WO2018139067A1 - Hydraulic circuit - Google Patents
Hydraulic circuit Download PDFInfo
- Publication number
- WO2018139067A1 WO2018139067A1 PCT/JP2017/044025 JP2017044025W WO2018139067A1 WO 2018139067 A1 WO2018139067 A1 WO 2018139067A1 JP 2017044025 W JP2017044025 W JP 2017044025W WO 2018139067 A1 WO2018139067 A1 WO 2018139067A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- housing
- priority
- swash plate
- actuator
- pressure
- Prior art date
Links
- 238000006073 displacement reaction Methods 0.000 claims description 62
- 239000010720 hydraulic oil Substances 0.000 abstract description 3
- 239000003921 oil Substances 0.000 description 58
- 230000007423 decrease Effects 0.000 description 12
- 230000002093 peripheral effect Effects 0.000 description 11
- 238000001514 detection method Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 239000000446 fuel Substances 0.000 description 5
- 230000004308 accommodation Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/12—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F04B1/20—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
- F04B1/22—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block having two or more sets of cylinders or pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/12—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
- F04B1/26—Control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/08—Regulating by delivery pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B11/00—Servomotor systems without provision for follow-up action; Circuits therefor
- F15B11/16—Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
Definitions
- the present invention relates to a hydraulic circuit that divides and supplies pressure oil to a priority actuator to which pressure oil is preferentially supplied and at least one other actuator different from the priority actuator.
- pressure oil is divided into a priority actuator that is an actuator for steering operation and another actuator that is a cargo handling cylinder such as a lift cylinder for raising and lowering a fork and a tilt cylinder for tilting the mast forward and backward.
- a priority actuator that is an actuator for steering operation
- another actuator that is a cargo handling cylinder such as a lift cylinder for raising and lowering a fork and a tilt cylinder for tilting the mast forward and backward.
- the hydraulic circuit to supply is installed.
- the hydraulic circuit has a load pressure sensitive priority valve that diverts the pressure oil discharged from the variable displacement pump to the priority actuator and other actuators.
- the priority valve gives priority to the supply of pressure oil to the priority actuator.
- ⁇ Variable displacement pumps have discharge capacity controlled by a pump displacement control valve.
- the pump displacement control valve has a discharge pressure that is the pressure of the pressure oil discharged from the variable displacement pump and a maximum load pressure that is the highest load pressure among the load pressures of the priority actuator and other actuators. Are introduced as pilot pressures.
- the pump capacity control valve controls the discharge capacity of the variable capacity pump according to the differential pressure between the discharge pressure and the maximum load pressure.
- the pump capacity control valve controls the discharge capacity of the variable capacity pump so that the discharge capacity of the variable capacity pump decreases as the differential pressure between the discharge pressure and the maximum load pressure increases,
- the discharge capacity of the variable capacity pump is controlled so that the discharge capacity of the variable capacity pump increases. That is, the pump displacement control valve controls the discharge displacement of the variable displacement pump so that the differential pressure between the discharge pressure and the maximum load pressure is constant.
- Rotating shaft is rotatably supported in the variable displacement pump housing.
- the rotating shaft is provided with a cylinder block that rotates integrally with the rotating shaft.
- a plurality of cylinder bores are formed around the rotation shaft.
- a piston is accommodated in each cylinder bore.
- a shoe is provided at each piston end. Each shoe is held by a retainer plate.
- the housing accommodates a swash plate capable of changing the inclination angle (inclination angle) of the rotation axis with respect to the direction orthogonal to the rotation axis.
- the end face on the cylinder block side of the swash plate is a flat sliding contact surface with which each shoe slides.
- variable capacity pump when the steering is operated, the discharge capacity of the variable capacity pump is controlled by the pump capacity control valve so that the pressure oil necessary for the steering operation is supplied to the priority actuator.
- variable displacement pump when the steering operation is not performed, the variable displacement pump is controlled by the pump displacement control valve so that the required minimum pressure oil can be supplied to the priority actuator so that the steering operation can be performed at any time. It is necessary to control the discharge capacity.
- the pressure oil pressure supplied from the priority valve to the priority actuator is introduced into the pump displacement control valve as the load pressure of the priority actuator in a state where the pressure is reduced through the orifice. Therefore, even when the steering operation is not performed, a pressure higher than the actual load pressure of the priority actuator is introduced into the pump displacement control valve as the load pressure of the priority actuator. According to this, even when the steering operation is not performed, the differential pressure between the discharge pressure and the load pressure of the priority actuator is reduced, and the minimum discharge capacity of the variable displacement pump can be secured above a certain level. As a result, the minimum necessary pressure oil can be supplied to the priority actuator.
- Patent Document 1 the pressure of the pressure oil supplied from the priority valve to the priority actuator is introduced into the pump displacement control valve as the load pressure of the priority actuator, so that the minimum discharge capacity of the variable displacement pump is secured above a certain level. Therefore, the controllability of the minimum discharge capacity of the variable capacity pump is low. Therefore, when the steering operation is not performed, that is, when the priority actuator is not operated, more than necessary pressure oil may be supplied to the priority actuator, and the power of the variable displacement pump increases, resulting in fuel efficiency. Will be worsened.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a hydraulic circuit capable of performing optimum minimum discharge capacity control without causing deterioration of fuel consumption. .
- the hydraulic circuit that solves the above-described problem is a variable displacement pump that discharges pressure oil, and a priority actuator that preferentially supplies the pressure oil discharged from the variable displacement pump is different from the priority actuator.
- a load pressure sensitive priority valve that diverts to at least one other actuator, a discharge pressure that is a pressure oil pressure discharged from the variable displacement pump, and a load pressure of the priority actuator and the other actuator.
- the variable displacement pump includes a housing, a rotary shaft rotatably supported by the housing, a cylinder block that rotates integrally with the rotary shaft, and the cylinder A plurality of cylinder bores formed in the block, a piston housed in each cylinder bore, and a swash plate housed in the housing and inclined with respect to a direction orthogonal to the rotation axis of the rotation shaft,
- the housing has an abutment portion that abuts the swash plate when the swash plate has a minimum inclination, and maintains the state of the minimum inclination of the swash plate.
- the switching valve stops the supply of the pressure oil to the other actuator by the switching valve and allows the pressure oil to be supplied to the priority actuator.
- the pressure oil is supplied only to the priority actuator.
- the maximum load pressure is almost equal to the atmospheric pressure
- the differential pressure between the discharge pressure and the maximum load pressure is increased, and the pump displacement control valve is variable.
- the discharge capacity of the variable capacity pump is controlled so that the discharge capacity of the capacity pump decreases.
- the swash plate When the inclination angle of the swash plate reaches the minimum inclination angle, the swash plate is brought into contact with the stopper portion of the housing and the state of the minimum inclination angle of the swash plate is maintained. Therefore, since the minimum inclination state of the swash plate is physically maintained by the contact between the swash plate and the stopper portion, the controllability of the minimum discharge capacity of the variable displacement pump is improved. Therefore, when the priority actuator and other actuators are not operated, it is possible to easily suppress the supply of excessive pressure oil to the priority actuator. Therefore, it is possible to perform optimal minimum discharge capacity control without causing deterioration of fuel consumption.
- the minimum inclination angle of the swash plate is preferably larger than 0 degree. According to this, the minimum discharge capacity of the variable displacement pump increases as compared with the case where the minimum inclination angle of the swash plate is set to 0 degrees, for example. Therefore, even when the priority actuator is not operated, it is possible to easily supply the minimum necessary pressure oil from the variable displacement pump to the priority actuator so that the priority actuator can be operated at any time.
- the housing includes a bottomed cylindrical first housing that accommodates the cylinder block, and a bottomed cylindrical second housing connected to the opening side of the first housing,
- the second housing includes the stopper portion, and a connection surface between the first housing and the second housing is located closer to the swash plate than an end surface of the cylinder block on the second housing side. It is good to be.
- the contact of the second housing is reduced.
- a stop part and a connection surface become close, and it can make it easy to process a stop part. Therefore, the stopper part can be processed with high accuracy, and the position of the minimum inclination angle of the swash plate can be set with high accuracy.
- the variable displacement pump includes a plate-shaped bush that is curved in an arc shape that allows the inclination angle of the swash plate to be changed and holds the swash plate
- the second housing includes the bush A mounting surface that is curved in an arc shape to be mounted, a part of a virtual circle through which the mounting surface passes protrudes outside the housing, and the connection surface is positioned outside the virtual circle. It is good to be.
- the mounting surface of the second housing and the connecting surface are closer, and the mounting surface can be easily processed. Therefore, the mounting surface can be processed with high accuracy, the positioning accuracy of the bush attached to the mounting surface can be improved, and the positional accuracy of the swash plate can be improved.
- the connecting surface may be located outside the swash plate when the tilt angle of the swash plate is a minimum tilt angle. According to this, the stopper part and the connection surface of the second housing are closest to each other, and the stopper part can be further easily processed. Therefore, the stopper part can be processed with higher accuracy, and the position of the minimum inclination angle of the swash plate can be set with higher accuracy.
- the hydraulic circuit 1 includes a power steering unit 2, a cargo handling unit 3, and an inlet unit 4.
- the power steering unit 2 constitutes a hydraulic control device that controls the operation of the priority actuator 5 that is an actuator for steering operation.
- the cargo handling unit 3 constitutes a hydraulic control device that controls the operation of another actuator 6 that is a cargo handling cylinder such as a lift cylinder for raising and lowering a fork and a tilt cylinder for tilting the mast forward and backward.
- the hydraulic circuit 1 supplies pressure oil to the priority actuator 5 and the other actuators 6 in a divided manner so that the pressure oil is preferentially supplied to the priority actuators 5 over the other actuators 6.
- the hydraulic circuit 1 includes a discharge passage 1b that returns the pressure oil discharged from the power steering unit 2, the cargo handling unit 3, and the inlet unit 4 to the tank 1a.
- the hydraulic circuit 1 includes a variable displacement pump 10 that discharges pressure oil, a load pressure sensitive type priority valve 7, and a pump displacement control valve 8 that controls the discharge displacement of the variable displacement pump 10.
- the priority valve 7 is incorporated in the inlet unit 4. The priority valve 7 diverts the pressure oil discharged from the variable displacement pump 10 to the priority actuator 5 and the other actuators 6 and gives priority to the supply of the pressure oil to the priority actuator 5.
- the cargo handling unit 3 includes a cargo handling unit housing 3a.
- the inlet unit 4 includes an inlet unit housing 4a.
- the cargo handling unit housing 3a and the inlet unit housing 4a are connected to each other.
- the inlet unit housing 4a has a pump port 4b.
- a pump pipe 4c is connected to the pump port 4b.
- the pressure oil discharged from the variable displacement pump 10 is supplied to the pump port 4b through the pump pipe 4c.
- connection flow path 4d that connects the pump port 4b and the priority valve 7 is provided.
- the inlet unit housing 4a has a priority flow port 4e.
- a connection flow path 4f that connects the priority valve 7 and the priority flow port 4e is provided inside the inlet unit housing 4a.
- the priority flow port 4e and the power steering unit 2 are connected by a priority supply pipe 2a.
- a connection flow path 4g for connecting the priority valve 7 and the cargo handling unit 3 is provided in the inlet unit housing 4a.
- the inlet unit housing 4a has a connection port 4h.
- the connection port 4h and the power steering unit 2 are connected by a load pressure detection pipe 2b.
- a load pressure detecting flow path 4i for connecting the connection port 4h and the cargo handling unit 3 is provided inside the inlet unit housing 4a.
- the load pressure detection flow path 4 i is provided with a check valve 4 j that opens when the load pressure of the other actuator 6 becomes higher than the load pressure of the priority actuator 5.
- the inlet unit housing 4a has a connection port 4k. Inside the inlet unit housing 4a, there is provided a connection flow path 4m that connects the connection port 4k to the connection port 4h side of the check valve 4j in the load pressure detection flow path 4i.
- Priority pilot pilot channels 4n, 4p, 4s are provided in the inlet unit housing 4a.
- One end of the priority valve pilot flow path 4n is connected to the connection port 4h side of the load pressure detection flow path 4i with respect to the connection flow path 4m, and the other end is connected to one end of the priority valve 7. ing.
- a solenoid valve 9 is provided in the pilot valve 4n for the priority valve.
- the solenoid valve 9 is opened by energizing a coil (not shown) and is closed when the coil is not energized. In FIG. 1, the electromagnetic valve 9 is closed.
- One end of the priority valve pilot flow path 4p is connected to the connection flow path 4f, and the other end is connected to the priority valve 7 side of the solenoid valve 9 in the priority valve pilot flow path 4n.
- a throttle 4t is provided in the priority valve pilot flow path 4p.
- One end of the priority valve pilot flow path 4 s is connected to the connection flow path 4 f and the other end is connected to the other end of the priority valve 7.
- a throttle 4u is provided in the priority valve pilot flow path 4s.
- the priority valve 7 allows the pressure oil flowing through the connection flow path 4d to flow out to the connection flow path 4f, and blocks the flow of pressure oil flowing through the connection flow path 4d to the connection flow path 4g.
- the pressure oil flowing through the connection flow path 4d can be switched to the second switching position that allows the oil to flow out to the connection flow paths 4f and 4g.
- the priority valve 7 includes an urging spring 7a.
- the biasing spring 7a applies a biasing force for switching the priority valve 7 to the first switching position. In FIG. 1, the priority valve 7 is switched to the first switching position. Further, when the priority valve 7 is switched to the second switching position, the pressure oil flowing through the connection flow path 4d flows out to the connection flow path 4f through the throttle.
- the pressure oil discharged from the variable displacement pump 10 is pump piping 4c, pump port 4b, connection flow path 4d, priority valve 7, connection flow path 4f, priority flow. It is supplied to the priority actuator 5 through the port 4e, the priority supply pipe 2a, and the power steering unit 2.
- the pressure oil discharged from the variable displacement pump 10 is supplied to the priority valve 7 via the pump pipe 4c, the pump port 4b, and the connection flow path 4d.
- the valve 7 is divided into both connection flow paths 4f and 4g. Then, the pressure oil that has flowed out to the connection flow path 4f is supplied to the priority actuator 5 via the priority flow port 4e, the priority supply pipe 2a, and the power steering unit 2.
- the pressure oil that has flowed out to the connection flow path 4g is supplied to another actuator 6 via the cargo handling unit 3.
- the hydraulic circuit 1 is provided with a pressure compensation valve 4v that controls the amount of pressure oil flowing through the connection flow path 4g, that is, the amount of pressure oil supplied to the other actuator 6.
- the pressure compensation valve 4 v is incorporated in the inlet unit 4.
- the pressure introduced from the pilot valve pilot flow path 4 n and the urging force of the urging spring 7 a act as a first operating pressure for switching the priority valve 7 to the first switching position side.
- the pressure introduced in a state where the pressure is reduced by the throttle 4 u via the priority valve pilot flow path 4 s acts as a second operating pressure for switching the priority valve 7 to the second switching position side.
- the solenoid valve 9 When the priority actuator 5 is operated, the solenoid valve 9 is energized to open the coil, and the pressure of the priority valve pilot flow path 4n is guided to the load pressure detection flow path 4i via the solenoid valve 9. As a result, the pressure of the pilot valve 4n for the priority valve decreases. Accordingly, the pressure from the priority valve pilot flow path 4n introduced to one end of the priority valve 7 decreases.
