+

WO2018139399A1 - 電力増幅モジュール、電力増幅モジュールの制御方法および高周波フロントエンド回路 - Google Patents

電力増幅モジュール、電力増幅モジュールの制御方法および高周波フロントエンド回路 Download PDF

Info

Publication number
WO2018139399A1
WO2018139399A1 PCT/JP2018/001741 JP2018001741W WO2018139399A1 WO 2018139399 A1 WO2018139399 A1 WO 2018139399A1 JP 2018001741 W JP2018001741 W JP 2018001741W WO 2018139399 A1 WO2018139399 A1 WO 2018139399A1
Authority
WO
WIPO (PCT)
Prior art keywords
output mode
circuit
output
power
amplification module
Prior art date
Application number
PCT/JP2018/001741
Other languages
English (en)
French (fr)
Inventor
正和 廣部
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018139399A1 publication Critical patent/WO2018139399A1/ja
Priority to US16/519,385 priority Critical patent/US10804861B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0261Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the polarisation voltage or current, e.g. gliding Class A
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/302Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in bipolar transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/171A filter circuit coupled to the output of an amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/18Indexing scheme relating to amplifiers the bias of the gate of a FET being controlled by a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/0441Circuits with power amplifiers with linearisation using feed-forward

Definitions

  • the present invention relates to a power amplification module, a method for controlling the power amplification module, and a high-frequency front-end circuit.
  • a constant voltage source is used regardless of the output power from the power amplifier.
  • a constant voltage source is used in a mode corresponding to a case where the output power is small (low output mode)
  • the gain increases as the output power increases and the linearity cannot be maintained. Therefore, in the low output mode, it is preferable to use a constant current source in order to maintain linearity.
  • a constant current source is used when the output power is large, there is a problem that the gain decreases as the output power increases and the linearity in the vicinity of the saturated output power cannot be maintained.
  • an object of the present invention is to provide a power amplification module, a control method for the power amplification module, and a high-frequency front-end circuit capable of realizing linear operation in both the high output mode and the low output mode.
  • one aspect of a power amplifier module includes an amplifier circuit that amplifies a high-frequency signal including an amplitude modulation component, a bias circuit that biases the amplifier circuit as an operating point, and the bias circuit
  • a constant voltage generation circuit that supplies a constant voltage to the bias circuit, a constant current generation circuit that supplies a constant current to the bias circuit, and a connection destination of an input terminal of the bias circuit is switched to the constant voltage generation circuit or the constant current generation circuit
  • a switching unit that performs a switching operation; and a control unit that controls a switching operation of the switching unit according to an output mode of a high-frequency signal amplified by the amplifier circuit, wherein the control unit has the output mode of the amplifier circuit In the first output mode in which a high-frequency signal having a predetermined output power or higher is output from, the constant voltage generation circuit is connected to the input terminal of the bias circuit.
  • the control unit switches the switching unit to connect the constant voltage generation circuit to the input terminal of the bias circuit.
  • the linearity of the gain of the amplifier circuit can be maintained in the first output mode.
  • the control unit switches the switching unit to connect the constant current generation circuit to the input terminal of the bias circuit.
  • the second output mode an increase in gain of the amplifier circuit accompanying an increase in output power is suppressed, and linearity can be maintained. Therefore, it is possible to provide a power amplification module capable of realizing linear operation in both the first output mode and the second output mode. Thereby, linear operation can be realized even in a state where the idle current is kept low in the power amplification module.
  • the control unit may further determine the output mode as the first output mode or the second output mode when a high-frequency signal including the amplitude modulation component is input to the amplifier circuit. Good.
  • the control unit determines an output mode according to, for example, an output mode signal received from outside the control unit, and according to the determined output mode Switching of the switching unit can be performed. Therefore, it is possible to provide a power amplification module capable of realizing linear operation in both the first output mode and the second output mode.
  • control unit may determine the output mode as the second output mode during standby when the output of the amplifier circuit is suppressed.
  • a measuring unit configured to measure output power of the amplifier circuit; and the control unit sets the output mode to the first output when the output power measured by the measuring unit is equal to or greater than the predetermined output power.
  • the output mode may be determined as the second output mode.
  • the power output from the amplifier circuit is measured by the measurement unit, and the output mode is determined from the measured power. Therefore, the output mode is selected according to the actual output, and the linear operation of the power amplification module is realized. be able to.
  • the predetermined output power may be 17 dBm.
  • the linear operation of the power amplification module can be realized in communication using at least the 3G system and the 4G system.
  • an output mode of the high frequency signal output from the amplification circuit is set to a predetermined value.
  • the first output mode in which a high frequency signal equal to or higher than the output power is output or the second output mode in which power less than the predetermined output power is output is determined, and the output mode is the first output mode.
  • a switching unit connects a constant voltage generation circuit that supplies a constant voltage to an input terminal of a bias circuit that biases the amplifier circuit to an operating point, and the output mode is the second output mode.
  • a constant current generating circuit for supplying a constant current is connected to the input terminal of the bias circuit by the switching unit.
  • the control unit switches the switching unit to connect the constant voltage generation circuit to the input terminal of the bias circuit.
  • the linearity of the gain of the amplifier circuit can be maintained in the first output mode.
  • the control unit switches the switching unit to connect the constant current generation circuit to the input terminal of the bias circuit.
  • the second output mode an increase in gain of the amplifier circuit accompanying an increase in output power is suppressed, and linearity can be maintained. Therefore, it is possible to provide a power amplification module capable of realizing linear operation in both the first output mode and the second output mode. Thereby, linear operation can be realized even in a state where the idle current is kept low in the power amplification module.
  • the predetermined output power may be 17 dBm.
  • the linear operation of the power amplification module can be realized in communication using at least the 3G system and the 4G system.
  • An aspect of the high-frequency front-end circuit according to the present invention is an RFIC having a power amplification module having the above-described characteristics and a determination unit that determines an output mode of a high-frequency signal amplified by the amplification circuit of the power amplification module.
  • the control unit switches the switching unit to connect the constant voltage generation circuit or the current generation circuit to the input terminal of the bias circuit. Therefore, linear operation can be realized regardless of whether the determined output mode is the first output mode or the second output mode. Thereby, linear operation can be realized even in a state where the idle current is kept low in the high-frequency front-end circuit.
  • the determination unit may determine the output mode based on a distance between the power amplification module and a receiver that receives a high frequency signal output from the power amplification module.
  • the determination unit may determine the predetermined output power based on a distance between the power amplification module and a receiver that receives a high frequency signal output from the power amplification module.
  • a predetermined output power can be determined according to the distance to the receiver and the output mode can be changed, so that linear operation in the output mode is realized and a high-frequency signal is output more efficiently from the front-end circuit. can do.
  • a power amplification module a control method for the power amplification module, and a high-frequency front-end circuit capable of realizing linear operation in both the high output mode and the low output mode.
  • FIG. 1 is a schematic diagram illustrating the configuration of the power amplification module according to the first embodiment.
  • FIG. 2A is a circuit diagram illustrating a configuration of an amplifier circuit and a bias circuit according to the first exemplary embodiment.
  • FIG. 2B is a circuit diagram illustrating another configuration of the amplifier circuit and the bias circuit according to the first embodiment.
  • FIG. 3A is a diagram illustrating the gain of the amplifier circuit when each of the constant voltage generation circuit and the constant current generation circuit is used when the power amplification module according to the first embodiment is in the second mode.
  • FIG. 3B is a diagram illustrating the gain of the amplifier circuit when each of the constant voltage generation circuit and the constant current generation circuit is used when the power amplification module according to the first embodiment is in the first mode.
  • FIG. 4 is a schematic diagram illustrating a configuration of the power amplification module according to the second embodiment.
  • FIG. 5 is a schematic diagram illustrating a configuration of a high-frequency module according to a modification of the embodiment.
  • FIG. 1 is a schematic diagram illustrating a configuration of a high-frequency module 1 according to the present embodiment.
  • the high frequency module 1 is a high frequency module mounted on a mobile communication device (terminal) such as a mobile phone.
  • the high-frequency module 1 transmits and receives high-frequency signals to and from the receiver using, for example, a 3G method or a 4G method using a high-frequency signal including an amplitude modulation component.
  • a receiver here is an apparatus which has a function which can receive the high frequency signal output from the high frequency module 1, for example, refers to another mobile communication apparatus, a base station, etc.
