+

WO2018139164A1 - Method for controlling linking system for accumulator cells and power conversion devices, and power conditioning system - Google Patents

Method for controlling linking system for accumulator cells and power conversion devices, and power conditioning system Download PDF

Info

Publication number
WO2018139164A1
WO2018139164A1 PCT/JP2017/047125 JP2017047125W WO2018139164A1 WO 2018139164 A1 WO2018139164 A1 WO 2018139164A1 JP 2017047125 W JP2017047125 W JP 2017047125W WO 2018139164 A1 WO2018139164 A1 WO 2018139164A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage battery
power
rate
charging
drooping
Prior art date
Application number
PCT/JP2017/047125
Other languages
French (fr)
Japanese (ja)
Inventor
古田 太
俊祐 松永
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Publication of WO2018139164A1 publication Critical patent/WO2018139164A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a power conversion device such as an inverter and a power conditioning system, and a control method thereof.
  • this linkage system is a means to always secure power for important loads. As expected.
  • the key to the configuration of the solar cell-storage battery cooperation system is a power conditioning system (PCS) device, which is a kind of power conversion device.
  • the PCS is connected between the solar battery and the AC power line, and between the storage battery and the AC power line, and performs optimization of power generation conditions, charge / discharge operation, and the like.
  • the PCSs are connected on the AC side, and exchange power between PCSs and supply power to important loads.
  • a plurality of PV-PCSs and a plurality of storage batteries-PCS are connected to the AC side.
  • multiple PCSs can be linked by a master-slave system in which one PCS is operated independently as a master and the remaining PCS is operated as a slave, or all PCSs are coordinated. There is a parallel operation method that allows independent operation.
  • the master PCS establishes voltage and frequency throughout the system. Since the remaining slave PCS can specify the contribution power, the PV-PCS can pursue the maximum power, and the storage battery PCS can perform the charge / discharge operation according to the charging rate. However, if the master PCS is stopped, the entire system including the remaining slave PCS must be stopped. Maintenance of the master PCS and its DC power supply (mainly storage battery) becomes difficult, and the reliability of the system decreases.
  • Non-Patent Document 1 and Patent Document 1 a technique for realizing the latter parallel operation
  • a technique called drooping control is described in Non-Patent Document 1 and Patent Document 1.
  • a characteristic that droops the frequency and voltage according to the effective power and reactive power to be contributed is created in the PCS.
  • a plurality of PCSs having drooping characteristics are driven in parallel as a master, and the drooping frequency and voltage are shared by each PCS to share the load power fairly. Since any PCS can be disconnected and paralleled again without stopping the system for maintenance, the reliability of the system is maintained for a long time.
  • the battery controller is attached to the storage battery, and there are some that monitor the failure of the storage battery and grasp the charge rate. In that case, the variation between the storage cells constituting the storage battery is corrected by this controller. However, when looking at each PCS, the variation between storage batteries cannot be resolved.
  • the drooping rate is determined according to the PCS rating, and power is evenly distributed to PCS of the same standard.
  • the storage battery-PCS having the highest charging rate must be stopped.
  • the storage battery-PCS with the lowest charging rate must be stopped. For this reason, PCS which can be drive
  • an object of the present invention is to provide a storage battery-PCS configuration in which a parallel control is performed together with a plurality of storage batteries-PCS, and the charge rate of the storage batteries is uniformly controlled among the plurality of PCSs in a PV / storage battery cooperation system without a system. It is to provide a control method and to make the PCS operable as much as possible to improve the reliability of the system.
  • One aspect of the present invention is a control method for a linked system of a storage battery and a power conversion device in which a storage battery and a power conversion device are connected one-to-one, and a plurality of these sets are connected on the AC side.
  • each of the power converters determines the charge / discharge speed of the storage battery according to the charge rate of the corresponding storage battery, and allocates the charge / discharge power in each of the power converters according to the charge / discharge speed.
  • the charge rate of the storage battery is controlled to be equal.
  • a storage battery block and a power conditioning system that is connected to the storage battery block in a one-to-one manner to form a storage battery-PCS pair, and in a cooperative system in which a plurality of such sets are connected on the AC side.
  • a power conditioning system includes a switching element that converts DC to AC between the storage battery block and the AC side, a power calculation unit that calculates active power from the AC voltage and AC current on the AC side, and a corresponding storage battery block Reflecting the charging rate and the active power, an oscillator that generates a target frequency and a feedback control unit that feeds back the output of the oscillator to the switching element are provided.
  • the charge / discharge power distribution ratio is changed according to the charge rate of each storage battery, so the variation in charge rate can be corrected, and more power is charged to the linked system. And more power can be discharged from the system.
  • the block diagram of the cooperation system of the storage battery block and PV panel via PCS The table which shows the operation method of PCS in a 1st Example.
  • the graph explaining the electric power characteristic with respect to the drooping rate in a 1st Example The graph explaining the electric power characteristic with respect to the drooping rate in a 1st Example.
  • the graph explaining the time change of a charging rate at the time of performing fixed droop rate control The graph explaining the time change of the charging rate in a 1st Example.
  • the graph explaining the characteristic of rating value correction in the 2nd example The graph explaining the characteristic of rating value correction in the 2nd example.
  • the graph explaining the electric power characteristic with respect to the rated value correction in a 2nd Example The graph explaining the electric power characteristic with respect to the rated value correction in a 2nd Example.
  • the graph explaining the electric power characteristic with respect to the rated value correction in a 2nd Example The graph explaining the electric power characteristic with respect to the rated value correction in a 2nd Example.
  • the block diagram of the PCS in the third embodiment The block diagram of the configuration of the droop rate calculation unit in the fourth embodiment.
  • each PCS determines a droop rate according to the charge rate of the corresponding accumulator, and based on the droop rate
  • An example of charge / discharge control will be mainly described.
  • the self-sustained operation control with drooping characteristics is performed in the storage battery-PCS, and the droop rate of the frequency with respect to the active power increases monotonously in the case of charging with respect to the charging rate of the accumulator and monotonously in the case of discharge Set by a function of decrease.
  • FIG. 1A shows an example of a system configuration in which a solar battery and a storage battery cooperate.
  • Each of the solar cell (PV) panel 101 and the storage battery block 102 is connected to an important load 103 and a system (for example, 200 V, 50 Hz) 104 via the PCS 100.
  • the PCS 100 serves as an interface between the DC side and the AC side and controls the direction and amount of power.
  • the PCS synchronizes with the system by matching the frequency and voltage.
  • the PCS 100 controls charging / discharging of the storage battery block 102 according to the direction of power.
  • the PCS 100 supplies the power generated by the PV panel 101 to the AC side under the control of, for example, maximum power tracking (MPPT: Maximum Power Point Tracking).
  • MPPT Maximum Power Point Tracking
  • FIG. 1B is a table showing an example of the operation method of the PCS 100 by comparing the present embodiment with the master-slave method.
  • one of the storage battery blocks 102-PCS100 operates independently as the master PCS, and the PV panel 101-PCS100 operates in an interconnected manner.
  • all of the plurality of storage battery blocks 102-PCS100 perform a self-sustained operation, and perform parallel control among the plurality of PCSs. Therefore, unlike the master-slave method, the entire system is not affected by the stop of the master. Whether the PV panel 101-PCS 100 participates in parallel operation in a self-sustained operation is not limited in the present embodiment.
  • FIG. 1C shows a configuration example of the storage battery block 102.
  • the storage battery block 102 includes one or a plurality of assembled batteries 107 and a battery controller 106 that monitors them.
  • the assembled battery 107 has a configuration obtained by connecting the storage battery cells 105, which are the minimum unit of the storage battery, in series connection, parallel connection, or a combination thereof.
  • FIG. 1C shows a configuration with only series connection.
  • the battery controller 106 monitors the state (voltage, current and temperature) of each storage battery cell 105 and determines whether the assembled battery 107 is normal or deteriorated. At the same time, the charging rate of each storage battery cell 105 is estimated from the monitored state quantity. If it is a simple controller, let the average value of the charging rate of each storage battery cell 105 be the charging rate of the assembled battery 107. In a multi-function controller, when there is a variation in the charging rate between the storage battery cells 105, a mechanism that partially discharges or charges only the specific storage battery cell 105 is used to reduce the variation in the assembled battery 107 and average The value is the charge rate of the assembled battery. The estimated charging rate is output from the storage battery block 102. The stored power is supplied via the PCS.
  • FIG. 2 shows the configuration of the PCS 100 connected to the storage battery block 102 in the first embodiment of the present invention.
  • the PCS 100 includes a main circuit 210 and a control block 220.
  • the main circuit 210 performs desired cross flow conversion between the AC side and the DC side (the PV panel 101 or the storage battery block 102 side) under the control of the control block 220.
  • the control block 220 is a block that performs various calculations and processes for control, and can take the form of an information processing apparatus including an input device, an output device, a processing device, and a storage device.
  • the information processing device realizes each block for processing data input from the input device by executing a program stored in the storage device, and outputs a processing result from the output device.
  • the equivalent function can also be configured by hardware such as an FPGA (Field-Programmable gate array).
  • the direct current is pulse width modulated by the switching action of the semiconductor element 211 of the main circuit 210, the harmonics are removed by the reactor 212, and the alternating current is 50 Hz / 60 Hz, for example. After that, it goes to the AC side via the transformer 213.
  • the control block 220 includes a voltage feedback control unit 221 and a voltage compensation control unit 222 as a configuration for performing the independent operation control.
  • main circuit 210 is controlled so as to generate an AC voltage based on a rated voltage (for example, 200 V) and a rated frequency (for example, 50 Hz).
  • the voltage on the AC side is monitored by the AC voltage sensor 214 and is controlled by the voltage feedback control unit 221 so that the rated voltage is obtained. Since the voltage may decrease due to the current flowing through the reactor 212, monitoring is performed by the alternating current sensor 215, and the values of the alternating voltage and the alternating current are input to the voltage compensation control unit 222 to compensate for the voltage drop.
  • an AC side voltage is input to the oscillator 223, and the output phase of the oscillator 223 is controlled to be in phase with the AC on the PCS side.
  • a drooping control unit 225 as a mechanism for drooping the rated frequency and rated voltage.
  • the amount of power (active power and reactive power) supplied by the PCS to the load side (local system) can be calculated by obtaining the inner product and outer product from the voltage and current on the AC side measured by the power calculator 224.
  • the droop control unit 225 reduces the droop rate from the rated frequency and the rated voltage value so that a predetermined droop rate is obtained.
  • the fixed droop control that is reduced by applying a fixed value so as to obtain a certain droop rate from the rated value can be configured similarly to the configuration of the parallel control in Non-Patent Document 1, for example.
  • the control block 220 of the present embodiment basically follows the parallel control configuration.
  • the drooping characteristic is not fixed, but is controlled based on the charging rate and active power of the storage battery. That is, as shown in FIG. 2, the frequency droop rate is determined by the droop rate calculation unit 226 based on the charge rate output from the storage battery block 102 and the sign of the active power calculated by the power calculation unit 224. decide.
  • FIG. 3 shows the configuration of the droop rate calculation unit 226.
  • the code information is extracted from the active power output from the power calculation unit 224 by the code extraction unit 301. This is used to determine whether the current operation of the PCS 100 is a charging operation or a discharging operation.
  • the charging rate information from the storage battery block 102 is input to the discharging droop function unit 302 or the charging droop function unit 303. Each is converted into a droop rate, and the droop rate corresponding to the charge / discharge operation is selected by the selection unit 304 based on the code information described above.
  • FIG. 4 shows an example of the droop function.
  • a monotonically increasing function as shown in FIG. 4A is used as the charging function
  • a monotonically decreasing function as shown in FIG. 4B is used as the discharging droop function.
  • the horizontal axis indicates the charging rate of the storage battery
  • the vertical axis indicates the drooping rate.
  • the operating range of the storage battery is determined in terms of the charging rate, the maximum droop rate M MAX and the minimum droop rate M MIN are determined, and the operation is performed at M, M ′, etc. within the range.
  • FIG. 5A is a diagram illustrating drooping characteristics for one PCS in parallel control.