- the priority valve 7 When the differential pressure between the second operating pressure and the first operating pressure is equal to or higher than a preset differential pressure, the priority valve 7 is switched to the second switching position by the second operating pressure, and is connected via the connection flow path 4g. Then, pressure oil is supplied to the other actuators 6.
- the solenoid valve 9 is energized to open the coil when the other actuator 6 needs to be operated, and the priority valve 7 is switched to the second switching position. It is designed to switch to the position.
- the solenoid valve 9 When the priority actuator 5 and the other actuator 6 are not operated, the solenoid valve 9 is not energized to the coil and is closed. Then, the pressure of the connection flow path 4f is introduced into one end of the priority valve 7 as a pilot pressure in a state where the pressure is reduced by the throttle 4t via the priority valve pilot flow path 4p, and the other end of the priority valve 7 The pressure in the connection flow path 4f is introduced as a pilot pressure in a state where the pressure is reduced by the throttle 4u via the priority valve pilot flow path 4s. Accordingly, the pilot pressure introduced to both ends of the priority valve 7 becomes the same, and the priority valve 7 is switched to the first switching position by the biasing force of the biasing spring 7a.
- the solenoid valve 9 stops the supply of pressure oil to the other actuator 6 when the priority actuator 5 and the other actuator 6 are not operated, and supplies the pressure oil to the priority actuator 5. It functions as a switching valve that switches the priority valve 7 to the first switching position, which is an allowable switching position.
- connection port 4k and the pump capacity control valve 8 are connected by a pilot pipe 8a. And the highest load pressure which is the highest load pressure among the load pressures of the priority actuator 5 and the other actuators 6 is introduced into the pump displacement control valve 8 as a pilot pressure via the pilot pipe 8a. .
- the load pressure of the priority actuator 5 when the load pressure of the priority actuator 5 is higher than the load pressure of the other actuator 6, the load pressure of the priority actuator 5 is the load pressure detection pipe 2b, the connection port 4h, the load pressure detection flow. Pilot pressure is introduced into the pump displacement control valve 8 through the path 4i, the connection flow path 4m, the connection port 4k, and the pilot pipe 8a.
- the check valve 4j opens, and the load pressure of the other actuator 6 becomes the load pressure detection flow path 4i, the connection flow. Pilot pressure is introduced into the pump displacement control valve 8 via the path 4m, the connection port 4k, and the pilot pipe 8a.
- the pump pipe 4c and the pump capacity control valve 8 are connected by a pilot pipe 8b.
- a discharge pressure which is the pressure of the pressure oil discharged from the variable displacement pump 10 into the pump pipe 4c, is introduced into the pump capacity control valve 8 as a pilot pressure through the pilot pipe 8b.
- the pump capacity control valve 8 controls the discharge capacity of the variable capacity pump 10 according to the differential pressure between the discharge pressure and the maximum load pressure. Specifically, the pump capacity control valve 8 controls the discharge capacity of the variable capacity pump 10 so that the discharge capacity of the variable capacity pump 10 decreases as the differential pressure between the discharge pressure and the maximum load pressure increases. When the differential pressure between the discharge pressure and the maximum load pressure decreases, the discharge capacity of the variable capacity pump 10 is controlled so that the discharge capacity of the variable capacity pump 10 increases. That is, the pump displacement control valve 8 controls the discharge displacement of the variable displacement pump 10 so that the differential pressure between the discharge pressure and the maximum load pressure is constant.
- the variable displacement pump 10 includes a metal housing 11 made of, for example, aluminum, and a rotary shaft 12 that is rotatably supported by the housing 11.
- the housing 11 includes a bottomed cylindrical first housing 13 and a bottomed cylindrical second housing 14 connected to the opening side of the first housing 13.
- the first housing 13 and the second housing 14 are formed of an aluminum alloy die casting.
- the 1st housing 13 and the 2nd housing 14 are assembled
- an insertion hole 13 h is formed in which a portion of the rotating shaft 12 on the first housing 13 side is inserted.
- a portion of the rotary shaft 12 on the first housing 13 side is rotatably supported by the bottom wall 13 a of the first housing 13 via a bearing 15.
- the end of the rotary shaft 12 on the second housing 14 side protrudes from the second housing 14 to the outside.
- the end of the rotary shaft 12 on the second housing 14 side is connected to an external drive source via a power transmission mechanism (not shown).
- An engine, an electric motor, or the like is used as the external drive source.
- the rotating shaft 12 is connected to the output shaft of the engine and rotates by driving the engine.
- the cylinder block 17 and the swash plate 18 are accommodated in the first housing 13.
- the swash plate 18 is formed with an insertion hole 18h through which the rotary shaft 12 is inserted. Then, the rotary shaft 12 is inserted through the insertion hole 18h.
- the swash plate 18 is inclined with respect to the direction orthogonal to the rotation axis L1 of the rotation shaft 12, and the inclination angle (inclination angle) of the rotation shaft 12 with respect to the direction orthogonal to the rotation axis L1 can be changed.
- the cylinder block 17 has a cylindrical shape and is disposed closer to the bottom wall 13a of the first housing 13 than the swash plate 18.
- the cylinder block 17 is formed with an insertion hole 17a into which the rotary shaft 12 is inserted.
- the cylinder block 17 has a cylindrical small diameter portion 171 and a cylindrical large diameter portion 172 having a larger hole diameter than the small diameter portion 171.
- the small diameter portion 171 is located closer to the second housing 14 than the large diameter portion 172.
- a biasing spring 19 is interposed between the small diameter portion 171 and the bearing 15.
- a part of the rotary shaft 12 is a spline portion 12a whose outer peripheral surface has an uneven shape.
- the spline portion 12 a can be fitted to the inner peripheral surface of the small diameter portion 171.
- the outer peripheral surface of the rotating shaft 12 and the inner peripheral surface of the small diameter part 171 are spline-fitted (concave fitting), so that the rotating shaft 12 and the cylinder block 17 can rotate integrally.
- a plurality of cylinder bores 17h (nine in this embodiment) are formed around the rotary shaft 12.
- the plurality of cylinder bores 17h are arranged at equal intervals on a concentric circle.
- a piston 20 is housed so as to be able to reciprocate.
- a shoe 21 is provided at the end of the piston 20 on the swash plate 18 side.
- Each shoe 21 is held by an annular retainer plate 22.
- a cylindrical pivot 23 is provided inside the retainer plate 22.
- the pivot 23 is provided side by side in the axial direction of the rotary shaft 12 with respect to the small diameter portion 171 of the cylinder block 17.
- the rotating shaft 12 is inserted inside the pivot 23, and the spline portion 12 a can be fitted to the inner peripheral surface of the pivot 23.
- the outer peripheral surface of the rotating shaft 12 and the inner peripheral surface of the pivot 23 are spline-fitted (concave fitting), so that the rotating shaft 12 and the pivot 23 can rotate integrally.
- the urging force of the urging spring 19 is transmitted to the pivot 23 through a plurality of pins (not shown) fitted in the inner peripheral surface of the small diameter portion 171 and is urged toward the swash plate 18.
- the pivots 23 urged toward the swash plate 18 press the retainer plate 22 toward the swash plate 18, so that the shoes 21 are in close contact with the end face of the swash plate 18 on the cylinder block 17 side. .
- each piston 21 slides around the end surface of the swash plate 18 on the cylinder block 17 side, and each piston 20 moves around the rotating shaft 12. It moves along the circumferential direction of the rotating shaft 12.
- each piston 20 reciprocates in the cylinder bore 17h with a stroke corresponding to the inclination angle of the swash plate 18 as the cylinder block 17 rotates.
- the swash plate 18 includes a plate-like main body portion 31 in which an insertion hole 18h is formed, and a pair of sliding portions 32 arranged at positions sandwiching the main body portion 31 from both sides (in FIG. 2, of the pair of sliding portions 32). Only one of them is shown).
- the main body 31 and the pair of sliding parts 32 are integrally formed.
- One sliding portion 32 is located on the side corresponding to the piston 20 during the discharge stroke, and the other sliding portion 32 is located on the side corresponding to the piston 20 during the suction stroke.
- the “piston 20 in the intake stroke” refers to the piston 20 moving from the top dead center side to the bottom dead center side in the cylinder bore 17h.
- the “piston 20 during the discharge stroke” refers to the piston 20 that is moving from the bottom dead center side to the top dead center side in the cylinder bore 17h.
- the pair of sliding parts 32 have arcuately curved sliding surfaces 32a that bulge toward the opposite side of the cylinder block 17.
- the inner wall of the second housing 14 is provided with a pair of bushes 25 that hold the swash plate 18 while allowing the inclination angle of the swash plate 18 to be changed.
- Each bush 25 is in the shape of a thin plate curved in an arc shape, and includes a sliding surface 25a that extends along each sliding surface 32a and on which each sliding surface 32a slides. The tilt angle of the swash plate 18 is changed by the sliding surfaces 32 a of the pair of sliding portions 32 sliding on the sliding surfaces 25 a of the pair of bushes 25.
- the second housing 14 has an attachment surface 14b that is curved in an arc shape to which each bush 25 is attached. A part of the virtual circle C1 through which the mounting surface 14b passes protrudes outward from the housing 11.
- the mounting surface 14b is formed by inserting a blade tool from the opening side of the second housing 14 using the blade tool having an arcuate blade portion that passes through the virtual circle C1, and processing the second housing 14 with the blade portion.
- Each bush 25 has a contact surface 25b that extends along the attachment surface 14b and contacts the attachment surface 14b.
- the swash plate 18 includes a pressed portion 33 that extends to a part on the outer side in the radial direction from the surface with which the shoe 21 is in sliding contact.
- An accommodation recess 33 a is formed on the end face of the pressed part 33 on the cylinder block 17 side.
- a cylindrical or spherical contact member 34a is accommodated in the accommodating recess 33a.
- a part of the contact member 34a protrudes from the end surface of the pressed portion 33 on the cylinder block 17 side in a state where the contact member 34a is accommodated in the accommodation recess 33a.
- an accommodation recess 33b is formed on the end surface of the pressed portion 33 opposite to the cylinder block 17.
- a cylindrical or spherical contact member 34b is accommodated in the accommodating recess 33b.
- a part of the contact member 34 b protrudes from the end surface of the pressed portion 33 opposite to the cylinder block 17 in a state where the contact member 34 b is stored in the storage recess 33 b.
- a suction hole 26 and a discharge hole 27 are formed in the bottom wall 13 a of the first housing 13.
- the suction hole 26 and the discharge hole 27 are formed in a semicircular arc shape extending along the circumferential direction of the rotating shaft 12.
- the suction hole 26 is provided at a position on the bottom wall 13a where it can communicate with each cylinder bore 17h in which the piston 20 during the suction stroke is housed.
- the discharge hole 27 is provided in the bottom wall 13a at a position where it can communicate with each cylinder bore 17h in which the piston 20 during the discharge stroke is housed.
- An annular valve plate 28 is provided between the cylinder block 17 and the bottom wall 13 a of the first housing 13.
- the rotary shaft 12 is inserted inside the valve plate 28.
- the valve plate 28 is arranged side by side in the axial direction of the rotary shaft 12 with respect to the cylinder block 17.
- the valve plate 28 is formed with a communication hole 28a that connects the suction hole 26 and the cylinder bore 17h, and a communication hole 28b that connects the discharge hole 27 and the cylinder bore 17h.
- the hydraulic oil is sucked from the suction hole 26 through the communication hole 28a into each cylinder bore 17h in which the piston 20 in the suction stroke is housed, and the piston 20 in the discharge stroke is The hydraulic fluid in each of the stored cylinder bores 17h is discharged from the discharge hole 27 through the communication hole 28b.
- the suction hole 26 and the communication hole 28a form a suction port 29 that can communicate with each cylinder bore 17h
- the discharge hole 27 and the communication hole 28b form a discharge port 30 that can communicate with each cylinder bore 17h.
- a recess 41 in which the pressed portion 33 is disposed is formed on a part of the inner peripheral surface of the first housing 13.
- the swash plate 18 is accommodated in the housing 11 in a state of being positioned in the circumferential direction of the rotary shaft 12 by arranging the pressed portion 33 in the recess 41.
- a piston housing recess 35 communicating with the recess 41 is formed on the radially outer side of the rotary shaft 12 with respect to the cylinder block 17 in the first housing 13.
- the piston housing recess 35 extends in the axial direction of the first housing 13.
- a part of the outer peripheral wall of the first housing 13 is formed with a bulging part 42 that bulges outward by forming the concave part 41 and the piston housing concave part 35.
- the bulging portion 42 extends in the axial direction of the first housing 13.
- a control piston 36 is housed in the piston housing recess 35.
- a control pressure chamber 35 a is defined by the piston housing recess 35 and the control piston 36.
- the end surface of the control piston 36 on the swash plate 18 side is in contact with the contact member 34a.
- a part of the pressure oil discharged from the discharge port 30 is supplied to the control pressure chamber 35a.
- the supply amount of the pressure oil supplied to the control pressure chamber 35 a is controlled by the pump capacity control valve 8. Specifically, when the differential pressure between the discharge pressure and the maximum load pressure increases, the pump displacement control valve 8 operates so that the amount of pressure oil supplied to the control pressure chamber 35a increases. When the differential pressure between the discharge pressure and the maximum load pressure decreases, the pump displacement control valve operates so that the supply amount of the pressure oil supplied to the control pressure chamber 35a decreases.
- a part of the outer peripheral wall of the second housing 14 is formed with a bottomed recess closing portion 43 that bulges outward along the bulging portion 42 and closes the opening of the recess 41.
- the pressed portion 33 can come into contact with a part of the bottom surface of the recess closing portion 43.
- a swash plate inclination return mechanism 37 is provided on the bottom wall 14 a of the second housing 14.
- the swash plate inclination return mechanism 37 includes a bottomed cylindrical spring receiving concave member 38, a hollow piston 39 inserted into the spring receiving concave member 38, and an inclination increasing spring 39a housed inside the hollow piston 39.
- the spring receiving concave member 38 is attached to the bottom wall 14a by a screw 38a.
- the spring receiving concave member 38 opens toward the swash plate 18.
- the hollow piston 39 is urged in a direction away from the bottom of the spring receiving concave member 38 by the urging force of the inclination increasing spring 39a.
- the end surface of the hollow piston 39 on the swash plate 18 side is in contact with the contact member 34b.
- variable displacement pump 10 configured as described above, when the amount of pressure oil supplied to the control pressure chamber 35a increases, the pressure in the control pressure chamber 35a increases, and the control piston 36 moves toward the swash plate 18. Then, the control piston 36 presses the swash plate 18 via the contact member 34a so as to reduce the tilt angle of the swash plate 18 against the biasing force of the tilt angle increasing spring 39a. Thereby, the inclination angle of the swash plate 18 is reduced, the stroke of the piston 20 is reduced, and the discharge capacity is reduced.
- a swash plate 18 indicated by a two-dot chain line indicates that the tilt angle of the swash plate 18 is the minimum tilt angle.
