+

WO2018138999A1 - 撮像装置、及び、その像ぶれ量算出方法 - Google Patents

撮像装置、及び、その像ぶれ量算出方法 Download PDF

Info

Publication number
WO2018138999A1
WO2018138999A1 PCT/JP2017/040122 JP2017040122W WO2018138999A1 WO 2018138999 A1 WO2018138999 A1 WO 2018138999A1 JP 2017040122 W JP2017040122 W JP 2017040122W WO 2018138999 A1 WO2018138999 A1 WO 2018138999A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
value
acceleration sensor
optical axis
unit
Prior art date
Application number
PCT/JP2017/040122
Other languages
English (en)
French (fr)
Inventor
仁司 土屋
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to CN201780083264.XA priority Critical patent/CN110178078B/zh
Publication of WO2018138999A1 publication Critical patent/WO2018138999A1/ja
Priority to US16/514,461 priority patent/US10972665B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/663Remote control of cameras or camera parts, e.g. by remote control devices for controlling interchangeable camera parts based on electronic image sensor signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • G03B17/14Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets interchangeably
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0038Movement of one or more optical elements for control of motion blur by displacing the image plane with respect to the optical axis

Definitions

  • the present invention relates to an imaging device having a function of correcting image blur and a method for calculating the amount of image blur.
  • the acceleration sensor that detects the acceleration of the shake (shake) applied to the interchangeable lens
  • the angular velocity sensor that detects the angular velocity of the shake
  • the rotation of the angular shake based on the acceleration sensor and the angular velocity sensor detection results.
  • a target position conversion unit that calculates the center and calculates the target position of the blur correction lens, and drives the blur correction lens based on the calculation result obtained by the target position conversion unit to correct image blur
  • the present invention has been made with the above problems in mind, and can detect the acceleration or moving speed at the front principal point position of the photographing optical system with high accuracy, and thereby, image blur due to parallel movement can be detected with high accuracy. It is an object of the present invention to provide an imaging apparatus capable of correcting, and an image blur amount calculation method thereof.
  • an imaging apparatus having a photographic optical system that forms an image of a subject, and is arranged at different positions on a first plane orthogonal to the optical axis of the photographic optical system.
  • a first acceleration sensor for detecting acceleration in the second direction
  • a second acceleration sensor for detecting acceleration in the first direction and the second direction
  • the second between the optical axis and the first acceleration sensor A distance in a direction, a distance in the second direction between the optical axis and the second acceleration sensor, an acceleration detection value in the first direction of the first acceleration sensor, and the first in the second acceleration sensor.
  • a first acceleration estimating unit that calculates an acceleration estimated value in the first direction at a first position on the optical axis based on a detected acceleration value in one direction; and between the optical axis and the first acceleration sensor.
  • the optical axis and the second additive Based on the distance in the first direction from the degree sensor, the acceleration detection value in the second direction of the first acceleration sensor, and the acceleration detection value in the second direction of the second acceleration sensor, An image blur amount in the imaging apparatus using a second acceleration estimation unit that calculates an acceleration estimation value in the second direction at the first position, and an acceleration estimation value in the first direction and an acceleration estimation value in the second direction.
  • an imaging apparatus including a shake amount calculation unit that calculates
  • the first acceleration sensor and the second acceleration sensor are arranged such that the optical axis is positioned at the center between the first acceleration sensor and the second acceleration sensor.
  • An acceleration sensor is arranged, and the first acceleration estimation unit calculates an average value of the acceleration detection value in the first direction of the first acceleration sensor and the acceleration detection value in the first direction of the second acceleration sensor, The estimated acceleration value in the first direction is used, and the second acceleration estimating unit adds the average value of the detected acceleration value in the second direction of the first acceleration sensor and the detected acceleration value in the second direction of the second acceleration sensor. Is provided as an acceleration estimated value in the second direction.
  • accelerations in the first direction and the second direction which are arranged at different positions on a second plane orthogonal to the optical axis, are detected.
  • a third acceleration sensor, a fourth acceleration sensor for detecting acceleration in the first direction and the second direction, a distance in the second direction between the optical axis and the third acceleration sensor, and the optical axis Based on the distance in the second direction from the fourth acceleration sensor, the detected acceleration value in the first direction of the third acceleration sensor, and the detected acceleration value in the first direction of the fourth acceleration sensor.
  • a third acceleration estimating unit that calculates an acceleration estimated value in the first direction at the second position on the optical axis, a distance in the first direction between the optical axis and the third acceleration sensor, The first direction between the optical axis and the fourth acceleration sensor , The acceleration in the second direction at the second position based on the detected acceleration value in the second direction of the third acceleration sensor and the detected acceleration value in the second direction of the fourth acceleration sensor.
  • a fourth acceleration estimating unit that calculates an estimated value; an acceleration estimated value in the first direction at the first position calculated by the first acceleration estimating unit; and the second acceleration calculated by the third acceleration estimating unit.
  • a fifth acceleration estimating unit that calculates an acceleration estimated value in the first direction at the principal point position and an acceleration in the second direction at the first position calculated by the second acceleration estimating unit Estimated value and fourth acceleration The estimated acceleration value in the second direction at the second position calculated by the estimation unit, the distance between the principal point position and the first position, and between the principal point position and the second position.
  • a sixth acceleration estimation unit that calculates an acceleration estimated value in the second direction at the principal point position based on the distance, and the shake amount calculation unit further includes the first acceleration at the principal point position.
  • An imaging apparatus is provided that calculates an image blur amount in the imaging apparatus using an estimated acceleration value in a direction and an estimated acceleration value in the second direction at the principal point position.
  • a fourth aspect of the present invention is the camera system according to the third aspect, wherein the imaging device includes a camera body having an imaging element and an interchangeable lens having the photographing optical system.
  • the lens is detachable from the camera body, the first position is an imaging center position of the imaging surface of the imaging element, and the second position is on the optical axis inside the interchangeable lens.
  • An imaging device is provided at an arbitrary position.
  • the interchangeable lens includes a first lens communication unit that transmits / receives data to / from the camera body, and the first lens communication unit.
  • a second lens communication unit that transmits / receives data at a higher speed than the lens communication unit, wherein the camera body transmits / receives data to / from the interchangeable lens, and the interchangeable type.
  • a second camera communication unit that transmits / receives data to / from a lens at a higher speed than the first camera communication unit, and the second camera communication unit includes the first acceleration sensor included in the camera body and the second camera communication unit.
  • An imaging apparatus is provided that transmits an estimated acceleration detection value at the first position calculated based on each acceleration detection value of a second acceleration sensor to the second lens communication unit.
  • the in-focus position for detecting the in-focus position on the imaging surface of the imaging element in the state of the imaging element and the imaging optical system adjusted by a focus adjustment mechanism.
  • a detection unit wherein the first acceleration estimation unit further includes a distance in the second direction between the focus position and the first acceleration sensor, the focus position, and the second acceleration sensor. Based on the distance in the second direction between the first acceleration sensor, the detected acceleration value in the first direction of the first acceleration sensor, and the detected acceleration value in the first direction of the second acceleration sensor. An acceleration estimation value in the first direction at a position is calculated, and the second acceleration estimation unit further includes a distance in the first direction between the focus position and the first acceleration sensor, and the focus position.
  • the blur amount calculation unit further uses the estimated acceleration value in the first direction at the in-focus position and the estimated acceleration value in the second direction at the in-focus position to generate an image in the imaging device.
  • an imaging device that calculates a blur amount.
  • a seventh aspect of the present invention includes a photographing optical system that forms an image of a subject, and a first acceleration sensor and a second acceleration sensor that are arranged at different positions on a plane orthogonal to the optical axis of the photographing optical system.
  • An image blur amount calculation method for an imaging apparatus wherein the first acceleration sensor detects accelerations in a first direction and a second direction, and the second acceleration sensor detects the first direction and the second direction.
  • An image blur calculation method comprising: calculating an image blur amount in the imaging apparatus using an estimated value and an acceleration estimate value in the second direction.
  • the present invention it is possible to detect the acceleration or moving speed at the front principal point position of the photographing optical system with high accuracy, thereby achieving an effect that image blur due to parallel movement can be corrected with high accuracy.
  • FIG. 10 is a diagram showing a case where two acceleration sensors are arranged at different positions on a plane orthogonal to the Z-axis as an optical axis.
  • FIG. 5 is a diagram illustrating a case where two acceleration sensors are arranged at different positions on the optical axis when the Z-axis is an optical axis.
  • FIG. 10 shows the structural example of the camera which is an imaging device which concerns on 1st Embodiment. It is the figure which looked at the photography optical system and two acceleration sensors concerning a 1st embodiment from the optical axis direction (camera front side).
  • FIG. 1 is a diagram illustrating a camera that is an imaging apparatus according to an embodiment of the present invention.
  • the X direction, Y direction, Z direction, Yaw direction, Pitch direction, and Roll direction are defined as follows for the camera.
  • the left / right direction (horizontal direction) of the camera is the X direction.
  • the right direction when the camera is viewed from the front is defined as + direction, and the left direction is defined as ⁇ direction.
  • the X direction also corresponds to the left-right direction of the imaging surface of the imaging element described later.
  • the vertical direction of the camera is the Y direction.
  • the upper direction is the + direction and the lower direction is the-direction.
  • the Y direction also corresponds to the vertical direction of the imaging surface of the imaging device.
  • the optical axis direction of the photographing optical system described later of the camera is the Z direction.
  • the direction from the back side to the front side of the camera is defined as the + direction
  • the direction from the front side to the back side of the camera is defined as the ⁇ direction.
  • the rotation direction with the axis in the X direction as the rotation axis is the pitch direction.
  • the left rotation toward the + X direction is defined as the + direction
  • the right rotation toward the + X direction is defined as the ⁇ direction.
  • the rotation direction with the Y axis as the rotation axis is the Yaw direction.
  • the right rotation toward the + Y direction is defined as the + direction
  • the left rotation toward the + Y direction is defined as the ⁇ direction.
  • the rotation direction with the Z-axis as the rotation axis is the Roll direction.
  • the left rotation toward the + Z direction is defined as the + direction
  • the right rotation toward the + Z direction is defined as the ⁇ direction.
  • FIG. 2 is a diagram showing a case where two acceleration sensors are arranged at different positions on a plane orthogonal to the Z-axis as an optical axis.
  • the two acceleration sensors S1 and S2 each have a parallel movement.
  • the parallel movement amounts D1x and D1y in the X and Y directions generated with respect to the acceleration sensor S1 are obtained by the following formulas (1) and (2), and the X and Y directions generated with respect to the acceleration sensor S2 are calculated.
  • the parallel movement amounts D2x and D2y are obtained by the following equations (3) and (4).
  • the angular velocities in the Yaw, Pitch, and Roll directions are ⁇ yaw, ⁇ pitch, and ⁇ roll
  • the projection of the radius R1 (the line segment connecting the rotation center C and the acceleration sensor S1) onto each axis in the X, Y, and Z directions is R1x.
  • R1y, R1z, and R2x, R2y, R2z are projections of the radius R2 (line segment connecting the rotation center C and the acceleration sensor S2) onto the X, Y, and Z axes.
  • R1z R2z is established from the relationship between the mounting positions of the acceleration sensors S1 and S2. Therefore, if there is no rotational motion in the Roll direction, the accelerations generated in the acceleration sensors S1 and S2 are equal, but if a rotational motion in the Roll direction occurs, a difference occurs in the detection results of the acceleration sensors S1 and S2.
  • the detection error (difference in detection result) at this time is caused by the ratio of R1y and R2y with respect to the X direction and is caused by the ratio of R1x and R2x with respect to the Y direction.
  • the acceleration detection result (detected value) at the intersection of the plane where the acceleration sensors S1 and S2 are arranged (also a plane orthogonal to the optical axis) and the optical axis is the mounting of each acceleration sensor from the intersection. It can be obtained (estimated) based on the distance and the detection results of the acceleration sensors S1 and S2.
  • FIG. 3 is a diagram illustrating a case where two acceleration sensors are arranged at different positions on the optical axis when the Z-axis is the optical axis.
