+

WO2018139311A1 - ジアミン化合物、並びにそれを用いたポリイミド化合物および成形物 - Google Patents

ジアミン化合物、並びにそれを用いたポリイミド化合物および成形物 Download PDF

Info

Publication number
WO2018139311A1
WO2018139311A1 PCT/JP2018/001205 JP2018001205W WO2018139311A1 WO 2018139311 A1 WO2018139311 A1 WO 2018139311A1 JP 2018001205 W JP2018001205 W JP 2018001205W WO 2018139311 A1 WO2018139311 A1 WO 2018139311A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
polyimide
compound
dianhydride
Prior art date
Application number
PCT/JP2018/001205
Other languages
English (en)
French (fr)
Inventor
敏之 五島
ウィンモーソー
Original Assignee
ウィンゴーテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017013580A external-priority patent/JP6240799B1/ja
Priority claimed from JP2017013567A external-priority patent/JP6240798B1/ja
Priority claimed from JP2017226242A external-priority patent/JP6812002B2/ja
Priority claimed from JP2017226250A external-priority patent/JP6844850B2/ja
Application filed by ウィンゴーテクノロジー株式会社 filed Critical ウィンゴーテクノロジー株式会社
Priority to CN201880001194.3A priority Critical patent/CN110198926B/zh
Priority to KR1020187022249A priority patent/KR101922417B1/ko
Priority to US16/481,090 priority patent/US10683259B2/en
Priority to EP18744339.5A priority patent/EP3575281B1/en
Publication of WO2018139311A1 publication Critical patent/WO2018139311A1/ja
Priority to US16/868,705 priority patent/US11124474B2/en
Priority to US16/868,657 priority patent/US11136286B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/34Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having amino groups and esterified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/52Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C229/54Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C229/60Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton with amino and carboxyl groups bound to carbon atoms of the same non-condensed six-membered aromatic ring with amino and carboxyl groups bound in meta- or para- positions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/06Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton from hydroxy amines by reactions involving the etherification or esterification of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/04Formation of amino groups in compounds containing carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides

