+

WO2018139162A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2018139162A1
WO2018139162A1 PCT/JP2017/047004 JP2017047004W WO2018139162A1 WO 2018139162 A1 WO2018139162 A1 WO 2018139162A1 JP 2017047004 W JP2017047004 W JP 2017047004W WO 2018139162 A1 WO2018139162 A1 WO 2018139162A1
Authority
WO
WIPO (PCT)
Prior art keywords
fin
heat exchanger
fins
bent
collar
Prior art date
Application number
PCT/JP2017/047004
Other languages
French (fr)
Japanese (ja)
Inventor
寿守務 吉村
吉田 育弘
一普 宮
皓亮 宮脇
典宏 米田
貴博 堀
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018564185A priority Critical patent/JP6755338B2/en
Publication of WO2018139162A1 publication Critical patent/WO2018139162A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • F28F1/28Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element the element being built-up from finned sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element

Definitions

  • the present invention relates to a plate fin type heat exchanger.
  • a conventional heat exchanger includes, for example, a plurality of flat plate-shaped fins provided with a plurality of fin collars as disclosed in Patent Document 1.
  • a plurality of fins are laminated so that the hole centers of the plurality of cylindrical fin collars coincide with each other to form a fin core.
  • the fin collars connected to each other are joined and sealed with a resin to form a plurality of liquid passing pipes.
  • the liquid passage tube is anticorrosive on the surface by a resin film formed on the inner peripheral surface.
  • the resin film formed on the inner peripheral surface of the liquid flow pipe serves as a thermal resistance. For this reason, heat exchange performance falls.
  • a relatively high-viscosity fluid such as water or antifreeze flows through the flow tube, or when the flow tube is configured with a small diameter for high heat transfer, the flow of the flow tube is laminar. There is a problem that the heat exchange performance deteriorates.
  • the present invention is intended to solve the above-described problems, and an object of the present invention is to provide a heat exchanger capable of obtaining high heat exchange performance even when a fluid flowing in a liquid passage tube is easily laminarized. .
  • a plurality of plate-like fins having a collar portion extending in a tapered shape from one surface are stacked, and the collar portions of fins adjacent to each other in the stacking direction are connected to form a liquid flow pipe.
  • the second fin discontinuous in the circumferential direction of the collar portion is provided inside the collar portion.
  • the second fins that are discontinuous in the circumferential direction are arranged inside the collar portion, and the resin film is formed on the inner surface of the liquid passage tube, so that it flows in the liquid passage tube. Even when the fluid is easily laminarized, the heat exchange performance is improved by the leading edge effect.
  • the second fin is formed discontinuously, a portion without the second fin, specifically a gap, can be formed in the circumferential direction, and flow resistance can be suppressed.
  • FIG. 2 is a front view showing fins when the heat exchanger according to Embodiment 1 of the present invention is viewed from the AA direction of FIG.
  • FIG. 3 is a cross-sectional view showing the heat exchanger according to Embodiment 1 of the present invention when viewed from the BB direction of FIG.
  • It is a perspective view which shows the structure of the fin collar of the heat exchanger which concerns on Embodiment 1 of this invention.
  • FIG. 1 is a perspective view showing an appearance of a heat exchanger 10 according to Embodiment 1 of the present invention.
  • the heat exchanger 10 has a fin core constituted by a plurality of plate-like fins 1 stacked at intervals and a liquid passage 13 penetrating the plurality of fins 1 in the overlapping direction.
  • FIG. 2 is a front view showing the fin 1 when the heat exchanger 10 according to Embodiment 1 of the present invention is viewed from the AA direction (the overlapping direction of the fins 1) in FIG. Note that the direction in which the fins 1 overlap and the direction in which the fluid flows in the fluid passage 13, that is, the fluid passage direction, are the same direction.
  • the heat exchanger 10 performs heat exchange between the air on the surface of the fin 1 and the fluid flowing in the liquid passage 13.
  • the fluid which flows into the liquid flow pipe 13 is demonstrated as water.
  • the fluid flowing through the liquid passage 13 may be water or a fluorine-based inert liquid to which a chemical that lowers the freezing point of the fluid is added.
  • the air WF is generated by, for example, a blower.
  • the air WF may use natural convection or wind generated by other driving force instead of the blower.
  • Water RF enters from one end of the fin 1 on which the liquid passage 13 of the fin 1 is overlapped and exits from the other end.
  • a plurality of liquid passing pipes 13 are provided in the fin 1, and the plurality of liquid passing pipes 13 are connected to each other by a U-shaped pipe (not shown) or the like so as to be reversed and flow in parallel at the other end.
  • the liquid flow pipes 13 are arranged in two rows in the flow direction (row direction) of the air WF orthogonal to the overlapping direction of the fins 1, and a plurality of the liquid passage tubes 13 are arranged in the vertical direction (stage direction) for each row.
  • the structure is shown. Further, the arrangement structure in which the liquid passage pipes 13 are formed is formed in a staggered arrangement as shown in FIG.
  • the water RF since water RF flows into a large number of liquid passages 13 from one end in the overlapping direction, the water RF branches at the inlet header 2 and connects the connection pipes 4 to the respective liquid passages 13. It flows in through.
  • the water RF that is reversed by the U-shaped tube at the other end of the heat exchanger 10 and flows out in parallel from the inflow pipes 13 flowing in the opposite direction to the inflow direction is joined to the outlet header 3 via another connection pipe 4. It flows out after.
  • the liquid passing pipe 13 is formed at a different position in the direction in which the wind flows.
  • the water RF flows from the inlet header 2 into the liquid flow pipe 13 positioned on the downstream side of the wind, and the water RF flows out from the liquid flow pipe 13 positioned on the upstream side to the outlet header 3. For this reason, heat exchange becomes favorable.
  • the water RF is configured so as to reciprocate the fin 1 that is formed by inverting the two liquid-passing tubes 13 at the other end.
  • the liquid passage 13 can be variously changed.
  • the water RF may flow out from the outlet header 3 installed at the other end without reciprocating the overlapped fins 1.
  • the water RF may be connected so as to reciprocate a plurality of times while meandering inside the superposed fins 1.
  • the liquid flow tube 13 of the first embodiment is formed by connecting fin collars formed on the fins 1.
  • the fin 1 is made of metal (for example, aluminum).
  • the fin collar is a portion protruding in a cylindrical shape from one surface of the fin 1 by, for example, drawing.
  • the fin collar is typically cylindrical and protrudes from one surface of the fin 1 in the vertical direction. Further, as will be described later, a part of the fin collar is deformed.
  • the fin collar has a cylindrical inner surface and an outer surface that are tapered in the vertical direction from one surface of the fin 1.
  • the tapered portion of the fin collar is referred to as a collar portion 11.
  • the tip of the collar portion 11 of the fin 1 on the other side in the overlapping direction is inserted into the opening of the collar portion 11 of the fin 1 on one side in the overlapping direction.
  • the fin collars of the two fins 1 are bonded to each other between the inner surface and the outer surface of the cylindrical portion, so that the liquid passing tube 13 is configured.
  • a resin adhesive or brazing is used for adhesion between the collar portions 11 of the two fins 1.
  • a resin film 14 is formed of a resin material on the inner surface of the liquid flow pipe 13 (see FIG. 27).
  • the resin film 14 may be used for joining the collar portion 11.
  • the fin 1 is a metal whose main component is aluminum
  • the formation of the resin film 14 can prevent corrosion due to water.
  • manufacturing becomes easy and productivity is improved.
  • FIG. 3 is a cross-sectional view showing a cross section of the heat exchanger 10 according to the first embodiment of the present invention as seen from the BB direction of FIG.
  • FIG. 4 is a perspective view schematically showing the shape of the fin collar according to the first embodiment of the present invention.
  • FIG. 3 shows an enlarged view of the vicinity of the portion where the water RF is distributed from the inlet header 2 via the connecting pipe 4 to the liquid passing pipe 13.
  • the connecting pipe 4 has a flange-like portion formed at the tip thereof.
  • the flange-like portion of the connecting pipe 4 is bonded to the exposed surface of the fin 1 exposed on the inlet header 2 side so that the connecting pipe 4 and the liquid passing pipe 13 communicate with each other.
  • the resin film 14 formed on the inner surface of the liquid flow pipe 13 is thin. For this reason, the resin film 14 is omitted in FIG.
  • the fin collar has second fins 12 that protrude inside the liquid passage tube 13.
  • the second fin 12 is a protrusion protruding toward the center of the cross section of the pipe perpendicular to the liquid passing direction of the liquid passing pipe 13.
  • the second fin 12 is made of a material continuous with the collar portion 11.
  • the second fin 12 has a surface portion that is inclined with respect to the tapered surface of the collar portion 11.
  • the tapered surface of the collar portion 11 is a surface formed in a cylindrical shape that is tapered toward the tip.
  • the tapered surface of the collar portion 11 has a surface slightly inclined with respect to the liquid flow direction.
  • the second fins 12 exist as protruding structures that are discontinuous in the circumferential direction and liquid passing direction of the collar portion 11 inside the collar portion 11.
  • the second fins 12 are not continuous in the circumferential direction and the liquid passing direction. For this reason, a portion without the second fin 12 exists somewhere in the circumferential direction or somewhere in the liquid flow direction inside the collar portion 11.
  • second fins 12 that are two protrusions at positions separated in the circumferential direction.
  • the second fins 12, which are two protrusions, are provided at positions where they face each other, that is, at positions that are point-symmetric with respect to the center of the cross section of the tube perpendicular to the liquid passing direction of the collar portion 11.
  • FIG. 3 shows a case where the protrusion of the second fin 12 has a dome-shaped cross section.
  • the second fins 12 may protrude in a columnar shape, a prismatic shape, a rectangular shape, or the like.
  • the length by which the second fin 12 protrudes toward the inside becomes too long, the flow resistance in the liquid passage tube 13 increases, and the power for flowing the water RF into the tube increases.
  • the length by which the second fin 12 projects inward is, for example, about 1/10 of the inner diameter of the collar portion 11 to about 1 ⁇ 2 of the inner diameter of the collar portion 11 at the maximum. It is good to set.
  • the length of the second fin 12 is shorter than the length of the collar portion 11. In the direction in which the fins 1 are overlapped, the length of the second fins 12 is shorter than the interval between the adjacent fins 1.
  • the second fins 12 are provided in the middle of the overlapping direction of the collar portion 11 in the overlapping direction of the fins 1.
  • the second fins 12 are not formed on the fin 1 side having the second fins 12 and the front end side of the collar portion 11.
  • the cylindrical surface of the collar portion 11 is left. As a result, the tapered surfaces of the two collar portions 11 are in close contact with each other between the adjacent fins 1, and the liquid passing tube 13 having excellent sealing performance and strength is configured.
  • a method for manufacturing the heat exchanger 10 according to the first embodiment will be described.
  • a thin metal plate is prepared as a material for the fin 1, and a fin collar is formed by drawing with a press. Furthermore, the press work which forms the 2nd fin 12 which is protrusion toward the center from the outer side of the taper surface of the collar part 11 in a fin collar is performed. In this way, the fin 1 in which the second fin 12 is formed can be manufactured.
  • the front end portion of the collar portion 11 provided on the fin 1 is inserted into the opening of the collar portion 11 provided on the adjacent fin 1.
  • the insertion of the tip of the collar portion 11 into the opening of the collar portion 11 is repeated using the other plurality of fins 1, and the plurality of collar portions 11 are sequentially connected to form the liquid passage 13.
  • a resin material is injected into each of the plurality of liquid pipes 13 from each opening (opening of the collar portion 11) of the fin 1 arranged at one end among the plurality of fins 1 stacked at intervals.
  • the connecting pipe 4 fixed to the inlet header 2 and the outlet header 3 is fitted into each opening after the resin material is injected. Further, as described above, the tip end portion of the collar portion 11 protruding from the fin 1 arranged at the other end of the plurality of fins 1 stacked at intervals is inserted into the U-shaped tube and fixed.
  • the heat-treated fin 1 is fluidized to fluidize the resin material, and the inner peripheral surface of the liquid passage 13, that is, the entire fin collar interior that is the collar portion 11 and the second fin 12 is fluidized resin. Cover with wood. Then, the resin material is infiltrated and joined to the joining surfaces of the fin fins connected to each other, and the resin material is cooled and solidified to be fixed. In addition, after applying the resin material to the fin collar and sequentially connecting the collar portions 11 to assemble the fin core, the fin core may be heated and cooled to fix the resin material.
  • the film thickness of the resin film 14 formed of a resin material on the inner peripheral surface of the liquid flow pipe 13 is desirably 50 ⁇ m or less.
  • the collar portion 11 when the front end portion of the collar portion 11 is inserted into the adjacent collar portions 11 and the plurality of collar portions 11 are sequentially connected, the collar portion 11 has a tapered cylindrical shape with a taper. If the taper shape is adjusted, the distance between the two fins 1 through which air flows is maintained. However, if an assembly spacer jig is inserted between the two fins 1, the distance between the two fins 1 can be maintained with higher accuracy.
  • the operation of the heat exchanger 10 according to the first embodiment will be described by taking as an example a case where hot water or cold water is used as a heat transfer medium and accommodated in an indoor unit of an air conditioner.
  • the heat transfer medium is heated by heat exchange with the refrigerant in the outdoor unit, and flows into the indoor unit as hot water (here, the flow of water RF is used as the hot water RF).
  • the hot water RF flows in from the inlet header 2 of the heat exchanger 10 accommodated in the indoor unit, and flows through the liquid passage pipes 13 positioned on the downstream side of the air WF via the connection pipes 4.
  • the hot water RF that has flowed through the respective flow pipes 13 on the downstream side of the air WF flows into the respective liquid flow pipes 13 positioned on the upstream side of the air WF via U-shaped pipes.
  • the heat transfer medium is cooled by heat exchange with the refrigerant in the outdoor unit, and flows into the indoor unit as cold water (here, the flow of water RF is used as the cold water RF).
  • the heat exchanger 10 flows.
  • the flow of the cold water RF in the heat exchanger 10 is the same as the flow during the heating operation.
  • the indoor air WF is sucked by the blower of the indoor unit and blown into the room in the flow direction of the air WF via the heat exchanger 10.
  • the air WF sucked by the blower flows between the fins 1 adjacent to each other in the overlapping direction from the direction orthogonal to the overlapping direction of the fins 1.
  • the air WF exchanges heat with the hot water RF in each flow-through pipe 13 located on the windward side, and exchanges heat with the hot water RF in each liquid-flow pipe 13 located on the leeward side to become warm air. It flows out into the room.
  • the air WF heat-exchanged with the cold air is sent into the room by the cold water RF flowing in the liquid passages 13 on the leeward side and the windward side.
  • the second fin 12 is configured so as to block a part of the flow of the fluid flowing along the inner surface of the collar portion 11 inside the liquid passage 13. Is arranged. For this reason, even when there is a laminar flow of the heat transfer medium, the heat transfer rate is improved by the leading edge effect.
  • the leading edge effect is that a thin thermal boundary layer is formed from the leading edge of the tip of the second fin 12 around the second fin 12 placed in isolation in the laminar flow, and the heat transfer coefficient Says the effect of improving.
  • a case where two second fins 12 are arranged in the circumferential direction inside one collar portion 11 is shown.
  • the number of the second fins 12 may be one, and the heat transfer promoting effect becomes higher as the number is larger.
  • the second fin 12 directly exchanges heat between water and air at the front and back of the expanded area portion. For this reason, unlike the case of providing a normal area expansion fin, for example, a plurality of thin plates on the inner surface of the collar portion 11, the expansion area portion has no heat conduction loss (fin efficiency is almost 100%) and is maximally effective. Heat transfer promotion effect is obtained.
  • the fin 1 and the second fin 12 having no heat conduction loss inside the liquid passage 13, water can flow in the liquid passage 13 compared to the case without the second fin 12. Since the area for heat exchange can be increased efficiently, the heat exchange performance is improved.
  • the flow of water tends to be a smooth flow with no flow separation, and the effect of expanding the area of the second fin 12 is more effectively applied.
  • a smooth tapered surface in which the second fin 12 is not formed is formed in a portion where the collar portion 11 rises from the fin 1, that is, a base portion (root portion) of the collar portion 11. .
  • the sealing property and the adhesive strength are improved.
  • the several 2nd fin 12 exists intermittently with respect to the water which flows in a liquid flow direction, and many front edges by the several 2nd fin 12 are made, the heat-transfer promotion effect becomes high.
  • FIG. 5 is a perspective view showing the structure of the fin 1 of a modification of the heat exchanger 10 according to Embodiment 1 of the present invention.
  • a cut-and-raised portion 43 is provided in a part of the fin 1.
  • the configuration is the same as that of the first embodiment except that the cut-and-raised portion 43 is provided. Therefore, sectional views and the like are omitted.
  • FIG. 5 shows a case where the cut and raised portion 43 is trapezoidal. However, the shape of the cut-and-raised portion 43 can be arbitrarily changed.
  • the cut and raised portion 43 may be formed by inserting a plurality of cut portions 44 into the fin 1 and raising the cut portions 44 in the direction in which the fins 1 are overlapped.
  • the cut-and-raised portion 43 By forming the cut-and-raised portion 43, heat transfer between the fin 1 and the air WF is promoted by the leading edge effect. In order to enhance the leading edge effect, the cut-and-raised portion 43 is preferably parallel to the flow of the air WF. Further, at the time of manufacturing the heat exchanger 10 of the modified example, the cut and raised portion 43 may be used for holding between the adjacent fins 1. The strength between the adjacent fins 1 can be improved by connecting the raised portions 43 between the adjacent fins 1.
  • the second fins 12 are present, and the resin film 14 is formed on the inner surface of the liquid passage 13.
  • the heat exchange performance can be effectively improved.
  • the 2nd fin 12 is discontinuous in the circumferential direction, the part without a 2nd fin, ie, a clearance gap, can be formed in the circumferential direction, and flow resistance can be suppressed.
  • Water RF which is a heat transfer medium, due to an increase in the operation frequency of air conditioners during the mid-season when the air conditioning load is relatively small, such as spring or autumn, or a decrease in the air conditioning load due to high thermal insulation of buildings or houses.
  • the flow rate of water is decreasing, and the operation ratio at which the flow of water RF is laminarized is increasing. Therefore, the necessity of improving the heat exchange performance even when the water RF flow is laminarized is becoming more and more important.
  • FIG. 6 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 2 of the present invention.
  • FIG. 6 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG.
  • the whole structure of the heat exchanger 10 of this Embodiment 2 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate
  • FIG. 7 is a perspective view showing the structure of a part of the fin collar of the heat exchanger according to Embodiment 2 of the present invention.
  • the second fin 12 of the second embodiment is different from the protrusion of FIG. 4 in that the position of the protrusion is shifted in the circumferential direction.
  • the heat exchanger 10 of this Embodiment 2 connects the fin collar shown in FIG. 4 and the fin collar shown in FIG. 7 alternately, and the liquid-flow pipe
  • the arrangement of the second fins 12 is alternately shifted in the circumferential direction when viewed from the liquid passing direction. Note that the manufacturing method and operation are the same as those in the first embodiment, and a description thereof will be omitted.
  • the second fin 12 of the other fin 1 when viewed from the liquid passing direction, is in the middle of the circumferential pitch of the two second fins 12 of the one fin 1. Is located. That is, in the adjacent fins 1, the second fins 12 are arranged so as to be shifted from each other by a half pitch (half cycle) in the circumferential direction.
  • the pitch is shifted in the circumferential direction, the influence of the wake of the second fins 12 arranged upstream can be suppressed, and the heat transfer performance is further improved.
  • the interval between the second fins 12 at the same position when viewed from the liquid passing direction is the same as that between the fins 1 in the overlapping direction.
  • the 2nd fin 12 existed discontinuously in the liquid flow direction.
  • the distance between the second fin 12 on the upstream side and the second fin 12 on the downstream side is narrow, and a high leading edge effect may not be obtained with the second fin 12 on the downstream side. is there.
  • the density of the second fins 12 is the same as that in the first embodiment, but the second fins 12 seen from the liquid passing direction are doubled, and a high leading edge effect is obtained. .
  • the position of the second fin 12 in the adjacent collar part 11 is a tube cross section orthogonal to the liquid passing direction of the collar part 11.
  • the position may be 180 degrees opposite to the center of.
  • the position of the 2nd fin 12 can also be shifted and offset arrangement
  • FIG. 8 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 3 of the present invention.
  • FIG. 8 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG.
  • the whole structure of the heat exchanger 10 of this Embodiment 3 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate
  • FIG. 9 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to Embodiment 3 of the present invention when viewed from the liquid direction.
  • FIG. 10 is a perspective view showing the structure of the fin collar of the heat exchanger 10 according to Embodiment 3 of the present invention.
  • a plurality of second fins 12 are formed in the circumferential direction inside the collar portion 11 of the fin collar.
  • the second fin 12 of the third embodiment is formed by processing the tip of the fin collar.
  • the second fin 12 is formed in the middle of the liquid passage direction of the collar portion 11.
  • the second fin 12 of the third embodiment is at the tip of the collar portion 11. Therefore, the second fin 12 is a portion that continues from the tip of the collar portion 11.
  • the second fin 12 is a portion bent inward from the tip of the collar portion 11.
  • the cylindrical shape does not change from the base portion of the collar portion 11 rising from the fin 1 to the tip end of the collar portion 11 connected to the second fin 12. For this reason, the surface of the collar portion 11 connecting the two fins 1 remains cylindrical.
  • the second fin 12 is formed by dividing the tip of the fin collar into a plurality of portions in the circumferential direction and bending the divided portions so as to project inside the collar portion 11.
  • the plurality of second fins 12 are bent so as to incline in the same direction of the liquid flow direction.
  • the collar portion 11 extends in the vertical direction with respect to one surface of the fin 1. And the 2nd fin 12 of this Embodiment 3 is bent so that the tip may return toward one side of fin 1.
  • the second fin 12 has a shape that is folded at an acute angle so that both surfaces form an acute angle at the tip of the collar portion 11. For this reason, the flow path area inside the liquid flow pipe 13 is ensured widely.
  • such a fin collar is divided into a plurality in the circumferential direction by forming a slit at the tip thereof. Then, it can form by performing the process which bend
  • FIG. The tapered surface of the base portion of the fin collar remains as the collar portion 11, and this portion is used for connection with the adjacent collar portion 11. Except for the structure part of the second fin 12, the manufacturing process of the other parts and the operation of the heat exchanger are the same as those in the above embodiment, and thus the description thereof is omitted.
  • the tip portions of the plurality of second fins 12 are intermittently present in the circumferential direction, and the tip portions of the plurality of second fins 12 are present.
  • a part of the flow of the water RF that flows along the inner surface of the liquid flow pipe 13 is blocked.
  • the flow of the water RF that flows in the vicinity of the collar portion 11 of the liquid flow pipe 13 flows so as to flow between the adjacent second fins 12 or the inner center of the collar portion 11 by colliding with the second fin 12.
  • a line with an arrow in FIG. 10 schematically shows how the flow along the inner surface of the collar portion 11 changes.
  • the heat exchange performance is improved by the leading edge effect and the effect of increasing the contact area even when the flow of the water RF is laminarized. Further, when a flow in which the flow of the water RF is made into a laminar flow is generated, the surface of the second fin 12 and the end thereof are in contact with the water RF to exchange heat. Since a gap is formed in the circumferential direction between the adjacent second fins 12, heat exchange performance can be improved while suppressing flow resistance.
  • a case where eight second fins 12 are arranged in the circumferential direction of the opening of the collar portion 11 is shown. However, the number of the second fins 12 may be two, and the greater the number of the second fins 12, the higher the heat transfer promoting effect and the easier the bending process.
  • the area expansion portion where the leading edge effect is obtained and the collar portion 11 are continuous. For this reason, the thermal resistance between the area enlarged portion and the collar portion 11 is relatively small (decrease in fin efficiency is suppressed). As a result, the effect of promoting heat transfer can be obtained as effectively as possible.
  • the second fin 12 having a relatively small heat conduction loss inside the liquid passage 13, the water RF is heated in the liquid passage 13 compared to the case where the second fin 12 is not provided.
  • the exchange area can be increased efficiently, and the heat exchange performance is improved.
  • the second fin 12 directly exchanges heat between water and air at the front and back of the expanded area portion.
  • the expansion area portion has no heat conduction loss (fin efficiency is almost 100%).
  • the effect of promoting heat transfer can be obtained as effectively as possible.
  • FIG. 11 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 4 of the present invention.
  • FIG. 11 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG.
  • the whole structure of the heat exchanger 10 of this Embodiment 4 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate
  • FIG. 12 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the fourth embodiment of the present invention as viewed from the liquid direction.
  • FIG. 13 is a perspective view showing the structure of the fin collar of the heat exchanger 10 according to the fourth embodiment.
  • the heat exchanger 10 of the fourth embodiment is the same as that of the third embodiment in that there are a plurality of bent second fins at the tip of the collar portion 11. However, the heat exchanger 10 of the fourth embodiment is different in that second fins having different bending directions with respect to the liquid passing direction in the plurality of second fins bent are mixed.
  • Some of the second fins 12 a have a shape that is bent at an acute angle with respect to the collar portion 11 so that the tip is directed to one surface of the fin 1 as in the third embodiment.
  • the second fin 12b that is adjacent to the second fin 12a in the circumferential direction is bent so as to protrude inward from the collar portion 11, and the tip thereof is away from one surface of the fin 1 with respect to the collar portion 11.
  • the shape is bent at an obtuse angle. Therefore, the latter second fin 12 b is inclined in the same direction as the collar portion 11 and is bent inside the collar portion 11 at a slight angle so as to form an obtuse angle with respect to the tapered surface of the collar portion 11. Note that the manufacturing method and operation are the same as those in the third embodiment, and a description thereof is omitted.
  • the 2nd fin 12a is the 1st shape bent so that the tip might approach one side of fin 1.
  • the 2nd fin 12b is the 2nd shape bent so that the tip may go away from one side of fin 1.
  • the second fins 12a having the first shape and the second fins 12b having the second shape are alternately arranged in the circumferential direction.
  • the second fins 12a and 12b adjacent to each other in the circumferential direction inside one collar portion 11 are bent in opposite directions in the liquid passing direction. Since it is configured in this way, a larger gap is formed between the second fins 12 than in the third embodiment, and the heat exchange performance can be improved as in the third embodiment while the flow resistance is suppressed.
  • FIG. 13 the flow of the water RF along the inner surface of the collar portion 11 is changed in the flow direction by the second fins 12 a, flows between the adjacent second fins 12 a, and downstream in the liquid flow direction.
  • the state of flowing on the surface of the existing second fin 12b is schematically shown.
  • Such a flow of water RF also leads to suppression of upstream disturbance. For this reason, the leading edge effect of the second fin 12b on the downstream side can be obtained to the maximum (the influence of the wake can be suppressed to the maximum), and the heat transfer performance is further improved.
  • FIG. 14 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 5 of the present invention. 14 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG.
  • the whole structure of the heat exchanger 10 of this Embodiment 5 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate
  • FIG. 15 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the fifth embodiment of the present invention as viewed from the liquid direction.
  • FIG. 16 is a perspective view showing the structure of the fin collar of the heat exchanger 10 according to the fifth embodiment of the present invention.
  • the heat exchanger 10 of the fifth embodiment is the same as the third and fourth embodiments in that there are a plurality of bent second fins at the tip of the collar portion 11.
  • the shapes of the second fins 12a and 12b are different.
  • the second fins 12a and 12b according to the fifth embodiment are configured by second fins 12a and 12b that are bent portions in which a part of the circumferential direction is bent in the liquid passing direction and a flat portion 12c that is orthogonal to the liquid passing direction. Is done.
  • the flat portion 12c is formed in a fan-shaped shape that protrudes from a part in the circumferential direction at the tip of the collar portion 11 toward the center side of the tube cross section orthogonal to the liquid direction.
  • the flat part 12c is bent so as to have a surface substantially orthogonal to the liquid flow direction. Further, the second fins 12a and 12b, which are bent portions, are provided at both ends of the flat portion 12c. When viewed from the liquid passing direction, the second fin 12a that is the bent portion and the second fin 12b that is the bent portion are at opposite ends in the circumferential direction with respect to the flat portion 12c.
  • the second fin 12a that is a bent portion is a portion that is bent toward the upstream side in the liquid passing direction.
  • the second fin 12b, which is a bent portion is a portion bent toward the downstream side in the liquid passing direction.
  • the second fin 12a which is a bent portion
  • the second fin 12b that is a bent portion is located at the end in the counterclockwise direction with respect to the flat portion 12c when viewed from the upstream side in the liquid passing direction to the downstream side.
  • the second fins 12a and 12b, which are bent portions may be arranged in reverse.
  • the flat part 12c was fan-shaped, it may be formed in a shape such as a triangle, a trapezoid, or a rectangle.
  • 15 and 16 show a configuration in which two second fin bodies are located at different positions in the circumferential direction inside one fin collar. When viewed from the liquid passing direction, the inner periphery of the collar portion 11 includes a region where two second fin bodies are formed and a region where the second fin bodies are not formed between them.
  • the 2nd fin 12a is the 1st shape bent so that the tip might approach one side of fin 1.
  • the 2nd fin 12b is the 2nd shape bent so that the tip may go away from one side of fin 1.
  • the second fins 12a having the first shape and the second fins 12b having the second shape are alternately arranged in the circumferential direction.
  • a slit is formed at the tip of the fin collar for the second fins 12 a and 12 b that are bent portions and the flat portion 12 c. It can be manufactured by bending each part after that.
  • the tapered surface of the base portion of the fin collar remains as the collar portion 11, and this portion is used for connection with the adjacent collar portion 11.
  • the manufacturing process of the other parts and the operation of the heat exchanger are the same as those in the above embodiment, and thus the description thereof is omitted.
  • the flow of the water RF along the inner surface of the collar portion 11 changes as shown by the line with an arrow in FIG. Since the second fin body protrudes inside, the heat exchange performance is improved by the leading edge effect as in the above embodiment. Further, the second fin body has different height portions in the liquid passing direction in different circumferential directions in the collar portion 11. Thereby, the flow of the water RF generates an asymmetric flow in the circumferential direction, and as a result, a flow in the circumferential direction is generated.
  • the water RF that flows toward the flat portion 12c with respect to the upstream end of the second fin 12a that is the bent portion collides with the flat portion 12c, and then is opposite to the second fin 12a that is the bent portion along the circumferential direction.
  • FIG. 17 is a cross-sectional view showing a modified example in which both ends of the flat portion 12c are second fins 12a which are bent portions bent toward the inlet header 2 side. Since the bent tip of the second fin 12a faces the upstream side of the flow, the leading edge effect is enhanced.
  • both ends of the flat portion 12c are bent to the opposite side of the outlet header 3, so that the bent tip of the second fin 12a faces the upstream side and the leading edge effect is enhanced. It is done.
  • the performance change due to the flow direction of the water RF may be smaller when the second fins with different bending directions are mixed as shown in FIG. That is, only the second fin 12a having the first shape that is bent so that the tip approaches one surface of the fin 1 may be provided. Further, as described later in the sixth embodiment, only the second fin 12b having the second shape whose tip is bent so as to be away from one surface of the fin 1 may be provided.
  • the area of the second fins 12a and 12b increases, the effect of improving heat transfer and reducing flow resistance due to the leading edge effect can be obtained.
  • the second fin since the second fin is divided in the circumferential direction (perpendicular to heat transfer), there is no influence that heat transfer is reduced by the division.
  • the second fins 12a and 12b, which are the bent portions in the fifth embodiment are divided in the radial direction (heat transfer direction) from the collar portion 11, there is a possibility that heat conduction loss will increase if it is made too large. There is. Therefore, for example, the area of the second fins 12a and 12b, which are the bent portions, is preferably set to an appropriate size, such as smaller than the flat portion 12c.
  • FIG. 18 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 6 of the present invention.
  • FIG. 18 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG.
  • the whole structure of the heat exchanger 10 of this Embodiment 6 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate
  • FIG. 19 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the sixth embodiment of the present invention when viewed from the liquid direction.
  • the second fin 12 of the sixth embodiment has a shape in which the second fin 12a of the fourth embodiment is removed and only the second fin 12b is left.
  • the second fin 12 is bent inside the collar portion 11 at a slight angle so as to form an obtuse angle with respect to the tapered surface of the collar portion 11, and is inclined in the same direction as the tapered surface of the collar portion 11.
  • a plurality of second fins 12 are provided at intervals in the circumferential direction.
  • the manufacturing method and operation are the same as those in the third and fourth embodiments, and the description thereof is omitted.
  • the sixth embodiment no second fin is formed between the second fins 12 adjacent in the circumferential direction. For this reason, the improvement in heat exchange performance is slightly inferior to that of the fourth embodiment. However, the flow resistance can be further suppressed.
  • the sixth embodiment is effective when the diameter of the liquid passage pipe 13 is reduced.
  • FIG. 20 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 7 of the present invention. 20 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG.
  • the whole structure of the heat exchanger 10 of this Embodiment 7 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate
  • FIG. 21 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the seventh embodiment of the present invention as viewed from the liquid direction.
  • the second fin 12 of the seventh embodiment is inclined in the same direction as the tapered surface of the collar portion 11 and inside the collar portion 11 as in the sixth embodiment.
  • a plurality of second fins 12 are provided at intervals in the circumferential direction.
  • the positions of the second fins 12 in the circumferential direction are shifted between the two fins 1 connected to each other.
  • FIG. 21 when viewed from the liquid flow direction, the second fin 12 of the fin 1 on the upstream side in the front liquid flow direction indicated by the solid line is connected to the downstream side in the liquid flow direction immediately behind the second fin 12 indicated by the broken line. It is shown that the second fin 12 of the fin 1 is displaced in the circumferential direction of the center of the tube cross section perpendicular to the liquid passing direction of the collar portion 11.
  • the space region between the adjacent second fins 12 of the fin 1 on the upstream side in the front liquid flow direction indicated by the solid line is connected to the downstream side in the liquid flow direction immediately behind that indicated by the broken line.
  • no second fin is formed between the second fins 12 adjacent in the circumferential direction. For this reason, flow resistance can be suppressed. Further, the fins 1 connected to each other have second fins 12 at different circumferential positions. Thereby, the water flowing in the vicinity of the inner surface of the collar portion 11 can easily come into contact with the second fin 12 of any one of the fins 1 and the heat exchange performance is improved.
  • the second fins 12 of the fins 1 connected to each other may be slightly overlapped so that no gap can be seen in the circumferential direction when viewed from the liquid passing direction.
  • FIG. 22 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 8 of the present invention. 22 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG.
  • the whole structure of the heat exchanger 10 of this Embodiment 8 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate
  • FIG. 23 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the eighth embodiment of the present invention when viewed from the liquid direction.
  • the tip of the fin collar is formed in a concavo-convex shape such as a triangle shape.
  • the second fin 12 is formed by bending the concavo-convex portion in the center direction of the tube cross section perpendicular to the airflow direction of the fin collar.
  • the tapered tubular portion of the fin collar that is not bent remains as the collar portion 11.
  • the cylindrical tip of the collar portion 11 is parallel to one surface of the fin 1 and has a smooth ring shape. At the height in the liquid passing direction from one surface of the fin 1, the bending positions of the uneven portions of the plurality of jagged portions are the same. For this reason, the airtightness by the connection of the collar portion 11 is improved.
  • the tip of the collar portion 11 is preferably formed in a smooth ring shape.
  • the concave and convex shape of the second fin 12 is formed into a shape such as a triangle that becomes narrower toward the center side of the cross section of the tube orthogonal to the ventilation direction. For this reason, a high leading edge effect can be obtained and the heat exchange performance can be improved while the area where the second fin 12 blocks the liquid passage 13 is reduced.
  • FIG. 24 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 9 of the present invention. 24 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG.
  • the whole structure of the heat exchanger 10 of this Embodiment 9 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate
  • FIG. 25 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the ninth embodiment of the present invention as seen from the liquid direction.
  • FIG. 26 is a perspective view showing the structure of the fin collar of the heat exchanger 10 according to the ninth embodiment of the present invention.
  • the ninth embodiment is similar to the fifth embodiment, but the shape of the second fin 12 is different.
  • the second fin 12 is formed with a rectangular plate portion or the like at the tip of the collar portion 11, bent toward the center of the tube cross section perpendicular to the ventilation direction of the collar portion 11, It is formed by bending one corner of the shaped plate piece portion so as to approach one surface of the fin 1 and bending the other corner of the plate piece portion toward the side away from one surface of the fin 1. Therefore, as in the fifth embodiment, the second fin 12 includes a flat portion 12c that protrudes from the tip of the collar portion 11 toward the center of the tube cross section perpendicular to the ventilation direction of the opening portion, and the collar portion 11.
  • a second fin 12a that is a bent portion that is bent toward one end in the liquid passing direction at an end of the flat portion 12c on one side in the circumferential direction, and a second fin that is a bent portion at the opposite end of the flat portion 12c.
  • a second fin 12b that is a bent portion that is bent in the opposite direction to the fin 12a.
  • the 2nd fin 12a is the 1st shape bent so that the tip might approach one side of fin 1.
  • the 2nd fin 12b is the 2nd shape bent so that the tip may go away from one side of fin 1.
  • the second fins 12a having the first shape and the second fins 12b having the second shape are alternately arranged in the circumferential direction.
  • the second fin 12 corresponds to the second fin body of the fifth embodiment.
  • the second fins 12a and 12b which are the bent portions, are not bent perpendicularly to the flat portion 12c as in the fifth embodiment, and are bent at a smaller angle than a right angle.
  • the 2nd fin 12a, 12b which is a bending part with respect to a liquid flow direction has a slope which inclines.
  • the bending part between the 2nd fins 12a and 12b and the flat part 12c which are bending parts may be formed in a continuous curved surface.
  • the 2nd fins 12a and 12b which are a bending part may be formed in a curved surface.
  • the second fins 12a and 12b which are bent portions, are formed by bending the corners of the plate pieces.
  • the flat part 12c is formed in a triangular or trapezoidal shape with a thinner central side. For this reason, these inclined surfaces are directed to the inner center of the liquid passage 13.
  • the shape used as the origin of the 2nd fin 12 demonstrated in the example made into the rectangular shape.
  • the shape on which the second fin 12 is based may be another shape.
  • the ninth embodiment since one of the second fins 12a and 12b, which are the bent portions, has an end portion on the upstream side of the flow, the heat exchange performance is improved by the leading edge effect. Further, since the second fin 12a that is the bent portion is opposite in the liquid passing direction, the second fin 12a has an action of rotating the liquid and changes the flow of the liquid, so that the same effect as in the fifth embodiment can be obtained. . In particular, since at least one of the second fins 12a and 12b, which are the bent portions, has its inclined surface inclined toward the inner center of the liquid pipe 13, the water RF flowing near the center of the liquid pipe 13 flows. It is guided near the inner wall of the collar portion 11. For this reason, heat exchange at the tube wall of the liquid flow tube 13 can also be promoted.
  • the flat portion 12c and the second fins 12a and 12b which are bent portions at both ends thereof constitute one second fin 12 (second fin body).
  • the second fin 12a that is the bent portion is formed at one end of the flat portion 12c and the second fin 12b that is the bent portion is not provided at the other end, or one end of the flat portion 12c is not provided.
  • a similar effect can be obtained when the second fin 12b, which is a bent portion, is formed at the end on the side, and the second fin 12a, which is a bent portion, is not provided at the other end. That is, only the second fin 12a having the first shape that is bent so that the tip approaches one surface of the fin 1 may be provided.
  • the second fin 12b having the second shape bent so that the tip is away from one surface of the fin 1 may be provided.
  • a part of the flat portion 12c may be bent toward the liquid passing direction.
  • the resin film 14 formed on the second fin 12 may be thinner than the resin film 14 formed on the collar portion 11.
  • at least part of the resin film 14 in the resin film 14 formed on the second fin 12 may not cover the second fin.
  • the region where the resin film 14 of the second fin 12 is thin or not covered is not necessarily the entire surface of the second fin 12 and may be only a part.
  • FIG. 27 is an enlarged cross-sectional view showing the heat exchanger 10 according to Embodiment 10 of the present invention.
  • FIG. 27 shows, as an example, a structure in which the thickness and adhesion of the resin film 14 are changed depending on the site in the structure of the seventh embodiment shown in FIG.
  • the resin film 14 of the second fin 12 protruding toward the inner center of the liquid passage 13 is thin or has a structure in which a part of the resin film 14 is not attached.
  • This example shows a structure in which the resin film 14 becomes thinner toward the tip of the second fin 12, that is, toward the inner center of the liquid passage 13, and there is no resin film 14 at the tip of the second fin 12. . Similar structures can be used for other embodiments.
  • the resin film 14 of the second fin 12 is attached with a brush inserted into the liquid passage tube 13. There is a way to rub.
  • a brush having a size smaller than the inner diameter of the collar portion 11 and capable of rubbing the second fin 12 may be used.
  • a solvent that gradually dissolves the resin film 14 instead of the brush may be used so that the solvent flows vigorously in the central portion of the liquid passage 13.
  • the heat exchange performance between the second fin 12 and the fluid flowing through the liquid passage 13 is remarkably improved.
  • the second fin 12 has a structure in which the tip of the collar portion 11 is bent toward the inner center of the liquid passage tube 13, the collar portion 11 constituting the liquid passage tube 13 is protected even when the resin film 14 becomes thin. Therefore, heat exchange performance can be improved while maintaining reliability.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