  • FIG. 3 when a rotational motion occurs with the axis passing through the point C as the rotational axis (in this case, the point C is also the center of rotation), each of the two acceleration sensors S1 and S2 undergoes a parallel movement.
  • the parallel movement amount generated in is obtained by the above formulas (1), (2), (3), and (4), as in the case shown in FIG.
  • the detection error (difference in detection result) at this time is caused by the ratio of the distance in the Z direction between the rotation center C and the mounting position of each acceleration sensor.
  • the detection result (detection value) of the acceleration at the position on the optical axis is obtained (estimated) based on the mounting distance of each acceleration sensor from that position and the detection results of the acceleration sensors S1 and S2. be able to.
  • the acceleration detection result of each acceleration sensor and the distance between any point on the same plane and each acceleration sensor Based on the ratio, the acceleration detection result (detection value) at the arbitrary point can be estimated.
  • the acceleration detection result (detection value) at an arbitrary point can be estimated.
  • FIG. 4 is a diagram illustrating a configuration example of a camera that is the imaging apparatus according to the first embodiment of the present invention.
  • the camera 1 according to the present embodiment includes an imaging optical system 2, an imaging element 3, a drive unit 4, a system controller 5, a shake correction microcomputer 6, two acceleration sensors 7 (7 a and 7 b), And an angular velocity sensor 8.
  • the photographing optical system 2 forms an image of the light flux from the subject on the image sensor 3.
  • the image pickup device 3 is an image sensor such as a CCD or a CMOS, for example, and converts a subject light beam (subject optical image) formed by the photographing optical system 2 into an electric signal.
  • the system controller 5 reads out the electrical signal converted by the image sensor 3 as a video signal.
  • the read video signal is recorded as a captured image or recorded as a video on a recording medium (memory card or the like) (not shown), for example.
  • a recording medium memory card or the like
  • the blur correction microcomputer 6 calculates a correction amount based on the detection results of the acceleration sensors 7a and 7b and the angular velocity sensor 8, and instructs the drive unit 4 to cancel the image blur that occurs on the imaging surface of the image sensor 3.
  • the image sensor 3 is moved.
  • each of the system controller 5 and the shake correction microcomputer 6 includes, for example, a processor (CPU or the like), a memory, an electronic circuit, and the like.
  • the various operations by each of them are realized, for example, by the processor executing a program stored in the memory.
  • the drive unit 4 is a drive mechanism that moves the image sensor 3 on a plane orthogonal to the optical axis of the photographing optical system 2 based on an instruction from the shake correction microcomputer 6.
  • the angular velocity sensor 8 detects triaxial rotational motions (rotational motions in the Yaw direction, Pitch direction, and Roll direction) that occur in the camera 1.
  • the two acceleration sensors 7 (7a, 7b) are centered on the optical axis on a plane including the front principal point position of the photographing optical system 2 and perpendicular to the optical axis of the photographing optical system 2. Thus, they are arranged (mounted) opposite to each other. Each acceleration sensor 7 detects acceleration in the X direction and the Y direction.
  • Information about the mounting position of each acceleration sensor 7 is recorded in advance in the internal ROM of the shake correction microcomputer 6 as coordinate information in the X and Y directions with the point on the optical axis as the origin, and acceleration estimation described later is performed. Used for value calculation.
  • the two acceleration sensors 7 are arranged opposite to each other with the optical axis as the center, so that the acceleration is performed without using information regarding the mounting position of each acceleration sensor 7 as will be described in detail later.
  • An estimated value can be calculated. Therefore, in this embodiment, it is good also as a structure which does not hold
  • FIG. 5 is a view of the photographing optical system 2 and the two acceleration sensors 7 (7a, 7b) as seen from the optical axis direction (camera front side).
  • the distance ra is also a distance from the front principal point position (optical center C) of the photographing optical system 2 to the acceleration sensor 7a, and the distance rb is an acceleration from the front principal point position (optical center C) of the photographing optical system 2. It is also the distance to the sensor 7b.
  • the detection result of the acceleration in the X direction and the Y direction at the front principal point position of the imaging optical system 2 is calculated (estimated) by obtaining the average value of the detection results of the two acceleration sensors 7 (7a, 7b). )can do.
  • FIG. 6 is a diagram illustrating an internal configuration example of the shake correction microcomputer 6.
  • the shake correction microcomputer 6 includes an angle shake amount calculation unit 61, a shift shake amount calculation unit 62, an addition unit 63, and a drive control unit 64.
  • the angular blur amount calculation unit 61 calculates the image blur amount in each of the X and Y directions of the image blur that occurs on the imaging surface of the image sensor 3 due to the rotational movement of the camera 1. Then, correction amounts (rotational blur correction amounts) in the X and Y directions for canceling the image blur amount are calculated.
  • the shift blur amount calculation unit 62 Based on the detection result (acceleration a) of the acceleration sensor 7a and the detection result (acceleration b) of the acceleration sensor 7b, the shift blur amount calculation unit 62 generates image blur that occurs on the imaging surface of the imaging device 3 due to the parallel movement of the camera 1. The amount of image blur in each of the X and Y directions is calculated, and a correction amount (shift blur correction amount) in each of the X and Y directions for canceling the image blur amount is calculated.
  • the internal configuration of the shift blur amount calculation unit 62 will be described later with reference to FIG.
  • the adding unit 63 adds the correction amounts calculated by the angle blur amount calculating unit 61 and the shift blur amount calculating unit 62 for each of the X and Y directions.
  • the drive control unit 64 converts the correction amounts in the X and Y directions added by the addition unit 63 into drive pulses for driving the drive unit 4 and outputs the drive pulses to the drive unit 4.
  • the drive unit 4 is driven according to the drive pulse to move the image sensor 3. As a result, the image sensor 3 moves so that the image blur generated on the imaging surface of the image sensor 3 is canceled.
  • FIG. 7 is a diagram illustrating an internal configuration example of the shift blur amount calculation unit 62.
  • the shift blur amount calculation unit 62 includes two signal processing units 621 (621a and 621b), an estimated value calculation unit 622, an integration unit 623, a multiplication unit 624, an integration unit 625, and a correction amount calculation. Part 626.
  • Each signal processing unit 621 performs a process of removing a gravity component, a filter process (a process of removing a low-frequency component), and the like on the input acceleration in the X and Y directions.
  • the input acceleration in the X and Y directions is converted to 0 when the camera is stationary, otherwise converted to a digital value whose absolute value indicates the magnitude of acceleration and whose sign indicates the direction of acceleration.
  • the acceleration a in each direction of X and Y detected by the acceleration sensor 7a is input to the signal processing unit 621a
  • the acceleration b in each direction of X and Y detected by the acceleration sensor 7b is the signal processing unit.
  • the data is input to 621b and processed.
  • the estimated value calculation unit 622 uses the following formulas (5) and (6) based on the ratio of the distance from the front principal point position (optical axis) to the mounting position of each acceleration sensor 7 in the X direction at the front principal point position. , Y direction acceleration estimated values Xc and Yc are calculated.
  • Xa and Ya are accelerations a in the X direction and Y direction after processing by the signal processing unit 621a (processing results of the signal processing unit 621a in the X direction and Y direction).
  • Xb and Yb are accelerations b in the X direction and Y direction after processing by the signal processing unit 621b (processing results of the signal processing unit 621b in the X direction and Y direction).
  • ra_x and ra_y are the X-direction component and the Y-direction component of ra as shown in FIG.
  • rb_x and rb_y are the X direction component and the Y direction component of rb as shown in FIG. That is, ra_x and ra_y are coordinate information of the mounting position of the acceleration sensor 7a, and rb_x and rb_y are coordinate information of the mounting position of the acceleration sensor 7b.
  • the internal configuration of the estimated value calculation unit 622 will be described later with reference to FIG.
  • the integrating unit 623 time-integrates the estimated acceleration values in the X and Y directions calculated by the estimated value calculating unit 622 to calculate the moving speeds in the X and Y directions at the front principal point position.
  • the multiplying unit 624 multiplies the moving speed in each of the X and Y directions calculated by the integrating unit 623 by the image magnification of the imaging optical system 2 to obtain the X and Y directions on the imaging surface of the imaging device 3. Convert to image moving speed.
  • the integration unit 625 time-integrates the image movement speed in the X and Y directions on the imaging surface, which is the multiplication result of the multiplication unit 624, and the image movement amount in the X and Y directions on the imaging surface ( (Image blur amount) is calculated.
  • the correction amount calculation unit 626 calculates correction amounts (shift blur correction amounts) in the X and Y directions for canceling the image blur amounts in the X and Y directions calculated by the integration unit 625.
  • the moving speed at the front principal point position is calculated based on the acceleration.
  • the calculation of the moving speed is not limited to this.
  • the moving speed at the mounting position of each acceleration sensor 7 may be calculated (estimated) based on the calculated moving speed.
  • FIG. 8 is a diagram illustrating an internal configuration example of the estimated value calculation unit 622.
  • the estimated value calculation unit 622 includes a coefficient calculation unit 6221, two multiplication units 6222 (6222 a and 6222 b), and an addition unit 6223.
  • the coefficient calculation unit 6221 calculates the calculation coefficients K1, K2, K3, and K4 based on the information related to the mounting position of each acceleration sensor 7.
  • the calculation coefficients K1, K2, K3, and K4 may be held as fixed values.
  • the multiplication unit 6222a receives the acceleration a (Xa, Ya) in each of the X and Y directions after being processed by the signal processing unit 621a, multiplies the acceleration Xa in the X direction by a calculation coefficient K1, and accelerates in the Y direction. Multiply Ya with the operation coefficient K3.
  • the multiplication unit 6222b receives the accelerations b (Xb, Yb) in the X and Y directions after the processing by the signal processing unit 621b, multiplies the X-direction acceleration Xb by a calculation coefficient K2, and then accelerates in the Y-direction. Multiply Yb by the operation coefficient K4.
  • the adding unit 6223 calculates the acceleration estimated value Xc in the X direction by adding the multiplication result K1 ⁇ Xa of the multiplication unit 6222a and the multiplication result K2 ⁇ Xb of the multiplication unit 6222b, and the multiplication result of the multiplication unit 6222a.
  • K3 ⁇ Ya and K4 ⁇ Yb which is the multiplication result of the multiplier 6222b are added to calculate the Y direction acceleration estimated value Yc.
  • the two acceleration sensors 7 are arranged on the plane including the front principal point position of the imaging optical system 2 (also on the plane orthogonal to the optical axis of the imaging optical system 2).
  • the acceleration at the front principal point position can be calculated (estimated) based on the ratio of the distance from the optical axis to the mounting position of each acceleration sensor 7 and the detection result of each acceleration sensor. Therefore, shift blur can be corrected with high accuracy by performing blur correction based on the acceleration.
  • the two acceleration sensors 7 are arranged at different positions on a plane including the imaging surface of the imaging element 3, such as two acceleration sensors 15 (15a, 15b) shown in FIG. Processing is performed by estimating the acceleration at the position of the focus area on the imaging surface.
  • FIG. 9 is a diagram illustrating an internal configuration example of the shake correction microcomputer 6 according to the present modification.
  • the shake correction microcomputer 6 according to the present modification further includes a communication unit 65, and focus position information is input from the system controller 5 to the shift shake amount calculation unit 62 via the communication unit 65.
  • the focus position information is information indicating a focus position on the image pickup surface of the image pickup element 3 in the state of the photographing optical system 2 adjusted by a focus adjustment mechanism (not shown), and the focus position is acquired by the system controller 5. Is done.
  • FIG. 10 is a diagram illustrating an internal configuration example of the shift blur amount calculation unit 62 according to the present modification.
  • the shift shake amount calculation unit 62 according to this modification further has a point that the focus position information is further input to the estimated value calculation unit 622, and the acceleration estimated value at the focus position is calculated there. 7 is different from the shift blur amount calculation unit 62 shown in FIG.
  • FIG. 11 is a view of the imaging surfaces of the two acceleration sensors 7 (7a, 7b) and the imaging device 3 according to this modification as seen from the optical axis direction (camera front side).
