies depending on the detailed structure of the outer frame 3 provided at the outer end of the partition wall 1, and the detailed structure of the outer frame 3 depends on the header 10 (electrolysis) attached to the outer frame 3. It may differ depending on the arrangement mode of the pipe for distributing or collecting the liquid.
  • the header 10 of the bipolar electrolytic cell 50 an internal header 10I type and an external header 10O type are typical.
  • the internal header 10I type refers to a type in which the bipolar electrolytic cell 50 and the header 10 (a pipe for distributing or collecting an electrolytic solution) are integrated.
  • the anode inlet header 10Iai and the cathode inlet header 10Ici are provided in the lower part in the partition wall 1 and / or the outer frame 3, and
  • the anode outlet header 10Iao and the cathode outlet header 10Ico are provided in the upper part in the partition wall 1 and / or the outer frame 3, and in a direction perpendicular to the partition wall 1. It is provided to extend.
  • the internal header 10I type bipolar electrolytic cell 50 has an anode inlet header 10Iai, a cathode inlet header 10Ici, an anode outlet header 10Iao, and a cathode outlet header 10Ico, which are collectively referred to as an internal header 10I.
  • an anode inlet header 10Iai and a cathode inlet header 10Ici are provided in a part of the lower portion of the outer frame 3 at the edge of the partition wall 1.
  • an anode outlet header 10Iao and a cathode outlet header 10Ico are provided in a part of the upper frame of the outer frame 3 at the edge of the partition wall 1.
  • the external header 10O type refers to a type in which the bipolar electrolytic cell 50 and the header 10 (a pipe for distributing or collecting an electrolytic solution) are independent.
  • the external header 10O type bipolar electrolytic cell 50 is independent in such a manner that the anode inlet header 10Oai and the cathode inlet header 10Oci run in parallel with the electrolytic cell 50 in a direction perpendicular to the current-carrying surface of the electrolytic cell 65.
  • the anode inlet header 10Oai and cathode inlet header 10Oci are connected to each electrolysis cell 65 by a hose.
  • the anode header 10Oai, the cathode inlet header 10Oci, the anode outlet header 10Oao, and the cathode outlet header 10Oco, which are externally connected to the external header 10O type bipolar electrolytic cell 50, are collectively referred to as the external header 10O. Call.
  • a luminal member is installed in a through hole for the header 10 provided in a lower portion of the outer frame 3 at the edge of the partition wall 1, and the luminal member is , Connected to the anode inlet header 10Oai and the cathode inlet header 10Oci, and similarly to the through hole for the header 10 provided in the upper portion of the outer frame 3 at the edge of the partition wall 1, A tubular member (for example, a hose or a tube) is installed, and the tubular member is connected to the anode outlet header 10Oao and the cathode outlet header 10Oco.
  • FIG. 5 the outline
  • a hydrogen production apparatus with high electrolysis efficiency can be provided by using the bipolar water electrolyzer of the present embodiment as an electrolysis apparatus including other elements and using it as a hydrogen production apparatus.
  • the electrolytic apparatus for alkaline water electrolysis of this embodiment includes at least the bipolar water electrolysis tank 50 of this embodiment, a gas-liquid separation tank 72 (hydrogen separation tank 72h, oxygen separation tank 72o), electrolyte circulation pump 71, water A charging pump 73 and a rectifier 74 for supplying power for electrolysis are provided.
  • the electrolyzer 70 for alkaline water electrolysis of the present embodiment may include an oxygen concentration meter 75, a hydrogen concentration meter 76, a flow meter 77, a pressure gauge 78, a heat exchanger 79, and a pressure control valve 80.
  • the effect of the bipolar electrolytic cell for alkaline water electrolysis of this embodiment can be obtained. That is, according to the present embodiment, it becomes possible to realize high-efficiency hydrogen production during operation with a variable power source such as renewable energy, reducing self-discharge that occurs when power supply is stopped, The electric control system can be stabilized. According to the present embodiment, furthermore, it is possible to realize electric power storage with high efficiency, specifically, reduction of pump power and reduction of leakage current.
  • the alkaline water electrolysis method of the present embodiment can be carried out using the alkaline water electrolysis electrolytic apparatus 70 of the present embodiment.
  • the alkaline water electrolysis bipolar electrode, the alkaline water electrolysis apparatus, and the alkaline water electrolysis method according to the embodiment of the present invention have been described above with reference to the drawings.
  • the electrolytic cell, the electrolytic apparatus for alkaline water electrolysis, and the alkaline water electrolysis method are not limited to the above examples, and the above embodiment can be appropriately modified.
  • a bipolar cell for alkaline water electrolysis and an alkaline water electrolysis apparatus using the same were prepared as follows.
  • outer frame- As the bipolar element, an element including a partition wall for partitioning the anode and the cathode and an outer frame 3 surrounding the partition wall was used.
  • the materials for the members in contact with the electrolyte such as the partition walls and the frame of the bipolar element were all nickel.
  • anode sample A was immersed in a 5N-HCl aqueous solution for 10 minutes to obtain anode sample B.
  • the Raney nickel alloy was coated by dispersion plating and immersed in an aqueous NaOH solution of 32 wt% and 80 ° C. for 10 hours to dissolve Al in the Raney nickel alloy.
  • Anode sample C was obtained by the above process.
  • Anode sample D was prepared by stacking six anode samples C on top of each other and connecting them so as to have the same potential.
  • Anode sample E was prepared, in which eight anode samples C were stacked one on top of another and connected so as to have the same potential.
  • anode sample A was immersed in 5N-HCl aqueous solution for 10 minutes to obtain anode sample B.
  • the Raney nickel alloy was coated by dispersion plating for 8 times the time of the anode sample C, and immersed in an aqueous NaOH solution of 32 wt% and 80 ° C. for 10 hours to dissolve the Al in the Raney nickel alloy.
  • An anode sample F was obtained by the above process.
  • Measurement was performed at a temperature of 90 ° C. using a mesh platinum electrode as a counter electrode.
  • a tube having a large number of holes of 1 mm ⁇ around it was used.
  • the anode potential of the anode sample was measured by a three-electrode method using a Lugin tube in order to eliminate the effect of ohmic loss due to liquid resistance.
  • the distance between the tip of the Lugin tube and the anode was always fixed at 0.05 mm.
  • Silver-silver chloride (Ag / AgCl) was used as a reference electrode for the three-electrode method.
  • the positive retained charge amount (electric capacity) of anode sample A was 3667 C / m 2 .
  • the positive retained charge amount (electric capacity) of anode sample B was 5018 C / m 2 .
  • the positive retained charge amount (electric capacity) of anode sample C was 148610 C / m 2 .
  • the positive retained charge amount (electric capacity) of anode sample D was 955350 C / m 2 .
  • the positive retained charge amount (electric capacity) of the anode sample E was 1061500 C / m 2 .
  • the positive retained charge amount (electric capacity) of the anode sample F was 445830 C / m 2 .
  • each anode sample A, B, C, F per anode was measured.
  • the actual specific surface area per anode of the anode sample was the same as that of the anode sample C.
  • the actual specific surface area of the anode sample A was 91 m 2 / m 2 .
  • the positive actual emergency area of anode sample B was 125 m 2 / m 2 .
  • the actual specific surface area of the anode sample C was 3700 m 2 / m 2 .
  • Actual specific surface area of the anode sample F was a 11100m 2 / m 2.
  • the specific surface area of the first pore in which the pore diameter of the catalyst layer of the anode is in the range of 2 to 5 nm is 10 ⁇ 5 m 2 / g or less for the anode samples A and B, and 1.5 m for the anode samples C, D, and E. 2 / g and 4.5 m 2 / g for anode sample F.
  • the pore volume of the first pore is 10 ⁇ 6 ml / g or less for anode samples A and B, 4 ⁇ 10 ⁇ 4 ml / g for anode samples C, D and E, and 5 ⁇ 10 ⁇ 5 for anode sample F. ml / g.
  • the specific surface area of the second pore in which the pore diameter of the catalyst layer of the anode is in the range of 0.01 to 2.00 nm is 0.1 m 2 / g or less for the anode samples A and B, and for the anode samples C, D, and E. 2.5 m 2 / g, was 10.5 m 2 / g at the anode sample F.
  • the pore volume of the second pore was 0.1 ml / g or less for anode samples A and B, 0.1 ml / g for anode samples C, D, and E, and 0.45 ml / g for anode sample F.
  • the thickness of the anode catalyst layer was 10 ⁇ m or less for anode samples A and B, 200 ⁇ m for anode samples C, D, and E, and 1000 ⁇ m for anode sample F.
  • the catalyst layer of the anode contained nickel metal crystals.
  • -Charge carrier (structure)- Blasting was performed using expanded nickel as the conductive substrate.
  • the conductive substrate was adjusted to 50 cm square by cutting. It was immersed in 5N HCl aqueous solution for 10 minutes.
  • the Raney nickel alloy was coated by dispersion plating and immersed in an aqueous NaOH solution of 32 wt% and 80 ° C. for 10 hours to dissolve Al in the Raney nickel alloy. Through the above process, a structure functioning as an active material was obtained.
  • the cathode was adjusted to a length of 50 cm ⁇ length of 50 cm to obtain a cathode sample G.
  • the structure was adjusted to 50 cm long by 5.73 cm wide and overlapped with the cathode sample G to obtain a cathode sample A.
  • the structure was adjusted to a length of 50 cm and a width of 0.73 cm, and overlapped with the cathode sample G to obtain a cathode sample B.
  • the structure was adjusted to a length of 50 cm and a width of 11.98 cm, and superimposed on the cathode sample G to obtain a cathode sample C.
  • the structure was adjusted to a length of 50 cm and a width of 18.86 cm, and overlapped with the cathode sample G to obtain a cathode sample D.
  • the structure was adjusted to a length of 50 cm ⁇ width of 50 cm, and three of these layers were overlapped with the cathode sample G to obtain a cathode sample E.
  • the structure was adjusted to 50 cm in length and 50 cm in width, and four of these were overlaid on the cathode sample G to obtain a cathode sample F.
  • cathode sample A, B, C, D, E, F, and G was prepared, and each was immersed in a fluororesin beaker filled with 30 wt% KOH electrolyte. The temperature of the aqueous solution of KOH was maintained at 90 ° C.
  • the cathode sample has a current density reduction of 0.4 A / cm 2. An electric current was applied and hydrogen was generated for 30 minutes.
  • Measurement was performed at a temperature of 90 ° C. using a mesh platinum electrode as a counter electrode.
  • a tube having a large number of holes of 1 mm ⁇ around it was used.
  • the cathode (hydrogen electrode) potential of the cathode sample was measured by a three-electrode method using a Lugin tube in order to eliminate the effect of ohmic loss due to liquid resistance.
  • the distance between the tip of the Lugin tube and the cathode sample was always fixed at 0.05 mm.
  • Silver-silver chloride (Ag / AgCl) was used as a reference electrode for the three-electrode method.
  • the negative retained charge amount (electric capacity) of the cathode sample A was 48250 C / m 2 .
  • the negative retained charge amount (electric capacity) of the cathode sample B was 9650 C / m 2 .
  • the negative retained charge amount (electric capacity) of the cathode sample C was 96500 C / m 2 .
  • the negative retained charge amount (electric capacity) of the cathode sample D was 149575 C / m 2 .
  • the negative retained charge amount (electric capacity) of the cathode sample E was 868500 C / m 2 .
  • the negative retained charge amount (electric capacity) of the cathode sample F was 1158000 C / m 2 .
  • the negative retained charge amount (electric capacity) of the cathode sample G was 3956.5 C / m 2 .
  • the electrolytic cell used in this example is an electrolytic cell including a cathode chamber having a cathode, an anode chamber having an anode, a diaphragm partitioning the cathode chamber and the anode chamber, and an electrolyte filled in the cathode chamber and the anode chamber. It was supposed to be equipped with.
  • the electrolysis cell was provided with a cathode chamber having a cathode, an anode chamber having an anode, and a diaphragm partitioning the cathode chamber and the anode chamber.
  • the cathode chamber and the anode chamber were arranged to face each other with a diaphragm interposed therebetween.
  • the cathode chamber and the anode chamber were each filled with an electrolytic solution.
  • known materials used in water electrolysis were used as the cathode, the anode, the diaphragm, and the electrolyte.
  • -diaphragm- A membrane sample prepared by cutting a polysulfone-based porous membrane into a 50 cm square by cutting.
  • Bipolar element- 49 pieces of bipolar elements are used, and as shown in FIG. 1, a fast head, an insulating plate and an anode terminal unit are arranged on one end side, and further, an anode side gasket part, a diaphragm, a cathode side gasket part, Forty-nine pairs of bipolar elements arranged in this order were arranged, and further, an anode side gasket portion, a diaphragm, and a cathode side gasket portion were arranged to assemble a bipolar electrolytic cell.
  • the cathode chamber and the anode chamber had 50 pairs of series connection structures each having 50 chambers.
  • conduit- An external header type bipolar element was adopted.
  • a conduit 20 anode distribution tube 20Oai
  • Cathode liquid distribution pipe 20Oci anode liquid collection pipe 20Oao
  • cathode liquid collection pipe 20Oco anode inlet header 10Oai, cathode inlet header 10Oci, anode outlet header 10Oao, cathode outlet header 10Oco
  • headers 10 for passing the electrolytic solution from these conduits 20 to the electrode chamber 5 are provided.
  • any of the conduits 20 is a bipolar element 60. It was arranged so as to extend in a direction perpendicular to the partition wall 1.
  • an electrolytic cell 50 of the external header 10O type was produced.
  • the electrolyte was flowed to the cathode chamber 5c via the cathode inlet header 10Oci and from the cathode chamber 5c via the cathode outlet header 10Oco. Further, the electrolytic solution was allowed to flow from the anode chamber 5a to the anode chamber 5a via the anode inlet header 10Oai via the anode outlet header 10Oco.
  • the inlet hose is on one end of the lower side of the rectangular outer frame 3 in plan view
  • the outlet hose is on the upper side of the side connected to the other end of the lower side of the rectangular outer frame 3 in plan view. , Each connected.
  • the inlet hose and the outlet hose were provided so as to face each other across the central portion of the electrode chamber 5 in the rectangular electrode chamber 5 in plan view.
  • the electrolyte flowed from below to above while tilting with respect to the vertical direction, and rose along the electrode surface.
  • the electrolyte flows into the anode chamber 5a and the cathode chamber 5c from the inlet hose of the anode chamber 5a and the cathode chamber 5c, and from the outlet hose of the anode chamber 5a and the cathode chamber 5c.
  • the electrolytic solution and the generated gas flow out of the electrolytic cell 50.
  • Example 1 The bipolar electrolytic cell of Example 1 was produced by the following procedure.
  • the cathode element A attached to the cathode face of the bipolar electrode frame and the anode sample C attached to the anode face of the bipolar element frame were designated as bipolar elements. Moreover, what attached the cathode sample A to the flame
  • the area S1 of the electrodes (anode and cathode) attached to the bipolar element was adjusted to 0.25 m 2 .
  • the cross-sectional area S2 of the flow path of the header (anode inlet header, anode outlet header, cathode inlet header, cathode outlet header) provided on the side of the outer frame was adjusted to 2.83 ⁇ 10 ⁇ 5 m 2 .
  • the length L2 of the header channel was adjusted to 0.5 m 2 .
  • the thickness d of the bipolar element was adjusted to 33 mm.
  • the thickness of the cathode terminal element and the anode terminal element was adjusted to 0.0125 m.
  • a single diaphragm sample was sandwiched between the anode terminal element and the cathode side of the bipolar element. Forty-eight 49-pole elements are arranged in series so that one anode side and the other cathode side of the adjacent bipolar elements face each other, and 48 sheets are arranged between adjacent bipolar elements. Each membrane sample was sandwiched one by one. Further, one diaphragm sample was sandwiched between the anode side of the 49th bipolar element and the cathode terminal element.
  • a bipolar electrolyzer of Example 1 was obtained by using a fast head, an insulating plate, and a loose head, and tightening them with a press.
  • a 30% aqueous KOH solution was used as the electrolytic solution.
  • circulation of the anode chamber, oxygen separation tank (gas-liquid separation tank for anode) and anode chamber, and circulation of the cathode chamber, hydrogen separation tank (cathode gas-liquid separation tank) and cathode chamber went.
  • the temperature of the electrolytic solution was adjusted to 90 ° C.
  • a current was passed from the rectifier to the bipolar electrolytic cell so that the current was 6 kA / m 2 with respect to the area S1 of each cathode and anode.
  • the area S1 of the electrode is 500 mm ⁇ 500 mm, 1.5 kA was energized from the rectifier to the bipolar electrolytic cell.
  • the pressure in the electrolytic cell was measured with a pressure gauge, and electrolysis was performed while adjusting the cathode side pressure to 50 kPa and the oxygen side pressure to 49 kPa.
  • the pressure adjustment was performed by a pressure control valve installed downstream of the pressure gauge.
  • Example 1 The alkaline water electrolysis in Example 1 was evaluated as follows.
  • Example 2 A bipolar electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were produced in the same manner as in Example 1 except that L2 was adjusted to 1 m. Detailed conditions and results are shown in Table 1.
  • Example 3 A bipolar electrode electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were prepared in the same manner as in Example 1 except that the cathode sample was the cathode sample B, S1 was adjusted to 2.7 m 2 , and L2 was adjusted to 2.4 m. Detailed conditions and results are shown in Table 1.
  • Example 4 A bipolar electrolytic cell and an electrolytic device for alkaline water electrolysis were produced in the same manner as in Example 1 except that S1 was adjusted to 2.7 m 2 and L2 was adjusted to 2.4 m. Detailed conditions and results are shown in Table 1.
  • Example 5 A bipolar electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were produced in the same manner as in Example 1 except that S1 was adjusted to 2.7 m 2 and L2 was adjusted to 6.5 m. Detailed conditions and results are shown in Table 1.
  • Example 6 A bipolar electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were produced in the same manner as in Example 1 except that L2 was adjusted to 0.2 m. Detailed conditions and results are shown in Table 1.
  • Example 7 A bipolar electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were prepared in the same manner as in Example 1 except that the cathode sample E was used as the cathode sample. Detailed conditions and results are shown in Table 1.
  • Example 8 A bipolar electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were produced in the same manner as in Example 1 except that S1 was adjusted to 2.7 m 2 and L2 was adjusted to 7.2 m. Detailed conditions and results are shown in Table 1.
  • Example 9 A bipolar electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were prepared in the same manner as in Example 1 except that S2 was adjusted to 7.85 ⁇ 10 ⁇ 7 m 2 and L2 was adjusted to 2.4 m. Detailed conditions and results are shown in Table 1.
  • Example 10 A bipolar electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were prepared in the same manner as in Example 1 except that the cathode sample was the cathode sample C and S2 was adjusted to 7.85 ⁇ 10 ⁇ 7 m 2 . Detailed conditions and results are shown in Table 1.
  • Example 11 A bipolar electrode electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were prepared in the same manner as in Example 1 except that the anode sample was anode sample B, S2 was adjusted to 1.77 ⁇ 10 ⁇ 6 m 2 , and L2 was adjusted to 1 m. Produced. Detailed conditions and results are shown in Table 1.
  • Example 12 A bipolar electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were prepared in the same manner as in Example 1 except that the anode sample was the anode sample D, the cathode sample was the cathode sample D, and L2 was adjusted to 1 m. Detailed conditions and results are shown in Table 1.
  • Example 13 A bipolar electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were produced in the same manner as in Example 1 except that L2 was adjusted to 1 m and the number of stacks was set to 100. Detailed conditions and results are shown in Table 1.
  • Example 14 A bipolar electrolytic cell and an electrolysis apparatus were produced in the same manner as in Example 1 except that the anode sample was changed to the anode sample F. Detailed conditions and results are shown in Table 1.
  • Example 1 A bipolar electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were produced in the same manner as in Example 1 except that the cathode sample F was used as the cathode sample. Detailed conditions and results are shown in Table 1.
  • Example 2 A bipolar electrolytic cell and an electrolytic device for alkaline water electrolysis were prepared in the same manner as in Example 1 except that the cathode sample was changed to the cathode sample G. Detailed conditions and results are shown in Table 1.
  • Example 3 A bipolar electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were prepared in the same manner as in Example 1 except that the anode sample was Anode Sample A and the cathode structure sample was Cathode Sample C. Detailed conditions and results are shown in Table 1.
  • Example 4 A bipolar electrode electrolytic cell and an electrolytic apparatus for alkaline water electrolysis were prepared in the same manner as in Example 1 except that the cathode sample was the cathode sample G, S1 was adjusted to 2.7 m 2 , and L2 was adjusted to 2.4 m. Detailed conditions and results are shown in Table 1.
  • Example 5 A bipolar electrolytic cell and an electrolytic device were produced in the same manner as in Example 1 except that the anode sample was changed to the anode sample E. Detailed conditions and results are shown in Table 1.
  • Examples 1 to 14 electrolysis was possible at 1.85 V or less and the potential holding time was 3 hours or more, which was a sufficiently stable result for system control. Further, in Examples 1 to 13 in which the actual electrode surface area of the anode was 10,000 m 2 / m 2 or less, the cell voltage could be further reduced. In particular, the electrolytic cells of Examples 2, 4, and 7 are excellent. On the other hand, Comparative Examples 1, 3 and 5 have poor electrolysis efficiency, and Comparative Examples 2 to 4 have a short potential holding time, which can be achieved with variable power sources such as renewable energy such as wind power and sunlight. In operation, it has been shown that there are practical problems in using the electrolytic cell as an emergency storage battery when power supply is stopped and in order to stably operate the electric control system even in an emergency.
  • the present invention during operation with a variable power source such as renewable energy, it is possible to store a large amount of electricity for a long period of time and to transport over a long distance, and to stabilize the electric control system when the power supply is stopped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