  • the high-frequency module 1 includes a power amplification module 10 and an RFIC 20.
  • the power amplification module 10 amplifies the power of the high-frequency signal RF IN output from the power amplification module 10 to a level necessary for transmission to the receiver, and outputs the amplified high-frequency signal RF OUT .
  • the power amplification module 10 includes an amplification circuit 11, a bias circuit 12, a matching circuit (MN: Matching Network) 13, a constant voltage generation circuit 14, a constant current generation circuit 15, a switching unit 16, and a control unit 17. And a matching circuit 18. Further, the RFIC 20 includes a determination unit 21.
  • MN Matching Network
  • FIG. 2A is a circuit diagram showing the configuration of the amplifier circuit 11 and the bias circuit 12.
  • the amplifier circuit 11 is a circuit that amplifies the high-frequency signal RF IN including the amplitude modulation component input to the amplifier circuit 11 and outputs the amplified high-frequency signal RF OUT .
  • the amplifier circuit 11 includes a transistor 111 as shown in FIG. 2A.
  • the transistor 111 may be, for example, a transistor such as a heterojunction bipolar transistor (HBT: Heterojunction Bipolar Transistor).
  • HBT Heterojunction Bipolar Transistor
  • the high frequency signal RF IN is input to the base of the transistor 111 via the matching circuit 13. Further, the output side (bias output) of a bias circuit 12 described later is connected to the base of the transistor 111.
  • a power supply voltage VCC is applied to the collector of the transistor 111.
  • Supply voltage V CC is, for example, a predetermined level of voltage generated by the DCDC converter.
  • An amplified high frequency signal RF OUT is output from the collector of the transistor 111.
  • the amplified high frequency signal RF OUT is further output to the outside of the power amplification module 10 via the matching circuit 18.
  • the amplifier circuit 11 may have a configuration in which a resistor is connected to the base of the transistor 111 and an inductor is connected to the collector of the transistor 111. Further, the voltage applied to the collector of the transistor 111 may be the battery voltage V BAT supplied from a battery used in a mobile communication device or the like, instead of the power supply voltage VCC at a predetermined level.
  • the bias circuit 12 uses the constant voltage V REF supplied from the constant voltage generation circuit 14 described later or the constant current I REF supplied from the constant current generation circuit 15 as an operating point for the transistor 111 constituting the amplifier circuit 11. This is a circuit for biasing.
  • the bias circuit 12 includes transistors 121, 122, and 123 as shown in FIG. 2A.
  • the transistors 121, 122, and 123 are, for example, transistors such as HBT.
  • Transistors 122 and 123 are connected in series between the base of the transistor 121 and the ground.
  • a constant voltage V REF supplied from a constant voltage generation circuit 14 described later and a constant current I REF supplied from the constant current generation circuit 15 are applied to the base of the transistor 121.
  • a battery voltage V BAT is applied to the collector of the transistor 121.
  • the emitter of the transistor 121 is a bias output of the bias circuit 12 and is connected to the base of the transistor 111 in the amplifier circuit 11.
  • the bias circuit 12 may further have a resistance at the base and collector of the transistor 121.
  • Matching circuits 13 and 18 are circuits for matching the input / output impedance of the amplifier circuit 11.
  • the matching circuits 13 and 18 are configured using, for example, capacitors and inductors.
  • the matching circuit 13 is provided on the input side of the amplifier circuit 11, and the matching circuit 18 is provided on the output side of the amplifier circuit 11.
  • FIG. 2B is a circuit diagram showing another configuration of the amplifier circuit 11 and the bias circuit 12.
  • the amplifier circuit 11 and the bias circuit 12 may have a configuration in which, for example, an amplifier circuit 11a and a bias circuit 12a, and an amplifier circuit 11b and a bias circuit 12b are arranged in two stages.
  • the matching circuit 13a is connected to the input side of the amplifier circuit 11a
  • the matching circuit 13b is connected to the input side of the amplifier circuit 11b.
  • the gain of the amplifier circuit 11 can be increased by configuring the amplifier circuit 11 and the bias circuit 12 in a plurality of stages. Increasing the gain of the amplifier circuit 11 also increases the influence of fluctuations in the bias output from the bias circuit 12, but since the voltage supplied to the bias circuit 12 is a constant voltage or a constant current, fluctuations in the bias output are suppressed. The Thereby, the fluctuation
  • the constant voltage generation circuit 14 is a circuit serving as a drive source for the bias circuit 12. Specifically, a constant voltage V REF is generated from the battery voltage V BAT and supplied to the bias circuit 12. Thereby, the bias circuit 12 can supply a constant voltage to the base of the amplifier circuit 11.
  • the constant voltage generation circuit 14 includes, for example, a band gap circuit, an operational amplifier, a resistor, and a capacitor.
  • Bandgap circuit is the supply voltage such as a battery voltage V BAT, and generates a bandgap reference voltage independent of variations in the power supply voltage (e.g., about 1.2V).
  • a non-inverting amplifier circuit is configured by the operational amplifier and the resistor, and the constant voltage V REF is generated by amplifying the band gap reference voltage with a gain corresponding to the resistance value of each resistor by the non-inverting amplifier circuit.
  • the transistor constituting the operational amplifier may be, for example, a MOSFET or a bipolar transistor.
  • the capacitor is a decoupling capacitor for suppressing the influence of the current fed back from the amplifier circuit 11. Note that the configuration of the constant voltage generation circuit 14 is not limited to the configuration described above, and may be another configuration.
  • the constant voltage generation circuit 14 and the amplifier circuit 11 may be formed on the same substrate or different substrates.
  • the constant voltage generation circuit 14 may be configured using a MOSFET (MOS Field-Effect Transistor), and the amplifier circuit 11 may be configured using a transistor such as a heterojunction bipolar transistor (HBT).
  • MOSFET MOS Field-Effect Transistor
  • HBT heterojunction bipolar transistor
  • SiGe, GaAs, InP, GaN, or the like may be used as the material of the substrate constituting the HBT.
  • the constant current generation circuit 15 is a circuit that serves as a drive source for the bias circuit 12.
  • the constant current generation circuit 15 generates a constant current I REF and supplies it to the bias circuit 12. Thereby, the bias circuit 12 can supply a constant current to the base of the amplifier circuit 11.
  • the constant current generation circuit 15 may be composed of an operational amplifier, a transistor, and a resistor.
  • the resistor is connected to the drain of the transistor
  • the operational amplifier has a bandgap reference voltage applied to the non-inverting input terminal
  • the inverting input terminal is connected to the connection point between the transistor and the resistor.
  • the output terminal of the operational amplifier is connected to the gate of the transistor.
  • a P-type MOS transistor may be used as the transistor.
  • the switching unit 16 is a circuit that performs a switching operation for switching the connection destination of the input end of the bias circuit 12 to the constant voltage generation circuit 14 or the constant current generation circuit 15.
  • the switching unit 16 has a switch 16a.
  • the switch 16a may be, for example, a transistor switch, or a contact-noncontact switch that switches on and off by bringing a plurality of conductors into contact or noncontact.
  • the switching unit 16 connects the connection destination of the bias circuit 12 to the constant voltage generation circuit 14 or the constant current generation under the control of the control unit 17 described later according to the output mode of the high frequency signal including the amplitude modulation component amplified by the amplifier circuit 11.
  • Switch to circuit 15. As the output mode, a high output mode in which a high frequency signal equal to or higher than a predetermined output power is output and a low output mode in which power less than the predetermined output power is output are set.
  • the low output mode is selected. At the time of standby when the output of the amplifier circuit 11 is suppressed, the low output mode may be set.
  • the high output mode corresponds to the first mode
  • the low output mode corresponds to the second mode.
  • the predetermined output power is, for example, 17 dBm in the case of 3G system or 4G system. Therefore, the linear operation of the power amplification module can be realized in communication using at least the 3G system and the 4G system.
  • the predetermined output power is not limited to this, but may be other values of output power.
  • the control unit 17 is a control circuit for controlling the switching operation of the switching unit 16.
  • the control unit 17 may be a microcomputer, for example.
  • the control unit 17 may connect the input terminal of the bias circuit 12 to the constant current generation circuit 15 in the low output mode, and generate the constant voltage in the high output mode.
  • the operation of the switch 16 a of the switching unit 16 is controlled so as to be the circuit 14.
  • the RFIC 20 is an IC in which most of the high-frequency analog transmission / reception circuit and its control circuit necessary for a mobile communication device are integrated except for a duplexer, a transmission power amplifier, an antenna switch, and the like.
  • the RFIC 20 has a determination unit 21 as shown in FIG.
  • the determination unit 21 determines whether the output mode of the amplifier circuit 11 is set to the high output mode or the low output mode.
  • the determination unit 21 is not limited to determining a preset output mode, and the output mode is set according to the distance between the receiver that receives the power output from the high-frequency module 1 and the high-frequency module 1 as described later. It may be determined.
  • FIG. 3A is a diagram illustrating the gain of the amplifier circuit 11 when the constant voltage generation circuit 14 and the constant current generation circuit 15 are used when the power amplification module 10 operates in the low output mode.
  • FIG. 3B is a diagram illustrating the gain of the amplifier circuit when each of the constant voltage generation circuit 14 and the constant current generation circuit 15 is used when the power amplification module 10 operates in the high output mode.
  • the horizontal axis represents the power output from the constant voltage generation circuit 14 or the constant current generation circuit 15 in log scale (dBm), and the vertical axis represents the gain of the amplifier circuit 11. .
  • the output mode of the power amplification module 10 is set in advance in the RFIC 20, for example.