- the pressed portion 33 is in contact with a part of the bottom surface of the recess closing portion 43 so that the state of the minimum inclination angle at the swash plate 18 is maintained. Therefore, a part of the bottom surface of the recess closing portion 43 serves as a stopper 43a that keeps the swash plate 18 in contact with the swash plate 18 when the swash plate 18 is at the minimum inclination angle. Therefore, the second housing 14 has a stopper 43a.
- the stopper 43a is a flat surface.
- part with the stopper part 43a in the to-be-pressed part 33 is a flat surface.
- the pressed part 33 comes into surface contact with the stopper part 43a.
- the minimum inclination angle of the swash plate 18 is set to be larger than 0 degrees.
- the stopper 43a is formed by inserting a blade from the opening side of the second housing 14 and processing the second housing 14 with the blade using a blade having a flat surface blade.
- the housing 11 has a connecting surface 11 a between the first housing 13 and the second housing 14.
- the connection surface 11a is a mating surface of the opening end surface of the first housing 13, the second housing 14, and the opening end surface. It can be said that the connecting surface 11 a is a divided surface that is divided into the first housing 13 and the second housing 14 in the housing 11.
- the connecting surface 11a is located on the swash plate 18 side with respect to the end surface 17e on the second housing 14 side in the cylinder block 17 and outside the virtual circle C1. Moreover, the end surface 17e of the cylinder block 17 is located inside the virtual circle C1.
- the connecting surface 11a is located outside the swash plate 18 when the inclination angle of the swash plate 18 is the minimum inclination angle.
- the minimum discharge capacity of the variable displacement pump 10 is increased as compared with the case where the minimum inclination angle of the swash plate 18 is set to 0 degrees, for example. Therefore, even when the priority actuator 5 is not operated, it is easy to supply the minimum required pressure oil from the variable displacement pump 10 to the priority actuator 5 so that the priority actuator 5 can be operated at any time. Yes.
- the connecting surface 11a between the first housing 13 and the second housing 14 is located closer to the swash plate 18 than the end surface 17e on the second housing 14 side of the cylinder block 17. According to this, compared with the case where the connection surface 11a is located on the opposite side of the swash plate 18 from the end surface 17e of the cylinder block 17, the contact stop 43a and the connection surface 11a are closer, and the contact stop The portion 43a can be easily processed. Accordingly, the stopper 43a can be processed with high accuracy, and the position of the minimum inclination angle of the swash plate 18 can be set with high accuracy.
- the connecting surface 11a is located on the swash plate 18 side with respect to the end surface 17e on the second housing 14 side in the cylinder block 17 and outside the virtual circle C1. According to this, compared with the case where the connection surface 11a is located inside the virtual circle C1, the attachment surface 14b and the connection surface 11a become closer, and the attachment surface 14b can be easily processed. Therefore, the mounting surface 14b can be processed with high accuracy, the positioning accuracy of the bush 25 mounted on the mounting surface 14b can be improved, and the positional accuracy of the swash plate 18 can be improved.
- the connecting surface 11a is located outward of the swash plate 18 when the inclination angle of the swash plate 18 is the minimum inclination angle. According to this, the stopper part 43a and the connection surface 11a are closest to each other, and the stopper part 43a can be further easily processed. Accordingly, the stopper 43a can be processed with higher accuracy, and the position of the minimum inclination angle of the swash plate 18 can be set with higher accuracy.
- the stopper part 43a is a casting surface, and the distance between the stopper part 43a and the connecting surface 11a in the axial direction of the rotary shaft 12 is the opening of the second housing 14 with respect to the stopper part 43a. It may be determined by processing the end face. According to this, even if it does not process the stopper part 43a, the position of the stopper part 43a can be set with high precision, and the position of the minimum inclination of the swash plate 18 can be set with high precision.
- the minimum inclination angle of the swash plate 18 may be set to 0 degrees.
- the connecting surface 11a may be located on the swash plate 18 side with respect to the end surface 17e on the second housing 14 side in the cylinder block 17 and inside the virtual circle C1.
- the connecting surface 11 a may be located on the opposite side of the swash plate 18 from the end surface 17 e on the second housing 14 side in the cylinder block 17.
- the to-be-pressed part 33 may be the structure which carries out a line contact to the stopper part 43a, and the structure which carries out a point contact may be sufficient as it.
- the number of other actuators 6 is not particularly limited. Therefore, the priority valve 7 provided in the hydraulic circuit 1 is divided into the priority actuator 5 and at least one or more other actuators 6 different from the priority actuator 5.
- the hydraulic circuit 1 may be mounted on an industrial vehicle other than a forklift.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Reciprocating Pumps (AREA)
- Fluid-Pressure Circuits (AREA)
- Control Of Positive-Displacement Pumps (AREA)
Abstract
When a priority actuator and another actuator are not operated, a solenoid valve is in a valve-closed state, and a priority valve is switched to a first switch position, thus supplying hydraulic oil only to the priority actuator. When the inclination angle of an inclined plate becomes the minimum inclination angle, the inclined plate abuts against an abutment part, thus maintaining the state of the inclined plate at the minimum inclination angle. Therefore, the state of the inclined plate at the minimum inclination angle is physically maintained through abutment between the inclined plate and the abutment part, thus providing good controllability of the minimum discharge capacity of a variable capacity pump. Accordingly, when the priority actuator and the other actuator are not operated, excessive hydraulic oil is easily inhibited from being supplied to the priority actuator.
Description
本発明は、圧油が優先的に供給される優先アクチュエータと、優先アクチュエータとは異なる少なくとも一つ以上の他のアクチュエータとに圧油を分流して供給する油圧回路に関する。
The present invention relates to a hydraulic circuit that divides and supplies pressure oil to a priority actuator to which pressure oil is preferentially supplied and at least one other actuator different from the priority actuator.
例えば、フォークリフトにおいては、ステアリング操作用のアクチュエータである優先アクチュエータと、フォーク昇降用のリフトシリンダやマストの前後傾動用のティルトシリンダ等の荷役用シリンダである他のアクチュエータとに圧油を分流して供給する油圧回路が搭載されている。
For example, in a forklift, pressure oil is divided into a priority actuator that is an actuator for steering operation and another actuator that is a cargo handling cylinder such as a lift cylinder for raising and lowering a fork and a tilt cylinder for tilting the mast forward and backward. The hydraulic circuit to supply is installed.
油圧回路は、可変容量ポンプから吐出された圧油を、優先アクチュエータと他のアクチュエータとに分流する負荷圧感応型の優先弁を備えている。優先弁は、優先アクチュエータへの圧油の供給を優先して行う。
The hydraulic circuit has a load pressure sensitive priority valve that diverts the pressure oil discharged from the variable displacement pump to the priority actuator and other actuators. The priority valve gives priority to the supply of pressure oil to the priority actuator.
可変容量ポンプは、ポンプ容量制御弁によって吐出容量の制御が行われる。ポンプ容量制御弁には、可変容量ポンプから吐出された圧油の圧力である吐出圧力と、優先アクチュエータ及び他のアクチュエータの負荷圧のうちで最も高圧となった負荷圧である最高負荷圧とが、パイロット圧としてそれぞれ導入される。そして、ポンプ容量制御弁は、吐出圧力と最高負荷圧との差圧に応じて、可変容量ポンプの吐出容量を制御する。
¡Variable displacement pumps have discharge capacity controlled by a pump displacement control valve. The pump displacement control valve has a discharge pressure that is the pressure of the pressure oil discharged from the variable displacement pump and a maximum load pressure that is the highest load pressure among the load pressures of the priority actuator and other actuators. Are introduced as pilot pressures. The pump capacity control valve controls the discharge capacity of the variable capacity pump according to the differential pressure between the discharge pressure and the maximum load pressure.
具体的には、ポンプ容量制御弁は、吐出圧力と最高負荷圧との差圧が大きくなると、可変容量ポンプの吐出容量が減少するように可変容量ポンプの吐出容量を制御するとともに、吐出圧力と最高負荷圧との差圧が小さくなると、可変容量ポンプの吐出容量が増大するように可変容量ポンプの吐出容量を制御する。つまり、ポンプ容量制御弁は、吐出圧力と最高負荷圧との差圧が一定となるように可変容量ポンプの吐出容量を制御している。
Specifically, the pump capacity control valve controls the discharge capacity of the variable capacity pump so that the discharge capacity of the variable capacity pump decreases as the differential pressure between the discharge pressure and the maximum load pressure increases, When the differential pressure from the maximum load pressure decreases, the discharge capacity of the variable capacity pump is controlled so that the discharge capacity of the variable capacity pump increases. That is, the pump displacement control valve controls the discharge displacement of the variable displacement pump so that the differential pressure between the discharge pressure and the maximum load pressure is constant.
可変容量ポンプのハウジング内には回転軸が回転可能に支持されている。回転軸には、回転軸と一体的に回転するシリンダブロックが設けられている。シリンダブロックには、複数のシリンダボアが回転軸の周囲に形成されている。各シリンダボア内にはピストンが収納されている。各ピストンの端部にはシューがそれぞれ設けられている。各シューは、リテーナプレートによって保持されている。
Rotating shaft is rotatably supported in the variable displacement pump housing. The rotating shaft is provided with a cylinder block that rotates integrally with the rotating shaft. In the cylinder block, a plurality of cylinder bores are formed around the rotation shaft. A piston is accommodated in each cylinder bore. A shoe is provided at each piston end. Each shoe is held by a retainer plate.
ハウジング内には、回転軸の回転軸線に直交する方向に対する傾斜角度(傾角)の変更が可能な斜板が収容されている。斜板におけるシリンダブロック側の端面は、各シューが摺接する平坦面状の摺接面になっている。そして、回転軸が回転してシリンダブロックが回転軸と一体的に回転すると、各シューが斜板の摺接面を摺接しながら、各ピストンが回転軸の周囲を回転軸の周方向に沿って移動する。これにより、各ピストンは、シリンダブロックの回転に伴って斜板の傾角に応じたストロークでシリンダボア内を往復動する。斜板の傾角は、ハウジング内に形成される制御圧室に対する圧油の供給又は排出が行われることにより変更される。
The housing accommodates a swash plate capable of changing the inclination angle (inclination angle) of the rotation axis with respect to the direction orthogonal to the rotation axis. The end face on the cylinder block side of the swash plate is a flat sliding contact surface with which each shoe slides. When the rotation shaft rotates and the cylinder block rotates integrally with the rotation shaft, each piston slides around the sliding contact surface of the swash plate and each piston moves around the rotation shaft along the circumferential direction of the rotation shaft. Moving. Thereby, each piston reciprocates in the cylinder bore with a stroke corresponding to the inclination angle of the swash plate as the cylinder block rotates. The inclination angle of the swash plate is changed by supplying or discharging pressure oil to / from a control pressure chamber formed in the housing.
ところで、このような油圧回路においては、ステアリングの操作時には、ステアリングの操作に必要な圧油が優先アクチュエータに供給されるように、ポンプ容量制御弁によって可変容量ポンプの吐出容量の制御が行われる。また、ステアリングの操作が行われないときには、ステアリングの操作がいつでも行うことができるように、必要最低限の圧油を優先アクチュエータに供給可能な吐出容量となるようにポンプ容量制御弁によって可変容量ポンプの吐出容量の制御を行う必要がある。
By the way, in such a hydraulic circuit, when the steering is operated, the discharge capacity of the variable capacity pump is controlled by the pump capacity control valve so that the pressure oil necessary for the steering operation is supplied to the priority actuator. In addition, when the steering operation is not performed, the variable displacement pump is controlled by the pump displacement control valve so that the required minimum pressure oil can be supplied to the priority actuator so that the steering operation can be performed at any time. It is necessary to control the discharge capacity.
例えば特許文献1では、優先弁から優先アクチュエータへ供給される圧油の圧力を、オリフィスを介して減圧させた状態で、優先アクチュエータの負荷圧としてポンプ容量制御弁に導入している。よって、ステアリングの操作が行われないときであっても、実際の優先アクチュエータの負荷圧よりも高い圧力が、優先アクチュエータの負荷圧としてポンプ容量制御弁に導入される。これによれば、ステアリングの操作が行われないときであっても、吐出圧力と優先アクチュエータの負荷圧との差圧が小さくなり、可変容量ポンプの最小吐出容量が一定以上確保できるようになる。その結果、必要最低限の圧油を優先アクチュエータに供給可能になる。
For example, in Patent Document 1, the pressure oil pressure supplied from the priority valve to the priority actuator is introduced into the pump displacement control valve as the load pressure of the priority actuator in a state where the pressure is reduced through the orifice. Therefore, even when the steering operation is not performed, a pressure higher than the actual load pressure of the priority actuator is introduced into the pump displacement control valve as the load pressure of the priority actuator. According to this, even when the steering operation is not performed, the differential pressure between the discharge pressure and the load pressure of the priority actuator is reduced, and the minimum discharge capacity of the variable displacement pump can be secured above a certain level. As a result, the minimum necessary pressure oil can be supplied to the priority actuator.
しかしながら、特許文献1では、優先弁から優先アクチュエータへ供給される圧油の圧力を優先アクチュエータの負荷圧としてポンプ容量制御弁に導入することにより、可変容量ポンプの最小吐出容量を一定以上確保するようにしているため、可変容量ポンプの最小吐出容量の制御性が低い。よって、ステアリングの操作が行われていないとき、すなわち、優先アクチュエータを動作させないときに、必要以上の圧油が優先アクチュエータに供給されてしまう場合があり、可変容量ポンプの動力が増加して、燃費の悪化を招くことになる。
However, in Patent Document 1, the pressure of the pressure oil supplied from the priority valve to the priority actuator is introduced into the pump displacement control valve as the load pressure of the priority actuator, so that the minimum discharge capacity of the variable displacement pump is secured above a certain level. Therefore, the controllability of the minimum discharge capacity of the variable capacity pump is low. Therefore, when the steering operation is not performed, that is, when the priority actuator is not operated, more than necessary pressure oil may be supplied to the priority actuator, and the power of the variable displacement pump increases, resulting in fuel efficiency. Will be worsened.
本発明は、上記課題を解決するためになされたものであって、その目的は、燃費の悪化を招くことの無い最適な最小吐出容量の制御を行うことができる油圧回路を提供することにある。
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a hydraulic circuit capable of performing optimum minimum discharge capacity control without causing deterioration of fuel consumption. .