陽極と、陰極と、陽極と陰極とを隔離する隔壁と、隔壁を縁取る外枠とを備える複数の複極式エレメントが隔膜を挟んで重ね合わせられ、外枠の外方に、隔壁と外枠と隔膜とにより画成される電極室に連通するヘッダーとを備える複極式電解槽であり、陽極の電気容量が4825C/m~965000C/mの範囲であり、陰極の電気容量が4825C/m~965000C/mの範囲である、ことを特徴とする、複極式電解槽、電解装置、水電解方法。

Description

電解槽、電解装置、電解方法
 本発明は、複極式電解槽、電解装置、水電解方法に関する。
 近年、二酸化炭素等の温室効果ガスによる地球温暖化、化石燃料の埋蔵量の減少等の問題を解決するため、再生可能エネルギーを利用した風力発電や太陽光発電等の技術が注目されている。
 再生可能エネルギーは、出力が気候条件に依存するため、その変動が非常に大きいという性質がある。そのため、再生可能エネルギーによる発電で得られた電力を一般電力系統に輸送することが常に可能とはならず、電力需給のアンバランスや電力系統の不安定化等の社会的な影響が懸念されている。
 そこで、再生可能エネルギーから発電された電力を、貯蔵及び輸送が可能な形に代えて、これを利用しようとする研究が行われている。具体的には、再生可能エネルギーから発電された電力を利用した水の電気分解(電解)により、貯蔵及び輸送が可能な水素を発生させ、水素をエネルギー源や原料として利用することが検討されている。
 水素は、石油精製、化学合成、金属精製等の場面において、工業的に広く利用されており、近年では、燃料電池車(FCV)向けの水素ステーションやスマートコミュニティ、水素発電所等における利用の可能性も広がっている。このため、再生可能エネルギーから特に高純度の水素を得る技術の開発に対する期待は高い。
 水の電気分解の方法としては、固体高分子型水電解法、高温水蒸気電解法、アルカリ水電解法等がある。この中で、数十年以上前から工業化されていること、大規模に実施することができること、他の水電解装置に比べると安価であること等から、アルカリ水電解は特に有力なものの一つとされている。
 しかしながら、アルカリ水電解を今後エネルギーの貯蔵及び輸送のための手段として適応させるためには、前述のとおり出力の変動が大きい電力を効率的且つ安定的に利用して水電解を行うことを可能にする必要がある。そのため、アルカリ水電解用等の電解セルや装置の諸課題を解決することが求められている。
 アルカリ水電解において電解電圧を低く抑えて、水素製造の電力原単位を改善するという課題を解決するためには、電解セルの構造として、特に、隔膜と電極との隙間を実質的に無くした構造である、ゼロギャップ構造と呼ばれる構造を採用することが有効なことはよく知られている(特許文献1、2参照)。ゼロギャップ構造では、発生するガスを電極の細孔を通して電極の隔膜側とは反対側に素早く逃がすことによって、電極間の距離を低減しつつ、電極近傍におけるガス溜まりの発生を極力抑えて、電解電圧を低く抑制している。ゼロギャップ構造は、電解電圧の抑制にきわめて有効であり、種々の電解装置に採用されている。
 一方、効率的且つ安定的なアルカリ水電解を実現するためには、電極や隔膜の最適な選択、電解セルの構造の最適化等が重要であることも、Detlef Stoltenらにより報告されている(非特許文献1参照)。さらに、近年、ゼロギャップ構造を有するアルカリ水電解用電解槽について上述の諸課題に取り組む研究が盛んに行われている(特許文献3、4参照)。
米国特許第4530743号明細書 特開昭59-173281号公報 国際公開第2013/191140号 国際公開第2014/178317号
Detlef Stolten、「Hydrogen Energy」、ドイツ国、Wiley-VCH Verlag GmbH & Co. KGaA、2010年、第254頁~第257頁
 しかしながら、複極式電解槽として、これまでに多様な構造のものが開発されてきているが、この様な電解槽に再生可能エネルギー等の変動する電力を投入する場合、安定して運転するためには、複雑な電気駆動の制御システムの制御が必要になるが、突発的な電力供給停止時事には電気駆動の制御システムが制御できないため、改善が求められていた。
 そこで、本発明は、再生可能エネルギー等の変動電源での運転時に、高効率での水素製造を可能にし、さらに電力供給停止時の電気制御システムの安定化を可能にすること、を目的とする。
 本発明の要旨は以下の通りである。
 本発明の複極式電解槽は、陽極と、陰極と、前記陽極と前記陰極とを隔離する隔壁と、前記隔壁を縁取る外枠とを備える複数の複極式エレメントが隔膜を挟んで重ね合わせられ、前記外枠の外方に、前記隔壁と前記外枠と前記隔膜とにより画成される電極室に連通するヘッダーとを備える複極式電解槽であり、
 前記陽極の電気容量が4825C/m~965000C/mの範囲であり、前記陰極の電気容量が4825C/m~965000C/mの範囲である、
ことを特徴とする。
 ここで、本発明の複極式電解槽は、アルカリ水電解用複極式電解槽であることが好ましい。
 また、本発明の複極式電解槽は、前記複極式エレメントの通電面の面積をS1、前記ヘッダーの流路の断面積をS2、前記ヘッダーの流路の長さをL2としたときに、(S2/S1)/L2が1.5×10-6-1~2.3×10-4-1の範囲であることが好ましい。
 さらに、本発明の複極式電解槽は、前記陽極の電気容量及び前記陰極の電気容量のうち低い方が9650C/m~955350C/mの範囲であることが好ましい。
 さらに、本発明の複極式電解槽は、前記陽極の電気容量が、前記陰極の電気容量よりも大きいことが好ましい。
 さらに、本発明の複極式電解槽は、前記陰極の電気容量が、前記陽極の電気容量の0.1倍を超えて0.99倍以下であることが好ましい。
 さらに、本発明の複極式電解槽は、前記陰極の電気容量が、前記陽極の電気容量の0.1倍を超えて0.49倍以下であることが好ましい。
 さらに、本発明の複極式電解槽は、前記陽極の幾何セル面積1m当たりの実電極表面積が、90m~10000mの範囲であることが好ましい。
 さらに、本発明の複極式電解槽は、50~500の複極式エレメントを有することが好ましい。
 さらに、本発明の複極式電解槽は、前記S1が0.1m~10mであることが好ましい。
 さらに、本発明の複極式電解槽は、電解セルの厚さdが10mm~100mmであることが好ましい。
 さらに、本発明の複極式電解槽は、前記陽極が、酸化ニッケル、金属ニッケル、水酸化ニッケル及びニッケル合金からなる群より選ばれる少なくとも一種のニッケル化合物を含むことが好ましい。
 さらに、本発明の複極式電解槽は、前記陽極が、導電性基材と、前記導電性基材上に配置された触媒層を有し、前記触媒層は、ニッケルの金属結晶を含み、且つ、細孔を有し、前記触媒層の細孔のうち、孔径が2~5nmの範囲内である第一細孔の比表面積が0.6~2.0m/gであり、前記第一細孔の細孔容積が3×10-4~9×10-4ml/gであり、前記細孔のうち、孔径が0.01~2.00μmの範囲内である第二細孔の比表面積が2.0~5.0m/gであり、前記第二細孔の細孔容積が0.04~0.2ml/gであり、前記触媒層の厚みが50~800μmであることが好ましい。
 さらに、本発明の複極式電解槽は、前記陰極が、Ru-La-Pt系、Ru-Ce系、Pt-Ce系、及びPt-Ir系、Ir-Pt-Pd系、Pt-Ni系からなる群から選択される少なくとも一種のPt族化合物を含むことが好ましい。
 さらに、本発明の複極式電解槽は、前記陰極及び陽極の構成が、前記導電性基材の表面に触媒層を有するものであり、前記導電性基材が金属ニッケル、酸化ニッケル、水酸化ニッケル及びニッケル合金からなる群より選ばれる少なくとも一種のニッケル化合物を含むことが好ましい。
 さらに、本発明の複極式電解槽は、前記陰極及び陽極が、メッシュ状の構造であることが好ましい。
 さらに、本発明の複極式電解槽は、前記陰極の基材が、0.05mm~0.5mmの範囲の線径を有し、目開きが30メッシュから80メッシュの範囲を有することが好ましい。
 さらに、本発明の複極式電解槽は、前記陽極の基材が、開口率が20%~60%の範囲を有するメッシュ状の構造であることが好ましい。
 さらに、本発明の複極式電解槽は、電解セルを電気的に直列に接続したものであることが好ましい。
 さらに、本発明の複極式電解槽は、前記陰極、前記陽極、隔膜、陽極室と陰極室を区画する隔壁を有する複極式エレメントを備え、前記陰極と前記陽極の間に前記隔膜が位置し、前記隔膜は前記陰極及び前記陽極と接触している、ことが好ましい。
 本発明の電解装置は、本発明の複極式電解槽と、電解液を循環させるための電解液循環ポンプと、電解液と水素及び/又は酸素とを分離する気液分離タンクと、水を補給するための水投入ポンプとを含むことを特徴とする。
 また、本発明の電解装置は、本発明の電解装置への電力供給の停止時に、電力供給の停止を検知する検知器、及び、前記電解液循環ポンプを自動停止する制御器をさらに含むことが好ましい。
 本発明の水電解方法は、本発明の電解装置への電力供給の停止時に、前記電解液循環ポンプを停止することを特徴とする。
 本発明の水素製造方法は、アルカリを含有する水を電解槽により水電解し、水素を製造する水素製造方法において、前記電解槽は、陽極と、陰極と、前記陽極と前記陰極とを隔離する隔壁と、前記隔壁を縁取る外枠とを備える複数の複極式エレメントが隔膜を挟んで重ね合わせられ、前記外枠の外方に、前記隔壁と前記外枠と前記隔膜とにより画成される電極室に連通するヘッダーとを備える複極式電解槽であり、前記陽極の電気容量が4825C/m~965000C/mの範囲であり、前記陰極の電気容量が4825C/m~965000C/mの範囲であることを特徴とする。
 本発明によれば、再生可能エネルギー等の変動電源での運転時に、高効率での水素製造を可能にし、更に電力供給停止時の電気制御システムを安定化することができる。
本実施形態のアルカリ水電解用複極式電解槽の一例の全体について示す側面図である。 本実施形態のアルカリ水電解用複極式電解槽の一例の電解室、ヘッダー、導管について示す斜視図である。 本実施形態のアルカリ水電解用複極式電解槽の一例における電解液の流れを示す斜視図である。 本実施形態の外部ヘッダー型のアルカリ水電解用複極式電解槽の例を示す平面図である。 本実施形態のアルカリ水電解用電解装置の概要を示す図である。
 以下、本発明を実施するための形態(以下、「本実施形態」という)について詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 図1に、本実施形態のアルカリ水電解用複極式電解槽の一例の全体についての側面図を示す。
 図2に、本実施形態のアルカリ水電解用複極式電解槽の一例の電解室、ヘッダー、導管についての斜視図を示す。
 図3に、本実施形態のアルカリ水電解用複極式電解槽の一例における電解液の流れについての斜視図を示す。
 本実施形態のアルカリ水電解用複極式電解槽50は、図1に示すとおり、陽極2aと、陰極2cと、陽極2aと陰極2cとを隔離する隔壁1と、隔壁1を縁取る外枠3とを備える複数の複極式エレメント60が隔膜4を挟んで重ね合わせられている複極式電解槽50である。
(複極式電解槽)
 複極式は、多数のセルを電源に接続する方法の1つであり、片面が陽極2a、片面が陰極2cとなる複数の複極式エレメント60を同じ向きに並べて直列に接続し、両端のみを電源に接続する方法である。
 複極式電解槽50は、電源の電流を小さくできるという特徴を持ち、電解により化合物や所定の物質等を短時間で大量に製造することができる。電源設備は出力が同じであれば、定電流、高電圧の方が安価でコンパクトになるため、工業的には単極式よりも複極式の方が好ましい。
((複極式エレメント))
 一例のアルカリ水電解用複極式電解槽50に用いられる複極式エレメント60は、図1に示すように、陽極2aと陰極2cとを隔離する隔壁1を備え、隔壁1を縁取る外枠3を備えている。より具体的には、隔壁1は導電性を有し、外枠3は隔壁1の外縁に沿って隔壁1を取り囲むように設けられている。
 なお、本実施形態では、複極式エレメント60は、通常、隔壁1に沿う所与の方向D1が、鉛直方向となるように、使用してよく、具体的には、図2、図3に示すように隔壁1の平面視形状が長方形である場合、隔壁1に沿う所与の方向D1が、向かい合う2組の辺のうちの1組の辺の方向と同じ方向となるように、使用してよい(図1~図5参照)。そして、本明細書では、上記鉛直方向を電解液通過方向とも称する。
 本実施形態では、図1に示すとおり、複極式電解槽50は複極式エレメント60を必要数積層することで構成されている。
 図1に示す一例では、複極式電解槽50は、一端からファストヘッド51g、絶縁板51i、陽極ターミナルエレメント51aが順番に並べられ、更に、陽極側ガスケット部分7、隔膜4、陰極側ガスケット部分7、複極式エレメント60が、この順番で並べて配置される。このとき、複極式エレメント60は陽極ターミナルエレメント51a側に陰極2cを向けるよう配置する。陽極側ガスケット部分7から複極式エレメント60までは、設計生産量に必要な数だけ繰り返し配置される。陽極側ガスケット部分7から複極式エレメント60までを必要数だけ繰り返し配置した後、再度、陽極側ガスケット部分7、隔膜4、陰極側ガスケット部分7を並べて配置し、最後に陰極ターミナルエレメント51c、絶縁板51i、ルーズヘッド51gをこの順番で配置される。複極式電解槽50は、全体をタイロッド方式51r(図1参照)や油圧シリンダー方式等の締め付け機構により締め付けることによりー体化され、複極式電解槽50となる。
 複極式電解槽50を構成する配置は、陽極2a側からでも陰極2c側からでも任意に選択でき、上述の順序に限定されるものではない。