In this heat exchanger, a plurality of planar fins having collar parts each extending from one surface into a tapered cylindrical shape are stacked, the collar parts of the fins adjacent to each other in the stacking direction are connected to one another so as to constitute a liquid passage tube, and a resin film is formed on the inner surface of the liquid passage tube. Inside the collar parts, second fins that are discontinuous in the peripheral direction of the collar parts are provided.

Description

熱交換器Heat exchanger
 本発明は、プレートフィン型の熱交換器に関するものである。 The present invention relates to a plate fin type heat exchanger.
 従来の熱交換器は、例えば、特許文献1のように、複数のフィンカラーが設けられた平板形状の複数のフィンを備える。そして、複数の円筒状のフィンカラーの穴中心が一致するように複数のフィンが積層されてフィンコアが形成されている。連接されたフィンカラーは、樹脂により接合されるとともにシールされ、複数の通液管を構成する。通液管は、内周面に形成された樹脂膜により表面の防食が施されている。 A conventional heat exchanger includes, for example, a plurality of flat plate-shaped fins provided with a plurality of fin collars as disclosed in Patent Document 1. A plurality of fins are laminated so that the hole centers of the plurality of cylindrical fin collars coincide with each other to form a fin core. The fin collars connected to each other are joined and sealed with a resin to form a plurality of liquid passing pipes. The liquid passage tube is anticorrosive on the surface by a resin film formed on the inner peripheral surface.
特公昭61-015359号公報Japanese Patent Publication No. 61-015359
 特許文献1に記載された熱交換器においては、通液管の内周面に形成された樹脂膜が熱抵抗となる。このため、熱交換性能が低下する。特に、通液管に水あるいは不凍液などの比較的粘度の高い流体が流れる場合、または、高伝熱化のため通液管が細径で構成される場合に、通液管の流れが層流化して熱交換性能が低下するといった問題があった。 In the heat exchanger described in Patent Document 1, the resin film formed on the inner peripheral surface of the liquid flow pipe serves as a thermal resistance. For this reason, heat exchange performance falls. In particular, when a relatively high-viscosity fluid such as water or antifreeze flows through the flow tube, or when the flow tube is configured with a small diameter for high heat transfer, the flow of the flow tube is laminar. There is a problem that the heat exchange performance deteriorates.
 本発明は、上述のような問題点を解決するためのものであり、通液管内を流れる流体が層流化しやすい場合でも高い熱交換性能が得られる熱交換器を提供することを目的とする。 The present invention is intended to solve the above-described problems, and an object of the present invention is to provide a heat exchanger capable of obtaining high heat exchange performance even when a fluid flowing in a liquid passage tube is easily laminarized. .
 本発明の熱交換器は、一方の面から先細りの筒状にのびたカラー部を有する平板状のフィンが複数重ねられ、重ね方向に隣接するフィンのカラー部どうしが連接して通液管を構成し、前記通液管の内面に樹脂膜が形成されている熱交換器において、前記カラー部の内側に、前記カラー部の周方向に不連続な第2のフィンを有するものである。 In the heat exchanger of the present invention, a plurality of plate-like fins having a collar portion extending in a tapered shape from one surface are stacked, and the collar portions of fins adjacent to each other in the stacking direction are connected to form a liquid flow pipe. In the heat exchanger in which a resin film is formed on the inner surface of the liquid flow pipe, the second fin discontinuous in the circumferential direction of the collar portion is provided inside the collar portion.
 本発明の熱交換器によれば、周方向に不連続な第2のフィンがカラー部の内側に配置されるとともに、通液管の内面に樹脂膜が形成されるため、通液管内を流れる流体が層流化しやすい場合でも、前縁効果により熱交換性能が向上する。また、第2のフィンが不連続に形成されているため、周方方向に第2のフィンのない部分、具体的には隙間などが形成でき、流動抵抗が抑制できる。 According to the heat exchanger of the present invention, the second fins that are discontinuous in the circumferential direction are arranged inside the collar portion, and the resin film is formed on the inner surface of the liquid passage tube, so that it flows in the liquid passage tube. Even when the fluid is easily laminarized, the heat exchange performance is improved by the leading edge effect. In addition, since the second fin is formed discontinuously, a portion without the second fin, specifically a gap, can be formed in the circumferential direction, and flow resistance can be suppressed.
本発明の実施の形態1に係る熱交換器の外観を示す斜視図である。It is a perspective view which shows the external appearance of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器を図1のA-A方向から見たフィンを示す正面図である。FIG. 2 is a front view showing fins when the heat exchanger according to Embodiment 1 of the present invention is viewed from the AA direction of FIG. 本発明の実施の形態1に係る熱交換器を図2のB-B方向から見て示す断面図である。FIG. 3 is a cross-sectional view showing the heat exchanger according to Embodiment 1 of the present invention when viewed from the BB direction of FIG. 本発明の実施の形態1に係る熱交換器のフィンカラーの構造を示す斜視図である。It is a perspective view which shows the structure of the fin collar of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の変形例のフィンの構造を示す斜視図である。It is a perspective view which shows the structure of the fin of the modification of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器の一部のフィンカラーの構造を示す斜視図である。It is a perspective view which shows the structure of the one part fin collar of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る熱交換器のフィンカラーの内部を通液方向から見て示す平面図である。It is a top view which shows the inside of the fin collar of the heat exchanger which concerns on Embodiment 3 of this invention seeing from a liquid direction. 本発明の実施の形態3に係る熱交換器のフィンカラーの構造を示す斜視図である。It is a perspective view which shows the structure of the fin collar of the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る熱交換器のフィンカラーの内部を通液管に沿った方向から見て示す平面図である。It is a top view which sees the inside of the fin collar of the heat exchanger which concerns on Embodiment 4 of this invention from the direction along a liquid pipe. 本発明の実施の形態4に係る熱交換器のフィンカラーの構造を示す斜視図である。It is a perspective view which shows the structure of the fin collar of the heat exchanger which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る熱交換器のフィンカラーの内部を通液管に沿った方向から見て示す平面図である。It is a top view which sees the inside of the fin collar of the heat exchanger which concerns on Embodiment 5 of this invention from the direction along a liquid pipe. 本発明の実施の形態5に係る熱交換器のフィンカラーの構造を示す斜視図である。It is a perspective view which shows the structure of the fin collar of the heat exchanger which concerns on Embodiment 5 of this invention. 本発明の実施の形態5に係る熱交換器の変形例を示す断面図である。It is sectional drawing which shows the modification of the heat exchanger which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger which concerns on Embodiment 6 of this invention. 本発明の実施の形態6に係る熱交換器のフィンカラーの内部を通液管に沿った方向から見て示す平面図である。It is a top view which sees the inside of the fin collar of the heat exchanger which concerns on Embodiment 6 of this invention from the direction along a liquid pipe. 本発明の実施の形態7に係る熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger which concerns on Embodiment 7 of this invention. 本発明の実施の形態7に係る熱交換器のフィンカラーの内部を通液管に沿った方向から見て示す平面図である。It is a top view which sees the inside of the fin collar of the heat exchanger which concerns on Embodiment 7 of this invention from the direction along a liquid pipe. 本発明の実施の形態8に係る熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger which concerns on Embodiment 8 of this invention. 本発明の実施の形態8に係る熱交換器のフィンカラーの内部を通液管に沿った方向から見て示す平面図である。It is a top view which sees the inside of the fin collar of the heat exchanger which concerns on Embodiment 8 of this invention from the direction along a liquid pipe. 本発明の実施の形態9に係る熱交換器を示す断面図である。It is sectional drawing which shows the heat exchanger which concerns on Embodiment 9 of this invention. 本発明の実施の形態9に係る熱交換器のフィンカラーの内部を通液管に沿った方向から見て示す平面図である。It is a top view which sees the inside of the fin collar of the heat exchanger which concerns on Embodiment 9 of this invention from the direction along a liquid pipe. 本発明の実施の形態9に係る熱交換器のフィンカラーの構造を示す斜視図である。It is a perspective view which shows the structure of the fin collar of the heat exchanger which concerns on Embodiment 9 of this invention. 本発明の実施の形態10に係る熱交換器を示す断面拡大図である。It is a cross-sectional enlarged view which shows the heat exchanger which concerns on Embodiment 10 of this invention.
 以下では、本発明の実施の形態に係る熱交換器について図面を参照して説明する。異なる実施の形態において同一または対応する要素は同一符号で説明し、顕著な違いがない場合は説明をくり返さないものとする。また、図面において各要素の大きさの関係は実際と異なる場合がある。各実施の形態において、発明の主旨と反しない範囲で各部の形状などは変更自由であり、相互に組合せも可能である。説明において、板状、平行、円筒などとする各要素の形状は、厳密に板状、平行、円筒などの形状に限るものではなく、全体を見た場合におおよそのそのような形状、特徴を有して発明の効果が得られる場合は、そのような状態も含むものとする。 Hereinafter, a heat exchanger according to an embodiment of the present invention will be described with reference to the drawings. In different embodiments, the same or corresponding elements will be described with the same reference numerals, and the description will not be repeated unless there is a significant difference. In the drawings, the relationship between the sizes of the elements may be different from the actual one. In each embodiment, the shape of each part can be freely changed and can be combined with each other without departing from the spirit of the invention. In the description, the shape of each element such as plate, parallel, and cylinder is not strictly limited to the shape of plate, parallel, cylinder, and the like. In the case where the effects of the invention are obtained, such a state is also included.
 <実施の形態1>
 図1は、本発明の実施の形態1に係る熱交換器10の外観を示す斜視図である。熱交換器10は、間隔をあけて重ねられた複数の平板状のフィン1と、複数のフィン1を重ね方向に貫通する通液管13と、によって構成されたフィンコアを有する。図2は、本発明の実施の形態1に係る熱交換器10を図1のA-A方向(フィン1の重ね方向)から見たフィン1を示す正面図である。なお、フィン1の重ね方向と、通液管13内を流体が流れる方向つまり通液方向と、は同一方向である。以下では、特に流れに関する説明について、主に通液方向を使って説明する。熱交換器10は、フィン1の表面の空気と通液管13の内部に流れる流体とで熱交換を行うものである。以下では、通液管13に流れる流体を水として説明する。しかし、通液管13に流れる流体は、流体の凝固点を降下させる薬品を添加した水あるいはフッ素系不活性液体などとしてもよい。
<Embodiment 1>
FIG. 1 is a perspective view showing an appearance of a heat exchanger 10 according to Embodiment 1 of the present invention. The heat exchanger 10 has a fin core constituted by a plurality of plate-like fins 1 stacked at intervals and a liquid passage 13 penetrating the plurality of fins 1 in the overlapping direction. FIG. 2 is a front view showing the fin 1 when the heat exchanger 10 according to Embodiment 1 of the present invention is viewed from the AA direction (the overlapping direction of the fins 1) in FIG. Note that the direction in which the fins 1 overlap and the direction in which the fluid flows in the fluid passage 13, that is, the fluid passage direction, are the same direction. Below, especially the description regarding a flow is demonstrated mainly using a liquid flow direction. The heat exchanger 10 performs heat exchange between the air on the surface of the fin 1 and the fluid flowing in the liquid passage 13. Below, the fluid which flows into the liquid flow pipe 13 is demonstrated as water. However, the fluid flowing through the liquid passage 13 may be water or a fluorine-based inert liquid to which a chemical that lowers the freezing point of the fluid is added.
 図1において、空気WFの流れ方向、および、熱搬送媒体である水RFの流れ方向をそれぞれ矢印により示している。空気WFは、例えば送風機などで発生されるものである。また、空気WFは、送風機のかわりに自然対流あるいは他の駆動力で発生する風を利用してもよい。 1, the flow direction of the air WF and the flow direction of the water RF that is a heat transfer medium are indicated by arrows. The air WF is generated by, for example, a blower. The air WF may use natural convection or wind generated by other driving force instead of the blower.
 水RFは、フィン1の通液管13の重ねられたフィン1の一方の端から入り、他方の端から出る。図1では、フィン1に複数の通液管13が設けられ、複数の通液管13どうしがU字管(図示せず)などで接続されて他方の端で反転して並列に流れるように構成した例を示している。図2では、通液管13は、フィン1の重ね方向と直交する空気WFの流れ方向(列方向)に2列に配置され、かつ、列毎の鉛直方向(段方向)にそれぞれ複数配置された構造を示している。また、通液管13が形成された配置構造は、図2に示すように、千鳥配列に形成されている。 Water RF enters from one end of the fin 1 on which the liquid passage 13 of the fin 1 is overlapped and exits from the other end. In FIG. 1, a plurality of liquid passing pipes 13 are provided in the fin 1, and the plurality of liquid passing pipes 13 are connected to each other by a U-shaped pipe (not shown) or the like so as to be reversed and flow in parallel at the other end. A configured example is shown. In FIG. 2, the liquid flow pipes 13 are arranged in two rows in the flow direction (row direction) of the air WF orthogonal to the overlapping direction of the fins 1, and a plurality of the liquid passage tubes 13 are arranged in the vertical direction (stage direction) for each row. The structure is shown. Further, the arrangement structure in which the liquid passage pipes 13 are formed is formed in a staggered arrangement as shown in FIG.
 また、図1のように重ね方向の一方の端から多数の通液管13に水RFが流入するために、水RFは、入口ヘッダ2で分岐して各通液管13に接続管4を経て流入する。熱交換器10の他方の端のU字管で反転されて並列に流入時と逆方向に流れる各通液管13から流出する水RFは、別の接続管4を経て出口ヘッダ3に合流させてから流出する。風の流れる方向で異なる位置に通液管13が形成されている。しかし、風の下流側に位置する通液管13に入口ヘッダ2から水RFが流入し、上流側に位置する通液管13から出口ヘッダ3に水RFが流出されるようにしている。このため、熱交換が良好となる。上記では水RFが2本の通液管13を他方の端で反転して重ねあわせたフィン1を往復するように構成した。しかし、通液管13は、種々に変更可能である。例えば、水RFは、重ねあわせたフィン1を往復せずに他方の端に設置した出口ヘッダ3から流出させるようにしてもよい。また、水RFは、重ねあわせたフィン1の内部を蛇行しながら複数回往復するように接続してもよい。 Further, as shown in FIG. 1, since water RF flows into a large number of liquid passages 13 from one end in the overlapping direction, the water RF branches at the inlet header 2 and connects the connection pipes 4 to the respective liquid passages 13. It flows in through. The water RF that is reversed by the U-shaped tube at the other end of the heat exchanger 10 and flows out in parallel from the inflow pipes 13 flowing in the opposite direction to the inflow direction is joined to the outlet header 3 via another connection pipe 4. It flows out after. The liquid passing pipe 13 is formed at a different position in the direction in which the wind flows. However, the water RF flows from the inlet header 2 into the liquid flow pipe 13 positioned on the downstream side of the wind, and the water RF flows out from the liquid flow pipe 13 positioned on the upstream side to the outlet header 3. For this reason, heat exchange becomes favorable. In the above, the water RF is configured so as to reciprocate the fin 1 that is formed by inverting the two liquid-passing tubes 13 at the other end. However, the liquid passage 13 can be variously changed. For example, the water RF may flow out from the outlet header 3 installed at the other end without reciprocating the overlapped fins 1. Further, the water RF may be connected so as to reciprocate a plurality of times while meandering inside the superposed fins 1.
 本実施の形態1の通液管13は、フィン1に形成したフィンカラーを連接することで形成されている。フィン1は、金属製(例えば、アルミニウム)である。フィンカラーは、例えば絞り加工によってフィン1の一方の面から筒状に突出した部分である。フィンカラーは、典型的には円筒状であり、フィン1の一面から垂直方向に突出する。また、後述するように、フィンカラーの一部は、変形される。しかし、フィンカラーは、フィン1の一方の面から垂直方向に先細りとなった筒状の内面および外面を有することに変わりはない。フィンカラーの先細りとなった筒状の部分を以下では、カラー部11と称して述べる。重ね方向における一方側でのフィン1のカラー部11の開口部に、重ね方向における他方側のフィン1のカラー部11の先端部が挿入される。これにより、2つのフィン1のフィンカラーどうしは、筒状部の内面と外面とを接着され、通液管13が構成される。2つのフィン1のカラー部11どうしの接着には、例えば、樹脂接着剤あるいはろう付けなどが用いられる。 The liquid flow tube 13 of the first embodiment is formed by connecting fin collars formed on the fins 1. The fin 1 is made of metal (for example, aluminum). The fin collar is a portion protruding in a cylindrical shape from one surface of the fin 1 by, for example, drawing. The fin collar is typically cylindrical and protrudes from one surface of the fin 1 in the vertical direction. Further, as will be described later, a part of the fin collar is deformed. However, the fin collar has a cylindrical inner surface and an outer surface that are tapered in the vertical direction from one surface of the fin 1. Hereinafter, the tapered portion of the fin collar is referred to as a collar portion 11. The tip of the collar portion 11 of the fin 1 on the other side in the overlapping direction is inserted into the opening of the collar portion 11 of the fin 1 on one side in the overlapping direction. Thus, the fin collars of the two fins 1 are bonded to each other between the inner surface and the outer surface of the cylindrical portion, so that the liquid passing tube 13 is configured. For adhesion between the collar portions 11 of the two fins 1, for example, a resin adhesive or brazing is used.
 通液管13の内面には、樹脂材により樹脂膜14が形成されている(図27参照)。カラー部11の接合には、この樹脂膜14を用いてもよい。フィン1がアルミニウムを主成分とする金属の場合には、樹脂膜14が形成されることで、水による腐食が防止できる。また、接着に同じ樹脂が用いられると製造が容易となり、生産性が向上する。 A resin film 14 is formed of a resin material on the inner surface of the liquid flow pipe 13 (see FIG. 27). The resin film 14 may be used for joining the collar portion 11. In the case where the fin 1 is a metal whose main component is aluminum, the formation of the resin film 14 can prevent corrosion due to water. In addition, when the same resin is used for bonding, manufacturing becomes easy and productivity is improved.
 図3は、本発明の実施の形態1の熱交換器10の断面を図2のB-B方向から見て示す断面図である。図4は、本発明の実施の形態1のフィンカラーの形状を模式的に示す斜視図である。図3には、水RFの流通部分のうち、入口ヘッダ2から接続管4を経て通液管13に接続される部分付近が拡大して示されている。接続管4は、その先端にフランジ状の部分が形成されている。接続管4のフランジ状の部分は、接続管4と通液管13とが連通するように、入口ヘッダ2側に露出したフィン1の露出面と接着される。なお、通液管13の内面に形成された樹脂膜14は、薄い。このため、図3では、樹脂膜14が省略されている。 FIG. 3 is a cross-sectional view showing a cross section of the heat exchanger 10 according to the first embodiment of the present invention as seen from the BB direction of FIG. FIG. 4 is a perspective view schematically showing the shape of the fin collar according to the first embodiment of the present invention. FIG. 3 shows an enlarged view of the vicinity of the portion where the water RF is distributed from the inlet header 2 via the connecting pipe 4 to the liquid passing pipe 13. The connecting pipe 4 has a flange-like portion formed at the tip thereof. The flange-like portion of the connecting pipe 4 is bonded to the exposed surface of the fin 1 exposed on the inlet header 2 side so that the connecting pipe 4 and the liquid passing pipe 13 communicate with each other. The resin film 14 formed on the inner surface of the liquid flow pipe 13 is thin. For this reason, the resin film 14 is omitted in FIG.