  • the frequency f for the active power P and the AC voltage V for the reactive power Q are selected by simulating the characteristics of the synchronous generator.
  • FIG. 5A shows a diagram showing changes in frequency with respect to active power.
  • active power and frequency will be mainly described as an example, but a change in AC voltage with respect to reactive power can be similarly described.
  • the frequency is lowered at a certain rate with respect to the active power to be output. This ratio is called the droop rate.
  • the droop rate is a reduction amount per electric power and corresponds to the inclination ⁇ .
  • the frequency drop (the amount of drooping) is set within a range that is permissible with respect to the rated (specification maximum) power value of the PCS.
  • FIG. 5B shows the behavior when two PCSs having this drooping characteristic are connected on the AC side and active power is supplied to the load.
  • the relationship between the active power and the frequency of each PCS moves so that the frequencies coincide with each other, and the sharing of the active power is automatically performed.
  • the active power is equally shared.
  • the rating is different, the slope of the straight line of the drooping characteristic is different, so the sharing ratio is accordingly. For this reason, electric power sharing according to the rated active power of each PCS becomes possible.
  • the sharing of reactive power can also be explained in the same manner by dropping the AC voltage.
  • This embodiment has a feature that the power distribution is changed for each PCS by making the droop rate of the active power variable according to the charge rate of the storage battery block. Specifically, the fixed drooping characteristics shown in FIGS. 5A and 5B are made variable by droop rate control based on the active power and the charging rate shown in FIG.
  • FIG. 6A shows the drooping characteristics for one PCS when the droop rate is varied.
  • the initial droop rate M 0 and the rated droop rate M N are set so that the decrease in frequency is within the allowable range for the rated (maximum usage) power value P N , and the droop rate is variable within that range.
  • the drooping rate M is determined according to the increase / decrease of the charging rate.
  • the rated frequency is f N, a decrease in the frequency tolerance rated droop and ( ⁇ f) N.
  • the charging rate is set to increase as the charging rate increases.
  • the charge rate and droop rate characteristics of FIG. 4B during discharge, the droop rate is set to decrease as the charge rate increases.
  • FIG. 6B shows that the storage battery block 1-PCS1 having the drooping characteristics and the storage battery block 2-PCS2 having the drooping characteristics are connected on the AC side, and both PCS receive the power (charging power) obtained by another means. It is a figure which shows the behavior in case.
  • the drooping rate is the same between PCS1 and PCS2, as shown in FIG. 5B, and even power distribution is performed and charging is performed evenly.
  • the storage battery block 2-PCS2 having this drooping characteristic is connected on the AC side in the same manner as the storage battery block 1-PCS1 having this drooping characteristic, and both PCS load the electric power (discharge power) stored in the storage battery. It is a figure which shows the behavior in the case of outputting to.
  • the drooping rate is the same between PCS1 and PCS2 as shown in FIG. 5B, and even power distribution is performed and uniform discharging is performed.
  • the charging rate of the storage battery blocks connected to each PCS can be equalized by having a mechanism for changing the power distribution according to the charging rate as described above.
  • a droop rate calculation unit 226 for changing the power distribution according to the charging rate is involved in the system from the power calculation unit 224 to the oscillator 223 that droops the frequency by the active power. Active power is generated by power exchange between the AC side and the storage battery block 102. On the other hand, reactive power is generated between the reactance and the capacitance constituting the ACS and the PCS 100. Since the active power is involved in charging / discharging the storage battery block 102, only the active power side may be used, and the reactive power side may be a conventional fixed drooping control.
  • FIG. 7A is an image of a change in the charging rate with time in the charging operation of the storage battery block 102. Since the charging power is uniform, the variation in the charging rate generated in the initial stage develops as it is and cannot be solved. The storage battery block that has reached full charge first must be stopped.
  • FIG. 7B is an image of the change in charging rate over time in the charging operation of the present embodiment.
  • the power distribution changes according to the variation in the charging rate that occurs in the initial stage. Since the PCS of the storage battery block with a low charging rate charges more electric power and the PCS of the storage battery block with a high charging rate charges less electric power, the operation continues until the charging rates match. For this reason, parallel operation can be continued until both PCSs are fully charged.
  • the following advantages can be expected from changing the power distribution continuously according to the charging rate. Longer life can be expected depending on the type of battery such as a lithium ion battery. If it is not limited to parallel operation, the charging rate can be made uniform by turning on / off the PCS while observing the charging rate even in the prior art. However, the operation of turning on / off the charging / discharging operation places a burden on the battery electrode of a battery whose electrode structure changes in the charging / discharging operation, such as a Li ion battery. The burden can be reduced by changing charging / discharging electric power continuously like this example. As a result, the battery is prevented from deteriorating, leading to a long battery life.
  • the following operations can be expected by combining a PCS or power supply with other drooping characteristics and the storage battery block-PCS of this example.
  • the droop rate so that the minimum power required for maintaining the operation of the PCS is required when the storage battery block is fully charged, the charging power can be kept almost zero while continuing the operation of the PCS. Can do.
  • the PCS has to be stopped, but the operation can be continued while suppressing charging. For this reason, it is not necessary to stop the PCS, and the reliability in the parallel operation can be maintained.
  • FIG. 8 shows the configuration of the PCS 100-2 connected to the storage battery block 102 in the second embodiment of the present invention.
  • the frequency droop rate is not variable with respect to the charge rate, but the rated frequency value is variable.
  • the main circuit 210 and its control are the same as those in the first embodiment, and the control block 220 of this example substantially follows the configuration of the self-sustained operation of the first embodiment. Furthermore, as a mechanism for carrying out parallel control, the drooping characteristic is added to the above-described independent operation control.
  • the drooping control unit 225 of this embodiment substantially follows the parallel control configuration shown in FIG. However, in the present embodiment, the rated value of the frequency is not fixed as shown in FIG. 2, and the correction value output from the rated value correction calculation unit 826 is added as shown in FIG. This correction value is determined based on the magnitude of the charging rate and the sign of the active power.
  • FIG. 9 shows the configuration of the rated value correction calculation unit 826.
  • the code extraction unit 901 extracts the code information of the active power output from the power calculation unit 224. This is used to determine whether the current operation of the PCS 100-2 is a charging operation or a discharging operation.
  • the charging rate information from the storage battery block 102 is input to the discharging correction function unit 902 or the charging correction function unit 903. Each is converted into a frequency correction value, and a correction value corresponding to the charge / discharge operation is selected by the selection unit 904 based on the code information described above.
  • FIG. 10 shows an example of the correction function.
  • a monotonically increasing function as shown in FIG. 10A is used as the correction function for discharging
  • a monotonically decreasing function as shown in FIG. 10B is used as the correcting function for charging.
  • the horizontal axis shows the charging rate of the storage battery
  • the vertical axis shows the frequency.
  • the operating range of the storage battery is determined based on the charging rate, the corresponding maximum frequency f MAX and minimum frequency f MIN are determined, and the operation is performed at f, f ′, etc. within the range.
  • this embodiment has a feature of correcting the rated value of the frequency according to the charging rate of the storage battery block.
  • FIG. 11A shows drooping characteristics for one PCS when the frequency rating value (rated frequency) is varied.
  • the slope of the droop rate MN is fixed, while the rated frequency is changed. It has a minimum frequency rating value that sets the rated droop amount ( ⁇ f) N so that the decrease in frequency is within the allowable range for the initial frequency rating value f N and the rated (maximum usage) power value P N
  • the frequency rating value f 0 is variable within the range, and the frequency rating value is determined according to the increase / decrease of the charging rate. More specifically, according to the charging rate and frequency rated value characteristics of FIG. 10A, the frequency rated value is set to increase as the charging rate increases during discharging. On the other hand, according to the charging rate and frequency rated value characteristics of FIG. 10B, during charging, the frequency rating value is set to decrease as the charging rate increases.
  • FIG. 11B consider a case where two PCSs are operated in parallel.
  • the storage battery block 2-PCS2 having this drooping characteristic is connected to the AC side in the same manner as the storage battery block 1-PCS1 having this drooping characteristic, and both PCS receive power (charging power) obtained by another means.
  • the drooping rate is the same between PCS1 and PCS2, as shown in FIG. 5B, and even power distribution is performed and charging is performed evenly.
  • FIG. 11C shows a case where storage battery block 2-PCS2 having this drooping characteristic is connected on the AC side in the same manner as storage battery block 1-PCS1 having this drooping characteristic, and both PCS receive power (discharge power) stored in the storage batteries. It is a figure which shows a behavior.
  • the drooping rate is the same between PCS1 and PCS2 as shown in FIG. 5B, and even power distribution is performed and uniform discharging is performed.
  • the image of correcting the variation in the charging rate between the storage battery blocks by the control of the present embodiment is the same as FIG. 7B of the first embodiment.
  • the advantages of extending the life of the storage battery and continuing the parallel operation when the storage battery block is fully charged, as described in the first embodiment, can also be expected in this example.
  • FIG. 12 shows the configuration of the PCS 100-3 connected to the storage battery block 102 in the third embodiment of the present invention.
  • This example is a method of changing the frequency droop rate in accordance with the change of the charging rate as in the first embodiment.
  • the charging rate is not input from the storage battery block 102, but the voltage on the DC side is acquired by the voltage sensor 1216, converted into the charging rate by the charging rate estimation unit 1217, and the charging rate is drooped. This is input to the rate calculation unit 1226.
  • the charging rate estimation unit 1217 prepares a table indicating the relationship between the DC voltage of the battery to be used and the charging rate in advance. The charging rate is estimated from the voltage via the table.
  • the present embodiment is applied to a low-budget simple type block where a battery controller is not mounted on the storage battery block 102.
  • the system configuration of the storage battery block-PCS is only the assembled battery 107 and the PCS 100 connected to the storage battery cell 105 and the DC wiring therebetween.
  • Other operations are the same as those in the first embodiment.
  • the same charging rate estimation method can also be applied to the case of the rated value correction in the second embodiment.
  • FIG. 13 shows the configuration of the droop rate calculation unit 1326 in the fourth embodiment of the present invention.
  • This droop rate calculation unit 1326 can be used in place of, for example, the droop rate calculation unit 226 of FIG.
  • This example is a method of changing the frequency droop rate in accordance with the change in the charging rate as in the first embodiment.
  • the algorithm of the droop rate calculation unit 226 of each PCS 100 is assumed to be the same.
  • the drooping function can be selected according to the type of battery of the storage battery block 102 to be connected. Depending on the type and number of batteries, a set of droop functions for charging and discharging 1226 1 to 1226 N is prepared. Based on the battery information (type and number) of the storage battery, an appropriate drooping function set is obtained from the selection unit 1201 and set as the droop rate.
  • Battery information is acquired from the storage battery block 102 together with the charging rate. Or you may have as data separately.
  • the portion depending on the storage battery block 102 is gathered in the storage battery block, and the PCS 100 has an advantage that the same can be applied.
  • Other operations are the same as those in the first embodiment.
  • the same configuration can also be applied to the rating value correction of the second embodiment.
  • the PCS includes a PLC as a mechanism for operation control. Therefore, by incorporating this embodiment into the PLC, uniform charge / discharge can be realized without modifying the PCS.
  • the charge / discharge power distribution ratio is changed according to the charge rate of each storage battery, so that the variation in the charge rate can be corrected.
  • charging a large amount of power is distributed to the storage battery-PCS having a lower charging rate.
  • discharging a large amount of power is supplied from the storage battery-PCS having a higher charging rate.
  • the variation in the charging rate of each storage battery is reduced. For this reason, more power can be charged to the linkage system, and more power can be discharged from the system.
  • the power to be charged / discharged of the system is distributed according to the charge / discharge speed determined by the PCS. Therefore, even if it is parallel control, it can prevent that charge of one storage battery runs out and the whole system
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the present invention can be used for a power conversion device such as an inverter or a power conditioning system and a control method thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Secondary Cells (AREA)