 図1に示すように、複極式電解槽50では、複極式エレメント60が、陽極ターミナルエレメント51aと陰極ターミナルエレメント51cとの間に配置されている。隔膜4は、陽極ターミナルエレメント51aと複極式エレメント60との間、隣接して並ぶ複極式エレメント60同士の間、及び複極式エレメント60と陰極ターミナルエレメント51cとの間に配置されている。
 また、本実施形態における複極式電解槽50では、図2、図3に示すとおり、隔壁1と外枠3と隔膜4とにより、電解液が通過する電極室5が画成されている。
 本実施形態では、特に、複極式電解槽50における、隣接する2つの複極式エレメント60間の互いの隔壁1間における部分、及び、隣接する複極式エレメント60とターミナルエレメントとの間の互いの隔壁1間における部分を電解セル65と称する。電解セル65は、一方のエレメントの隔壁1、陽極室5a、陽極2a、及び、隔膜4、及び、他方のエレメントの陰極2c、陰極室5c、隔壁1を含む。
 詳細には、電極室5は、外枠3との境界において、電極室5に電解液を導入する電解液入口5iと、電極室5から電解液を導出する電解液出口5oとを有する。より具体的には、陽極室5aには、陽極室5aに電解液を導入する陽極電解液入口5aiと、陽極室5aから導出する電解液を導出する陽極電解液出口5aoとが設けられる。同様に、陰極室5cには、陰極室5cに電解液を導入する陰極電解液入口5ciと、陰極室5cから導出する電解液を導出する陰極電解液出口5coとが設けられる。
 そして、本実施形態における複極式電解槽50は、外枠3の外方に、電極室5に連通するヘッダー10を備える(図2、図3参照)。
 図2、図3に示す一例では、複極式電解槽50に、ガスや電解液を配液又は集液する管であるヘッダー10が取り付けられる。詳細には、ヘッダー10は、電極室5に電解液を入れるための入口ヘッダーと電極室5からガスや電解液を出すための出口ヘッダーとからなる。
 一例では、隔壁1の端縁にある外枠3の下方に、陽極室5aに電解液を入れる陽極入口ヘッダー10Oaiと、陰極室5cに電解液を入れる陰極入口ヘッダー10Ociとを備えており、また、同様に、隔壁1の端縁にある外枠3の側方に、陽極室5aから電極液を出す陽極出口ヘッダー10Oaoと、陰極室5cから電解液を出す陰極出口ヘッダー10Ocoとを備えている。
 また、一例では、陽極室5a及び陰極室5cにおいて、入口ヘッダーと出口ヘッダーとが、電極室5の中央部を挟んで向かい合うように設けられている。
 特に、この一例の複極式電解槽50は、複極式電解槽50とヘッダー10とが独立している形式である外部ヘッダー10O型を採用している。
 図4に、本実施形態の外部ヘッダー型のアルカリ水電解用複極式電解槽の例を平面図で示す。
 なお、図1~図3に示す複極式電解槽に取り付けられるヘッダー10の配設態様として、代表的には、内部ヘッダー10I型と外部ヘッダー10O型とがあるが、本発明では、いずれの型を採用してもよく、特に限定されない。
 さらに、図2、図3に示す一例では、ヘッダー10に、ヘッダー10に配液又は集液されたガスや電解液を集める管である導管20が取り付けられる。詳細には、導管20は、入口ヘッダーに連通する配液管と出口ヘッダーに連通する集液管とからなる。
 一例では、外枠3のうちの下方に、陽極入口ヘッダー10Oaiに連通する陽極用配液管20Oaiと、陰極入口ヘッダー10Ociに連通する陰極用配液管20Ociとを備えており、また、同様に、外枠3のうちの側方に、陽極出口ヘッダー10Oaoに連通する陽極用集液管20Oaoと、陰極出口ヘッダー10Ocoに連通する陰極用集液管20Ocoとを備えている。
 本実施形態では、陽極室5a及び陰極室5cにおいて、入口ヘッダーと出口ヘッダーとは、水電解効率の観点から、離れた位置に設けられることが好ましく、電極室5の中央部を挟んで向かい合うように設けられることが好ましく、図2、図3に示すように隔壁1の平面視形状が長方形である場合、長方形の中心に関して対称となるように設けられることが好ましい。
 通常、図2、図3に示すように、陽極入口ヘッダー10Oai、陰極入口ヘッダー10Oci、陽極出口ヘッダー10Oao、陰極出口ヘッダー10Ocoは、各電極室5に1つずつ設けられるが、本実施形態では、これに限定されず、各電極室5にそれぞれ複数設けられてもよい。
 また、通常、陽極用配液管20Oai、陰極用配液管20Oci、陽極用集液管20Oao、陰極用集液管20Ocoは、各電極室5に1つずつ設けられるが、本実施形態では、これに限定されず、複数の電極室5で兼用されてもよい。
 なお、図示した例では、平面視で長方形形状の隔壁1と平面視で長方形形状の隔膜4とが平行に配置され、また、隔壁1の端縁に設けられる直方体形状の外枠の隔壁1側の内面が隔壁1に垂直となっているため、電極室5の形状が直方体となっている。しかしながら、本発明において、電極室5の形状は、図示の例の直方体に限定されることなく、隔壁1や隔膜4の平面視形状、外枠3の隔壁1側の内面と隔壁1とのなす角度等により、適宜変形されてよく、本発明の効果が得られる限り、いかなる形状であってもよい。
 本実施形態では、ヘッダー10の延在方向は、特に限定されない。
 本実施形態では、導管20の延在方向は、特に限定されないが、図2、図3に示す一例のように、本発明の効果を得られやすくする観点から、配液管(陽極用配液管20Oai、陰極用配液管20Oci)及び集液管(陽極用集液管20Oao、陰極用集液管20Oco)は、ぞれぞれ、隔壁1に垂直な方向に延びることが好ましく、導管20のいずれもが、隔壁1に垂直な方向に延びることがさらに好ましい。
 ときに、電解セル65は、電解停止時に電解液供給配管によって形成される漏洩電流回路を介して自己放電反応を生じる。
 前記自己放電が生じた場合でも、電解セル65のセル電圧を保持するための、電気容量を持った構造体を、電荷保持体と呼ぶ。電荷保持体を、陰極室5c内部又は陽極室5a内部で、陰極2c又は陽極2aと電気的に接続し、陰極2c又は陽極2aの電気化学的な電位を長時間安定化することができる。電解槽を、電力供給が停止した場合に非常用の蓄電池として使用することができる。
 本実施形態では、陰極2c又は陽極2aが、触媒層と触媒層を支持する基材とで構成され、この触媒層や基材が、電荷保持体の機能を備える。
 ここで、本実施形態のアルカリ水電解用複極式電解槽50では、陽極2aの電気容量が4825C/m~965000C/m(0.05Fd/m~10Fd/m)の範囲であり、陰極2cの電気容量が4825C/m~965000C/m(0.05Fd/m~10Fd/m)の範囲である。
 再生可能エネルギー等の変動電源での運転時に、電極室5の電荷保持体の機能により、電解槽に保有する電気量を増大化・バランス化させ、更に、電解液供給配管の構造の改善により、電力供給を停止した際に生じる自己放電を低減することで、電力供給停止時に、電解槽を非常用の蓄電池として使用することができ、非常時においても電気制御システムの安定化が可能となる。
 本実施形態では、本発明の効果を高める観点から、陽極2aの電気容量は、9650C/m~772000C/mの範囲であることがさらに好ましく、48250C/m~482500C/mの範囲であることが最も好ましい。陰極2cの電気容量は、9650C/m~772000C/mの範囲であることがさらに好ましく、48250C/m~482500C/mの範囲であることが最も好ましい。
 本実施形態のアルカリ水電解用複極式電解槽50では、陽極2aの電気容量及び陰極2cの電気容量のうち低い方が9650C/m~955350C/mの範囲あることが好ましく、48250C/m~772000C/mの範囲であることがさらに好ましく、96500C/m~482500C/mの範囲であることが特に好ましい。
 電気容量のうち低い方が小さすぎると、電源として機能しにくくなり、また、電気容量のうち低い方が大きすぎると、実質的な製作が困難になる。
 本実施形態のアルカリ水電解用複極式電解槽50では、陽極の電気容量が陰極の電気容量よりも大きいことが好ましく、その場合、陽極の電気容量に対する前記陰極の電気容量の割合は、0.1倍を超えて、0.99倍以下の範囲であることが好ましく、0.1倍を超えて、0.49倍以下の範囲であることがさらに好ましい。
 なお、電極2(陽極2a、陰極2c)に関して、電極2(陽極2a、陰極2c)に加えて導電性弾性体2eや集電体2rを含めた電極複合体(陽極複合体、陰極複合体)を用いた場合は、前述の電気容量は、電極複合体(陽極複合体、陰極複合体)について定められてよい。
 上記本発明の効果は、ヘッダー設計に関して物理的な制約を受けにくく、電解停止時に、電解液出口5o側の電解液の排出ライン(出口ヘッダー)を遮断することが構造的に容易であるため、各電解セル65への電解液の供給ヘッダーが電解セル65外部に配置されている、外部ヘッダー10O型のアルカリ水電解槽において、得られやすい。
 本実施形態のアルカリ水電解用複極式電解槽50では、複極式エレメント60の通電面の面積をS1、ヘッダー10の流路の断面積をS2、ヘッダー10の流路の長さをL2としたときに、(S2/S1)/L2が1.5×10-6-1~2.3×10-4-1の範囲であることが好ましく、4.0×10-6-1~2.0×10-4-1の範囲であることがさらに好ましく、8.0×10-6-1~1.0×10-4-1の範囲であることが特に好ましい。
 上記複極式エレメント60の通電面の面積S1とは、複極式エレメント60の電極(陽極2a及び陰極2c)の隔壁に平行な面における面積をいう。なお、陽極2aと陰極2cとにおいて上記面積が異なる場合には、その平均をいうものとする。
 上記ヘッダー10の流路の断面積S2とは、ヘッダー10のうち電解液が通過する内部空間の断面積をいう。なお、ヘッダー10の延在方向について断面積に変化がある場合には、その断面積の平均をいうものとする。また、陽極入口ヘッダー10Oai、陰極入口ヘッダー10Oci、陽極出口ヘッダー10Oao、陰極出口ヘッダー10Ocoにおいて上記断面積が異なる場合には、その平均をいうものとする。
 上記ヘッダー10の流路の長さL2とは、ヘッダー10のうち電解液が通過する内部空間の延在長さをいう。特に、ヘッダー10に連通する導管20を備える場合には、ヘッダー10の電解液入口5iから配液管(導管20)との接続部分まで、又は電解液出口5oから集液管(導管)との接続部分まで、の部分についての長さをいう。また、陽極入口ヘッダー10Oai、陰極入口ヘッダー10Oci、陽極出口ヘッダー10Oao、陰極出口ヘッダー10Ocoにおいて上記長さが異なる場合には、その平均をいうものとする。
 (S2/S1)/L2を上記範囲とすれば、電力供給を停止した際に生じる自己放電を低減して、電気制御システムの安定化が可能となると共に、高効率での電力の貯蔵、具体的には、リーク電流の低減することで高効率での水素製造を実現することが可能となる。
 さらに、本実施形態のアルカリ水電解用複極式電解槽50では、複極式エレメント60の通電面の面積S1が、0.1m~10mであることが好ましく、0.15m~8mであることがさらに好ましく、0.2m~5mであることが特に好ましい。
 通電面が小さすぎると、電解液供給ヘッダーも小さくなり、電解槽50の製作が難しくなる。また、通電面が大きすぎると、シール面圧が不均一になりやすく、電解液の漏れやガス漏洩の原因になる。
 さらに、本実施形態のアルカリ水電解用複極式電解槽50では、電解セル65の厚さdが、10mm~100mmであることが好ましく、15mm~50mmであることがさらに好ましく、20mm~40mmであることが特に好ましい。
 上記電解セル65の厚さdとは、隣接する2つの複極式エレメント60間の互いの隔壁1間における部分の厚さ、及び、隣接する複極式エレメント60とターミナルエレメント51a、51cとの間の互いの隔壁1間における部分の厚さであり、それぞれ、隣接する2つの複極式エレメント60の隔壁1同士の間の隔壁1に垂直な方向についての距離、及び、隣接する複極式エレメント60の隔壁1とターミナルエレメント51a、51cの隔壁1との間の隔壁1に垂直な方向についての距離をいう。上記厚さdが複極式電解槽50全体において一定でない場合には、その平均をいうものとしてよい。
 電解セルの厚さdが小さすぎると、電解セル65のガス液チャンバー内のガス比率が増大しやすくなり、セル電圧が上昇しやすくなる。また、厚さdが大きすぎると、ヘッダー10の圧損の影響で均一分配が難しくなり、設置面積が大きくなりすぎる。
 さらに、本実施形態のアルカリ水電解用複極式電解槽50では、ガス純度をより高純度化させる観点、及び循環流路中に存在する固形物による流路閉塞を抑制する観点から、S2が、7.00×10-7~3.14×10-4であることが好ましく、1.0×10-6~2.0×10-4であることがさらに好ましい。
 さらに、本実施形態のアルカリ水電解用複極式電解槽50では、特に限定されるものではないが、前記S2の好適範囲の場合と同様の観点から、L2が、0.2m~10mであることが好ましく、0.4m~8mであることがさらに好ましい。
 本実施形態のアルカリ水電解用複極式電解槽50は、50~500の複極式エレメント60を有することが好ましく、70~300の複極式エレメント60を有することがさらに好ましく、100~200の複極式エレメント60を有することが特に好ましい。
 下限未満の場合、セルに対する締め付け機構の割合が相対的に大きくなるため、製作コストがアップし、また、設備の設置面積が増加するため、現実的な設備ではなくなるおそれがある。上限超の場合には、電力供給を停止した際に生じる自己放電を低減して、電気制御システムの安定化を可能にする効果、及び、高効率での電力の貯蔵、具体的には、ポンプ動力の低減やリーク電流の低減を実現することを可能にする効果の並立が困難になる。