  • the output mode of the power amplification module 10 is determined by the determination unit 21 of the RFIC 20 and transmitted to the control unit 17.
  • the output mode may be configured to be transmitted from the outside of the power amplification module 10. For example, it is good also as a structure transmitted from the receiver (base station etc.) which receives the high frequency signal transmitted from the high frequency module 1 which has the power amplification module 10.
  • the control unit 17 can determine an output mode according to an output mode signal received from the outside of the control unit 17, and can switch the switching unit according to the determined output mode.
  • the output mode is the low output mode
  • the transistor 111 of the amplifier circuit 11 is operated near the threshold value by lowering the base voltage of the amplifier circuit 11 in order to suppress the idle current
  • the gain at the time of low output is increased.
  • a constant voltage generation circuit 14 is connected to the bias circuit 12, and a constant voltage is supplied from the constant voltage generation circuit 14 to the bias circuit 12 using the constant voltage generation circuit 14 as a drive source.
  • the base current greatly increases as the power increases, and the gain of the amplifier circuit 11 increases. That is, the linearity of the gain of the amplifier circuit 11 is deteriorated.
  • the control unit 17 switches the switch 16 a of the switching unit 16 to connect the bias circuit 12 to the constant current generation circuit 15.
  • the constant current generation circuit 15 is supplied with a current large enough to flow between the base and emitter of the transistor 111.
  • the bias circuit 12 When the constant current generation circuit 15 is used, the bias circuit 12 has a high impedance, so that the base current can be limited even when power is increased, as shown in FIG. 3A. Therefore, as shown in FIG. 3A, the linearity of the gain of the amplifier circuit 11 can be maintained. Thereby, the linear operation of the power amplification module 10 can be realized in the low output mode.
  • the constant current generation circuit 15 is connected to the bias circuit 12, and the constant current generation circuit 15 is used as a drive source, and the constant current is supplied from the constant current generation circuit 15 to the bias circuit 12. Then, as shown in FIG. 3B, the base current decreases as the power increases. Thereby, the gain (gain) of the amplifier circuit 11 decreases. That is, the linearity of the gain of the amplifier circuit 11 is deteriorated.
  • the control unit 17 switches the switch 16 a of the switching unit 16 to connect the bias circuit 12 to the constant voltage generation circuit 14.
  • the bias circuit 12 has a low impedance, so that power can be supplied without limiting the base current even if the power is increased. Therefore, as shown in FIG. 3B, the linearity can be maintained without decreasing the gain of the amplifier circuit 11. Thereby, the linear operation of the power amplification module 10 can be realized in the high output mode.
  • the control unit 17 may determine the output mode as the high output mode or the low output mode. Further, the control unit 17 may determine the output mode as the low output mode during standby when the output of the amplifier circuit 11 is suppressed.
  • the standby time is when, for example, power that can provide the minimum output power necessary to maintain communication with the receiver is input to the amplifier circuit 11. Thereby, idle current at the time of standby can be reduced, and power saving can be realized.
  • the control unit 17 switches the switch 16a of the switching unit 16 to be fixed to the input terminal of the bias circuit 12.
  • the current generation circuit 15 is connected.
  • the linearity of the gain of the amplifier circuit 11 can be maintained in the low output mode.
  • the control unit 17 switches the switch 16 a of the switching unit 16 to connect the constant voltage generation circuit 14 to the input terminal of the bias circuit 12. Thereby, in the high output mode, the linearity can be maintained without reducing the gain of the amplifier circuit 11.
  • FIG. 4 is a schematic diagram showing the configuration of the power amplification module 210 according to the present embodiment.
  • the power amplification module 210 according to the present embodiment is different from the power amplification module 10 according to the first embodiment in that the power amplification module 210 includes a measurement unit 211.
  • the measurement unit 211 is connected to the output terminal of the high-frequency module 2.
  • the measurement unit 211 measures (detects) the reception level (power) of the high-frequency module 2 transmitted from the receiver, and transmits the measured reception level to the determination unit 21.
  • the measurement unit 211 may be provided in a coupler (not shown) in the high-frequency module 2.
  • the reception level is determined according to the distance between the receiver and the high frequency module 2, and the output voltage of the high frequency module 1 is determined according to the reception level.
  • the reception level measured by the measurement unit 211 is determined by the determination unit 21 as to whether it is greater than a predetermined power. If the reception level is greater than the predetermined power, the determination unit 21 determines that the mode is the high output mode and notifies the control unit 17 that the mode is the high output mode. The control unit 17 switches the switch 16 a of the switching unit 16 to connect the bias circuit 12 to the constant voltage generation circuit 14. Thereby, the linear operation of the power amplification module 210 can be realized in the high output mode.
  • the determination unit 21 determines that the output mode is the low output mode, and notifies the control unit 17 that the output mode is the low output mode.
  • the control unit 17 switches the switch 16 a of the switching unit 16 to connect the bias circuit 12 to the constant current generation circuit 15. Thereby, the linear operation of the power amplification module 210 can be realized in the low output mode.
  • the power amplifying module 210 includes the measurement unit 211, the reception level of the high-frequency module 2 is measured by the measurement unit 211, and the output mode is set according to the measured reception level. It is determined.
  • the linear operation of the power amplification module 210 can be realized regardless of whether the output mode of the high-frequency module 2 is determined as the high output mode or the low output mode according to the reception level.
  • the high-frequency module 2 is not limited to the configuration including the power amplification module 210 and the RFIC 20 as described above, and may include other configurations.
  • FIG. 5 is a schematic diagram showing the configuration of the high-frequency module 3 according to a modification of the embodiment.
  • the high frequency module 3 may be configured to include, for example, the power amplification module 10, the RFIC 20, the filter 30, the switch 40, and the coupler 50 described above.
  • the power amplifying module 10, the RFIC 20, the filter 30, and the switch 40 constitute a high frequency front end circuit 60.
  • the high-frequency front-end circuit 60 is a circuit that performs filtering on the high-frequency signal amplified by the power amplification module 10 and switches between a transmission signal transmitted to the receiver and a reception signal received from the receiver. .
  • the high frequency signal output from the high frequency front end circuit 60 is transmitted from the antenna 70 to the receiver via the coupler 50.
  • the RFIC 20 includes the determination unit 21 as described above.
  • the determination unit 21 determines the output mode based on the distance between the power amplification module 10 and the receiver that receives the high-frequency signal output from the power amplification module 10.
  • the determination unit 21 is not limited to the output mode, and determines the output mode based on the distance between the power amplification module 10 and the receiver that receives the high-frequency signal output from the power amplification module 10.
  • a predetermined output value may be determined.
  • the high frequency signal output from the power amplification module 10 includes a high frequency signal output from the power amplification module 10 and output from the high frequency module 3 via another configuration such as a filter.
  • the coupler 50 is connected to a path between the high-frequency front end circuit 60 and the antenna 70, and performs input / output impedance matching between the high-frequency front end circuit 60 and the antenna 70.
  • the coupler 50 may be provided with the measurement unit 211 shown in the second embodiment.
  • the high-frequency front-end circuit 60 only needs to include at least the power amplification module 10 and the RFIC 20, and may be configured not to include the filter 30, the switch 40, and the like described above.
  • the high-frequency front end circuit 60 can maintain the linearity of the high-frequency signal output from the high-frequency front end circuit 60 by including at least the power amplification module 10 and the RFIC 20 as described above. Therefore, the linear operation of the high-frequency front end circuit 60 can be realized.
  • the output mode is not limited to two types, and may be three or more types.
  • the predetermined output voltage described above is not limited to 17 dBm, and may be changed as appropriate.
  • the output mode may be set in advance by RFIC, or the output mode set in advance may be transmitted from a device outside the power amplification module. Further, the output mode may be determined from the measured value of the high frequency signal output from the amplifier circuit.
  • the high-frequency module only needs to include at least the power amplification module and the RFIC, and may be configured to include, for example, a coupler, a switch, and a filter in addition to these. Further, the high frequency module may further include a BBIC. Further, the front end circuit only needs to include at least the power amplification module and the RFIC, and may be configured to include a filter, a switch, and the like in addition to these.
  • the configurations of the constant voltage forming circuit and the constant current forming circuit are not limited to those described above, and any configuration may be used as long as they output a constant voltage and a constant current, respectively.
  • the switch constituting the switching unit may be, for example, a transistor switch, or a contact-non-contact switch that switches on and off by bringing a plurality of conductors into contact or non-contact.
  • the present invention can be used for a mobile communication device (terminal) such as a mobile phone, a base station, etc., which includes a high-frequency module having a power amplifier and a transmission device.
  • a mobile communication device such as a mobile phone, a base station, etc.
  • a high-frequency module having a power amplifier and a transmission device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