  • IP indicates an imaging surface
  • OC indicates an optical axis
  • FA indicates a focus area
  • FP indicates a focus point (center of the focus area FA).
  • the distances in the X and Y directions from the acceleration sensor 7a to the focus point FP are FPXa and FPYa
  • the distances in the X and Y directions from the acceleration sensor 7b to the focus point FP are FPXb and FPYb.
  • accelerations in the X and Y directions detected by the acceleration sensor 7a are Aax and Aay
  • accelerations in the X and Y directions detected by the acceleration sensor 7b are Abx and Aby.
  • the accelerations A FPX and A FPY in the X direction and the Y direction at the focus point FP are obtained by the following formulas (9) and (10) based on the formulas (5) and (6).
  • the focus position information (including information on the focus area FA and the focus point FP) is further input to the coefficient calculation unit 6221 (see FIG. 8) in the estimated value calculation unit 622 according to the present modification. Therefore, the coefficient K1 is calculated as FPYb / (FPYa + FPYb), the coefficient K2 is calculated as FPYa / (FPYa + FPYb), the coefficient K3 is calculated as FPXb / (FPXa + FPXb), and the coefficient K4 is calculated as FPXa / (FPXa + FPXb). Done.
  • FIG. 12 is a diagram illustrating a configuration example of a camera system that is an imaging apparatus according to the second embodiment of the present invention.
  • the camera system 100 according to the present embodiment includes a camera body 10 and an interchangeable lens 20, and the interchangeable lens 20 is configured to be detachable from the camera body 10.
  • the camera body 10 and the interchangeable lens 20 have a camera shake (rotational shake) correction function and a shift shake correction function.
  • the camera body 10 includes an image sensor 11, a drive unit 12, a system controller 13, a shake correction microcomputer 14, two acceleration sensors 15 (15a, 15b), and an angular velocity sensor 16.
  • the interchangeable lens 20 includes a photographing optical system 21, an LCU (Lens Control Unit) 22, a driving unit 23, two acceleration sensors 24 (24a, 24b), and an angular velocity sensor 25.
  • the photographing optical system 21 forms an image of the light flux from the subject on the image sensor 11.
  • the image sensor 11 is an image sensor such as a CCD or a CMOS, for example, and converts a subject light beam (subject optical image) imaged by the photographing optical system 21 into an electrical signal.
  • the system controller 13 reads the electrical signal converted by the image sensor 11 as a video signal.
  • the read video signal is recorded as a captured image or recorded as a video on a recording medium (memory card or the like) (not shown), for example.
  • the system controller 13 includes a communication unit (not shown), and communicates with the LCU 22 via a mount (not shown) by this communication unit to acquire information on the interchangeable lens 20. Then, based on the information of the interchangeable lens 20, it is determined whether or not the interchangeable lens 20 has a blur correction function.
  • the interchangeable lens 20 has a blur correction function
  • the system controller 13 stops the shake correction function of either the camera body 10 or the interchangeable lens 20, or both share them at a predetermined ratio.
  • a shake correction method such as whether to perform shake correction, is determined, and control is performed so as to perform shake correction according to the determined shake correction method.
  • the system controller 13 generates a synchronization signal for synchronizing the operations of the camera body 10 and the interchangeable lens 20, and notifies the LCU 22 and the shake correction microcomputer 14 with the communication unit. Thereby, for example, when a rising edge of a pulse signal that is a synchronization signal is detected, a predetermined operation is started in both the camera body 10 and the interchangeable lens 20, thereby synchronizing both operations. .
  • the two acceleration sensors 24 are disposed (mounted) on a plane orthogonal to the optical axis of the photographing optical system 2 so as to face each other with the optical axis as the center (center).
  • Each acceleration sensor 24 detects acceleration in the X direction and the Y direction.
  • Information regarding the mounting position of each acceleration sensor 24 is recorded in advance in the internal ROM of the LCU 22 as coordinate information in the X direction, Y direction, and Z direction with the point on the optical axis as the origin, and will be described later. Used for calculation of estimated values and moving speeds.
  • the angular velocity sensor 25 detects three-axis rotational motions (Yaw direction, Pitch direction, and Roll direction rotational motions) that occur in the camera system 100.
  • the LCU 22 calculates a correction amount based on the detection results of the acceleration sensors 24 a and 24 b and the angular velocity sensor 25, and instructs the driving unit 23 to cancel image blur that occurs on the imaging surface of the imaging element 11.
  • a correction lens (not shown) included in 21 is moved.
  • the internal configuration of the LCU 22 will be described later with reference to FIG.
  • the drive unit 23 is a drive mechanism that moves a correction lens included in the photographing optical system 21 on a plane orthogonal to the optical axis of the photographing optical system 2 based on an instruction from the LCU 22.
  • the two acceleration sensors 15 (15a, 15b) are arranged on a plane including the imaging surface of the imaging element 11, and are arranged opposite to each other with the imaging center of the imaging element 11 at the initial position as the center (center). )
  • the imaging surface of the imaging element 11 is orthogonal to the optical axis of the imaging optical system 21. Further, the imaging center of the imaging device 11 at the initial position coincides with the optical axis.
  • Each acceleration sensor 15 detects acceleration in the X direction and the Y direction.
  • Information about the mounting position of each acceleration sensor 15 is recorded in advance in the internal ROM of the shake correction microcomputer 14 as coordinate information in the X, Y, and Z directions with the point on the optical axis as the origin. This is used to calculate an acceleration estimated value and a moving speed, which will be described later.
  • coordinate information in the X direction and the Y direction is held as information regarding the mounting position of each acceleration sensor 7. It is good also as a structure which does not.
  • the angular velocity sensor 16 detects three-axis rotational motions (Yaw direction, Pitch direction, and Roll direction rotational motions) that occur in the camera system 100.
  • the blur correction microcomputer 14 calculates a correction amount based on the detection results of the acceleration sensors 15 a and 15 b and the angular velocity sensor 16, and instructs the drive unit 12 to cancel the image blur that occurs on the imaging surface of the image sensor 11. The image sensor 11 is moved.
  • the internal configuration of the shake correction microcomputer 14 will be described later with reference to FIG.
  • the drive unit 12 is a drive mechanism that moves the image sensor 11 on a plane orthogonal to the optical axis of the imaging optical system 2 based on an instruction from the shake correction microcomputer 14.
  • the system controller 13 controls various operations of the camera system 100.
  • the LCU 22 controls various operations of the interchangeable lens 20 under the control of the system controller 13.
  • Each of the system controller 13, the shake correction microcomputer 14, and the LCU 22 includes, for example, a processor (CPU or the like), a memory, an electronic circuit, and the like. The various operations by each of them are realized, for example, by the processor executing a program stored in the memory.
  • FIG. 13 is a diagram showing the relationship of the movement amount at each position on the optical axis of the photographing optical system 21 in the camera system 100.
  • P ⁇ b> 1 is a mounting surface of the two acceleration sensors 15 on the camera body 10 side, and is also a plane including the imaging surface of the imaging element 11.
  • P2 is a mounting surface of the two acceleration sensors 24 on the interchangeable lens 20 side, and is also a plane orthogonal to the optical axis of the photographing optical system 21.
  • P ⁇ b> 3 is a plane including the front principal point position of the photographic optical system 21, and is also a plane orthogonal to the optical axis of the photographic optical system 21.
  • the distance from the front principal point position to the mounting surface P1 is Lb
  • the distance from the front principal point position to the mounting surface P2 is La
  • the amount of movement at the intersection of the mounting surface P1 and the optical axis is D1
  • the mounting surface P2 and the optical axis If the amount of movement at the intersection with is D2, the amount of movement D3 at the front principal point position is obtained by the following equation (11).
  • the acceleration and moving speed at the front principal point position can be obtained in the same manner.
  • the acceleration at the front principal point position can be obtained in the same manner based on the distances La and Lb, the acceleration at the intersection of the mounting surface P1 and the optical axis, and the acceleration at the intersection of the mounting surface P2 and the optical axis. it can.
  • the moving speed at the front principal point position is similarly determined based on the distances La and Lb, the moving speed at the intersection of the mounting surface P1 and the optical axis, and the moving speed at the intersection of the mounting surface P2 and the optical axis. Can be sought.
  • FIG. 14 is a diagram illustrating an internal configuration example of the LCU 22.
  • the LCU 22 includes a communication unit 221, a lens control unit 222, an angular blur amount calculation unit 223, a shift blur amount calculation unit 224, an addition unit 225, and a drive control unit 226.
  • the communication unit 221 communicates with the system controller 13 of the camera body 10 via the mount. For example, the communication unit 221 acquires an instruction related to lens control from the system controller 13 and outputs the instruction to the lens control unit 222. In addition, the communication unit 221 acquires the movement speed calculated by the camera body 10 from the system controller 13 and outputs the movement speed to the shift blur amount calculation unit 224. This moving speed is a moving speed in each of the X and Y directions at the intersection of the optical axis and the mounting surface P1. In addition, the communication unit 221 outputs a synchronization signal notified from the camera body 10 to the shift blur amount calculation unit 224.
  • the lens control unit 222 controls the focus, the diaphragm, and the like based on the instruction related to the lens control output from the communication unit 221.
  • the angular blur amount calculation unit 223 calculates the image blur amount in each of the X and Y directions of the image blur that occurs on the imaging surface of the image sensor 11 due to the rotational movement of the camera system 100.
  • a correction amount (rotational blur correction amount) in each of the X and Y directions for calculating the image blur amount is calculated.
  • the shift blur amount calculation unit 224 Based on the detection result (acceleration a) of the acceleration sensor 24a, the detection result (acceleration b) of the acceleration sensor 24b, and the moving speed calculated by the camera body 10, the shift blur amount calculation unit 224 The amount of image blur in the X and Y directions of image blur that occurs on the imaging surface of the image sensor 11 due to the parallel movement is calculated, and the amount of correction (shift blur correction) in each of the X and Y directions for canceling the image blur amount. Amount). The internal configuration of the shift blur amount calculation unit 224 will be described later with reference to FIG.
  • the adding unit 225 adds the correction amounts calculated by the angle blur amount calculating unit 223 and the shift blur amount calculating unit 224 for each of the X and Y directions.
  • the drive control unit 226 converts the correction amounts in the X and Y directions added by the addition unit 225 into drive pulses for driving the drive unit 23 and outputs the drive pulses to the drive unit 23.
  • the drive unit 23 is driven according to the drive pulse, and moves the correction lens included in the photographing optical system 21. As a result, the correction lens moves so that the image blur occurring on the imaging surface of the imaging element 3 is canceled.
  • FIG. 15 is a diagram illustrating an internal configuration example of the shift blur amount calculation unit 224.
  • the shift blur amount calculation unit 224 includes two signal processing units 2241 (2241a and 2241b), an estimated value calculation unit 2242, an integration unit 2243, a speed correction unit 2244, a multiplication unit 2245, and an integration unit 2246. , And a correction amount calculation unit 2247.
  • Each signal processing unit 2241 performs a process of removing a gravity component, a filter process, and the like on the input acceleration in the X and Y directions.
  • the input acceleration in the X and Y directions is converted to a digital value indicating zero when stationary, otherwise an absolute value indicating the magnitude of acceleration, and a sign indicating the direction of acceleration.
  • the acceleration a in each direction of X and Y detected by the acceleration sensor 24a is input to the signal processing unit 2241a
  • the acceleration b in each direction of X and Y detected by the acceleration sensor 24b is the signal processing unit. 2241b is input and processing is performed.
  • the estimated value calculation unit 2242 calculates the optical axis and the optical axis based on the above formulas (5), (6) (or (7), (8)) from the ratio of the distance from the optical axis to the mounting position of each acceleration sensor 24. An acceleration estimated value in each of the X and Y directions at the intersection with the mounting surface P2 is calculated.
  • the integrating unit 2243 time-integrates the estimated acceleration values in the X and Y directions calculated by the estimated value calculating unit 2242, and calculates the moving speeds in the X and Y directions at the intersection of the optical axis and the mounting surface P2. To do.
  • the speed correction unit 2244 calculates the moving speed in the X and Y directions at the intersection of the optical axis and the mounting surface P2 calculated by the integration unit 2243, and the optical axis and the mounting surface P1 calculated by the camera body 10.