 また、複極式エレメント60の数(対数)が増え過ぎると、電解槽50の製作が困難になるおそれがあり、製作精度が悪い複極式エレメント60を多数スタックした場合には、シール面圧が不均一になりやすく、電解液の漏れやガス漏洩が生じやすい。
 以下、本実施形態のアルカリ水電解用複極式電解槽50の構成要素について詳細に説明する。
 また、以下では、本発明の効果を高めるための好適形態についても詳述する。
-隔壁-
 本実施形態における隔壁1の形状は、所定の厚みを有する板状の形状としてよいが、特に限定されない。
 隔壁1の平面視形状としては、特に限定されることなく、矩形(正方形、長方形等)、円形(円、楕円等)としてよく、ここで、矩形は角が丸みを帯びていてもよい。
 一実施形態において、隔壁1と外枠3とを溶接その他の方法で接合することで一体化してもよく、例えば、隔壁1に、隔壁1の平面に対して垂直な方向に張り出したフランジ部(陽極2a側に張り出した陽極フランジ部、陰極2c側に張り出した陰極フランジ部)を設け、フランジ部を外枠3の一部としてもよい。
 なお、隔壁1は、通常、隔壁1に沿う所与の方向D1が、鉛直方向となるように、使用してよく、具体的には、図2、図3に示すように隔壁1の平面視形状が長方形である場合、隔壁1に沿う所与の方向D1が、向かい合う2組の辺のうちの1組の辺の方向と同じ方向となるように、使用してよい。そして、本明細書では、上記鉛直方向を電解液通過方向とも称する。
 隔壁1の材料としては、電力の均一な供給を実現する観点から、導電性を有する材料が好ましく、耐アルカリ性や耐熱性といった面から、ニッケル、ニッケル合金、軟鋼、ニッケル合金上にニッケルメッキを施したものが好ましい。
-電極-
 本実施形態のアルカリ水電解による水素製造において、エネルギー消費量の削減、具体的には電解電圧の低減は、大きな課題である。この電解電圧は電極2に大きく依存するため、両電極2の性能は重要である。
 アルカリ水電解の電解電圧は、理論的に求められる水の電気分解に必要な電圧の他に、陽極反応(酸素発生)の過電圧、陰極反応(水素発生)の過電圧、陽極2aと陰極2cとの電極2間距離による電圧とに分けられる。ここで、過電圧とは、ある電流を流す際に、理論分解電位を越えて過剰に印加する必要のある電圧のことを言い、その値は電流値に依存する。同じ電流を流すとき、過電圧が低い電極2を使用することで消費電力を少なくすることができる。
 低い過電圧を実現するために、電極2に求められる要件としては、導電性が高いこと、酸素発生能(或いは水素発生能)が高いこと、電極2表面で電解液の濡れ性が高いこと等が挙げられる。
 アルカリ水電解の電極2として、過電圧が低いこと以外に、再生可能エネルギーのような不安定な電流を用いても、電極2の基材及び触媒層の腐食、触媒層の脱落、電解液への溶解、隔膜4への含有物の付着等が起きにくいことが挙げられる。
 陽極及び陰極の導電性基材の構造は、担体として比表面積を確保すること、及び、脱泡性を両立する観点で、メッシュ構造であることが好ましい。前記導電性基材の材質は、ニッケル鉄、バナジウム、モリブデン、銅、銀、マンガン、白金族、黒鉛及びクロム等からなる群より選ばれる少なくとも一種であってもよい。二種以上の金属からなる合金又は、二種以上の導電性物質の混合物を導電性基材に用いてもよい。金属ニッケルを導電性基材に用いるのが好ましい。
--陽極--
 陽極2aは、導電性基材と、導電性基材を被覆する触媒層と、を備え、触媒層は多孔質体であることが好ましい。なお、触媒層は導電性基材の表面全体を被覆していることが好ましい。
 陽極の触媒層は元素として、アルカリに対する耐久性と、酸素発生に対する活性が高い点で、ニッケルを含むことが好ましい。触媒層は、酸化ニッケル、金属ニッケル、水酸化ニッケル及びニッケル合金から選ばれる少なくとも一種のニッケル化合物を含むことが好ましい。
 陽極一枚当たりの幾何セル面積1m当たりの実電極表面積(実比表面積)は、90~10000mの範囲にすることが好ましい。実電極表面が、90m/m未満の範囲では、触媒層全体の表面積が小さいため、酸素過電圧が高くなることが予想される。また、実電極表面が、10000m/mを超える範囲では、触媒層が微細な多孔質を含むため非常にもろくなり、耐久性が悪く、酸素発生とともに酸素過電圧が高くなることが予想される。
 なお、幾何セル面積とは、電解セル65を隔壁1に垂直な方向に投影したときの面積をいう。
 上記面積1m当たりの実電極表面としては、500~8000m/mの範囲にすることがさらに好ましく、1000~5000m/mの範囲にすることが特に好ましい。
 この陽極の触媒層中の細孔のうち、孔径が2~5nmの範囲内である第一細孔の比表面積は0.6~2.0m/gであり、第一細孔の細孔容積は3×10-4~9×10-4ml/gであることが好ましい。触媒層中の細孔のうち、孔径が0.01~2.00μmの範囲内である第二細孔の比表面積は2.0~5.0m/gであり、第二細孔の細孔容積は、0.04~0.2ml/gであることが好ましい。
 触媒層の厚みは50~800μmであることが好ましく、100~400μmであることがより好ましい。
 孔径が0.01~2.00μmの範囲内である第二細孔は、比表面積は小さいが、細孔容量が大きいため、第一細孔は、第二細孔の内壁に存在することになる。第一細孔は、触媒層の表面積を非常に大きくする。第一細孔の表面は、水酸化物イオンの酸化反応(酸素の生成反応)の反応場(反応界面)として機能する。第一細孔の内部では、酸素発生の際に水酸化ニッケルが生成され、そのため細孔を更に小さくすると予想される。しかし、第一細孔は孔径が大きな第二細孔の内部に存在するため、第一細孔内で生成された酸素は第二細孔を通じて触媒層の外へ抜けやすく、電解を阻害しにくい。そのため、本実施形態では電解時に酸素発生過電圧が上昇しにくいと推定される。
 第一細孔の比表面積は0.6~1.5m/gであることが好ましく、0.6~1.0m/gであることがより好ましい。第一細孔の比表面積は0.62~0.98m/gであってもよい。一般的には第一細孔の比表面積の増加に伴い、酸素発生電位が低くなると考えられる。ただし、第一細孔が小さすぎると酸素発生時に生成する水酸化ニッケルにより第一細孔が完全に埋まり、第一細孔の実質的な表面積が少なくなる傾向がある。第一細孔の比表面積が減少すると、触媒層全体の表面積も減少する傾向がある。触媒層全体の表面積の減少に伴い、酸素発生電位が上昇する傾向がある。
 第一細孔の容積は3.3×10-4~8.5×10-4ml/gことが好ましい。第一細孔の容積は3.6×10-4ml/g~7.9×10-4ml/gであってもよい。第一細孔の細孔容積の増加に伴い、比表面積が減少する傾向がある。第一細孔の細孔容積の減少に伴い、触媒層全体の比表面積が増加する傾向がある。
 第二細孔の比表面積は2.3~4.5m/gであることが好ましい。第二細孔の比表面積は2.5~4.2m/gであってもよい。第二細孔の比表面積の増加に伴い触媒層全体の細孔容積が減少する傾向がある。また、第二細孔の比表面積の低下に伴い触媒層全体の細孔容積が増加する傾向がある。
 第二細孔の容積は0.04~0.15ml/gであることが好ましく、0.04~0.1ml/gであることがより好ましい。第二細孔の容積は0.04~0.09ml/gであってもよい。第二細孔の細孔容積の増加に伴い、触媒層内で発生した酸素ガスが脱泡し易い傾向がある。第二細孔の細孔容積の減少に伴い、触媒層で発生した酸素ガスが脱泡し難くなる傾向があり、酸素発生過電圧が高くなる傾向がある。一方で、第二細孔の細孔容積の減少に伴い、触媒層の機械的強度は高まる傾向がある。
 厚みが50μm未満では、触媒層が薄いため、触媒層全体の表面積が小さくなり、酸素過電圧が高くなることが予想される。また、厚みが800μmを越える範囲では触媒層が厚くなりすぎて、剥離等が起こりやすくなる場合があり、さらに陽極の製作コストが高くなりすぎる場合がある。
 触媒層がニッケルの金属結晶を含み、触媒層中のニッケルの金属結晶の(1,1,1)面によって回折されるX線のピーク強度がINiであり、触媒層中のNiOの(0,1,2)面によって回折されるX線のピーク強度がINiOであるとき、[INi/(INi+INiO)]×100の値が75~100%であることが好ましい。I[INi/(INi+INiO)]×100は90~100%であることがより好ましく、95~100%であることが特に好ましい。
 [INi/(INi+INiO)]×100が大きいほど、触媒層の電気抵抗が低く、酸素発生を行う際の電圧損失が小さくなる。触媒層中の酸化ニッケルの部分では、導電性が低下するが、酸素発生反応も起き難い。また、酸化ニッケルは比較的、化学的安定性に優れるため、触媒層が酸化ニッケルを含有することは、触媒層の強度を維持するために有効な場合がある。なお、INi及びINiOは、触媒層についてのXRD((X‐Ray Diffraction)の測定結果から求められる。
 なお、触媒層には、ニッケルとその他の金属とから構成される合金を含んでもよい。触媒層は、金属ニッケルからなることが特に好ましい。チタン、クロム、モリブデン、コバルト、タンタル、ジルコニウム、アルミニウム、亜鉛、白金族及び希土類元素等からなる群より選ばれる少なくとも一種をさらに含んでもよい。また、触媒層の表面が、ロジウム、パラジウム、イリジウム及びルテニウム等からなる群より選ばれる少なくとも一種の触媒で修飾されてもよい。
--アルカリ水電解用陽極の製造方法--
 本実施形態に係るアルカリ水電解用陽極の製造方法は、特に限定されない。好ましい製造方法として、基材としてエクスパンドニッケルを用いて、分散メッキにてラネーニッケルを被覆し、32wt%のアルカリで展開する方法が挙げられる。
--陰極--
 陰極2cとしては、特に限定されない。Ru-La-Pt系、Ru-Ce系、Pt-Ce系、及びPt-Ir系、Ir-Pt-Pd系、Pt-Ni系からなる群から選択される少なくとも一種のPt族化合物を含むことが好ましい。また、熱分解型活性陰極であることが好ましい。前記陰極の基材の構造は、担体として比表面積を確保すること、及び、脱泡性を両立する点で、メッシュ構造であることが好ましい。
 陰極の触媒層は元素として、アルカリに対する耐久性と、水素発生に対する活性が高い点で、ニッケルを含むことが好ましい。触媒層は、酸化ニッケル、金属ニッケル、水酸化ニッケル及びニッケル合金から選ばれる少なくとも一種のニッケル化合物を含むことが好ましい。
 特に、陰極の基材が、0.05~0.5mmの範囲の線形を有し、目開きが30メッシュ~80メッシュの範囲を有することが好ましい。この範囲にすることで、陰極として、メッシュの機械的強度を保ちつつ、担体として必要な比表面積、脱泡性を発現することができる。陽極の導電性基材のメッシュの開口率を20%~60%の範囲にすることで、メッシュの機械的強度を保ちつつ、担体として必要な比表面積、脱泡性を発現することができる。
 なお、電極の開口率は、下記の方法で測定することができる。
 エキスパンドメタルを基材とした電極を5mm×5mm程度の大きさに切り出し、卓上顕微鏡Miniscope TM3000(株式会社日立ハイテクノロジーズ社製)を用いて、短目方向中心間距離SW、長目方向中心間距離LW、ボンド長さB、開口部の単目方向長さSWO、開口部の長目方向長さLWOを測量した。これらの値を用いて、下記式に従って、開口率を算出した。
  開口率=SWO×(LWO+B)×100/(SW×LW)
 また、平織メッシュを基材とした電極は、同様にTM3000を用いて目開きA、線径dを測量し、下記式に従って開口率(%)を算出した。
  開口率=(A/(A+d))×100
 電極の開口率の算出方法は、エキスパンドメタルを基材とした電極と、平織メッシュを基材とした電極とで異なる。なお、エキスパンドメタル、平織メッシュ以外を基材とした電極の開口率は、電極を所定の大きさ(例えば5mm×5mm程度)に切り出し、水平に静置した該電極の中央部の鉛直方向上側から光を投射し、鉛直方向下側に電極を投影させ、光が透過した部分の総面積及び電極の投影面積(影と透過光との面積の合計)を測定して、以下の式に従って算出することができる。
  開口率=(光が透過した部分の総面積)/(電極の投影面積)×100
--アルカリ水電解用陰極の製造方法--
 本実施形態に係るアルカリ水電解用陰極の製造方法は、上述の陽極の製造方法と同様としてよい。
-外枠-
 本実施形態における外枠3の形状は、隔壁1を縁取ることができる限り特に限定されない。
-隔膜-
 本実施形態のアルカリ水電解用複極式電解槽50において用いられる隔膜4としては、イオンを導通しつつ、発生する水素ガスと酸素ガスを隔離するために、イオン透過性の隔膜4が使用される。このイオン透過性の隔膜4は、イオン交換能を有するイオン交換膜と、電解液を浸透することができる多孔膜が使用できる。このイオン透過性の隔膜4は、ガス透過性が低く、イオン伝導率が高く、電子電導度が小さく、強度が強いものが好ましい。
-電極室-
 本実施形態における複極式電解槽50では、図2に示すとおり、隔壁1と外枠3と隔膜4とにより、電解液が通過する電極室5が画成されている。
-ガスケット-
 本実施形態のアルカリ水電解用複極式電解槽50では、隔壁1を縁取る外枠3同士の間に隔膜4を有するガスケット7が挟持されることが好ましい。
 ガスケット7は、複極式エレメント60と隔膜4の間、複極式エレメント60間を電解液と発生ガスに対してシールするために使用され、電解液や発生ガスの電解槽外への漏れや両極室間におけるガス混合を防ぐことができる。
-電荷保持体-
 本実施形態のアルカリ水電解用複極式電解槽50では、図2に示すように、陰極2c又は陽極2aと隔壁1との間に、導電性弾性体2e及び集電体2rが、導電性弾性体2eが陰極2c又は陽極2aと集電体2rとに挟まれるように、設けられ、電解保持体をなしている。