電力増幅モジュール(10)は、増幅回路(11)と、バイアス回路(12)と、定電圧生成回路(14)と、定電流生成回路(15)と、切替部(16)と、切替部(16)の切り替え動作を制御する制御部(17)とを備え、制御部(17)は、出力モードが、増幅回路(11)から所定の出力電力以上の高周波信号が出力される第1の出力モードである場合に、バイアス回路(12)の入力端に定電圧生成回路(14)を接続させるように切替部(16)を切り替え、増幅回路(11)から所定の出力電力未満の電力が出力される第2の出力モードである場合に、バイアス回路(12)の入力端に定電流生成回路(15)を接続させるように切替部(16)を切り替える。

Description

電力増幅モジュール、電力増幅モジュールの制御方法および高周波フロントエンド回路
 本発明は、電力増幅モジュール、電力増幅モジュールの制御方法および高周波フロントエンド回路に関する。
 近年、複数の変調方式に対して1つのパワーアンプ(PA)で対応するために、変調方式に応じてバイアス回路に接続される電源を切り替えるマルチモードのパワーアンプが開発されている(例えば、特許文献1参照)。
 特許文献1に記載のパワーアンプでは、振幅変調成分を持たない高周波信号をGSM(登録商標)方式(global system for mobile communications)で動作するときには、高効率動作を実現するためにバイアス回路に定電流源を用いる。一方、振幅変調成分を含む高周波信号をEDGE(Enhanced Data GSM(登録商標) Environment)や3G方式で動作するときには、パワーアンプの線形動作を実現するため、バイアス回路に定電圧源を用いている。
米国特許出願公開第2016/018989号明細書
 従来技術にかかるパワーアンプでは、振幅変調成分を含む高周波信号が入力される場合は、パワーアンプからの出力電力の大小にかかわらず、定電圧源を用いている。出力電力が小さい場合に対応したモード(低出力モード)の場合に定電圧源を用いると、出力電力が大きくなるにしたがってゲインが増加し、線形性が保てないという問題がある。したがって、低出力モードの場合には、線形性を保つために、定電流源を用いることが好ましい。一方、出力電力が大きい場合に定電流源を用いると、出力電力が大きくなるにしたがってゲインが低下し、飽和出力電力付近における線形性が保てないという問題がある。
 上記課題に鑑み、本発明は、高出力モードおよび低出力モードのいずれにおいても、線形動作を実現することができる電力増幅モジュール、電力増幅モジュールの制御方法および高周波フロントエンド回路を提供することを目的とする。
 上記目的を達成するために、本発明にかかる電力増幅モジュールの一態様は、振幅変調成分を含む高周波信号を増幅する増幅回路と、前記増幅回路を動作点にバイアスするバイアス回路と、前記バイアス回路に定電圧を供給する定電圧生成回路と、前記バイアス回路に定電流を供給する定電流生成回路と、前記バイアス回路の入力端の接続先を前記定電圧生成回路または前記定電流生成回路に切り替える切り替え動作を行う切替部と、前記増幅回路により増幅される高周波信号の出力モードに応じて前記切替部の切り替え動作を制御する制御部とを備え、前記制御部は、前記出力モードが前記増幅回路から所定の出力電力以上の高周波信号が出力される第1の出力モードである場合に、前記バイアス回路の入力端に前記定電圧生成回路を接続させるように前記切替部を切り替え、前記出力モードが前記増幅回路から前記所定の出力電力未満の電力が出力される第2の出力モードである場合に、前記バイアス回路の入力端に前記定電流生成回路を接続させるように前記切替部を切り替える。
 これにより、出力モードが第1の出力モード(高出力モード)である場合には、制御部は、切替部を切り替えて、バイアス回路の入力端に定電圧生成回路を接続させる。これにより、第1の出力モードにおいて、増幅回路のゲインの線形性を維持することができる。また、出力モードが第2の出力モード(低出力モード)である場合には、制御部は、切替部を切り替えて、バイアス回路の入力端に定電流生成回路を接続させる。これにより、第2の出力モードにおいて、出力電力の増加に伴う増幅回路のゲインの増加が抑制され、線形性を維持することができる。したがって、第1の出力モードおよび第2の出力モードのいずれにおいても、線形動作を実現することができる電力増幅モジュールを提供することができる。これにより、電力増幅モジュールにおいてアイドル電流を低く抑えた状態でも線形動作を実現することができる。
 また、前記制御部は、さらに、前記振幅変調成分を含む高周波信号が前記増幅回路に入力された場合に、前記出力モードを前記第1の出力モードまたは前記第2の出力モードに決定してもよい。
 これにより、制御部は、振幅変調成分を含む高周波信号が増幅回路に入力された場合に、例えば制御部外から受信した出力モード信号に応じて出力モードを決定し、決定した出力モードに応じて切替部の切り替えを行うことができる。よって、第1の出力モードおよび第2の出力モードのいずれにおいても、線形動作を実現することができる電力増幅モジュールを提供することができる。
 また、前記制御部は、前記増幅回路の出力が抑制される待機時に、前記出力モードを前記第2の出力モードに決定してもよい。
 これにより、待機時または受信機(基地局等)との距離が近い場合等における低出力動作時には第2の出力モードで動作するので、低出力動作時におけるアイドル電流を低く抑えることができる。
 また、前記増幅回路の出力電力を測定する測定部を備え、前記制御部は、前記測定部で測定された出力電力が前記所定の出力電力以上である場合に、前記出力モードを前記第1の出力モードに決定し、前記測定部で測定された出力電力が前記所定の出力電力未満である場合に、前記出力モードを前記第2の出力モードに決定してもよい。
 これにより、測定部により増幅回路から出力された電力を測定し、測定した電力から出力モードが決定されるので、実際の出力に応じ出力モードを選択して、電力増幅モジュールの線形動作を実現することができる。
 また、前記所定の出力電力は、17dBmであってもよい。
 これにより、少なくとも3G方式、4G方式を用いた通信において、電力増幅モジュールの線形動作を実現することができる。
 また、本発明にかかる電力増幅モジュールの制御方法の一態様は、振幅変調成分を含む高周波信号が増幅回路に入力された場合に、前記増幅回路から出力される高周波信号の出力モードを、所定の出力電力以上の高周波信号が出力される第1の出力モード、または、前記所定の出力電力未満の電力が出力される第2の出力モードに決定し、前記出力モードが前記第1の出力モードである場合に、切替部により、前記増幅回路を動作点にバイアスするバイアス回路の入力端に、定電圧を供給する定電圧生成回路を接続させ、前記出力モードが前記第2の出力モードである場合に、前記切替部により、前記バイアス回路の入力端に、定電流を供給する定電流生成回路を接続させる。
 出力モードが第1の出力モード(高出力モード)である場合には、制御部は、切替部を切り替えて、バイアス回路の入力端に定電圧生成回路を接続させる。これにより、第1の出力モードにおいて、増幅回路のゲインの線形性を維持することができる。また、出力モードが第2の出力モード(低出力モード)である場合には、制御部は、切替部を切り替えて、バイアス回路の入力端に定電流生成回路を接続させる。これにより、第2の出力モードにおいて、出力電力の増加に伴う増幅回路のゲインの増加が抑制され、線形性を維持することができる。したがって、第1の出力モードおよび第2の出力モードのいずれにおいても、線形動作を実現することができる電力増幅モジュールを提供することができる。これにより、電力増幅モジュールにおいてアイドル電流を低く抑えた状態でも線形動作を実現することができる。
 また、前記所定の出力電力は、17dBmであってもよい。
 これにより、少なくとも3G方式、4G方式を用いた通信において、電力増幅モジュールの線形動作を実現することができる。
 また、本発明にかかる高周波フロントエンド回路の一態様は、上述した特徴を有する電力増幅モジュールと、前記電力増幅モジュールの前記増幅回路により増幅される高周波信号の出力モードを判定する判定部を有するRFICとを備える。
 これにより、RFICの判定部により判定された出力モードに応じて、制御部は、切替部を切り替えて、バイアス回路の入力端に定電圧生成回路または電流生成回路を接続させる。したがって、判定された出力モードが第1の出力モードおよび第2の出力モードのいずれであっても、線形動作を実現することができる。これにより、高周波フロントエンド回路においてアイドル電流を低く抑えた状態でも線形動作を実現することができる。