 図3、図4に示すように、フィンカラーは、通液管13の内側に突出する第2のフィン12を有する。本実施の形態1において第2のフィン12は、通液管13の通液方向に対して直交した管断面の中心に向けて突出した突起である。第2のフィン12は、カラー部11と連続した材料からなる。第2のフィン12は、カラー部11のテーパー面に対して傾斜した表面部分を有する。カラー部11のテーパー面は、先端に向けて先細りの筒状に形成された面である。カラー部11のテーパー面は、通液方向に対して、わずかに傾斜した面を有する。第2のフィン12は、カラー部11の内側で、カラー部11の周方向および通液方向に不連続な突出構造として存在する。第2のフィン12は、周方向および通液方向に連続しない。そのため、カラー部11の内側には、周方向のどこか、または、通液方向のどこかに第2のフィン12の無い部分が存在する。 3 and 4, the fin collar has second fins 12 that protrude inside the liquid passage tube 13. In the first embodiment, the second fin 12 is a protrusion protruding toward the center of the cross section of the pipe perpendicular to the liquid passing direction of the liquid passing pipe 13. The second fin 12 is made of a material continuous with the collar portion 11. The second fin 12 has a surface portion that is inclined with respect to the tapered surface of the collar portion 11. The tapered surface of the collar portion 11 is a surface formed in a cylindrical shape that is tapered toward the tip. The tapered surface of the collar portion 11 has a surface slightly inclined with respect to the liquid flow direction. The second fins 12 exist as protruding structures that are discontinuous in the circumferential direction and liquid passing direction of the collar portion 11 inside the collar portion 11. The second fins 12 are not continuous in the circumferential direction and the liquid passing direction. For this reason, a portion without the second fin 12 exists somewhere in the circumferential direction or somewhere in the liquid flow direction inside the collar portion 11.
 本実施の形態1において、1つのカラー部11の内部には、周方向に離れた位置に2つの突起である第2のフィン12が設けられている。2つの突起である第2のフィン12は、互いが対向する位置、すなわちカラー部11の通液方向に対して直交した管断面の中心に対して点対称となる位置に設けられている。図3には、第2のフィン12の突起の断面がドーム状の場合が示されている。なお、第2のフィン12は、円柱状、角柱状または矩形状などに突出するものであってもよい。第2のフィン12が内部に向かって突出する長さは、長くなるほど、伝熱面積の拡大と同時に前縁効果によって拡大面積部のほぼ全域で伝熱促進効果が得られ、著しく伝熱特性が向上する。しかし、第2のフィン12が内部に向かって突出する長さは、長くなりすぎると、通液管13内の流路抵抗が大きくなって管内に水RFを流すための動力が増大する。このため、第2のフィン12が内部に向かって突出する長さは、例えば、カラー部11の内径の1/10の長さから最大でもカラー部11の内径の1/2の長さ程度に設定するとよい。 In the first embodiment, inside the single collar portion 11, there are provided second fins 12 that are two protrusions at positions separated in the circumferential direction. The second fins 12, which are two protrusions, are provided at positions where they face each other, that is, at positions that are point-symmetric with respect to the center of the cross section of the tube perpendicular to the liquid passing direction of the collar portion 11. FIG. 3 shows a case where the protrusion of the second fin 12 has a dome-shaped cross section. Note that the second fins 12 may protrude in a columnar shape, a prismatic shape, a rectangular shape, or the like. The longer the length of the second fin 12 protruding toward the inside, the greater the heat transfer area, and at the same time, the effect of promoting heat transfer is obtained in almost the entire area of the enlarged area due to the leading edge effect. improves. However, if the length by which the second fin 12 protrudes toward the inside becomes too long, the flow resistance in the liquid passage tube 13 increases, and the power for flowing the water RF into the tube increases. For this reason, the length by which the second fin 12 projects inward is, for example, about 1/10 of the inner diameter of the collar portion 11 to about ½ of the inner diameter of the collar portion 11 at the maximum. It is good to set.
 フィン1の重ね方向において、第2のフィン12の長さは、カラー部11の長さよりも短い。また、フィン1の重ね方向において、第2のフィン12の長さは、隣接するフィン1の間隔よりも短い。第2のフィン12は、フィン1の重ね方向において、カラー部11の重ね方向における途中の部分に設けられている。第2のフィン12は、第2のフィン12を有したフィン1側、および、カラー部11の先端側に、形成されない。カラー部11における第2のフィン12を有したフィン1側、および、カラー部11の先端側には、カラー部11の筒状の面が残されている。これにより、隣接するフィン1間で2つのカラー部11のテーパー状の面どうしが密着し、密封性および強度のすぐれた通液管13が構成される。 In the overlapping direction of the fins 1, the length of the second fin 12 is shorter than the length of the collar portion 11. In the direction in which the fins 1 are overlapped, the length of the second fins 12 is shorter than the interval between the adjacent fins 1. The second fins 12 are provided in the middle of the overlapping direction of the collar portion 11 in the overlapping direction of the fins 1. The second fins 12 are not formed on the fin 1 side having the second fins 12 and the front end side of the collar portion 11. On the side of the fin 1 having the second fin 12 in the collar portion 11 and the tip side of the collar portion 11, the cylindrical surface of the collar portion 11 is left. As a result, the tapered surfaces of the two collar portions 11 are in close contact with each other between the adjacent fins 1, and the liquid passing tube 13 having excellent sealing performance and strength is configured.
 以下では、本実施の形態1の熱交換器10の製造方法を説明する。まず、フィン1の材料となる金属製の薄板を用意し、プレスによる絞り加工でフィンカラーを形成する。さらに、フィンカラーにおけるカラー部11のテーパー面の外側から中心に向けて突起である第2のフィン12を形成するプレス加工を行う。このようにして第2のフィン12が形成されたフィン1を作製できる。 Hereinafter, a method for manufacturing the heat exchanger 10 according to the first embodiment will be described. First, a thin metal plate is prepared as a material for the fin 1, and a fin collar is formed by drawing with a press. Furthermore, the press work which forms the 2nd fin 12 which is protrusion toward the center from the outer side of the taper surface of the collar part 11 in a fin collar is performed. In this way, the fin 1 in which the second fin 12 is formed can be manufactured.
 次いで、フィン1に設けられたカラー部11の先端部を、隣りのフィン1に設けられたカラー部11の開口に挿入する。このカラー部11の先端部をカラー部11の開口に挿入することを他の複数のフィン1を用いて繰り替えし、複数のカラー部11を順次連接し、通液管13を形成する。 Next, the front end portion of the collar portion 11 provided on the fin 1 is inserted into the opening of the collar portion 11 provided on the adjacent fin 1. The insertion of the tip of the collar portion 11 into the opening of the collar portion 11 is repeated using the other plurality of fins 1, and the plurality of collar portions 11 are sequentially connected to form the liquid passage 13.
 そして、間隔をあけて複数重ねられたフィン1のうち一端に配置されたフィン1の各開口(カラー部11の開口)から複数の通液管13にそれぞれ樹脂材を注入する。樹脂材の注入後の各開口に、入口ヘッダ2および出口ヘッダ3に固着された接続管4を嵌め込んで取り付ける。さらに、前述したように、間隔をあけて複数重ねられたフィン1のうち他端に配置されたフィン1から突出するカラー部11の先端部をU字管に差し込んで固定する。 Then, a resin material is injected into each of the plurality of liquid pipes 13 from each opening (opening of the collar portion 11) of the fin 1 arranged at one end among the plurality of fins 1 stacked at intervals. The connecting pipe 4 fixed to the inlet header 2 and the outlet header 3 is fitted into each opening after the resin material is injected. Further, as described above, the tip end portion of the collar portion 11 protruding from the fin 1 arranged at the other end of the plurality of fins 1 stacked at intervals is inserted into the U-shaped tube and fixed.
 その後、重ねあわせたフィン1を加熱処理して樹脂材を流動化させ、通液管13の内周面、つまりカラー部11および第2のフィン12であるフィンカラー内部全体を、流動化した樹脂材で覆う。そして、連接されたフィンカラーどうしの接合面に樹脂材を浸透させて接合し、樹脂材を冷却固化して定着させる。なお、フィンカラーに樹脂材を塗布しながらカラー部11を順次連接してフィンコアを組み立てた後に、フィンコアを加熱および冷却処理し、樹脂材を定着させてもよい。 Thereafter, the heat-treated fin 1 is fluidized to fluidize the resin material, and the inner peripheral surface of the liquid passage 13, that is, the entire fin collar interior that is the collar portion 11 and the second fin 12 is fluidized resin. Cover with wood. Then, the resin material is infiltrated and joined to the joining surfaces of the fin fins connected to each other, and the resin material is cooled and solidified to be fixed. In addition, after applying the resin material to the fin collar and sequentially connecting the collar portions 11 to assemble the fin core, the fin core may be heated and cooled to fix the resin material.
 また、別の接合方法について説明する。カラー部11の開口に別のカラー部11の先端部を挿入して隣り合うフィン1を順次連接する。その後、カラー部11どうしの接触部をろう付け接合する。その後に、通液管13の内面に樹脂材を注入または塗布し、通液管13の内周面を樹脂材で覆う。そして、覆った樹脂材を冷却固化して定着させる。ろう付けには、アルミシリコン系のアルミろう付け用のろう材を用いる。あるいは、フィン1としてろう材層を両面に形成させたクラッド材を用いる。 Also, another joining method will be described. The tip of another collar portion 11 is inserted into the opening of the collar portion 11 and the adjacent fins 1 are sequentially connected. Thereafter, the contact portions of the collar portions 11 are brazed and joined. Thereafter, a resin material is injected or applied on the inner surface of the liquid passage tube 13, and the inner peripheral surface of the liquid passage tube 13 is covered with the resin material. Then, the covered resin material is solidified by cooling and fixing. For brazing, an aluminum silicon brazing material for aluminum brazing is used. Alternatively, a clad material having a brazing material layer formed on both sides is used as the fin 1.
 樹脂膜14の形成の際には、樹脂材の種類に応じて、加熱温度、冷却温度及び時間を調整する。そして、通液管13の内周面に樹脂材で形成された樹脂膜14における膜厚は、50μm以下とすることが望ましい。 When the resin film 14 is formed, the heating temperature, the cooling temperature, and the time are adjusted according to the type of the resin material. The film thickness of the resin film 14 formed of a resin material on the inner peripheral surface of the liquid flow pipe 13 is desirably 50 μm or less.
 なお、カラー部11の先端部を、隣り合うカラー部11に挿入し、複数のカラー部11を順次連接する際に、カラー部11がテーパーの付いた先細りの円筒状であるため、カラー部11のテーパー形状を調整すれば、空気が流れる2つのフィン1の間の距離が保持される。しかし、2つのフィン1の間に組立用のスペーサー冶具を挿入すれば、より精度良く2つのフィン1の間の距離が保持できる。 In addition, when the front end portion of the collar portion 11 is inserted into the adjacent collar portions 11 and the plurality of collar portions 11 are sequentially connected, the collar portion 11 has a tapered cylindrical shape with a taper. If the taper shape is adjusted, the distance between the two fins 1 through which air flows is maintained. However, if an assembly spacer jig is inserted between the two fins 1, the distance between the two fins 1 can be maintained with higher accuracy.
 次に、本実施の形態1に係る熱交換器10の動作について、温水または冷水を熱搬送媒体とし、空気調和機の室内機に収容して適用した場合を例に説明する。 Next, the operation of the heat exchanger 10 according to the first embodiment will be described by taking as an example a case where hot water or cold water is used as a heat transfer medium and accommodated in an indoor unit of an air conditioner.
 空気調和機の暖房運転においては、室外機での冷媒との熱交換により熱搬送媒体が加熱され、温水(ここでは、水RFの流れを温水RFとして用いる)となって室内機に流入する。温水RFは、室内機に収容された熱交換器10の入口ヘッダ2から流入し、各接続管4を介して空気WFの下流側に位置する各通液管13内を流れる。空気WFの下流側の各通液管13内を流れた温水RFは、それぞれU字管を介して空気WFの上流側に位置する各通液管13内に流れる。空気WFの上流側の各通液管13内を流れた温水RFは、各接続管4を介して出口ヘッダ3において合流して流通し、室外機に向けて流出する。空気調和機の冷房運転においては、室外機での冷媒との熱交換により熱搬送媒体が冷却され、冷水(ここでは、水RFの流れを冷水RFとして用いる)となって室内機に流入し、熱交換器10を通流する。熱交換器10における冷水RFの流れは、暖房運転時の流れと同じである。 In the heating operation of the air conditioner, the heat transfer medium is heated by heat exchange with the refrigerant in the outdoor unit, and flows into the indoor unit as hot water (here, the flow of water RF is used as the hot water RF). The hot water RF flows in from the inlet header 2 of the heat exchanger 10 accommodated in the indoor unit, and flows through the liquid passage pipes 13 positioned on the downstream side of the air WF via the connection pipes 4. The hot water RF that has flowed through the respective flow pipes 13 on the downstream side of the air WF flows into the respective liquid flow pipes 13 positioned on the upstream side of the air WF via U-shaped pipes. The hot water RF that has flowed through the liquid passages 13 on the upstream side of the air WF joins and flows through the outlet headers 3 through the connection pipes 4 and flows out toward the outdoor unit. In the cooling operation of the air conditioner, the heat transfer medium is cooled by heat exchange with the refrigerant in the outdoor unit, and flows into the indoor unit as cold water (here, the flow of water RF is used as the cold water RF). The heat exchanger 10 flows. The flow of the cold water RF in the heat exchanger 10 is the same as the flow during the heating operation.
 暖房運転の場合には、室内の空気WFは、室内機の送風機によって吸引され、熱交換器10を介して空気WFの流れ方向の室内に送風される。送風機によって吸引された空気WFは、フィン1の重ね方向と直交する方向から、重ね方向に隣接するフィン1間に流入する。そして、その空気WFは、風上側に位置する各通液管13内の温水RFと熱交換するとともに、風下側に位置する各通液管13内の温水RFと熱交換して温風となり、室内に流出する。なお、冷房運転時の場合には、風下側と風上側の各通液管13内に流れる冷水RFにより、冷風に熱交換された空気WFが室内に送り込まれる。 In the heating operation, the indoor air WF is sucked by the blower of the indoor unit and blown into the room in the flow direction of the air WF via the heat exchanger 10. The air WF sucked by the blower flows between the fins 1 adjacent to each other in the overlapping direction from the direction orthogonal to the overlapping direction of the fins 1. Then, the air WF exchanges heat with the hot water RF in each flow-through pipe 13 located on the windward side, and exchanges heat with the hot water RF in each liquid-flow pipe 13 located on the leeward side to become warm air. It flows out into the room. In the case of the cooling operation, the air WF heat-exchanged with the cold air is sent into the room by the cold water RF flowing in the liquid passages 13 on the leeward side and the windward side.
 従来の熱交換器では、通液管に水あるいは不凍液などの比較的粘度の高い流体を流す場合、または、高伝熱化のため通液管を管径の小さい細管で構成する場合には、通液管の流れが層流化して熱交換性能が低下するといった問題があった。これに対し、本実施の形態1に係る熱交換器10によれば、通液管13の内側にカラー部11の内面に沿って流れる流体の流れの一部を遮るように第2のフィン12が配置されている。このため、熱搬送媒体の層流化した流れがある場合でも、前縁効果で熱伝達率が向上する。前縁効果は、層流の流れの中に孤立して置かれた第2のフィン12の周囲に、第2のフィン12の先端の前縁部から薄い温度境界層が形成され、熱伝達率が向上する効果を言う。ここでは、第2のフィン12が1つのカラー部11の内部に周方向に2つ配置された場合を示した。しかし、第2のフィン12の数は、1つでも良く、また多いほど伝熱促進効果が高くなる。 In a conventional heat exchanger, when a relatively high viscosity fluid such as water or antifreeze liquid is allowed to flow through the liquid passage pipe, or when the liquid passage pipe is constituted by a small pipe having a small diameter for high heat transfer, There has been a problem that the flow of the liquid passing pipe becomes laminar and the heat exchange performance deteriorates. On the other hand, according to the heat exchanger 10 according to the first embodiment, the second fin 12 is configured so as to block a part of the flow of the fluid flowing along the inner surface of the collar portion 11 inside the liquid passage 13. Is arranged. For this reason, even when there is a laminar flow of the heat transfer medium, the heat transfer rate is improved by the leading edge effect. The leading edge effect is that a thin thermal boundary layer is formed from the leading edge of the tip of the second fin 12 around the second fin 12 placed in isolation in the laminar flow, and the heat transfer coefficient Says the effect of improving. Here, a case where two second fins 12 are arranged in the circumferential direction inside one collar portion 11 is shown. However, the number of the second fins 12 may be one, and the heat transfer promoting effect becomes higher as the number is larger.
 第2のフィン12は、面積の拡大効果と前縁効果との相乗効果に加え、拡大面積部の裏表で直接水と空気とが熱交換する。このため、通常の面積拡大フィン、例えば、カラー部11の内面に複数の薄板を設ける場合とは異なり、拡大面積部は、熱伝導ロスなく(フィン効率がほぼ100%)となり、最大限有効に伝熱促進効果が得られる。このようなフィン1と熱伝導ロスのない第2のフィン12とが通液管13の内部に形成されることによって、第2のフィン12がない場合と比べて通液管13内で水が熱交換する面積が効率よく増加させられるので、熱交換性能が向上する。さらに、第2のフィン12がドーム状(半球状)であるほど、第2のフィン12の周りにおける水の流れの乱れが少ない。加えて、水の流れは、流れの剥離がない滑らかな流れになりやすく、第2のフィン12の面積の拡大効果がより有効に作用させられる。 In addition to the synergistic effect of the area expansion effect and the leading edge effect, the second fin 12 directly exchanges heat between water and air at the front and back of the expanded area portion. For this reason, unlike the case of providing a normal area expansion fin, for example, a plurality of thin plates on the inner surface of the collar portion 11, the expansion area portion has no heat conduction loss (fin efficiency is almost 100%) and is maximally effective. Heat transfer promotion effect is obtained. By forming the fin 1 and the second fin 12 having no heat conduction loss inside the liquid passage 13, water can flow in the liquid passage 13 compared to the case without the second fin 12. Since the area for heat exchange can be increased efficiently, the heat exchange performance is improved. Furthermore, the more the second fin 12 is dome-shaped (hemispherical), the less disturbed the water flow around the second fin 12 is. In addition, the flow of water tends to be a smooth flow with no flow separation, and the effect of expanding the area of the second fin 12 is more effectively applied.
 また、通液方向において、カラー部11がフィン1から立ち上がる部分、つまりカラー部11の基部部分(根元部分)には、第2のフィン12が形成されていない滑らかなテーパー面が構成されている。このため、複数のカラー部11どうしを連接した際に、密閉性及び接着強度が向上する。また、通液方向に流れる水に対して、複数の第2のフィン12が断続的に存在し、複数の第2のフィン12による多数の前縁ができるため、伝熱促進効果が高くなる。 Further, in the liquid passing direction, a smooth tapered surface in which the second fin 12 is not formed is formed in a portion where the collar portion 11 rises from the fin 1, that is, a base portion (root portion) of the collar portion 11. . For this reason, when the plurality of collar portions 11 are connected to each other, the sealing property and the adhesive strength are improved. Moreover, since the several 2nd fin 12 exists intermittently with respect to the water which flows in a liquid flow direction, and many front edges by the several 2nd fin 12 are made, the heat-transfer promotion effect becomes high.