 電荷保持体は、アルカリに対する耐久性が高く、且つ、陽極に対して酸化還元電位が碑であり、電解停止時に陽極を還元することが出来るという点から、ニッケルを母体に含むことが好ましい。母体に酸化ニッケル、金属ニッケル、水酸化ニッケル及びニッケル合金から選ばれる少なくとも一種を含んでもよい。
 陰極室が、さらに導電性弾性体2eと集電体2gを内包しており、導電性弾性体2eが、陰極室と集電体との間で電気的に接続した状態で圧縮収容されており、陰極集電体の一部が前記電荷保持体で構成されてもよい。これにより、電荷保持体を付加的に取り付けることによる、セルの重量の増加を抑えることができる。
 電荷保持体の表面層は、さらに元素としてニッケルを含むことが好ましい。この表面層は、酸化ニッケル、金属ニッケル(ニッケルの金属結晶)、水酸化ニッケル及びからなる群より選ばれる少なくとも一種を含むことが好ましい。表面層は、ニッケルとその他の金属とから構成される合金を含んでもよい。表面層が金属ニッケルからなることが特に好ましい。なお、表面層は、チタン、クロム、モリブデン、コバルト、タンタル、ジルコニウム、アルミニウム、亜鉛、白金族及び希土類元素等からなる群より選ばれる少なくとも一種をさらに含んでもよい。
 電荷保持体の製造方法としては、特に限定されないが、陽極と同様の製造方法が挙げられる。
-ヘッダー-
 アルカリ水電解用複極式電解槽50は、電解セル65毎に、陰極室5c、陽極室5aを有する。電解槽50で、電気分解反応を連続的に行うためには、各電解セル65の陰極室5cと陽極室5aとに電気分解によって消費される原料を十分に含んだ電解液を供給し続ける必要がある。
 電解セル65は、複数の電解セル65に共通するヘッダー10と呼ばれる電解液の給排配管と繋がっている。一般に、陽極用配液管は陽極入口ヘッダー10ai、陰極用配液管は陰極入口ヘッダー10ci、陽極用集液管は陽極出口ヘッダー10ao、陰極用集液管は陰極出口ヘッダー10coと呼ばれる。電解セル65はホース等を通じて各電極用配液管及び各電極用集液管と繋がっている。
 ヘッダー10の材質は特に限定されないが、使用する電解液の腐食性や、圧力や温度等の運転条件に十分耐えうるものを採用する必要がある。ヘッダー10の材質に、鉄、ニッケル、コバルト、PTFE、ETFE,PFA、ポリ塩化ビニル、ポリエチレン等を採用しても良い。
 本実施形態において、電極室5の範囲は、隔壁1の外端に設けられる外枠3の詳細構造により、変動するところ、外枠3の詳細構造は、外枠3に取り付けられるヘッダー10(電解液を配液又は集液する管)の配設態様により異なることがある。複極式電解槽50のヘッダー10の配設態様としては、内部ヘッダー10I型及び外部ヘッダー10O型が代表的である。
-内部ヘッダー-
 内部ヘッダー10I型とは、複極式電解槽50とヘッダー10(電解液を配液又は集液する管)とが一体化されている形式をいう。
 内部ヘッダー10I型複極式電解槽50では、より具体的には、陽極入口ヘッダー10Iai及び陰極入口ヘッダー10Iciが、隔壁1内及び/又は外枠3内の下部に設けられ、且つ、隔壁1に垂直な方向に延在するように設けられ、また、陽極出口ヘッダー10Iao及び陰極出口ヘッダー10Icoが、隔壁1内及び/又は外枠3内の上部に設けられ、且つ、隔壁1に垂直な方向に延在するように設けられる。
 内部ヘッダー10I型複極式電解槽50が内在的に有する、陽極入口ヘッダー10Iaiと、陰極入口ヘッダー10Iciと、陽極出口ヘッダー10Iaoと、陰極出口ヘッダー10Icoを総称して、内部ヘッダー10Iと呼ぶ。
 図4及び図5に示す内部ヘッダー10I型の例では、隔壁1の端縁にある外枠3のうちの下方に位置する部分の一部に、陽極入口ヘッダー10Iaiと陰極入口ヘッダー10Iciとを備えており、また、同様に、隔壁1の端縁にある外枠3のうちの上方に位置する部分の一部に、陽極出口ヘッダー10Iaoと陰極出口ヘッダー10Icoとを備えている。
-外部ヘッダー-
 外部ヘッダー10O型とは、複極式電解槽50とヘッダー10(電解液を配液又は集液する管)とが独立している形式をいう。
 外部ヘッダー10O型複極式電解槽50は、陽極入口ヘッダー10Oaiと、陰極入口ヘッダー10Ociとが、電解セル65の通電面に対し、垂直方向に、電解槽50と並走する形で、独立して設けられる。この陽極入口ヘッダー10Oai及び陰極入口ヘッダー10Ociと、各電解セル65が、ホースで接続される。
 外部ヘッダー10O型複極式電解槽50に外在的に接続される、陽極入口ヘッダー10Oaiと、陰極入口ヘッダー10Ociと、陽極出口ヘッダー10Oaoと、陰極出口ヘッダー10Ocoを総称して、外部ヘッダー10Oと呼ぶ。
 外部ヘッダー10O型の例では、隔壁1の端縁にある外枠3のうちの下方に位置する部分に設けられたヘッダー10用貫通孔に、管腔状部材が設置され、管腔状部材が、陽極入口ヘッダー10Oai及び陰極入口ヘッダー10Ociに接続されており、また、同様に、隔壁1の端縁にある外枠3のうちの上方に位置する部分に設けられたヘッダー10用貫通孔に、管腔状部材(例えば、ホースやチューブ等)が設置され、かかる管腔状部材が、陽極出口ヘッダー10Oao及び陰極出口ヘッダー10Ocoに接続されている。
(アルカリ水電解用電解装置)
 図5に、本実施形態のアルカリ水電解用電解装置の概要を示す。
 本実施形態の複極式水電解槽を、他の要素も含む電解装置にして、水素製造装置として使用することで、電解効率が高い水素製造装置が提供できる。
 本実施形態のアルカリ水電解用電解装置は、少なくとも、本実施形態の複極式水電解槽50、気液分離タンク72(水素分離タンク72h、酸素分離タンク72o)、電解液循環ポンプ71、水投入ポンプ73、電気分解用の電力供給用の整流器74を具備する。
 本実施形態のアルカリ水電解用電解装置70は、上記以外にも、酸素濃度計75、水素濃度計76、流量計77、圧力計78、熱交換器79、圧力制御弁80を備えてよい。
 本実施形態のアルカリ水電解用電解装置70によれば、本実施形態のアルカリ水電解用複極式電解槽の効果を得ることができる。
 すなわち、本実施形態によれば、再生可能エネルギー等の変動電源での運転時に、高効率での水素製造を実現することが可能となり、電力供給を停止した際に生じる自己放電を低減して、電気制御システムの安定化が可能となる。本実施形態によれば、さらには、高効率での電力の貯蔵、具体的には、ポンプ動力の低減やリーク電流の低減を実現することが可能となる。
(アルカリ水電解方法)
 本実施形態のアルカリ水電解方法は、本実施形態のアルカリ水電解用電解装置70を用いて、実施することができる。
 以上、図面を参照して、本発明の実施形態のアルカリ水電解用複極式電解槽、アルカリ水電解用電解装置、アルカリ水電解方法について例示説明したが、本発明のアルカリ水電解用複極式電解槽、アルカリ水電解用電解装置、アルカリ水電解方法は、上記の例に限定されることはなく、上記実施形態には、適宜変更を加えることができる。
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。
 アルカリ水電解用複極式セル及びそれを用いたアルカリ水電解装置は、下記のとおり作製した。
-隔壁、外枠-
 複極式エレメントとして、陽極と陰極とを区画する隔壁と、隔壁を取り囲む外枠3と、を備えたものを用いた。隔壁及び複極式エレメントのフレーム等の電解液に接液する部材の材料は、全てニッケルとした。
-陽極-
 導電性基材として,エクスパンドニッケル開口率:50%)を用いて、ブラスト処理を行った。導電性基材を切削加工により、50cm角に調整し、陽極サンプルAとした。
 陽極サンプルAを5N-HCl水溶液に10分間浸漬し、陽極サンプルBとした。
 陽極サンプルBを用いて、分散メッキにてラネーニッケル合金を被覆し、32wt%、80℃のNaOH水溶液に、10時間浸漬し、ラネーニッケル合金中のAlを溶かした。上記工程により、陽極サンプルCを得た。
 陽極サンプルCを6枚重ねにして積層し、それぞれ等しい電位になるように接続した陽極サンプルDを用意した。
 陽極サンプルCを8枚重ねにして積層し、それぞれ等しい電位になるように接続した陽極サンプルEを用意した。
 導電性基材として,エクスパンドニッケルを用いて、ブラスト処理を行った。上述と同様に、導電性基材を切削加工により、50cm角に調整し、陽極サンプルAとした。上述と同様に、陽極サンプルAを5N-HCl水溶液に10分間浸漬し、陽極サンプルBとした。陽極サンプルBを用いて、陽極サンプルCの8倍の時間、分散メッキにてラネーニッケル合金を被覆し、32wt%、80℃のNaOH水溶液に、10時間浸漬し、ラネーニッケル合金中のAlを溶かした。上記工程により、陽極サンプルFを得た。
((陽極サンプルの陽極(酸素極)電位の測定))
 陽極サンプルA、B、C、D、E、Fを一枚用意し、フッ素樹脂製ビーカーを30wt%KOHの電解液で満たした、その中に浸漬させた。KOHの水溶液の温度は90℃に維持した。陽極サンプル、白金金網(対極)及び対極の周りを覆うフッ素樹脂の筒を備え、これらの電気伝導性が確保された装置で、陽極サンプルに対して、0.4A/cmの電流密度の酸化電流を流し、30分間、水素を発生させた。その後、0.05A/cmの還元電流を流し、陽極サンプルの電位の変化を測定した。この電位変化を、流した電流のトータル保有電荷量(電気容量)に対してプロットして、陽極サンプルの酸化曲線とした。
 測定は、対極として、メッシュ状の白金電極を用いて、温度90℃にて行った。フッ素樹脂の筒としては、その周りに多数の1mmφの穴を開けたものを用いた。陽極サンプルの陽極電位は、液抵抗によるオーム損の影響を排除するために、ルギン管を使用する三電極法によって測定した。ルギン管の先端と陽極との間隔は、常に0.05mmに固定した。三電極法用の参照極としては、銀-塩化銀(Ag/AgCl)を用いた。
((酸素発生時に陽極(酸素極)室内に蓄えられる正の保有電荷量(電気容量)の測定))
 陽極サンプルA、B、C、D、E、Fについて測定した、陽極サンプルの還元曲線において、陽極電位が0V(v.s.Ag/AgCl)になるまで流した電流のトータル電荷量を酸素発生時に陽極室に蓄えられる正の保有電荷量(電気容量)(C/m)とした。
 陽極サンプルAの正の保有電荷量(電気容量)は、3667C/mだった。陽極サンプルBの正の保有電荷量(電気容量)は、5018C/mだった。陽極サンプルCの正の保有電荷量(電気容量)は、148610C/mだった。陽極サンプルDの正の保有電荷量(電気容量)は、955350C/mだった。陽極サンプルEの正の保有電荷量(電気容量)は、1061500C/mだった。陽極サンプルFの正の保有電荷量(電気容量)は、445830C/mだった。
 陽極サンプルA、B、C、Fの陽極一枚当たりの実比表面積を測定した。陽極サンプルD、Eは、陽極サンプルの陽極一枚当たりの実比表面積は陽極サンプルCと同じだった。
陽極サンプルAの実比表面積は、91m/mだった。陽極サンプルBの正の実非常面積は、125m/mだった。陽極サンプルCの実比表面積は、3700m/mだった。陽極サンプルFの実比表面積は、11100m/mだった。
((陽極の触媒層の第一細孔及び第二細孔の比表面積及び細孔容積))
 陽極の触媒層の孔径が2~5nmの範囲内である第一細孔の比表面積は、陽極サンプルAとBで10-5/g以下、陽極サンプルC、D、Eで1.5m/g、陽極サンプルFで4.5m/gであった。
 第一細孔の細孔容積は、陽極サンプルAとBで10-6ml/g以下、陽極サンプルC、D、Eで4×10-4ml/g、陽極サンプルFで5×10-5ml/gであった。
 陽極の触媒層の孔径が0.01~2.00nmの範囲内である第二細孔の比表面積は、陽極サンプルAとBで0.1m/g以下、陽極サンプルC、D、Eで2.5m/g、陽極サンプルFで10.5m/gであった。
 第二細孔の細孔容積は、陽極サンプルAとBで0.1ml/g以下、陽極サンプルC、D、Eで0.1ml/g、陽極サンプルFで0.45ml/gであった。
((陽極の触媒層の厚み・外観))
 陽極の触媒層の厚みは、陽極サンプルAとBで10μm以下、陽極サンプルC、D、Eで200μm、陽極サンプルFで1000μmであった。
 陽極の触媒層には、ニッケルの金属結晶が含まれていた。
-陰極-
 マイクロメッシュ(線径:0.1mm、50メッシュ)状の活性陰極(Pt系の熱分解活性陰極)を切断加工により、50cm角に調整して陰極を作製した。
-電荷保持体(構造体)-
 導電性基材として,エクスパンドニッケルを用いて、ブラスト処理を行った。導電性基材を切削加工により、50cm角に調整した。5N-HCl水溶液に10分間浸漬した。分散メッキにてラネーニッケル合金を被覆し、32wt%、80℃のNaOH水溶液に、10時間浸漬し、ラネーニッケル合金中のAlを溶かした。上記工程により、活物質として機能する構造体を得た。
 陰極を、縦50cm×縦50cmに調整し、陰極サンプルGとした。
 構造体を、縦50cm×横5.73cmに調整し、陰極サンプルGと重ね合わせ、陰極サンプルAとした。
 構造体を、縦50cm×横0.73cmに調整し、陰極サンプルGと重ね合わせ、陰極サンプルBとした。
 構造体を、縦50cm×横11.98cmに調整し、陰極サンプルGと重ね合わせ、陰極サンプルCとした。
 構造体を、縦50cm×横18.86cmに調整し、陰極サンプルGと重ね合わせ、陰極サンプルDとした。
 構造体を、縦50cm×横50cmに調整し、これを3枚重ねにしたものを、陰極サンプルGと重ね合わせ、陰極サンプルEとした。
 構造体を、縦50cm×横50cmに調整し、これを4枚重ねにしたものを、陰極サンプルGと重ね合わせ、陰極サンプルFとした。
(陽極及び陰極の電気容量)
 以下のとおり、電解セルの陽極及び陰極の電気容量(C/m)を測定した。