  • the moving speeds in the X and Y directions at the front principal point position are calculated based on the above equation (11).
  • the moving speed in the X direction at the front principal point position is determined by using D2 and D1 in the above equation (11) as the moving speed in the X direction at the intersection of the optical axis and the mounting surface P2, and the optical axis and the mounting surface. It can be calculated by replacing with the moving speed in the X direction at the intersection with P1.
  • the movement speed in the Y direction at the front principal point position can be calculated in the same manner.
  • the internal configuration of the speed correction unit 2244 will be described later with reference to FIG.
  • the multiplying unit 2245 multiplies the moving speed in the X and Y directions at the front principal point position calculated by the speed correcting unit 2244 by the image magnification of the imaging optical system 21, and the imaging element 11 on the imaging surface. Conversion into image moving speeds in the X and Y directions is performed.
  • the integration unit 2246 time-integrates the image movement speed in the X and Y directions on the imaging surface, which is the multiplication result of the multiplication unit 2245, and the amount of image movement in the X and Y directions on the imaging surface ( (Image blur amount) is calculated.
  • the correction amount calculation unit 2247 calculates the correction amount (shift blur correction amount) in each of the X and Y directions for canceling the image blur amount in each of the X and Y directions calculated by the integration unit 2246.
  • FIG. 16 is a diagram illustrating an internal configuration example of the speed correction unit 2244.
  • the speed correction unit 2244 includes a speed holding unit 22441, a ratio calculation unit 22442, a coefficient calculation unit 22443, a multiplication unit 22444, a multiplication unit 22445, a multiplication unit 22446, and an addition unit 22447.
  • the speed holding unit 22441 synchronizes the movement speeds in the X and Y directions at the intersection of the optical axis and the mounting surface P2 calculated by the integration unit 2243 with the synchronization timing of the synchronization signal notified from the camera body 10. Hold.
  • the ratio calculation unit 22442 is notified of the moving speed in the X and Y directions at the intersection of the optical axis and the mounting surface P1 from the camera body 10 via the communication unit 221. This movement speed is calculated by the shake correction microcomputer 14 in synchronization with the synchronization timing of the synchronization signal notified from the system controller 13 and periodically notified.
  • the ratio calculation unit 22442 is notified from the camera body 10 of the optical axis and the mounting surface held by the speed holding unit 22441 at the same synchronization timing as the moving speed at the intersection of the optical axis and the mounting surface P1.
  • a ratio with the moving speed at the intersection with P2 is calculated for each of the X and Y directions.
  • the multiplication unit 22444 multiplies the movement speed at the intersection of the optical axis and the mounting surface P2 calculated by the integration unit 2243 by the ratio calculated by the ratio calculation unit 22442 for each of the X and Y directions.
  • the moving speed in each of the X and Y directions at the intersection of the optical axis and the mounting surface P1 is calculated.
  • the coefficient calculation unit 22443 calculates the moving speeds in the X and Y directions at the front principal point position based on the information on the front principal point position of the photographing optical system 21 (main point position information) and the above equation (11).
  • the information on the front principal point position is acquired by the lens control unit 222 and input to the speed correction unit 2244 of the shift blur amount calculation unit 224 via the communication unit 221.
  • the distances La and Lb are calculated based on information on the front principal point position, information on the mounting position of each acceleration sensor 15, and information on the mounting position of each acceleration sensor 24.
  • Information regarding the mounting position of each acceleration sensor 15 is input from the shake correction microcomputer 14 to the speed correction unit 2244 of the shift shake amount calculation unit 224 via the system controller 13 and the communication unit 221.
  • the multiplication unit 22446 multiplies the moving speed in the X and Y directions at the intersection of the optical axis and the mounting surface P2 calculated by the integration unit 2243 by the coefficient K5 calculated by the coefficient calculation unit 22443.
  • the multiplying unit 22445 multiplies the moving speed in the X and Y directions at the intersection of the optical axis and the mounting surface P1 calculated by the multiplying unit 22444 by the coefficient K6 calculated by the coefficient calculating unit 22443.
  • the adding unit 22447 adds the multiplication result of the multiplication unit 22445 and the multiplication result of the multiplication unit 22446 for each of the X and Y directions, and calculates (estimates) the moving speed in the X and Y directions at the front principal point position. .
  • FIG. 17 is a diagram illustrating an internal configuration example of the shake correction microcomputer 14.
  • the shake correction microcomputer 14 includes an angle shake amount calculation unit 141, a shift shake amount calculation unit 142, an addition unit 143, a drive control unit 144, a switch 145, and a communication unit 146.
  • the angular blur amount calculation unit 141 calculates the image blur amount in the X and Y directions of the image blur that occurs on the imaging surface of the imaging device 11 due to the rotational movement of the camera system 100.
  • a correction amount (rotational blur correction amount) in each of the X and Y directions for calculating the image blur amount is calculated.
  • the shift blur amount calculation unit 142 generates an image generated on the imaging surface of the image sensor 11 by the parallel movement of the camera system 100 based on the detection result (acceleration a) of the acceleration sensor 15a and the detection result (acceleration b) of the acceleration sensor 15b. An image blur amount in each of the X and Y directions of the blur is calculated, and a correction amount (shift blur correction amount) in each of the X and Y directions for canceling the image blur amount is calculated.
  • the shift blur amount calculation unit 142 holds the moving speeds in the X and Y directions at the intersection point of the optical axis and the mounting surface P1 calculated in the process of calculating the image blur amount.
  • the internal configuration of the shift blur amount calculation unit 142 will be described later with reference to FIG.
  • the adding unit 143 adds the correction amounts calculated by the angle blur amount calculating unit 141 and the shift blur amount calculating unit 142 for each of the X and Y directions.
  • the drive control unit 144 converts the correction amounts in the X and Y directions added by the addition unit 143 into drive pulses for driving the drive unit 12 and outputs the drive pulses to the drive unit 12.
  • the drive unit 12 is driven according to the drive pulse to move the image sensor 11. As a result, the image sensor 11 moves so that the image blur that occurs on the imaging surface of the image sensor 11 is canceled.
  • the switch 145 is turned off in response to an instruction from the system controller 13 when the interchangeable lens 20 has a translational blur correction function.
  • the switch 145 is turned off, the addition by the adding unit 143 is not performed, and the drive control unit 144 drives the drive unit 12 with the correction amounts in the X and Y directions calculated by the angular shake amount calculation unit 141. Is converted to a drive pulse for output to the drive unit 12. Therefore, in this case, translational blur correction due to movement of the image sensor 11 is not performed.
  • the communication unit 146 determines the movement speed in each of the X and Y directions at the intersection of the optical axis and the mounting surface P ⁇ b> 1 held in the shift shake amount calculation unit 142. Output to. Then, the system controller 13 notifies the LCU 22 of the moving speed via the mount.
  • FIG. 18 is a diagram illustrating an internal configuration example of the shift blur amount calculation unit 142.
  • the shift blur amount calculation unit 142 includes two signal processing units 1421 (1421a and 1421b), an estimated value calculation unit 1422, an integration unit 1423, a multiplication unit 1424, an integration unit 1425, and a correction amount calculation unit. 1426 and a speed holding unit 1427.
  • Each signal processing unit 1421 performs processing for removing gravity components, filter processing, and the like on the input acceleration in each direction of X and Y.
  • the input acceleration in the X and Y directions is converted to a digital value indicating zero when stationary, otherwise an absolute value indicating the magnitude of acceleration, and a sign indicating the direction of acceleration.
  • the acceleration a in each direction of X and Y detected by the acceleration sensor 15a is input to the signal processing unit 1421a
  • the acceleration b in each direction of X and Y detected by the acceleration sensor 15b is the signal processing unit. 1421b is input and processing is performed.
  • the estimated value calculating unit 1422 is based on the above formulas (5), (6) (or (7), (8)) and the optical axis. An acceleration estimated value in each of the X and Y directions at the intersection with the mounting surface P1 is calculated.
  • the integrating unit 1423 time-integrates the acceleration estimated values in the X and Y directions calculated by the estimated value calculating unit 1422 to calculate the moving speeds in the X and Y directions at the intersection of the optical axis and the mounting surface P1. To do.
  • the multiplication unit 1424 multiplies the moving speeds in the X and Y directions calculated by the integration unit 1423 by the image magnification of the imaging optical system 21, and the X and Y directions on the imaging surface of the imaging device 11. Convert to image moving speed.
  • the integration unit 1425 time-integrates the image movement speed in the X and Y directions on the imaging surface, which is the multiplication result of the multiplication unit 1424, and the image movement amount in the X and Y directions on the imaging surface ( (Image blur amount) is calculated.
  • the correction amount calculation unit 1426 calculates a correction amount (shift blur correction amount) in each of the X and Y directions for canceling out the image blur amount in each of the X and Y directions calculated by the integration unit 1425.
  • the speed holding unit 1427 moves in the X and Y directions at the intersection of the optical axis and the mounting surface P1 calculated by the integration unit 1423 in synchronization with the synchronization timing of the synchronization signal notified from the system controller 13. Hold.
  • the held moving speed is periodically read by the system controller 13 via the communication unit 146.
  • the acceleration sensor cannot be disposed near the front principal point position of the photographing optical system 21 due to the configuration restrictions of the interchangeable lens 20
  • the acceleration at the front principal point position can be calculated (estimated). Therefore, shift blur can be corrected with high accuracy by performing blur correction based on the acceleration.
  • FIG. 19 is a diagram illustrating a configuration example of the camera system 100 according to the present modification.
  • FIG. 20 is a diagram illustrating a format example of transmission data.
  • FIG. 21 is a diagram illustrating a timing chart of transmission data.
  • a mount is provided between the shake correction microcomputer 14 and the LCU 22 so that direct and high-speed communication can be performed between the shake correction microcomputer 14 and the LCU 22.
  • a communication path 17 is further provided.
  • communication is performed by using a communication method of LDVS (Low Voltage Differential Signaling).
  • LDVS Low Voltage Differential Signaling
  • communication between the shake correction microcomputer 14 and the LCU 22 is performed at a higher speed than between the system controller 13 and the LCU 22.
  • the angular velocity in each direction of Yaw, Pitch, and Roll detected by the angular velocity sensor 16 via this communication path 17 and the acceleration in each direction in X and Y calculated in the shake correction microcomputer 14 are used.
  • the estimated value is transmitted from the shake correction microcomputer 14 to the LCU 22 in real time.
  • the angular velocity in each direction of Yaw, Pitch, and Roll and the estimated acceleration value in each direction of X and Y are transmitted, for example, every 1 ms in the format shown in FIG. 20 and at the timing shown in FIG.
  • 80 bits (16 bits ⁇ 5) of data are transmitted in a 1 ms cycle, it is only necessary to ensure a communication speed of 80000 bps or more.
  • FIG. 22 is a diagram illustrating an internal configuration example of the shake correction microcomputer 14 according to the present modification.
  • the shake correction microcomputer 14 according to this modification is different from the shake correction microcomputer 14 shown in FIG. 17 in that it further includes a high-speed communication unit 147. Accordingly, in the shake correction microcomputer 14 according to this modification, the communication unit 146 shown in FIG. 17 is omitted.
  • the high-speed communication unit 147 uses the angular velocity in each direction of Yaw, Pitch, and Roll detected by the angular velocity sensor 16 and the estimated acceleration value in each direction of X and Y calculated by the shift shake amount calculation unit 142 via the mount. To the LCU 22 via the communication channel 17. This transmission is performed, for example, every 1 ms in the format shown in FIG. 20 and at the timing shown in FIG.
  • FIG. 23 is a diagram illustrating an internal configuration example of the shift blur amount calculation unit 142 according to the present modification.
  • the shift shake amount calculation unit 142 according to the present modification has the estimated acceleration values in the X and Y directions calculated (estimated) by the estimated value calculation unit 1422 also sent to the high-speed communication unit 147.
  • the output point is different from the shift amount calculation unit 142 shown in FIG. Accordingly, the shift shake amount calculation unit 142 according to the present modification does not hold the movement speeds in the X and Y directions calculated by the integration unit 1423, and the speed holding unit 1427 shown in FIG. Is excluded.