Abstract

Provided are a PCS configuration for implementing independent operation parallel control together with other accumulator cells-PCS and equalizing the charging ratio of the accumulator cells, and a control method, in a linking system for a PV and accumulator cells. To this end, proposed is a method for controlling a linking system for accumulator cells and power conversion devices in which the accumulator cells and the power conversion devices are connected one-to-one, and combinations thereof are connected on an AC-side. In this method, control is carried out such that the accumulator cell charging ratio is equal, by each of the power conversion devices determining the charging/discharging speed of the corresponding accumulator cells according to the charging ratio of the accumulator cells, and allocating charging/discharging power using the power conversion devices in accordance with the charging/discharging speed.

Description

蓄電池と電力変換装置の連携システムの制御方法、およびパワーコンディショニングシステムControl method for cooperative system of storage battery and power converter, and power conditioning system
 本発明はインバータやパワーコンディショニングシステムなどの、電力変換装置およびその制御方法に関わる。 The present invention relates to a power conversion device such as an inverter and a power conditioning system, and a control method thereof.
 昨今の再生可能エネルギへの関心の高まりや政府による電力買い取り制度の導入に伴い、太陽電池(PV:Photovoltaic)を利用した太陽光発電システムが急速に普及している。同システムは日射があれば容易に電力を得られる反面、日射条件により電力の変動を受けやすく夜間は発電できない。そこで電力を蓄積できる蓄電池と太陽電池を接続して、太陽電池で発する電力の変動分を蓄電池への充放電でまかなう太陽電池-蓄電池連携システムが提案されている。 With the recent increase in interest in renewable energy and the introduction of a power purchase system by the government, solar power generation systems using solar cells (PV: Photovoltaic) are rapidly spreading. The system can easily obtain power if there is solar radiation, but it is susceptible to power fluctuations due to solar radiation conditions and cannot generate electricity at night. Therefore, a solar battery-storage battery cooperation system has been proposed in which a storage battery capable of storing electric power is connected to a solar battery, and the fluctuation of electric power generated by the solar battery is covered by charging / discharging of the storage battery.
 特に離島や沿岸の発電所から遠方にある内陸部などの系統が脆弱な地域、また事故や災害時など系統が失われた場合において、この連携システムは重要負荷に対して常に電源を確保できる手段として期待されている。 Especially in areas where systems are weak, such as inland areas far away from remote islands and coastal power stations, and when systems are lost in the event of accidents or disasters, this linkage system is a means to always secure power for important loads. As expected.
 太陽電池-蓄電池連携システムの構成でキーとなるのは、電力変換装置の一種であるパワーコンディショニングシステム(PCS:Power Conditioner System)装置である。PCSは太陽電池と交流電力線の間、蓄電池と交流電力線の間にそれぞれ接続され、発電条件の最適化や充放電動作などを実施する。PCS同士は交流側で接続され、PCS間での電力授受や重要負荷へ電力を供給する。連携システムの規模に応じて、複数のPV-PCSや複数の蓄電池-PCSが交流側に接続される。 The key to the configuration of the solar cell-storage battery cooperation system is a power conditioning system (PCS) device, which is a kind of power conversion device. The PCS is connected between the solar battery and the AC power line, and between the storage battery and the AC power line, and performs optimization of power generation conditions, charge / discharge operation, and the like. The PCSs are connected on the AC side, and exchange power between PCSs and supply power to important loads. Depending on the scale of the cooperation system, a plurality of PV-PCSs and a plurality of storage batteries-PCS are connected to the AC side.
 系統が存在しない場合に複数のPCSを連携する方法には、一台のPCSをマスタとして自立運転させ、残りのPCSをスレーブとして連系運転させるマスタ-スレーブ方式や、すべてのPCSを協調して自立運転させる並列運転方式がある。 When there are no grids, multiple PCSs can be linked by a master-slave system in which one PCS is operated independently as a master and the remaining PCS is operated as a slave, or all PCSs are coordinated. There is a parallel operation method that allows independent operation.
 前者において、マスタPCSはシステム全体にわたり電圧と周波数を確立する。残りのスレーブPCSは拠出電力を指定できるため、PV-PCSは最大電力を追及でき、蓄電池PCSもおのおのの充電率に応じた充放電動作が可能となる。しかし、マスタPCSを停止すると残りのスレーブPCSを含めてシステム全体を停止せざるを得なくなる。マスタPCSやその直流電源(おもに蓄電池)のメンテナンスが困難になり、システムの信頼性は低下する。 In the former, the master PCS establishes voltage and frequency throughout the system. Since the remaining slave PCS can specify the contribution power, the PV-PCS can pursue the maximum power, and the storage battery PCS can perform the charge / discharge operation according to the charging rate. However, if the master PCS is stopped, the entire system including the remaining slave PCS must be stopped. Maintenance of the master PCS and its DC power supply (mainly storage battery) becomes difficult, and the reliability of the system decreases.
 一方、後者の並列運転を実現する技術として、垂下制御という技術が非特許文献1や特許文献1に記載されている。個々のPCSにおいて、拠出する有効電力と無効電力に応じてそれぞれ周波数と電圧を垂下させる特性をPCSに作りこむ。垂下特性を持たせたPCSをマスタとして複数台並列に駆動させ、垂下した周波数や電圧を各PCSで共有することで公平に負荷電力を分担する。メンテナスのためにシステムを止めることなく、任意のPCSを解列させ再度並列させることができるため、システムの信頼性は永く維持される。 On the other hand, as a technique for realizing the latter parallel operation, a technique called drooping control is described in Non-Patent Document 1 and Patent Document 1. In each PCS, a characteristic that droops the frequency and voltage according to the effective power and reactive power to be contributed is created in the PCS. A plurality of PCSs having drooping characteristics are driven in parallel as a master, and the drooping frequency and voltage are shared by each PCS to share the load power fairly. Since any PCS can be disconnected and paralleled again without stopping the system for maintenance, the reliability of the system is maintained for a long time.
WO2014-098104号公報WO2014-098104 Publication 特開2014-207790号公報JP 2014-207790 A
 複数の蓄電池とPCSが接続されたシステムにおいて、充放電を繰り返してくると、各PCSの蓄電池の充電率にばらつきが生じてくる。その理由として、蓄電池そのものの特性のばらつきに起因するもの、蓄電池のメンテナスで電池モジュールを交換する場合またはPCSのメンテナンスで充放電動作を一時停止した場合に生じる充電率の相違があげられる。 When charging / discharging is repeated in a system in which a plurality of storage batteries and PCS are connected, the charging rate of the storage batteries of each PCS varies. The reason for this is the difference in the charging rate caused by variations in the characteristics of the storage battery itself, when the battery module is replaced by maintenance of the storage battery, or when the charge / discharge operation is temporarily stopped by the maintenance of the PCS.
 もっとも蓄電池には電池コントローラが付いている場合があり、蓄電池の故障監視や充電率の把握を行っているものもある。その場合、蓄電池を構成する蓄電セル間のばらつきはこのコントローラで修正される。しかし、PCSごとに見ると蓄電池間のばらつきは解消できない。 However, there are cases where the battery controller is attached to the storage battery, and there are some that monitor the failure of the storage battery and grasp the charge rate. In that case, the variation between the storage cells constituting the storage battery is corrected by this controller. However, when looking at each PCS, the variation between storage batteries cannot be resolved.
 先に説明した垂下制御はPCSの定格に応じて垂下率が決まっており、同じ規格のPCSに対して均等に電力を拠出する。逆に充電の際も同様である。複数の蓄電池とPCSが接続されたシステムにおいて、それぞれの蓄電池の充電率が異なる状態で同じ電力によって充電を実施すると、充電率の最も高い蓄電池-PCSを停止せざるを得なくなる。放電の場合は、もっとも充電率の低い蓄電池-PCSを停止せざるを得なくなる。このため運転可能なPCSが減ることになり、並列運転の利点であった信頼性が低下する。 In the drooping control described above, the drooping rate is determined according to the PCS rating, and power is evenly distributed to PCS of the same standard. The same applies to charging. In a system in which a plurality of storage batteries and a PCS are connected, if charging is performed with the same power while the charging rates of the storage batteries are different, the storage battery-PCS having the highest charging rate must be stopped. In the case of discharging, the storage battery-PCS with the lowest charging rate must be stopped. For this reason, PCS which can be drive | operated decreases and the reliability which was the advantage of parallel operation falls.
 垂下制御に限らなければ、各蓄電池の充電率の情報を集中制御装置に送り、1つに集約し比較してそれぞれのPCSの充放電制御にフィードバックして各蓄電池を均等運用する方法も特許文献2で公開されている。しかし、これらで用いられているPCS(インバータ)は蓄電池の充放電電力の加減が制御可能な状態である必要がある。さらに、すべての充電率を集約する必要があるため、専用の制御装置が必要で、接続するPCSの数でその構成も変える必要があった。つまり信頼性の維持と柔軟なPCS構成の実現という観点で難点があった。 If it is not limited to drooping control, information on the charging rate of each storage battery is sent to the centralized control device, and is integrated into one, compared, and fed back to the charge / discharge control of each PCS. 2 However, the PCS (inverter) used in these needs to be in a state where the charge / discharge power of the storage battery can be controlled. Furthermore, since it is necessary to aggregate all the charging rates, a dedicated control device is necessary, and the configuration thereof needs to be changed depending on the number of PCSs to be connected. In other words, there are difficulties in maintaining reliability and realizing a flexible PCS configuration.
 したがって本発明の目的は、系統のないPVと蓄電池の連携システムにおいて、複数の蓄電池―PCSとともに並列制御を実施しつつ、なおかつ複数PCS間で蓄電池の充電率を均等に制御する蓄電池-PCSの構成、制御方法を提供し、可能な限りPCSを運転可能な状態にしてシステムの信頼性を向上させることにある。 Accordingly, an object of the present invention is to provide a storage battery-PCS configuration in which a parallel control is performed together with a plurality of storage batteries-PCS, and the charge rate of the storage batteries is uniformly controlled among the plurality of PCSs in a PV / storage battery cooperation system without a system. It is to provide a control method and to make the PCS operable as much as possible to improve the reliability of the system.
 本発明の一側面は、蓄電池と電力変換装置が1対1で接続され、それらの組が交流側で複数接続された蓄電池と電力変換装置の連携システムの制御方法である。この方法において、電力変換装置の其々は、対応する蓄電池の充電率に応じて蓄電池の充放電速度を決定し、充放電速度に応じて電力変換装置の其々での充放電電力を割り当てることで、蓄電池の充電率が均等になるように制御する。 One aspect of the present invention is a control method for a linked system of a storage battery and a power conversion device in which a storage battery and a power conversion device are connected one-to-one, and a plurality of these sets are connected on the AC side. In this method, each of the power converters determines the charge / discharge speed of the storage battery according to the charge rate of the corresponding storage battery, and allocates the charge / discharge power in each of the power converters according to the charge / discharge speed. Thus, the charge rate of the storage battery is controlled to be equal.
 本発明の他の一側面は、蓄電池ブロックと、蓄電池ブロックに1対1で接続するパワーコンディショニングシステムとで、蓄電池―PCSの組を構成し、この組が交流側で複数接続された連携システムにおける、パワーコンディショニングシステムである。このパワーコンディショニングシステムは、蓄電池ブロックと交流側の間で直流と交流の変換を行うスイッチング素子と、交流側の交流電圧と交流電流から、有効電力を計算する電力計算部と、対応する蓄電池ブロックの充電率と有効電力とを反映して、目標周波数を生成する発振器と、発振器の出力をスイッチング素子にフィードバックするフィードバック制御部と、を備える。 Another aspect of the present invention is a storage battery block and a power conditioning system that is connected to the storage battery block in a one-to-one manner to form a storage battery-PCS pair, and in a cooperative system in which a plurality of such sets are connected on the AC side. , A power conditioning system. This power conditioning system includes a switching element that converts DC to AC between the storage battery block and the AC side, a power calculation unit that calculates active power from the AC voltage and AC current on the AC side, and a corresponding storage battery block Reflecting the charging rate and the active power, an oscillator that generates a target frequency and a feedback control unit that feeds back the output of the oscillator to the switching element are provided.
 複数の蓄電池-PCSを並列制御する際、各々の蓄電池の充電率に応じて充放電電力の按分率を変えるため、充電率のばらつきを修正することができ、より多くの電力を連携システムに充電できるとともに、より多くの電力をシステムから放電できるようになる。 When controlling multiple storage batteries-PCS in parallel, the charge / discharge power distribution ratio is changed according to the charge rate of each storage battery, so the variation in charge rate can be corrected, and more power is charged to the linked system. And more power can be discharged from the system.
PCSを介した蓄電池ブロックとPVパネルの連携システムの構成図。The block diagram of the cooperation system of the storage battery block and PV panel via PCS. 第1の実施例におけるPCSの運転方法を示す表図。The table which shows the operation method of PCS in a 1st Example. 第1の実施例における蓄電池ブロックの構成ブロック図。The block diagram of the configuration of the storage battery block in the first embodiment. 第1の実施例におけるPCSの構成ブロック図。The block diagram of the PCS in the first embodiment. 第1の実施例における垂下率計算部の構成ブロック図。The block diagram of the configuration of the droop rate calculation unit in the first embodiment. 第1の実施例における垂下関数の特性を説明するグラフ図。The graph figure explaining the characteristic of the drooping function in a 1st Example. 第1の実施例における垂下関数の特性を説明するグラフ図。The graph figure explaining the characteristic of the drooping function in a 1st Example. 垂下特性を固定にした並列制御でのPCSの垂下特性を示すグラフ図。The graph which shows the drooping characteristic of PCS in the parallel control which fixed drooping characteristic. 垂下特性を固定にした並列制御でのPCSの垂下特性を示すグラフ図。The graph which shows the drooping characteristic of PCS in the parallel control which fixed drooping characteristic. 第1の実施例における垂下率に対する電力特性を説明するグラフ図。The graph explaining the electric power characteristic with respect to the drooping rate in a 1st Example. 第1の実施例における垂下率に対する電力特性を説明するグラフ図。The graph explaining the electric power characteristic with respect to the drooping rate in a 1st Example. 第1の実施例における垂下率に対する電力特性を説明するグラフ図。The graph explaining the electric power characteristic with respect to the drooping rate in a 1st Example. 固定的な垂下率制御を行った場合の充電率の時間変化を説明するグラフ図。The graph explaining the time change of a charging rate at the time of performing fixed droop rate control. 第1の実施例における充電率の時間変化を説明するグラフ図。The graph explaining the time change of the charging rate in a 1st Example. 第2の実施例におけるPCSの構成ブロック図。The block diagram of the PCS in the second embodiment. 第2の実施例における定格値修正計算部の構成ブロック図。The block diagram of the configuration of the rated value correction calculator in the second embodiment. 第2の実施例における定格値修正の特性を説明するグラフ図。The graph explaining the characteristic of rating value correction in the 2nd example. 第2の実施例における定格値修正の特性を説明するグラフ図。The graph explaining the characteristic of rating value correction in the 2nd example. 第2の実施例における定格値修正に対する電力特性を説明するグラフ図。The graph explaining the electric power characteristic with respect to the rated value correction in a 2nd Example. 第2の実施例における定格値修正に対する電力特性を説明するグラフ図。The graph explaining the electric power characteristic with respect to the rated value correction in a 2nd Example. 第2の実施例における定格値修正に対する電力特性を説明するグラフ図。The graph explaining the electric power characteristic with respect to the rated value correction in a 2nd Example. 第3の実施例におけるPCSの構成ブロック図。The block diagram of the PCS in the third embodiment. 第4の実施例における垂下率計算部の構成ブロック図。The block diagram of the configuration of the droop rate calculation unit in the fourth embodiment.