((陰極サンプルの酸化曲線の測定))
 陰極サンプルA、B、C,D、E、F、G、各々一枚ずつ用意し、フッ素樹脂製ビーカーを30wt%KOHの電解液で満たした、その中に浸漬させた。KOHの水溶液の温度は90℃に維持した。陰極サンプル、白金金網(対極)及び対極の周りを覆うフッ素樹脂の筒を備え、これらの電気伝導性が確保された装置で、陰極サンプルに対して、0.4A/cmの電流密度の還元電流を流し、30分間、水素を発生させた。その後、0.05A/cmの酸化電流を流し、陰極サンプルの電位の変化を測定した。この電位変化を、流した電流のトータル電荷量に対してプロットして、陰極サンプルの酸化曲線とした。
 測定は、対極として、メッシュ状の白金電極を用いて、温度90℃にて行った。フッ素樹脂の筒としては、その周りに多数の1mmφの穴を開けたものを用いた。陰極サンプルの陰極(水素極)電位は、液抵抗によるオーム損の影響を排除するために、ルギン管を使用する三電極法によって測定した。ルギン管の先端と陰極サンプルとの間隔は、常に0.05mmに固定した。三電極法用の参照極としては、銀-塩化銀(Ag/AgCl)を用いた。
((水素発生時に陰極室内に蓄えられる負の保有電荷量(電気容量)の測定))
 陰極サンプルA、B、C、D、E、F、Gについて、測定した陰極サンプルの酸化曲線において、陰極電位が-0.8V(v.s.Ag/AgCl)になるまで流した電流のトータル電荷量を水素発生時に陰極室に蓄えられる負の保有電荷量(電気容量)とした。
 陰極サンプルAの負の保有電荷量(電気容量)は、48250C/mだった。陰極サンプルBの負の保有電荷量(電気容量)は、9650C/mだった。陰極サンプルCの負の保有電荷量(電気容量)は、96500C/mだった。陰極サンプルDの負の保有電荷量(電気容量)は、149575C/mだった。陰極サンプルEの負の保有電荷量(電気容量)は、868500C/mだった。陰極サンプルFの負の保有電荷量(電気容量)は、1158000C/mだった。陰極サンプルGの負の保有電荷量(電気容量)は、3956.5C/mだった。
 本実施例において使用する電解槽は、陰極を有する陰極室、陽極を有する陽極室、陰極室と陽極室とを区画する隔膜、並びに陰極室及び陽極室に充填された電解液を具備する電解セルを備えるものとした。電解セルは、陰極を有する陰極室、陽極を有する陽極室、並びに陰極室と陽極室とを区画する隔膜を具備するものであった。陰極室と陽極室とは、隔膜を介して対向して配置された。陰極室及び陽極室は、それぞれ、電解液によって充填した。陰極、陽極、隔膜、及び電解液としては、それぞれ、水の電気分解において使用される公知の材料をした。
-隔膜-
 ポリスルホン系多孔質膜を切断加工により、50cm角に調整したものを隔膜サンプルとした。
-複極式電解槽、複極式エレメント-
 複極式エレメントを49個使用し、図1に示すように、一方の端側で、ファストヘッド、絶縁板、陽極ターミナルユニットを配置し、さらに、陽極側ガスケット部分、隔膜、陰極側ガスケット部分、複極式エレメントをこの順に並べたものを49組配置し、さらに、陽極側ガスケット部分、隔膜、電陰極側ガスケット部分を配置し、複極式電解槽を組み立てた。
 この実施例においては、陰極室及び陽極室が、それぞれ50室ある50対の直列接続構造を有していた。
-ガスケット-
 ガスケットとして、EPDMゴムを材質のものを用いた。
-ヘッダー、導管-
 外部ヘッダー型の複極式エレメントを採用した。
 図4に示すように、この実施例の複極式電解槽50では、電解槽50の筐体の外方に、電解液を配液及び集液するための導管20(陽極用配液管20Oai、陰極用配液管20Oci、陽極用集液管20Oao、陰極用集液管20Oco)を設けた。更に、この電解槽50では、これらの導管20から電極室5に電解液を通過させるヘッダー10としてのホース(陽極入口ヘッダー10Oai、陰極入口ヘッダー10Oci、陽極出口ヘッダー10Oao、陰極出口ヘッダー10Oco)を、外部から取り付けた。
 ここで、図4に示すように、ヘッダー10(陽極入口ヘッダー10Oai、陰極入口ヘッダー10Oci、陽極出口ヘッダー10Oao、陰極出口ヘッダー10Oco)のいずれもが、複極式エレメント60の隔壁1の側方から外方に延びるように、配置した。また、図4に示すように、導管20(陽極用配液管20Oai、陰極用配液管20Oci、陽極用集液管20Oao、陰極用集液管20Oco)のいずれもが、複極式エレメント60の隔壁1に垂直な方向に延びるように、配置した。
 こうして、外部ヘッダー10O型の電解槽50を作製した。
 陰極入口ヘッダー10Ociを介して陰極室5cへ、陰極室5cから陰極出口ヘッダー10Ocoを介して、電解液を流した。また、陽極入口ヘッダー10Oaiを介して陽極室5aへ、陽極室5aから陽極出口ヘッダー10Ocoを介して、電解液を流した。
 図4に示すように、入口ホースは平面視で長方形の外枠3の下辺の一方端側に、出口ホースは平面視で長方形の外枠3の下辺の他方端側に繋がる側辺の上側に、それぞれ接続されている。ここでは、入口ホースと出口ホースとを、平面視で長方形の電極室5において電極室5の中央部を挟んで向かい合うように、設けた。電解液は、鉛直方向に対して傾斜しながら下方から上方へ流れ、電極面に沿って上昇した。
 この実施例の複極式電解槽50では、陽極室5aや陰極室5cの入口ホースから、陽極室5aや陰極室5cに、電解液が流入し、陽極室5aや陰極室5cの出口ホースから、電解液と生成ガスとが、電解槽50外へ流出する構造とした。
 陰極室5cでは、電解により水素ガスが発生し、陽極室5aでは、電解により酸素ガスが発生するため、前述した、陰極出口ヘッダー10Ocoでは、電解液と水素ガスとの混相流となり、陽極出口ヘッダー10Oaoでは、電解液と酸素ガスとの混相流となった。
(実施例1)
 実施例1の複極式電解槽は下記のとおりの手順で作製した。
 陰極サンプルAを複極式フレームの陰極面に取付け、陽極サンプルCを複極式エレメントのフレームの陽極面に取付けたものを、複極式エレメントとした。また、陰極サンプルAを陰極ターミナルエレメントのフレームに取付けたものを、陰極ターミナルエレメントとした。陽極サンプルCを陽極ターミナルエレメントのフレームに取付けたものを、陽極ターミナルエレメントとした。
 複極式エレメントに取り付けた電極(陽極及び陰極)の面積S1は、0.25mに調整した。
 外枠の側方に設けられた、ヘッダー(陽極入口ヘッダー、陽極出口ヘッダー、陰極入口ヘッダー、陰極出口ヘッダー)の流路の断面積S2は、2.83×10-5に調整した。
 ヘッダーの流路の長さL2は、0.5mに調整した。
 また、複極式エレメントの厚さdは、33mmに調整した。また、陰極ターミナルエレメント、陽極ターミナルエレメントの厚みを、0.0125mに調整した。
 上記複極式エレメントを49個用意した。また、上記陰極ターミナルエレメント、上記陽極ターミナルエレメントを、1個ずつ用意した。
 全ての複極式エレメントと、陰極ターミナルエレメントと、陽極ターミナル電解セルエレメントの、金属フレーム部分にガスケットを貼付けた。
 陽極ターミナルエレメントと、複極式エレメントの陰極側との間に、隔膜サンプルを1枚挟み込んだ。49個の複極式エレメントを、隣接する複極式エレメントのうちの一方の陽極側と他方の陰極側とが対向するように、直列に並べ、隣接する複極式エレメントの間に、48枚の隔膜サンプルを1枚ずつ挟み込んだ。更に、49個目の複極式エレメントの陽極側と、陰極ターミナルエレメントとの間に、隔膜サンプルを1枚挟み込んだ。これらを、ファストヘッド、絶縁板、ルーズヘッドを用いたうえで、プレス機で締付けたものを、実施例1の複極式電解槽とした。
 電解液として、30%KOH水溶液を用いた。
 電解液循環ポンプにより、陽極室、酸素分離タンク(陽極用気液分離タンク)、陽極室の循環を、また、陰極室、水素分離タンク(陰極用気液分離タンク)、陰極室の循環を、行った。
 電解液の温度は90℃に調整した。
 整流器から複極式電解槽に、各々の陰極及び陽極の面積S1に対して、6kA/mとなるように電流を流した。実施例1においては、電極の面積S1は500mm×500mmであるため、整流器から複極式電解槽に、1.5kAを通電した。
 電解槽内の圧力は、圧力計で測定し、陰極側圧力が50kPa、酸素側圧力が49kPaとなるとように調整しながら、電気分解を行った。圧力調整は、圧力計の下流に設置した圧力制御弁により行った。
 そして、実施例1におけるアルカリ水電解について下記のとおり評価した。
(電解試験)
 電流密度6kA/mで連続で8時間通電し、水電解を行った。電解槽のセル電圧Vを測定し、電解セルの相加平均値(V)を計算により求めた。
(電位保持時間)
 電流密度6kA/mで連続で7時間通電後、整流器の電源を切り、セル電圧Vを測定し続けた。電解停止直後の時間を基準に、セル電圧Vの相加平均が、1V以上保持される時間を、電位保持時間T(時間)とした。
(製作性)
 電解槽の製作性を以下の評価基準で評価した。結果を表1に示す。
<評価基準>
 ○(優れる):電極を電解槽に固定するために必要な溶接点数が500箇所/m未満
 △(良):電極を電解槽に固定するために必要な溶接点数が500箇所/m以上1500箇所/m未満
 ×(不良):電極を電解槽に固定するために必要な溶接点数が1500箇所/m以上
(実施例2)
 L2を1mに調整した以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例3)
 陰極サンプルを陰極サンプルBとし、S1を2.7mに調整し、L2を2.4mに調整した以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例4)
 S1を2.7mに調整し、L2を2.4mに調整した以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例5)
 S1を2.7mに調整し、L2を6.5mに調整した以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例6)
 L2を0.2mに調整した以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例7)
 陰極サンプルとして陰極サンプルEを用いた以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例8)
 S1を2.7mに調整し、L2を7.2mに調整した以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例9)
 S2を7.85×10-7に調整し、L2を2.4mに調整した以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例10)
 陰極サンプルを陰極サンプルCとし、S2を7.85×10-7に調整した以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例11)
 陽極サンプルを陽極サンプルBとし、S2を1.77×10-6に調整し、L2を1mに調整した以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例12)
 陽極サンプルを陽極サンプルDとし、陰極サンプルを陰極サンプルDとし、L2を1mに調整した以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例13)
 L2を1mに調整し、スタック数を100とした以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(実施例14)
 陽極サンプルを陽極サンプルFとした以外は実施例1と同様に複極式電解槽及び電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(比較例1)
 陰極サンプルとして陰極サンプルFを用いた以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(比較例2)
 陰極サンプルを陰極サンプルGとした以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(比較例3)
 陽極サンプルを陽極サンプルAとし、陰極構造体サンプルを陰極サンプルCとした以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(比較例4)
 陰極サンプルを陰極サンプルGとし、S1を2.7mに調整し、L2を2.4mに調整した以外は実施例1と同様に複極式電解槽及びアルカリ水電解用電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
(比較例5)
 陽極サンプルを陽極サンプルEとした以外は実施例1と同様に複極式電解槽及び電解装置を作製した。詳細な条件及び結果は表1に示すとおりである。
 実施例1~14では、1.85V以下で電解可能な上に、電位保持時間が3時間以上であり、システム制御する上で十分安定な結果であった。また、陽極の実電極表面積が10000m/m以下である実施例1~13では、更にセル電圧を下げることができた。特に、実施例2、4、7の電解槽は優れている。
 一方、比較例1、3、5のものは、電解効率が悪く、比較例2~4のものは、電位保持時間が短い結果となり、風力や太陽光等の再生可能エネルギー等の変動電源での運転において、電力供給停止時に電解槽を非常用の蓄電池として使用することや、非常時においても電気制御システムを安定的に作動させることには、実用上課題があることが示された。
Figure JPOXMLDOC01-appb-T000001
 