 また、前記判定部は、前記電力増幅モジュールと、前記電力増幅モジュールから出力される高周波信号を受信する受信機との距離に基づいて、前記出力モードを判定してもよい。
 これにより、受信機との距離に応じて出力モードを変更することができるので、出力モードの線形動作を実現するとともに、フロントエンド回路から効率よく高周波信号を出力することができる。
 また、前記判定部は、前記電力増幅モジュールと、前記電力増幅モジュールから出力される高周波信号を受信する受信機との距離に基づいて、前記所定の出力電力を決定してもよい。
 これにより、受信機との距離に応じて所定の出力電力を決定し、出力モードを変更することができるので、出力モードの線形動作を実現するとともに、フロントエンド回路からより効率よく高周波信号を出力することができる。
 本発明によれば、高出力モードおよび低出力モードのいずれにおいても、線形動作を実現することができる電力増幅モジュール、電力増幅モジュールの制御方法および高周波フロントエンド回路を提供することができる。
図1は、実施の形態1にかかる電力増幅モジュールの構成を示す概略図である。 図2Aは、実施の形態1にかかる増幅回路およびバイアス回路の構成を示す回路図である。 図2Bは、実施の形態1にかかる増幅回路およびバイアス回路の他の構成を示す回路図である。 図3Aは、実施の形態1にかかる電力増幅モジュールが第2のモードである場合に、定電圧生成回路および定電流生成回路のそれぞれを用いたときの増幅回路のゲインを示す図である。 図3Bは、実施の形態1にかかる電力増幅モジュールが第1のモードである場合に、定電圧生成回路および定電流生成回路のそれぞれを用いたときの増幅回路のゲインを示す図である。 図4は、実施の形態2にかかる電力増幅モジュールの構成を示す概略図である。 図5は、実施の形態の変形例にかかる高周波モジュールの構成を示す概略図である。
 以下、本発明の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される、数値、形状、材料、構成要素、構成要素の配置位置および接続形態などは一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化する。
 (実施の形態1)
 以下、実施の形態1にかかる高周波モジュール1および電力増幅モジュール10について、図1~図3Bを用いて説明する。
 [1.高周波モジュールの構成]
 はじめに、高周波モジュール1の構成について説明する。図1は、本実施の形態にかかる高周波モジュール1の構成を示す概略図である。
 高周波モジュール1は、携帯電話等の移動体通信機(端末)に搭載される高周波モジュールである。高周波モジュール1は、例えば振幅変調成分を含む高周波信号を用いた3G方式または4G方式により、受信機と高周波信号の送受信を行う。なお、ここでいう受信機とは、高周波モジュール1から出力された高周波信号を受信することができる機能を有する機器であり、例えば、他の移動体通信機および基地局等をいう。
 図1に示すように、高周波モジュール1は、電力増幅モジュール10と、RFIC20とを備えている。
 電力増幅モジュール10は、電力増幅モジュール10から出力される高周波信号RFINの電力を、受信機に送信するために必要なレベルまで増幅し、増幅された高周波信号RFOUTを出力する。
 電力増幅モジュール10は、増幅回路11と、バイアス回路12と、整合回路(MN:Matching Network)13と、定電圧生成回路14と、定電流生成回路15と、切替部16と、制御部17と、整合回路18とを備えている。また、RFIC20は、判定部21を備えている。
 図2Aは、増幅回路11およびバイアス回路12の構成を示す回路図である。
 増幅回路11は、増幅回路11に入力される振幅変調成分を含む高周波信号RFINを増幅し、増幅された高周波信号RFOUTを出力する回路である。増幅回路11は、図2Aに示すように、トランジスタ111を有している。トランジスタ111は、例えば、ヘテロ接合バイポーラトランジスタ(HBT:Heterojunction Bipolar Transistor)等のトランジスタであってもよい。
 図2Aに示すように、トランジスタ111のベースには、高周波信号RFINが整合回路13を介して入力される。また、トランジスタ111のベースには、後述するバイアス回路12の出力側(バイアス出力)が接続されている。
 トランジスタ111のコレクタには、電源電圧VCCが印加されている。電源電圧VCCは、例えばDCDCコンバータによって生成された所定のレベルの電圧である。また、トランジスタ111のコレクタからは、増幅された高周波信号RFOUTが出力される。増幅された高周波信号RFOUTは、さらに整合回路18を介して電力増幅モジュール10の外部に出力される。
 なお、増幅回路11は、トランジスタ111のベースに抵抗が接続され、トランジスタ111のコレクタにインダクタが接続された構成等であってもよい。また、トランジスタ111のコレクタに印加される電圧は、所定のレベルの電源電圧VCCではなく、例えば移動体通信機等で用いられるバッテリから供給されるバッテリ電圧VBATであってもよい。
 バイアス回路12は、後述する定電圧生成回路14から供給される定電圧VREFまたは定電流生成回路15から供給される定電流IREFを用いて、増幅回路11を構成するトランジスタ111を動作点にバイアスするための回路である。
 バイアス回路12は、図2Aに示すように、トランジスタ121、122および123を有している。トランジスタ121、122および123は、例えば、HBT等のトランジスタである。
 トランジスタ121のベースとグランドとの間には、トランジスタ122および123が直列に接続されている。また、トランジスタ121のベースには、後述する定電圧生成回路14から供給される定電圧VREFおよび定電流生成回路15から供給される定電流IREFが印加される。トランジスタ121のコレクタには、例えばバッテリ電圧VBATが印加される。トランジスタ121のエミッタは、バイアス回路12のバイアス出力であり、増幅回路11におけるトランジスタ111のベースに接続されている。
 なお、バイアス回路12は、トランジスタ121のベースおよびコレクタにさらに抵抗を有していてもよい。
 整合回路13および18は、増幅回路11の入出力のインピーダンスを整合させるための回路である。整合回路13および18は、例えば、キャパシタやインダクタを用いて構成されている。整合回路13は増幅回路11の入力側に設けられ、整合回路18は増幅回路11の出力側に設けられている。
 なお、増幅回路11およびバイアス回路12は、複数段に配置された構成であってもよい。図2Bは、増幅回路11およびバイアス回路12の他の構成を示す回路図である。増幅回路11およびバイアス回路12は、図2Bに示すように、例えば増幅回路11aとバイアス回路12a、増幅回路11bとバイアス回路12bとにより2段に配置された構成であってもよい。この場合、増幅回路11aの入力側には整合回路13aが接続され、増幅回路11bの入力側には整合回路13bが接続されている。
 増幅回路11およびバイアス回路12を複数段の構成とすることにより、増幅回路11のゲインを大きくすることができる。増幅回路11のゲインを大きくすると、バイアス回路12からのバイアス出力の変動の影響も大きくなるが、バイアス回路12に供給される電圧は定電圧または定電流であるため、バイアス出力の変動は抑制される。これにより、増幅回路11のゲインの変動を抑制し、電力増幅モジュール10で増幅される高周波信号の線形性を高めることができる。
 定電圧生成回路14は、バイアス回路12の駆動源となる回路である。具体的には、バッテリ電圧VBATから定電圧VREFを生成し、バイアス回路12に供給する。これにより、バイアス回路12は、増幅回路11のベースに定電圧を供給することができる。
 定電圧生成回路14は、図示を省略するが、例えばバンドギャップ回路、オペアンプ、抵抗、およびキャパシタを有している。バンドギャップ回路は、バッテリ電圧VBAT等の電源電圧から、電源電圧の変動に依存しないバンドギャップ基準電圧(例えば、1.2V程度)を生成する。オペアンプおよび抵抗により非反転増幅回路が構成されており、非反転増幅回路によりバンドギャップ基準電圧を各抵抗の抵抗値に応じたゲインで増幅して定電圧VREFが生成される。オペアンプを構成するトランジスタは、例えば、MOSFETとしてもよいし、バイポーラトランジスタとしてもよい。また、キャパシタは、増幅回路11から帰還する電流の影響を抑制するためのデカップリング容量である。なお、定電圧生成回路14の構成は、上述した構成に限らず、他の構成であってもよい。