  • FIG. 24 is a diagram illustrating an internal configuration example of the LCU 22 according to the present modification.
  • the LCU 22 according to this modification is different from the LCU 22 shown in FIG. 14 in that it further includes a high-speed communication unit 227.
  • the high-speed communication unit 227 receives the angular velocity in each direction of Yaw, Pitch, and Roll and the estimated acceleration value in each direction of X and Y transmitted from the shake correction microcomputer 14 every 1 ms.
  • the estimated acceleration value of the direction is notified to the shift shake amount calculation unit 224.
  • FIG. 25 is a diagram illustrating an internal configuration example of the shift blur amount calculation unit 224 according to the present modification.
  • the shift shake amount calculation unit 224 according to this modification is different from the high speed communication unit 227 in that the estimated value calculation unit 2242 in the shift shake amount calculation unit 224 shown in FIG.
  • the shift acceleration calculation unit 224 illustrated in FIG. 15 is different from the shift calculation unit 224 illustrated in FIG.
  • FIG. 26 is a diagram illustrating an internal configuration example of the estimated value calculation unit 2248 according to the present modification.
  • the estimated value calculation unit 2248 according to this modification includes a coefficient calculation unit 22481, a coefficient calculation unit 22482, a multiplication unit 22483a, a multiplication unit 22483b, an addition unit 22484, a multiplication unit 22485a, a multiplication unit 22485b, And an adder 22486.
  • the coefficient calculation unit 22481, the multiplication unit 22483 a, the multiplication unit 22483 b, and the addition unit 22484 are based on the ratio of the distance from the optical axis to the mounting position of each acceleration sensor 24, and the above formulas (5), (6) (or (7) , (8)), an acceleration estimated value in each of the X and Y directions at the intersection of the optical axis and the mounting surface P2 is calculated.
  • the coefficient calculation unit 22481 calculates four coefficients corresponding to the above-described coefficients K1, K2, K3, and K4. These four coefficients are determined by the mounting positions of the two acceleration sensors 24, and are fixed values. Also in this modified example, since the two acceleration sensors 24 are arranged to face each other with the optical axis as the center, both coefficients are 1 ⁇ 2.
  • the multiplier 22483a multiplies the acceleration a in the X direction and Y direction after the processing by the signal processor 2241a by a coefficient corresponding to K1 and a coefficient corresponding to K3.
  • the multiplication unit 22483b multiplies the acceleration b in the X direction and Y direction after the processing by the signal processing unit 2241b by a coefficient corresponding to K2 and a coefficient corresponding to K4.
  • the adder 22484 adds the multiplication result of the multiplier 22483a and the multiplication result of the multiplier 22483b for each of the X and Y directions, and calculates an acceleration estimated value in each of the X and Y directions.
  • the coefficient calculation unit 22482, the multiplication unit 22485a, the multiplication unit 22485b, and the addition unit 22486 are notified from the high-speed communication unit 227, and estimated acceleration values in the X and Y directions at the intersection of the optical axis and the mounting surface P1, Based on the above formula (11), the front side is calculated from the acceleration estimation values in the X and Y directions at the intersection of the optical axis and the mounting surface P2, which is the calculation result of the adder 22484. An acceleration estimated value in each of the X and Y directions at the principal point position is calculated.
  • the coefficient calculation unit 22482 calculates the coefficients K5 and K6 in the same manner as the coefficient calculation unit 22443 described above.
  • the multiplication unit 22485a multiplies the estimated acceleration value in the X and Y directions at the intersection of the optical axis and the mounting surface P1 notified from the high-speed communication unit 227 by a coefficient K6.
  • the multiplication unit 22485b multiplies the estimated acceleration value in the X and Y directions at the intersection of the optical axis and the mounting surface P2, which is the calculation result of the addition unit 22484, by a coefficient K5.
  • the adder 22486 adds the multiplication result of the multiplication unit 22485a and the multiplication result of the multiplication unit 22485b for each of the X and Y directions, and calculates an acceleration estimated value in each of the X and Y directions at the front principal point position. .
  • the estimated acceleration value notified from the camera body 10 is detected (calculated) at a period of 1 ms and transmitted in real time. Therefore, the difference from the detected (calculated) timing of the estimated acceleration value calculated by the adder 22486 is 1 ms or less.
  • the acceleration at the front principal point position can be calculated (estimated) in real time. It can be improved further.
  • the acceleration is calculated (estimated) after the acceleration is calculated (estimated) like the estimated value calculation unit 2242 or 2248 and the integration unit 2243 described above.
  • the calculation is not limited to this. For example, after calculating the moving speed at the mounting position of each acceleration sensor, the moving speed at the intersection of the mounting surface of each acceleration sensor and the optical axis may be calculated (estimated) based on the calculated moving speed.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, you may delete some components of all the components shown by embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Adjustment Of Camera Lenses (AREA)
  • Studio Devices (AREA)
  • Structure And Mechanism Of Cameras (AREA)

Abstract