 図5は、本発明の実施の形態1に係る熱交換器10の変形例のフィン1の構造を示す斜視図である。変形例では、フィン1の一部に切り起こし部43が設けられている。切り起こし部43を設けた以外は、実施の形態1の構成と同様である。そのため、断面図などは省略する。図5には、切り起こし部43が台形状の場合を示す。しかし、切り起こし部43の形状は、任意に変更可能である。切り起こし部43は、フィン1に複数の切り込み部44を入れ、切り込み部44をフィン1の重ね方向に起こして形成すれば良い。切り起こし部43が形成されることにより、前縁効果によりフィン1と空気WFとの伝熱が促進される。前縁効果を高めるには、切り起こし部43が空気WFの流れと平行であると良い。また、変形例の熱交換器10の製造時において、この切り起こし部43が隣り合うフィン1の間を保持するために用いてもよい。隣り合うフィン1の間を切り起こし部43が接続することで、隣り合うフィン1間の強度が向上できる。 FIG. 5 is a perspective view showing the structure of the fin 1 of a modification of the heat exchanger 10 according to Embodiment 1 of the present invention. In the modification, a cut-and-raised portion 43 is provided in a part of the fin 1. The configuration is the same as that of the first embodiment except that the cut-and-raised portion 43 is provided. Therefore, sectional views and the like are omitted. FIG. 5 shows a case where the cut and raised portion 43 is trapezoidal. However, the shape of the cut-and-raised portion 43 can be arbitrarily changed. The cut and raised portion 43 may be formed by inserting a plurality of cut portions 44 into the fin 1 and raising the cut portions 44 in the direction in which the fins 1 are overlapped. By forming the cut-and-raised portion 43, heat transfer between the fin 1 and the air WF is promoted by the leading edge effect. In order to enhance the leading edge effect, the cut-and-raised portion 43 is preferably parallel to the flow of the air WF. Further, at the time of manufacturing the heat exchanger 10 of the modified example, the cut and raised portion 43 may be used for holding between the adjacent fins 1. The strength between the adjacent fins 1 can be improved by connecting the raised portions 43 between the adjacent fins 1.
 このように、本実施の形態1の熱交換器10は、第2のフィン12が存在し、通液管13の内面に樹脂膜14が形成される。これにより、水RFの流れが層流化する場合でも、有効に熱交換性能が向上できる。また、第2のフィン12が周方向に不連続であるため、周方方向に第2のフィンのない部分、つまり隙間などが形成でき、流動抵抗が抑制できる。なお、春あるいは秋など空調負荷の比較的小さい中間季での空気調和機の運転頻度の増加、または、ビルあるいは住宅の高断熱化に伴う空調負荷の低下などにより、熱搬送媒体である水RFの流量が低下し、水RFの流れが層流化する運転割合が高まっている。そのため、水RFの流れが層流化しても熱交換性能を向上させる必要性は、ますます重要になっている。 Thus, in the heat exchanger 10 of the first embodiment, the second fins 12 are present, and the resin film 14 is formed on the inner surface of the liquid passage 13. Thereby, even when the flow of the water RF is laminarized, the heat exchange performance can be effectively improved. Moreover, since the 2nd fin 12 is discontinuous in the circumferential direction, the part without a 2nd fin, ie, a clearance gap, can be formed in the circumferential direction, and flow resistance can be suppressed. Water RF, which is a heat transfer medium, due to an increase in the operation frequency of air conditioners during the mid-season when the air conditioning load is relatively small, such as spring or autumn, or a decrease in the air conditioning load due to high thermal insulation of buildings or houses. The flow rate of water is decreasing, and the operation ratio at which the flow of water RF is laminarized is increasing. Therefore, the necessity of improving the heat exchange performance even when the water RF flow is laminarized is becoming more and more important.
 <実施の形態2>
 図6は、本発明の実施の形態2に係る熱交換器10を示す断面図である。図6は、実施の形態1の図2のB-B方向から見た断面図に相当する。なお、本実施の形態2の熱交換器10の全体の構成は実施の形態1の図1の斜視図、図2の正面図と同様であり説明を省略する。また、図7は、本発明の実施の形態2に係る熱交換器の一部のフィンカラーの構造を示す斜視図である。図7のフィンカラーの第2のフィン12は、実施の形態1の図4に示したフィンカラーと同様に内側に突出した突起である。しかし、本実施の形態2の第2のフィン12は、図4の突起とは異なり、突起の位置が周方向にずれたものである。そして、本実施の形態2の熱交換器10は、図4に示したフィンカラーと図7に示したフィンカラーとを交互に連接し、通液管13が形成されたものである。すなわち、通液方向から見たときに、重ね方向に隣接するフィン1において、第2のフィン12の配置が、互いに周方向にずれている(オフセットフィン配置)。そのため、重ねられた複数のフィン1では、第2のフィン12の配置が、通液方向から見たときに交互に周方向にずれている。なお、製造方法、動作については実施の形態1と同様であり説明を省略する。
<Embodiment 2>
FIG. 6 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 2 of the present invention. FIG. 6 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG. In addition, the whole structure of the heat exchanger 10 of this Embodiment 2 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate | omitted. FIG. 7 is a perspective view showing the structure of a part of the fin collar of the heat exchanger according to Embodiment 2 of the present invention. The second fin 12 of the fin collar of FIG. 7 is a protrusion that protrudes inward as in the fin collar shown in FIG. 4 of the first embodiment. However, the second fin 12 of the second embodiment is different from the protrusion of FIG. 4 in that the position of the protrusion is shifted in the circumferential direction. And the heat exchanger 10 of this Embodiment 2 connects the fin collar shown in FIG. 4 and the fin collar shown in FIG. 7 alternately, and the liquid-flow pipe | tube 13 is formed. That is, when viewed from the liquid passing direction, in the fins 1 adjacent to each other in the overlapping direction, the arrangement of the second fins 12 is shifted in the circumferential direction (offset fin arrangement). Therefore, in the plurality of stacked fins 1, the arrangement of the second fins 12 is alternately shifted in the circumferential direction when viewed from the liquid passing direction. Note that the manufacturing method and operation are the same as those in the first embodiment, and a description thereof will be omitted.
 図6では、隣接する2つのフィン1において、通液方向から見たときに一方のフィン1の2つの第2のフィン12の周方向のピッチの中間に他方のフィン1の第2のフィン12が位置する。すなわち、隣接するフィン1において、第2のフィン12の配置が、互いに、周方向に半ピッチ(半周期)ずれるように配置されている。 In FIG. 6, in the two adjacent fins 1, when viewed from the liquid passing direction, the second fin 12 of the other fin 1 is in the middle of the circumferential pitch of the two second fins 12 of the one fin 1. Is located. That is, in the adjacent fins 1, the second fins 12 are arranged so as to be shifted from each other by a half pitch (half cycle) in the circumferential direction.
 このように、周方向にピッチをずらして配置すれば、上流に配置された第2のフィン12の後流の影響を抑制でき、更に伝熱性能が向上する。通液方向から見て同じ位置となる第2のフィン12どうしの間隔は、重ね方向のフィン1間と同じになる。実施の形態1では、通液方向に第2のフィン12が不連続に存在した。しかし、実施の形態1では、上流側の第2のフィン12と下流側の第2のフィン12との間隔が狭く、下流側の第2のフィン12で高い前縁効果が得られない場合がある。さらに、本実施の形態2では、第2のフィン12の密度は実施の形態1と同じでありながら、通液方向から見える第2のフィン12は2倍であり、高い前縁効果が得られる。 Thus, if the pitch is shifted in the circumferential direction, the influence of the wake of the second fins 12 arranged upstream can be suppressed, and the heat transfer performance is further improved. The interval between the second fins 12 at the same position when viewed from the liquid passing direction is the same as that between the fins 1 in the overlapping direction. In Embodiment 1, the 2nd fin 12 existed discontinuously in the liquid flow direction. However, in the first embodiment, the distance between the second fin 12 on the upstream side and the second fin 12 on the downstream side is narrow, and a high leading edge effect may not be obtained with the second fin 12 on the downstream side. is there. Furthermore, in the second embodiment, the density of the second fins 12 is the same as that in the first embodiment, but the second fins 12 seen from the liquid passing direction are doubled, and a high leading edge effect is obtained. .
 上記は、1つのカラー部11内に複数の第2のフィン12がある場合について説明した。しかし、1つのカラー部11内の第2のフィン12の数が1つの場合は、隣接するカラー部11内の第2のフィン12の位置は、カラー部11の通液方向に直交する管断面の中心に対して180度反対の位置などとするとよい。なお、連続的に積層する3つ以上のフィン1について、第2のフィン12の位置をずらしてオフセット配置することも可能である。その場合、第2のフィン12の位置を1/3ピッチ、1/4ピッチなどずらしてもよい。ただ、図6のように隣接するフィン1の第2のフィン12の配置が、互いに、周方向に半周期ずれるように配置する構造であると、この構造は、伝熱性能の向上と製造の容易性との観点から非常に優れている。 The above describes the case where there are a plurality of second fins 12 in one collar portion 11. However, when the number of the second fins 12 in one collar part 11 is one, the position of the second fin 12 in the adjacent collar part 11 is a tube cross section orthogonal to the liquid passing direction of the collar part 11. The position may be 180 degrees opposite to the center of. In addition, about the 3 or more fin 1 laminated | stacked continuously, the position of the 2nd fin 12 can also be shifted and offset arrangement | positioning is also possible. In that case, the position of the second fin 12 may be shifted by 1/3 pitch, 1/4 pitch, or the like. However, when the arrangement of the second fins 12 of the adjacent fins 1 is arranged so as to be shifted from each other by a half cycle in the circumferential direction as shown in FIG. 6, this structure improves the heat transfer performance and improves the production. It is very good in terms of ease.
 <実施の形態3>
 図8は、本発明の実施の形態3に係る熱交換器10を示す断面図である。図8は、実施の形態1の図2のB-B方向から見た断面図に相当する。なお、本実施の形態3の熱交換器10の全体の構成は実施の形態1の図1の斜視図、図2の正面図と同様であり説明を省略する。図9は、本発明の実施の形態3に係る熱交換器10のフィンカラーの内部を通液方向から見て示す平面図である。図10は、本発明の実施の形態3に係る熱交換器10のフィンカラーの構造を示す斜視図である。
<Embodiment 3>
FIG. 8 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 3 of the present invention. FIG. 8 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG. In addition, the whole structure of the heat exchanger 10 of this Embodiment 3 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate | omitted. FIG. 9 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to Embodiment 3 of the present invention when viewed from the liquid direction. FIG. 10 is a perspective view showing the structure of the fin collar of the heat exchanger 10 according to Embodiment 3 of the present invention.
 フィンカラーのカラー部11の内側には、周方向に複数の第2のフィン12が形成されている。本実施の形態3の第2のフィン12は、フィンカラーの先端を加工することで形成されている。実施の形態1、2では、第2のフィン12は、カラー部11の通液方向の途中に形成されていた。しかし、本実施の形態3の第2のフィン12は、カラー部11の先端にある。したがって、第2のフィン12は、カラー部11の先端から連続する部分である。そして、第2のフィン12は、カラー部11の先端から内側に曲がった部分である。フィン1から立ち上がるカラー部11の基部から、第2のフィン12と繋がるカラー部11の先端までは筒状の形状は変化しない。このため、2つのフィン1間を繋ぐカラー部11の表面は筒状のままである。 A plurality of second fins 12 are formed in the circumferential direction inside the collar portion 11 of the fin collar. The second fin 12 of the third embodiment is formed by processing the tip of the fin collar. In the first and second embodiments, the second fin 12 is formed in the middle of the liquid passage direction of the collar portion 11. However, the second fin 12 of the third embodiment is at the tip of the collar portion 11. Therefore, the second fin 12 is a portion that continues from the tip of the collar portion 11. The second fin 12 is a portion bent inward from the tip of the collar portion 11. The cylindrical shape does not change from the base portion of the collar portion 11 rising from the fin 1 to the tip end of the collar portion 11 connected to the second fin 12. For this reason, the surface of the collar portion 11 connecting the two fins 1 remains cylindrical.
 第2のフィン12は、フィンカラーの先端を周方向で複数に分割し、それら複数に分割された部分をカラー部11の内側に張り出すように曲げられて形成されている。また、複数の第2のフィン12は、通液方向の同じ方向に傾くように曲げられている。 The second fin 12 is formed by dividing the tip of the fin collar into a plurality of portions in the circumferential direction and bending the divided portions so as to project inside the collar portion 11. The plurality of second fins 12 are bent so as to incline in the same direction of the liquid flow direction.
 カラー部11は、フィン1の一方の面に対して垂直方向に向かってのびる。そして、本実施の形態3の第2のフィン12は、その先端をフィン1の一方の面に向かって戻るように折り曲げられている。第2のフィン12は、カラー部11の先端で、両者の面が鋭角をなすように鋭角に折り返された形状になっている。このため、通液管13の内部の流路面積は、広く確保されている。 The collar portion 11 extends in the vertical direction with respect to one surface of the fin 1. And the 2nd fin 12 of this Embodiment 3 is bent so that the tip may return toward one side of fin 1. The second fin 12 has a shape that is folded at an acute angle so that both surfaces form an acute angle at the tip of the collar portion 11. For this reason, the flow path area inside the liquid flow pipe 13 is ensured widely.
 このようなフィンカラーは、例えば、フィン1の一方の面に対して垂直方向に向かってのびたカラー部11を形成する際に、その先端にスリットを形成して周方向に複数に分割する。その後、スリットによって分割された部分をフィン1の一方の面に向かって折り曲げる加工を行うことで形成できる。フィンカラーの基部部分のテーパー面は、カラー部11としてそのまま残り、この部分が隣接するカラー部11との連接に用いられる。第2のフィン12の構造部分を除き、他部分の製造工程、熱交換器の動作は上記の実施の形態と同様であるので、説明を省略する。 For example, when the collar portion 11 extending in the vertical direction with respect to one surface of the fin 1 is formed, such a fin collar is divided into a plurality in the circumferential direction by forming a slit at the tip thereof. Then, it can form by performing the process which bend | folds the part divided | segmented by the slit toward the one surface of the fin 1. FIG. The tapered surface of the base portion of the fin collar remains as the collar portion 11, and this portion is used for connection with the adjacent collar portion 11. Except for the structure part of the second fin 12, the manufacturing process of the other parts and the operation of the heat exchanger are the same as those in the above embodiment, and thus the description thereof is omitted.
 本実施の形態3における熱交換器10のカラー部11の内側には、複数の第2のフィン12の先端部が周方向に断続的に存在し、複数の第2のフィン12の先端部が通液管13の内面に沿って流れる水RFの流れの一部を遮る。このため、通液管13のカラー部11付近を流れる水RFの流れは、第2のフィン12に衝突して隣り合う第2のフィン12の間またはカラー部11の内側中央を流れるように流れ方向を変化させる。図10の矢印付きの線は、カラー部11の内面に沿った流れが変化する様子を模式的に示している。 Inside the collar portion 11 of the heat exchanger 10 according to the third embodiment, the tip portions of the plurality of second fins 12 are intermittently present in the circumferential direction, and the tip portions of the plurality of second fins 12 are present. A part of the flow of the water RF that flows along the inner surface of the liquid flow pipe 13 is blocked. For this reason, the flow of the water RF that flows in the vicinity of the collar portion 11 of the liquid flow pipe 13 flows so as to flow between the adjacent second fins 12 or the inner center of the collar portion 11 by colliding with the second fin 12. Change direction. A line with an arrow in FIG. 10 schematically shows how the flow along the inner surface of the collar portion 11 changes.
 第2のフィン12がカラー部11の内部に突出しているので、水RFの流れが層流化する場合でも、前縁効果と接触面積の増加の効果とにより、熱交換性能が向上する。また、このような水RFの流れが層流化する流れが生じる際に、第2のフィン12の表面およびその端部と水RFとが接触して熱交換する。隣り合う第2のフィン12どうしの間には、周方向に隙間が形成されているため、流動抵抗が抑制されながら、熱交換性能が向上できる。ここでは、カラー部11の開口部の周方向に8つの第2のフィン12が配置された場合を示した。しかし、第2のフィン12の数は、2つでも良く、また第2のフィン12の数が多いほど伝熱促進効果が高く、更に曲げ加工も容易になる。 Since the second fin 12 protrudes into the collar portion 11, the heat exchange performance is improved by the leading edge effect and the effect of increasing the contact area even when the flow of the water RF is laminarized. Further, when a flow in which the flow of the water RF is made into a laminar flow is generated, the surface of the second fin 12 and the end thereof are in contact with the water RF to exchange heat. Since a gap is formed in the circumferential direction between the adjacent second fins 12, heat exchange performance can be improved while suppressing flow resistance. Here, a case where eight second fins 12 are arranged in the circumferential direction of the opening of the collar portion 11 is shown. However, the number of the second fins 12 may be two, and the greater the number of the second fins 12, the higher the heat transfer promoting effect and the easier the bending process.
 第2のフィン12は、面積の拡大効果と前縁効果との相乗効果に加え、前縁効果が得られる面積拡大部とカラー部11とが連続している。このため、面積拡大部とカラー部11との間の熱抵抗は、比較的小さい(フィン効率の低下が抑制される)。それにより、最大限有効に伝熱促進効果が得られる。このような熱伝導ロスが比較的小さい第2のフィン12が通液管13の内部に形成されることによって、第2のフィン12がない場合と比べて通液管13内で水RFが熱交換する面積が効率よく増加でき、熱交換性能が向上する。 In the second fin 12, in addition to the synergistic effect of the area expansion effect and the leading edge effect, the area expansion portion where the leading edge effect is obtained and the collar portion 11 are continuous. For this reason, the thermal resistance between the area enlarged portion and the collar portion 11 is relatively small (decrease in fin efficiency is suppressed). As a result, the effect of promoting heat transfer can be obtained as effectively as possible. By forming the second fin 12 having a relatively small heat conduction loss inside the liquid passage 13, the water RF is heated in the liquid passage 13 compared to the case where the second fin 12 is not provided. The exchange area can be increased efficiently, and the heat exchange performance is improved.
 第2のフィン12は、面積の拡大効果と前縁効果との相乗効果に加え、拡大面積部の裏表で直接水と空気とが熱交換する。このため、通常の面積拡大フィン、例えば、カラー部11の内面に複数の薄板を設ける場合とは異なり、拡大面積部が熱伝導ロスなく(フィン効率がほぼ100%)となる。それにより、最大限有効に伝熱促進効果が得られる。このような熱伝導ロスのない第2のフィン12が通液管13の内部に形成されることによって、第2のフィン12がない場合と比べて通液管13内で水RFが熱交換する面積が効率よく増加でき、熱交換性能が向上する。 In addition to the synergistic effect of the area expansion effect and the leading edge effect, the second fin 12 directly exchanges heat between water and air at the front and back of the expanded area portion. For this reason, unlike the case where a plurality of thin plates are provided on the inner surface of the normal area expansion fin, for example, the collar portion 11, the expansion area portion has no heat conduction loss (fin efficiency is almost 100%). As a result, the effect of promoting heat transfer can be obtained as effectively as possible. By forming the second fin 12 having no heat conduction loss in the liquid passage 13, the water RF exchanges heat in the liquid passage 13 as compared with the case where there is no second fin 12. The area can be increased efficiently and the heat exchange performance is improved.
 <実施の形態4>
 図11は、本発明の実施の形態4に係る熱交換器10を示す断面図である。図11は、実施の形態1の図2のB-B方向から見た断面図に相当する。なお、本実施の形態4の熱交換器10の全体の構成は実施の形態1の図1の斜視図、図2の正面図と同様であり説明を省略する。図12は、本発明の実施の形態4の熱交換器10のフィンカラーの内部を通液方向から見て示す平面図である。図13は本実施の形態4の熱交換器10のフィンカラーの構造を示す斜視図である。
<Embodiment 4>
FIG. 11 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 4 of the present invention. FIG. 11 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG. In addition, the whole structure of the heat exchanger 10 of this Embodiment 4 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate | omitted. FIG. 12 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the fourth embodiment of the present invention as viewed from the liquid direction. FIG. 13 is a perspective view showing the structure of the fin collar of the heat exchanger 10 according to the fourth embodiment.