 以下に本願発明を実施例により説明する。この実施例は本願発明を用いた一例であり、本願発明は本例により限定されない。以下では、蓄電池とPCSが一対一で接続され、それらが複数並列に接続された系統の並列制御において、各PCSは対応する蓄電池の充電率に応じて垂下率を決定し、その垂下率に基づいて充放電制御する例を主に説明する。より具体的な例では、蓄電池-PCSにおいて垂下特性をもつ自立運転制御を行い、その有効電力に対する周波数の垂下率は、蓄電池の充電率に対して充電の場合は単調増加、放電の場合は単調減少の関数で設定される。 Hereinafter, the present invention will be described by way of examples. This embodiment is an example using the present invention, and the present invention is not limited by this example. In the following, in parallel control of a system in which a storage battery and a PCS are connected one-to-one and a plurality of them are connected in parallel, each PCS determines a droop rate according to the charge rate of the corresponding accumulator, and based on the droop rate An example of charge / discharge control will be mainly described. In a more specific example, the self-sustained operation control with drooping characteristics is performed in the storage battery-PCS, and the droop rate of the frequency with respect to the active power increases monotonously in the case of charging with respect to the charging rate of the accumulator and monotonously in the case of discharge Set by a function of decrease.
 以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、重複する説明は省略することがある。 In the structure of the invention described below, the same portions or portions having similar functions are denoted by the same reference numerals in different drawings, and redundant description may be omitted.
 図1Aは、太陽電池と蓄電池が連携するシステム構成の一例を示す。太陽電池(PV)パネル101、蓄電池ブロック102のそれぞれは、PCS100を介して重要負荷103や、系統(例えば200V,50Hz)104と接続されている。PCS100は、直流側と交流側のインターフェースとなり電力の方向と量を制御する。またPCSは、系統と周波数、電圧を一致して同期する。PCS100は、電力の方向により蓄電池ブロック102の充放電を制御する。また、PCS100は、PVパネル101で発電した電力を、例えば最大電力追従(MPPT:Maximum Power Point Tracking)等の制御により交流側に供給する。 FIG. 1A shows an example of a system configuration in which a solar battery and a storage battery cooperate. Each of the solar cell (PV) panel 101 and the storage battery block 102 is connected to an important load 103 and a system (for example, 200 V, 50 Hz) 104 via the PCS 100. The PCS 100 serves as an interface between the DC side and the AC side and controls the direction and amount of power. The PCS synchronizes with the system by matching the frequency and voltage. The PCS 100 controls charging / discharging of the storage battery block 102 according to the direction of power. In addition, the PCS 100 supplies the power generated by the PV panel 101 to the AC side under the control of, for example, maximum power tracking (MPPT: Maximum Power Point Tracking).
 図1BはPCS100の運転方法の例を、本実施例とマスタースレーブ方式を比較して示す表図である。図1Bに示すようにマスタースレーブ方式であれば蓄電池ブロック102-PCS100のうち一台がマスタPCSとして自立運転し、PVパネル101-PCS100が連系運転する。本実施例では複数の蓄電池ブロック102-PCS100がすべて自立運転を実施し、複数PCS間で並列制御を実施する。したがって、マスタースレーブ方式のように、マスターが停止することで、システム全体が影響をうけることはない。PVパネル101-PCS100が自立運転で並列運転に参加するかどうかは、本実施例では限定しない。 FIG. 1B is a table showing an example of the operation method of the PCS 100 by comparing the present embodiment with the master-slave method. As shown in FIG. 1B, in the case of the master-slave system, one of the storage battery blocks 102-PCS100 operates independently as the master PCS, and the PV panel 101-PCS100 operates in an interconnected manner. In the present embodiment, all of the plurality of storage battery blocks 102-PCS100 perform a self-sustained operation, and perform parallel control among the plurality of PCSs. Therefore, unlike the master-slave method, the entire system is not affected by the stop of the master. Whether the PV panel 101-PCS 100 participates in parallel operation in a self-sustained operation is not limited in the present embodiment.
 図1Cは蓄電池ブロック102の構成例を示す。図1Cに示すように、蓄電池ブロック102は一つあるいは複数の組電池107とそれを監視する電池コントローラ106で構成される。組電池107は、蓄電池の最小単位である蓄電池セル105を直列接続、並列接続もしくはその組み合わせで得られる構成である。図1Cでは直列接続のみでの構成を示す。 FIG. 1C shows a configuration example of the storage battery block 102. As shown in FIG. 1C, the storage battery block 102 includes one or a plurality of assembled batteries 107 and a battery controller 106 that monitors them. The assembled battery 107 has a configuration obtained by connecting the storage battery cells 105, which are the minimum unit of the storage battery, in series connection, parallel connection, or a combination thereof. FIG. 1C shows a configuration with only series connection.
 電池コントローラ106は各蓄電池セル105の状態(電圧、電流および温度)を監視し、組電池107が正常か劣化かを判定する。同時に、各蓄電池セル105の充電率を、監視した状態量から推定する。簡易なコントローラであれば、各蓄電池セル105の充電率の平均値を組電池107の充電率とする。多機能なコントローラでは、蓄電池セル105間で充電率のばらつきがある場合に、特定の蓄電池セル105だけ部分的に放電や充電させる機構を用いて、組電池107内のばらつきを低減してその平均値を組電池の充電率とする。推定した充電率は、蓄電池ブロック102から出力される。また、蓄電された電力はPCSを経由して供給される。 The battery controller 106 monitors the state (voltage, current and temperature) of each storage battery cell 105 and determines whether the assembled battery 107 is normal or deteriorated. At the same time, the charging rate of each storage battery cell 105 is estimated from the monitored state quantity. If it is a simple controller, let the average value of the charging rate of each storage battery cell 105 be the charging rate of the assembled battery 107. In a multi-function controller, when there is a variation in the charging rate between the storage battery cells 105, a mechanism that partially discharges or charges only the specific storage battery cell 105 is used to reduce the variation in the assembled battery 107 and average The value is the charge rate of the assembled battery. The estimated charging rate is output from the storage battery block 102. The stored power is supplied via the PCS.
 図2は、本発明の第1の実施例における、蓄電池ブロック102に接続されるPCS100の構成を示す。PCS100は主回路210と制御ブロック220から構成される。主回路210は、制御ブロック220の制御により、交流側と直流側(PVパネル101や蓄電池ブロック102側)の間で所望の直交流変換を行う。制御ブロック220は、制御のための各種計算や処理を行うブロックであり、入力装置、出力装置、処理装置、記憶装置を備える情報処理装置の形態を取ることができる。情報処理装置は記憶装置に格納されたプログラムを処理装置が実行することで、入力装置から入力されるデータを処理する各ブロックを実現し、処理結果を出力装置から出力する。また、同等の機能は、FPGA(Field-Programmable gate array)のようなハードウェアで構成することもできる。 FIG. 2 shows the configuration of the PCS 100 connected to the storage battery block 102 in the first embodiment of the present invention. The PCS 100 includes a main circuit 210 and a control block 220. The main circuit 210 performs desired cross flow conversion between the AC side and the DC side (the PV panel 101 or the storage battery block 102 side) under the control of the control block 220. The control block 220 is a block that performs various calculations and processes for control, and can take the form of an information processing apparatus including an input device, an output device, a processing device, and a storage device. The information processing device realizes each block for processing data input from the input device by executing a program stored in the storage device, and outputs a processing result from the output device. The equivalent function can also be configured by hardware such as an FPGA (Field-Programmable gate array).
 直流は主回路210の半導体素子211のスイッチング作用でパルス幅変調され、リアクトル212で高調波を除去し、たとえば50Hz/60Hzの交流となる。その後トランス213を介して交流側にいたる。 The direct current is pulse width modulated by the switching action of the semiconductor element 211 of the main circuit 210, the harmonics are removed by the reactor 212, and the alternating current is 50 Hz / 60 Hz, for example. After that, it goes to the AC side via the transformer 213.
 制御ブロック220は、自立運転制御を実施するための構成として、電圧フィードバック制御部221と電圧補償制御部222を備える。ここでは、定格電圧(たとえば200V)と定格周波数(たとえば50Hz)を基準にして交流電圧を生成するように、主回路210を制御する。交流電圧センサ214にて交流側の電圧を監視し、定格電圧になるように電圧フィードバック制御部221にて制御する。リアクトル212に流れる電流で電圧が低下することがあるので、交流電流センサ215で監視し、交流電圧と交流電流の値を電圧補償制御部222に入力し、電圧低下の補償を電圧補償制御部222にて実施する。また、定格周波数と定格電圧を垂下させる仕組みとして、発振器223に交流側電圧を入力し、発振器223の出力位相がPCS側の交流と位相を合うように制御される。 The control block 220 includes a voltage feedback control unit 221 and a voltage compensation control unit 222 as a configuration for performing the independent operation control. Here, main circuit 210 is controlled so as to generate an AC voltage based on a rated voltage (for example, 200 V) and a rated frequency (for example, 50 Hz). The voltage on the AC side is monitored by the AC voltage sensor 214 and is controlled by the voltage feedback control unit 221 so that the rated voltage is obtained. Since the voltage may decrease due to the current flowing through the reactor 212, monitoring is performed by the alternating current sensor 215, and the values of the alternating voltage and the alternating current are input to the voltage compensation control unit 222 to compensate for the voltage drop. To implement. Further, as a mechanism for dropping the rated frequency and the rated voltage, an AC side voltage is input to the oscillator 223, and the output phase of the oscillator 223 is controlled to be in phase with the AC on the PCS side.
 さらに定格周波数と定格電圧を垂下させる仕組みとして、垂下制御部225がある。電力計算部224にて測定した交流側の電圧と電流から、その内積および外積を求めることで、PCSが負荷側(ローカルな系)に供給する電力量(有効電力および無効電力)を算出できる。これらの量に応じて、垂下制御部225では定格周波数および定格電圧値から、所定の垂下率になるように、それぞれ低減させる。このとき、定格値からある垂下率になるように、固定値をかけて低減する固定的な垂下制御については、例えば非特許文献1の並列制御の構成と同様に構成が可能である。 Furthermore, there is a drooping control unit 225 as a mechanism for drooping the rated frequency and rated voltage. The amount of power (active power and reactive power) supplied by the PCS to the load side (local system) can be calculated by obtaining the inner product and outer product from the voltage and current on the AC side measured by the power calculator 224. In accordance with these amounts, the droop control unit 225 reduces the droop rate from the rated frequency and the rated voltage value so that a predetermined droop rate is obtained. At this time, the fixed droop control that is reduced by applying a fixed value so as to obtain a certain droop rate from the rated value can be configured similarly to the configuration of the parallel control in Non-Patent Document 1, for example.
 本実施例の制御ブロック220も基本的には並列制御の構成をほぼ踏襲する。しかし本実施例では、垂下特性は固定ではなく、蓄電池の充電率と有効電力に基づいて制御されている。すなわち、図2に示すように周波数垂下率については、蓄電池ブロック102から出力される充電率の大きさと、電力計算部224にて計算される有効電力の符号に基づき、垂下率計算部226にて決定する。 The control block 220 of the present embodiment basically follows the parallel control configuration. However, in this embodiment, the drooping characteristic is not fixed, but is controlled based on the charging rate and active power of the storage battery. That is, as shown in FIG. 2, the frequency droop rate is determined by the droop rate calculation unit 226 based on the charge rate output from the storage battery block 102 and the sign of the active power calculated by the power calculation unit 224. decide.
 図3に垂下率計算部226の構成を示す。電力計算部224から出力された有効電力は符号抽出部301にて、その符号情報を抽出される。これは、現在のPCS100の動作が充電動作か放電動作かの判定に用いる。一方、蓄電池ブロック102からの充電率情報は、放電用垂下関数部302もしくは充電用垂下関数部303に入力される。それぞれ垂下率に変換され、さきに説明した符号情報に基づき、充放電動作に応じた垂下率が選択部304により選択される。 FIG. 3 shows the configuration of the droop rate calculation unit 226. The code information is extracted from the active power output from the power calculation unit 224 by the code extraction unit 301. This is used to determine whether the current operation of the PCS 100 is a charging operation or a discharging operation. On the other hand, the charging rate information from the storage battery block 102 is input to the discharging droop function unit 302 or the charging droop function unit 303. Each is converted into a droop rate, and the droop rate corresponding to the charge / discharge operation is selected by the selection unit 304 based on the code information described above.
 図4に垂下関数の例を示す。本実施例では、充電用関数には図4Aに示すような単調増加関数、放電用垂下関数には図4Bに示すような単調減少関数を用いる。横軸は蓄電池の充電率を示し、縦軸が垂下率を示す。充電用関数では充電率が大きいほど垂下率を大きくし、出力を低下させる。放電用関数ではその逆となる。いずれも、充電率において蓄電池の運用範囲を定めておき、最大の垂下率MMAXと最小の垂下率MMINを決定しその範囲内のM,M’等で動作させる。 FIG. 4 shows an example of the droop function. In this embodiment, a monotonically increasing function as shown in FIG. 4A is used as the charging function, and a monotonically decreasing function as shown in FIG. 4B is used as the discharging droop function. The horizontal axis indicates the charging rate of the storage battery, and the vertical axis indicates the drooping rate. In the charging function, as the charging rate increases, the drooping rate increases and the output decreases. The reverse is true for the discharge function. In either case, the operating range of the storage battery is determined in terms of the charging rate, the maximum droop rate M MAX and the minimum droop rate M MIN are determined, and the operation is performed at M, M ′, etc. within the range.
 本実施例の可変する垂下率を使った並列制御を説明する上にも、まずは固定の垂下率を使った並列制御を説明する。 In order to explain the parallel control using the variable droop rate of the present embodiment, first, the parallel control using the fixed droop rate will be explained.
 図5Aは、並列制御におけるPCS1台分の垂下特性を説明する図である。垂下させる物理量としては、同期発電機の特性を模擬して、有効電力Pに対し周波数f、無効電力Qに対し交流電圧Vを選択する。図5Aでは有効電力に対する周波数の変化を示した図を示す。以下では、主に有効電力と周波数を例に説明するが、無効電力に対する交流電圧の変化も同様に説明することができる。出力する有効電力に対して、ある割合で周波数を低下させる。この割合を垂下率という。垂下率は電力あたりの低下量であり、傾きθに相当する。通常は、PCSの定格(仕様上の最大)電力値に対して許容する範囲で周波数の低下(垂下量)が収まるように設定される。 FIG. 5A is a diagram illustrating drooping characteristics for one PCS in parallel control. As the physical quantity to be drooped, the frequency f for the active power P and the AC voltage V for the reactive power Q are selected by simulating the characteristics of the synchronous generator. FIG. 5A shows a diagram showing changes in frequency with respect to active power. In the following description, active power and frequency will be mainly described as an example, but a change in AC voltage with respect to reactive power can be similarly described. The frequency is lowered at a certain rate with respect to the active power to be output. This ratio is called the droop rate. The droop rate is a reduction amount per electric power and corresponds to the inclination θ. Normally, the frequency drop (the amount of drooping) is set within a range that is permissible with respect to the rated (specification maximum) power value of the PCS.