 なお、定電圧生成回路14および増幅回路11は、同一の基板に形成されていてもよいし異なる基板に形成されていてもよい。例えば、定電圧生成回路14は、MOSFET(MOS Field-Effect Transistor)を用いて構成され、増幅回路11は、ヘテロ接合バイポーラトランジスタ(HBT)等のトランジスタを用いて構成されてもよい。増幅回路11にHBTを用いる場合、HBTを構成する基板の材料には、例えば、SiGe、GaAs、InP、GaN等を用いてもよい。
 定電流生成回路15は、定電圧生成回路14と同様、バイアス回路12の駆動源となる回路である。定電流生成回路15は、定電流IREFを生成し、バイアス回路12に供給する。これにより、バイアス回路12は、増幅回路11のベースに定電流を供給することができる。
 定電流生成回路15は、図示を省略するが、オペアンプ、トランジスタ、抵抗により構成されていてもよい。例えば、抵抗はトランジスタのドレインに接続され、オペアンプは非反転入力端子にバンドギャップ基準電圧が印加され、反転入力端子がトランジスタと抵抗との接続点に接続されている。オペアンプの出力端子は、トランジスタのゲートに接続されている。トランジスタは、例えばP型MOSトランジスタを用いてもよい。
 切替部16は、バイアス回路12の入力端の接続先を定電圧生成回路14または定電流生成回路15に切り替える切り替え動作を行う回路である。切替部16は、スイッチ16aを有している。スイッチ16aは、例えばトランジスタによるスイッチであってもよいし、複数の導体を接触または非接触状態とすることによりオンオフを切り替える接触-非接触式のスイッチであってもよい。
 切替部16は、増幅回路11で増幅された振幅変調成分を含む高周波信号の出力モードに応じて、後述する制御部17の制御によりバイアス回路12の接続先を定電圧生成回路14または定電流生成回路15に切り替える。出力モードとしては、所定の出力電力以上の高周波信号が出力される高出力モードと、所定の出力電力未満の電力が出力される低出力モードとが設定されている。
 例えば、電力増幅モジュール10を有する高周波モジュール1を備える移動体通信機と受信機との距離が遠いときには、増幅回路11から出力される高周波信号の電力を大きくする必要があるため、高出力モードとする。電力増幅モジュール10を有する高周波モジュール1を備える移動体通信機と受信機との距離が短い場合、または、低ビットレート通信時等の場合には、増幅回路11から出力される高周波信号の電力を大きくする必要はないため、低出力モードとする。増幅回路11の出力が抑制される待機時には、低出力モードとしてもよい。
 なお、本実施の形態において、高出力モードは第1のモード、低出力モードは第2のモードに相当する。また、所定の出力電力とは、例えば3G方式、4G方式の場合には、17dBmである。したがって、少なくとも3G方式、4G方式を用いた通信において、電力増幅モジュールの線形動作を実現することができる。なお、所定の出力電力は、これに限らず、その他の値の出力電力であってもよい。
 制御部17は、切替部16の切り替え動作を制御するための制御回路である。制御部17は、例えばマイコン等であってもよい。制御部17は、例えば低出力モードの場合にはバイアス回路12の入力端の接続先が定電流生成回路15となるように、高出力モードの場合にはバイアス回路12の接続先が定電圧生成回路14となるように、切替部16のスイッチ16aの動作を制御する。
 RFIC20は、移動体通信機に必要な高周波アナログ送受信回路およびその制御回路のうち、デュプレクサ、送信用電力増幅器、アンテナスイッチ等を除く大部分を集積化したICである。
 RFIC20は、図1に示すように、判定部21を有している。判定部21は、増幅回路11の出力モードが高出力モードに設定されているか低出力モードに設定されているかを判定する。判定部21は、あらかじめ設定された出力モードを判定することに限らず、後述するように、高周波モジュール1から出力された電力を受信する受信機と高周波モジュール1との距離に応じて出力モードを判定するものであってもよい。
 [2.電力増幅モジュールの動作]
 次に、電力増幅モジュール10の動作について説明する。図3Aは電力増幅モジュール10が低出力モードで動作する場合に、定電圧生成回路14および定電流生成回路15のそれぞれを用いたときの増幅回路11のゲインを示す図である。図3Bは、電力増幅モジュール10が高出力モードで動作する場合に、定電圧生成回路14および定電流生成回路15のそれぞれを用いたときの増幅回路のゲインを示す図である。なお、図3Aおよび図3Bにおいて、横軸は定電圧生成回路14または定電流生成回路15から出力される電力をログスケール表示(dBm)したもの、縦軸は増幅回路11のゲインを示している。
 電力増幅モジュール10の出力モードは、例えば、RFIC20においてあらかじめ設定されている。電力増幅モジュール10の出力モードは、RFIC20の判定部21において判定され、制御部17に伝達される。なお、出力モードは、電力増幅モジュール10の外部から送信される構成としてもよい。例えば、電力増幅モジュール10を有する高周波モジュール1から送信される高周波信号を受信する受信機(基地局等)から送信される構成としてもよい。制御部17は、例えば制御部17の外部から受信した出力モード信号に応じて出力モードを決定し、決定した出力モードに応じて切替部の切り替えを行うことができる。
 出力モードが低出力モードである場合、一般的に、アイドル電流を抑制するために増幅回路11のベース電圧を下げて増幅回路11のトランジスタ111を閾値付近で動作させると、低出力時の利得が低下する傾向がある。ここで、バイアス回路12に定電圧生成回路14を接続し、定電圧生成回路14を駆動源として、バイアス回路12に定電圧生成回路14から定電圧を供給する。この場合、図3Aに示すように、電力の増加に伴ってベース電流が大きく増加し、増幅回路11の利得(ゲイン)が増加する。つまり、増幅回路11のゲインの線形性が劣化することとなる。
 そこで、出力モードが低出力モードである場合には、バイアス回路12に定電流生成回路15から定電流を供給する。具体的には、出力モードが低出力モードであることが制御部17に伝達されると、制御部17は、切替部16のスイッチ16aを切り替えて、バイアス回路12を定電流生成回路15に接続させる。定電流生成回路15からは、トランジスタ111のベース-エミッタ間に流れる程度の大きさの電流が供給される。
 定電流生成回路15を用いた場合、バイアス回路12はハイインピーダンスとなるため、図3Aに示すように、電力が増加した場合であってもベース電流を制限することができる。したがって、図3Aに示すように、増幅回路11のゲインの線形性を維持することができる。これにより、低出力モードにおいて、電力増幅モジュール10の線形動作を実現することができる。
 また、出力モードが高出力モードである場合に、バイアス回路12に定電流生成回路15を接続し、定電流生成回路15を駆動源として、バイアス回路12に定電流生成回路15から定電流を供給すると、図3Bに示すように、電力の増加に伴ってベース電流は減少する。これにより、増幅回路11の利得(ゲイン)は減少する。つまり、増幅回路11のゲインの線形性が劣化することとなる。
 そこで、出力モードが高出力モードである場合には、バイアス回路12に定電圧生成回路14から定電流を供給する。具体的には、出力モードが高出力モードであることが制御部17に伝達されると、制御部17は、切替部16のスイッチ16aを切り替えて、バイアス回路12を定電圧生成回路14に接続させる。定電圧生成回路14を用いた場合、バイアス回路12はローインピーダンスとなるため、電力を増加してもベース電流を制限することなく電力を供給することができる。したがって、図3Bに示すように、増幅回路11のゲインは減少することなく、線形性を維持することができる。これにより、高出力モードにおいて、電力増幅モジュール10の線形動作を実現することができる。