 本実施の形態4の熱交換器10は、カラー部11の先端に、折り曲げた複数の第2のフィンがある点で、実施の形態3と同様である。しかし、本実施の形態4の熱交換器10は、折り曲げた複数の第2のフィンにおける通液方向に対しての折れ曲げる方向が異なった第2のフィンが混在する点で異なる。一部の第2のフィン12aは、実施の形態3と同様に先端をフィン1の一面に向かうように、カラー部11に対して鋭角に曲がった形状のものである。この第2のフィン12aに周方向で隣接する第2のフィン12bは、カラー部11よりも内側に突出するように曲げられ、その先端をフィン1の一面から遠ざかる方向に、カラー部11に対して鈍角に曲がった形状のものである。したがって、後者の第2のフィン12bは、カラー部11と同方向に傾斜し、カラー部11のテーパー面に対して鈍角をなすようにわずかな角度でカラー部11の内側に曲げられている。なお、製造方法、動作については実施の形態3と同様であり説明を省略する。第2のフィン12aは、先端がフィン1の一方の面に近づくように曲がった第1形状である。第2のフィン12bは、先端がフィン1の一方の面から遠ざかるように曲がった第2形状である。第1形状の第2のフィン12aと第2形状の第2のフィン12bとは、周方向で交互に配置されている。 The heat exchanger 10 of the fourth embodiment is the same as that of the third embodiment in that there are a plurality of bent second fins at the tip of the collar portion 11. However, the heat exchanger 10 of the fourth embodiment is different in that second fins having different bending directions with respect to the liquid passing direction in the plurality of second fins bent are mixed. Some of the second fins 12 a have a shape that is bent at an acute angle with respect to the collar portion 11 so that the tip is directed to one surface of the fin 1 as in the third embodiment. The second fin 12b that is adjacent to the second fin 12a in the circumferential direction is bent so as to protrude inward from the collar portion 11, and the tip thereof is away from one surface of the fin 1 with respect to the collar portion 11. The shape is bent at an obtuse angle. Therefore, the latter second fin 12 b is inclined in the same direction as the collar portion 11 and is bent inside the collar portion 11 at a slight angle so as to form an obtuse angle with respect to the tapered surface of the collar portion 11. Note that the manufacturing method and operation are the same as those in the third embodiment, and a description thereof is omitted. The 2nd fin 12a is the 1st shape bent so that the tip might approach one side of fin 1. FIG. The 2nd fin 12b is the 2nd shape bent so that the tip may go away from one side of fin 1. FIG. The second fins 12a having the first shape and the second fins 12b having the second shape are alternately arranged in the circumferential direction.
 本実施の形態4では、1つのカラー部11の内部で周方向に隣接する第2のフィン12a、12bが互いに通液方向において逆方向に曲げられている。このように構成されているので、実施の形態3に比べて第2のフィン12の間に大きな隙間ができ、流動抵抗が抑制されながら、実施の形態3と同様に熱交換性能が向上できる。図13には、カラー部11の内面に沿った水RFの流れは、第2のフィン12aによって流れの向きを変化させ、隣り合う第2のフィン12aの間を流れ、その通液方向下流に存在する第2のフィン12bの表面を流れる様子を模式的に示した。このような水RFの流れは、上流での乱れを抑制することにもつながる。このため、下流側の第2のフィン12bの前縁効果も最大限得られ(後流の影響が最大限抑制でき)、更に伝熱性能が向上する。 In the fourth embodiment, the second fins 12a and 12b adjacent to each other in the circumferential direction inside one collar portion 11 are bent in opposite directions in the liquid passing direction. Since it is configured in this way, a larger gap is formed between the second fins 12 than in the third embodiment, and the heat exchange performance can be improved as in the third embodiment while the flow resistance is suppressed. In FIG. 13, the flow of the water RF along the inner surface of the collar portion 11 is changed in the flow direction by the second fins 12 a, flows between the adjacent second fins 12 a, and downstream in the liquid flow direction. The state of flowing on the surface of the existing second fin 12b is schematically shown. Such a flow of water RF also leads to suppression of upstream disturbance. For this reason, the leading edge effect of the second fin 12b on the downstream side can be obtained to the maximum (the influence of the wake can be suppressed to the maximum), and the heat transfer performance is further improved.
 <実施の形態5>
 図14は、本発明の実施の形態5に係る熱交換器10を示す断面図である。図14は、実施の形態1の図2のB-B方向から見た断面図に相当する。なお、本実施の形態5の熱交換器10の全体の構成は、実施の形態1の図1の斜視図、図2の正面図と同様であり説明を省略する。図15は、本発明の実施の形態5の熱交換器10のフィンカラーの内部を通液方向から見て示す平面図である。図16は、本発明の実施の形態5の熱交換器10のフィンカラーの構造を示す斜視図である。
<Embodiment 5>
FIG. 14 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 5 of the present invention. 14 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG. In addition, the whole structure of the heat exchanger 10 of this Embodiment 5 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate | omitted. FIG. 15 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the fifth embodiment of the present invention as viewed from the liquid direction. FIG. 16 is a perspective view showing the structure of the fin collar of the heat exchanger 10 according to the fifth embodiment of the present invention.
 本実施の形態5の熱交換器10は、カラー部11の先端に、折り曲げた複数の第2のフィンがある点で、実施の形態3、4と同様である。しかし、本実施の形態5の熱交換器10は、第2のフィン12a、bの形状が異なる。本実施の形態5の第2のフィン12a、bは、周方向の一部を通液方向に折り曲げた折り曲げ部である第2のフィン12a、12b及び通液方向に直交な平坦部12cで構成される。平坦部12cは、カラー部11先端の周方向の一部から液方向に直交する管断面の中心側に向かって張り出した扇型の形状に形成される。平坦部12cは、通液方向とおおよそ直交な面を有するように曲げられる。また、折り曲げ部である第2のフィン12a、12bは、平坦部12cの両端に設けられている。通液方向から見ると、折り曲げ部である第2のフィン12aと折り曲げ部である第2のフィン12bとは、平坦部12cに対して周方向反対の端にある。折り曲げ部である第2のフィン12aは、通液方向の上流側に向かって曲げられた部分である。折り曲げ部である第2のフィン12bは、通液方向の下流側に向かって曲げられた部分である。図15、16では、折り曲げ部である第2のフィン12aが通液方向の上流側から下流側を見て平坦部12cに対して時計回り方向の端にある。折り曲げ部である第2のフィン12bが通液方向の上流側から下流側を見て平坦部12cに対して反時計回り方向の端にある。なお、折り曲げ部である第2のフィン12a、12bは、逆に配置してもよい。また、平坦部12cは、扇形としたが、三角、台形あるいは矩形などの形状に形成されてもよい。 The heat exchanger 10 of the fifth embodiment is the same as the third and fourth embodiments in that there are a plurality of bent second fins at the tip of the collar portion 11. However, in the heat exchanger 10 of the fifth embodiment, the shapes of the second fins 12a and 12b are different. The second fins 12a and 12b according to the fifth embodiment are configured by second fins 12a and 12b that are bent portions in which a part of the circumferential direction is bent in the liquid passing direction and a flat portion 12c that is orthogonal to the liquid passing direction. Is done. The flat portion 12c is formed in a fan-shaped shape that protrudes from a part in the circumferential direction at the tip of the collar portion 11 toward the center side of the tube cross section orthogonal to the liquid direction. The flat part 12c is bent so as to have a surface substantially orthogonal to the liquid flow direction. Further, the second fins 12a and 12b, which are bent portions, are provided at both ends of the flat portion 12c. When viewed from the liquid passing direction, the second fin 12a that is the bent portion and the second fin 12b that is the bent portion are at opposite ends in the circumferential direction with respect to the flat portion 12c. The second fin 12a that is a bent portion is a portion that is bent toward the upstream side in the liquid passing direction. The second fin 12b, which is a bent portion, is a portion bent toward the downstream side in the liquid passing direction. 15 and 16, the second fin 12a, which is a bent portion, is located at the end in the clockwise direction with respect to the flat portion 12c when viewed from the upstream side in the liquid passing direction to the downstream side. The second fin 12b that is a bent portion is located at the end in the counterclockwise direction with respect to the flat portion 12c when viewed from the upstream side in the liquid passing direction to the downstream side. Note that the second fins 12a and 12b, which are bent portions, may be arranged in reverse. Moreover, although the flat part 12c was fan-shaped, it may be formed in a shape such as a triangle, a trapezoid, or a rectangle.
 平坦部12cとその端部の折り曲げ部である第2のフィン12a、12bとは、合わせて1つの第2のフィン体を構成している。図15、16では、1つのフィンカラーの内部に周方向の異なる位置に2つの第2のフィン体がある構成を示している。通液方向から見たときに、カラー部11の内周には、2つの第2のフィン体が形成された領域と、それらの間に第2のフィン体が形成されていない領域と、が存在する。第2のフィン12aは、先端がフィン1の一方の面に近づくように曲がった第1形状である。第2のフィン12bは、先端がフィン1の一方の面から遠ざかるように曲がった第2形状である。第1形状の第2のフィン12aと第2形状の第2のフィン12bとは、周方向で交互に配置されている。 The flat portion 12c and the second fins 12a and 12b, which are bent portions at the ends thereof, together constitute one second fin body. 15 and 16 show a configuration in which two second fin bodies are located at different positions in the circumferential direction inside one fin collar. When viewed from the liquid passing direction, the inner periphery of the collar portion 11 includes a region where two second fin bodies are formed and a region where the second fin bodies are not formed between them. Exists. The 2nd fin 12a is the 1st shape bent so that the tip might approach one side of fin 1. FIG. The 2nd fin 12b is the 2nd shape bent so that the tip may go away from one side of fin 1. FIG. The second fins 12a having the first shape and the second fins 12b having the second shape are alternately arranged in the circumferential direction.
 このようなフィンカラーの製造は、例えば、フィン1にフィンカラーを形成する際に、折り曲げ部である第2のフィン12a、12bと平坦部12cとなる部分をフィンカラーの先端にスリットを入れるなどで形成し、その後、各部を折り曲げることで作製できる。フィンカラーの基部部分のテーパー面は、カラー部11としてそのまま残り、この部分が隣接するカラー部11との連接に用いられる。第2のフィン体の構造部分を除き、他部分の製造工程、熱交換器の動作は、上記の実施の形態と同様であるので、説明を省略する。 For manufacturing such a fin collar, for example, when the fin collar is formed on the fin 1, a slit is formed at the tip of the fin collar for the second fins 12 a and 12 b that are bent portions and the flat portion 12 c. It can be manufactured by bending each part after that. The tapered surface of the base portion of the fin collar remains as the collar portion 11, and this portion is used for connection with the adjacent collar portion 11. Except for the structural part of the second fin body, the manufacturing process of the other parts and the operation of the heat exchanger are the same as those in the above embodiment, and thus the description thereof is omitted.
 本実施の形態5でも、図16の矢印つきの線で流れを示すように、カラー部11の内面に沿った水RFの流れが変化する。第2のフィン体が内部に突出するため、上記の実施の形態と同様に前縁効果によって熱交換性能が向上する。また、第2のフィン体は、カラー部11内の異なる周方向に異なる通液方向の高さの部分を有している。これにより、水RFの流れは、周方向に非対称な流れを生じ、結果として周方向に向かう流れを生じられる。折り曲げ部である第2のフィン12aの上流端に対して平坦部12c側に流れる水RFは、平坦部12cに衝突した後、周方向にそって折り曲げ部である第2のフィン12aと反対側に流れ、折り曲げ部である第2のフィン12bから下流側に流れる。この時、通液管13を回転する流れが生じ、2つの第2のフィン体間の隙間を流れる水RFに対しても流れを変化させる作用が生じる。水RFの流れ方向が変化することで、熱交換が促進される。 Also in the fifth embodiment, the flow of the water RF along the inner surface of the collar portion 11 changes as shown by the line with an arrow in FIG. Since the second fin body protrudes inside, the heat exchange performance is improved by the leading edge effect as in the above embodiment. Further, the second fin body has different height portions in the liquid passing direction in different circumferential directions in the collar portion 11. Thereby, the flow of the water RF generates an asymmetric flow in the circumferential direction, and as a result, a flow in the circumferential direction is generated. The water RF that flows toward the flat portion 12c with respect to the upstream end of the second fin 12a that is the bent portion collides with the flat portion 12c, and then is opposite to the second fin 12a that is the bent portion along the circumferential direction. And flows downstream from the second fin 12b, which is a bent portion. At this time, a flow that rotates through the liquid passing pipe 13 is generated, and an action of changing the flow also occurs with respect to the water RF that flows through the gap between the two second fin bodies. The heat exchange is promoted by changing the flow direction of the water RF.
 なお、折り曲げ部である第2のフィン12a、12bの先端は、互いに逆方向に曲げて配置されている。しかし、折り曲げ部である第2のフィン12a、12bの先端は、同じ方向に曲げてもよい。その場合には、水RFの流れの回転による促進効果が得られないが、前縁効果による伝熱性能向上の効果が得られる。図17は、平坦部12cの両端とも入口ヘッダ2側に曲げた折り曲げ部である第2のフィン12aとした変形例を示す断面図である。第2のフィン12aの折り曲げた先端が流れの上流側に向くため、前縁効果が高まる。なお、出口ヘッダ3側に接続するフィンカラーでは、平坦部12cの両端とも出口ヘッダ3と反対側に曲げることで、第2のフィン12aの折り曲げた先端を上流側に向け、前縁効果が高められる。水RFの流れる方向が変化する場合は、図14のように異なった折り曲げ方向の第2のフィンが混在する方が、水RFの流れ方向による性能変化が小さくてよい。つまり、先端がフィン1の一方の面に近づくように曲がった第1形状の第2のフィン12aのみが設けられてもよい。また、実施の形態6で後述するように、先端がフィン1の一方の面から遠ざかるように曲がった第2形状の第2のフィン12bのみが設けられてもよい。 Note that the ends of the second fins 12a and 12b, which are the bent portions, are bent in opposite directions. However, the tips of the second fins 12a and 12b that are the bent portions may be bent in the same direction. In that case, although the promotion effect by rotation of the flow of water RF cannot be obtained, the effect of improving the heat transfer performance by the leading edge effect is obtained. FIG. 17 is a cross-sectional view showing a modified example in which both ends of the flat portion 12c are second fins 12a which are bent portions bent toward the inlet header 2 side. Since the bent tip of the second fin 12a faces the upstream side of the flow, the leading edge effect is enhanced. In the fin collar connected to the outlet header 3 side, both ends of the flat portion 12c are bent to the opposite side of the outlet header 3, so that the bent tip of the second fin 12a faces the upstream side and the leading edge effect is enhanced. It is done. When the direction in which the water RF flows changes, the performance change due to the flow direction of the water RF may be smaller when the second fins with different bending directions are mixed as shown in FIG. That is, only the second fin 12a having the first shape that is bent so that the tip approaches one surface of the fin 1 may be provided. Further, as described later in the sixth embodiment, only the second fin 12b having the second shape whose tip is bent so as to be away from one surface of the fin 1 may be provided.
 第2のフィン12a、12bの面積が大きくなるほど、前縁効果による伝熱の向上及び流動抵抗の低減の効果が得られる。実施の形態3、4では、第2のフィンは周方向(伝熱と直角方向)に分断されているため、分断により伝熱が低下する影響はない。しかしながら、本実施の形態5において折り曲げ部である第2のフィン12a、12bは、カラー部11と径方向(伝熱方向)に分断されるため、大きくしすぎると熱伝導ロスが増加する可能性がある。そこで、例えば、折り曲げ部である第2のフィン12a、12bの面積は、平坦部12cよりも小さくするなど、適度なサイズに設定することが好ましい。 As the area of the second fins 12a and 12b increases, the effect of improving heat transfer and reducing flow resistance due to the leading edge effect can be obtained. In Embodiments 3 and 4, since the second fin is divided in the circumferential direction (perpendicular to heat transfer), there is no influence that heat transfer is reduced by the division. However, since the second fins 12a and 12b, which are the bent portions in the fifth embodiment, are divided in the radial direction (heat transfer direction) from the collar portion 11, there is a possibility that heat conduction loss will increase if it is made too large. There is. Therefore, for example, the area of the second fins 12a and 12b, which are the bent portions, is preferably set to an appropriate size, such as smaller than the flat portion 12c.
 <実施の形態6>
 図18は、本発明の実施の形態6に係る熱交換器10を示す断面図である。図18は、実施の形態1の図2のB-B方向から見た断面図に相当する。なお、本実施の形態6の熱交換器10の全体の構成は、実施の形態1の図1の斜視図、図2の正面図と同様であり説明を省略する。図19は、本発明の実施の形態6の熱交換器10のフィンカラーの内部を通液方向から見て示す平面図である。
<Embodiment 6>
FIG. 18 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 6 of the present invention. FIG. 18 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG. In addition, the whole structure of the heat exchanger 10 of this Embodiment 6 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate | omitted. FIG. 19 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the sixth embodiment of the present invention when viewed from the liquid direction.
 本実施の形態6の第2のフィン12は、実施の形態4の第2のフィン12aを除去し、第2のフィン12bのみを残した形状である。つまり、第2のフィン12は、カラー部11のテーパー面に対して鈍角をなすようにわずかな角度でカラー部11の内側に曲げられ、カラー部11のテーパー面と同方向に傾斜している。第2のフィン12は、周方向に間隔をあけて複数設けられている。なお、製造方法、動作については実施の形態3、4と同様であり説明を省略する。 The second fin 12 of the sixth embodiment has a shape in which the second fin 12a of the fourth embodiment is removed and only the second fin 12b is left. In other words, the second fin 12 is bent inside the collar portion 11 at a slight angle so as to form an obtuse angle with respect to the tapered surface of the collar portion 11, and is inclined in the same direction as the tapered surface of the collar portion 11. . A plurality of second fins 12 are provided at intervals in the circumferential direction. The manufacturing method and operation are the same as those in the third and fourth embodiments, and the description thereof is omitted.
 本実施の形態6では、周方向に隣り合う第2のフィン12の間には、第2のフィンが形成されていない。このため、熱交換性能の向上が実施の形態4より少し劣る。しかし、更に流動抵抗が抑制できる。本実施の形態6は、通液管13の管径を小さくする場合に有効である。 In the sixth embodiment, no second fin is formed between the second fins 12 adjacent in the circumferential direction. For this reason, the improvement in heat exchange performance is slightly inferior to that of the fourth embodiment. However, the flow resistance can be further suppressed. The sixth embodiment is effective when the diameter of the liquid passage pipe 13 is reduced.
 また、図18、19では、入口ヘッダ2から水が流れるように示した。このため、第2のフィン12の先端が通液方向の下流側に向いている。しかし、入口ヘッダ2のかわりに出口ヘッダ3に置き換えると、第2のフィン12は、通液方向の上流側に向くことになる。この場合には、第2のフィン12の先端での前縁効果が高まり、熱交換性能が向上する。 18 and 19 show that water flows from the inlet header 2. For this reason, the front-end | tip of the 2nd fin 12 has faced the downstream of the liquid flow direction. However, if it replaces with the outlet header 3 instead of the inlet header 2, the 2nd fin 12 will face the upstream of a liquid flow direction. In this case, the leading edge effect at the tip of the second fin 12 is increased, and the heat exchange performance is improved.
 <実施の形態7>
 図20は、本発明の実施の形態7に係る熱交換器10を示す断面図である。図20は、実施の形態1の図2のB-B方向から見た断面図に相当する。なお、本実施の形態7の熱交換器10の全体の構成は、実施の形態1の図1の斜視図、図2の正面図と同様であり説明を省略する。図21は、本発明の実施の形態7の熱交換器10のフィンカラーの内部を通液方向から見て示す平面図である。
<Embodiment 7>