 図5Bはこの垂下特性をもつ2台のPCSを交流側で接続して、負荷に有効電力を供給する場合の挙動を示す。双方で周波数が一致するように個々のPCSの有効電力と周波数の関係が移動し、有効電力の分担が自動的に行われる。双方の垂下率が同じ場合は、有効電力が均等に分担される。定格が異なる場合は垂下特性の直線の傾きが異なるため、それに応じた分担比率になる。このため、個々のPCSの定格有効電力に応じた電力分担が可能となる。無効電力の分担も交流電圧を垂下させることで同様に説明できる。 FIG. 5B shows the behavior when two PCSs having this drooping characteristic are connected on the AC side and active power is supplied to the load. The relationship between the active power and the frequency of each PCS moves so that the frequencies coincide with each other, and the sharing of the active power is automatically performed. When both droop rates are the same, the active power is equally shared. When the rating is different, the slope of the straight line of the drooping characteristic is different, so the sharing ratio is accordingly. For this reason, electric power sharing according to the rated active power of each PCS becomes possible. The sharing of reactive power can also be explained in the same manner by dropping the AC voltage.
 本実施例ではこの有効電力の垂下率を蓄電池ブロックの充電率に応じて可変にすることでPCSごとに電力配分を変える特徴を持つ。具体的には、図5A、図5Bに示す固定的な垂下特性を、図3に示した有効電力と充電率に基づく垂下率制御により可変とする。 This embodiment has a feature that the power distribution is changed for each PCS by making the droop rate of the active power variable according to the charge rate of the storage battery block. Specifically, the fixed drooping characteristics shown in FIGS. 5A and 5B are made variable by droop rate control based on the active power and the charging rate shown in FIG.
 図6Aは垂下率を可変した場合のPCS1台分の垂下特性を示す。初期垂下率Mおよび定格(使用上の最大)電力値Pに対し許容する範囲で周波数の低下が収まるように設定した定格垂下率Mを有し、その範囲内で垂下率は可変とし、充電率の増減に応じて垂下率Mを決定する。定格周波数をfとし、許容範囲の周波数の低下を定格垂下量(Δf)とする。 FIG. 6A shows the drooping characteristics for one PCS when the droop rate is varied. The initial droop rate M 0 and the rated droop rate M N are set so that the decrease in frequency is within the allowable range for the rated (maximum usage) power value P N , and the droop rate is variable within that range. The drooping rate M is determined according to the increase / decrease of the charging rate. The rated frequency is f N, a decrease in the frequency tolerance rated droop and (Δf) N.
 より具体的には、図4Aの充電率と垂下率特性に従い充電時には、充電率が大きいほど垂下率を上げる方向に設定する。一方、図4Bの充電率と垂下率特性に従い、放電時には、充電率が大きいほど垂下率を下げる方向に設定する。以下、この状態で2台のPCSを並列運転する場合を考える。 More specifically, according to the charging rate and drooping rate characteristics of FIG. 4A, the charging rate is set to increase as the charging rate increases. On the other hand, according to the charge rate and droop rate characteristics of FIG. 4B, during discharge, the droop rate is set to decrease as the charge rate increases. Hereinafter, a case where two PCSs are operated in parallel in this state will be considered.
 図6Bは、この垂下特性をもつ蓄電池ブロック1-PCS1と同じくこの垂下特性をもつ蓄電池ブロック2-PCS2を交流側で接続して、別の手段で得た電力(充電電力)を両PCSが受け取る場合の挙動を示す図である。両蓄電池ブロックの充電率が同じ時は、図5BのようにPCS1とPCS2の間で垂下率は同じであり、均等な電力配分が行われ、均等な充電が行われる。 FIG. 6B shows that the storage battery block 1-PCS1 having the drooping characteristics and the storage battery block 2-PCS2 having the drooping characteristics are connected on the AC side, and both PCS receive the power (charging power) obtained by another means. It is a figure which shows the behavior in case. When the charging rates of both storage battery blocks are the same, the drooping rate is the same between PCS1 and PCS2, as shown in FIG. 5B, and even power distribution is performed and charging is performed evenly.
 しかし、図6Bに示すように、蓄電池ブロック1の充電率が蓄電池ブロック2の充電率より小さい場合は、PCS1の垂下率M1はPCS2の垂下率M2より小さく設定される。このため、充電電力のうちPCS1に配分される電力はPCS2に配分される電力より多くなるため、蓄電池ブロック1の充電は蓄電池ブロック2より進む。この電力配分が異なる状態は、両蓄電池の充電率の差異がなくなるまで継続されるため、最終的には両蓄電池の充電率は同じとなる。このため、蓄電池ブロックの均等充電が実現できる。 However, as shown in FIG. 6B, when the charging rate of the storage battery block 1 is smaller than the charging rate of the storage battery block 2, the drooping rate M1 of PCS1 is set smaller than the dripping rate M2 of PCS2. For this reason, since the electric power allocated to PCS1 becomes larger than the electric power allocated to PCS2 among charging electric power, charge of the storage battery block 1 advances from the storage battery block 2. FIG. Since the state in which the power distribution is different is continued until there is no difference between the charging rates of both storage batteries, the charging rates of both storage batteries are finally the same. For this reason, equal charge of a storage battery block is realizable.
 図6Cは、一方、この垂下特性をもつ蓄電池ブロック1-PCS1と同じくこの垂下特性をもつ蓄電池ブロック2-PCS2を交流側で接続して、蓄電池に蓄えた電力(放電電力)を両PCSが負荷へ出力する場合の挙動を示す図である。両蓄電池ブロックの充電率が同じ時は、図5BのようにPCS1とPCS2の間で垂下率は同じであり、均等な電力配分が行われ、均等な放電が行われる。 6C, on the other hand, the storage battery block 2-PCS2 having this drooping characteristic is connected on the AC side in the same manner as the storage battery block 1-PCS1 having this drooping characteristic, and both PCS load the electric power (discharge power) stored in the storage battery. It is a figure which shows the behavior in the case of outputting to. When the charging rates of both storage battery blocks are the same, the drooping rate is the same between PCS1 and PCS2 as shown in FIG. 5B, and even power distribution is performed and uniform discharging is performed.
 しかし、図6Cに示すように、蓄電池ブロック1の充電率が蓄電池ブロック2の充電率より大きい場合は、PCS1の垂下率はPCS2より小さく設定される。このため、放電電力のうちPCS1に配分される電力はPCS2に配分される電力より多くなるため、蓄電池ブロック1の放電は蓄電池ブロック2より進む。この電力配分が異なる状態は、両蓄電池の充電率の差異がなくなるまで継続されるため、最終的には両蓄電池の充電率は同じとなる。このため、蓄電池ブロックの均等放電が実現できる。 However, as shown in FIG. 6C, when the charging rate of the storage battery block 1 is larger than the charging rate of the storage battery block 2, the drooping rate of the PCS1 is set smaller than the PCS2. For this reason, since the electric power allocated to PCS1 becomes larger than the electric power allocated to PCS2 among discharge electric power, discharge of storage battery block 1 advances from storage battery block 2. Since the state in which the power distribution is different is continued until there is no difference between the charging rates of both storage batteries, the charging rates of both storage batteries are finally the same. For this reason, the uniform discharge of a storage battery block is realizable.
 上記で説明したような充電率に応じて電力配分を変える機構をもつことで各PCSに接続された蓄電池ブロックの充電率を均等にすることができる。図2に戻ると、有効電力により周波数を垂下させる、電力計算部224から発振器223に至る系統に、充電率に応じて電力配分を変えるための垂下率計算部226が関与している。有効電力は、交流側と蓄電池ブロック102間での電力やり取りで発生する。一方、無効電力は、交流側とPCS100を構成するリアクタンスやキャパシタンス間で発生する。蓄電池ブロック102の充放電に関与するのは有効電力であるため、有効電力側だけの対応でよく、無効電力側は従来の固定的な垂下制御でもよい。 The charging rate of the storage battery blocks connected to each PCS can be equalized by having a mechanism for changing the power distribution according to the charging rate as described above. Returning to FIG. 2, a droop rate calculation unit 226 for changing the power distribution according to the charging rate is involved in the system from the power calculation unit 224 to the oscillator 223 that droops the frequency by the active power. Active power is generated by power exchange between the AC side and the storage battery block 102. On the other hand, reactive power is generated between the reactance and the capacitance constituting the ACS and the PCS 100. Since the active power is involved in charging / discharging the storage battery block 102, only the active power side may be used, and the reactive power side may be a conventional fixed drooping control.
 図7Aは蓄電池ブロック102の充電動作における、充電率の時間変化のイメージである。充電電力が均等であるため、初期に発生した充電率のばらつきがそのまま時間発展するため、解消できない。先に満充電に達した蓄電池ブロックは停止せざるを得ない。 FIG. 7A is an image of a change in the charging rate with time in the charging operation of the storage battery block 102. Since the charging power is uniform, the variation in the charging rate generated in the initial stage develops as it is and cannot be solved. The storage battery block that has reached full charge first must be stopped.
 図7Bは、本実施例での充電動作における、充電率の時間変化のイメージである。初期に発生した充電率のばらつきに応じて電力配分が変わる。充電率が小さい蓄電池ブロックのPCSはより多くの電力を充電し、充電率の大きい蓄電池ブロックのPCSはよりすくない電力を充電するため、その動作は充電率が一致するまで続く。このため両PCSが満充電になるまで並列運転を継続することができる。 FIG. 7B is an image of the change in charging rate over time in the charging operation of the present embodiment. The power distribution changes according to the variation in the charging rate that occurs in the initial stage. Since the PCS of the storage battery block with a low charging rate charges more electric power and the PCS of the storage battery block with a high charging rate charges less electric power, the operation continues until the charging rates match. For this reason, parallel operation can be continued until both PCSs are fully charged.
 さらに充電率に応じて電力配分を連続に変化させることには以下のメリットが期待できる。リチウムイオン電池など電池の種類によっては長寿命化が期待できる。並列運転に限らなければ、従来技術でも充電率を見ながらPCSをON/OFFさせることで充電率を均等にすることもできる。しかし、充放電動作をON/OFFする動作は、Liイオン電池のような充放電動作において電極構造が変わる電池に対して、その電池電極に負担をかけることになる。本例のように連続的に充放電電力を変化させることでその負担を軽減できる。結果として電池の劣化を防ぐことになり、電池の長寿命化につながる。 Furthermore, the following advantages can be expected from changing the power distribution continuously according to the charging rate. Longer life can be expected depending on the type of battery such as a lithium ion battery. If it is not limited to parallel operation, the charging rate can be made uniform by turning on / off the PCS while observing the charging rate even in the prior art. However, the operation of turning on / off the charging / discharging operation places a burden on the battery electrode of a battery whose electrode structure changes in the charging / discharging operation, such as a Li ion battery. The burden can be reduced by changing charging / discharging electric power continuously like this example. As a result, the battery is prevented from deteriorating, leading to a long battery life.
 さらに他の垂下特性を持ったPCSや電源と本例の蓄電池ブロック-PCSとを組み合わせることで以下の動作が期待できる。蓄電池ブロックが満充電になった場合に同PCSの動作維持に必要な最低限の電力を要求するような垂下率に設定することで、PCSの動作を継続しつつ充電電力をほぼ0に抑えることができる。このため、従来技術では蓄電池ブロックが満充電になった場合にPCSを止めざるを得なかったのが、充電を抑制しつつ運転を継続させることができる。このためPCSを停止する必要がなくなり、並列動作での信頼性を維持できる。 Furthermore, the following operations can be expected by combining a PCS or power supply with other drooping characteristics and the storage battery block-PCS of this example. By setting the droop rate so that the minimum power required for maintaining the operation of the PCS is required when the storage battery block is fully charged, the charging power can be kept almost zero while continuing the operation of the PCS. Can do. For this reason, in the prior art, when the storage battery block is fully charged, the PCS has to be stopped, but the operation can be continued while suppressing charging. For this reason, it is not necessary to stop the PCS, and the reliability in the parallel operation can be maintained.
 図8は、本発明の第2の実施例における蓄電池ブロック102に接続されるPCS100-2の構成を示す。このPCSでは、充電率に対して周波数垂下率を可変とするのではなく、定格周波数値を可変とする。主回路210まわりおよびその制御は、実施例1と同様であり、本例の制御ブロック220も実施例1の自立運転の構成をほぼ踏襲する。さらに並列制御を実施するための機構として、垂下特性を先に述べた自立運転制御に付加する。 FIG. 8 shows the configuration of the PCS 100-2 connected to the storage battery block 102 in the second embodiment of the present invention. In this PCS, the frequency droop rate is not variable with respect to the charge rate, but the rated frequency value is variable. The main circuit 210 and its control are the same as those in the first embodiment, and the control block 220 of this example substantially follows the configuration of the self-sustained operation of the first embodiment. Furthermore, as a mechanism for carrying out parallel control, the drooping characteristic is added to the above-described independent operation control.
 本実施例の垂下制御部225も図2で示した並列制御の構成をほぼ踏襲する。ただし本実施例では、図2のように周波数の定格値が固定ではなく、図8に示すように定格値修正計算部826から出力される修正値を加算される。この修正値については、充電率の大きさと有効電力の符号に基づき決定される。 The drooping control unit 225 of this embodiment substantially follows the parallel control configuration shown in FIG. However, in the present embodiment, the rated value of the frequency is not fixed as shown in FIG. 2, and the correction value output from the rated value correction calculation unit 826 is added as shown in FIG. This correction value is determined based on the magnitude of the charging rate and the sign of the active power.
 図9に定格値修正計算部826の構成を示す。電力計算部224から出力された有効電力は符号抽出部901にて、その符号情報を抽出される。これは、現在のPCS100-2の動作が充電動作か放電動作かの判定に用いる。一方、蓄電池ブロック102からの充電率情報は、放電用修正関数部902もしくは充電用修正関数部903に入力される。それぞれ周波数修正値に変換され、さきに説明した符号情報に基づき、充放電動作に応じた修正値が選択部904により選択される。 FIG. 9 shows the configuration of the rated value correction calculation unit 826. The code extraction unit 901 extracts the code information of the active power output from the power calculation unit 224. This is used to determine whether the current operation of the PCS 100-2 is a charging operation or a discharging operation. On the other hand, the charging rate information from the storage battery block 102 is input to the discharging correction function unit 902 or the charging correction function unit 903. Each is converted into a frequency correction value, and a correction value corresponding to the charge / discharge operation is selected by the selection unit 904 based on the code information described above.