 ここで、制御部17は、振幅変調成分を含む高周波信号が増幅回路11に入力された場合に、出力モードを高出力モードまたは低出力モードに決定してもよい。また、制御部17は、増幅回路11の出力が抑制される待機時には、出力モードを低出力モードに決定してもよい。待機時とは、例えば、受信機との通信を維持するのに必要な最低限の出力電力が得られるような電力が、増幅回路11に入力されている時である。これにより、待機時のアイドル電流を低減し、省電力化を実現することができる。
 [3.効果等]
 以上、本実施の形態にかかる電力増幅モジュール10によると、出力モードが低出力モードである場合には、制御部17は、切替部16のスイッチ16aを切り替えて、バイアス回路12の入力端に定電流生成回路15を接続させる。これにより、低出力モードにおいて、増幅回路11のゲインの線形性を維持することができる。また、出力モードが高出力モードである場合には、制御部17は、切替部16のスイッチ16aを切り替えて、バイアス回路12の入力端に定電圧生成回路14を接続させる。これにより、高出力モードにおいて、増幅回路11のゲインは減少することなく、線形性を維持することができる。
 したがって、高出力モードおよび低出力モードのいずれにおいても、線形動作を実現することができる。
 (実施の形態2)
 次に、実施の形態2にかかる高周波モジュール2および電力増幅モジュール210について、図4を用いて説明する。図4は、本実施の形態にかかる電力増幅モジュール210の構成を示す概略図である。
 本実施の形態にかかる電力増幅モジュール210が実施の形態1にかかる電力増幅モジュール10と異なる点は、電力増幅モジュール210が測定部211を備えている点である。
 図4に示すように、電力増幅モジュール210において、測定部211は、高周波モジュール2の出力端子に接続されている。測定部211は、受信機から送信された高周波モジュール2の受信レベル(電力)を測定(検出)し、測定した受信レベルを判定部21に伝達する。測定部211は、例えば、高周波モジュール2におけるカプラ(図示せず)に設けられていてもよい。なお、受信レベルは、受信機と高周波モジュール2との距離に応じて決定されており、受信レベルに応じて高周波モジュール1の出力電圧が決定される。
 測定部211で測定された受信レベルは、判定部21において所定の電力よりも大きいか否か判定される。そして、受信レベルが所定の電力よりも大きい場合は、判定部21は、高出力モードと判定し、制御部17に高出力モードであることを伝達する。制御部17は、切替部16のスイッチ16aを切り替えて、バイアス回路12を定電圧生成回路14に接続する。これにより、高出力モードにおいて、電力増幅モジュール210の線形動作を実現することができる。
 また、測定部211で測定された受信レベルが所定の電力よりも小さい場合は、判定部21は、低出力モードと判定し、制御部17に低出力モードであることを伝達する。制御部17は、切替部16のスイッチ16aを切り替えて、バイアス回路12を定電流生成回路15に接続する。これにより、低出力モードにおいて、電力増幅モジュール210の線形動作を実現することができる。
 以上、本実施の形態にかかる電力増幅モジュール210によると、電力増幅モジュール210は測定部211を備え、測定部211により高周波モジュール2の受信レベルを測定し、測定した受信レベルに応じて出力モードが決定される。これにより、高周波モジュール2の出力モードが受信レベルに応じて高出力モードおよび低出力モードのいずれに決定されても、電力増幅モジュール210の線形動作を実現することができる。
 (変形例)
 なお、高周波モジュール2は、上述したように、電力増幅モジュール210とRFIC20とを備える構成に限らず、その他の構成を含んでもよい。
 図5は、実施の形態の変形例に係る高周波モジュール3の構成を示す概略図である。高周波モジュール3は、例えば、上述した電力増幅モジュール10と、RFIC20と、フィルタ30と、スイッチ40と、カプラ50とを備える構成であってもよい。ここで、例えば電力増幅モジュール10と、RFIC20と、フィルタ30と、スイッチ40とにより高周波フロントエンド回路60が構成されている。
 高周波フロントエンド回路60は、電力増幅モジュール10において増幅された高周波信号に対するフィルタリングを行ったり、受信機に送信される送信信号と受信機から受信する受信信号との切り替え等を行ったりする回路である。高周波フロントエンド回路60から出力される高周波信号は、カプラ50を介してアンテナ70から受信機に送信される。
 また、RFIC20は、上述したように、判定部21を備えている。判定部21は、電力増幅モジュール10と、電力増幅モジュール10から出力される高周波信号を受信する受信機との距離に基づいて、出力モードを判定する。このとき、判定部21は、出力モードのみに限らず、電力増幅モジュール10と、電力増幅モジュール10から出力される高周波信号を受信する受信機との距離に基づいて、出力モードを決定するための所定の出力の値を決定してもよい。なお、電力増幅モジュール10から出力される高周波信号とは、電力増幅モジュール10から出力され、フィルタ等他の構成を介して高周波モジュール3から出力される高周波信号を含む。
 また、カプラ50は、高周波フロントエンド回路60とアンテナ70との間の経路に接続され、高周波フロントエンド回路60とアンテナ70との間の入出力インピーダンスの整合を行っている。なお、カプラ50には、実施の形態2に示した測定部211が設けられていてもよい。
 なお、高周波フロントエンド回路60は、少なくとも電力増幅モジュール10とRFIC20を備えていればよく、上述したフィルタ30、スイッチ40等を含まない構成としてもよい。
 高周波フロントエンド回路60は、上述したように少なくとも電力増幅モジュール10とRFIC20を備えることにより、高周波フロントエンド回路60から出力される高周波信号の線形性を維持することができる。したがって、高周波フロントエンド回路60の線形動作を実現することができる。
 (その他の実施の形態)
 なお、本発明は、上述した実施の形態に記載した構成に限定されるものではなく、例えば以下に示す変形例のように、適宜変更を加えてもよい。
 例えば、上述した実施の形態では、高周波信号の出力モードとして、高出力モードと低出力モードの2種類について説明したが、出力モードは2種類に限らず、3種類以上としてもよい。また、上述した所定の出力電圧は、17dBmに限らず、適宜変更してもよい。
 また、出力モードは、RFICによりあらかじめ設定されたものであってもよいし、電力増幅モジュールの外部の機器からあらかじめ設定された出力モードが送信されるものであってもよい。また、出力モードは、増幅回路から出力される高周波信号の測定値から決定されるものであってもよい。
 また、高周波モジュールは、少なくとも電力増幅モジュールとRFICとを備えていればよく、これらに加えて、例えば、カプラと、スイッチと、フィルタとを備える構成であってもよい。また、高周波モジュールは、さらにBBICを備える構成であってもよい。また、フロントエンド回路は、少なくとも電力増幅モジュールとRFICとを備えていればよく、これらに加えて、フィルタ、スイッチ等を備える構成であってもよい。
 また、定電圧形成回路および定電流形成回路の構成は、上述した構成に限らず、それぞれ定電圧および定電流を出力するものであればどのような構成であってもよい。また、切替部を構成するスイッチは、例えばトランジスタによるスイッチであってもよいし、複数の導体を接触または非接触状態とすることによりオンオフを切り替える接触-非接触式のスイッチであってもよい。
 その他、上述の実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本発明の趣旨を逸脱しない範囲で上述の実施の形態における構成要素および機能を任意に組み合わせることで実現される形態も本発明に含まれる。
 本発明は、パワーアンプを有する高周波モジュールおよび送信装置等を備える、携帯電話等の移動体通信機(端末)、基地局等に利用することができる。
 1、2、3 高周波モジュール
 10、210 電力増幅モジュール
 11、11a、11b 増幅回路
 12、12a、12b バイアス回路
 13、13a、13b、18 整合回路
 14 定電圧生成回路
 15 定電流生成回路
 16 切替部
 16a スイッチ
 17 制御部
 20 RFIC
 21 判定部
 30 フィルタ
 40 スイッチ
 50 カプラ
 60 高周波フロントエンド回路
 70 アンテナ
 111、121、122、123 トランジスタ
 211 測定部