FIG. 20 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 7 of the present invention. 20 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG. In addition, the whole structure of the heat exchanger 10 of this Embodiment 7 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate | omitted. FIG. 21 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the seventh embodiment of the present invention as viewed from the liquid direction.
 本実施の形態7の第2のフィン12は、実施の形態6と同様にカラー部11のテーパー面と同方向かつカラー部11の内側に傾斜している。第2のフィン12は、周方向に間隔をあけて複数設けられている。本実施の形態7では、連接される2つのフィン1間で互いの第2のフィン12の周方向の位置がずれている。図21には、通液方向から見たときに、実線で示す手前の通液方向上流側におけるフィン1の第2のフィン12と、破線で示すそのすぐ奥の通液方向下流側における連接されたフィン1の第2のフィン12と、が、カラー部11の通液方向に直交する管断面の中心の周方向にずれていることを示している。通液方向で見て、実線で示す手前の通液方向上流側におけるフィン1の隣り合う第2のフィン12の間における空間領域に、破線で示すそのすぐ奥の通液方向下流側における連接されたフィン1の1つの第2のフィン12が存在している。 The second fin 12 of the seventh embodiment is inclined in the same direction as the tapered surface of the collar portion 11 and inside the collar portion 11 as in the sixth embodiment. A plurality of second fins 12 are provided at intervals in the circumferential direction. In the seventh embodiment, the positions of the second fins 12 in the circumferential direction are shifted between the two fins 1 connected to each other. In FIG. 21, when viewed from the liquid flow direction, the second fin 12 of the fin 1 on the upstream side in the front liquid flow direction indicated by the solid line is connected to the downstream side in the liquid flow direction immediately behind the second fin 12 indicated by the broken line. It is shown that the second fin 12 of the fin 1 is displaced in the circumferential direction of the center of the tube cross section perpendicular to the liquid passing direction of the collar portion 11. As viewed in the liquid flow direction, the space region between the adjacent second fins 12 of the fin 1 on the upstream side in the front liquid flow direction indicated by the solid line is connected to the downstream side in the liquid flow direction immediately behind that indicated by the broken line. There is one second fin 12 of the fin 1.
 本実施の形態7では、周方向に隣接する第2のフィン12の間には、第2のフィンが形成されていない。このため、流動抵抗が抑制できる。また、連接されたフィン1には、異なる周方向位置の第2のフィン12が存在する。これにより、カラー部11の内面付近を流れる水がいずれかのフィン1の第2のフィン12と接触しやすくなり、熱交換性能が向上する。 In the seventh embodiment, no second fin is formed between the second fins 12 adjacent in the circumferential direction. For this reason, flow resistance can be suppressed. Further, the fins 1 connected to each other have second fins 12 at different circumferential positions. Thereby, the water flowing in the vicinity of the inner surface of the collar portion 11 can easily come into contact with the second fin 12 of any one of the fins 1 and the heat exchange performance is improved.
 なお、図21のように通液方向から見たときに、連接されたフィン1どうしの第2のフィン12どうしの重なりの間に周方向のわずかな隙間が存在するように配置している。これにより、高い前縁効果が得られる。しかし、連接されたフィン1どうしの第2のフィン12どうしがわずかに重なり合い、通液方向から見たときに周方向に隙間が見えなくなるように配置してもよい。 In addition, when it sees from a liquid flow direction like FIG. 21, it arrange | positions so that the clearance gap between the 2nd fins 12 of the fin 1 connected may overlap in the circumferential direction. Thereby, a high leading edge effect is obtained. However, the second fins 12 of the fins 1 connected to each other may be slightly overlapped so that no gap can be seen in the circumferential direction when viewed from the liquid passing direction.
 <実施の形態8>
 図22は、本発明の実施の形態8に係る熱交換器10を示す断面図である。図22は、実施の形態1の図2のB-B方向から見た断面図に相当する。なお、本実施の形態8の熱交換器10の全体の構成は、実施の形態1の図1の斜視図、図2の正面図と同様であり説明を省略する。図23は、本発明の実施の形態8の熱交換器10のフィンカラーの内部を通液方向から見て示す平面図である。
<Eighth embodiment>
FIG. 22 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 8 of the present invention. 22 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG. In addition, the whole structure of the heat exchanger 10 of this Embodiment 8 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate | omitted. FIG. 23 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the eighth embodiment of the present invention when viewed from the liquid direction.
 本実施の形態8の第2のフィン12は、フィンカラーの先端を三角形状などの凹凸(ギザギザ)形状に形成している。第2のフィン12は、その凹凸部分をフィンカラーの通気方向に直交する管断面の中心方向に折り曲げることで形成されている。なお、フィンカラーの折り曲げられなかった先細りの筒状部分は、カラー部11として残る。カラー部11のその筒状の先端は、フィン1の一面と平行、かつ、滑らかなリング状である。フィン1の一面からの通液方向の高さにおいて、複数のギザギザの凹凸部分の折り曲げ位置は、同一である。このため、カラー部11の連接による密閉性が良好になる。なお、他の実施の形態においても、カラー部11の先端は、同様に滑らかなリング状に形成されるとよい。 In the second fin 12 of the eighth embodiment, the tip of the fin collar is formed in a concavo-convex shape such as a triangle shape. The second fin 12 is formed by bending the concavo-convex portion in the center direction of the tube cross section perpendicular to the airflow direction of the fin collar. The tapered tubular portion of the fin collar that is not bent remains as the collar portion 11. The cylindrical tip of the collar portion 11 is parallel to one surface of the fin 1 and has a smooth ring shape. At the height in the liquid passing direction from one surface of the fin 1, the bending positions of the uneven portions of the plurality of jagged portions are the same. For this reason, the airtightness by the connection of the collar portion 11 is improved. In other embodiments as well, the tip of the collar portion 11 is preferably formed in a smooth ring shape.
 本実施の形態8の第2のフィン12は、カラー部11の先端に小さな凹凸部分が周方向に多数、例えば図22、23のように12個以上など、が形成されたものである。また、第2のフィン12の凹凸形状は、三角形など、通気方向に直交する管断面の中心側に向かって細くなった形状に形成されている。このため、第2のフィン12によって通液管13を遮る面積が小さくなりながら、高い前縁効果が得られ、熱交換性能が向上できる。 In the second fin 12 of the eighth embodiment, a large number of small uneven portions are formed at the tip of the collar portion 11 in the circumferential direction, for example, 12 or more as shown in FIGS. Further, the concave and convex shape of the second fin 12 is formed into a shape such as a triangle that becomes narrower toward the center side of the cross section of the tube orthogonal to the ventilation direction. For this reason, a high leading edge effect can be obtained and the heat exchange performance can be improved while the area where the second fin 12 blocks the liquid passage 13 is reduced.
 <実施の形態9>
 図24は、本発明の実施の形態9に係る熱交換器10を示す断面図である。図24は、実施の形態1の図2のB-B方向から見た断面図に相当する。なお、本実施の形態9の熱交換器10の全体の構成は、実施の形態1の図1の斜視図、図2の正面図と同様であり説明を省略する。図25は、本発明の実施の形態9の熱交換器10のフィンカラーの内部を通液方向から見て示す平面図である。図26は、本発明の実施の形態9の熱交換器10のフィンカラーの構造を示す斜視図である。
<Embodiment 9>
FIG. 24 is a cross-sectional view showing a heat exchanger 10 according to Embodiment 9 of the present invention. 24 corresponds to a cross-sectional view of the first embodiment viewed from the BB direction in FIG. In addition, the whole structure of the heat exchanger 10 of this Embodiment 9 is the same as that of the perspective view of FIG. 1 of Embodiment 1, and the front view of FIG. 2, and description is abbreviate | omitted. FIG. 25 is a plan view showing the inside of the fin collar of the heat exchanger 10 according to the ninth embodiment of the present invention as seen from the liquid direction. FIG. 26 is a perspective view showing the structure of the fin collar of the heat exchanger 10 according to the ninth embodiment of the present invention.
 本実施の形態9は、実施の形態5と類似するが、第2のフィン12の形状が異なる。第2のフィン12は、カラー部11の先端に矩形状などの板片部分を形成し、この板片部分をカラー部11の通気方向に直交する管断面の中心に向けて曲げ、さらにその矩形状の板片部分の一方の角をフィン1の一面に近づくように曲げ、板片部分の他方の角をフィン1の一面から遠ざかる側に向けて曲げて形成されている。したがって、実施の形態5と同様に、第2のフィン12は、カラー部11の先端からその開口部の通気方向に直交する管断面の中心に向けて突出した平坦部12cと、カラー部11の周方向の一方側の平坦部12cの端に通液方向の一方に向かうよう曲げられた折り曲げ部である第2のフィン12aと、平坦部12cの反対側の端に折り曲げ部である第2のフィン12aと逆方向に折り曲げられた折り曲げ部である第2のフィン12bと、を有する。第2のフィン12aは、先端がフィン1の一方の面に近づくように曲がった第1形状である。第2のフィン12bは、先端がフィン1の一方の面から遠ざかるように曲がった第2形状である。第1形状の第2のフィン12aと第2形状の第2のフィン12bとは、周方向で交互に配置されている。第2のフィン12は、実施の形態5の第2のフィン体に相当する。 The ninth embodiment is similar to the fifth embodiment, but the shape of the second fin 12 is different. The second fin 12 is formed with a rectangular plate portion or the like at the tip of the collar portion 11, bent toward the center of the tube cross section perpendicular to the ventilation direction of the collar portion 11, It is formed by bending one corner of the shaped plate piece portion so as to approach one surface of the fin 1 and bending the other corner of the plate piece portion toward the side away from one surface of the fin 1. Therefore, as in the fifth embodiment, the second fin 12 includes a flat portion 12c that protrudes from the tip of the collar portion 11 toward the center of the tube cross section perpendicular to the ventilation direction of the opening portion, and the collar portion 11. A second fin 12a that is a bent portion that is bent toward one end in the liquid passing direction at an end of the flat portion 12c on one side in the circumferential direction, and a second fin that is a bent portion at the opposite end of the flat portion 12c. And a second fin 12b that is a bent portion that is bent in the opposite direction to the fin 12a. The 2nd fin 12a is the 1st shape bent so that the tip might approach one side of fin 1. FIG. The 2nd fin 12b is the 2nd shape bent so that the tip may go away from one side of fin 1. FIG. The second fins 12a having the first shape and the second fins 12b having the second shape are alternately arranged in the circumferential direction. The second fin 12 corresponds to the second fin body of the fifth embodiment.
 なお、折り曲げ部である第2のフィン12a、12bは、実施の形態5のように平坦部12cと直交に曲げず、曲げる角度を直角よりも小さくしている。このため、通液方向に対してり曲げ部である第2のフィン12a、12bは、傾斜する斜面を有する。なお、折り曲げ部である第2のフィン12a、12bと平坦部12cとの間の折り曲げ部分は、連続する曲面に形成されてもよい。折り曲げ部である第2のフィン12a、12bは、曲面に形成されてもよい。 Note that the second fins 12a and 12b, which are the bent portions, are not bent perpendicularly to the flat portion 12c as in the fifth embodiment, and are bent at a smaller angle than a right angle. For this reason, the 2nd fin 12a, 12b which is a bending part with respect to a liquid flow direction has a slope which inclines. In addition, the bending part between the 2nd fins 12a and 12b and the flat part 12c which are bending parts may be formed in a continuous curved surface. The 2nd fins 12a and 12b which are a bending part may be formed in a curved surface.
 折り曲げ部である第2のフィン12a、12bは、板片部分の角を曲げて形成されている。平坦部12cは、中央側が細くなった三角または台形の形状に形成される。このため、これらの傾斜面は、通液管13の内側中心に向いている。なお、第2のフィン12のもとになる形状は、矩形形状とした例で説明した。しかし、第2のフィン12のもとになる形状は、他の形状としてもよい。 The second fins 12a and 12b, which are bent portions, are formed by bending the corners of the plate pieces. The flat part 12c is formed in a triangular or trapezoidal shape with a thinner central side. For this reason, these inclined surfaces are directed to the inner center of the liquid passage 13. In addition, the shape used as the origin of the 2nd fin 12 demonstrated in the example made into the rectangular shape. However, the shape on which the second fin 12 is based may be another shape.
 本実施の形態9によれば、折り曲げ部である第2のフィン12a、12bの一方が流れの上流側に端部を有するので、前縁効果により熱交換性能が向上する。また、折り曲げ部である第2のフィン12aが通液方向に反対であることにより、液を回転させる作用を有し、液の流れを変化させるので、実施の形態5と同様の効果が得られる。特に、折り曲げ部である第2のフィン12a、12bの少なくとも一方は、その傾斜面を通液管13の内側中心に向いて傾斜させているので、通液管13の中央付近を流れる水RFがカラー部11の内壁近くに導かれる。このため、通液管13の管壁での熱交換も促進できる。 According to the ninth embodiment, since one of the second fins 12a and 12b, which are the bent portions, has an end portion on the upstream side of the flow, the heat exchange performance is improved by the leading edge effect. Further, since the second fin 12a that is the bent portion is opposite in the liquid passing direction, the second fin 12a has an action of rotating the liquid and changes the flow of the liquid, so that the same effect as in the fifth embodiment can be obtained. . In particular, since at least one of the second fins 12a and 12b, which are the bent portions, has its inclined surface inclined toward the inner center of the liquid pipe 13, the water RF flowing near the center of the liquid pipe 13 flows. It is guided near the inner wall of the collar portion 11. For this reason, heat exchange at the tube wall of the liquid flow tube 13 can also be promoted.
 また、平坦部12cとその両端の折り曲げ部である第2のフィン12a、12bとは、1つの第2のフィン12(第2のフィン体)を構成している。しかし、平坦部12cの片方の側の端に折り曲げ部である第2のフィン12aが形成され、他方の端に折り曲げ部である第2のフィン12bがない構成、または、平坦部12cの片方の側の端に折り曲げ部である第2のフィン12bが形成され、他方の端に折り曲げ部である第2のフィン12aがない構成、としても類似の効果がある。つまり、先端がフィン1の一方の面に近づくように曲がった第1形状の第2のフィン12aのみが設けられてもよい。また、先端がフィン1の一方の面から遠ざかるように曲がった第2形状の第2のフィン12bのみが設けられてもよい。平坦部12cの一部は、通液方向に向けて曲げられた構成としてもよい。第2のフィン12の折り曲げた面が周方向を向くように構成されると、通液方向から見たときの投影面積が小さくなり、前縁効果などの高い熱交換効果が得られるとともに、流路抵抗が低減できる。 The flat portion 12c and the second fins 12a and 12b which are bent portions at both ends thereof constitute one second fin 12 (second fin body). However, the second fin 12a that is the bent portion is formed at one end of the flat portion 12c and the second fin 12b that is the bent portion is not provided at the other end, or one end of the flat portion 12c is not provided. A similar effect can be obtained when the second fin 12b, which is a bent portion, is formed at the end on the side, and the second fin 12a, which is a bent portion, is not provided at the other end. That is, only the second fin 12a having the first shape that is bent so that the tip approaches one surface of the fin 1 may be provided. Further, only the second fin 12b having the second shape bent so that the tip is away from one surface of the fin 1 may be provided. A part of the flat portion 12c may be bent toward the liquid passing direction. When the bent surface of the second fin 12 is configured to face the circumferential direction, the projected area when viewed from the liquid passing direction is reduced, and a high heat exchange effect such as a leading edge effect is obtained. Road resistance can be reduced.
 <実施の形態10>
 以上の各実施の形態において、第2のフィン12に形成される樹脂膜14の厚みは、カラー部11に形成された樹脂膜14よりも薄くしてもよい。または、第2のフィン12に形成される樹脂膜14における樹脂膜14の少なくとも一部は、第2のフィンを覆わなくてもよい。なお、第2のフィン12の樹脂膜14が薄い、または覆われない領域は、第2のフィン12の全面である必要はなく、一部のみであってもよい。
<Embodiment 10>
In each of the above embodiments, the resin film 14 formed on the second fin 12 may be thinner than the resin film 14 formed on the collar portion 11. Alternatively, at least part of the resin film 14 in the resin film 14 formed on the second fin 12 may not cover the second fin. The region where the resin film 14 of the second fin 12 is thin or not covered is not necessarily the entire surface of the second fin 12 and may be only a part.
 図27は、本発明の実施の形態10に係る熱交換器10を示す断面拡大図である。図27は、例として、図20に示す実施の形態7の構造に関し、樹脂膜14の厚み、付着を部位により変化させた構造を示す。カラー部11の内面に付着した樹脂膜14に比べて通液管13の内側中心に向かって突出した第2のフィン12の樹脂膜14は薄い、または一部が付着していない構造である。この例では、第2のフィン12の先端になるほど、つまり通液管13の内側中心に向かうほど樹脂膜14が薄くなり、第2のフィン12の先端では樹脂膜14がない構造を示している。他の実施の形態に関しても類似の構造とすることができる。 FIG. 27 is an enlarged cross-sectional view showing the heat exchanger 10 according to Embodiment 10 of the present invention. FIG. 27 shows, as an example, a structure in which the thickness and adhesion of the resin film 14 are changed depending on the site in the structure of the seventh embodiment shown in FIG. Compared to the resin film 14 attached to the inner surface of the collar portion 11, the resin film 14 of the second fin 12 protruding toward the inner center of the liquid passage 13 is thin or has a structure in which a part of the resin film 14 is not attached. This example shows a structure in which the resin film 14 becomes thinner toward the tip of the second fin 12, that is, toward the inner center of the liquid passage 13, and there is no resin film 14 at the tip of the second fin 12. . Similar structures can be used for other embodiments.
 このように樹脂膜14の厚みを変える方法として、例えば、通液管13の内部に樹脂膜14を形成した後に、通液管13に挿入したブラシなどで第2のフィン12の樹脂膜14を擦る方法がある。ブラシとしてカラー部11の内径より小さく、かつ第2のフィン12を擦ることが可能なサイズのものを使用すればよい。また、ブラシの代わりに樹脂膜14を徐々に溶かす溶剤などを用いて、その溶剤が通液管13の中央部に勢いよく流れるようにしてもよい。 As a method for changing the thickness of the resin film 14 as described above, for example, after the resin film 14 is formed inside the liquid passage tube 13, the resin film 14 of the second fin 12 is attached with a brush inserted into the liquid passage tube 13. There is a way to rub. A brush having a size smaller than the inner diameter of the collar portion 11 and capable of rubbing the second fin 12 may be used. Alternatively, a solvent that gradually dissolves the resin film 14 instead of the brush may be used so that the solvent flows vigorously in the central portion of the liquid passage 13.
 第2のフィン12に付着する樹脂膜14が薄い、または樹脂膜14が付着していないことによって、第2のフィン12と通液管13を流れる流体との熱交換性能が格段に向上する。特に、第2のフィン12がカラー部11の先端が通液管13の内側中心方向に曲げられた構造では、樹脂膜14が薄くなっても通液管13を構成するカラー部11の保護には影響しないため、信頼性が維持できるまま、熱交換性能が向上できる。 When the resin film 14 adhering to the second fin 12 is thin or the resin film 14 is not adhering, the heat exchange performance between the second fin 12 and the fluid flowing through the liquid passage 13 is remarkably improved. In particular, when the second fin 12 has a structure in which the tip of the collar portion 11 is bent toward the inner center of the liquid passage tube 13, the collar portion 11 constituting the liquid passage tube 13 is protected even when the resin film 14 becomes thin. Therefore, heat exchange performance can be improved while maintaining reliability.
 1 フィン、2 入口ヘッダ、3 出口ヘッダ、4 接続管、10 熱交換器、11 カラー部、12 第2のフィン、12a 第2のフィン、12b 第2のフィン、12c 平坦部、13 通液管、14 樹脂膜、43 切り起こし部、44 切り込み部。 1 fin, 2 inlet header, 3 outlet header, 4 connection pipe, 10 heat exchanger, 11 collar part, 12 second fin, 12a second fin, 12b second fin, 12c flat part, 13 liquid pipe , 14 resin film, 43 cut and raised part, 44 cut part.