上記課題を解決する油圧回路は、圧油を吐出する可変容量ポンプと、前記可変容量ポンプから吐出された圧油を、前記圧油が優先的に供給される優先アクチュエータと前記優先アクチュエータとは異なる少なくとも一つ以上の他のアクチュエータとに分流する負荷圧感応型の優先弁と、前記可変容量ポンプから吐出された圧油の圧力である吐出圧力と前記優先アクチュエータ及び前記他のアクチュエータの負荷圧のうちで最も高圧となった負荷圧である最高負荷圧との差圧に応じて、前記可変容量ポンプの吐出容量を制御するポンプ容量制御弁と、前記優先アクチュエータ及び前記他のアクチュエータを動作させないときに前記他のアクチュエータへの圧油の供給を停止させ、且つ前記優先アクチュエータへの圧油の供給を許容する切換位置に前記優先弁を切り換える切換弁と、を備え、前記可変容量ポンプは、ハウジングと、前記ハウジングに回転可能に支持される回転軸と、前記回転軸と一体的に回転するシリンダブロックと、前記シリンダブロックに形成される複数のシリンダボアと、各シリンダボア内に収納されるピストンと、前記ハウジング内に収容されるとともに前記回転軸の回転軸線に直交する方向に対して傾斜する斜板と、を備え、前記ハウジングは、前記斜板が最小傾角のときに前記斜板が当接して前記斜板における前記最小傾角の状態を維持する当て止め部を有している。
The hydraulic circuit that solves the above-described problem is a variable displacement pump that discharges pressure oil, and a priority actuator that preferentially supplies the pressure oil discharged from the variable displacement pump is different from the priority actuator. A load pressure sensitive priority valve that diverts to at least one other actuator, a discharge pressure that is a pressure oil pressure discharged from the variable displacement pump, and a load pressure of the priority actuator and the other actuator. When the pump displacement control valve that controls the discharge displacement of the variable displacement pump, the priority actuator, and the other actuators are not operated according to the differential pressure from the highest load pressure, which is the highest load pressure among them. The switching position in which the supply of pressure oil to the other actuator is stopped and the supply of pressure oil to the priority actuator is allowed. The variable displacement pump includes a housing, a rotary shaft rotatably supported by the housing, a cylinder block that rotates integrally with the rotary shaft, and the cylinder A plurality of cylinder bores formed in the block, a piston housed in each cylinder bore, and a swash plate housed in the housing and inclined with respect to a direction orthogonal to the rotation axis of the rotation shaft, The housing has an abutment portion that abuts the swash plate when the swash plate has a minimum inclination, and maintains the state of the minimum inclination of the swash plate.
これによれば、優先アクチュエータ及び他のアクチュエータを動作させないときには、切換弁により、優先弁を、他のアクチュエータへの圧油の供給を停止させ、且つ優先アクチュエータへの圧油の供給を許容する切換位置に切り換えるため、優先アクチュエータ及び他のアクチュエータを動作させないときには、優先アクチュエータのみに圧油が供給される。このとき、優先アクチュエータ及び他のアクチュエータは、動作していないため、最高負荷圧は大気圧とほぼ等しくなり、吐出圧力と最高負荷圧との差圧が大きくなって、ポンプ容量制御弁は、可変容量ポンプの吐出容量が減少するように可変容量ポンプの吐出容量を制御する。斜板は、斜板の傾角が最小傾角になると、ハウジングの当て止め部に当接して、斜板における最小傾角の状態が維持される。したがって、斜板における最小傾角の状態の維持が、斜板と当て止め部との当接によって物理的に行われるため、可変容量ポンプの最小吐出容量の制御性が良好なものとなる。よって、優先アクチュエータ及び他のアクチュエータを動作させないときに、必要以上の圧油が優先アクチュエータに供給されてしまうことを抑制し易くすることができる。したがって、燃費の悪化を招くことの無い最適な最小吐出容量の制御を行うことができる。
According to this, when the priority actuator and the other actuator are not operated, the switching valve stops the supply of the pressure oil to the other actuator by the switching valve and allows the pressure oil to be supplied to the priority actuator. In order to switch to the position, when the priority actuator and other actuators are not operated, the pressure oil is supplied only to the priority actuator. At this time, since the priority actuator and other actuators are not operating, the maximum load pressure is almost equal to the atmospheric pressure, the differential pressure between the discharge pressure and the maximum load pressure is increased, and the pump displacement control valve is variable. The discharge capacity of the variable capacity pump is controlled so that the discharge capacity of the capacity pump decreases. When the inclination angle of the swash plate reaches the minimum inclination angle, the swash plate is brought into contact with the stopper portion of the housing and the state of the minimum inclination angle of the swash plate is maintained. Therefore, since the minimum inclination state of the swash plate is physically maintained by the contact between the swash plate and the stopper portion, the controllability of the minimum discharge capacity of the variable displacement pump is improved. Therefore, when the priority actuator and other actuators are not operated, it is possible to easily suppress the supply of excessive pressure oil to the priority actuator. Therefore, it is possible to perform optimal minimum discharge capacity control without causing deterioration of fuel consumption.
上記油圧回路において、前記斜板の最小傾角が0度よりも大きいとよい。これによれば、斜板の最小傾角が、例えば0度に設定されている場合に比べると、可変容量ポンプの最小吐出容量が増大する。よって、優先アクチュエータを動作させないときであっても、優先アクチュエータをいつでも動作させることが可能となるような、必要最低限の圧油を可変容量ポンプから優先アクチュエータに供給し易くすることができる。
In the above hydraulic circuit, the minimum inclination angle of the swash plate is preferably larger than 0 degree. According to this, the minimum discharge capacity of the variable displacement pump increases as compared with the case where the minimum inclination angle of the swash plate is set to 0 degrees, for example. Therefore, even when the priority actuator is not operated, it is possible to easily supply the minimum necessary pressure oil from the variable displacement pump to the priority actuator so that the priority actuator can be operated at any time.
上記油圧回路において、前記ハウジングは、前記シリンダブロックを収容する有底筒状の第1ハウジングと、前記第1ハウジングの開口側に連結される有底筒状の第2ハウジングと、を有し、前記第2ハウジングは、前記当て止め部を有し、前記第1ハウジングと前記第2ハウジングとの連結面が、前記シリンダブロックにおける前記第2ハウジング側の端面よりも前記斜板側に位置しているとよい。
In the hydraulic circuit, the housing includes a bottomed cylindrical first housing that accommodates the cylinder block, and a bottomed cylindrical second housing connected to the opening side of the first housing, The second housing includes the stopper portion, and a connection surface between the first housing and the second housing is located closer to the swash plate than an end surface of the cylinder block on the second housing side. It is good to be.
これによれば、第1ハウジングと第2ハウジングとの連結面が、シリンダブロックにおける第2ハウジング側の端面よりも斜板とは反対側に位置している場合に比べると、第2ハウジングの当て止め部と連結面とが近くなり、当て止め部の加工をし易くすることができる。したがって、当て止め部を精度良く加工することができ、斜板の最小傾角の位置を精度良く設定することができる。
According to this, compared with the case where the connection surface of the first housing and the second housing is located on the opposite side of the swash plate from the end surface of the cylinder block on the second housing side, the contact of the second housing is reduced. A stop part and a connection surface become close, and it can make it easy to process a stop part. Therefore, the stopper part can be processed with high accuracy, and the position of the minimum inclination angle of the swash plate can be set with high accuracy.
上記油圧回路において、前記可変容量ポンプは、前記斜板の傾角の変更を許容しつつ、且つ前記斜板を保持する弧状に湾曲した板状のブッシュを備え、前記第2ハウジングは、前記ブッシュが取り付けられる弧状に湾曲する取付面を有し、前記取付面が通過する仮想円の一部は、前記ハウジングよりも外側にはみ出しており、前記連結面は、前記仮想円よりも外側に位置しているとよい。
In the hydraulic circuit, the variable displacement pump includes a plate-shaped bush that is curved in an arc shape that allows the inclination angle of the swash plate to be changed and holds the swash plate, and the second housing includes the bush A mounting surface that is curved in an arc shape to be mounted, a part of a virtual circle through which the mounting surface passes protrudes outside the housing, and the connection surface is positioned outside the virtual circle. It is good to be.
これによれば、連結面が、仮想円の内側に位置している場合に比べると、第2ハウジングの取付面と連結面とが近くなり、取付面の加工をし易くすることができる。したがって、取付面を精度良く加工することができ、取付面に取り付けられるブッシュの位置決め精度が向上し、斜板の位置精度を向上させることができる。
According to this, as compared with the case where the connecting surface is located inside the imaginary circle, the mounting surface of the second housing and the connecting surface are closer, and the mounting surface can be easily processed. Therefore, the mounting surface can be processed with high accuracy, the positioning accuracy of the bush attached to the mounting surface can be improved, and the positional accuracy of the swash plate can be improved.
上記油圧回路において、前記連結面は、前記斜板の傾角が最小傾角のときの前記斜板の外方に位置しているとよい。これによれば、第2ハウジングの当て止め部と連結面とが最も近くなり、当て止め部の加工をさらにし易くすることができる。したがって、当て止め部をさらに精度良く加工することができ、斜板の最小傾角の位置をさらに精度良く設定することができる。
In the hydraulic circuit, the connecting surface may be located outside the swash plate when the tilt angle of the swash plate is a minimum tilt angle. According to this, the stopper part and the connection surface of the second housing are closest to each other, and the stopper part can be further easily processed. Therefore, the stopper part can be processed with higher accuracy, and the position of the minimum inclination angle of the swash plate can be set with higher accuracy.
この発明によれば、燃費の悪化を招くことの無い最適な最小吐出容量の制御を行うことができる。
According to this invention, it is possible to control the optimum minimum discharge capacity without causing deterioration of fuel consumption.
以下、油圧回路を具体化した一実施形態を図1及び図2にしたがって説明する。本実施形態の油圧回路は、フォークリフトに搭載されている。図1に示すように、油圧回路1は、パワーステアリングユニット2、荷役ユニット3、及びインレットユニット4を備えている。パワーステアリングユニット2は、ステアリング操作用のアクチュエータである優先アクチュエータ5の動作を制御する油圧制御装置を構成している。荷役ユニット3は、フォーク昇降用のリフトシリンダやマストの前後傾動用のティルトシリンダ等の荷役用シリンダである他のアクチュエータ6の動作を制御する油圧制御装置を構成している。
Hereinafter, an embodiment embodying a hydraulic circuit will be described with reference to FIGS. 1 and 2. The hydraulic circuit of this embodiment is mounted on a forklift. As shown in FIG. 1, the hydraulic circuit 1 includes a power steering unit 2, a cargo handling unit 3, and an inlet unit 4. The power steering unit 2 constitutes a hydraulic control device that controls the operation of the priority actuator 5 that is an actuator for steering operation. The cargo handling unit 3 constitutes a hydraulic control device that controls the operation of another actuator 6 that is a cargo handling cylinder such as a lift cylinder for raising and lowering a fork and a tilt cylinder for tilting the mast forward and backward.
本実施形態の油圧回路1は、他のアクチュエータ6よりも優先アクチュエータ5へ圧油が優先的に供給されるように、優先アクチュエータ5と他のアクチュエータ6とに圧油を分流して供給する。また、油圧回路1は、パワーステアリングユニット2、荷役ユニット3、及びインレットユニット4から排出される圧油をタンク1aへ戻す排出流路1bを備えている。
The hydraulic circuit 1 according to this embodiment supplies pressure oil to the priority actuator 5 and the other actuators 6 in a divided manner so that the pressure oil is preferentially supplied to the priority actuators 5 over the other actuators 6. The hydraulic circuit 1 includes a discharge passage 1b that returns the pressure oil discharged from the power steering unit 2, the cargo handling unit 3, and the inlet unit 4 to the tank 1a.
油圧回路1は、圧油を吐出する可変容量ポンプ10と、負荷圧感応型の優先弁7と、可変容量ポンプ10の吐出容量を制御するポンプ容量制御弁8と、を備えている。優先弁7は、インレットユニット4に組み込まれている。優先弁7は、可変容量ポンプ10から吐出された圧油を、優先アクチュエータ5と他のアクチュエータ6とに分流するとともに、優先アクチュエータ5への圧油の供給を優先して行う。
The hydraulic circuit 1 includes a variable displacement pump 10 that discharges pressure oil, a load pressure sensitive type priority valve 7, and a pump displacement control valve 8 that controls the discharge displacement of the variable displacement pump 10. The priority valve 7 is incorporated in the inlet unit 4. The priority valve 7 diverts the pressure oil discharged from the variable displacement pump 10 to the priority actuator 5 and the other actuators 6 and gives priority to the supply of the pressure oil to the priority actuator 5.
荷役ユニット3は荷役ユニットハウジング3aを備えている。インレットユニット4はインレットユニットハウジング4aを備えている。荷役ユニットハウジング3aとインレットユニットハウジング4aとは互いに連設されている。
The cargo handling unit 3 includes a cargo handling unit housing 3a. The inlet unit 4 includes an inlet unit housing 4a. The cargo handling unit housing 3a and the inlet unit housing 4a are connected to each other.
インレットユニットハウジング4aは、ポンプポート4bを有している。ポンプポート4bには、ポンプ用配管4cが接続されている。可変容量ポンプ10から吐出された圧油は、ポンプ用配管4cを介してポンプポート4bに供給される。
The inlet unit housing 4a has a pump port 4b. A pump pipe 4c is connected to the pump port 4b. The pressure oil discharged from the variable displacement pump 10 is supplied to the pump port 4b through the pump pipe 4c.
インレットユニットハウジング4aの内部には、ポンプポート4bと優先弁7とを接続する接続流路4dが設けられている。また、インレットユニットハウジング4aは、優先流ポート4eを有している。インレットユニットハウジング4aの内部には、優先弁7と優先流ポート4eとを接続する接続流路4fが設けられている。優先流ポート4eとパワーステアリングユニット2とは優先供給配管2aにより接続されている。インレットユニットハウジング4aの内部には、優先弁7と荷役ユニット3とを接続する接続流路4gが設けられている。
In the inlet unit housing 4a, a connection flow path 4d that connects the pump port 4b and the priority valve 7 is provided. The inlet unit housing 4a has a priority flow port 4e. A connection flow path 4f that connects the priority valve 7 and the priority flow port 4e is provided inside the inlet unit housing 4a. The priority flow port 4e and the power steering unit 2 are connected by a priority supply pipe 2a. A connection flow path 4g for connecting the priority valve 7 and the cargo handling unit 3 is provided in the inlet unit housing 4a.
インレットユニットハウジング4aは、接続ポート4hを有している。接続ポート4hとパワーステアリングユニット2とは負荷圧検知用配管2bにより接続されている。インレットユニットハウジング4aの内部には、接続ポート4hと荷役ユニット3とを接続する負荷圧検知用流路4iが設けられている。負荷圧検知用流路4iには、他のアクチュエータ6の負荷圧が優先アクチュエータ5の負荷圧よりも高くなったときに開弁する逆止弁4jが設けられている。
The inlet unit housing 4a has a connection port 4h. The connection port 4h and the power steering unit 2 are connected by a load pressure detection pipe 2b. Inside the inlet unit housing 4a, a load pressure detecting flow path 4i for connecting the connection port 4h and the cargo handling unit 3 is provided. The load pressure detection flow path 4 i is provided with a check valve 4 j that opens when the load pressure of the other actuator 6 becomes higher than the load pressure of the priority actuator 5.
インレットユニットハウジング4aは、接続ポート4kを有している。インレットユニットハウジング4aの内部には、接続ポート4kと負荷圧検知用流路4iにおける逆止弁4jよりも接続ポート4h側とを接続する接続流路4mが設けられている。
The inlet unit housing 4a has a connection port 4k. Inside the inlet unit housing 4a, there is provided a connection flow path 4m that connects the connection port 4k to the connection port 4h side of the check valve 4j in the load pressure detection flow path 4i.
インレットユニットハウジング4aの内部には、優先弁用パイロット流路4n,4p,4sが設けられている。優先弁用パイロット流路4nの一端は、負荷圧検知用流路4iにおける接続流路4mとの接続箇所よりも接続ポート4h側に接続されるとともに、他端は優先弁7の一端に接続されている。
Priority pilot pilot channels 4n, 4p, 4s are provided in the inlet unit housing 4a. One end of the priority valve pilot flow path 4n is connected to the connection port 4h side of the load pressure detection flow path 4i with respect to the connection flow path 4m, and the other end is connected to one end of the priority valve 7. ing.