 図10に修正関数の例を示す。本例では、放電用修正関数には図10Aに示すような単調増加関数、充電用修正関数には図10Bに示すような単調減少関数を用いる。横軸は蓄電池の充電率を示し、縦軸が周波数を示す。放電用修正関数では充電率が大きいほど定格周波数に加算する周波数を増やし、出力を増加させる。充電用修正関数ではその逆となる。いずれも、充電率において蓄電池の運用範囲を定めておき、対応する最大の周波数fMAXと最小の周波数fMINを決定しその範囲内のf,f’等で動作させる。以上のように、本実施例では周波数の定格値を蓄電池ブロックの充電率に応じて修正する特徴を持つ。 FIG. 10 shows an example of the correction function. In this example, a monotonically increasing function as shown in FIG. 10A is used as the correction function for discharging, and a monotonically decreasing function as shown in FIG. 10B is used as the correcting function for charging. The horizontal axis shows the charging rate of the storage battery, and the vertical axis shows the frequency. In the correction function for discharging, the larger the charging rate, the more the frequency to be added to the rated frequency is increased and the output is increased. The reverse is true for the charging correction function. In either case, the operating range of the storage battery is determined based on the charging rate, the corresponding maximum frequency f MAX and minimum frequency f MIN are determined, and the operation is performed at f, f ′, etc. within the range. As described above, this embodiment has a feature of correcting the rated value of the frequency according to the charging rate of the storage battery block.
 図11Aは周波数定格値(定格周波数)を可変した場合のPCS1台分の垂下特性を示す。実施例1の図6と比較すると、垂下率Mの傾きが固定となっている一方で、定格周波数が変更される構成となっている。初期周波数定格値fN、および定格(使用上の最大)電力値Pに対し許容する範囲で周波数の低下が収まるように、定格垂下量(Δf)を設定した最低周波数定格値を有し、その範囲内で周波数定格値fは可変とし、充電率の増減に応じて周波数定格値を決定する。より具体的には、図10Aの充電率と周波数定格値特性に従い放電時には、充電率が大きいほど周波数定格値を上げる方向に設定する。一方、図10Bの充電率と周波数定格値特性に従い、充電時には、充電率が大きいほど周波数定格値を下げる方向に設定する。 FIG. 11A shows drooping characteristics for one PCS when the frequency rating value (rated frequency) is varied. Compared to FIG. 6 of the first embodiment, the slope of the droop rate MN is fixed, while the rated frequency is changed. It has a minimum frequency rating value that sets the rated droop amount (Δf) N so that the decrease in frequency is within the allowable range for the initial frequency rating value f N and the rated (maximum usage) power value P N The frequency rating value f 0 is variable within the range, and the frequency rating value is determined according to the increase / decrease of the charging rate. More specifically, according to the charging rate and frequency rated value characteristics of FIG. 10A, the frequency rated value is set to increase as the charging rate increases during discharging. On the other hand, according to the charging rate and frequency rated value characteristics of FIG. 10B, during charging, the frequency rating value is set to decrease as the charging rate increases.
 図11Bを参照して、2台のPCSを並列運転する場合を考える。図11Bは、この垂下特性をもつ蓄電池ブロック1-PCS1と同じくこの垂下特性をもつ蓄電池ブロック2-PCS2を交流側で接続して、別の手段で得た電力(充電電力)を両PCSが受け取る場合の挙動を示す図である。両蓄電池ブロックの充電率が同じ時は、図5BのようにPCS1とPCS2の間で垂下率は同じであり、均等な電力配分が行われ、均等な充電が行われる。 Referring to FIG. 11B, consider a case where two PCSs are operated in parallel. In FIG. 11B, the storage battery block 2-PCS2 having this drooping characteristic is connected to the AC side in the same manner as the storage battery block 1-PCS1 having this drooping characteristic, and both PCS receive power (charging power) obtained by another means. It is a figure which shows the behavior in case. When the charging rates of both storage battery blocks are the same, the drooping rate is the same between PCS1 and PCS2, as shown in FIG. 5B, and even power distribution is performed and charging is performed evenly.
 しかし、図11Bに示すように、蓄電池ブロック1の充電率が蓄電池ブロック2の充電率より小さい場合は、PCS1の垂下量はPCS2より小さくしなければならない。このため、PCS1の周波数定格値f1をPCS2の周波数定格値f2より大きくする。こうすると、垂下率Mを固定としていても、充電電力のうちPCS1に配分される電力はPCS2に配分される電力より多くなるため、蓄電池ブロック1の充電は蓄電池ブロック2より進む。この電力配分が異なる状態は、両蓄電池の充電率の差異がなくなるまで継続されるため、最終的には両蓄電池の充電率は同じとなる。このため、蓄電池ブロックの均等充電が実現できる。 However, as shown in FIG. 11B, when the charging rate of the storage battery block 1 is smaller than the charging rate of the storage battery block 2, the drooping amount of the PCS1 must be smaller than the PCS2. For this reason, the frequency rating value f1 of PCS1 is made larger than the frequency rating value f2 of PCS2. In this way, even if the droop rate MN is fixed, the power allocated to the PCS 1 out of the charging power is greater than the power allocated to the PCS 2, so the charging of the storage battery block 1 proceeds more than the storage battery block 2. Since the state in which the power distribution is different is continued until there is no difference between the charging rates of both storage batteries, the charging rates of both storage batteries are finally the same. For this reason, equal charge of a storage battery block is realizable.
 図11Cは、この垂下特性をもつ蓄電池ブロック1-PCS1と同じくこの垂下特性をもつ蓄電池ブロック2-PCS2を交流側で接続して、蓄電池に蓄えた電力(放電電力)を両PCSが受け取る場合の挙動を示す図である。両蓄電池ブロックの充電率が同じ時は、図5BのようにPCS1とPCS2の間で垂下率は同じであり、均等な電力配分が行われ、均等な放電が行われる。 FIG. 11C shows a case where storage battery block 2-PCS2 having this drooping characteristic is connected on the AC side in the same manner as storage battery block 1-PCS1 having this drooping characteristic, and both PCS receive power (discharge power) stored in the storage batteries. It is a figure which shows a behavior. When the charging rates of both storage battery blocks are the same, the drooping rate is the same between PCS1 and PCS2 as shown in FIG. 5B, and even power distribution is performed and uniform discharging is performed.
 しかし、図7Aに示すように、蓄電池ブロック1の充電率が蓄電池ブロック2の充電率より大きい場合は、PCS1の垂下量はPCS2より小さく設定されなければならない。このため、PCS1の周波数定格値f1をPCS2の周波数定格値f2より大きくする。こうすると、垂下率Mを固定としていても、放電電力のうちPCS1に配分される電力はPCS2に配分される電力より多くなるため、蓄電池ブロック1の放電は蓄電池ブロック2より進む。この電力配分が異なる状態は、両蓄電池の充電率の差異がなくなるまで継続されるため、最終的には両蓄電池の充電率は同じことになる。このため、蓄電池ブロックの均等充電が実現できる。 However, as shown in FIG. 7A, when the charging rate of the storage battery block 1 is larger than the charging rate of the storage battery block 2, the drooping amount of the PCS1 must be set smaller than the PCS2. For this reason, the frequency rating value f1 of PCS1 is made larger than the frequency rating value f2 of PCS2. In this way, even if the droop rate MN is fixed, the electric power distributed to the PCS 1 out of the discharged electric power is larger than the electric power distributed to the PCS 2, so that the discharging of the storage battery block 1 proceeds more than the storage battery block 2. Since the state in which the power distribution is different is continued until there is no difference between the charging rates of both storage batteries, the charging rates of both storage batteries are finally the same. For this reason, equal charge of a storage battery block is realizable.
 本実施例の制御による蓄電池ブロック間の充電率のばらつきが修正されるイメージは、実施例1の図7Bと同様である。また実施例1で述べた、蓄電池の長寿命化や蓄電池ブロックの満充電時の並列運転継続の利点は本例にても同様に期待できる。 The image of correcting the variation in the charging rate between the storage battery blocks by the control of the present embodiment is the same as FIG. 7B of the first embodiment. The advantages of extending the life of the storage battery and continuing the parallel operation when the storage battery block is fully charged, as described in the first embodiment, can also be expected in this example.
 図12は、本発明の第3の実施例における蓄電池ブロック102に接続されるPCS100-3の構成を示す。本例は実施例1と同様に充電率の変化に応じて、周波数垂下率を変化させる方式である。しかし、本実施例は、蓄電池ブロック102から充電率を入力されるのではなく、直流側の電圧を電圧センサ1216で取得し、充電率推定部1217で充電率に変換し、その充電率を垂下率計算部1226に入力する。充電率推定部1217は、使用する電池の直流電圧とその充電率の関係を示すテーブルを予め用意する。そのテーブルを介して電圧から充電率を推定する。 FIG. 12 shows the configuration of the PCS 100-3 connected to the storage battery block 102 in the third embodiment of the present invention. This example is a method of changing the frequency droop rate in accordance with the change of the charging rate as in the first embodiment. However, in this embodiment, the charging rate is not input from the storage battery block 102, but the voltage on the DC side is acquired by the voltage sensor 1216, converted into the charging rate by the charging rate estimation unit 1217, and the charging rate is drooped. This is input to the rate calculation unit 1226. The charging rate estimation unit 1217 prepares a table indicating the relationship between the DC voltage of the battery to be used and the charging rate in advance. The charging rate is estimated from the voltage via the table.
 本実施例は、蓄電池ブロック102に電池コントローラが搭載されていないような、低予算な簡易型ブロックの場合に適用される。この場合、蓄電池ブロック―PCSのシステム構成は、蓄電池セル105を接続した組電池107とPCS100およびその間の直流配線のみである。それ以外の動作は実施例1と同様である。また同じ充電率推定方法は、実施例2の定格値修正の場合も適用できる。 The present embodiment is applied to a low-budget simple type block where a battery controller is not mounted on the storage battery block 102. In this case, the system configuration of the storage battery block-PCS is only the assembled battery 107 and the PCS 100 connected to the storage battery cell 105 and the DC wiring therebetween. Other operations are the same as those in the first embodiment. The same charging rate estimation method can also be applied to the case of the rated value correction in the second embodiment.
 図13は、本発明の第4の実施例における垂下率計算部1326の構成を示す。この垂下率計算部1326は、例えば図2の垂下率計算部226に置き換えて用いることができる。本例は実施例1等と同様に充電率の変化に応じて、周波数垂下率を変化させる方式である。実施例1では、各PCS100の垂下率計算部226のアルゴリズムは、同一のものを想定していた。しかし、本実施例は、接続される蓄電池ブロック102の電池の種類に応じて、垂下関数を選択できる。電池の種類や本数に応じて、充電用および放電用垂下関数のセット1226~1226を用意する。蓄電池の電池情報(種類や本数)をもとに、適切な垂下関数セットを選択部1201から得て、垂下率とする。 FIG. 13 shows the configuration of the droop rate calculation unit 1326 in the fourth embodiment of the present invention. This droop rate calculation unit 1326 can be used in place of, for example, the droop rate calculation unit 226 of FIG. This example is a method of changing the frequency droop rate in accordance with the change in the charging rate as in the first embodiment. In the first embodiment, the algorithm of the droop rate calculation unit 226 of each PCS 100 is assumed to be the same. However, in this embodiment, the drooping function can be selected according to the type of battery of the storage battery block 102 to be connected. Depending on the type and number of batteries, a set of droop functions for charging and discharging 1226 1 to 1226 N is prepared. Based on the battery information (type and number) of the storage battery, an appropriate drooping function set is obtained from the selection unit 1201 and set as the droop rate.
 電池情報は充電率とともに、蓄電池ブロック102から取得する。あるいは、別途データとして持っていても良い。この構成にすることで、蓄電池ブロック102に依存した部分は蓄電池ブロックにあつめ、PCS100は同じものを適用できるメリットがある。それ以外の動作は実施例1と同様である。また同じ構成は、実施例2の定格値修正の場合も適用できる。 Battery information is acquired from the storage battery block 102 together with the charging rate. Or you may have as data separately. By adopting this configuration, the portion depending on the storage battery block 102 is gathered in the storage battery block, and the PCS 100 has an advantage that the same can be applied. Other operations are the same as those in the first embodiment. The same configuration can also be applied to the rating value correction of the second embodiment.
 本発明の第5の実施例では、充電率に応じて垂下率を計算する部分を制御ブロックではなく、PLC(Program Logic Controller)に実装する例を示す。一般にPCSは運転制御する機構としてPLCを備えている。そこで、本実施例をPLCに組み込むことで、PCSに改造を加えることなく均等充放電を実現できる。 In the fifth embodiment of the present invention, an example in which a part for calculating the drooping rate according to the charging rate is implemented in a PLC (Program Logic Controller) instead of a control block. In general, the PCS includes a PLC as a mechanism for operation control. Therefore, by incorporating this embodiment into the PLC, uniform charge / discharge can be realized without modifying the PCS.
 以上の実施例で説明したように、蓄電池-PCSを並列制御する際、各々の蓄電池の充電率に応じて充放電電力の按分率を変えるため、充電率のばらつきを修正することができる。具体的には充電の際は、より充電率の低い蓄電池-PCSに多くの電力を配分する。放電の際は、より充電率の高い蓄電池-PCSから多くの電力を拠出させる。この動作によって、各蓄電池の充電率のばらつきは小さくなる。このため、より多くの電力を連携システムに充電できるとともに、より多くの電力をシステムから放電できるようになる。 As described in the above embodiment, when the storage battery-PCS is controlled in parallel, the charge / discharge power distribution ratio is changed according to the charge rate of each storage battery, so that the variation in the charge rate can be corrected. Specifically, when charging, a large amount of power is distributed to the storage battery-PCS having a lower charging rate. When discharging, a large amount of power is supplied from the storage battery-PCS having a higher charging rate. By this operation, the variation in the charging rate of each storage battery is reduced. For this reason, more power can be charged to the linkage system, and more power can be discharged from the system.
 このように、蓄電池-PCSが複数並列に接続された系統の並列制御において、PCSで決定された充放電速度に応じて系統の充放電される電力が分配される。これにより、並列制御であっても、一つの蓄電池の充電が枯渇して全体系統が停止するということを防ぎ、安定して制御することができる。 Thus, in the parallel control of the system in which a plurality of storage batteries-PCS are connected in parallel, the power to be charged / discharged of the system is distributed according to the charge / discharge speed determined by the PCS. Thereby, even if it is parallel control, it can prevent that charge of one storage battery runs out and the whole system | strain stops, and can control stably.
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることが可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.
 本発明はインバータやパワーコンディショニングシステムなどの、電力変換装置およびその制御方法に利用可能である。 The present invention can be used for a power conversion device such as an inverter or a power conditioning system and a control method thereof.
 100:PCS,101:PVパネル、102:蓄電池ブロック、103:重要負荷、104:系統、105:蓄電池セル、106:電池コントローラ、107:組電池、210:主回路、211:半導体素子、212:リアクトル、213:トランス、214:交流電圧センサ、215:交流電流センサ、220:制御ブロック、221:電圧フィードバック制御部、222:電圧補償制御部、223:発振器、224:電力計算部、225:垂下制御部、226:垂下率計算部、301:符号抽出部、302:放電用垂下関数部、303:充電用垂下関数部、304:選択部、726:定格値修正計算部、802:充電用修正関数、803:放電用修正関数、901:符号抽出部、1226:垂下率計算部、1201:選択部 100: PCS, 101: PV panel, 102: storage battery block, 103: important load, 104: system, 105: storage battery cell, 106: battery controller, 107: assembled battery, 210: main circuit, 211: semiconductor element, 212: Reactor, 213: Transformer, 214: AC voltage sensor, 215: AC current sensor, 220: Control block, 221: Voltage feedback controller, 222: Voltage compensation controller, 223: Oscillator, 224: Power calculator, 225: Droop Control unit, 226: droop rate calculation unit, 301: sign extraction unit, 302: discharge droop function unit, 303: charge droop function unit, 304: selection unit, 726: rated value correction calculation unit, 802: charge correction Function, 803: correction function for discharge, 901: sign extraction unit, 1226: droop rate calculation unit, 1201: selection unit