Definitions

  • the present invention relates to a novel diamine compound, and more specifically, a novel diamine compound capable of synthesizing a polyimide compound having improved solubility in an organic solvent and melt moldability, and a polyimide synthesized using the same.
  • the present invention relates to a compound and a molded article containing the polyimide compound.
  • polyimide compounds have excellent heat resistance, mechanical strength, wear resistance, dimensional stability, chemical resistance, insulation, etc.
  • electronic materials such as flexible printed boards and printed wiring boards. Widely used.
  • electronic equipment field it is widely used in the space / aviation field, the automobile field, and the like.
  • a polyimide compound using an aromatic diamine and an aromatic acid anhydride as raw materials is known as a polyimide compound having excellent mechanical strength and heat resistance.
  • polyimide compounds made from aromatic diamines such as 4-aminophenyl-4-aminobenzoate and pyromellitic dianhydride are excellent in heat resistance, mechanical properties, electrical insulation, etc. It is suitably used as a protective material or insulating material in the device field (Patent Document 1, etc.).
  • the aromatic polyimide compound described above has a low solubility in organic solvents because of its rigid structure. Therefore, when producing a cover film of a flexible printed wiring substrate (FPC), an insulating layer of an electronic circuit, etc., instead of using a polyimide compound, a diamine compound and an acid anhydride are reacted in an organic solvent, and high It has been performed by applying a polyamic acid solvent having organic solvent solubility to a base material and the like, followed by heat drying at a high temperature to cause a cyclization dehydration reaction (polyimidation) (Patent Document 1, etc.).
  • the substrate on which the polyimide film is provided must have high heat resistance that can withstand the cyclization dehydration reaction (generally 300 to 400 ° C.). Furthermore, it must be carried out in an environment where a special heating device for the cyclization dehydration reaction can be used, and there are various limitations in the production of a molded product using a polyimide compound.
  • the polyamic acid compound is unstable, reacts with water, easily hydrolyzes, and tends to cause a decrease in molecular weight.
  • most polyimide compounds do not have a melting point, and even if they have a melting point, the temperature is extremely high and it is difficult to perform melt molding, which is a problem in terms of melt moldability. was there.
  • the present invention has been made in view of the above problems, and its object is to provide a novel diamine compound capable of synthesizing a polyimide compound having high solubility in organic solvents and high melt moldability, and a method for synthesizing the diamine compound. Is to provide. Another object of the present invention is to provide a polyimide compound having high organic solvent solubility and melt moldability synthesized using this diamine compound. Furthermore, an object of the present invention is to provide a molded article such as a polyimide film comprising this polyimide compound and having the same degree of heat resistance and mechanical properties as a polyimide film comprising a conventional polyimide compound. .
  • the diamine compound according to the present invention is represented by the following general formula (1).
  • R 1 ⁇ R 8 are each independently hydrogen, fluorine, but are those selected from the group consisting of substituted or unsubstituted alkyl group and a substituted or unsubstituted aromatic group, the R 1 ⁇ R 8 At least one is a substituted or unsubstituted aromatic group.
  • At least one or two of R 5 to R 8 are preferably a substituted or unsubstituted aromatic group.
  • R 5 to R 8 is a substituted or unsubstituted aromatic group
  • R 1 to R 8 other than the aromatic group are hydrogen, fluorine and substituted or unsubstituted alkyl. It is preferably selected from the group consisting of groups.
  • the substituted or unsubstituted aromatic group preferably has 5 to 20 carbon atoms.
  • the substituted or unsubstituted aromatic group is preferably selected from the group consisting of a phenyl group, a methylphenyl group, a phenoxy group, a benzyl group, and a benzyloxy group.
  • the method for synthesizing the diamine compound according to the present invention includes: A step of reacting a compound represented by the following general formula (3) and a compound represented by the following general formula (4) to obtain a reaction product; Reducing the nitro group of the reactant, It is characterized by including.
  • R 1 to R 8 are each independently selected from the group consisting of hydrogen, fluorine, a substituted or unsubstituted alkyl group and a substituted or unsubstituted aromatic group; At least one of R 1 to R 8 is a substituted or unsubstituted aromatic group; R 1 ′ to R 8 ′ are each independently selected from the group consisting of hydrogen, fluorine, a substituted or unsubstituted alkyl group and a substituted or unsubstituted aromatic group; At least one of R 1 ′ to R 8 ′ is an aromatic group.
  • the polyimide compound of the present invention is a reaction product of the diamine compound and an acid anhydride.
  • an acid anhydride is represented by the following general formula (8) and / or (9).
  • L 1 is a linking group selected from the following linking group group
  • R 9 to R 20 are each independently selected from the group consisting of hydrogen, a substituted alkyl group and an unsubstituted alkyl group, and * represents a bonding position.
  • an acid anhydride is represented by the following general formula (8) and / or (9).
  • L 1 is a linking group selected from the following linking group group
  • X is a halogen group selected from a fluoro group, a chloro group, a bromo group and an iodo group
  • R 21 to R 30 are each independently selected from the group consisting of hydrogen, a substituted alkyl group and an unsubstituted alkyl group; * Represents a bonding position.
  • the molded product of the present invention is characterized by containing the polyimide compound.
  • the solubility of the organic solvent and the melt moldability of the polyimide compound synthesized using the diamine compound can be remarkably improved, and the polyimide compound can be obtained without considering the heat resistance of the substrate. It is possible to produce a molded article. In addition, since it is not necessary to use a special apparatus for heat treatment for manufacturing the molded product, the molded product can be manufactured at various places. Further, the molded product of the present invention has a 5% weight loss rate, glass transition temperature (Tg), melting temperature, thermal expansion coefficient, tensile strength, elastic modulus and the same level as molded products produced using conventional polyimide compounds. Since it has a water absorption rate and high heat resistance and mechanical properties, it can be widely used in various fields such as the electronic equipment field, the space / aviation field, and the automobile field.
  • Tg glass transition temperature
  • FIG. 1 shows a 1 H-NMR chart of the compound represented by the chemical formula (2) obtained in the example.
  • FIG. 2 shows a 13 C-NMR chart of the compound represented by the chemical formula (2) obtained in the example.
  • FIG. 3 shows an FT-IR chart of the compound represented by the chemical formula (2) obtained in the example.
  • the diamine compound of the present invention is represented by the following general formula (1).
  • R 1 to R 8 are each independently selected from the group consisting of hydrogen, fluorine, a substituted or unsubstituted alkyl group, and a substituted or unsubstituted aromatic group, and at least one of R 1 to R 8 One is an aromatic group.
  • one or two of R 1 to R 8 are aromatic groups.
  • one or two of R 5 to R 8 is a substituted or unsubstituted aromatic group, and more preferably, at least R 5 or R 7 is an aromatic group.
  • R 5 to R 8 are a substituted or unsubstituted aromatic group
  • R 1 to R 8 other than the aromatic group are hydrogen, fluorine, and a substituted or unsubstituted alkyl group.
  • Selected from the group consisting of Specific examples include the following compounds (an embodiment where R 7 is an aromatic group and R 1 to R 6 other than R 7 and R 8 are hydrogen).
  • the alkyl group includes straight-chain, branched-chain, and cyclic groups, and further, an alkoxy group, an alkylamino group, and the like that are bonded to the main skeleton via an oxygen atom or a nitrogen atom.
  • the aromatic group includes a substituent bonded to the main skeleton through an oxygen atom, a nitrogen atom, or a carbon atom.
  • the aromatic group includes a heteroaromatic group such as a pyrrole group.
  • the alkyl group and the aromatic group are preferably unsubstituted from the viewpoint of ease of synthesis of the diamine compound of the present invention and use in the field of electronic component materials, but may have a substituent, for example, Examples include alkyl groups, halogen groups such as fluoro groups and chloro groups, amino groups, nitro groups, hydroxyl groups, cyano groups, carboxyl groups, and sulfonic acid groups.
  • the alkyl group and the aromatic group may have one or more or two or more of these substituents.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably has 1 to 3 carbon atoms.
  • Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n-pentyl group, sec-pentyl group, and n-to.
  • the aromatic group preferably has 5 to 20 carbon atoms, more preferably 6 to 10 carbon atoms.
  • Examples of the aromatic group having 5 to 20 carbon atoms include phenyl, tolyl, methylphenyl, dimethylphenyl, ethylphenyl, diethylphenyl, propylphenyl, butylphenyl, fluorophenyl, and pentafluoro.
  • Phenyl chlorophenyl, bromophenyl, methoxyphenyl, dimethoxyphenyl, ethoxyphenyl, diethoxyphenyl, benzyl, methoxybenzyl, dimethoxybenzyl, ethoxybenzyl, diethoxybenzyl, aminophenyl Group, aminobenzyl group, nitrophenyl group, nitrobenzyl group, cyanophenyl group, cyanobenzyl group, phenethyl group, phenylpropyl group, phenoxy group, benzyloxy group, phenylamino group, diphenylamino group, biphenyl group, Phthyl group, phenylnaphthyl group, diphenylnaphthyl group, anthryl group, anthrylphenyl group, phenylanthryl group, naphthacenyl group, phenanthryl group, phenanthrylphenyl group,
  • the diamine compound of the present invention can be obtained by reacting a compound represented by the following general formula (3) with a compound represented by the following general formula (4) and then reducing the nitro group.
  • R 1 ′ to R 8 ′ are each independently selected from the group consisting of hydrogen, a substituted or unsubstituted alkyl group and a substituted or unsubstituted aromatic group, and R 1 ′ to R 8 ′ At least one of is an aromatic group.
  • at least one of R 5 ′ to R 8 ′ is a substituted or unsubstituted aromatic group, and more preferably, at least R 5 ′ or R 7 ′ is an aromatic group.
  • one of R 5 ′ to R 8 ′ is a substituted or unsubstituted aromatic group, and R 1 ′ to R 8 ′ other than the aromatic group is hydrogen.
  • X represents a hydroxyl group or a halogen group selected from a fluoro group, a chloro group, a bromo group and an iodo group. From the viewpoint of reactivity with the compound represented by the general formula (4), X is preferably a halogen group, particularly preferably a chloro group or a bromo group.
  • the reaction of the compounds represented by the general formulas (3) and (4) is preferably performed in the presence of a catalyst or a dehydrating condensing agent.
  • a catalyst include organic or inorganic basic compounds such as dimethylaminopyridine, tri-n-butylamine, pyridine, lysine, imidazole, sodium carbonate, sodium alcoholate, and potassium bicarbonate, and organic compounds such as toluenesulfonic acid, methanesulfonic acid, and sulfuric acid.
  • An acid or an inorganic acid can be illustrated.
  • Examples of the dehydrating condensing agent include carbodiimides such as N, N′-dicyclohexylcarbodiimide (DCC), N, N′-diisopropylcarbodiimide, N-cyclohexyl-N ′-(4-diethylamino) cyclohexylcarbodiimide.
  • DCC dicyclohexylcarbodiimide
  • X is a halogen group
  • the reaction of the compounds represented by the general formulas (3) and (4) is preferably performed in the presence of an acid acceptor.
  • trialkylamines such as triethylamine, tributylamine, N, N-dimethylcyclohexylamine, aliphatic cyclic tertiary amines such as N-methylmorpholine, N, N-dimethylaniline, triphenylamine, etc.
  • aromatic amines heterocyclic amines such as pyridine, picoline, lutidine, and quinoline.
  • the diamine compound represented by the above formula (2) can be obtained by reacting the compounds represented by the following formulas (5) and (6).
  • the compound represented by the general formula (4) can be obtained by nitrating a compound represented by the following general formula (7) which is commercially available or synthesized. Nitration of the compound represented by the following general formula (7) uses mixed acid of concentrated sulfuric acid and concentrated nitric acid, nitric acid, fuming nitric acid, concentrated alkali metal salt of sulfuric acid, acetyl nitrate, nitronium salt, nitrogen oxide, etc. The conventional nitration method can be used.
  • R 5 ′′ to R 8 ′′ are each independently selected from the group consisting of hydrogen, a substituted or unsubstituted alkyl group and a substituted or unsubstituted aromatic group.
  • at least one of R 5 ′′ to R 8 ′′ is more preferably one or two is an aromatic group.
  • the diamine compound of the present invention can also be used for the synthesis of compounds other than the polyimide compound described below.
  • terephthalic acid isophthalic acid, naphthalene dicarboxylic acid, diphenyl ether carboxylic acid, diphenyl sulfone carboxylic acid, biphenyl dicarboxylic acid, terphenyl dicarboxylic acid, diphenylmethane dicarboxylic acid, 2,2-bis (4-carboxyphenyl) propane, 2,2
  • a polyamide compound can be synthesized by reacting with a dicarboxylic acid derivative such as bis (4-carboxyphenyl) hexafluoropropane, cyclohexanedicarboxylic acid, dicyclohexanedicarboxylic acid, or an acid halide thereof.
  • the diamine compound of the present invention can also be used for the synthesis of polyamideimide compounds, polyurethane compounds, and epoxy compounds.
  • the polyimide compound of the present invention is a reaction product of the diamine compound represented by the general formula (1) and an acid anhydride.
  • the structure of the diamine compound represented by General formula (1) since it mentioned above, it abbreviate
  • the diamine compound represented by the general formula (1) as a component of the polyimide compound, the solubility of the polyimide compound in the organic solvent can be remarkably improved.
  • the content of the diamine compound represented by the general formula (1) in the total diamine is preferably 10 mol% to 100 mol%, preferably 30 mol% to 100 mol%. More preferred is 50 mol% to 100 mol%.
  • the number average molecular weight of the polyimide compound of the present invention is preferably 2000 to 200000, more preferably 4000 to 100,000.
  • the number average molecular weight is a polystyrene conversion value based on a calibration curve prepared using standard polystyrene by a gel permeation chromatography (GPC) apparatus.
  • GPC gel permeation chromatography
  • the melting point of the polyimide compound of the present invention is preferably 150 ° C. or higher and 420 ° C. or lower, and 200 ° C. or higher and 350 ° C. or lower from the viewpoint of heat resistance of the molded product, productivity of the molded product, and cost. Is more preferable.
  • acid anhydride examples include oxydiphthalic acid, pyromellitic dianhydride, 3-fluoropyromellitic dianhydride, 3,6-difluoropyromellitic dianhydride, 3,6-bis (trifluoromethyl) Pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4 ′ -Benzophenone tetracarboxylic dianhydride, 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-biphenylsulfone tetracarboxylic dianhydride, 4,4 '-(4,4'-isopropylidenediphenoxy) bisphthalic dianhydride, 1,2,4,5-cyclohexanetetracarboxy
  • pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2-bis [3- (3,4-dicarboxyphenoxy) phenyl Propane dianhydride, 2,2-bis [4- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride and 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, oxy -4,4'-diphthalic dianhydride is preferred from the viewpoint of reactivity with the diamine compound of the present invention.
  • One or more of the above anhydrides may be used for the synthesis of the polyimide compound of the present invention.
  • the polyimide compound of the present invention is a reaction product of a diamine compound represented by the general formula (1) and an acid anhydride represented by the following general formula (8) and / or (9). is there.
  • L 1 in the above formula is a linking group selected from the following linking group group.
  • the polyimide compound which is a reaction product of the acid anhydride having a linking group selected from the following linking group group and the diamine compound represented by the general formula (1), has a low melting temperature and is melt-formable. Very good.
  • R 9 to R 20 are each independently selected from the group consisting of hydrogen, a substituted alkyl group and an unsubstituted alkyl group, and * represents a bonding position.
  • the alkyl group is preferably unsubstituted from the viewpoint of ease of synthesis of the diamine compound of the present invention and use in the field of electronic component materials, but may have a substituent, such as an alkyl group, fluoro And halogen groups such as a group and a chloro group, amino groups, nitro groups, hydroxyl groups, cyano groups, carboxyl groups, sulfonic acid groups and the like.
  • the alkyl group and the aromatic group may have one or more or two or more of these substituents.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 3 carbon atoms.
  • Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, tert-butyl group, n-pentyl group, sec-pentyl group, and n-to.
  • L 1 is more preferably a linking group selected from the following linking group group.
  • examples of the acid anhydride satisfying the general formula (2) or (3) include the following compounds.
  • L 1 is a linking group selected from the following linking group group.
  • the polyimide compound which is a reaction product of an acid anhydride having a linking group selected from the following linking group group and the diamine compound represented by the general formula (1) has extremely high organic solvent solubility.
  • X is a halogen group selected from a fluoro group, a chloro group, a bromo group and an iodo group, and is preferably a fluoro group
  • R 21 to R 30 are each independently selected from the group consisting of hydrogen, a substituted alkyl group and an unsubstituted alkyl group; * Represents a bonding position.
  • the alkyl group is as described above.
  • L 1 is more preferably a linking group selected from the following linking group group.
  • examples of the acid anhydride satisfying the general formula (2) or (3) include the following compounds.
  • acid anhydrides represented by two or more general formulas (8) and / or (9) may be used.
  • the polyimide compound of this invention may contain other diamine compounds other than the diamine compound represented by General formula (1) as a component.
  • examples of other diamine compounds include m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,4 (6) -diamino-3,5-diethyltoluene, 5 (6) -amino-1 , 3,3-trimethyl-1- (4-aminophenyl) -indane, 4,4′-diamino-2,2′-dimethyl-1,1′-biphenyl, 4,4′-diamino-2,2 ′ -Ditrifluoromethyl-1,1'-biphenyl, 4,4'-diamino-3,3'-dimethyl-1,1'-biphenyl, 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 4,4