優先弁用パイロット流路4nには、電磁弁9が設けられている。電磁弁9は、図示しないコイルへの通電が行われることにより開弁するとともに、コイルへの通電が行われなくなると閉弁する。なお、図1においては、電磁弁9は閉弁状態となっている。
A solenoid valve 9 is provided in the pilot valve 4n for the priority valve. The solenoid valve 9 is opened by energizing a coil (not shown) and is closed when the coil is not energized. In FIG. 1, the electromagnetic valve 9 is closed.
優先弁用パイロット流路4pの一端は接続流路4fに接続されるとともに、他端は優先弁用パイロット流路4nにおける電磁弁9よりも優先弁7側に接続されている。優先弁用パイロット流路4pには、絞り4tが設けられている。優先弁用パイロット流路4sの一端は接続流路4fに接続されるとともに、他端は優先弁7の他端に接続されている。優先弁用パイロット流路4sには、絞り4uが設けられている。
One end of the priority valve pilot flow path 4p is connected to the connection flow path 4f, and the other end is connected to the priority valve 7 side of the solenoid valve 9 in the priority valve pilot flow path 4n. A throttle 4t is provided in the priority valve pilot flow path 4p. One end of the priority valve pilot flow path 4 s is connected to the connection flow path 4 f and the other end is connected to the other end of the priority valve 7. A throttle 4u is provided in the priority valve pilot flow path 4s.
優先弁7は、接続流路4dを流れる圧油における接続流路4fへの流出を許容し、且つ接続流路4dを流れる圧油における接続流路4gへの流出を遮断する第1切換位置と、接続流路4dを流れる圧油における両接続流路4f,4gへの流出を許容する第2切換位置とに切換可能になっている。優先弁7は、付勢ばね7aを備えている。付勢ばね7aは、優先弁7を第1切換位置に切り換えるための付勢力を優先弁7に付与する。なお、図1においては、優先弁7は、第1切換位置に切り換えられている。また、優先弁7が第2切換位置に切り換えられているときには、接続流路4dを流れる圧油における接続流路4fへの流出は絞りを介して行われる。
The priority valve 7 allows the pressure oil flowing through the connection flow path 4d to flow out to the connection flow path 4f, and blocks the flow of pressure oil flowing through the connection flow path 4d to the connection flow path 4g. The pressure oil flowing through the connection flow path 4d can be switched to the second switching position that allows the oil to flow out to the connection flow paths 4f and 4g. The priority valve 7 includes an urging spring 7a. The biasing spring 7a applies a biasing force for switching the priority valve 7 to the first switching position. In FIG. 1, the priority valve 7 is switched to the first switching position. Further, when the priority valve 7 is switched to the second switching position, the pressure oil flowing through the connection flow path 4d flows out to the connection flow path 4f through the throttle.
優先弁7が第1切換位置に切り換えられると、可変容量ポンプ10から吐出された圧油は、ポンプ用配管4c、ポンプポート4b、接続流路4d、優先弁7、接続流路4f、優先流ポート4e、優先供給配管2a、及びパワーステアリングユニット2を介して優先アクチュエータ5に供給される。
When the priority valve 7 is switched to the first switching position, the pressure oil discharged from the variable displacement pump 10 is pump piping 4c, pump port 4b, connection flow path 4d, priority valve 7, connection flow path 4f, priority flow. It is supplied to the priority actuator 5 through the port 4e, the priority supply pipe 2a, and the power steering unit 2.
優先弁7が第2切換位置に切り換えられると、可変容量ポンプ10から吐出された圧油は、ポンプ用配管4c、ポンプポート4b、及び接続流路4dを介して優先弁7に供給され、優先弁7において両接続流路4f,4gに分流される。そして、接続流路4fに流出した圧油は、優先流ポート4e、優先供給配管2a、及びパワーステアリングユニット2を介して優先アクチュエータ5に供給される。接続流路4gに流出した圧油は、荷役ユニット3を介して他のアクチュエータ6に供給される。
When the priority valve 7 is switched to the second switching position, the pressure oil discharged from the variable displacement pump 10 is supplied to the priority valve 7 via the pump pipe 4c, the pump port 4b, and the connection flow path 4d. The valve 7 is divided into both connection flow paths 4f and 4g. Then, the pressure oil that has flowed out to the connection flow path 4f is supplied to the priority actuator 5 via the priority flow port 4e, the priority supply pipe 2a, and the power steering unit 2. The pressure oil that has flowed out to the connection flow path 4g is supplied to another actuator 6 via the cargo handling unit 3.
したがって、優先弁7が第1切換位置に切り換えられると、優先アクチュエータ5のみに圧油が供給され、優先弁7が第2切換位置に切り換えられると、優先アクチュエータ5及び他のアクチュエータ6に圧油が供給される。なお、油圧回路1には、接続流路4gを流れる圧油、すなわち、他のアクチュエータ6に供給される圧油の供給量を制御する圧力補償弁4vが設けられている。圧力補償弁4vは、インレットユニット4に組み込まれている。
Therefore, when the priority valve 7 is switched to the first switching position, the pressure oil is supplied only to the priority actuator 5, and when the priority valve 7 is switched to the second switching position, the pressure oil is supplied to the priority actuator 5 and the other actuators 6. Is supplied. The hydraulic circuit 1 is provided with a pressure compensation valve 4v that controls the amount of pressure oil flowing through the connection flow path 4g, that is, the amount of pressure oil supplied to the other actuator 6. The pressure compensation valve 4 v is incorporated in the inlet unit 4.
優先弁7の一端には、優先弁用パイロット流路4nから導入される圧力と付勢ばね7aの付勢力とが優先弁7を第1切換位置側に切り換える第1作動圧力として作用し、優先弁7の他端には、優先弁用パイロット流路4sを介して絞り4uによって減圧された状態で導入される圧力が優先弁7を第2切換位置側に切り換える第2作動圧力として作用する。
At one end of the priority valve 7, the pressure introduced from the pilot valve pilot flow path 4 n and the urging force of the urging spring 7 a act as a first operating pressure for switching the priority valve 7 to the first switching position side. At the other end of the valve 7, the pressure introduced in a state where the pressure is reduced by the throttle 4 u via the priority valve pilot flow path 4 s acts as a second operating pressure for switching the priority valve 7 to the second switching position side.
電磁弁9は、優先アクチュエータ5が動作すると、コイルへの通電が行われて開弁し、優先弁用パイロット流路4nの圧力は、電磁弁9を介して負荷圧検知用流路4iへ導かれ、優先弁用パイロット流路4nの圧力は低下していく。したがって、優先弁7の一端に導入される優先弁用パイロット流路4nからの圧力が低下していく。そして、第2作動圧力と第1作動圧力との差圧が予め設定された差圧以上となると、優先弁7は、第2作動圧力によって第2切換位置に切り換わり、接続流路4gを介して他のアクチュエータ6への圧油の供給が行われる。
When the priority actuator 5 is operated, the solenoid valve 9 is energized to open the coil, and the pressure of the priority valve pilot flow path 4n is guided to the load pressure detection flow path 4i via the solenoid valve 9. As a result, the pressure of the pilot valve 4n for the priority valve decreases. Accordingly, the pressure from the priority valve pilot flow path 4n introduced to one end of the priority valve 7 decreases. When the differential pressure between the second operating pressure and the first operating pressure is equal to or higher than a preset differential pressure, the priority valve 7 is switched to the second switching position by the second operating pressure, and is connected via the connection flow path 4g. Then, pressure oil is supplied to the other actuators 6.
なお、電磁弁9は、優先アクチュエータ5を動作させないときであっても、他のアクチュエータ6を動作させる必要があるときには、コイルへの通電が行われて開弁し、優先弁7が第2切換位置に切り換わるようになっている。
Even when the priority actuator 5 is not operated, the solenoid valve 9 is energized to open the coil when the other actuator 6 needs to be operated, and the priority valve 7 is switched to the second switching position. It is designed to switch to the position.
電磁弁9は、優先アクチュエータ5及び他のアクチュエータ6を動作させないときに、コイルへの通電が行われなくなって閉弁状態となる。すると、優先弁7の一端には、接続流路4fの圧力が、優先弁用パイロット流路4pを介して絞り4tによって減圧された状態でパイロット圧として導入されるとともに、優先弁7の他端には、接続流路4fの圧力が、優先弁用パイロット流路4sを介して絞り4uによって減圧された状態でパイロット圧として導入される。したがって、優先弁7の両端に導入されるパイロット圧は同じになり、優先弁7は付勢ばね7aの付勢力によって第1切換位置に切り換えられる。
When the priority actuator 5 and the other actuator 6 are not operated, the solenoid valve 9 is not energized to the coil and is closed. Then, the pressure of the connection flow path 4f is introduced into one end of the priority valve 7 as a pilot pressure in a state where the pressure is reduced by the throttle 4t via the priority valve pilot flow path 4p, and the other end of the priority valve 7 The pressure in the connection flow path 4f is introduced as a pilot pressure in a state where the pressure is reduced by the throttle 4u via the priority valve pilot flow path 4s. Accordingly, the pilot pressure introduced to both ends of the priority valve 7 becomes the same, and the priority valve 7 is switched to the first switching position by the biasing force of the biasing spring 7a.
したがって、本実施形態において、電磁弁9は、優先アクチュエータ5及び他のアクチュエータ6を動作させないときに他のアクチュエータ6への圧油の供給を停止させ、且つ優先アクチュエータ5への圧油の供給を許容する切換位置である第1切換位置に優先弁7を切り換える切換弁として機能している。
Therefore, in the present embodiment, the solenoid valve 9 stops the supply of pressure oil to the other actuator 6 when the priority actuator 5 and the other actuator 6 are not operated, and supplies the pressure oil to the priority actuator 5. It functions as a switching valve that switches the priority valve 7 to the first switching position, which is an allowable switching position.
接続ポート4kとポンプ容量制御弁8とはパイロット配管8aにより接続されている。そして、ポンプ容量制御弁8には、優先アクチュエータ5及び他のアクチュエータ6の負荷圧のうちで最も高圧となった負荷圧である最高負荷圧が、パイロット配管8aを介してパイロット圧として導入される。
The connection port 4k and the pump capacity control valve 8 are connected by a pilot pipe 8a. And the highest load pressure which is the highest load pressure among the load pressures of the priority actuator 5 and the other actuators 6 is introduced into the pump displacement control valve 8 as a pilot pressure via the pilot pipe 8a. .
具体的には、例えば、優先アクチュエータ5の負荷圧が他のアクチュエータ6の負荷圧よりも高いときには、優先アクチュエータ5の負荷圧が、負荷圧検知用配管2b、接続ポート4h、負荷圧検知用流路4i、接続流路4m、接続ポート4k、及びパイロット配管8aを介してポンプ容量制御弁8にパイロット圧として導入される。また、他のアクチュエータ6の負荷圧が優先アクチュエータ5の負荷圧よりも高くなると、逆止弁4jが開弁して、他のアクチュエータ6の負荷圧が、負荷圧検知用流路4i、接続流路4m、接続ポート4k、及びパイロット配管8aを介してポンプ容量制御弁8にパイロット圧として導入される。
Specifically, for example, when the load pressure of the priority actuator 5 is higher than the load pressure of the other actuator 6, the load pressure of the priority actuator 5 is the load pressure detection pipe 2b, the connection port 4h, the load pressure detection flow. Pilot pressure is introduced into the pump displacement control valve 8 through the path 4i, the connection flow path 4m, the connection port 4k, and the pilot pipe 8a. When the load pressure of the other actuator 6 becomes higher than the load pressure of the priority actuator 5, the check valve 4j opens, and the load pressure of the other actuator 6 becomes the load pressure detection flow path 4i, the connection flow. Pilot pressure is introduced into the pump displacement control valve 8 via the path 4m, the connection port 4k, and the pilot pipe 8a.
ポンプ用配管4cとポンプ容量制御弁8とは、パイロット配管8bにより接続されている。そして、ポンプ容量制御弁8には、可変容量ポンプ10からポンプ用配管4c内に吐出された圧油の圧力である吐出圧力が、パイロット配管8bを介してパイロット圧として導入される。
The pump pipe 4c and the pump capacity control valve 8 are connected by a pilot pipe 8b. A discharge pressure, which is the pressure of the pressure oil discharged from the variable displacement pump 10 into the pump pipe 4c, is introduced into the pump capacity control valve 8 as a pilot pressure through the pilot pipe 8b.
ポンプ容量制御弁8は、吐出圧力と最高負荷圧との差圧に応じて、可変容量ポンプ10の吐出容量を制御する。具体的には、ポンプ容量制御弁8は、吐出圧力と最高負荷圧との差圧が大きくなると、可変容量ポンプ10の吐出容量が減少するように可変容量ポンプ10の吐出容量を制御するとともに、吐出圧力と最高負荷圧との差圧が小さくなると、可変容量ポンプ10の吐出容量が増大するように可変容量ポンプ10の吐出容量を制御する。つまり、ポンプ容量制御弁8は、吐出圧力と最高負荷圧との差圧が一定となるように可変容量ポンプ10の吐出容量を制御している。
The pump capacity control valve 8 controls the discharge capacity of the variable capacity pump 10 according to the differential pressure between the discharge pressure and the maximum load pressure. Specifically, the pump capacity control valve 8 controls the discharge capacity of the variable capacity pump 10 so that the discharge capacity of the variable capacity pump 10 decreases as the differential pressure between the discharge pressure and the maximum load pressure increases. When the differential pressure between the discharge pressure and the maximum load pressure decreases, the discharge capacity of the variable capacity pump 10 is controlled so that the discharge capacity of the variable capacity pump 10 increases. That is, the pump displacement control valve 8 controls the discharge displacement of the variable displacement pump 10 so that the differential pressure between the discharge pressure and the maximum load pressure is constant.
図2に示すように、可変容量ポンプ10は、例えばアルミニウム製である金属製のハウジング11と、ハウジング11に回転可能に支持される回転軸12と、を備えている。ハウジング11は、有底筒状の第1ハウジング13と、第1ハウジング13の開口側に連結される有底筒状の第2ハウジング14とを有する。第1ハウジング13及び第2ハウジング14は、アルミニウム合金のダイカスト鋳物によって形成されている。第1ハウジング13と第2ハウジング14とは、互いに開口端同士が突き合わさった状態で組み付けられている。
As shown in FIG. 2, the variable displacement pump 10 includes a metal housing 11 made of, for example, aluminum, and a rotary shaft 12 that is rotatably supported by the housing 11. The housing 11 includes a bottomed cylindrical first housing 13 and a bottomed cylindrical second housing 14 connected to the opening side of the first housing 13. The first housing 13 and the second housing 14 are formed of an aluminum alloy die casting. The 1st housing 13 and the 2nd housing 14 are assembled | attached in the state in which the opening ends mutually faced.
第1ハウジング13の底壁13aには、回転軸12における第1ハウジング13側の部位が挿入される挿入孔13hが形成されている。そして、回転軸12における第1ハウジング13側の部位は、軸受15を介して第1ハウジング13の底壁13aに回転可能に支持されている。
In the bottom wall 13 a of the first housing 13, an insertion hole 13 h is formed in which a portion of the rotating shaft 12 on the first housing 13 side is inserted. A portion of the rotary shaft 12 on the first housing 13 side is rotatably supported by the bottom wall 13 a of the first housing 13 via a bearing 15.