Claims (12)

  1.  蓄電池と電力変換装置が1対1で接続され、それらの組が交流側で複数接続された蓄電池と電力変換装置の連携システムの制御方法において、
     前記電力変換装置の其々は、対応する前記蓄電池の充電率に応じて前記蓄電池の充放電速度を決定し、
     該充放電速度に応じて前記電力変換装置の其々での充放電電力を割り当てることで、
     前記蓄電池の充電率が均等になるように制御する、
     ことを特徴とする蓄電池と電力変換装置の連携システムの制御方法。
    In the control method of the cooperation system of the storage battery and the power conversion device in which the storage battery and the power conversion device are connected on a one-to-one basis, and a plurality of these sets are connected on the AC side.
    Each of the power converters determines the charge / discharge speed of the storage battery according to the charge rate of the corresponding storage battery,
    By assigning the charge / discharge power in each of the power converters according to the charge / discharge speed,
    Control so that the charge rate of the storage battery is equal,
    The control method of the cooperation system of the storage battery and power converter device characterized by the above-mentioned.
  2.  前記蓄電池と電力変換装置の連携システムは、系統がない状態で前記電力変換装置の其々が自立的に並列運転で制御されるものであって、
     前記並列運転の制御に用いる垂下特性に、各電力変換装置に接続されている前記蓄電池の充電率を反映させる、
     ことを特徴とする請求項1記載の蓄電池と電力変換装置の連携システムの制御方法。
    The linkage system of the storage battery and the power conversion device is one in which each of the power conversion devices is independently controlled in parallel operation without a system,
    Reflecting the charging rate of the storage battery connected to each power converter in the drooping characteristics used for controlling the parallel operation,
    The control method of the cooperation system of the storage battery and power converter device of Claim 1 characterized by the above-mentioned.
  3.  前記垂下特性は垂下率であり、前記垂下率の決定方法は前記蓄電池の充電時と放電時で異なり、
     前記充電率の大きさと前記垂下率の関係は、
     前記充電時は、前記充電率に対して前記垂下率が単調増加、
     前記放電時は、前記充電率に対して前記垂下率が単調減少である、
     ことを特徴とする請求項2記載の蓄電池と電力変換装置の連携システムの制御方法。
    The drooping characteristic is a droop rate, and the method for determining the droop rate differs between charging and discharging the storage battery,
    The relationship between the magnitude of the charging rate and the drooping rate is
    At the time of charging, the drooping rate increases monotonously with respect to the charging rate,
    At the time of discharging, the drooping rate is monotonously decreasing with respect to the charging rate.
    The control method of the cooperation system of the storage battery and power converter device of Claim 2 characterized by the above-mentioned.
  4.  前記垂下特性は周波数定格値を修正する修正値であり、前記修正値の決定方法は前記蓄電池の充電時と放電時で異なり、
     前記充電率の大きさと前記修正値で修正された前記周波数定格値の関係は、
     前記充電時は、前記充電率に対して前記周波数定格値が単調減少、
     前記放電時は、前記充電率に対して前記周波数定格値が単調増加である、
     ことを特徴とする請求項2記載の蓄電池と電力変換装置の連携システムの制御方法。
    The drooping characteristic is a correction value for correcting the frequency rating value, and the method for determining the correction value differs between charging and discharging of the storage battery,
    The relationship between the magnitude of the charging rate and the rated frequency value corrected with the corrected value is:
    At the time of charging, the frequency rating value monotonously decreases with respect to the charging rate,
    At the time of discharging, the frequency rating value is monotonously increasing with respect to the charging rate.
    The control method of the cooperation system of the storage battery and power converter device of Claim 2 characterized by the above-mentioned.
  5.  前記充電率は、前記蓄電池に付随しており、前記蓄電池の電圧、電流および温度を監視する電池コントローラの出力を利用する、
     ことを特徴とする請求項1記載の蓄電池と電力変換装置の連携システムの制御方法。
    The charge rate is associated with the storage battery and utilizes the output of a battery controller that monitors the voltage, current and temperature of the storage battery,
    The control method of the cooperation system of the storage battery and power converter device of Claim 1 characterized by the above-mentioned.
  6.  前記充電率は前記蓄電池の電圧から推定する、
     ことを特徴とする請求項1記載の蓄電池と電力変換装置の連携システムの制御方法。
    The charging rate is estimated from the voltage of the storage battery,
    The control method of the cooperation system of the storage battery and power converter device of Claim 1 characterized by the above-mentioned.
  7.  蓄電池ブロックと、該蓄電池ブロックに1対1で接続するパワーコンディショニングシステムとで、蓄電池―PCSの組を構成し、前記組が交流側で複数接続された連携システムにおける、前記パワーコンディショニングシステムであって、
     前記蓄電池ブロックと前記交流側の間で直流と交流の変換を行うスイッチング素子と、
     前記交流側の交流電圧と交流電流から、有効電力を計算する電力計算部と、
     対応する前記蓄電池ブロックの充電率と前記有効電力とを反映して、目標周波数を生成する発振器と、
     前記発振器の出力を前記スイッチング素子にフィードバックするフィードバック制御部と、
     を備えるパワーコンディショニングシステム。
    A storage battery block and a power conditioning system connected to the storage battery block on a one-to-one basis to form a storage battery-PCS set, and the power conditioning system in a cooperative system in which a plurality of the sets are connected on the AC side. ,
    A switching element that converts direct current and alternating current between the storage battery block and the alternating current side;
    A power calculator for calculating active power from the AC voltage and AC current on the AC side;
    Reflecting the charging rate of the corresponding storage battery block and the active power, an oscillator that generates a target frequency,
    A feedback control unit that feeds back the output of the oscillator to the switching element;
    Power conditioning system with
  8.  前記充電率と前記有効電力を入力とする垂下率計算部を備え、
     前記垂下率計算部は、
      前記有効電力の符号情報を抽出し、現在の動作が充電動作か放電動作かの判定を行う符号抽出部と、
      前記充電率に対応した充電用垂下率を出力する、充電用垂下関数部と、
      前記充電率に対応した放電用垂下率を出力する、放電用垂下関数部と、
      前記符号情報に基づいて、前記充電用垂下率あるいは放電用垂下率の一方を出力する選択部と、を備え、
     前記垂下率計算部の出力に基づいて、定格周波数を垂下して前記目標周波数を生成する、
     請求項7記載のパワーコンディショニングシステム。
    A droop rate calculation unit that inputs the charge rate and the active power,
    The droop rate calculation unit
    A code extraction unit that extracts code information of the active power and determines whether the current operation is a charging operation or a discharging operation;
    A drooping function unit for charging that outputs a drooping rate for charging corresponding to the charging rate, and
    A discharge drooping function unit that outputs a drooping rate for discharging corresponding to the charging rate; and
    A selection unit that outputs one of the droop rate for charging or the droop rate for discharge based on the sign information; and
    Based on the output of the droop rate calculation unit, the target frequency is generated by drooping a rated frequency,
    The power conditioning system according to claim 7.
  9.  前記充電率と前記有効電力を入力とする定格値修正計算部を備え、
     前記定格値修正計算部は、
      前記有効電力の符号情報を抽出し、現在の動作が充電動作か放電動作かの判定を行う符号抽出部と、
      前記充電率に対応した充電用修正値を出力する、充電用修正関数部と、
      前記充電率に対応した放電用修正値を出力する、放電用修正関数部と、
      前記符号情報に基づいて、前記充電用修正値あるいは放電用修正値の一方を出力する選択部と、を備え、
     前記定格値修正計算部の出力に基づいて、定格周波数を修正して前記目標周波数を生成する、
     請求項7記載のパワーコンディショニングシステム。
    A rated value correction calculation unit that inputs the charging rate and the active power,
    The rated value correction calculation unit is:
    A code extraction unit that extracts code information of the active power and determines whether the current operation is a charging operation or a discharging operation;
    A charging correction function unit that outputs a charging correction value corresponding to the charging rate; and
    A discharge correction function unit that outputs a discharge correction value corresponding to the charging rate;
    A selection unit that outputs one of the correction value for charging or the correction value for discharging based on the code information; and
    Based on the output of the rated value correction calculation unit, the rated frequency is corrected to generate the target frequency,
    The power conditioning system according to claim 7.
  10.  前記充電率と前記有効電力を入力とする制御部を備え、
     前記制御部は、前記充電率と前記有効電力とに基づいて制御値を決定し、
     前記制御値に基づいて定格周波数を調整して前記目標周波数を生成する、
     請求項7記載のパワーコンディショニングシステム。
    A control unit that inputs the charging rate and the active power;
    The control unit determines a control value based on the charging rate and the active power,
    Adjusting the rated frequency based on the control value to generate the target frequency;
    The power conditioning system according to claim 7.
  11.  前記制御部は、
     前記有効電力の符号を検出し、
     検出した前記符号に基づいて、異なる前記制御値を決定する、
     請求項10記載のパワーコンディショニングシステム。
    The controller is
    Detecting the sign of the active power;
    Different control values are determined based on the detected codes;
    The power conditioning system according to claim 10.
  12.  前記電力計算部は、前記交流側の交流電圧と交流電流から、無効電力を計算し、
     前記無効電力を用いて電圧垂下量を決定し、前記電圧垂下量に基づく電圧指令値を生成する電圧指令値生成回路を備え、
     前記フィードバック制御部は、前記電圧指令値を、前記スイッチング素子にフィードバックする、
     請求項11記載のパワーコンディショニングシステム。
    The power calculation unit calculates reactive power from the AC voltage and AC current on the AC side,
    A voltage command value generation circuit for determining a voltage droop amount using the reactive power and generating a voltage command value based on the voltage droop amount;
    The feedback control unit feeds back the voltage command value to the switching element;
    The power conditioning system of claim 11.
PCT/JP2017/047125 2017-01-27 2017-12-27 Method for controlling linking system for accumulator cells and power conversion devices, and power conditioning system WO2018139164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-012589 2017-01-27
JP2017012589A JP6781637B2 (en) 2017-01-27 2017-01-27 Control method of the cooperation system of storage battery and power converter, and power conditioning system