  • the polyimide compound of the present invention can be formed into a film or the like as described later and used as a base film or a cover film of a flexible printed wiring substrate (FPC). It can also be used as an adhesive in flexible wiring boards and the like. In addition, it can be used as an electric insulation coating material for wires, a heat insulating material, a transparent substrate for liquid crystal display elements, a thin film transistor substrate, and the like.
  • FPC flexible printed wiring substrate
  • the polyimide compound of the present invention can be produced by a conventionally known method using the diamine compound represented by the general formula (1) and an acid anhydride. Specifically, it can be obtained by reacting a diamine compound and an acid anhydride to obtain a polyamic acid, and then performing a cyclization dehydration reaction to convert it into a polyimide compound.
  • the mixing ratio of the acid anhydride and the diamine compound is preferably such that the total amount of the diamine compound is 0.5 mol% to 1.5 mol% with respect to 1 mol% of the total amount of acid anhydride, and 0.9 mol% More preferably, it is ⁇ 1.1 mol%.
  • the reaction between the diamine compound and the acid anhydride is preferably performed in an organic solvent.
  • the organic solvent is not particularly limited as long as it does not react with the diamine compound and acid anhydride of the present invention and can dissolve the reaction product of the diamine compound and acid anhydride.
  • the reaction temperature between the diamine compound and the acid anhydride is preferably 40 ° C. or lower.
  • the temperature is preferably 150 to 220 ° C, more preferably 170 to 200 ° C.
  • an imidation catalyst may be used, for example, methylamine, ethylamine, trimethylamine, triethylamine, propylamine, tripropylamine, butylamine, tributylamine, tert-butylamine, hexylamine, triethanolamine, N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidine, N-ethylpyrrolidine, aniline, benzylamine, toluidine, trichloroaniline, pyridine, collidine, lutidine, picoline, quinoline, isoquinoline , Valerolactone and the like can be used.
  • an azeotropic dehydrating agent such as toluene, xylene, and ethylcyclohexane
  • an acid catalyst such as acetic anhydride, propionic anhydride, butyric anhydride, and benzoic anhydride
  • Sealing agents such as benzoic acid, phthalic anhydride, and hydrogenated phthalic anhydride can be used in the reaction of the diamine compound and the acid anhydride. Furthermore, by using maleic anhydride, ethynyl phthalic anhydride, methyl ethynyl phthalic anhydride, phenyl ethynyl phthalic anhydride, phenyl ethynyl trimellitic anhydride, 3- or 4-ethynyl aniline, etc. A double bond or a triple bond can also be introduced at the terminal. By introducing a double bond or a triple bond into a polyimide compound, the polyimide compound of the present invention can be used as a thermosetting resin.
  • the molded product of the present invention comprises a polyimide compound obtained by using the diamine compound represented by the general formula (1).
  • Molded products containing polyimide include, for example, cylinder parts such as cylinder head covers, bearing retainers, intake manifolds, pedals, and other electronic parts such as housings, flexible printed boards, printed wiring boards, etc. Examples include material parts and fuel cell parts such as ion conductive separators.
  • the shape of the molded product of the present invention is not particularly limited, and can be appropriately changed according to the application.
  • it can be a film or a sheet.
  • the content of the polyimide compound obtained by using the diamine compound represented by the general formula (1) in the molded product of the present invention is preferably 30% by mass or more and 100% by mass or less, and 50% by mass or more. 100% by mass or less, more preferably 60% by mass or more and 100% by mass or less.
  • the molded product of the present invention may contain other compounds as long as the characteristics are not impaired.
  • polyolefin resin polyolefin resin, polyester resin, cellulose resin, vinyl resin, polycarbonate resin, polyamide resin. Styrene resin, ionomer resin and the like.
  • the molded product of the present invention may contain various additives as long as the characteristics are not impaired.
  • additives plasticizers, UV stabilizers, anti-coloring agents, matting agents, deodorants, flame retardants, weathering agents, antistatic agents, yarn friction reducing agents, slip agents, mold release agents, antioxidants Agents, ion exchangers, dispersants, ultraviolet absorbers, and colorants such as pigments and dyes.
  • the 5% weight reduction temperature of the molded product of the present invention is preferably 350 ° C. or higher, and more preferably 400 ° C. or higher.
  • the 5% weight reduction temperature of the molded product is determined according to JIS K 7120, using a thermomechanical analyzer (for example, trade name: TGA-50, manufactured by Shimadzu Corporation) in nitrogen at 5 ° C. / It can be measured at a rate of temperature rise of minutes.
  • the glass transition temperature (Tg) of the molded product of the present invention is preferably 180 ° C. or higher, more preferably 190 ° C. or higher, and further preferably 200 ° C. or higher.
  • the glass transition temperature (Tg) of the molded product conforms to JIS K 7121, using a thermomechanical analyzer (trade name: DSC-60Plus, manufactured by Shimadzu Corporation) under a nitrogen stream at 10 ° C. / It can be measured at a rate of temperature rise of minutes.
  • the melting temperature of the molded product of the present invention is preferably 150 ° C. or higher, and more preferably 200 ° C. or higher. Further, the melting temperature is preferably 420 ° C. or lower, and more preferably 370 ° C. or lower. In the present invention, the melting temperature of the molded product can be measured by a DSC measuring device and / or a dynamic viscoelasticity measuring device.
  • the thermal expansion coefficient (CTE) of the molded product of the present invention is preferably 70.0 ⁇ 10 ⁇ 6 / K or less, more preferably 65.0 ⁇ 10 ⁇ 6 / K or less, and 60.0 More preferably, it is not more than ⁇ 10 ⁇ 6 / K.
  • the thermal expansion coefficient (CTE) of the molded product was measured using a TMA-60 (trade name) manufactured by Shimadzu Corporation at a heating temperature of 10 ° C./min while applying a weight of 5 g. The temperature is raised from room temperature to 450 ° C., and refers to the average coefficient of thermal expansion (CTE) from 100 ° C. to 250 ° C.
  • the tensile strength of the molded product of the present invention is preferably 45 MPa or more, more preferably 50 MPa or more, and further preferably 60 MPa or more.
  • the tensile strength of the molded product is determined in the MD direction and the TD direction when the molded product was measured at a tensile speed of 10 mm / min using a tensile tester (manufactured by Shimadzu Corporation, trade name: AG-Xplus 50 kN). The average value of the tensile strength.
  • the elastic modulus of the molded product of the present invention is preferably 2.5 GPa or more, more preferably 3.0 GPa or more, and further preferably 3.5 GPa or more.
  • the elastic modulus of the molded product of the present invention is measured in the MD direction and the TD direction measured using a tensile tester (manufactured by Shimadzu Corporation, trade name: AG-Xplus 50 kN) at a tensile speed of 10 mm / min. The average value of elastic modulus.
  • the water absorption of the molded product of the present invention is preferably 1.5% or less, and more preferably 1.0% or less.
  • the water absorption rate of the molded product of the present invention was determined by measuring the weight after immersing the molded product in distilled water for 24 hours, wiping off the water attached to the surface with a waste cloth, and then drying the film at 120 ° C. for 2 hours. The weight can be measured and determined from the rate of decrease.
  • the molded product of the present invention is soluble in the above organic solvent such as N-methyl-2-pyrrolidone (NMP), coated on a substrate such as copper foil, and dried. Can be manufactured. Thereby, a film-like molded product can be obtained. Moreover, according to a use, you may remove a base material by peeling a base material from a molded object, or performing an etching process.
  • the molded product using the polyimide compound of the present invention can be produced only by applying a polyisoimide compound or a polyimide compound on a substrate and drying it, and is accompanied by an imidization reaction performed by a conventional method. This heating and drying step can be omitted.
  • the molded product of this invention can be manufactured on various base materials.
  • the molded product of the present invention can also be produced by a conventionally known method such as press molding, transfer molding, injection molding or the like.
  • the molded product of the present invention can be produced by a conventional method using a polyamic acid solution or a polyisoimide solution.
  • the acid anhydride and the diamine compound represented by the general formula (1) are stirred in an organic solvent, preferably 2 to 24 hours. Reaction is performed to obtain a polyamic acid solution.
  • the obtained polyamic acid solution is applied with a desired base material (copper foil or the like) and dried by heating at a final drying temperature of 250 to 450 ° C., more preferably 350 to 400 ° C. to imidize the polyamic acid compound, and the present invention
  • a molded product containing the polyimide compound can be produced on a substrate.
  • the polyisoimide solution can be obtained by adding a dehydrating condensing agent such as N, N′-dicyclohexylcarbodiimide or trifluoroacetic anhydride to the polyamic acid solution.
  • a dehydrating condensing agent such as N, N′-dicyclohexylcarbodiimide or trifluoroacetic anhydride
  • the molding containing the polyimide compound of this invention can be manufactured on a base material.
  • N, N′-dicyclohexylcarbodiimide it is preferable to remove N, N′-dicyclohexylurea produced by the reaction by filtration.
  • trifluoroacetic anhydride it is preferable to use a poor solvent such as methanol for the isolation and purification of the polyisoimide compound.
  • the isolated and purified polyisoimide compound can be thermally converted to a polyimide compound by heating at a temperature of 140 ° C. or higher, more preferably
  • Example 1-2 Synthesis of Polyimide Compound Instead of 4,4 ′-(4,4′-isopropylidenediphenoxy) bisphthalic dianhydride, 10.75 g of 3,3 ′, 4,4′-biphenylsulfonetetracarboxylic dianhydride ( 30 mmol) was used, and a 20 wt% polyimide solution was obtained in the same manner as in Example 1-1 except that the amount of N-methyl-2-pyrrolidone used was changed to 75.20 g. In the polyimide solution, no precipitation of the synthesized polyimide compound was observed. In the DSC measurement, it was a semicrystalline polyimide in which an endothermic peak was observed at 271 ° C.
  • Example 2-1 Preparation of molded product
  • 8.83 g (30 mmol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride was used as described above.
  • 9.13 g (30 mmol) of the diamine compound represented by the chemical formula (2) and 67.52 g of N-methyl-2-pyrrolidone was added with a nitrogen atmosphere, 20 wt% A polyamic acid solution was obtained.
  • This polyamic acid solution was applied onto a copper foil by spin coating, and dried at 100 ° C. for 0.5 hour, 200 ° C. for 0.5 hour, 300 ° C. for 2 hours, and 350 ° C. for 0.5 hour. Thereafter, the copper foil was removed by etching to obtain a film-like molded product having a thickness of about 15 ⁇ m.
  • Example 2-2 Preparation of molded article Instead of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 9.31 g (30 mmol) of bis (3,4-dicarboxyphenyl) ether dianhydride was used. A film-like molded article having a thickness of about 20 ⁇ m was obtained in the same manner as in Example 2-1, except that the amount of N-methyl-2-pyrrolidone used was changed to 69.44 g.
  • Tg Glass transition temperature
  • the melting temperature was also measured in the same manner using DSC-60Plus (trade name) manufactured by Shimadzu Corporation, and the peak of the endothermic peak was defined as the melting temperature (Tm). The measurement results are shown in Table 1.
  • ⁇ Tensile strength> The molded products obtained in the above Examples and Comparative Examples were used as test pieces having a size of 10 mm ⁇ 80 mm, and using a tensile tester (manufactured by Shimadzu Corporation, trade name: AG-Xplus 50 kN) at a tensile speed of 10 mm / min. Then, the tensile strength in the MD direction and the TD direction was measured. The average values of the tensile strength in the MD direction and the tensile strength in the TD direction were calculated and listed in Table 1.
  • ⁇ Water absorption rate> The molded products obtained in the above examples and comparative examples were used as test pieces having a size of 50 mm ⁇ 50 mm, immersed in distilled water for 24 hours, wiped off the water attached to the surface with a waste, and then weighed. The weight of the molded product dried at 2 ° C. for 2 hours was measured, and the absorption rate was determined from the decrease rate.
  • the molded product produced using the polyimide compound of the present invention has a 5% weight loss temperature and a coefficient of thermal expansion similar to those of a molded product produced using a conventionally known polyimide compound. It has been found that it has tensile strength, elastic modulus and water absorption, and has high heat resistance and mechanical properties. Further, it has become possible to produce a polyimide having a melting point that is difficult to produce with conventional polyimides. As a result, it has become possible to provide a highly heat-resistant polyimide molded article that can be melt-molded such as extrusion molding and injection molding and that has a high normal use temperature.
  • Example 3-1 Synthesis of polyimide compound In a 500 ml separable flask equipped with a nitrogen inlet tube and a stirrer, 30.43 g (100 mmol) of the diamine compound obtained as described above, 44.43 g of acid anhydride A represented by the following formula ( 100 mmol), 285 g of N-methyl-2-pyrrolidone, 1.6 g (20 mmol) of pyridine, and 30 g of toluene, and allowed to react for 6 hours at 180 ° C. under a nitrogen atmosphere while removing toluene from the system. A 20 wt% polyimide solution was obtained. In the polyimide solution, no precipitation of the synthesized polyimide compound was observed. In the DSC measurement, a glass transition temperature of 258 ° C. was observed, which was an amorphous polyimide.
  • Example 3-2 A polyimide solution was obtained in the same manner as in Example 3-1, except that acid anhydride B represented by the following formula was used instead of synthetic acid anhydride A of the polyimide compound .
  • acid anhydride B represented by the following formula was used instead of synthetic acid anhydride A of the polyimide compound .
  • the polyimide solution no precipitation of the synthesized polyimide compound was observed.
  • DSC measurement a glass transition temperature of 258 ° C. was observed, which was an amorphous polyimide.
  • Example 3-3 A polyimide solution was obtained in the same manner as in Example 3-1, except that acid anhydride C represented by the following formula was used instead of synthetic acid anhydride A of the polyimide compound .
  • acid anhydride C represented by the following formula was used instead of synthetic acid anhydride A of the polyimide compound .
  • the polyimide solution no precipitation of the synthesized polyimide compound was observed.
  • DSC measurement a glass transition temperature of 181 ° C. was observed, which was an amorphous polyimide.
  • Example 3-4 A polyimide solution was obtained in the same manner as in Example 3-1, except that acid anhydride D represented by the following formula was used instead of synthetic acid anhydride A of the polyimide compound .
  • acid anhydride D represented by the following formula was used instead of synthetic acid anhydride A of the polyimide compound .
  • the polyimide solution no precipitation of the synthesized polyimide compound was observed.
  • DSC measurement a glass transition temperature of 231 ° C. was observed, which was an amorphous polyimide.
  • Example 3-5 A polyimide solution was obtained in the same manner as in Example 3-1, except that acid anhydride E represented by the following formula was used instead of synthetic acid anhydride A of the polyimide compound .
  • acid anhydride E represented by the following formula was used instead of synthetic acid anhydride A of the polyimide compound .
  • the polyimide solution no precipitation of the synthesized polyimide compound was observed.
  • DSC measurement a glass transition temperature of 253 ° C. was observed, which was an amorphous polyimide.
  • Example 4-1 Preparation of Molded Product
  • the polyimide acid solution prepared in Example 3-1 was applied onto a copper foil by spin coating, and the coating was applied at 100 ° C. for 0.5 hour, 200 ° C. for 0.5 hour, and 250 ° C. for 1 hour. Dry for hours. Thereafter, the copper foil was removed by etching to obtain a film-like molded product having a thickness of about 15 ⁇ m.
  • Example 4-2 Preparation of molded product A film-shaped molded product was obtained in the same manner as in Example 3-1, except that the polyimide acid solution was changed to that prepared in Example 3-2.
  • Example 4-3 Preparation of molded product A film-shaped molded product was obtained in the same manner as in Example 3-1, except that the polyimide acid solution was changed to that prepared in Example 3-3.
  • Example 4-4 Preparation of molded product A film-shaped molded product was obtained in the same manner as in Example 3-1, except that the polyimide acid solution was changed to that prepared in Example 3-4.
  • Example 4-5 Preparation of molded product A film-shaped molded product was obtained in the same manner as in Example 3-1, except that the polyimide acid solution was changed to that prepared in Example 3-5.
  • Example 5-1 Preparation of molded product
  • 32.22 g (100 mmol) of acid anhydride F represented by the following formula, 30.43 g of the diamine compound obtained in the above Reference Example ( 100 mmol) and 236 g of N-methyl-2-pyrrolidone were added and stirred for 8 hours under a nitrogen atmosphere to obtain a 20 wt% polyamic acid solution.
  • This polyamic acid solution was applied onto a copper foil by spin coating, and dried at 100 ° C. for 0.5 hour, 200 ° C. for 0.5 hour, 300 ° C. for 1 hour, and 350 ° C. for 0.5 hour. Thereafter, the copper foil was removed by etching to obtain a film-like molded product having a thickness of about 15 ⁇ m.
  • Example 5-2 Production of Molded Product Containing Polyimide Compound A film-like molded product was obtained in the same manner as in Example 5-1, except that acid anhydride A was changed to acid anhydride G represented by the following formula.
  • Example 5-3 Preparation of Molded Article Containing Polyimide Compound A film-like molded article was obtained in the same manner as in Example 5-1, except that acid anhydride A was changed to acid anhydride H represented by the following formula.
  • Example 5-4 Preparation of Molded Article Containing Polyimide Compound A film-like molded article was obtained in the same manner as in Example 5-1, except that the acid anhydride A was changed to the acid anhydride I represented by the following formula.
  • Example 5-5 Preparation of Molded Product Containing Polyimide Compound A film-shaped molded product was obtained in the same manner as in Example 5-1, except that acid anhydride A was changed to acid anhydride J represented by the following formula.
  • Example 5-6 Preparation of Molded Product Containing Polyimide Compound A film-shaped molded product was obtained in the same manner as in Example 5-1, except that the acid anhydride A was changed to the acid anhydride K represented by the following formula.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