第2ハウジング14の底壁14aには、回転軸12における第2ハウジング14側の部位が挿入される挿入孔14hが形成されている。そして、回転軸12における第2ハウジング14側の部位は、軸受16を介して第2ハウジング14の底壁14aに回転可能に支持されている。
In the bottom wall 14a of the second housing 14, there is formed an insertion hole 14h into which a portion of the rotating shaft 12 on the second housing 14 side is inserted. A portion of the rotary shaft 12 on the second housing 14 side is rotatably supported by the bottom wall 14 a of the second housing 14 via a bearing 16.
回転軸12における第2ハウジング14側の端部は、第2ハウジング14から外部に突出している。そして、回転軸12における第2ハウジング14側の端部は、図示しない動力伝達機構を介して外部駆動源に連結されている。外部駆動源としてはエンジンや電動機などが用いられる。本実施形態において、回転軸12は、エンジンの出力軸に連結され、エンジンの駆動により回転する。
The end of the rotary shaft 12 on the second housing 14 side protrudes from the second housing 14 to the outside. The end of the rotary shaft 12 on the second housing 14 side is connected to an external drive source via a power transmission mechanism (not shown). An engine, an electric motor, or the like is used as the external drive source. In the present embodiment, the rotating shaft 12 is connected to the output shaft of the engine and rotates by driving the engine.
第1ハウジング13内には、シリンダブロック17及び斜板18が収容されている。斜板18には、回転軸12が挿通される挿通孔18hが形成されている。そして、回転軸12が挿通孔18hに挿通される。斜板18は、回転軸12の回転軸線L1に直交する方向に対して傾斜しており、回転軸12の回転軸線L1に直交する方向に対する傾斜角度(傾角)の変更が可能である。
The cylinder block 17 and the swash plate 18 are accommodated in the first housing 13. The swash plate 18 is formed with an insertion hole 18h through which the rotary shaft 12 is inserted. Then, the rotary shaft 12 is inserted through the insertion hole 18h. The swash plate 18 is inclined with respect to the direction orthogonal to the rotation axis L1 of the rotation shaft 12, and the inclination angle (inclination angle) of the rotation shaft 12 with respect to the direction orthogonal to the rotation axis L1 can be changed.
シリンダブロック17は円筒状であり、斜板18よりも第1ハウジング13の底壁13a寄りに配置されている。シリンダブロック17には、回転軸12が挿入される挿入孔17aが形成されている。シリンダブロック17は、円筒状の小径部171と、小径部171よりも孔径が大きい円筒状の大径部172とを有する。小径部171は、大径部172よりも第2ハウジング14寄りに位置する。小径部171と軸受15との間には付勢ばね19が介在されている。
The cylinder block 17 has a cylindrical shape and is disposed closer to the bottom wall 13a of the first housing 13 than the swash plate 18. The cylinder block 17 is formed with an insertion hole 17a into which the rotary shaft 12 is inserted. The cylinder block 17 has a cylindrical small diameter portion 171 and a cylindrical large diameter portion 172 having a larger hole diameter than the small diameter portion 171. The small diameter portion 171 is located closer to the second housing 14 than the large diameter portion 172. A biasing spring 19 is interposed between the small diameter portion 171 and the bearing 15.
回転軸12の一部は、外周面が凹凸形状であるスプライン部12aになっている。スプライン部12aは、小径部171の内周面に嵌合可能になっている。そして、回転軸12の外周面と小径部171の内周面とがスプライン嵌合(凹凸嵌合)されることにより、回転軸12とシリンダブロック17とが一体的に回転可能になっている。
A part of the rotary shaft 12 is a spline portion 12a whose outer peripheral surface has an uneven shape. The spline portion 12 a can be fitted to the inner peripheral surface of the small diameter portion 171. And the outer peripheral surface of the rotating shaft 12 and the inner peripheral surface of the small diameter part 171 are spline-fitted (concave fitting), so that the rotating shaft 12 and the cylinder block 17 can rotate integrally.
シリンダブロック17には、シリンダボア17hが回転軸12の周囲に複数(本実施形態では9つ)形成されている。複数のシリンダボア17hは、同心円上に等間隔置きに配列されている。各シリンダボア17h内には、ピストン20が往復動可能にそれぞれ収納されている。ピストン20における斜板18側の端部には、シュー21が設けられている。
In the cylinder block 17, a plurality of cylinder bores 17h (nine in this embodiment) are formed around the rotary shaft 12. The plurality of cylinder bores 17h are arranged at equal intervals on a concentric circle. In each cylinder bore 17h, a piston 20 is housed so as to be able to reciprocate. A shoe 21 is provided at the end of the piston 20 on the swash plate 18 side.
各シュー21は、円環状のリテーナプレート22に保持されている。リテーナプレート22の内側には、円筒状のピボット23が設けられている。ピボット23は、シリンダブロック17の小径部171に対して回転軸12の軸方向に並んで設けられている。ピボット23の内側には、回転軸12が挿入されており、スプライン部12aは、ピボット23の内周面に嵌合可能になっている。そして、回転軸12の外周面とピボット23の内周面とがスプライン嵌合(凹凸嵌合)されることにより、回転軸12とピボット23とが一体的に回転可能になっている。
Each shoe 21 is held by an annular retainer plate 22. A cylindrical pivot 23 is provided inside the retainer plate 22. The pivot 23 is provided side by side in the axial direction of the rotary shaft 12 with respect to the small diameter portion 171 of the cylinder block 17. The rotating shaft 12 is inserted inside the pivot 23, and the spline portion 12 a can be fitted to the inner peripheral surface of the pivot 23. Then, the outer peripheral surface of the rotating shaft 12 and the inner peripheral surface of the pivot 23 are spline-fitted (concave fitting), so that the rotating shaft 12 and the pivot 23 can rotate integrally.
ピボット23は、付勢ばね19の付勢力が、小径部171の内周面に嵌め込まれた図示しない複数のピンを介して伝達されて、斜板18に向けて付勢されている。そして、斜板18に向けて付勢されたピボット23が、リテーナプレート22を斜板18に向けて押圧することで、各シュー21が斜板18におけるシリンダブロック17側の端面に密着している。
The urging force of the urging spring 19 is transmitted to the pivot 23 through a plurality of pins (not shown) fitted in the inner peripheral surface of the small diameter portion 171 and is urged toward the swash plate 18. The pivots 23 urged toward the swash plate 18 press the retainer plate 22 toward the swash plate 18, so that the shoes 21 are in close contact with the end face of the swash plate 18 on the cylinder block 17 side. .
回転軸12が回転してシリンダブロック17が回転軸12と一体的に回転すると、各シュー21が斜板18におけるシリンダブロック17側の端面を摺接しながら、各ピストン20が回転軸12の周囲を回転軸12の周方向に沿って移動する。これにより、各ピストン20は、シリンダブロック17の回転に伴って斜板18の傾角に応じたストロークでシリンダボア17h内を往復動する。
When the rotating shaft 12 rotates and the cylinder block 17 rotates integrally with the rotating shaft 12, each piston 21 slides around the end surface of the swash plate 18 on the cylinder block 17 side, and each piston 20 moves around the rotating shaft 12. It moves along the circumferential direction of the rotating shaft 12. As a result, each piston 20 reciprocates in the cylinder bore 17h with a stroke corresponding to the inclination angle of the swash plate 18 as the cylinder block 17 rotates.
斜板18は、挿通孔18hが形成された板状の本体部31と、本体部31を両側から挟む位置に配置された一対の摺動部32(図2では一対の摺動部32のうちの1つのみを図示)と、を備えている。本体部31と一対の摺動部32とは一体形成されている。一方の摺動部32は、吐出行程中のピストン20に対応する側に位置するとともに、他方の摺動部32は、吸入行程中のピストン20に対応する側に位置している。ここで、「吸入行程中のピストン20」とはシリンダボア17h内を上死点側から下死点側に向けて移動しているピストン20のことを言う。また、「吐出行程中のピストン20」とは、シリンダボア17h内を下死点側から上死点側に向けて移動しているピストン20のことを言う。
The swash plate 18 includes a plate-like main body portion 31 in which an insertion hole 18h is formed, and a pair of sliding portions 32 arranged at positions sandwiching the main body portion 31 from both sides (in FIG. 2, of the pair of sliding portions 32). Only one of them is shown). The main body 31 and the pair of sliding parts 32 are integrally formed. One sliding portion 32 is located on the side corresponding to the piston 20 during the discharge stroke, and the other sliding portion 32 is located on the side corresponding to the piston 20 during the suction stroke. Here, the “piston 20 in the intake stroke” refers to the piston 20 moving from the top dead center side to the bottom dead center side in the cylinder bore 17h. The “piston 20 during the discharge stroke” refers to the piston 20 that is moving from the bottom dead center side to the top dead center side in the cylinder bore 17h.
一対の摺動部32は、シリンダブロック17とは反対側に向けて膨出する弧状に湾曲した摺動面32aを有する。第2ハウジング14の内壁には、斜板18の傾角の変更を許容しつつ、且つ斜板18を保持する一対のブッシュ25が設けられている。各ブッシュ25は弧状に湾曲した薄長板状であり、各摺動面32aに沿って延びるとともに各摺動面32aが摺動する被摺動面25aを備えている。そして、一対の摺動部32の摺動面32aが一対のブッシュ25の被摺動面25aを摺動することで、斜板18の傾角が変更される。
The pair of sliding parts 32 have arcuately curved sliding surfaces 32a that bulge toward the opposite side of the cylinder block 17. The inner wall of the second housing 14 is provided with a pair of bushes 25 that hold the swash plate 18 while allowing the inclination angle of the swash plate 18 to be changed. Each bush 25 is in the shape of a thin plate curved in an arc shape, and includes a sliding surface 25a that extends along each sliding surface 32a and on which each sliding surface 32a slides. The tilt angle of the swash plate 18 is changed by the sliding surfaces 32 a of the pair of sliding portions 32 sliding on the sliding surfaces 25 a of the pair of bushes 25.
第2ハウジング14は、各ブッシュ25が取り付けられる弧状に湾曲する取付面14bを有している。取付面14bが通過する仮想円C1の一部は、ハウジング11よりも外側にはみ出している。取付面14bは、仮想円C1を通過する円弧面状の刃部を有する刃具を用いて、刃具を第2ハウジング14の開口側から挿入し、第2ハウジング14を刃部によって加工することにより形成されている。各ブッシュ25は、取付面14bに沿って延びるとともに取付面14bに接触する接触面25bを有している。
The second housing 14 has an attachment surface 14b that is curved in an arc shape to which each bush 25 is attached. A part of the virtual circle C1 through which the mounting surface 14b passes protrudes outward from the housing 11. The mounting surface 14b is formed by inserting a blade tool from the opening side of the second housing 14 using the blade tool having an arcuate blade portion that passes through the virtual circle C1, and processing the second housing 14 with the blade portion. Has been. Each bush 25 has a contact surface 25b that extends along the attachment surface 14b and contacts the attachment surface 14b.
斜板18は、シュー21が摺接する面よりも径方向外側の一部に延設される被押圧部33を備えている。被押圧部33におけるシリンダブロック17側の端面には収容凹部33aが形成されている。収容凹部33aには円柱状又は球状の接触部材34aが収容されている。接触部材34aは、収容凹部33aに収容された状態において、その一部が被押圧部33におけるシリンダブロック17側の端面から突出している。
The swash plate 18 includes a pressed portion 33 that extends to a part on the outer side in the radial direction from the surface with which the shoe 21 is in sliding contact. An accommodation recess 33 a is formed on the end face of the pressed part 33 on the cylinder block 17 side. A cylindrical or spherical contact member 34a is accommodated in the accommodating recess 33a. A part of the contact member 34a protrudes from the end surface of the pressed portion 33 on the cylinder block 17 side in a state where the contact member 34a is accommodated in the accommodation recess 33a.
また、被押圧部33におけるシリンダブロック17とは反対側の端面には収容凹部33bが形成されている。収容凹部33bには円柱状又は球状の接触部材34bが収容されている。接触部材34bは、収容凹部33bに収容された状態において、その一部が被押圧部33におけるシリンダブロック17とは反対側の端面から突出している。
Further, an accommodation recess 33b is formed on the end surface of the pressed portion 33 opposite to the cylinder block 17. A cylindrical or spherical contact member 34b is accommodated in the accommodating recess 33b. A part of the contact member 34 b protrudes from the end surface of the pressed portion 33 opposite to the cylinder block 17 in a state where the contact member 34 b is stored in the storage recess 33 b.
第1ハウジング13の底壁13aには、吸入孔26及び吐出孔27が形成されている。吸入孔26及び吐出孔27は、回転軸12の周方向に沿って延びる半円弧状に形成されている。吸入孔26は、底壁13aにおいて、吸入行程中のピストン20が収納された各シリンダボア17hにそれぞれ連通可能な位置に設けられている。吐出孔27は、底壁13aにおいて、吐出行程中のピストン20が収納された各シリンダボア17hにそれぞれ連通可能な位置に設けられている。
A suction hole 26 and a discharge hole 27 are formed in the bottom wall 13 a of the first housing 13. The suction hole 26 and the discharge hole 27 are formed in a semicircular arc shape extending along the circumferential direction of the rotating shaft 12. The suction hole 26 is provided at a position on the bottom wall 13a where it can communicate with each cylinder bore 17h in which the piston 20 during the suction stroke is housed. The discharge hole 27 is provided in the bottom wall 13a at a position where it can communicate with each cylinder bore 17h in which the piston 20 during the discharge stroke is housed.
シリンダブロック17と第1ハウジング13の底壁13aとの間には、円環状のバルブプレート28が設けられている。バルブプレート28の内側には、回転軸12が挿入されている。バルブプレート28は、シリンダブロック17に対して回転軸12の軸方向に並んで配置されている。
An annular valve plate 28 is provided between the cylinder block 17 and the bottom wall 13 a of the first housing 13. The rotary shaft 12 is inserted inside the valve plate 28. The valve plate 28 is arranged side by side in the axial direction of the rotary shaft 12 with respect to the cylinder block 17.
バルブプレート28には、吸入孔26とシリンダボア17hとを連通する連通孔28aが形成されるとともに、吐出孔27とシリンダボア17hとを連通する連通孔28bが形成されている。そして、ピストン20の往復動に伴って、作動油が吸入孔26から連通孔28aを介して吸入行程中のピストン20が収納された各シリンダボア17hに吸入されるとともに、吐出行程中のピストン20が収納された各シリンダボア17h内の作動油が連通孔28bを介して吐出孔27から吐出される。吸入孔26及び連通孔28aは各シリンダボア17hに連通可能な吸入ポート29を形成しており、吐出孔27及び連通孔28bは各シリンダボア17hに連通可能な吐出ポート30を形成している。
The valve plate 28 is formed with a communication hole 28a that connects the suction hole 26 and the cylinder bore 17h, and a communication hole 28b that connects the discharge hole 27 and the cylinder bore 17h. As the piston 20 reciprocates, the hydraulic oil is sucked from the suction hole 26 through the communication hole 28a into each cylinder bore 17h in which the piston 20 in the suction stroke is housed, and the piston 20 in the discharge stroke is The hydraulic fluid in each of the stored cylinder bores 17h is discharged from the discharge hole 27 through the communication hole 28b. The suction hole 26 and the communication hole 28a form a suction port 29 that can communicate with each cylinder bore 17h, and the discharge hole 27 and the communication hole 28b form a discharge port 30 that can communicate with each cylinder bore 17h.