Claims (17)

  1.  一方の面から先細りの筒状にのびたカラー部を有する平板状のフィンが複数重ねられ、重ね方向に隣接するフィンのカラー部どうしが連接して通液管を構成し、前記通液管の内面に樹脂膜が形成されている熱交換器において、
     前記カラー部の内側に、前記カラー部の周方向に不連続な第2のフィンを有する、熱交換器。
    A plurality of plate-like fins having collar portions extending in a tapered shape from one surface are stacked, and the collar portions of fins adjacent to each other in the stacking direction are connected to form a liquid flow pipe, and the inner surface of the liquid flow pipe In a heat exchanger in which a resin film is formed,
    A heat exchanger having second fins that are discontinuous in the circumferential direction of the collar portion inside the collar portion.
  2.  前記第2のフィンは、前記周方向に断続的に配置されている、請求項1に記載の熱交換器。 The heat exchanger according to claim 1, wherein the second fins are intermittently disposed in the circumferential direction.
  3.  前記カラー部は前記周方向に前記第2のフィンが形成された領域と前記第2のフィンが形成されていない領域とを有する、請求項1または2に記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein the collar portion has a region in which the second fin is formed in the circumferential direction and a region in which the second fin is not formed.
  4.  前記重ね方向に隣接するフィンの前記第2のフィンは、前記重ね方向から見ると前記方向にずれている、請求項1から3のいずれか一項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the second fins of the fins adjacent to each other in the overlapping direction are displaced in the direction when viewed from the overlapping direction.
  5.  前記第2のフィンは、前記周方向に複数が配置され、
     前記重ね方向に隣接するフィンの前記第2のフィンどうしは、前記重ね方向から見ると前記周方向に半周期ずれている、請求項1から4のいずれか一項に記載の熱交換器。
    A plurality of the second fins are arranged in the circumferential direction,
    The heat exchanger according to any one of claims 1 to 4, wherein the second fins of the fins adjacent to each other in the overlapping direction are shifted by a half cycle in the circumferential direction when viewed from the overlapping direction.
  6.  前記第2のフィンは前記カラー部の前記重ね方向の途中の位置にあって、前記カラー部の一部が内側に突出する突起である、請求項1から5のいずれか一項に記載の熱交換器。 6. The heat according to claim 1, wherein the second fin is a projection that is located in the middle of the collar portion in the overlapping direction, and a part of the collar portion protrudes inward. Exchanger.
  7.  前記第2のフィンは前記カラー部の先端から連続する部分であり、前記筒状を構成する前記カラー部から内側に曲がった部分である、請求項1から5のいずれか一項に記載の熱交換器。 The heat according to any one of claims 1 to 5, wherein the second fin is a portion that is continuous from the tip of the collar portion, and is a portion that is bent inward from the collar portion that forms the tubular shape. Exchanger.
  8.  前記第2のフィンは先端が前記フィンの前記一方の面に近づくように、前記一方の面側に曲がった部分である、請求項7に記載の熱交換器。 The heat exchanger according to claim 7, wherein the second fin is a portion bent toward the one surface such that a tip approaches the one surface of the fin.
  9.  前記第2のフィンは先端が前記フィンの前記一方の面から遠ざかるように、前記一方の面側とは反対側に曲がった部分である、請求項7に記載の熱交換器。 The heat exchanger according to claim 7, wherein the second fin is a portion bent to the opposite side to the one surface side so that a tip thereof is away from the one surface of the fin.
  10.  前記第2のフィンには、先端が前記フィンの前記一方の面に近づくように曲がった第1形状のものと、先端が前記フィンの前記一方の面から遠ざかるように曲がった第2形状のものとがある、請求項7に記載の熱交換器。 The second fin has a first shape whose tip is bent so as to approach the one surface of the fin, and a second shape whose tip is bent so as to move away from the one surface of the fin. The heat exchanger according to claim 7, wherein
  11.  前記第1形状のものと前記第2形状のものとが前記周方向で交互に配置される、請求項10に記載の熱交換器。 The heat exchanger according to claim 10, wherein the first shape and the second shape are alternately arranged in the circumferential direction.
  12.  前記第2のフィンには、先端が前記フィンの前記一方の面に近づくように前記カラー部に対して鋭角をなすように曲がった第1形状のものと、先端が前記フィンの前記一方の面から遠ざかるように、前記カラー部に対して鈍角をなすように曲がった第2形状のものとがあり、前記第1形状のものと前記第2形状のものとが前記周方向で隣接する、請求項7に記載の熱交換器。 The second fin has a first shape bent at an acute angle with respect to the collar portion so that the tip approaches the one surface of the fin, and the tip has the one surface of the fin. There is a second shape bent so as to form an obtuse angle with respect to the collar portion so as to be away from the collar portion, and the first shape and the second shape are adjacent in the circumferential direction. Item 8. The heat exchanger according to Item 7.
  13.  前記第2のフィンは前記内側に曲がった平坦部と、前記平坦部から前記重ね方向に向かうように折れ曲がった折り曲げ部とを有する、請求項7に記載の熱交換器。 The heat exchanger according to claim 7, wherein the second fin includes a flat portion bent inward and a bent portion bent from the flat portion toward the overlapping direction.
  14.  前記平坦部は前記周方向の両端に折り曲げ部を有する、請求項13に記載の熱交換器。 The heat exchanger according to claim 13, wherein the flat portion has bent portions at both ends in the circumferential direction.
  15.  前記平坦部の前記周方向の両端の2つの折り曲げ部は前記重ね方向に対して同じ方向に曲がっている、請求項14に記載の熱交換器。 The heat exchanger according to claim 14, wherein two bent portions at both ends in the circumferential direction of the flat portion are bent in the same direction with respect to the overlapping direction.
  16.  前記平坦部の前記周方向の両端の2つの折り曲げ部は前記重ね方向に対して逆方向に曲がっている、請求項14に記載の熱交換器。 The heat exchanger according to claim 14, wherein two bent portions at both ends in the circumferential direction of the flat portion are bent in a direction opposite to the overlapping direction.
  17.  前記第2のフィンの少なくとも一部の領域で、前記第2のフィンに形成された前記樹脂膜の厚みが前記カラー部の内面に形成されている前記樹脂膜の厚みに比べて薄い、または前記樹脂膜が覆っていない、請求項1から16のいずれか一項に記載の熱交換器。 In at least a partial region of the second fin, the thickness of the resin film formed on the second fin is smaller than the thickness of the resin film formed on the inner surface of the collar portion, or The heat exchanger according to any one of claims 1 to 16, wherein the resin film is not covered.
PCT/JP2017/047004 2017-01-24 2017-12-27 Heat exchanger WO2018139162A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018564185A JP6755338B2 (en) 2017-01-24 2017-12-27 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-010198 2017-01-24
JP2017010198 2017-01-24