[課題]有機溶剤に対する高い溶解性および高い溶融成形性を有するポリイミド化合物を合成することのできる新規なジアミン化合物の提供。 [解決手段]本発明によるジアミン化合物は、下記一般式(1)で表されることを特徴とする。(上記式中、 R~Rが、それぞれ独立して、水素、フッ素、置換または無置換のアルキル基および置換または無置換の芳香族基からなる群より選択されるものであるが、R~Rの少なくとも1つが、置換または無置換の芳香族基である。)

Description

ジアミン化合物、並びにそれを用いたポリイミド化合物および成形物
 本発明は、新規なジアミン化合物に関し、より詳細には、有機溶剤に対する溶解性および溶融成形性が改善されたポリイミド化合物を合成することのできる新規なジアミン化合物、並びにこれを用いて合成されたポリイミド化合物およびこのポリイミド化合物を含む成形物に関する。
 一般に、ポリイミド化合物は、高い耐熱性に加え、機械的強度、耐摩耗性、寸法安定性、耐薬品性等、絶縁性等が優れており、フレキシブルプリント基板やプリント配線板などの電子材料分野で広く使用されている。また、電子機器分野に以外にも、宇宙・航空分野、自動車分野等において幅広く利用されている。これらポリイミド化合物のなかでも、機械的強度や耐熱性に優れるポリイミド化合物として、芳香族系のジアミンと芳香族酸無水物とを原料とするポリイミド化合物が知られている。例えば、4-アミノフェニル-4-アミノベンゾエート等の芳香族ジアミンとピロメリット酸二酸無水物とを原料とするポリイミド化合物は、耐熱性、機械的特性、電気絶縁性等に優れており、電子機器分野において保護材料や絶縁材料として好適に用いられている(特許文献1等)。
 一方、上記した芳香族ポリイミド化合物は、剛直な構造ゆえ有機溶剤に対する溶解性が低い。そのため、フレキシブルプリント配線基材(FPC)のカバーフィルム、電子回路の絶縁層等を作製する場合、ポリイミド化合物を使用するのではなく、ジアミン化合物と酸無水物とを有機溶剤中で反応させ、高い有機溶剤溶解性を有するポリアミック酸としたポリアミック酸溶剤を基材等に塗布した後、高温で加熱乾燥し、環化脱水反応(ポリイミド化)させることにより行われていた(特許文献1等)。
特開2014-173071号公報
 しかしながら、ポリイミド膜を設ける基材は、環化脱水反応(一般的には300-400℃)に耐えることのできる高い耐熱性を有していなければならない。さらに、環化脱水反応のための特殊な加熱装置を使用することのできる環境において行わなければならず、ポリイミド化合物を用いた成形品の作製には様々な制限があった。また、ポリアミック酸化合物は、不安定であり、水と反応し、容易に加水分解し、分子量の低下を起こしやすいという問題があった。
 さらに、ポリイミド化合物は融点を有していないものがほとんどであり、有しているものであっても、その温度は極めて高く、溶融成形を行うことが困難であり、溶融成形性という点から問題があった。
 本発明は、上記問題に鑑みなされたものであり、その目的は、有機溶剤に対する高い溶解性および高い溶融成形性を有するポリイミド化合物を合成することのできる新規なジアミン化合物および該ジアミン化合物の合成方法を提供することである。
 また、本発明の目的は、このジアミン化合物を用いて合成される高い有機溶剤溶解性および溶融成形性を有するポリイミド化合物を提供することである。
 さらに、本発明の目的は、このポリイミド化合物を含んでなり、従来のポリイミド化合物を含んでなるポリイミドフィルムと同程度の耐熱性および機械的特性を有するポリイミドフィルム等の成形物を提供することである。
 本発明によるジアミン化合物は、下記一般式(1)で表されることを特徴とする。
Figure JPOXMLDOC01-appb-C000011
(上記式中、
 R~Rが、それぞれ独立して、水素、フッ素、置換または無置換のアルキル基および置換または無置換の芳香族基からなる群より選択されるものであるが、R~Rの少なくとも1つが、置換または無置換の芳香族基である。)
 上記態様においては、R~Rの少なくとも1つまたは2つが、置換または無置換の芳香族基であることが好ましい。
 上記態様においては、R~Rの1つまたは2つが、置換または無置換の芳香族基であり、芳香族基以外のR~Rが、水素、フッ素および置換または無置換のアルキル基からなる群より選択されることが好ましい。
 上記態様においては、置換または無置換の芳香族基の炭素数が、5~20であることが好ましい。
 上記態様においては、置換または無置換の芳香族基が、フェニル基、メチルフェニル基、フェノキシ基、ベンジル基およびベンジルオキシ基からなる群より選択されることが好ましい。
 本発明による上記ジアミン化合物の合成方法は、
 下記一般式(3)で表される化合物および下記一般式(4)で表される化合物とを反応させ、反応物を得る工程と、
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 前記反応物のニトロ基を還元する工程と、
を含むことを特徴とする。
(上記式中、
 R~Rが、それぞれ独立して、水素、フッ素、置換または無置換のアルキル基および置換または無置換の芳香族基からなる群より選択され、
 R~Rの少なくとも1つが、置換または無置換の芳香族基であり、
 R’~R は、それぞれ独立して、水素、フッ素、置換または無置換のアルキル基および置換または無置換の芳香族基からなる群より選択され、
 R’~R’の少なくとも1つが、芳香族基である。)
 本発明のポリイミド化合物は、上記ジアミン化合物と酸無水物との反応物であることを特徴とする。
 上記態様においては、酸無水物が、下記一般式(8)および/または(9)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(上記式中、
 Lは、下記連結基群から選択される連結基であり、
Figure JPOXMLDOC01-appb-C000016
 上記式中、
 R~R20は、それぞれ独立して、水素、置換のアルキル基および無置換のアルキル基からなる群より選択され、*は結合位置を表す。)
 上記態様においては、酸無水物が、下記一般式(8)および/または(9)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(上記式中、
 Lは、下記連結基群から選択される連結基であり、
Figure JPOXMLDOC01-appb-C000019
 上記式中、
 Xは、フルオロ基、クロロ基、ブロモ基およびヨード基から選択されるハロゲン基であり、
 R21~R30は、それぞれ独立して、水素、置換のアルキル基および無置換のアルキル基からなる群より選択され、
 *は結合位置を表す。)
 本発明の成形物は、上記ポリイミド化合物を含むことを特徴とする。
 本発明のジアミン化合物によれば、これを用いて合成されるポリイミド化合物の有機溶剤溶解性および溶融成形性を顕著に改善することができ、基材の耐熱性等を考慮することなく、ポリイミド化合物の成形品を作製することができる。
 また、成形品の作製に、加熱処理のための特殊な装置を用いる必要がないため、様々な場所で成形品の作製を行うことができる。
 さらに、本発明の成形物は、従来のポリイミド化合物を用いて製造した成形物と同程度の5%重量減少率、ガラス転移温度(Tg)、溶融温度、熱膨張係数、引張強度、弾性率および吸水率を有し、高い耐熱性および機械的特性を有するため、電子機器分野、宇宙・航空分野、自動車分野等といった様々な分野において幅広く利用することができる。
図1は、実施例により得られた化学式(2)で表される化合物のH-NMRチャートを表す。 図2は、実施例により得られた化学式(2)で表される化合物の13C-NMRチャートを表す。 図3は、実施例により得られた化学式(2)で表される化合物のFT-IRチャートを表す。
(ジアミン化合物)
 本発明のジアミン化合物は、下記一般式(1)で表されることを特徴とする。
Figure JPOXMLDOC01-appb-C000020
 上記式中、R~Rは、それぞれ独立して、水素、フッ素、置換または無置換のアルキル基および置換または無置換の芳香族基からなる群より選択され、R~Rの少なくとも1つが、芳香族基である。好ましくは、R~Rの1つまたは2つが芳香族基である。
 好ましくは、R~Rの1つまたは2つが、置換または無置換の芳香族基であり、より好ましくは、少なくともRまたはRが芳香族基である。
 上記した位置に芳香族基を有することにより、ジアミン化合物の立体障害性を抑えることができ、酸無水物等との重合反応を良好に進めることができる。
 特に好ましい態様においては、R~Rの1つまたは2つが置換または無置換の芳香族基であり、芳香族基以外のR~Rが水素、フッ素および置換または無置換のアルキル基からなる群より選択される。具体的には、以下のような化合物が挙げられる(Rが芳香族基であり、R以外のR~RおよびRが水素である態様)。
Figure JPOXMLDOC01-appb-C000021
 本発明において、アルキル基には、直鎖状のもの、分岐鎖状のものおよび環状のものが含まれ、さらに、酸素原子や窒素原子を介して主骨格と結合するアルコキシ基やアルキルアミノ基等が含まれる。
 また、芳香族基についても同様に、酸素原子、窒素原子や炭素原子を介して主骨格と結合する置換基が含まれる。さらに、芳香族基には、ピロール基等のヘテロ芳香族基が含まれる。
 アルキル基および芳香族基は、本発明のジアミン化合物の合成容易性および電子部品材料分野への利用という観点からは無置換であることが好ましいが、置換基を有していてもよく、例えば、アルキル基、フルオロ基やクロロ基等のハロゲン基、アミノ基、ニトロ基、ヒドロキシル基、シアノ基、カルボキシル基、スルホン酸基等が挙げられる。アルキル基、芳香族基は、これらの置換基を1以上または2以上有するものであってもよい。
 アルキル基は、炭素数1~10であることが好ましく、1~3であることがより好ましい。
 炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、sec-ペンチル基、n-へキシル基、シクロへキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、クロロエチル基、ジクロロエチル基、トリクロロエチル基、ブロモエチル基、ジブロモエチル基、トリブロモエチル基、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシルプロピル基、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペンチルオキシ基、sec-ペンチルオキシ基、n-へキシルオキシ基、シクロへキシルオキシ基、n-へプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、トリフルオロメトキシ基、メチルアミノ基、ジメチルアミノ基、トリメチルアミノ基、エチルアミノ基、プロピルアミノ基等が挙げられる。
 上記したアルキル基の中でも、立体障害性、耐熱性という理由からメチル基、エチル基、メトキシ基、エトキシ基およびトリフルオロメチル基が好ましい。
 芳香族基は、炭素数5~20であることが好ましく、6~10であることがより好ましい。
 炭素数5~20の芳香族基としては、例えば、フェニル基、トリル基、メチルフェニル基、ジメチルフェニル基、エチルフェニル基、ジエチルフェニル基、プロピルフェニル基、ブチルフェニル基、フルオロフェニル基、ペンタフルオロフェニル基、クロルフェニル基、ブロモフェニル基、メトキシフェニル基、ジメトキシフェニル基、エトキシフェニル基、ジエトキシフェニル基、ベンジル基、メトキシベンジル基、ジメトキシベンジル基、エトキシベンジル基、ジエトキシベンジル基、アミノフェニル基、アミノベンジル基、ニトロフェニル基、ニトロベンジル基、シアノフェニル基、シアノベンジル基、フェネチル基、フェニルプロピル基、フェノキシ基、ベンジルオキシ基、フェニルアミノ基、ジフェニルアミノ基、ビフェニル基、ナフチル基、フェニルナフチル基、ジフェニルナフチル基、アントリル基、アントリルフェニル基、フェニルアントリル基、ナフタセニル基、フェナントリル基、フェナントリルフェニル基、フェニルフェナントリル基、ピレニル基、フェニルピレニル基、フルオレニル基、フェニルフルオレニル基、ナフチルエチル基、ナフチルプロピル基、アントラセニルエチル基、フェナントリルエチル基、やピロール基、イミダゾール基、チアゾール基、オキサゾール基、フラン基、チオフェン基、トリアゾール基、ピラゾール基、イソオキサゾール基、イソチアゾール基、ピリジン基、ピリミジン基、ベンゾフラン基、ベンゾチオフェン基、キノリン基、イソキノリン基、インドリル基、ベンゾチアゾリル基、カルバゾリル基等のヘテロ芳香族基が挙げられる。
 上記した芳香族基の中でも、出発原料入手容易性、合成コスト面からは、フェニル基、フェノキシ基、ベンジル基およびベンジルオキシ基が好ましい。
(ジアミン化合物の合成方法)
 本発明のジアミン化合物は、下記一般式(3)で表される化合物と、下記一般式(4)で表される化合物とを反応させた後、ニトロ基を還元することにより得ることができる。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 上記式中、R’~R’は、それぞれ独立して、水素、置換または無置換のアルキル基および置換または無置換の芳香族基からなる群より選択され、R’~R’の少なくとも1つが、芳香族基である。
 好ましくは、R’~R’の少なくとも1つが置換または無置換の芳香族基であり、より好ましくは、少なくともR’またはR’が芳香族基である。
 特に好ましい態様においては、R’~R’の1つが置換または無置換の芳香族基であり、芳香族基以外のR’~R’が水素である。
 また、上記式中Xは、水酸基またはフルオロ基、クロロ基、ブロモ基およびヨード基から選択されるハロゲン基を表す。一般式(4)で表される化合物との反応性という観点からは、Xは、ハロゲン基であることが好ましく、クロロ基、ブロモ基であることが特に好ましい。
 上記一般式(3)中、Xが水酸基である場合、上記一般式(3)および(4)で表される化合物の反応は、触媒または脱水縮合剤の存在下で行うことが好ましい。
 触媒としては、ジメチルアミノピリジン、トリ-n-ブチルアミン、ピリジン、リジン、イミダゾール、炭酸ナトリウム、ナトリウムアルコラート、炭酸水素カリウム等の有機または無機塩基性化合物やトルエンスルホン酸、メタンスルホン酸、硫酸等の有機酸あるいは無機酸を例示できる。
 また、脱水縮合剤としては、N,N’-ジシクロヘキシルカルボジイミド(DCC)、N,N’-ジイソプロピルカルボジイミド、N-シクロヘキシル-N’-(4-ジエチルアミノ)シクロヘキシルカルボジイミド等のカルボジイミド類が例示できる。
 また、上記一般式(3)中、Xがハロゲン基である場合、上記一般式(3)および(4)で表される化合物の反応は、受酸剤存在下で行われることが好ましい。具体的には、トリエチルアミン、トリブチルアミン、N,N-ジメチルシクロヘキシルアミン等のトリアルキルアミン類、N-メチルモルホリン等の脂肪族環状三級アミン類、N,N-ジメチルアニリン、トリフェニルアミン等の芳香族アミン類、ピリジン、ピコリン、ルチジン、キノリン等の複素環アミン類を例示できる。
 より具体的には、下記式(5)および(6)で表される化合物を反応させることによって、上記式(2)で表されるジアミン化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 上記一般式(4)で表される化合物は、市販される、または合成した下記一般式(7)で表される化合物をニトロ化することにより得ることができる。下記一般式(7)で表される化合物のニトロ化は、濃硫酸と濃硝酸との混酸、硝酸、発煙硝酸、濃硫酸中酸アルカリ金属塩、硝酸アセチル、ニトロニウム塩、窒素酸化物等を使用した従来公知のニトロ化法により行うことができる。
Figure JPOXMLDOC01-appb-C000026
 R’’~R’’は、それぞれ独立して、水素、置換または無置換のアルキル基および置換または無置換の芳香族基からなる群より選択される。好ましくはR’’~R’’の少なくとも1つが、より好ましくは1つまたは2つが芳香族基である。
 本発明のジアミン化合物は、後述するポリイミド化合物以外の化合物の合成にも使用することができる。
 例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルカルボン酸、ジフェニルスルホンカルボン酸、ビフェニルジカルボン酸、ターフェニルジカルボン酸、ジフェニルメタンジカルボン酸、2,2-ビス(4-カルボキシフェニル)プロパン、2,2-ビス(4-カルボキシフェニル)ヘキサフルオロプロパン、シクロヘキサンジカルボン酸、ジシクロヘキサンジカルボン酸およびこれらの酸ハライド等のジカルボン酸誘導体と反応させることにより、ポリアミド化合物を合成することができる。
 また、ポリアミドイミド化合物、ポリウレタン化合物、エポキシ化合物の合成にも本発明のジアミン化合物を使用することができる。
(ポリイミド化合物)
 本発明のポリイミド化合物は、上記した一般式(1)で表されるジアミン化合物と酸無水物の反応物である。一般式(1)で表されるジアミン化合物の構造については、上述したためここでは省略する。
 上記した一般式(1)で表されるジアミン化合物をポリイミド化合物の構成要素として使用することにより、ポリイミド化合物の有機溶剤に対する溶解性を顕著に改善することができる。
 本発明のポリイミド化合物において、全ジアミン中における上記した一般式(1)で表されるジアミン化合物の含有量は、10モル%~100モル%であることが好ましく、30モル%~100モル%であることがより好ましく、50モル%~100モル%であることがさらに好ましい。ジアミン化合物の含有量を上記数値範囲とすることにより、剛直なエステル構造を導入すると共に有機溶剤に対する溶解性をさらに向上させることができる。
 本発明のポリイミド化合物の数平均分子量は、2000~200000であることが好ましく、4000~100000であることがより好ましい。
 なお、本発明において、数平均分子量とはゲルパーミエーションクロマトグラフィー(GPC)装置により標準ポリスチレンを用いて作成した検量線を基礎としたポリスチレン換算値である。
 数平均分子量を上記数値範囲とすることにより、このポリイミド化合物を用いて得られるフィルムの機械的物性を向上させることができると共に、成形性を向上させることができる。
 本発明のポリイミド化合物の融点は、成形物の耐熱性および成形物の生産性、コストという観点からは、150℃以上、420℃以下であることが好ましく、200℃以上、350℃以下であることがより好ましい。
(酸無水物)