Claims (10)

  1.  振幅変調成分を含む高周波信号を増幅する増幅回路と、
     前記増幅回路を動作点にバイアスするバイアス回路と、
     前記バイアス回路に定電圧を供給する定電圧生成回路と、
     前記バイアス回路に定電流を供給する定電流生成回路と、
     前記バイアス回路の入力端の接続先を前記定電圧生成回路または前記定電流生成回路に切り替える切り替え動作を行う切替部と、
     前記増幅回路により増幅される高周波信号の出力モードに応じて前記切替部の切り替え動作を制御する制御部とを備え、
     前記制御部は、
     前記出力モードが前記増幅回路から所定の出力電力以上の高周波信号が出力される第1の出力モードである場合に、前記バイアス回路の入力端に前記定電圧生成回路を接続させるように前記切替部を切り替え、
     前記出力モードが前記増幅回路から前記所定の出力電力未満の電力が出力される第2の出力モードである場合に、前記バイアス回路の入力端に前記定電流生成回路を接続させるように前記切替部を切り替える、
     電力増幅モジュール。
  2.  前記制御部は、さらに、前記振幅変調成分を含む高周波信号が前記増幅回路に入力された場合に、前記出力モードを前記第1の出力モードまたは前記第2の出力モードに決定する、
     請求項1に記載の電力増幅モジュール。
  3.  前記制御部は、前記増幅回路の出力が抑制される待機時に、前記出力モードを前記第2の出力モードに決定する、
     請求項1または2に記載の電力増幅モジュール。
  4.  前記増幅回路の出力電力を測定する測定部を備え、
     前記制御部は、
     前記測定部で測定された出力電力が前記所定の出力電力以上である場合に、前記出力モードを前記第1の出力モードに決定し、
     前記測定部で測定された出力電力が前記所定の出力電力未満である場合に、前記出力モードを前記第2の出力モードに決定する、
     請求項1~3のいずれか1項に記載の電力増幅モジュール。
  5.  前記所定の出力電力は、17dBmである、
     請求項1~4のいずれか1項に記載の電力増幅モジュール。
  6.  電力増幅モジュールの制御方法であって、
     振幅変調成分を含む高周波信号が増幅回路に入力された場合に、前記増幅回路から出力される高周波信号の出力モードを、所定の出力電力以上の高周波信号が出力される第1の出力モード、または、前記所定の出力電力未満の電力が出力される第2の出力モードに決定し、
     前記出力モードが前記第1の出力モードである場合に、切替部により、前記増幅回路を動作点にバイアスするバイアス回路の入力端に、定電圧を供給する定電圧生成回路を接続させ、
     前記出力モードが前記第2の出力モードである場合に、前記切替部により、前記バイアス回路の入力端に、定電流を供給する定電流生成回路を接続させる、
     電力増幅モジュールの制御方法。
  7.  前記所定の出力電力は、17dBmである、
     請求項6に記載の電力増幅モジュールの制御方法。
  8.  請求項1~5のいずれか1項に記載の電力増幅モジュールと、
     前記電力増幅モジュールの前記増幅回路により増幅される高周波信号の出力モードを判定する判定部を有するRFICとを備える、
     高周波フロントエンド回路。
  9.  前記判定部は、前記電力増幅モジュールと、前記電力増幅モジュールから出力される高周波信号を受信する受信機との距離に基づいて、前記出力モードを判定する、
     請求項8に記載の高周波フロントエンド回路。
  10.  前記判定部は、前記電力増幅モジュールと、前記電力増幅モジュールから出力される高周波信号を受信する受信機との距離に基づいて、前記所定の出力電力を決定する、
     請求項8または9に記載の高周波フロントエンド回路。
PCT/JP2018/001741 2017-01-24 2018-01-22 電力増幅モジュール、電力増幅モジュールの制御方法および高周波フロントエンド回路 WO2018139399A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/519,385 US10804861B2 (en) 2017-01-24 2019-07-23 Power amplification module, method for controlling power amplification module, and high-frequency front end circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017010676 2017-01-24
JP2017-010676 2017-01-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/519,385 Continuation US10804861B2 (en) 2017-01-24 2019-07-23 Power amplification module, method for controlling power amplification module, and high-frequency front end circuit

Publications (1)

Publication Number Publication Date
WO2018139399A1 true WO2018139399A1 (ja) 2018-08-02

Family

ID=62978236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001741 WO2018139399A1 (ja) 2017-01-24 2018-01-22 電力増幅モジュール、電力増幅モジュールの制御方法および高周波フロントエンド回路

Country Status (2)

Country Link
US (1) US10804861B2 (ja)
WO (1) WO2018139399A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595518B (zh) * 2021-09-30 2021-12-07 成都明夷电子科技有限公司 一种自适应高可靠性hbt线性功率放大器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045254A1 (fr) * 2000-12-01 2002-06-06 Mitsubishi Denki Kabushiki Kaisha Amplificateur haute-frequence et melangeur haute frequence
JP2004236173A (ja) * 2003-01-31 2004-08-19 Toshiba Corp 電力増幅回路
JP2009164930A (ja) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp 電力増幅器
JP2014053759A (ja) * 2012-09-07 2014-03-20 Mitsubishi Electric Corp 電力増幅器用バイアス回路

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9246443B2 (en) 2013-11-26 2016-01-26 Skyworks Solutions, Inc Multi-mode power amplifier
US9621119B2 (en) * 2015-02-13 2017-04-11 Skyworks Solutions, Inc. Power amplifier bias signal multiplexing
US10020786B2 (en) * 2015-07-14 2018-07-10 Murata Manufacturing Co., Ltd. Power amplification module
JP2017103643A (ja) * 2015-12-02 2017-06-08 株式会社村田製作所 電力増幅回路
US9837965B1 (en) * 2016-09-16 2017-12-05 Peregrine Semiconductor Corporation Standby voltage condition for fast RF amplifier bias recovery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002045254A1 (fr) * 2000-12-01 2002-06-06 Mitsubishi Denki Kabushiki Kaisha Amplificateur haute-frequence et melangeur haute frequence
JP2004236173A (ja) * 2003-01-31 2004-08-19 Toshiba Corp 電力増幅回路
JP2009164930A (ja) * 2008-01-08 2009-07-23 Mitsubishi Electric Corp 電力増幅器
JP2014053759A (ja) * 2012-09-07 2014-03-20 Mitsubishi Electric Corp 電力増幅器用バイアス回路

Also Published As

Publication number Publication date
US10804861B2 (en) 2020-10-13
US20190348954A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
KR101451455B1 (ko) 선형 및 포화 모드에서의 동작을 위한 멀티모드 증폭기
JP3904817B2 (ja) 電力増幅器モジュール
US9240760B2 (en) Power amplifier module
KR100516598B1 (ko) 스위칭가능 전력증폭기, 전력증폭기를 포함하는 무선 장치 및 증폭 방법
US9385660B2 (en) Radio frequency amplifying circuit and power amplifying module
US11431305B2 (en) Power amplifier module and power amplification method
KR100821197B1 (ko) 고효율 혼합모드 전력 증폭기
EP3340461B1 (en) Rf power amplifier bias modulation with programmable stages
KR20080021828A (ko) 선형 전력 증폭기용 자동 바이어스 제어 회로
JP2020072468A (ja) 電力増幅モジュール
JPWO2012098863A1 (ja) 高周波電力増幅器
JP4330549B2 (ja) 高周波電力増幅装置
WO2018139399A1 (ja) 電力増幅モジュール、電力増幅モジュールの制御方法および高周波フロントエンド回路
CN113612458A (zh) 一种可控制偏置电路及功率放大器
US11349437B2 (en) Power amplifier circuit and bias control circuit
KR100950618B1 (ko) 전력 레벨 제어를 갖춘 선형 전력의 효율적인 무선 주파수드라이버 시스템 및 방법
JP5757362B2 (ja) 高周波増幅回路、無線装置
KR20170073459A (ko) 전력증폭장치 및 무선통신장치
KR100654644B1 (ko) 최적화된 전력 효율을 갖는 전력 증폭기
US11394353B2 (en) Power amplifier circuit
WO2015121891A1 (ja) 増幅器
JP2005217558A (ja) 高周波電力増幅回路
KR100499504B1 (ko) 고효율 스마트 전력 증폭기
KR100757706B1 (ko) 선택적 전압 제어를 이용한 고효율 바이패스 스위칭 다중모드 전력 증폭 장치
JPWO2011007496A1 (ja) 送信回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18744067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18744067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载