撮像装置は、撮影光学系の光軸と直交する第1平面上における異なる位置に配置される2つの加速度センサと、光軸と各加速度センサとの間の第2方向の距離と各加速度センサの第1方向の加速度検出値とに基づいて光軸上の第1位置における第1方向の加速度推定値を算出する第1加速度推定部と、光軸と各加速度センサとの間の第1方向の距離と各加速度センサの第2方向の加速度検出値とに基づいて第1位置における第2方向の加速度推定値を算出する第2加速度推定部と、第1方向の加速度推定値と第2方向の加速度推定値を用いて、撮像装置における像ぶれ量を算出するぶれ量算出部とを備える。

Description

撮像装置、及び、その像ぶれ量算出方法
 本発明は、像ぶれを補正する機能を備えた撮像装置、及び、その像ぶれ量算出方法に関する。
 近年、デジタルカメラ(以下単に「カメラ」という)の手ぶれ補正機能の進歩によって、カメラに生じる回転運動により撮影画像に生じるぶれ(像ぶれ)、所謂角度ぶれに関しては高い精度で補正することができる。
 しかしながら、被写体像を大きく写しこむマクロ撮影においては、カメラの平行移動により生じるぶれ(像ぶれ)、所謂シフトぶれ(平行ぶれ、並進ぶれ)の影響が大きくなる為、角度ぶれの補正だけでは不十分で、手ぶれによる画質劣化を生じるケースがある。
 こうしたことから、交換レンズに加わるぶれ(振れ)の加速度を検出する加速度センサと、ぶれの角速度を検出する角速度センサと、加速度センサ及び角速度センサによる加速度及び角速度の検出結果に基づいて角度ぶれの回転中心を演算し、ブレ補正レンズの目標位置を演算する目標位置変換部とを備え、この目標位置変換部により得られた演算結果に基づいてブレ補正レンズを駆動して像のぶれを補正するようにしたブレ補正装置が提案されている(例えば特許文献1参照)。
特開2004-295027号公報
 加速度センサを使ったぶれ検出には様々な問題がある。
 例えば、カメラの移動が完全な平行移動(即ち並進移動)の場合には、カメラ内の位置に関係なく、検出される加速度は一定であるが、回転運動を伴う場合には、カメラ内の位置により、検出される加速度が異なる。
 シフトぶれを正しく補正するためには、撮影光学系の光軸上の前側主点位置付近の加速度、移動速度、又は移動量を正確に検出する必要がある。しかしながら、カメラの構成上の制約から、撮影光学系の光軸上の前側主点位置付近に加速度センサを配置することはできない。
 本発明は、上記問題に着眼し為されたものであり、撮影光学系の前側主点位置における加速度又は移動速度を高精度に検出することができ、これにより平行移動による像ぶれを高精度に補正することができる撮像装置、及び、その像ぶれ量算出方法を提供することを目的とする。
 本発明の第1の態様は、被写体を結像する撮影光学系を有する撮像装置であって、前記撮影光学系の光軸と直交する第1平面上における異なる位置に配置される、第1方向と第2方向の加速度を検出する第1加速度センサ及び前記第1方向と前記第2方向の加速度を検出する第2加速度センサと、前記光軸と前記第1加速度センサとの間の前記第2方向の距離と、前記光軸と前記第2加速度センサとの間の前記第2方向の距離と、前記第1加速度センサの前記第1方向の加速度検出値と、前記第2加速度センサの前記第1方向の加速度検出値とに基づいて、前記光軸上の第1位置における前記第1方向の加速度推定値を算出する第1加速度推定部と、前記光軸と前記第1加速度センサとの間の前記第1方向の距離と、前記光軸と前記第2加速度センサとの間の前記第1方向の距離と、前記第1加速度センサの前記第2方向の加速度検出値と、前記第2加速度センサの前記第2方向の加速度検出値とに基づいて、前記第1位置における前記第2方向の加速度推定値を算出する第2加速度推定部と、前記第1方向の加速度推定値と前記第2方向の加速度推定値を用いて、前記撮像装置における像ぶれ量を算出するぶれ量算出部と、を備える撮像装置を提供する。
 本発明の第2の態様は、第1の態様において、前記第1加速度センサと前記第2加速度センサとの間の中央に前記光軸が位置するように、前記第1加速度センサと前記第2加速度センサが配置され、前記第1加速度推定部は、前記第1加速度センサの前記第1方向の加速度検出値と前記第2加速度センサの前記第1方向の加速度検出値の加算平均値を、前記第1方向の加速度推定値とし、前記第2加速度推定部は、前記第1加速度センサの前記第2方向の加速度検出値と前記第2加速度センサの前記第2方向の加速度検出値の加算平均値を、前記第2方向の加速度推定値とする、撮像装置を提供する。
 本発明の第3の態様は、第1又は第2の態様において、前記光軸と直交する第2平面上における異なる位置に配置される、前記第1方向と前記第2方向の加速度を検出する第3加速度センサ及び前記第1方向と前記第2方向の加速度を検出する第4加速度センサと、前記光軸と前記第3加速度センサとの間の前記第2方向の距離と、前記光軸と前記第4加速度センサとの間の前記第2方向の距離と、前記第3加速度センサの前記第1方向の加速度検出値と、前記第4加速度センサの前記第1方向の加速度検出値とに基づいて、前記光軸上の第2位置における前記第1方向の加速度推定値を算出する第3加速度推定部と、前記光軸と前記第3加速度センサとの間の前記第1方向の距離と、前記光軸と前記第4加速度センサとの間の前記第1方向の距離と、前記第3加速度センサの前記第2方向の加速度検出値と、前記第4加速度センサの前記第2方向の加速度検出値とに基づいて、前記第2位置における前記第2方向の加速度推定値を算出する第4加速度推定部と、前記第1加速度推定部により算出された前記第1位置における前記第1方向の加速度推定値と、前記第3加速度推定部により算出された前記第2位置における前記第1方向の加速度推定値と、前記撮影光学系の前記光軸上の主点位置と前記第1位置との間の距離と、前記主点位置と前記第2位置との間の距離とに基づいて、前記主点位置における前記第1方向の加速度推定値を算出する第5加速度推定部と、前記第2加速度推定部により算出された前記第1位置における前記第2方向の加速度推定値と、前記第4加速度推定部により算出された前記第2位置における前記第2方向の加速度推定値と、前記主点位置と前記第1位置との間の距離と、前記主点位置と前記第2位置との間の距離とに基づいて、前記主点位置における前記第2方向の加速度推定値を算出する第6加速度推定部と、を更に備え、前記ぶれ量算出部は、更に、前記主点位置における前記第1方向の加速度推定値と前記主点位置における前記第2方向の加速度推定値を用いて、前記撮像装置における像ぶれ量を算出する、撮像装置を提供する。
 本発明の第4の態様は、第3の態様において、前記撮像装置は、撮像素子を有するカメラ本体と、前記撮影光学系を有する交換式レンズとにより構成されるカメラシステムであって、前記交換式レンズは、前記カメラ本体に対して着脱可能であり、前記第1位置は、前記撮像素子の撮像面の撮像中心位置であり、前記第2位置は、前記交換式レンズ内部の前記光軸上の任意の位置である、撮像装置を提供する。
 本発明の第5の態様は、第4の態様において、前記交換式レンズは、前記カメラ本体との間でデータの送受信を行う第1レンズ通信部と、前記カメラ本体との間で前記第1レンズ通信部よりも高速にデータの送受信を行う第2レンズ通信部と、を備え、前記カメラ本体は、前記交換式レンズとの間でデータの送受信を行う第1カメラ通信部と、前記交換式レンズとの間で前記第1カメラ通信部よりも高速にデータの送受信を行う第2カメラ通信部と、を備え、前記第2カメラ通信部は、前記カメラ本体が有する前記第1加速度センサ及び前記第2加速度センサの各々の加速度検出値に基づいて算出された前記第1位置における推定加速度検出値を前記第2レンズ通信部へ送信する、撮像装置を提供する。
 本発明の第6の態様は、第1の態様において、撮像素子と、フォーカス調整機構により調整された前記撮影光学系の状態における前記撮像素子の撮像面上の合焦位置を検出する合焦位置検出部と、を更に備え、前記第1加速度推定部は、更に、前記合焦位置と前記第1加速度センサとの間の前記第2方向の距離と、前記合焦位置と前記第2加速度センサとの間の前記第2方向の距離と、前記第1加速度センサの前記第1方向の加速度検出値と、前記第2加速度センサの前記第1方向の加速度検出値とに基づいて、前記合焦位置における前記第1方向の加速度推定値を算出し、前記第2加速度推定部は、更に、前記合焦位置と前記第1加速度センサとの間の前記第1方向の距離と、前記合焦位置と前記第2加速度センサとの間の前記第1方向の距離と、前記第1加速度センサの前記第2方向の加速度検出値と、前記第2加速度センサの前記第2方向の加速度検出値とに基づいて、前記合焦位置における前記第2方向の加速度推定値を算出し、前記ぶれ量算出部は、更に、前記合焦位置における前記第1方向の加速度推定値と前記合焦位置における前記第2方向の加速度推定値を用いて、前記撮像装置における像ぶれ量を算出する、撮像装置を提供する。
 本発明の第7の態様は、被写体を結像する撮影光学系と、前記撮影光学系の光軸と直交する平面上の異なる位置に配置される第1加速度センサ及び第2加速度センサとを有する撮像装置の像ぶれ量算出方法であって、前記第1加速度センサによって、第1方向及び第2方向の加速度を検出することと、前記第2加速度センサによって、前記第1方向及び前記第2方向の加速度を検出することと、前記光軸と前記第1加速度センサとの間の前記第2方向の距離と、前記光軸と前記第2加速度センサとの間の前記第2方向の距離と、前記第1加速度センサの前記第1方向の加速度検出値と、前記第2加速度センサの前記第1方向の加速度検出値とに基づいて、前記光軸上の第1位置における前記第1方向の加速度推定値を算出することと、前記光軸と前記第1加速度センサとの間の前記第1方向の距離と、前記光軸と前記第2加速度センサとの間の前記第1方向の距離と、前記第1加速度センサの前記第2方向の加速度検出値と、前記第2加速度センサの前記第2方向の加速度検出値とに基づいて、前記第1位置における前記第2方向の加速度推定値を算出することと、前記第1方向の加速度推定値と前記第2方向の加速度推定値を用いて、前記撮像装置における像ぶれ量を算出することと、を有する像ぶれ算出方法を提供する。
 本発明によれば、撮影光学系の前側主点位置における加速度又は移動速度を高精度に検出することができ、これにより平行移動による像ぶれを高精度に補正することができる、という効果を奏する。
実施の形態に係る撮像装置であるカメラを示す図である。 Z方向の軸を光軸とした場合に、それと直交する平面上の異なる位置に2つの加速度センサが配置されたケースを示す図である。 Z方向の軸を光軸とした場合に、その光軸上の異なる位置に2つの加速度センサが配置されたケースを示す図である。 第1の実施形態に係る撮像装置であるカメラの構成例を示す図である。 第1の実施形態に係る、撮影光学系と2つの加速度センサを光軸方向(カメラ正面側)から見た図である。 第1の実施形態に係るぶれ補正マイコンの内部構成例を示す図である。 第1の実施形態に係るシフトぶれ量算出部の内部構成例を示す図である。 第1の実施形態に係る推定値算出部の内部構成例を示す図である。 第1の実施形態の変形例に係るぶれ補正マイコンの内部構成例を示す図である。 第1の実施形態の変形例に係るシフトぶれ量算出部の内部構成例を示す図である。 第1の実施形態の変形例に係る、2つの加速度センサと撮像素子の撮像面を光軸方向(カメラ正面側)から見た図である。 第2の実施形態に係る撮像装置であるカメラシステムの構成例を示す図である。 第2の実施形態に係るカメラシステムにおいて、撮影光学系の光軸上の各位置における移動量の関係を示す図である。 第2の実施形態に係るLCUの内部構成例を示す図である。 第2の実施形態に係るLCU内のシフトぶれ量算出部の内部構成例を示す図である。 第2の実施形態に係る速度補正部の内部構成例を示す図である。 第2の実施形態に係るぶれ補正マイコンの内部構成例を示す図である。 第2の実施形態に係るぶれ補正マイコン内のシフトぶれ量算出部の内部構成例を示す図である。 第2の実施形態の変形例に係るカメラシステムの構成例を示す図である。 送信データのフォーマット例を示す図である。 送信データのタイミングチャートを示す図である。 第2の実施形態の変形例に係るぶれ補正マイコンの内部構成例を示す図である。 第2の実施形態の変形例に係るぶれ補正マイコン内のシフトぶれ量算出部の内部構成例を示す図である。 第2の実施形態の変形例に係るLCUの内部構成例を示す図である。 第2の実施形態の変形例に係るLCU内のシフトぶれ量算出部の内部構成例を示す図である。 第2の実施形態の変形例に係るLCU内の推定値算出部の内部構成例を示す図である。
 以下、図面を参照しながら、本発明の実施の形態について説明する。
 はじめに、図1を用いて、本発明の実施形態に係る撮像装置に対して定義される方向について説明する。
 図1は、本発明の実施形態に係る撮像装置であるカメラを示す図である。
 図1に示したように、カメラに対して、X方向、Y方向、Z方向、Yaw方向、Pitch方向、Roll方向を、次のように定義する。
 カメラの左右方向(水平方向)をX方向とする。また、そのX方向において、カメラを正面から見たときの右方向を+方向とし、その左方向を-方向とする。なお、X方向は、後述する撮像素子の撮像面の左右方向にも対応する。
 カメラの上下方向(垂直方向)をY方向とする。また、そのY方向において、上方向を+方向とし、下方向を-方向とする。なお、Y方向は、撮像素子の撮像面の上下方向にも対応する。
 カメラの後述する撮影光学系の光軸方向をZ方向とする。また、そのZ方向において、カメラの背面側から正面側への方向を+方向とし、カメラの正面側から背面側への方向を-方向とする。
 X方向の軸を回転軸とする回転方向をPitch方向とする。また、そのPitch方向において、+X方向へ向かって左回転を+方向とし、+X方向に向かって右回転を-方向とする。
 Y方向の軸を回転軸とする回転方向をYaw方向とする。また、そのYaw方向において、+Y方向へ向かって右回転を+方向とし、+Y方向に向かって左回転を-方向とする。
 Z方向の軸を回転軸とする回転方向をRoll方向とする。また、そのRoll方向において、+Z方向に向かって左回転を+方向とし、+Z方向に向かって右回転を-方向とする。
 なお、このように定義された方向の正負(+,-)は、後述する角速度センサや加速度センサの実装方向に依存するため、上記に限定されるものでない。
 次に、図2及び図3を用いて、本発明の実施形態に係る撮像装置で行われる加速度推定値算出の考え方について説明する。