 酸無水物としては、例えば、オキシジフタル酸、ピロメリット酸二無水物、3-フルオロピロメリット酸二無水物、3,6-ジフルオロピロメリット酸二無水物、3,6-ビス(トリフルオロメチル)ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、4,4’-(4,4’-イソプロピリデンジフェノキシ)ビスフタル酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’’,4,4’’-テルフェニルテトラカルボン酸二無水物、3,3’’’,4,4’’’-クァテルフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチニリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、1,3-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、1,4-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕メタン二無水物、ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕メタンニ無水物、2,2-ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、ジフルオロメチレン-4,4’-ジフタル酸二無水物、1,1,2,2-テトラフルオロ-1,2-エチレン-4,4’-ジフタル酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、オキシ-4,4’-ジフタル酸二無水物、ビス(3,4-ジカルボキシフェニル)エ-テル二無水物、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,3,6,7-アントラセンテトラカルボン酸二無水物、1,2,7,8-フェナントレンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、1,2,3,4-シクロブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、シクロヘキサン-1,2,3,4-テトラカルボン酸二無水物、シクロヘキサン-1,2,4,5-テトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、スルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、5,5’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、6,6’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、6,6’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、6,6’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、エチレングリコールビストリメリテート二無水物などが挙げられる。
 上記した無水物の中でも、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2-ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物および3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、オキシ-4,4’-ジフタル酸二無水物が、本発明のジアミン化合物との反応性という観点から好ましい。
 本発明のポリイミド化合物の合成には、上記した無水物を1種または2種以上使用してもよい。
 一実施形態において、本発明のポリイミド化合物は、上記一般式(1)で表されるジアミン化合物と、下記一般式(8)および/または(9)で表される酸無水物との反応物である。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 一実施形態において、上記式中のLは、下記連結基群から選択される連結基である。下記連結基群から選択される連結基を有する酸無水物と、上記一般式(1)で表されるジアミン化合物との反応物であるポリイミド化合物は、低い溶融温度を有し、溶融成形性に極めて優れる。
Figure JPOXMLDOC01-appb-C000029
 上記式中、
 R~R20は、それぞれ独立して、水素、置換のアルキル基および無置換のアルキル基からなる群より選択され、*は結合位置を表す。
 アルキル基は、本発明のジアミン化合物の合成容易性および電子部品材料分野への利用という観点からは無置換であることが好ましいが、置換基を有していてもよく、例えば、アルキル基、フルオロ基やクロロ基等のハロゲン基、アミノ基、ニトロ基、ヒドロキシル基、シアノ基、カルボキシル基、スルホン酸基等が挙げられる。アルキル基、芳香族基は、これらの置換基を1以上または2以上有するものであってもよい。
 アルキル基の炭素数は、1~10であることが好ましく、1~3であることがより好ましい。
 炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、sec-ペンチル基、n-へキシル基、シクロへキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、クロロエチル基、ジクロロエチル基、トリクロロエチル基、ブロモエチル基、ジブロモエチル基、トリブロモエチル基、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシルプロピル基、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペンチルオキシ基、sec-ペンチルオキシ基、n-へキシルオキシ基、シクロへキシルオキシ基、n-へプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、トリフルオロメトキシ基、メチルアミノ基、ジメチルアミノ基、トリメチルアミノ基、エチルアミノ基、プロピルアミノ基等が挙げられる。
 上記したアルキル基の中でも、立体障害性、耐熱性という理由からメチル基、エチル基、メトキシ基、エトキシ基およびトリフルオロメチル基が好ましい。
 ポリイミド化合物の溶融成形性という観点からは、Lは、下記連結基群から選択される連結基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000030
 したがって、一般式(2)または(3)を満たす酸無水物としては、以下のような化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 また、一実施形態において、Lは、下記連結基群から選択される連結基である。下記連結基群から選択される連結基を有する酸無水物と、上記一般式(1)で表されるジアミン化合物との反応物であるポリイミド化合物は、有機溶剤可溶性が極めて高い。
Figure JPOXMLDOC01-appb-C000033
 上記式中、
 Xは、フルオロ基、クロロ基、ブロモ基およびヨード基から選択されるハロゲン基であり、フルオロ基であることが好ましく、
 R21~R30は、それぞれ独立して、水素、置換のアルキル基および無置換のアルキル基からなる群より選択され、
 *は結合位置を表す。
 アルキル基については上記した通りである。
 ポリイミド化合物の有機溶剤溶解性という観点からは、Lは、下記連結基群から選択される連結基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000034
 したがって、一般式(2)または(3)を満たす酸無水物としては、以下のような化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
 該ポリイミド化合物の合成には、2種以上の一般式(8)および/または(9)で表される酸無水物が使用されてもよい。
(その他のジアミン化合物)
 本発明のポリイミド化合物は、一般式(1)で表されるジアミン化合物以外のその他のジアミン化合物を構成要素として含んでいてもよい。
 その他のジアミン化合物としては、例えば、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,4(6)-ジアミノ-3,5-ジエチルトルエン、5(6)-アミノ-1,3,3-トリメチル-1-(4-アミノフェニル)-インダン、4,4’-ジアミノ-2,2’-ジメチル-1,1’-ビフェニル、4,4’-ジアミノ-2,2’-ジトリフルオロメチル-1,1’-ビフェニル、4,4’-ジアミノ-3,3’-ジメチル-1,1’-ビフェニル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、4-アミノフェニル-4-アミノベンゾエート、4,4’-(9-フルオレニリデン)ジアニリン、9,9’-ビス(3-メチル-4-アミノフェニル)フルオレン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-メチル-4-アミノフェニル)プロパン、4,4’-(ヘキサフルオロイソプロピリデン)ジアニリン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(3-メチル-4-アミノフェニル)ベンゼン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、α,α-ビス[4-(4-アミノフェノキシ)フェニル]-1,3-ジイソプロピルベンゼン、α,α-ビス[4-(4-アミノフェノキシ)フェニル]-1,4-ジイソプロピルベンゼン、3,7-ジアミノ-ジメチルジベンゾチオフェン 5,5-ジオキシド、ビス(3-カルボキシー4-アミノフェニル)メチレン、3,3’-ジアミノ-4,4’-ジヒドロキシ-1,1’-ビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシ-1,1’-ビフェニル、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、1、3-ビス(3-ヒドロキシ-4-アミノフェノキシ)ベンゼン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ベンゼン、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルフォン等が挙げられる。
 本発明のポリイミド化合物は、上記したその他のジアミン化合物を1種または2種以上構成要素として含んでいてもよい。
 本発明のポリイミド化合物は、後記するようにフィルム等に成形し、フレキシブルプリント配線基材(FPC)のベースフィルムやカバーフィルムとして使用することができる。また、フレキシブル配線基板等における接着剤としても使用することができる。
 また、これ以外にも、電線の電気絶縁被覆材料、断熱材、液晶表示素子の透明基材、薄膜トランジスタ基材等として使用することができる。
(ポリイミド化合物の合成方法)
 本発明のポリイミド化合物は、上記した一般式(1)で表されるジアミン化合物および酸無水物を使用して従来公知の方法により製造することができる。具体的には、ジアミン化合物と酸無水物とを反応させ、ポリアミド酸を得た後、環化脱水反応を行い、ポリイミド化合物に転化させることにより得ることができる。
 酸無水物と、ジアミン化合物の混合比は、酸無水物の総量1モル%に対し、ジアミン化合物の総量を0.5モル%~1.5モル%であることが好ましく、0.9モル%~1.1モル%であることがより好ましい。
 ジアミン化合物と酸無水物との反応は、有機溶媒中において行うことが好ましい。
 有機溶剤としては、本発明のジアミン化合物および酸無水物と反応することがなく、ジアミン化合物と酸無水物との反応物を溶解することができるものであれば特に限定されるものではなく、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N’-ジメチルイミダゾリジノン、γ-ブチロラクトン、ジメチルスルホキシド、スルホラン、1,3-ジオキソラン、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジベンジルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、プロピレングリコールジアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、ンジルアセテート、ブチルカルビトールアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、安息香酸メチル、安息香酸エチル、トリグライム、テトラグライム、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノン、ブチルアルコール、イソブチルアルコール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノール、ジアセトンアルコール、トルエン、キシレン等が挙げられる。
 本発明のポリイミド化合物の溶解性という観点からは、N-メチル-2-ピロリドン、N,N’-ジメチルイミダゾリジノン、γ-ブチロラクトンがポリイミドにおいて好ましい。
 ジアミン化合物と酸無水物との反応温度は、化学的イミド化の場合は40℃以下であることが好ましい。また、熱イミド化の場合は150~220℃であることが好ましく、170~200℃であることがより好ましい。
 環化脱水反応時には、イミド化触媒を使用してもよく、例えば、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、プロピルアミン、トリプロピルアミン、ブチルアミン、トリブチルアミン、tert-ブチルアミン、へキシルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、アニリン、ベンジルアミン、トルイジン、トリクロロアニリン、ピリジン、コリジン、ルチジン、ピコリン、キノリン、イソキノリン、バレロラクトン等を使用することができる。
 また、必要に応じて、トルエン、キシレン、エチルシクロヘキサンのような共沸脱水剤、無水酢酸、無水プロピオン酸、無水酪酸、無水安息香酸等の酸触媒を使用することができる。
 ジアミン化合物と酸無水物との反応において、安息香酸、無水フタル酸、水添無水フタル酸等の封止剤を使用することができる。
 さらに、無水マレイン酸、エチニルフタル酸無水物、メチルエチニルフタル酸無水物、フェニルエチニルフタル酸無水物、フェニルエチニルトリメリット酸無水物、3-又は4-エチニルアニリン等を用いることにより、ポリイミド化合物の末端に二重結合または三重結合を導入することもできる。
 二重結合または三重結合をポリイミド化合物に導入することにより、本発明のポリイミド化合物を、熱硬化性樹脂として使用することができる。
(成形物)
 本発明の成形物は、上記一般式(1)で表されるジアミン化合物を使用して得られるポリイミド化合物を含んでなる。
 ポリイミドを含んでなる成形品としては、例えば、シリンダーヘッドカバー、ベアリングリテーナー、インテークマニホールド、ペダル等の自動車部品、パーソナルコンピューター、携帯電話等に使用される筐体やフレキシブルプリント基板やプリント配線板等の電子材料部品、イオン導電性セパレーター等の燃料電池部品等が挙げられる。
 本発明の成形物の形状は、特に限定されるものではなく、その用途に応じて適宜変更することができる。例えば、フィルム状やシート状とすることができる。
 本発明の成形物における上記一般式(1)で表されるジアミン化合物を使用して得られるポリイミド化合物の含有量は、30質量%以上、100質量%以下であることが好ましく、50質量%以上、100質量%以下であることがより好ましく、60質量%以上、100質量%以下であることがさらに好ましい。
 本発明の成形物は、その特性を損なわない範囲において、その他の化合物を含んでいてもよく、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、セルロース系樹脂、ビニル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、スチレン系樹脂、アイオノマー樹脂等が挙げられる。
 また,本発明の成形物は、その特性を損なわない範囲において、各種の添加剤を含んでいてもよい。例えば、添加剤として、可塑剤、紫外線安定化剤、着色防止剤、艶消し剤、消臭剤、難燃剤、耐候剤、帯電防止剤、糸摩擦低減剤、スリップ剤、離型剤、抗酸化剤、イオン交換剤、分散剤、紫外線吸収剤および顔料や染料等の着色剤等が挙げられる。
 本発明の成形物の5%重量減少温度は、350℃以上であることが好ましく、400℃以上であることがより好ましい。
 本発明において、成形物の5%重量減少温度は、JIS K 7120に準拠し、熱機械分析装置(例えば、島津製作所社製、商品名:TGA-50)を使用し、窒素中、5℃/分の昇温速度にて測定することができる。
 本発明の成形物のガラス転移温度(Tg)は、180℃以上であることが好ましく、190℃以上であることがより好ましく、200℃以上であることがさらに好ましい。
 本発明において、成形物のガラス転移温度(Tg)は、JIS K 7121に準拠し、熱機械分析装置(島津製作所社製、商品名:DSC-60Plus)を使用し、窒素気流下、10℃/分の昇温速度にて測定することができる。
 本発明の成形物の溶融温度は、150℃以上であることが好ましく、200℃以上であることがより好ましい。また、溶融温度は、420℃以下であることが好ましく、370℃以下であることがさらに好ましい。
 本発明において、成形物の溶融温度は、DSC測定装置および/または動的粘弾性測定装置により測定することができる。
 本発明の成形物の熱膨張係数(CTE)は、70.0×10-6/K以下であることが好ましく、65.0×10-6/K以下であることがより好ましく、60.0×10-6/K以下であることがさらに好ましい。
 本発明において、成形物の熱膨張係数(CTE)は、成形物を、島津製作所社製のTMA-60(商品名)を用い、5gの加重を加えながら10℃/分の昇温温度にて、室温から450℃まで昇温させ、100℃から250℃までの平均熱膨張係数(CTE)を指す。
 本発明の成形物の引張強度は、45MPa以上であることが好ましく、50MPa以上であることがより好ましく、60MPa以上であることがさらに好ましい。
 本発明において、成形物の引張強度は、成形物を、引張試験機(島津製作所社製、商品名:AG-Xplus 50kN)を用いて、引張速度10mm/分にて測定したMD方向およびTD方向の引張強度の平均値を指す。
 本発明の成形物の弾性率は、2.5GPa以上であることが好ましく、3.0GPa以上であることがより好ましく、3.5GPa以上であることがさらに好ましい。
 本発明の成形物の弾性率は、成形物を、引張試験機(島津製作所社製、商品名:AG-Xplus 50kN)を用いて、引張速度10mm/分にて測定したMD方向およびTD方向の弾性率の平均値を指す。
 本発明の成形物の吸水率は、1.5%以下であることが好ましく、1.0%以下であることがより好ましい。