第1ハウジング13の内周面の一部には、被押圧部33が配置される凹部41が形成されている。斜板18は、被押圧部33が凹部41内に配置されることにより、回転軸12の周方向において位置決めされた状態でハウジング11内に収容されている。
A recess 41 in which the pressed portion 33 is disposed is formed on a part of the inner peripheral surface of the first housing 13. The swash plate 18 is accommodated in the housing 11 in a state of being positioned in the circumferential direction of the rotary shaft 12 by arranging the pressed portion 33 in the recess 41.
第1ハウジング13におけるシリンダブロック17よりも回転軸12の径方向外側には、凹部41に連通するピストン収納凹部35が形成されている。ピストン収納凹部35は、第1ハウジング13の軸方向に延びている。そして、第1ハウジング13の外周壁の一部には、凹部41及びピストン収納凹部35が形成されたことにより外方へ膨出する膨出部42が形成されている。膨出部42は、第1ハウジング13の軸方向に延びている。
A piston housing recess 35 communicating with the recess 41 is formed on the radially outer side of the rotary shaft 12 with respect to the cylinder block 17 in the first housing 13. The piston housing recess 35 extends in the axial direction of the first housing 13. A part of the outer peripheral wall of the first housing 13 is formed with a bulging part 42 that bulges outward by forming the concave part 41 and the piston housing concave part 35. The bulging portion 42 extends in the axial direction of the first housing 13.
ピストン収納凹部35には、コントロールピストン36が収納されている。そして、ピストン収納凹部35とコントロールピストン36とによって制御圧室35aが区画されている。コントロールピストン36における斜板18側の端面は、接触部材34aに当接している。
In the piston housing recess 35, a control piston 36 is housed. A control pressure chamber 35 a is defined by the piston housing recess 35 and the control piston 36. The end surface of the control piston 36 on the swash plate 18 side is in contact with the contact member 34a.
制御圧室35aには、吐出ポート30から吐出された圧油の一部が供給される。制御圧室35aに供給される圧油の供給量は、ポンプ容量制御弁8によって制御される。具体的には、吐出圧力と最高負荷圧との差圧が大きくなると、ポンプ容量制御弁8は、制御圧室35aに供給される圧油の供給量が増大するように動作する。吐出圧力と最高負荷圧との差圧が小さくなると、ポンプ容量制御弁は、制御圧室35aに供給される圧油の供給量が減少するように動作する。
A part of the pressure oil discharged from the discharge port 30 is supplied to the control pressure chamber 35a. The supply amount of the pressure oil supplied to the control pressure chamber 35 a is controlled by the pump capacity control valve 8. Specifically, when the differential pressure between the discharge pressure and the maximum load pressure increases, the pump displacement control valve 8 operates so that the amount of pressure oil supplied to the control pressure chamber 35a increases. When the differential pressure between the discharge pressure and the maximum load pressure decreases, the pump displacement control valve operates so that the supply amount of the pressure oil supplied to the control pressure chamber 35a decreases.
第2ハウジング14の外周壁の一部には、膨出部42に沿って外方へ膨出するとともに凹部41の開口を閉鎖する有底状の凹部閉鎖部43が形成されている。凹部閉鎖部43の底面の一部は、被押圧部33が当接可能になっている。
A part of the outer peripheral wall of the second housing 14 is formed with a bottomed recess closing portion 43 that bulges outward along the bulging portion 42 and closes the opening of the recess 41. The pressed portion 33 can come into contact with a part of the bottom surface of the recess closing portion 43.
第2ハウジング14の底壁14aには、斜板傾角復帰機構37が設けられている。斜板傾角復帰機構37は、有底筒状のバネ受け凹状部材38と、バネ受け凹状部材38内に挿入される中空ピストン39と、中空ピストン39の内部に収容される傾角増大ばね39aとを備えている。バネ受け凹状部材38は、螺子38aによって底壁14aに取り付けられている。バネ受け凹状部材38は、斜板18に向けて開口している。中空ピストン39は、傾角増大ばね39aの付勢力によって、バネ受け凹状部材38の底部から離間する方向へ付勢されている。そして、中空ピストン39における斜板18側の端面は、接触部材34bに当接している。
A swash plate inclination return mechanism 37 is provided on the bottom wall 14 a of the second housing 14. The swash plate inclination return mechanism 37 includes a bottomed cylindrical spring receiving concave member 38, a hollow piston 39 inserted into the spring receiving concave member 38, and an inclination increasing spring 39a housed inside the hollow piston 39. I have. The spring receiving concave member 38 is attached to the bottom wall 14a by a screw 38a. The spring receiving concave member 38 opens toward the swash plate 18. The hollow piston 39 is urged in a direction away from the bottom of the spring receiving concave member 38 by the urging force of the inclination increasing spring 39a. The end surface of the hollow piston 39 on the swash plate 18 side is in contact with the contact member 34b.
上記構成の可変容量ポンプ10において、制御圧室35aに供給される圧油の供給量が増大すると、制御圧室35aの圧力が高くなり、コントロールピストン36が斜板18に向けて移動する。すると、コントロールピストン36は、傾角増大ばね39aの付勢力に抗して、斜板18の傾角を減少させるように接触部材34aを介して斜板18を押圧する。これにより、斜板18の傾角が減少して、ピストン20のストロークが小さくなり、吐出容量が減少する。
In the variable displacement pump 10 configured as described above, when the amount of pressure oil supplied to the control pressure chamber 35a increases, the pressure in the control pressure chamber 35a increases, and the control piston 36 moves toward the swash plate 18. Then, the control piston 36 presses the swash plate 18 via the contact member 34a so as to reduce the tilt angle of the swash plate 18 against the biasing force of the tilt angle increasing spring 39a. Thereby, the inclination angle of the swash plate 18 is reduced, the stroke of the piston 20 is reduced, and the discharge capacity is reduced.
図2において二点鎖線で示す斜板18は、斜板18の傾角が最小傾角のときを示している。斜板18が最小傾角のときには、被押圧部33が凹部閉鎖部43の底面の一部に当接して斜板18における最小傾角の状態が維持されている。よって、凹部閉鎖部43の底面の一部は、斜板18が最小傾角のときに斜板18が当接して斜板18における最小傾角の状態を維持する当て止め部43aになっている。したがって、第2ハウジング14は、当て止め部43aを有している。当て止め部43aは、平坦面である。また、被押圧部33における当て止め部43aとの接触部位は平坦面である。被押圧部33は当て止め部43aに面接触する。本実施形態において、斜板18の最小傾角は0度よりも大きく設定されている。
In FIG. 2, a swash plate 18 indicated by a two-dot chain line indicates that the tilt angle of the swash plate 18 is the minimum tilt angle. When the swash plate 18 is at the minimum inclination angle, the pressed portion 33 is in contact with a part of the bottom surface of the recess closing portion 43 so that the state of the minimum inclination angle at the swash plate 18 is maintained. Therefore, a part of the bottom surface of the recess closing portion 43 serves as a stopper 43a that keeps the swash plate 18 in contact with the swash plate 18 when the swash plate 18 is at the minimum inclination angle. Therefore, the second housing 14 has a stopper 43a. The stopper 43a is a flat surface. Moreover, the contact site | part with the stopper part 43a in the to-be-pressed part 33 is a flat surface. The pressed part 33 comes into surface contact with the stopper part 43a. In the present embodiment, the minimum inclination angle of the swash plate 18 is set to be larger than 0 degrees.
当て止め部43aは、平坦面状の刃部を有する刃具を用いて、刃具を第2ハウジング14の開口側から挿入し、第2ハウジング14を刃部によって加工することにより形成されている。
The stopper 43a is formed by inserting a blade from the opening side of the second housing 14 and processing the second housing 14 with the blade using a blade having a flat surface blade.
制御圧室35aに供給される圧油の供給量が減少すると、制御圧室35aの圧力が低くなり、傾角増大ばね39aの付勢力によって、中空ピストン39が、斜板18の傾角を増大させるように接触部材34bを介して斜板18を押圧する。これにより、斜板18の傾角が増大して、ピストン20のストロークが大きくなり、吐出容量が増大する。
When the supply amount of the pressure oil supplied to the control pressure chamber 35a decreases, the pressure of the control pressure chamber 35a decreases, and the hollow piston 39 increases the tilt angle of the swash plate 18 by the biasing force of the tilt angle increasing spring 39a. The swash plate 18 is pressed through the contact member 34b. As a result, the inclination angle of the swash plate 18 increases, the stroke of the piston 20 increases, and the discharge capacity increases.
ハウジング11は、第1ハウジング13と第2ハウジング14との連結面11aを有している。連結面11aとは、第1ハウジング13の開口端面と第2ハウジング14と開口端面との合わせ面である。連結面11aは、ハウジング11において、第1ハウジング13と第2ハウジング14とに分割される分割面とも言える。連結面11aは、シリンダブロック17における第2ハウジング14側の端面17eよりも斜板18側であって、且つ仮想円C1よりも外側に位置している。また、シリンダブロック17の端面17eは、仮想円C1の内側に位置している。本実施形態において、連結面11aは、斜板18の傾角が最小傾角のときの斜板18の外方に位置している。
The housing 11 has a connecting surface 11 a between the first housing 13 and the second housing 14. The connection surface 11a is a mating surface of the opening end surface of the first housing 13, the second housing 14, and the opening end surface. It can be said that the connecting surface 11 a is a divided surface that is divided into the first housing 13 and the second housing 14 in the housing 11. The connecting surface 11a is located on the swash plate 18 side with respect to the end surface 17e on the second housing 14 side in the cylinder block 17 and outside the virtual circle C1. Moreover, the end surface 17e of the cylinder block 17 is located inside the virtual circle C1. In the present embodiment, the connecting surface 11a is located outside the swash plate 18 when the inclination angle of the swash plate 18 is the minimum inclination angle.
次に、本実施形態の作用について説明する。優先アクチュエータ5及び他のアクチュエータ6を動作させないときには、電磁弁9が閉弁状態となって、優先弁7が第1切換位置に切り換えられ、優先アクチュエータ5のみに圧油が供給される。このとき、優先アクチュエータ5及び他のアクチュエータ6は、動作していないため、最高負荷圧は大気圧とほぼ等しくなり、吐出圧力と最高負荷圧との差圧が大きくなって、ポンプ容量制御弁8は、可変容量ポンプ10の吐出容量が減少するように可変容量ポンプ10の吐出容量を制御する。
Next, the operation of this embodiment will be described. When the priority actuator 5 and other actuators 6 are not operated, the solenoid valve 9 is closed, the priority valve 7 is switched to the first switching position, and pressure oil is supplied only to the priority actuator 5. At this time, since the priority actuator 5 and the other actuators 6 are not operating, the maximum load pressure is almost equal to the atmospheric pressure, the differential pressure between the discharge pressure and the maximum load pressure is increased, and the pump displacement control valve 8 Controls the discharge capacity of the variable capacity pump 10 so that the discharge capacity of the variable capacity pump 10 decreases.
斜板18は、斜板18の傾角が最小傾角になると、当て止め部43aに当接して、斜板18における最小傾角の状態が維持される。したがって、斜板18における最小傾角の状態の維持が、斜板18と当て止め部43aとの当接によって物理的に行われるため、可変容量ポンプ10の最小吐出容量の制御性が良好なものとなる。よって、優先アクチュエータ5及び他のアクチュエータ6を動作させないときに、必要以上の圧油が優先アクチュエータ5に供給されてしまうことが抑制され易くなる。
When the inclination angle of the swash plate 18 reaches the minimum inclination angle, the swash plate 18 abuts against the stopper 43a and the state of the minimum inclination angle of the swash plate 18 is maintained. Therefore, since the state of the minimum inclination angle in the swash plate 18 is physically maintained by the contact between the swash plate 18 and the stopper 43a, the controllability of the minimum discharge capacity of the variable displacement pump 10 is good. Become. Therefore, when the priority actuator 5 and the other actuators 6 are not operated, it is easy to suppress supply of excessive pressure oil to the priority actuator 5.
斜板18の最小傾角は0度よりも大きいため、斜板18の最小傾角が、例えば0度に設定されている場合に比べると、可変容量ポンプ10の最小吐出容量が増大している。よって、優先アクチュエータ5を動作させないときであっても、優先アクチュエータ5をいつでも動作させることが可能となるような、必要最低限の圧油を可変容量ポンプ10から優先アクチュエータ5に供給し易くなっている。
Since the minimum inclination angle of the swash plate 18 is larger than 0 degrees, the minimum discharge capacity of the variable displacement pump 10 is increased as compared with the case where the minimum inclination angle of the swash plate 18 is set to 0 degrees, for example. Therefore, even when the priority actuator 5 is not operated, it is easy to supply the minimum required pressure oil from the variable displacement pump 10 to the priority actuator 5 so that the priority actuator 5 can be operated at any time. Yes.
上記実施形態では以下の効果を得ることができる。
(1)優先アクチュエータ5及び他のアクチュエータ6を動作させないときに、必要以上の圧油が優先アクチュエータ5に供給されてしまうことを抑制し易くすることができるため、燃費の悪化を招くことの無い最適な最小吐出容量の制御を行うことができる。 In the above embodiment, the following effects can be obtained.
(1) When the priority actuator 5 andother actuators 6 are not operated, it is possible to easily suppress the supply of excessive pressure oil to the priority actuator 5, so that fuel consumption is not deteriorated. The optimal minimum discharge capacity can be controlled.
(1)優先アクチュエータ5及び他のアクチュエータ6を動作させないときに、必要以上の圧油が優先アクチュエータ5に供給されてしまうことを抑制し易くすることができるため、燃費の悪化を招くことの無い最適な最小吐出容量の制御を行うことができる。 In the above embodiment, the following effects can be obtained.
(1) When the priority actuator 5 and
(2)斜板18の最小傾角が0度に設定されている場合に比べて、可変容量ポンプ10の最小吐出容量が増大しているため、優先アクチュエータ5を動作させないときであっても、優先アクチュエータ5をいつでも動作させることが可能となるような、必要最低限の圧油を可変容量ポンプ10から優先アクチュエータ5に供給し易くすることができる。
(2) Since the minimum discharge capacity of the variable displacement pump 10 is increased as compared with the case where the minimum inclination angle of the swash plate 18 is set to 0 degree, priority is given even when the priority actuator 5 is not operated. It is possible to easily supply the minimum necessary pressure oil from the variable displacement pump 10 to the priority actuator 5 so that the actuator 5 can be operated at any time.