 図2は、Z方向の軸を光軸とした場合に、それと直交する平面上の異なる位置に2つの加速度センサが配置されたケースを示す図である。
 図2において、点Cを通る軸を回転軸として回転運動が生じた場合(この場合、点Cは回転中心でもある)、2つの加速度センサS1及びS2の各々には、平行移動が生じる。
 この場合、加速度センサS1に対して生じるX方向、Y方向の平行移動量D1x、D1yは、下記式(1)、(2)により求められ、加速度センサS2に対して生じるX方向、Y方向の平行移動量D2x、D2yは、下記式(3)、(4)により求められる。
 但し、Yaw、Pitch、Roll方向の各角速度をωyaw、ωpitch、ωrollとし、半径R1(回転中心Cと加速度センサS1とを結ぶ線分)のX、Y、Z方向の各軸への投影をR1x、R1y、R1zとし、半径R2(回転中心Cと加速度センサS2とを結ぶ線分)のX、Y、Z方向の各軸への投影をR2x、R2y、R2zとする。なお、図2に示したケースでは、R2x=0、R2y=0である。
  D1x=ωyaw×R1z+ωroll×R1y          式(1)
  D1y=ωpitch×R1z+ωroll×R1x         式(2)
  D2x=ωyaw×R2z+ωroll×R2y=ωyaw×R2z    式(3)
  D2y=ωpitch×R2z+ωroll×R2x=ωpitch×R2z  式(4)
 図2に示したケースでは、加速度センサS1、S2の実装位置の関係から、R1z=R2z、が成り立つ。
 従って、Roll方向の回転運動が無ければ、加速度センサS1、S2に生じる加速度は等しいが、Roll方向の回転運動が発生した場合には、加速度センサS1、S2の検出結果に差が生じる。このときの検出誤差(検出結果の差)は、X方向に対してはR1yとR2yの比率により生じ、Y方向に対してはR1xとR2xとの比率により生じる。
 このことから、加速度センサS1、S2が配置された平面(光軸に直交する平面でもある)と光軸との交点における加速度の検出結果(検出値)は、その交点からの各加速度センサの実装距離と、加速度センサS1、S2の検出結果とに基づいて、求める(推定する)ことができる。
 図3は、Z方向の軸を光軸とした場合に、その光軸上の異なる位置に2つの加速度センサが配置されたケースを示す図である。
 図3において、点Cを通る軸を回転軸として回転運動が生じた場合(この場合、点Cは回転中心でもある)、2つの加速度センサS1及びS2の各々には平行移動が生じ、その各々に生じる平行移動量は、図2に示したケースと同様に、上記式(1)、(2)、(3)、(4)により求められる。
 但し、図3に示したケースでは、加速度センサS1、S2の実装位置の関係から、R1x=R2x、R1y=R2y、が成り立つ。
 従って、Roll方向の回転運動が発生した場合には、加速度センサS1、S2の検出結果に差は生じないが、Yaw方向、Pitch方向の回転運動が発生した場合には、加速度センサS1、S2の検出結果に差が生じる。このときの検出誤差(検出結果の差)は、回転中心Cと各加速度センサの実装位置との間のZ方向の距離の比率により生じる。
 このことから、光軸上の位置における加速度の検出結果(検出値)は、その位置からの各加速度センサの実装距離と、加速度センサS1、S2の検出結果とに基づいて、求める(推定する)ことができる。
 以上のことから、加速度センサが同一平面上の異なる位置に2つ以上配置されている場合、各加速度センサの検出結果と、その同一平面上における任意の点と各加速度センサとの間の距離の比率とに基づいて、その任意の点における加速度の検出結果(検出値)を推定することができる。
 また、加速度センサが同一直線上に2つ以上配置された場合、各加速度センサの検出結果と、その同一直線上の任意の点と各加速度センサとの間の距離の比率とに基づいて、その任意の点における加速度の検出結果(検出値)を推定することができる。
 このような関係を用いることで、撮影光学系の前側主点位置における加速度の検出結果(検出値)を推定することができる。
 以上を踏まえ、以下、本発明の実施形態に係る撮像装置について詳細に説明する。
<第1の実施形態>
 図4は、本発明の第1の実施形態に係る撮像装置であるカメラの構成例を示す図である。
 図4に示したように、本実施形態に係るカメラ1は、撮影光学系2、撮像素子3、駆動部4、システムコントローラ5、ぶれ補正マイコン6、2つの加速度センサ7(7a、7b)、及び角速度センサ8を含む。
 撮影光学系2は、被写体からの光束を撮像素子3に結像する。
 撮像素子3は、例えばCCDやCMOS等のイメージセンサであって、撮影光学系2により結像された被写体光束(被写体光学像)を電気信号に変換する。
 システムコントローラ5は、撮像素子3により変換された電気信号を映像信号として読み出す。読み出された映像信号は、例えば、図示しない記録媒体(メモリカード等)に撮影画像として記録されたり、映像として記録されたりする。なお、カメラ1の各種動作は、システムコントローラ5の制御の下に行われる。
 ぶれ補正マイコン6は、加速度センサ7a、7bと角速度センサ8の検出結果に基づいて補正量を算出し、駆動部4に指示して、撮像素子3の撮像面上に生じる像ぶれを打ち消すように撮像素子3を移動させる。
 なお、システムコントローラ5及びぶれ補正マイコン6の各々は、例えば、プロセッサ(CPU等)、メモリ、電子回路等を含んで構成される。そして、その各々による各種動作は、例えば、メモリに格納されているプログラムをプロセッサが実行することにより実現される。
 駆動部4は、ぶれ補正マイコン6からの指示に基づいて、撮像素子3を、撮影光学系2の光軸と直交する平面上で移動させる駆動機構である。
 角速度センサ8は、カメラ1に生じる3軸の回転運動(Yaw方向、Pitch方向、及びRoll方向の回転運動)を検出する。
 2つの加速度センサ7(7a、7b)は、撮影光学系2の前側主点位置を含む平面上であって且つ撮影光学系2の光軸に直交する平面上に、光軸を中心(中央)にして対向して配置(実装)される。各加速度センサ7は、X方向及びY方向の加速度を検出する。
 なお、各加速度センサ7の実装位置に関する情報は、光軸上の点を原点とするX方向及びY方向の座標情報として、ぶれ補正マイコン6の内部ROMに予め記録されており、後述する加速度推定値の算出に用いられる。但し、本実施形態の場合は、2つの加速度センサ7が光軸を中心にして対向して配置されるので、詳細は後述するように、各加速度センサ7の実装位置に関する情報を用いずとも加速度推定値を算出することができる。従って、本実施形態では、各加速度センサ7の実装位置に関する情報を保持しない構成としてもよい。
 図5は、撮影光学系2と2つの加速度センサ7(7a、7b)を光軸方向(カメラ正面側)から見た図である。
 図5に示したように、2つの加速度センサ7(7a、7b)は、光軸から等距離に配置されている。すなわち、光軸から加速度センサ7aまでの距離raと光軸から加速度センサ7bまでの距離rbは等しい(ra=rb)。なお、距離raは、撮影光学系2の前側主点位置(光学中心C)から加速度センサ7aまでの距離でもあり、距離rbは、撮影光学系2の前側主点位置(光学中心C)から加速度センサ7bまでの距離でもある。
 このため、2つの加速度センサ7(7a、7b)の各々の検出結果の平均値を求めることで、撮影光学系2の前側主点位置におけるX方向、Y方向の加速度の検出結果を算出(推定)することができる。
 なお、ra_x、ra_yは、距離raのX成分、Y成分である。rb_x、rb_yは、距離rbのX成分、Y成分である。
 図6は、ぶれ補正マイコン6の内部構成例を示す図である。
 図6に示したように、ぶれ補正マイコン6は、角度ぶれ量算出部61、シフトぶれ量算出部62、加算部63、及び駆動制御部64を含む。
 角度ぶれ量算出部61は、角速度センサ8からの角速度検出結果に基づいて、カメラ1の回転運動により撮像素子3の撮像面上に生じる像ぶれのX、Yの各方向の像ぶれ量を算出し、その像ぶれ量を打ち消すためのX、Yの各方向の補正量(回転ぶれ補正量)を算出する。
 シフトぶれ量算出部62は、加速度センサ7aの検出結果(加速度a)と加速度センサ7bの検出結果(加速度b)に基づいて、カメラ1の平行移動により撮像素子3の撮像面上に生じる像ぶれのX、Yの各方向の像ぶれ量を算出し、その像ぶれ量を打ち消すためのX、Yの各方向の補正量(シフトぶれ補正量)を算出する。なお、シフトぶれ量算出部62の内部構成については、図7を用いて後述する。
 加算部63は、角度ぶれ量算出部61及びシフトぶれ量算出部62の各々で算出された補正量をX、Yの方向毎に合算する。
 駆動制御部64は、加算部63により合算されたX、Yの各方向の補正量を、駆動部4を駆動するための駆動パルスに変換し、駆動部4へ出力する。駆動部4は、その駆動パルスに従って駆動し、撮像素子3を移動させる。これにより、撮像素子3の撮像面上に生じる像ぶれが打ち消されるように、撮像素子3が移動する。
 図7は、シフトぶれ量算出部62の内部構成例を示す図である。
 図7に示したように、シフトぶれ量算出部62は、2つの信号処理部621(621a、621b)、推定値算出部622、積分部623、乗算部624、積分部625、及び補正量算出部626を含む。
 各信号処理部621は、入力されたX、Yの各方向の加速度に対し、重力成分を除去する処理やフィルタ処理(低周波成分を除去する処理)等を行う。これにより、入力されたX、Yの各方向の加速度は、カメラ静止時では0、それ以外では絶対値が加速度の大きさを示し且つ符号が加速度の向きを示すデジタル値に変換される。本実施形態では、加速度センサ7aにより検出されたX、Yの各方向の加速度aが信号処理部621aに入力され、加速度センサ7bにより検出されたX、Yの各方向の加速度bが信号処理部621bに入力されて処理が行われる。
 推定値算出部622は、前側主点位置(光軸)から各加速度センサ7の実装位置までの距離の比率から、下記式(5)、(6)を用いて、前側主点位置におけるX方向、Y方向の加速度推定値Xc、Ycを算出する。
Figure JPOXMLDOC01-appb-M000001
 ここで、Xa、Yaは、信号処理部621aによる処理後のX方向、Y方向の加速度a(信号処理部621aのX方向、Y方向の処理結果)である。Xb、Ybは、信号処理部621bによる処理後のX方向、Y方向の加速度b(信号処理部621bのX方向、Y方向の処理結果)である。ra_x、ra_yは、図5に示したように、raのX方向成分、Y方向成分である。rb_x、rb_yは、図5に示したように、rbのX方向成分、Y方向成分である。すなわち、ra_x、ra_yは、加速度センサ7aの実装位置の座標情報であり、rb_x、rb_yは、加速度センサ7bの実装位置の座標情報である。
 本実施形態では、raとrbが等しく、ra_xとrb_xが等しく、ra_yとrb_yが等しいため、上記式(5)、(6)は下記式(7)、(8)のように表される。すなわち、この場合は、加算平均により加速度推定値Xc、Ycを算出することができる。
Figure JPOXMLDOC01-appb-M000002
 なお、推定値算出部622の内部構成については、図8を用いて後述する。
 積分部623は、推定値算出部622により算出されたX、Yの各方向の加速度推定値を時間積分し、前側主点位置におけるX、Yの各方向の移動速度を算出する。
 乗算部624は、積分部623により算出されたX、Yの各方向の移動速度に、撮影光学系2の像倍率を乗算し、撮像素子3の撮像面上でのX、Yの各方向の像移動速度に変換する。
 積分部625は、乗算部624の乗算結果である、撮像面上でのX、Yの各方向の像移動速度を時間積分し、撮像面上でのX、Yの各方向の像移動量(像ぶれ量)を算出する。
 補正量算出部626は、積分部625により算出されたX、Yの各方向の像ぶれ量を打ち消すためのX、Yの各方向の補正量(シフトぶれ補正量)を算出する。
 なお、本実施形態では、上述の推定値算出部622及び積分部623のように、前側主点位置における加速度を算出(推定)した後に、それに基づいて、前側主点位置における移動速度を算出しているが、この移動速度の算出は、これに限定されるものではない。例えば、各加速度センサ7の実装位置における移動速度を算出した後に、それに基づいて、前側主点位置における移動速度を算出(推定)するようにしてもよい。但し、各加速度センサ7の検出結果に含まれるノイズ成分除去の観点から、上述の推定値算出部622及び積分部623のように処理する方が望ましい。
 図8は、推定値算出部622の内部構成例を示す図である。
 図8に示したように、推定値算出部622は、係数算出部6221、2つの乗算部6222(6222a、6222b)、及び加算部6223を含む。
 係数算出部6221は、各加速度センサ7の実装位置に関する情報に基づいて、演算係数K1、K2、K3、K4を算出する。演算係数K1、K2は、X方向の加速度推定値の算出に使用される係数であり、K1=rb_y/(ra_y+rb_y)、K2=ra_y/(ra_y+rb_y)により算出される。演算係数K3、K4は、Y方向の加速度推定値の算出に使用される係数であり、K3=rb_x/(ra_x+rb_x)、K4=ra_x/(ra_x+rb_x)により算出される。
 なお、本実施形態では、加速度センサ7a、7bの実装位置及び光軸までの距離が変化しないので、演算係数K1、K2、K3、K4を固定値として保持する構成としてもよい。
 乗算部6222aは、信号処理部621aによる処理後のX、Yの各方向の加速度a(Xa、Ya)が入力され、X方向の加速度Xaに対して演算係数K1を乗算し、Y方向の加速度Yaに対して演算係数K3を乗算する。
 乗算部6222bは、信号処理部621bによる処理後のX、Yの各方向の加速度b(Xb、Yb)が入力され、X方向の加速度Xbに対して演算係数K2を乗算し、Y方向の加速度Ybに対して演算係数K4を乗算する。
 加算部6223は、乗算部6222aの乗算結果であるK1×Xaと乗算部6222bの乗算結果であるK2×Xbとを加算してX方向の加速度推定値Xcを算出し、乗算部6222aの乗算結果であるK3×Yaと乗算部6222bの乗算結果であるK4×Ybとを加算してY方向の加速度推定値Ycを算出する。