 本発明の成形物の吸水率は、成形物を、蒸留水中に24時間浸漬し、ウエスで表面に付いた水を拭き上げた後に重量を測定し、次いで120℃、2時間乾燥させたフィルムの重量を測定し、減少率から求めることができる。
(成形物の製造方法)
 一実施形態において、本発明の成形物は、上記したポリイミド化合物をN-メチル-2-ピロリドン(NMP)等の上記有機溶剤に可溶し、銅箔等の基材上に塗布し、乾燥することにより製造することができる。これにより、フィルム状の成形物を得ることができる。
 また、用途に応じ、成形物から基材を剥がしたり、エッチング処理を施すことにより、基材を除去してもよい。
 本発明のポリイミド化合物を使用した成形物は、基材上にポリイソイミド化合物またはポリイミド化合物を塗布し、乾燥する工程のみで製造することができ、従来の方法で行われていたイミド化反応を伴う高温の加熱乾燥工程を省略することができる。また、加熱乾燥工程を省略することができるため、基材の耐熱性を考慮しなくてもよく、様々な基材上に本発明の成形物を製造することができる。
 また、本発明の成形物は、プレス成形、トランスファー成形、射出成形等の従来公知の方法により作製することもできる。
 他の実施形態において、本発明の成形物は、ポリアミック酸溶液またはポリイソイミド溶液を使用した従来方法によっても製造することができる。
 例えば、40℃以下、好適には0~25度の温度を保ちながら、酸無水物と一般式(1)で表されるジアミン化合物を有機溶媒中で撹拌しながら、好適には2~24時間反応させてポリアミック酸溶液を得る。得られたポリアミック酸溶液を所望の基材(銅箔等)により塗布し、最終乾燥温度250~450℃、より好適には350~400℃で加熱乾燥し、ポリアミック酸化合物をイミド化し、本発明のポリイミド化合物を含む成形物を基材上に製造することができる。
 また、ポリイソイミド溶液は、ポリアミック酸溶液に、N,N’-ジシクロヘキシルカルボジイミドやトリフルオロ酢酸無水物等の脱水縮合剤を添加することにより得ることができ、これを基材上に塗布し、加熱乾燥することによって、本発明のポリイミド化合物を含む成形物を基材上に製造することができる。
 なお、N,N’-ジシクロヘキシルカルボジイミドを使用した場合、反応で生じるN,N’-ジシクロヘキシル尿素は、ろ過により除去することが好ましい。また、トリフルオロ酢酸無水物を使用した場合、ポリイソイミド化合鬱の単離精製にメタノールのような貧溶媒を使用することが好ましい。単離精製したポリイソイミド化合物は、140℃以上、より好ましくは180℃以上の温度で加熱することにより、ポリイミド化合物に熱転換することができる。
(実施例1-1)
ジアミン化合物の合成
 温度計、攪拌機を備えた1Lの4口フラスコに、トルエン500gと市販品のo-フェニルフェノール51.06g(0.30モル)(和光純薬工業社製)を加え、冷却して反応温度を-5~0℃に保ちながら70重量%硝酸(d=1.42)30g(0.33モル)を2時間かけて滴下した。さらに、同温度で3時間撹拌して反応を終了した。
 生成物のスラリーをろ取し、炭酸水素ナトリウム水溶液、次いで水により洗浄した。
 次いで、減圧乾燥して、下記式(5)で表される淡黄色~黄色の2-ヒドロキシ-5-アミノビフェニルを得た。
 HPLC分析(面積%)による純度は97.01%、DSC測定による融点は128℃(吸熱ピーク)であった。H-NMR(CDCl3)σ5.84ppm(フェノールのOHの1H)、σ6.99ppm(フェノールのo-位の1H)、σ7.15~7.50ppm(o-フェニルの5H)、σ8.12~8.20ppm(フェノールのm-位の2H)であり、フェノールのp-位にニトロ基が導入されたことが確認された。
Figure JPOXMLDOC01-appb-C000037
 温度計、攪拌機、還流冷却管を備えた1Lの4口フラスコに、上記のようにして合成した2-ヒドロキシ-5-ニトロビフェニル43.04g(0.20モル)、市販品の下記式(6)で表される4-ニトロベンゾイルクロリド45.53g(0.24モル)、N,N’-ジメチルホルムアミド500gを加え、約15℃に保ち撹拌した。
 次いで、トリエチルアミン30.36g(0.30モル)をゆっくり添加した。添加終了後、50℃で加熱しながら3時間反応を続けた。反応終了後、25℃まで冷却し、イオン交換水を投入し、析出物を得た。25℃になった後、析出物をろ取し、メタノール、イオン交換水でそれぞれ数回洗浄を行ない、減圧乾燥させることにより、下記式(10)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 温度計、攪拌機を備えた500ccオートクレーブに、上記化学式(10)で表される化合物22g(0.06モル)、ジメチルアセトアミド150ml、5%Pd-炭素(乾燥品として)を加え、窒素置換後、水素置換した。
 水素圧9kg/cm2(ゲージ圧)、80℃に保持して還元すると約2時間で水素の吸収が止まった。さらに1時間80℃で熟成した後、室温まで冷却した。窒素置換後、生成物溶液を取り出し、ろ過することにより触媒を取り除いた。ろ液を50%メタノール中に投入し、結晶を析出させ、結晶を採取した。
 50℃、真空下で乾燥させることにより、一般式(1)を満たす下記化学式(2)で表されるジアミン化合物を得た。HPLC分析(面積%)による純度は99.04%、DSC測定による融点154℃(吸熱ピーク)であった。
 また、H-NMR、13C-NMR、FT-IR、元素分析により同定し、構造確認した結果、化学式(2)で表される化合物であることが確認された。H-NMR(300MHz,測定機器:Varian 300-MR spectrometer、重溶媒:DMSO-d)、13C-NMR(75MHz,測定機器:Varian 300-MR spectrometer、重溶媒:DMSO-d)およびFT-IR(KBr法、測定機器:FTIR-410 spectrometer)の結果を図1乃至3に示した。
Figure JPOXMLDOC01-appb-C000040
ポリイミド化合物の合成
 窒素導入管、撹拌装置を備えた500mlセパラブルフラスコに、上記のようにして得られた化学式(2)で表されるジアミン化合物9.13g(30ミリモル)、4,4’-(4,4’-イソプロピリデンジフェノキシ)ビスフタル酸二無水物15.61g(30ミリモル)、N-メチル-2-ピロリドン94.64g、ピリジン0.47g(6ミリモル)、トルエン10gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外にのぞきながら4時間反応させることにより、20重量%のポリイミド溶液を得た。ポリイミド溶液において、合成したポリイミド化合物の析出は見られなかった。DSC測定において、207℃のガラス転移温度が観察され、非晶性ポリイミドであった。
(実施例1-2)
ポリイミド化合物の合成
 4,4’-(4,4’-イソプロピリデンジフェノキシ)ビスフタル酸二無水物に代え、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物10.75g(30ミリモル)を使用し、N-メチル-2-ピロリドンの使用量を75.20gに変更した以外は、実施例1-1と同様に、20重量%のポリイミド溶液を得た。ポリイミド溶液において、合成したポリイミド化合物の析出は見られなかった。DSC測定において、271℃に吸熱ピークが観察される半結晶性のポリイミドであった。
(比較例1-1)
ポリイミド化合物の合成
 化学式(2)で表されるジアミン化合物に代え、下記式で表される4-アミノフェニル-4-アミノベンゾエート6.85g(30ミリモル)を使用し、N-メチル-2-ピロリドンの使用量を85.52gに変更した以外は、実施例1-1と同様にして、ポリイミド溶液を作製したが、ポリイミド溶液において、合成したポリイミド化合物が析出してしまっていた。
Figure JPOXMLDOC01-appb-C000041
(比較例1-2)
ポリイミド化合物の合成
 化学式(2)で表されるジアミン化合物に代え、4-アミノフェニル-4-アミノベンゾエート6.85g(30ミリモル)を、4,4’-(4,4’-イソプロピリデンジフェノキシ)ビスフタル酸二無水物に代え、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物10.75g(30ミリモル)を使用し、N-メチル-2-ピロリドンの使用量を66.08gに変更した以外は、実施例1-1と同様にして、ポリイミド溶液を作製したが、ポリイミド溶液において、合成したポリイミド化合物が析出してしまっていた。
(実施例2-1)
成形物の作製
 窒素導入管、撹拌装置を備えた500mLのセパラブルフラスコに、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物8.83g(30ミリモル)、上記のようにして得られた化学式(2)で表されるジアミン化合物9.13g(30ミリモル)、N-メチル-2-ピロリドン67.52gを投入し、窒素雰囲気下で8時間撹拌することにより、20重量%のポリアミック酸溶液を得た。
 このポリアミック酸溶液を、スピンコート法にて銅箔上に塗布し、100℃で0.5時間、200℃で0.5時間、300℃で2時間、350℃で0.5時間乾燥した。その後、銅箔をエッチングにて除去し、厚さ約15μmのフィルム状の成形物を得た。
(実施例2-2)
成形物の作製
 3,3’,4,4’-ビフェニルテトラカルボン酸二無水物に代え、ビス(3,4-ジカルボキシフェニル)エ-テル二無水物9.31g(30ミリモル)を使用し、N-メチル-2-ピロリドンの使用量を69.44gに変更した以外は、実施例2-1と同様にして厚さ約20μmのフィルム状の成形物を得た。
(参考例2-1)
成形物の作製
 化学式(2)で表されるジアミン化合物に代え、下記式で表される4-アミノフェニル-4-アミノベンゾエート6.85g(30ミリモル)を、ピロメリット酸二無水物に代え、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物8.83g(30ミリモル)を使用し、N-メチル-2-ピロリドンの使用量を58.40gに変更した以外は、実施例2-1と同様にして厚さ約20μmのフィルム状の成形物を得た。
Figure JPOXMLDOC01-appb-C000042
<<成形物の性能評価>>
<5%重量減少温度>
 JIS K 7120に準拠し、島津製作所製のTGA-50(商品名)を使用し、空気中、10℃/分の昇温速度にて、上記実施例および比較例において得られた成形物の5%重量減少温度を測定した。測定結果を表1に記載した。
<ガラス転移温度(Tg)>
 JIS K 7121に準拠し、島津製作所製のDSC-60Plus(商品名)およびTMA-60(商品名)を使用し、窒素気流下、10℃/分の昇温速度にて、上記実施例および比較例において得られた成形物のガラス転移温度(Tg)を測定した。測定結果を表1に記載した。
<溶融温度>
 溶融温度も島津製作所製のDSC-60Plus(商品名)を用いて同様の方法で測定し、吸熱ピークの頂点を溶融温度(Tm)とした。測定結果を表1に記載した。
<熱膨張係数(CTE)>
 上記実施例および比較例において得られた成形物を5mm×20mmのサイズの試験片とし、島津製作所社製のTMA-60(商品名)を用い、5gの加重を加えながら10℃/分の昇温温度にて、室温から450℃まで昇温させ、100℃から250℃までの平均熱膨張係数(CTE)を求めた。結果を表1に記載した。
<引張強度>
 上記実施例および比較例において得られた成形物を10mm×80mmのサイズの試験片とし、引張試験機(島津製作所社製、商品名:AG-Xplus 50kN)を用いて、引張速度10mm/分にてMD方向およびTD方向の引張強度を測定した。MD方向の引張強度およびTD方向の引張強度の平均値を算出し、表1に記載した。
<弾性率>
 上記実施例および比較例において得られた成形物を10mm×80mmのサイズの試験片とし、引張試験機(島津製作所社製、商品名:AG-Xplus 50kN)を用いて、引張速度10mm/分にてMD方向およびTD方向の弾性率を測定した。MD方向の弾性率およびTD方向の弾性率の平均値を算出し、表1に記載した。
<吸水率>
 上記実施例および比較例において得られた成形物を50mm×50mmのサイズの試験片とし、蒸留水中に24時間浸漬し、ウエスで表面に付いた水を拭き上げた後に重量を測定し、次いで120℃、2時間乾燥させた成形物の重量を測定し、減少率から吸収率を求め、表1に記載した。
 表1からも明らかなように、本発明のポリイミド化合物を用いて製造した成形物は、従来公知であったポリイミド化合物を用いて製造した成形物と同程度の5%重量減少温度、熱膨張係数、引張強度、弾性率および吸水率を有し、高い耐熱性および機械的特性を有していることがわかった。
 また、従来のポリイミドでは製造することが難しい融点を有するポリイミドを製造することが可能となった。これにより、押出成型、射出成型等の溶融成形が可能な、常用使用温度が高い、高耐熱性ポリイミド成形物の提供が可能となった。
Figure JPOXMLDOC01-appb-T000043
(実施例3-1)
ポリイミド化合物の合成
 窒素導入管、撹拌装置を備えた500mlセパラブルフラスコに、上記のようにして得られたジアミン化合物30.43g(100ミリモル)、下記式で表される酸無水物A44.43g(100ミリモル)、N-メチル-2-ピロリドン285g、ピリジン1.6g(20ミリモル)、トルエン30gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外にのぞきながら6時間反応させることにより、20重量%のポリイミド溶液を得た。ポリイミド溶液において、合成したポリイミド化合物の析出は見られなかった。DSC測定において、258℃のガラス転移温度が観察され、非晶性ポリイミドであった。
Figure JPOXMLDOC01-appb-C000044
(実施例3-2)
ポリイミド化合物の合成
 酸無水物Aに代え、下記式で表される酸無水物Bを使用した以外は、実施例3-1と同様にして、ポリイミド溶液を得た。ポリイミド溶液において、合成したポリイミド化合物の析出は見られなかった。DSC測定において、258℃のガラス転移温度が観察され、非晶性ポリイミドであった。
Figure JPOXMLDOC01-appb-C000045
(実施例3-3)
ポリイミド化合物の合成
 酸無水物Aに代え、下記式で表される酸無水物Cを使用した以外は、実施例3-1と同様にして、ポリイミド溶液を得た。ポリイミド溶液において、合成したポリイミド化合物の析出は見られなかった。DSC測定において、181℃のガラス転移温度が観察され、非晶性ポリイミドであった。
Figure JPOXMLDOC01-appb-C000046
(実施例3-4)
ポリイミド化合物の合成
 酸無水物Aに代え、下記式で表される酸無水物Dを使用した以外は、実施例3-1と同様にして、ポリイミド溶液を得た。ポリイミド溶液において、合成したポリイミド化合物の析出は見られなかった。DSC測定において、231℃のガラス転移温度が観察され、非晶性ポリイミドであった。
Figure JPOXMLDOC01-appb-C000047
(実施例3-5)
ポリイミド化合物の合成
 酸無水物Aに代え、下記式で表される酸無水物Eを使用した以外は、実施例3-1と同様にして、ポリイミド溶液を得た。ポリイミド溶液において、合成したポリイミド化合物の析出は見られなかった。DSC測定において、253℃のガラス転移温度が観察され、非晶性ポリイミドであった。
Figure JPOXMLDOC01-appb-C000048
(実施例4-1)
成形物の作製
 実施例3-1にて作製したポリイミド酸溶液を、スピンコート法にて銅箔上に塗布し、100℃で0.5時間、200℃で0.5時間、250℃で1時間乾燥した。その後、銅箔をエッチングにて除去し、厚さ約15μmのフィルム状の成形物を得た。
(実施例4-2)
成形物の作製
 ポリイミド酸溶液を実施例3-2で作製したものに変更した以外は、実施例3-1と同様にしてフィルム状の成形物を得た。
(実施例4-3)
成形物の作製
 ポリイミド酸溶液を実施例3-3で作製したものに変更した以外は、実施例3-1と同様にしてフィルム状の成形物を得た。
(実施例4-4)
成形物の作製
 ポリイミド酸溶液を実施例3-4で作製したものに変更した以外は、実施例3-1と同様にしてフィルム状の成形物を得た。
(実施例4-5)
成形物の作製
 ポリイミド酸溶液を実施例3-5で作製したものに変更した以外は、実施例3-1と同様にしてフィルム状の成形物を得た。
<<成形物の性能評価>>
 上記した方法と同様の方法にて、成形物の5%重量減少温度、ガラス転移温度(Tg)、熱膨張係数(CTE)、引張強度および弾性率を測定し、表2に記載した。
Figure JPOXMLDOC01-appb-T000049
(実施例5-1)
成形物の作製
 窒素導入管、撹拌装置を備えた500mLのセパラブルフラスコに、下記式で表される酸無水物F32.22g(100ミリモル)、上記参考例において得られたジアミン化合物30.43g(100ミリモル)、N-メチル-2-ピロリドン236gを投入し、窒素雰囲気下で8時間撹拌することにより、20重量%のポリアミド酸溶液を得た。
 このポリアミド酸溶液を、スピンコート法にて銅箔上に塗布し、100℃で0.5時間、200℃で0.5時間、300℃で1時間、350℃で0.5時間乾燥した。その後、銅箔をエッチングにて除去し、厚さ約15μmのフィルム状の成形物を得た。
Figure JPOXMLDOC01-appb-C000050
(実施例5-2)
ポリイミド化合物を含む成形物の作製
 酸無水物Aを下記式で表される、酸無水物Gに変更した以外は、実施例5-1と同様にしてフィルム状の成形物を得た。
Figure JPOXMLDOC01-appb-C000051
(実施例5-3)
ポリイミド化合物を含む成形物の作製
 酸無水物Aを、下記式で表される酸無水物Hに変更した以外は、実施例5-1と同様にしてフィルム状の成形物を得た。
Figure JPOXMLDOC01-appb-C000052
(実施例5-4)
ポリイミド化合物を含む成形物の作製
 酸無水物Aを、下記式で表される酸無水物Iに変更した以外は、実施例5-1と同様にしてフィルム状の成形物を得た。
Figure JPOXMLDOC01-appb-C000053
(実施例5-5)
ポリイミド化合物を含む成形物の作製
 酸無水物Aを、下記式で表される酸無水物Jに変更した以外は、実施例5-1と同様にしてフィルム状の成形物を得た。
Figure JPOXMLDOC01-appb-C000054
(実施例5-6)
ポリイミド化合物を含む成形物の作製
 酸無水物Aを、下記式で表される酸無水物Kに変更した以外は、実施例5-1と同様にしてフィルム状の成形物を得た。
Figure JPOXMLDOC01-appb-C000055
<<成形物の性能評価>>
 上記した方法と同様の方法にて、成形物の5%重量減少温度、ガラス転移温度(Tg)、溶融温度、熱膨張係数(CTE)、引張強度および弾性率を測定し、表3に記載した。
Figure JPOXMLDOC01-appb-T000056