 本発明によれば、再生可能エネルギー等の変動電源での運転時に、大電力の長期的貯蔵・長距離輸送を可能にし、電力供給停止時の電気制御システムの安定化することすることができる。
 1     隔壁
 2     電極
 2a    陽極
 2c    陰極
 2e    導電性弾性体
 2r    集電体
 3     外枠
 4     隔膜
 5     電極室
 5a    陽極室
 5c    陰極室
 5i    電解液入口
 5o    電解液出口
 5ai   陽極電解液入口
 5ao   陽極電解液出口
 5ci   陰極電解液入口
 5co   陰極電解液出口
 6     整流板
 6a    陽極整流板(陽極リブ)
 6c    陰極整流板(陰極リブ)
 7     ガスケット
 10    ヘッダー
 10I   内部ヘッダー
 10O   外部ヘッダー
 10Oai 陽極入口ヘッダー(陽極入口側ホース)
 10Oao 陽極出口ヘッダー(陽極出口側ホース)
 10Oci 陰極入口ヘッダー(陰極入口側ホース)
 10Oco 陰極出口ヘッダー(陰極出口側ホース)
 20    導管
 20Oai 陽極用配液管
 20Oao 陽極用集液管
 20Oci 陰極用配液管
 20Oco 陰極用集液管
 50    複極式電解槽
 51g   ファストヘッド、ルーズヘッド
 51a   陽極ターミナルエレメント
 51c   陰極ターミナルエレメント
 51i   絶縁板
 51r   タイロッド
 60    複極式エレメント
 65    電解セル
 70    電解装置
 71    電解液循環ポンプ
 72    気液分離タンク
 72h   水素分離タンク
 72o   酸素分離タンク
 73    水投入ポンプ
 74    整流器
 75    酸素濃度計
 76    水素濃度計
 77    流量計
 78    圧力計
 79    熱交換器
 80    圧力制御弁
 D1    隔壁に沿う所与の方向(電解液通過方向)
 S1    複極式エレメントの通電面の面積
 S2    ヘッダーの流路の断面積
 L2    ヘッダーの流路の長さ
 Z     ゼロギャップ構造
 d     電解セルの厚さ