Publications (1)

Publication Number Publication Date
WO2018139162A1 true WO2018139162A1 (en) 2018-08-02

Family

ID=62979162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047004 WO2018139162A1 (en) 2017-01-24 2017-12-27 Heat exchanger

Country Status (2)

Country Link
JP (1) JP6755338B2 (en)
WO (1) WO2018139162A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068905A (en) * 1960-03-28 1962-12-18 Westinghouse Electric Corp Extended surface fins for heat exchange tubes
US3195626A (en) * 1962-07-09 1965-07-20 Gen Motors Corp Heat exchanger
FR2191087A1 (en) * 1972-07-05 1974-02-01 Delamair Limited
JPS4992548U (en) * 1972-11-30 1974-08-10
GB2129538A (en) * 1982-11-03 1984-05-16 Eric Smith Heat exchanger
JPS6115359B2 (en) * 1978-02-28 1986-04-23 Nihon Radiator Co
JP2007518962A (en) * 2004-01-20 2007-07-12 オートクンプ ヒートクラフト ユーエスエー リミテッド ライアビリティー カンパニー Brazed plate fin heat exchanger
JP2011021824A (en) * 2009-07-16 2011-02-03 Kakinuma Kinzoku Seiki Kk Heat exchanger and method of forming extension part of fin of the heat exchanger
WO2013069299A1 (en) * 2011-11-10 2013-05-16 パナソニック株式会社 Heat transfer fin, fin-tube heat exchanger, and heat pump device
WO2017010120A1 (en) * 2015-07-10 2017-01-19 三菱電機株式会社 Heat exchanger and air conditioning device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010169344A (en) * 2009-01-26 2010-08-05 Fujitsu General Ltd Heat exchanger
JP2017089905A (en) * 2015-11-02 2017-05-25 三菱電機株式会社 Heat exchanger and air conditioner comprising heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3068905A (en) * 1960-03-28 1962-12-18 Westinghouse Electric Corp Extended surface fins for heat exchange tubes
US3195626A (en) * 1962-07-09 1965-07-20 Gen Motors Corp Heat exchanger
FR2191087A1 (en) * 1972-07-05 1974-02-01 Delamair Limited
JPS4992548U (en) * 1972-11-30 1974-08-10
JPS6115359B2 (en) * 1978-02-28 1986-04-23 Nihon Radiator Co
GB2129538A (en) * 1982-11-03 1984-05-16 Eric Smith Heat exchanger
JP2007518962A (en) * 2004-01-20 2007-07-12 オートクンプ ヒートクラフト ユーエスエー リミテッド ライアビリティー カンパニー Brazed plate fin heat exchanger
JP2011021824A (en) * 2009-07-16 2011-02-03 Kakinuma Kinzoku Seiki Kk Heat exchanger and method of forming extension part of fin of the heat exchanger
WO2013069299A1 (en) * 2011-11-10 2013-05-16 パナソニック株式会社 Heat transfer fin, fin-tube heat exchanger, and heat pump device
WO2017010120A1 (en) * 2015-07-10 2017-01-19 三菱電機株式会社 Heat exchanger and air conditioning device

Also Published As

Publication number Publication date
JPWO2018139162A1 (en) 2019-11-07
JP6755338B2 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
EP2312254B1 (en) Heat exchanger and air conditioner having the heat exchanger
JP6567097B2 (en) Plate heat exchanger and heat pump heating / hot water system equipped with the same
CN107314573B (en) A kind of micro channel heat exchanger
JP2007500836A (en) Heat exchanger and manufacturing method thereof
JP2011064403A (en) Heat exchanger, fin for heat exchanger and its manufacturing method
CN110392814A (en) Heat exchanger with heat transfer tube unit
CN103765148B (en) Fin tube type heat exchanger
US20150330713A1 (en) Heat exchanger and heat exchanging unit
CN103608639A (en) Fin tube heat exchanger
CN103502765A (en) Heat exchanger
JP2011112331A (en) Heat exchanger for exhaust gas
JP2003185374A (en) Tube for heat exchanger with optimized plate
JP6826133B2 (en) Heat exchanger and refrigeration cycle equipment
JP5958917B2 (en) Finned tube heat exchanger
JP2009121708A (en) Heat exchanger
JP6415976B2 (en) Heat transfer tube for fin-and-tube heat exchanger and fin-and-tube heat exchanger using the same
JP2007155181A (en) Heat exchanger
WO2018139162A1 (en) Heat exchanger
WO2020184315A1 (en) Heat exchanger
JP6559334B2 (en) Heat exchanger
JP7001917B2 (en) Heat exchanger with heat transfer tube unit
JP7226364B2 (en) Heat exchanger
JP4284727B2 (en) Heat exchanger
JP6486225B2 (en) Heat exchanger
JP5835907B2 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018564185

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894058

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载