Publications (1)

Publication Number Publication Date
WO2018139164A1 true WO2018139164A1 (en) 2018-08-02

Family

ID=62978304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047125 WO2018139164A1 (en) 2017-01-27 2017-12-27 Method for controlling linking system for accumulator cells and power conversion devices, and power conditioning system

Country Status (2)

Country Link
JP (1) JP6781637B2 (en)
WO (1) WO2018139164A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4372945A3 (en) * 2022-11-04 2024-06-26 Xiamen Kehua Digital Energy Tech Co., Ltd. Control method for an off-grid energy storage system, control device and energy storage system
WO2024241466A1 (en) * 2023-05-23 2024-11-28 三菱電機株式会社 Distributed power supply integrated management system, distributed power supply integrated management device, distributed power supply integrated management method, and program

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6877640B2 (en) 2018-05-15 2021-05-26 三菱電機株式会社 Power converter and power conversion system
JP7068675B2 (en) * 2018-09-12 2022-05-17 東芝Itコントロールシステム株式会社 Power supply system
JP7399695B2 (en) * 2019-12-09 2023-12-18 株式会社セイブ・ザ・プラネット Charge/discharge control method for power storage system and charge/discharge control device
CN110601283A (en) * 2019-08-14 2019-12-20 浙江南都电源动力股份有限公司 Charging method and system
JP7174178B1 (en) 2022-03-11 2022-11-17 東京瓦斯株式会社 Controller and program
JP7233825B1 (en) 2022-04-22 2023-03-07 西芝電機株式会社 DC power supply system
WO2024247403A1 (en) * 2023-05-26 2024-12-05 住友電気工業株式会社 Control device, control method, and control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075758A1 (en) * 2013-11-19 2015-05-28 パナソニックIpマネジメント株式会社 Frequency control method, frequency control device, and rechargeable-battery system
JP2015142507A (en) * 2014-01-27 2015-08-03 エルエス産電株式会社Lsis Co., Ltd. Method of controlling charging and discharging of battery energy storage device and battery energy storage device for the same
JP2016025746A (en) * 2014-07-18 2016-02-08 富士電機株式会社 Power storage system, power conversion device, self-sustaining operation system, and power storage system control method
JP2016119820A (en) * 2014-12-24 2016-06-30 富士電機株式会社 Autonomous operation system
JP2016220352A (en) * 2015-05-18 2016-12-22 パナソニックIpマネジメント株式会社 Distributed power supply system and distributed power supply system control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144358A (en) * 1996-11-11 1998-05-29 Fuji Photo Film Co Ltd Battery current capacity measuring instrument and battery current capacity measuring method
WO2014098104A1 (en) * 2012-12-21 2014-06-26 川崎重工業株式会社 Control method and control system for para llel operation between different types of power generator
JP6238107B2 (en) * 2013-04-12 2017-11-29 パナソニックIpマネジメント株式会社 Storage battery management system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015075758A1 (en) * 2013-11-19 2015-05-28 パナソニックIpマネジメント株式会社 Frequency control method, frequency control device, and rechargeable-battery system
JP2015142507A (en) * 2014-01-27 2015-08-03 エルエス産電株式会社Lsis Co., Ltd. Method of controlling charging and discharging of battery energy storage device and battery energy storage device for the same
JP2016025746A (en) * 2014-07-18 2016-02-08 富士電機株式会社 Power storage system, power conversion device, self-sustaining operation system, and power storage system control method
JP2016119820A (en) * 2014-12-24 2016-06-30 富士電機株式会社 Autonomous operation system
JP2016220352A (en) * 2015-05-18 2016-12-22 パナソニックIpマネジメント株式会社 Distributed power supply system and distributed power supply system control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4372945A3 (en) * 2022-11-04 2024-06-26 Xiamen Kehua Digital Energy Tech Co., Ltd. Control method for an off-grid energy storage system, control device and energy storage system
WO2024241466A1 (en) * 2023-05-23 2024-11-28 三菱電機株式会社 Distributed power supply integrated management system, distributed power supply integrated management device, distributed power supply integrated management method, and program

Also Published As

Publication number Publication date
JP6781637B2 (en) 2020-11-04
JP2018121479A (en) 2018-08-02

Similar Documents

Publication Publication Date Title
WO2018139164A1 (en) Method for controlling linking system for accumulator cells and power conversion devices, and power conditioning system
JP6238107B2 (en) Storage battery management system
JP6809753B2 (en) Combined cycle system
JP5676767B2 (en) Power conversion system for energy storage system and control method thereof
JP5272040B2 (en) Power storage system and control method thereof
WO2017072991A1 (en) Power conversion system and control device
JP5519692B2 (en) Secondary battery control method and power storage device
WO2011114422A1 (en) Power supply system, power supply method, program, recording medium, and power supply controller
KR102324325B1 (en) Energy storage system hierarchical management system
US20210111581A1 (en) Hybrid energy storage system
CN108988324A (en) One kind being based on SOC and output power balance control method
WO2018021151A1 (en) Power storage system, control device, and power storage device
JP6089565B2 (en) Emergency power system
KR102793991B1 (en) Energy storage system connected to photovolatic system and controlling method thereof
JP6768571B2 (en) Power controller, method and power generation system
JP7408108B2 (en) power supply system
WO2007052349A1 (en) Electric power supply system and autonomous type distributed control system for electric power supply network and control method
Nguyen et al. Agent-based distributed event-triggered secondary control for energy storage system in islanded microgrids-cyber-physical validation
JP2020072637A (en) Power supply facility using renewable energy
JP7218453B1 (en) Uninterruptible power system
JP6573546B2 (en) Electric power fluctuation control device for renewable energy power generator
KR20200079606A (en) Control system of DC Uninterruptible Power Supply for load distribution
JP6479516B2 (en) Input control power storage system
US20130141958A1 (en) Management system for variable-resource energy generation systems
JP2023109365A (en) power supply system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17893709

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载