Claims (24)

  1.  陽極と、陰極と、前記陽極と前記陰極とを隔離する隔壁と、前記隔壁を縁取る外枠とを備える複数の複極式エレメントが隔膜を挟んで重ね合わせられ、前記外枠の外方に、前記隔壁と前記外枠と前記隔膜とにより画成される電極室に連通するヘッダーとを備える複極式電解槽であり、
     前記陽極の電気容量が4825C/m~965000C/mの範囲であり、前記陰極の電気容量が4825C/m~965000C/mの範囲である、
    ことを特徴とする、複極式電解槽。
  2.  陽極と、陰極と、前記陽極と前記陰極とを隔離する隔壁と、前記隔壁を縁取る外枠とを備える複数の複極式エレメントが隔膜を挟んで重ね合わせられ、前記外枠の外方に、前記隔壁と前記外枠と前記隔膜とにより画成される電極室に連通するヘッダーとを備える複極式電解槽であり、
     前記陽極の電気容量が4825C/m~965000C/mの範囲であり、前記陰極の電気容量が4825C/m~965000C/mの範囲である、
    ことを特徴とする、アルカリ水電解用複極式電解槽。
  3.  前記複極式エレメントの通電面の面積をS1、前記ヘッダーの流路の断面積をS2、前記ヘッダーの流路の長さをL2としたときに、(S2/S1)/L2が1.5×10-6-1~2.3×10-4-1の範囲である、請求項1又は2に記載の複極式電解槽。
  4.  前記陽極の電気容量及び前記陰極の電気容量のうち低い方が9650C/m~955350C/mの範囲である、請求項1~3のいずれか一項に記載の複極式電解槽。
  5.  前記陽極の電気容量が、前記陰極の電気容量よりも大きい、請求項1~4のいずれか一項に記載の複極式電解槽。
  6.  前記陰極の電気容量が、前記陽極の電気容量の0.1倍を超えて0.99倍以下である、請求項5に記載の複極式電解槽。
  7.  前記陰極の電気容量が、前記陽極の電気容量の0.1倍を超えて0.49倍以下である、請求項5又は6に記載の複極式電解槽。
  8.  前記陽極の幾何セル面積1m当たりの実電極表面積が、90m~10000mの範囲である、請求項1~7のいずれか一項に記載の複極式電解槽。
  9.  50~500の複極式エレメントを有する、請求項1~8のいずれか一項に記載の複極式電解槽。
  10.  前記S1が0.1m~10mである、請求項2~9のいずれか一項に記載の複極式電解槽。
  11.  電解セルの厚さdが10mm~100mmである、請求項2~10のいずれか一項に記載の複極式電解槽。
  12.  前記陽極が、酸化ニッケル、金属ニッケル、水酸化ニッケル及びニッケル合金からなる群より選ばれる少なくとも一種のニッケル化合物を含む、請求項1~11のいずれか一項に記載の複極式電解槽。
  13.  前記陽極が、導電性基材と、前記導電性基材上に配置された触媒層を有し、
     前記触媒層は、ニッケルの金属結晶を含み、且つ、細孔を有し、
     前記触媒層の細孔のうち、
     孔径が2~5nmの範囲内である第一細孔の比表面積が0.6~2.0m/gであり、
     前記第一細孔の細孔容積が3×10-4~9×10-4ml/gであり、
     前記細孔のうち、孔径が0.01~2.00μmの範囲内である第二細孔の比表面積が2.0~5.0m/gであり、
     前記第二細孔の細孔容積が0.04~0.2ml/gであり、
     前記触媒層の厚みが50~800μmである、
    請求項1~12のいずれか一項に記載の複極式電解槽。
  14.  前記陰極が、Ru-La-Pt系、Ru-Ce系、Pt-Ce系、及びPt-Ir系、Ir-Pt-Pd系、Pt-Ni系からなる群から選択される少なくとも一種のPt族化合物を含む、請求項1~13のいずれか一項に記載の複極式電解槽。
  15.  前記陰極及び前記陽極の構成が、前記導電性基材の表面に触媒層を有するものであり、前記導電性基材が金属ニッケル、酸化ニッケル、水酸化ニッケル及びニッケル合金からなる群より選ばれる少なくとも一種のニッケル化合物を含む、請求項14に記載の複極式電解槽。
  16.  前記陰極及び前記陽極が、メッシュ状の構造である、請求項1~15のいずれか一項に記載の複極式電解槽。
  17.  前記陰極の基材が、0.05mm~0.5mmの範囲の線径を有し、目開きが30メッシュから80メッシュの範囲を有する、請求項1~16のいずれか一項に記載の複極式電解槽。
  18.  前記陽極の基材が、開口率が20%~60%の範囲を有するメッシュ状の構造である請求項1~17のいずれか一項に記載の複極式電解槽。
  19.  電解セルを電気的に直列に接続した、請求項1~18に記載の複極式電解槽。
  20.  前記陰極、前記陽極、隔膜、陽極室と陰極室を区画する隔壁を有する複極式エレメントを備え、前記陰極と前記陽極の間に前記隔膜が位置し、前記隔膜は前記陰極及び前記陽極と接触している、請求項19に記載の複極式水電解槽。
  21.  請求項1~20のいずれか一項に記載の複極式電解槽と、電解液を循環させるための電解液循環ポンプと、電解液と水素及び/又は酸素とを分離する気液分離タンクと、水を補給するための水投入ポンプとを含むことを特徴とする、電解装置。
  22.  電解装置への電力供給の停止時に、電力供給の停止を検知する検知器、及び、前記電解液循環ポンプを自動停止する制御器をさらに含む、請求項21に記載の電解装置。
  23.  請求項21又は22に記載の電解装置への電力供給の停止時に、前記電解液循環ポンプを停止することを特徴とする、水電解方法。
  24.  アルカリを含有する水を電解槽により水電解し、水素を製造する水素製造方法において、
     前記電解槽は、陽極と、陰極と、前記陽極と前記陰極とを隔離する隔壁と、前記隔壁を縁取る外枠とを備える複数の複極式エレメントが隔膜を挟んで重ね合わせられ、前記外枠の外方に、前記隔壁と前記外枠と前記隔膜とにより画成される電極室に連通するヘッダーとを備える複極式電解槽であり、前記陽極の電気容量が4825C/m~965000C/mの範囲であり、前記陰極の電気容量が4825C/m~965000C/mの範囲であることを特徴とする、水素製造方法。
PCT/JP2018/002541 2017-01-26 2018-01-26 電解槽、電解装置、電解方法 WO2018139597A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018564657A JP6803406B2 (ja) 2017-01-26 2018-01-26 電解槽、電解装置、電解方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-012549 2017-01-26
JP2017012549 2017-01-26
JP2017-225060 2017-11-22
JP2017225060 2017-11-22

Publications (1)

Publication Number Publication Date
WO2018139597A1 true WO2018139597A1 (ja) 2018-08-02

Family

ID=62978569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/002541 WO2018139597A1 (ja) 2017-01-26 2018-01-26 電解槽、電解装置、電解方法

Country Status (2)

Country Link
JP (1) JP6803406B2 (ja)
WO (1) WO2018139597A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735865A (zh) * 2019-01-16 2019-05-10 上海理工大学 电解制氢氧配组装置及其制备方法
CN110182909A (zh) * 2019-05-28 2019-08-30 刘伟伟 一种复极式膜电解设备
JP2022532083A (ja) * 2019-12-19 2022-07-13 エルジー・ケム・リミテッド 電気分解用電極

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023717A (ja) * 2011-07-19 2013-02-04 Mitsubishi Heavy Ind Ltd 水電解装置及び水電解装置の動作方法
WO2013141211A1 (ja) * 2012-03-19 2013-09-26 旭化成ケミカルズ株式会社 電解セル及び電解槽
JP2015183254A (ja) * 2014-03-25 2015-10-22 旭化成株式会社 水電解セル
JP2016094650A (ja) * 2014-11-14 2016-05-26 旭化成株式会社 複極式アルカリ水電解セル、及び電解槽

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023717A (ja) * 2011-07-19 2013-02-04 Mitsubishi Heavy Ind Ltd 水電解装置及び水電解装置の動作方法
WO2013141211A1 (ja) * 2012-03-19 2013-09-26 旭化成ケミカルズ株式会社 電解セル及び電解槽
JP2015183254A (ja) * 2014-03-25 2015-10-22 旭化成株式会社 水電解セル
JP2016094650A (ja) * 2014-11-14 2016-05-26 旭化成株式会社 複極式アルカリ水電解セル、及び電解槽

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109735865A (zh) * 2019-01-16 2019-05-10 上海理工大学 电解制氢氧配组装置及其制备方法
CN110182909A (zh) * 2019-05-28 2019-08-30 刘伟伟 一种复极式膜电解设备
JP2022532083A (ja) * 2019-12-19 2022-07-13 エルジー・ケム・リミテッド 電気分解用電極
JP7219828B2 (ja) 2019-12-19 2023-02-08 エルジー・ケム・リミテッド 電気分解用電極

Also Published As

Publication number Publication date
JPWO2018139597A1 (ja) 2019-06-27
JP6803406B2 (ja) 2020-12-23

Similar Documents

Publication Publication Date Title
JP6948384B2 (ja) 水電解システム、水電解方法、水素の製造方法
JP6764994B2 (ja) 陽極、水電解用陽極、電解セル、及び水素の製造方法
JP2019056136A (ja) 電気化学反応装置
JP2018150595A (ja) 二酸化炭素電解装置
WO2020095664A1 (ja) 水素の製造方法
JP6649307B2 (ja) 電気化学反応装置
WO2018151228A1 (ja) 陰極、その製造方法、およびそれを用いた電解槽、水素製造方法
JP6788378B2 (ja) 水電解セル及び複極式水電解槽
JP6865436B2 (ja) 電気化学デバイス
WO2018139613A1 (ja) 複極式エレメント、複極式電解槽、水素製造方法
WO2020105369A1 (ja) 水素製造方法
US20240003028A1 (en) Alkaline water electrolysis system and method of operating alkaline water electrolysis system
WO2018139597A1 (ja) 電解槽、電解装置、電解方法
WO2018139609A1 (ja) 複極式電解セル、複極式電解槽、水素製造方法
WO2020241129A1 (ja) 電解装置の運転方法
CA3149042C (en) Cross-flow water electrolysis
JP6858841B2 (ja) 外部ヘッダー型複極式エレメント、外部ヘッダー型複極式電解槽、及び水素製造方法
JP2021161498A (ja) 電解槽、電解装置、電解方法
JP6837130B2 (ja) 陽極、複極式電解セル、水素製造方法
JP2020196920A (ja) 電解装置の運転方法及び電解装置
WO2022124045A1 (ja) アルカリ水電解システム、およびアルカリ水電解システムの運転方法
JP2022019744A (ja) 電気化学反応装置および多孔質セパレータ
JP2021195597A (ja) 内部マニホールド型複極式水電解エレメント
JP2022036814A (ja) 電解装置の運転方法、および電解システム
US20250092550A1 (en) Electrochemical reaction device and method of operating electrochemical reaction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18745425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564657

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18745425

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载