Claims (10)

  1.  下記一般式(1)で表されることを特徴とする、ジアミン化合物。
    Figure JPOXMLDOC01-appb-C000001
    (上記式中、
     R~Rが、それぞれ独立して、水素、フッ素、置換または無置換のアルキル基および置換または無置換の芳香族基からなる群より選択され、
     R~Rの少なくとも1つが、置換または無置換の芳香族基である。)
  2.  R~Rの1つまたは2つが、置換または無置換の芳香族基である、請求項1に記載のジアミン化合物。
  3.  R~Rの1つまたは2つが、置換または無置換の芳香族基であり、芳香族基以外のR~Rが、水素、フッ素および置換または無置換のアルキル基からなる群より選択される、請求項1または2に記載のジアミン化合物。
  4.  前記置換または無置換の芳香族基の炭素数が、5~20である、請求項1~3のいずれか一項に記載のジアミン化合物。
  5.  前記置換または無置換の芳香族基が、フェニル基、メチルフェニル基、フェノキシ基、ベンジル基およびベンジルオキシ基からなる群より選択される、請求項1~4のいずれか一項に記載のジアミン化合物。
  6.  下記一般式(1)で表されることを特徴とする、ジアミン化合物の合成方法であって、
    Figure JPOXMLDOC01-appb-C000002
     下記一般式(3)で表される化合物および下記一般式(4)で表される化合物とを反応させ、反応物を得る工程と、
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
     前記反応物のニトロ基を還元する工程と、
    を含むことを特徴とする、方法。
    (上記式中、
     R~Rが、それぞれ独立して、水素、フッ素、置換または無置換のアルキル基および置換または無置換の芳香族基からなる群より選択され、
     R~Rの少なくとも1つが、置換または無置換の芳香族基であり、
     R’~R は、それぞれ独立して、水素、フッ素、置換または無置換のアルキル基および置換または無置換の芳香族基からなる群より選択され、
     R’~R’の少なくとも1つが、芳香族基である。)
  7.  請求項1~5のいずれか一項に記載のジアミン化合物と酸無水物との反応物である、ポリイミド化合物。
  8.  前記酸無水物が、下記一般式(8)および/または(9)で表される、請求項7に記載のポリイミド化合物。

    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    (上記式中、
     Lは、下記連結基群から選択される連結基であり、
    Figure JPOXMLDOC01-appb-C000007
     上記式中、
     R~R20は、それぞれ独立して、水素、置換のアルキル基および無置換のアルキル基からなる群より選択され、*は結合位置を表す。)
  9.  前記酸無水物が、下記一般式(8)および/または(9)で表される、請求項7に記載のポリイミド化合物。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    (上記式中、
     Lは、下記連結基群から選択される連結基であり、