(3)第1ハウジング13と第2ハウジング14との連結面11aが、シリンダブロック17における第2ハウジング14側の端面17eよりも斜板18側に位置している。これによれば、連結面11aが、シリンダブロック17の端面17eよりも斜板18とは反対側に位置している場合に比べると、当て止め部43aと連結面11aとが近くなり、当て止め部43aの加工をし易くすることができる。したがって、当て止め部43aを精度良く加工することができ、斜板18の最小傾角の位置を精度良く設定することができる。
(3) The connecting surface 11a between the first housing 13 and the second housing 14 is located closer to the swash plate 18 than the end surface 17e on the second housing 14 side of the cylinder block 17. According to this, compared with the case where the connection surface 11a is located on the opposite side of the swash plate 18 from the end surface 17e of the cylinder block 17, the contact stop 43a and the connection surface 11a are closer, and the contact stop The portion 43a can be easily processed. Accordingly, the stopper 43a can be processed with high accuracy, and the position of the minimum inclination angle of the swash plate 18 can be set with high accuracy.
(4)連結面11aは、シリンダブロック17における第2ハウジング14側の端面17eよりも斜板18側であって、且つ仮想円C1よりも外側に位置している。これによれば、連結面11aが、仮想円C1の内側に位置している場合に比べると、取付面14bと連結面11aとが近くなり、取付面14bの加工をし易くすることができる。したがって、取付面14bを精度良く加工することができ、取付面14bに取り付けられるブッシュ25の位置決め精度が向上し、斜板18の位置精度を向上させることができる。
(4) The connecting surface 11a is located on the swash plate 18 side with respect to the end surface 17e on the second housing 14 side in the cylinder block 17 and outside the virtual circle C1. According to this, compared with the case where the connection surface 11a is located inside the virtual circle C1, the attachment surface 14b and the connection surface 11a become closer, and the attachment surface 14b can be easily processed. Therefore, the mounting surface 14b can be processed with high accuracy, the positioning accuracy of the bush 25 mounted on the mounting surface 14b can be improved, and the positional accuracy of the swash plate 18 can be improved.
(5)連結面11aは、斜板18の傾角が最小傾角のときの斜板18の外方に位置している。これによれば、当て止め部43aと連結面11aとが最も近くなり、当て止め部43aの加工をさらにし易くすることができる。したがって、当て止め部43aをさらに精度良く加工することができ、斜板18の最小傾角の位置をさらに精度良く設定することができる。
(5) The connecting surface 11a is located outward of the swash plate 18 when the inclination angle of the swash plate 18 is the minimum inclination angle. According to this, the stopper part 43a and the connection surface 11a are closest to each other, and the stopper part 43a can be further easily processed. Accordingly, the stopper 43a can be processed with higher accuracy, and the position of the minimum inclination angle of the swash plate 18 can be set with higher accuracy.
なお、上記実施形態は以下のように変更してもよい。
○ 実施形態において、当て止め部43aが鋳肌面であり、回転軸12の軸方向における当て止め部43aと連結面11aとの距離が、当て止め部43aを基準とした第2ハウジング14の開口端面の加工を行うことで決められるようにしてもよい。これによれば、当て止め部43aの加工を行わなくても、当て止め部43aの位置を精度良く設定することができ、斜板18の最小傾角の位置を精度良く設定することができる。 In addition, you may change the said embodiment as follows.
In the embodiment, thestopper part 43a is a casting surface, and the distance between the stopper part 43a and the connecting surface 11a in the axial direction of the rotary shaft 12 is the opening of the second housing 14 with respect to the stopper part 43a. It may be determined by processing the end face. According to this, even if it does not process the stopper part 43a, the position of the stopper part 43a can be set with high precision, and the position of the minimum inclination of the swash plate 18 can be set with high precision.
○ 実施形態において、当て止め部43aが鋳肌面であり、回転軸12の軸方向における当て止め部43aと連結面11aとの距離が、当て止め部43aを基準とした第2ハウジング14の開口端面の加工を行うことで決められるようにしてもよい。これによれば、当て止め部43aの加工を行わなくても、当て止め部43aの位置を精度良く設定することができ、斜板18の最小傾角の位置を精度良く設定することができる。 In addition, you may change the said embodiment as follows.
In the embodiment, the
○ 実施形態において、斜板18の最小傾角が0度に設定されていてもよい。
○ 実施形態において、連結面11aが、シリンダブロック17における第2ハウジング14側の端面17eよりも斜板18側であって、且つ仮想円C1の内側に位置していてもよい。 In the embodiment, the minimum inclination angle of theswash plate 18 may be set to 0 degrees.
In the embodiment, the connectingsurface 11a may be located on the swash plate 18 side with respect to the end surface 17e on the second housing 14 side in the cylinder block 17 and inside the virtual circle C1.
○ 実施形態において、連結面11aが、シリンダブロック17における第2ハウジング14側の端面17eよりも斜板18側であって、且つ仮想円C1の内側に位置していてもよい。 In the embodiment, the minimum inclination angle of the
In the embodiment, the connecting
○ 実施形態において、連結面11aが、シリンダブロック17における第2ハウジング14側の端面17eよりも斜板18とは反対側に位置していてもよい。
○ 実施形態において、被押圧部33は当て止め部43aに線接触する構成であってもよいし、点接触する構成であってもよい。 In the embodiment, the connectingsurface 11 a may be located on the opposite side of the swash plate 18 from the end surface 17 e on the second housing 14 side in the cylinder block 17.
In embodiment, the to-be-pressed part 33 may be the structure which carries out a line contact to the stopper part 43a, and the structure which carries out a point contact may be sufficient as it.
○ 実施形態において、被押圧部33は当て止め部43aに線接触する構成であってもよいし、点接触する構成であってもよい。 In the embodiment, the connecting
In embodiment, the to-
○ 実施形態において、他のアクチュエータ6の数は特に限定されるものではない。したがって、油圧回路1に設けられた優先弁7は、優先アクチュエータ5と、優先アクチュエータ5とは異なる少なくとも一つ以上の他のアクチュエータ6とに分流するものである。
In the embodiment, the number of other actuators 6 is not particularly limited. Therefore, the priority valve 7 provided in the hydraulic circuit 1 is divided into the priority actuator 5 and at least one or more other actuators 6 different from the priority actuator 5.
○ 実施形態において、油圧回路1は、フォークリフト以外の産業車両に搭載されていてもよい。
In the embodiment, the hydraulic circuit 1 may be mounted on an industrial vehicle other than a forklift.
1 油圧回路
5 優先アクチュエータ
6 他のアクチュエータ
7 優先弁
8 ポンプ容量制御弁
9 切換弁として機能する電磁弁
10 可変容量ポンプ
11 ハウジング
11a 連結面
12 回転軸
13 第1ハウジング
14 第2ハウジング
14b 取付面
17 シリンダブロック
17h シリンダボア
18 斜板
20 ピストン
25 ブッシュ
43a 当て止め部 DESCRIPTION OFSYMBOLS 1 Hydraulic circuit 5 Priority actuator 6 Other actuators 7 Priority valve 8 Pump capacity control valve 9 Solenoid valve which functions as switching valve 10 Variable capacity pump 11 Housing 11a Connection surface 12 Rotating shaft 13 First housing 14 Second housing 14b Mounting surface 17 Cylinder block 17h Cylinder bore 18 Swash plate 20 Piston 25 Bush 43a Stopping part
5 優先アクチュエータ
6 他のアクチュエータ
7 優先弁
8 ポンプ容量制御弁
9 切換弁として機能する電磁弁
10 可変容量ポンプ
11 ハウジング
11a 連結面
12 回転軸
13 第1ハウジング
14 第2ハウジング
14b 取付面
17 シリンダブロック
17h シリンダボア
18 斜板
20 ピストン
25 ブッシュ
43a 当て止め部 DESCRIPTION OF
Claims (5)
- 圧油を吐出する可変容量ポンプと、
前記可変容量ポンプから吐出された圧油を、前記圧油が優先的に供給される優先アクチュエータと前記優先アクチュエータとは異なる少なくとも一つ以上の他のアクチュエータとに分流する負荷圧感応型の優先弁と、
前記可変容量ポンプから吐出された圧油の圧力である吐出圧力と前記優先アクチュエータ及び前記他のアクチュエータの負荷圧のうちで最も高圧となった負荷圧である最高負荷圧との差圧に応じて、前記可変容量ポンプの吐出容量を制御するポンプ容量制御弁と、
前記優先アクチュエータ及び前記他のアクチュエータを動作させないときに前記他のアクチュエータへの圧油の供給を停止させ、且つ前記優先アクチュエータへの圧油の供給を許容する切換位置に前記優先弁を切り換える切換弁と、を備え、
前記可変容量ポンプは、
ハウジングと、
前記ハウジングに回転可能に支持される回転軸と、
前記回転軸と一体的に回転するシリンダブロックと、
前記シリンダブロックに形成される複数のシリンダボアと、
各シリンダボア内に収納されるピストンと、
前記ハウジング内に収容されるとともに前記回転軸の回転軸線に直交する方向に対して傾斜する斜板と、を備え、
前記ハウジングは、前記斜板が最小傾角のときに前記斜板が当接して前記斜板における前記最小傾角の状態を維持する当て止め部を有している油圧回路。 A variable displacement pump that discharges pressure oil;
A load pressure sensitive priority valve that diverts the pressure oil discharged from the variable displacement pump to a priority actuator to which the pressure oil is preferentially supplied and at least one other actuator different from the priority actuator. When,
According to the differential pressure between the discharge pressure, which is the pressure oil pressure discharged from the variable displacement pump, and the highest load pressure, which is the highest load pressure among the load pressures of the priority actuator and the other actuators. A pump displacement control valve for controlling a discharge displacement of the variable displacement pump;
A switching valve that stops supply of pressure oil to the other actuator when the priority actuator and the other actuator are not operated, and switches the priority valve to a switching position that allows supply of pressure oil to the priority actuator And comprising
The variable displacement pump is
A housing;
A rotating shaft rotatably supported by the housing;
A cylinder block that rotates integrally with the rotating shaft;
A plurality of cylinder bores formed in the cylinder block;
A piston housed in each cylinder bore;
A swash plate accommodated in the housing and inclined with respect to a direction orthogonal to the rotation axis of the rotation shaft,
The housing includes a hydraulic circuit having a stopper portion that abuts the swash plate when the swash plate has a minimum inclination and maintains the state of the minimum inclination of the swash plate. - 前記斜板の最小傾角が0度よりも大きい請求項1に記載の油圧回路。 The hydraulic circuit according to claim 1, wherein a minimum inclination angle of the swash plate is larger than 0 degree.
- 前記ハウジングは、前記シリンダブロックを収容する有底筒状の第1ハウジングと、前記第1ハウジングの開口側に連結される有底筒状の第2ハウジングと、を有し、
前記第2ハウジングは、前記当て止め部を有し、
前記第1ハウジングと前記第2ハウジングとの連結面が、前記シリンダブロックにおける前記第2ハウジング側の端面よりも前記斜板側に位置している請求項1又は請求項2に記載の油圧回路。 The housing has a bottomed cylindrical first housing that accommodates the cylinder block, and a bottomed cylindrical second housing connected to the opening side of the first housing,
The second housing has the stopper portion,
3. The hydraulic circuit according to claim 1, wherein a connection surface between the first housing and the second housing is positioned on the swash plate side with respect to an end surface on the second housing side in the cylinder block. - 前記可変容量ポンプは、前記斜板の傾角の変更を許容しつつ、且つ前記斜板を保持する弧状に湾曲した板状のブッシュを備え、
前記第2ハウジングは、前記ブッシュが取り付けられる弧状に湾曲する取付面を有し、
前記取付面が通過する仮想円の一部は、前記ハウジングよりも外側にはみ出しており、
前記連結面は、前記仮想円よりも外側に位置している請求項3に記載の油圧回路。 The variable displacement pump includes a plate-like bush that is curved in an arc shape while allowing the change in the inclination angle of the swash plate and holding the swash plate,
The second housing has an attachment surface that is curved in an arc shape to which the bush is attached;
A part of the virtual circle through which the mounting surface passes protrudes outside the housing,
The hydraulic circuit according to claim 3, wherein the connection surface is located outside the virtual circle. - 前記連結面は、前記斜板の傾角が最小傾角のときの前記斜板の外方に位置している請求項3又は請求項4に記載の油圧回路。 The hydraulic circuit according to claim 3 or 4, wherein the connecting surface is located outward of the swash plate when the inclination angle of the swash plate is a minimum inclination angle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017011305A JP2018119462A (en) | 2017-01-25 | 2017-01-25 | Hydraulic circuit |
JP2017-011305 | 2017-01-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018139067A1 true WO2018139067A1 (en) | 2018-08-02 |
Family
ID=62978255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/044025 WO2018139067A1 (en) | 2017-01-25 | 2017-12-07 | Hydraulic circuit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018119462A (en) |
WO (1) | WO2018139067A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0592476U (en) * | 1992-05-22 | 1993-12-17 | 株式会社豊田自動織機製作所 | Hydraulic system |
JP4455959B2 (en) * | 2004-09-02 | 2010-04-21 | 株式会社小松製作所 | Hydraulic system |
JP2016223307A (en) * | 2015-05-27 | 2016-12-28 | 株式会社豊田自動織機 | Variable displacement type swash plate hydraulic rotating machine |
-
2017
- 2017-01-25 JP JP2017011305A patent/JP2018119462A/en active Pending
- 2017-12-07 WO PCT/JP2017/044025 patent/WO2018139067A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0592476U (en) * | 1992-05-22 | 1993-12-17 | 株式会社豊田自動織機製作所 | Hydraulic system |
JP4455959B2 (en) * | 2004-09-02 | 2010-04-21 | 株式会社小松製作所 | Hydraulic system |
JP2016223307A (en) * | 2015-05-27 | 2016-12-28 | 株式会社豊田自動織機 | Variable displacement type swash plate hydraulic rotating machine |
Also Published As
Publication number | Publication date |
---|---|
JP2018119462A (en) | 2018-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE46294E1 (en) | Variable displacement pump | |
US10100817B2 (en) | Hydraulic machine of axial-piston design | |
EP2784314B1 (en) | Swash plate type piston pump | |
US11674505B2 (en) | Swash-plate type piston pump | |
JP2021195926A (en) | Swash plate control mechanism | |
EP2832994B1 (en) | Servo regulator | |
JP6114089B2 (en) | Opposite swash plate type piston pump / motor | |
WO2018139067A1 (en) | Hydraulic circuit | |
EP3037667A1 (en) | Vacuum pump mechanism | |
JP5204531B2 (en) | Servo regulator | |
JP6447362B2 (en) | Variable capacity swash plate type hydraulic rotating machine | |
JP7112280B2 (en) | Pumping unit | |
EP2486278B1 (en) | Return to neutral mechanism for hydraulic pump | |
JP2011001162A (en) | Hydraulic system for forklift and hydraulic pump | |
US11236770B2 (en) | Servo regulator | |
US11549497B2 (en) | Hydraulic rotating machine | |
WO2020100359A1 (en) | Hydraulic rotating device | |
JP2012255375A (en) | Variable displacement swash plate hydraulic pump | |
JP2009243409A (en) | Servo regulator | |
CN118974400A (en) | Swash plate hydraulic pump | |
JP2022045200A (en) | Liquid pressure rotating machine | |
JP2021195918A (en) | Servo mechanism | |
JP2022045201A (en) | Hydraulic rotary machine | |
JP2007285255A (en) | Axial piston hydraulic rotary machine | |
JP2019044750A (en) | Tilt actuator for variable displacement swash plate hydraulic rotary machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17893582 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17893582 Country of ref document: EP Kind code of ref document: A1 |