    Figure JPOXMLDOC01-appb-C000010
     上記式中、
     Xは、フルオロ基、クロロ基、ブロモ基およびヨード基から選択されるハロゲン基であり、
     R21~R30は、それぞれ独立して、水素、置換のアルキル基および無置換のアルキル基からなる群より選択され、
     *は結合位置を表す。)
  10.  請求項6~9のいずれか一項に記載のポリイミド化合物を含んでなる、成形物。
PCT/JP2018/001205 2017-01-27 2018-01-17 ジアミン化合物、並びにそれを用いたポリイミド化合物および成形物 WO2018139311A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880001194.3A CN110198926B (zh) 2017-01-27 2018-01-17 二胺化合物、以及使用其的聚酰亚胺化合物及成型物
KR1020187022249A KR101922417B1 (ko) 2017-01-27 2018-01-17 디아민 화합물, 그리고 그것을 이용한 폴리이미드 화합물 및 성형물
US16/481,090 US10683259B2 (en) 2017-01-27 2018-01-17 Diamine compound, and polyimide compound and molded product using the same
EP18744339.5A EP3575281B1 (en) 2017-01-27 2018-01-17 Diamine compound, and polyimide compound and molded article in which said diamine compound is used
US16/868,705 US11124474B2 (en) 2017-01-27 2020-05-07 Diamine compound, and polyimide compound and molded product using the same
US16/868,657 US11136286B2 (en) 2017-01-27 2020-05-07 Diamine compound, and polyimide compound and molded product using the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017-013580 2017-01-27
JP2017013580A JP6240799B1 (ja) 2017-01-27 2017-01-27 ジアミン化合物の合成方法、並びにこの方法により合成されたジアミン化合物を用いたポリイミド化合物の合成方法
JP2017013567A JP6240798B1 (ja) 2017-01-27 2017-01-27 ジアミン化合物、並びにそれを用いたポリイミド化合物および成形物
JP2017-013567 2017-01-27
JP2017-226242 2017-11-24
JP2017-226250 2017-11-24
JP2017226242A JP6812002B2 (ja) 2017-11-24 2017-11-24 ポリイミド化合物、ポリアミド酸および該ポリイミド化合物を含む成形物
JP2017226250A JP6844850B2 (ja) 2017-11-24 2017-11-24 ポリイミド化合物、ポリアミド酸および該ポリイミド化合物を含む成形物

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/481,090 A-371-Of-International US10683259B2 (en) 2017-01-27 2018-01-17 Diamine compound, and polyimide compound and molded product using the same
US16/868,705 Division US11124474B2 (en) 2017-01-27 2020-05-07 Diamine compound, and polyimide compound and molded product using the same
US16/868,657 Division US11136286B2 (en) 2017-01-27 2020-05-07 Diamine compound, and polyimide compound and molded product using the same

Publications (1)

Publication Number Publication Date
WO2018139311A1 true WO2018139311A1 (ja) 2018-08-02

Family

ID=62979414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001205 WO2018139311A1 (ja) 2017-01-27 2018-01-17 ジアミン化合物、並びにそれを用いたポリイミド化合物および成形物

Country Status (6)

Country Link
US (3) US10683259B2 (ja)
EP (1) EP3575281B1 (ja)
KR (1) KR101922417B1 (ja)
CN (1) CN110198926B (ja)
TW (1) TWI649298B (ja)
WO (1) WO2018139311A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6690057B1 (ja) * 2019-02-01 2020-04-28 ウィンゴーテクノロジー株式会社 ポリイミド化合物及び該ポリイミド化合物を含む成形物
JP2020066694A (ja) * 2018-10-25 2020-04-30 味の素株式会社 樹脂組成物
WO2021029243A1 (ja) * 2019-08-09 2021-02-18 太陽ホールディングス株式会社 着色樹脂組成物、硬化物および積層体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233189B2 (ja) * 2018-09-21 2023-03-06 太陽ホールディングス株式会社 感光性樹脂組成物、ドライフィルム、硬化物および電子部品
CN112225897A (zh) * 2020-10-19 2021-01-15 深圳市道尔顿电子材料有限公司 含芳香酯结构的三氟甲基取代芳香二胺化合物及其制备方法
CN114478291A (zh) * 2022-03-10 2022-05-13 西安爱德克美新材料有限公司 一种聚酰亚胺的单体二胺化合物的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103441A (ja) * 1989-07-31 1991-04-30 General Electric Co <Ge> アセチレンビス‐フタル酸化合物およびそれから形成されたポリイミド
JPH05214101A (ja) * 1992-02-06 1993-08-24 Hitachi Ltd 熱可塑型ポリエステルイミドとそれを用いた電子部品および電子装置
JPH07133349A (ja) * 1993-11-10 1995-05-23 Shin Etsu Chem Co Ltd ポリイミド共重合体及びその製造方法
JP2003238684A (ja) * 2002-02-15 2003-08-27 New Japan Chem Co Ltd ポリアミド酸溶液の製造方法
JP2007112990A (ja) * 2005-09-20 2007-05-10 Nippon Steel Chem Co Ltd エステル基含有ポリイミド、その前駆体及びこれらの製造方法
WO2010027020A1 (ja) * 2008-09-03 2010-03-11 株式会社カネカ 2-フェニル-4,4’-ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板
WO2010093021A1 (ja) * 2009-02-12 2010-08-19 本州化学工業株式会社 エステル基含有テトラカルボン酸二無水物、ポリエステルポリイミド前駆体、ポリエステルイミドおよびこれらの製造方法
JP2014173071A (ja) 2013-03-13 2014-09-22 Sumitomo Bakelite Co Ltd ポリイミドフィルム
JP6240799B1 (ja) * 2017-01-27 2017-11-29 ウィンゴーテクノロジー株式会社 ジアミン化合物の合成方法、並びにこの方法により合成されたジアミン化合物を用いたポリイミド化合物の合成方法
JP6240798B1 (ja) * 2017-01-27 2017-11-29 ウィンゴーテクノロジー株式会社 ジアミン化合物、並びにそれを用いたポリイミド化合物および成形物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007169585A (ja) * 2005-09-20 2007-07-05 Manac Inc 低線熱膨張係数を有するポリエステルイミドおよびその前駆体、ならびにこれらの製造方法
JP5009670B2 (ja) * 2007-04-05 2012-08-22 旭化成イーマテリアルズ株式会社 ポリエステルイミド前駆体及びポリエステルイミド
TWI470353B (zh) * 2009-03-26 2015-01-21 Nippon Steel & Sumikin Chem Co A photosensitive resin composition and a hardening film
JP5569441B2 (ja) * 2010-08-27 2014-08-13 Jsr株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
WO2013144991A1 (ja) * 2012-03-26 2013-10-03 日本化薬株式会社 銅張積層板及びその製造方法、並びに該銅張積層板を含む配線基板
WO2017051827A1 (ja) * 2015-09-24 2017-03-30 旭化成株式会社 ポリイミド前駆体、樹脂組成物および樹脂フィルムの製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03103441A (ja) * 1989-07-31 1991-04-30 General Electric Co <Ge> アセチレンビス‐フタル酸化合物およびそれから形成されたポリイミド
JPH05214101A (ja) * 1992-02-06 1993-08-24 Hitachi Ltd 熱可塑型ポリエステルイミドとそれを用いた電子部品および電子装置
JPH07133349A (ja) * 1993-11-10 1995-05-23 Shin Etsu Chem Co Ltd ポリイミド共重合体及びその製造方法
JP2003238684A (ja) * 2002-02-15 2003-08-27 New Japan Chem Co Ltd ポリアミド酸溶液の製造方法
JP2007112990A (ja) * 2005-09-20 2007-05-10 Nippon Steel Chem Co Ltd エステル基含有ポリイミド、その前駆体及びこれらの製造方法
WO2010027020A1 (ja) * 2008-09-03 2010-03-11 株式会社カネカ 2-フェニル-4,4’-ジアミノジフェニルエーテル類を用いた可溶性末端変性イミドオリゴマー、およびワニス、およびその硬化物、およびそのイミドプリプレグ、および耐熱性に優れる繊維強化積層板
WO2010093021A1 (ja) * 2009-02-12 2010-08-19 本州化学工業株式会社 エステル基含有テトラカルボン酸二無水物、ポリエステルポリイミド前駆体、ポリエステルイミドおよびこれらの製造方法
JP2014173071A (ja) 2013-03-13 2014-09-22 Sumitomo Bakelite Co Ltd ポリイミドフィルム
JP6240799B1 (ja) * 2017-01-27 2017-11-29 ウィンゴーテクノロジー株式会社 ジアミン化合物の合成方法、並びにこの方法により合成されたジアミン化合物を用いたポリイミド化合物の合成方法
JP6240798B1 (ja) * 2017-01-27 2017-11-29 ウィンゴーテクノロジー株式会社 ジアミン化合物、並びにそれを用いたポリイミド化合物および成形物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ATSUSHI MORIKAWA ET AL.: "Synthesis and Characterization of Novel Aromatic Polyimides from Bis(4-amino-2-biphenyl)ether and Aromatic Tetracarboxylic Dianhydrides", POLYMER JOURNAL, vol. 37, no. 10, 8 October 2005 (2005-10-08), pages 759 - 766, XP055613871, ISSN: 0032-3896, DOI: 10.1295/polymj.37.759 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020066694A (ja) * 2018-10-25 2020-04-30 味の素株式会社 樹脂組成物
JP7087912B2 (ja) 2018-10-25 2022-06-21 味の素株式会社 樹脂組成物
TWI846740B (zh) * 2018-10-25 2024-07-01 日商味之素股份有限公司 樹脂組成物
JP6690057B1 (ja) * 2019-02-01 2020-04-28 ウィンゴーテクノロジー株式会社 ポリイミド化合物及び該ポリイミド化合物を含む成形物
WO2020157953A1 (ja) * 2019-02-01 2020-08-06 ウィンゴーテクノロジー株式会社 ポリイミド化合物及び該ポリイミド化合物を含む成形物
CN111770951A (zh) * 2019-02-01 2020-10-13 胜高科技股份有限公司 聚酰亚胺化合物及包含该聚酰亚胺化合物的成型物
EP3919548A4 (en) * 2019-02-01 2022-10-12 Wingo Technology Co., Ltd. POLYIMIDE COMPOUND AND MOLDED ARTICLE CONTAINING SUCH POLYIMIDE COMPOUND
CN111770951B (zh) * 2019-02-01 2023-04-11 胜高科技股份有限公司 聚酰亚胺化合物及包含该聚酰亚胺化合物的成型物
US12269949B2 (en) 2019-02-01 2025-04-08 Wingo Technology Co., Ltd. Polyimide compound and molded article comprising the polyimide compound
WO2021029243A1 (ja) * 2019-08-09 2021-02-18 太陽ホールディングス株式会社 着色樹脂組成物、硬化物および積層体
WO2021028960A1 (ja) * 2019-08-09 2021-02-18 太陽ホールディングス株式会社 着色樹脂組成物、硬化物および積層体

Also Published As

Publication number Publication date
US10683259B2 (en) 2020-06-16
TW201833074A (zh) 2018-09-16
TWI649298B (zh) 2019-02-01
EP3575281B1 (en) 2023-08-23
US20200262782A1 (en) 2020-08-20
US20200262783A1 (en) 2020-08-20
US11136286B2 (en) 2021-10-05
CN110198926B (zh) 2021-04-16
EP3575281C0 (en) 2023-08-23
KR20180099863A (ko) 2018-09-05
US20190389795A1 (en) 2019-12-26
EP3575281A4 (en) 2020-11-18
KR101922417B1 (ko) 2018-11-27
CN110198926A (zh) 2019-09-03
EP3575281A1 (en) 2019-12-04
US11124474B2 (en) 2021-09-21

Similar Documents

Publication Publication Date Title
JP6240798B1 (ja) ジアミン化合物、並びにそれを用いたポリイミド化合物および成形物
JP6690057B1 (ja) ポリイミド化合物及び該ポリイミド化合物を含む成形物
WO2018139311A1 (ja) ジアミン化合物、並びにそれを用いたポリイミド化合物および成形物
JP4498382B2 (ja) アミン酸エステルオリゴマー、それを含有するポリイミド樹脂のための前駆体組成物、及び使用
TWI788288B (zh) 聚醯亞胺樹脂
KR0185795B1 (ko) 폴리이미드
JP4998040B2 (ja) ポリアミック酸のイミド化重合体絶縁膜および膜形成組成物とその製造方法
JP5010357B2 (ja) 新規ポリアミド酸、ポリイミド並びにその用途
JP6240799B1 (ja) ジアミン化合物の合成方法、並びにこの方法により合成されたジアミン化合物を用いたポリイミド化合物の合成方法
JP2008308551A (ja) 新規ポリアミド酸、ポリイミド並びにその用途
JPH0214365B2 (ja)
JP6844850B2 (ja) ポリイミド化合物、ポリアミド酸および該ポリイミド化合物を含む成形物
TW201815891A (zh) 含金剛烷之聚醯亞胺之製備方法
CN115038737B (zh) 聚酰亚胺树脂、聚酰亚胺清漆和聚酰亚胺薄膜
JP6812002B2 (ja) ポリイミド化合物、ポリアミド酸および該ポリイミド化合物を含む成形物
WO2023203897A1 (ja) 新規なジアミン及びその製造方法、並びに該ジアミンより製造されるポリアミック酸及びポリイミド
JP2022133200A (ja) ポリアミドイミド及びその前駆体、ならびにポリアミドイミドフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187022249

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187022249

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018744339

Country of ref document: EP

Effective date: 20190827

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载