 以上述べてきたように、本実施形態によれば、撮影光学系2の前側主点位置を含む平面上(撮影光学系2の光軸に直交する平面上でもある)に2つの加速度センサ7を配置することで、光軸から各加速度センサ7の実装位置までの距離の比率と各加速度センサの検出結果とに基づいて、前側主点位置における加速度を算出(推定)することができる。従って、その加速度に基づいてぶれ補正を行うことによって、シフトぶれを高精度に補正することができる。
 次に、本実施形態に係る変形例について、図9乃至図11を用いて説明する。
 本変形例では、2つの加速度センサ7が、例えば後述の図12に示す2つの加速度センサ15(15a、15b)のように、撮像素子3の撮像面を含む平面上の異なる位置に配置され、撮像面上のフォーカスエリアの位置における加速度が推定されて処理が行われる。
 図9は、本変形例に係るぶれ補正マイコン6の内部構成例を示す図である。
 図9に示したように、本変形例に係るぶれ補正マイコン6は、通信部65を更に含み、その通信部65を介してシステムコントローラ5からフォーカス位置情報がシフトぶれ量算出部62へ入力される点が、図6に示したぶれ補正マイコン6と異なる。なお、フォーカス位置情報は、図示しないフォーカス調整機構により調整された撮影光学系2の状態における撮像素子3の撮像面上の合焦位置を示す情報であり、その合焦位置はシステムコントローラ5により取得される。
 図10は、本変形例に係るシフトぶれ量算出部62の内部構成例を示す図である。
 図10に示したように、本変形例に係るシフトぶれ量算出部62は、更にフォーカス位置情報が推定値算出部622に入力され、そこでフォーカス位置における加速度推定値が算出される点が、図7に示したシフトぶれ量算出部62と異なっている。
 本変形例に係る推定値算出部622で行われる加速度推定値算出について、図11を用いて説明する。
 図11は、本変形例に係る、2つの加速度センサ7(7a、7b)と撮像素子3の撮像面を光軸方向(カメラ正面側)から見た図である。
 図11において、IPは撮像面を示し、OCは光軸を示し、FAはフォーカスエリアを示し、FPはフォーカスポイント(フォーカスエリアFAの中心)を示している。なお、本変形例でも、2つの加速度センサ7は、光軸を中心(中央)にして対向して配置(実装)されるとする。
 加速度センサ7aからフォーカスポイントFPまでのX方向、Y方向の距離をFPXa、FPYaとし、加速度センサ7bからフォーカスポイントFPまでのX方向、Y方向の距離をFPXb、FPYbとする。また、加速度センサ7aにより検出されたX方向、Y方向の加速度をAax、Aayとし、加速度センサ7bにより検出されたX方向、Y方向の加速度をAbx、Abyとする。
 このとき、フォーカスポイントFPにおけるX方向、Y方向の加速度AFPX、AFPYは、上記式(5)、(6)に基づいて、下記式(9)、(10)により求められる。
Figure JPOXMLDOC01-appb-M000003
 つまり、このときは、本変形例に係る推定値算出部622内の係数算出部6221(図8参照)には更にフォーカス位置情報(フォーカスエリアFAとフォーカスポイントFPに関する情報を含む)が入力され、そこで係数K1がFPYb/(FPYa+FPYb)、係数K2がFPYa/(FPYa+FPYb)、係数K3がFPXb/(FPXa+FPXb)、係数K4がFPXa/(FPXa+FPXb)として算出されて処理が行われる。
 本変形例によれば、ピントが合う位置(フォーカスポイントFAの位置)の像ぶれを高精度に抑制することができる。
<第2の実施形態>
 図12は、本発明の第2の実施形態に係る撮像装置であるカメラシステムの構成例を示す図である。
 図12に示したように、本実施形態に係るカメラシステム100は、カメラ本体10と交換式レンズ20を備え、交換式レンズ20がカメラ本体10に対して着脱自在に構成されている。このカメラシステム100では、カメラ本体10と交換式レンズ20の双方が、手ぶれ(回転ぶれ)補正機能及びシフトぶれ補正機能を搭載しているものとする。
 カメラ本体10は、撮像素子11、駆動部12、システムコントローラ13、ぶれ補正マイコン14、2つの加速度センサ15(15a、15b)、及び角速度センサ16を含む。交換式レンズ20は、撮影光学系21、LCU(Lens Control Unit)22、駆動部23、2つの加速度センサ24(24a、24b)、及び角速度センサ25を含む。
 撮影光学系21は、被写体からの光束を撮像素子11に結像する。
 撮像素子11は、例えばCCDやCMOS等のイメージセンサであって、撮影光学系21により結像された被写体光束(被写体光学像)を電気信号に変換する。
 システムコントローラ13は、撮像素子11により変換された電気信号を映像信号として読み出す。読み出された映像信号は、例えば、図示しない記録媒体(メモリカード等)に撮影画像として記録されたり、映像として記録されたりする。
 また、システムコントローラ13は、図示しない通信部を備え、この通信部により、図示しないマウントを介してLCU22と通信し、交換式レンズ20の情報を取得する。そして、交換式レンズ20の情報に基づいて、交換式レンズ20がぶれ補正機能を有するか否かを判定する。ここで、交換式レンズ20がぶれ補正機能を有する場合、カメラ本体10と交換式レンズ20の双方のぶれ補正機能が同時に動作してしまうと、過補正により逆に像ぶれが生じてしまう。そこで、システムコントローラ13は、交換式レンズ20がぶれ補正機能を有する場合は、カメラ本体10と交換式レンズ20のいずれか一方のぶれ補正機能を停止させるか、或いは、双方で所定の比率で分担してぶれ補正を行うか、といったぶれ補正方法を決定し、決定したぶれ補正方法に従ってぶれ補正を行うように制御する。
 また、システムコントローラ13は、カメラ本体10と交換式レンズ20の動作を同期するための同期信号を生成し、通信部により、LCU22及びぶれ補正マイコン14に通知する。これにより、例えば、同期信号とされるパルス信号の立ち上がりを検出した場合に、カメラ本体10と交換式レンズ20の双方で予め決められた動作を開始することで、双方の動作に同期がとられる。
 2つの加速度センサ24(24a、24b)は、撮影光学系2の光軸と直交する平面上に、光軸を中心(中央)にして対向して配置(実装)される。各加速度センサ24は、X方向及びY方向の加速度を検出する。なお、各加速度センサ24の実装位置に関する情報は、光軸上の点を原点とするX方向、Y方向、及びZ方向の座標情報として、LCU22の内部ROMに予め記録されており、後述する加速度推定値や移動速度の算出に用いられる。但し、本実施形態の場合も、2つの加速度センサ24が光軸を中心にして対向して配置されるので、各加速度センサ7の実装位置に関する情報として、X方向及びY方向の座標情報を保持しない構成としてもよい。
 角速度センサ25は、カメラシステム100に生じる3軸の回転運動(Yaw方向、Pitch方向、及びRoll方向の回転運動)を検出する。
 LCU22は、加速度センサ24a、24bと角速度センサ25の検出結果に基づいて補正量を算出し、駆動部23に指示して、撮像素子11の撮像面上に生じる像ぶれを打ち消すように撮影光学系21に含まれる図示しない補正レンズを移動させる。なお、LCU22の内部構成については、図14を用いて後述する。
 駆動部23は、LCU22からの指示に基づいて、撮影光学系21に含まれる補正レンズを、撮影光学系2の光軸と直交する平面上で移動させる駆動機構である。
 2つの加速度センサ15(15a、15b)は、撮像素子11の撮像面を含む平面上に配置され、且つ、初期位置における撮像素子11の撮像中心を中心(中央)にして対向して配置(実装)される。ここで、撮像素子11の撮像面は、撮影光学系21の光軸に直交する。また、初期位置における撮像素子11の撮像中心は光軸に一致する。各加速度センサ15は、X方向及びY方向の加速度を検出する。なお、各加速度センサ15の実装位置に関する情報は、光軸上の点を原点とするX方向、Y方向、及びZ方向の座標情報として、ぶれ補正マイコン14の内部ROMに予め記録されており、後述する加速度推定値や移動速度の算出に用いられる。但し、本実施形態の場合も、2つの加速度センサ24が光軸を中心にして対向して配置されるので、各加速度センサ7の実装位置に関する情報として、X方向及びY方向の座標情報を保持しない構成としてもよい。
 角速度センサ16は、カメラシステム100に生じる3軸の回転運動(Yaw方向、Pitch方向、及びRoll方向の回転運動)を検出する。
 ぶれ補正マイコン14は、加速度センサ15a、15bと角速度センサ16の検出結果に基づいて補正量を算出し、駆動部12に指示して、撮像素子11の撮像面上に生じる像ぶれを打ち消すように撮像素子11を移動させる。なお、ぶれ補正マイコン14の内部構成については、図17を用いて後述する。
 駆動部12は、ぶれ補正マイコン14からの指示に基づいて、撮像素子11を、撮影光学系2の光軸と直交する平面上で移動させる駆動機構である。
 なお、カメラシステム100において、システムコントローラ13は、カメラシステム100の各種動作を制御する。LCU22は、システムコントローラ13の制御の下、交換式レンズ20の各種動作を制御する。システムコントローラ13、ぶれ補正マイコン14、及びLCU22の各々は、例えば、プロセッサ(CPU等)、メモリ、電子回路等を含んで構成される。そして、その各々による各種動作は、例えば、メモリに格納されているプログラムをプロセッサが実行することにより実現される。
 図13は、カメラシステム100において、撮影光学系21の光軸上の各位置における移動量の関係を示す図である。
 図13において、P1は、カメラ本体10側の2つの加速度センサ15の実装面であり、撮像素子11の撮像面を含む平面でもある。P2は、交換式レンズ20側の2つの加速度センサ24の実装面であり、撮影光学系21の光軸に直交する平面でもある。P3は、撮影光学系21の前側主点位置を含む平面であり、撮影光学系21の光軸に直交する平面でもある。
 前側主点位置から実装面P1までの距離をLb、前側主点位置から実装面P2までの距離をLaとし、実装面P1と光軸との交点における移動量をD1、実装面P2と光軸との交点における移動量をD2とすると、前側主点位置における移動量D3は、下記式(11)により求められる。
Figure JPOXMLDOC01-appb-M000004
 なお、前側主点位置における加速度や移動速度も同様にして求めることができる。例えば、前側主点位置における加速度は、距離La及びLbと、実装面P1と光軸との交点における加速度と、実装面P2と光軸との交点における加速度とに基づいて同様にして求めることができる。また、前側主点位置における移動速度は、距離La及びLbと、実装面P1と光軸との交点における移動速度と、実装面P2と光軸との交点における移動速度とに基づいて同様にして求めることができる。
 図14は、LCU22の内部構成例を示す図である。
 図14に示したように、LCU22は、通信部221、レンズ制御部222、角度ぶれ量算出部223、シフトぶれ量算出部224、加算部225、及び駆動制御部226を含む。
 通信部221は、マウントを介してカメラ本体10のシステムコントローラ13と通信を行う。例えば、通信部221は、レンズ制御に係る指示をシステムコントローラ13から取得し、レンズ制御部222へ出力する。また、通信部221は、カメラ本体10で算出された移動速度をシステムコントローラ13から取得し、シフトぶれ量算出部224へ出力する。この移動速度は、光軸と実装面P1との交点におけるX、Yの各方向の移動速度である。また、通信部221は、カメラ本体10から通知される同期信号をシフトぶれ量算出部224へ出力する。
 レンズ制御部222は、通信部221から出力されたレンズ制御に係る指示に基づいて、フォーカスや絞り等の制御を行う。
 角度ぶれ量算出部223は、角速度センサ25からの角速度検出結果に基づいて、カメラシステム100の回転運動により撮像素子11の撮像面上に生じる像ぶれのX、Yの各方向の像ぶれ量を算出し、その像ぶれ量を打ち消すためのX、Yの各方向の補正量(回転ぶれ補正量)を算出する。
 シフトぶれ量算出部224は、加速度センサ24aの検出結果(加速度a)と、加速度センサ24bの検出結果(加速度b)と、カメラ本体10で算出された移動速度とに基づいて、カメラシステム100の平行移動により撮像素子11の撮像面上に生じる像ぶれのX、Yの各方向の像ぶれ量を算出し、その像ぶれ量を打ち消すためのX、Yの各方向の補正量(シフトぶれ補正量)を算出する。なお、シフトぶれ量算出部224の内部構成については、図15を用いて後述する。
 加算部225は、角度ぶれ量算出部223及びシフトぶれ量算出部224の各々で算出された補正量をX、Yの方向毎に合算する。
 駆動制御部226は、加算部225により合算されたX、Yの各方向の補正量を、駆動部23を駆動するための駆動パルスに変換し、駆動部23へ出力する。駆動部23は、その駆動パルスに従って駆動し、撮影光学系21に含まれる補正レンズを移動させる。これにより、撮像素子3の撮像面上に生じる像ぶれが打ち消されるように、補正レンズが移動する。
 図15は、シフトぶれ量算出部224の内部構成例を示す図である。
 図15に示したように、シフトぶれ量算出部224は、2つの信号処理部2241(2241a、2241b)、推定値算出部2242、積分部2243、速度補正部2244、乗算部2245、積分部2246、及び補正量算出部2247を含む。
 各信号処理部2241は、入力されたX、Yの各方向の加速度に対し、重力成分を除去する処理やフィルタ処理等を行う。これにより、入力されたX、Yの各方向の加速度は、静止時では0、それ以外では絶対値が加速度の大きさを示し且つ符号が加速度の向きを示すデジタル値に変換される。本実施形態では、加速度センサ24aにより検出されたX、Yの各方向の加速度aが信号処理部2241aに入力され、加速度センサ24bにより検出されたX、Yの各方向の加速度bが信号処理部2241bに入力されて処理が行われる。
 推定値算出部2242は、光軸から各加速度センサ24の実装位置までの距離の比率から、上記式(5)、(6)(又は(7)、(8))に基づいて、光軸と実装面P2との交点におけるX、Yの各方向の加速度推定値を算出する。
 積分部2243は、推定値算出部2242により算出されたX、Yの各方向の加速度推定値を時間積分し、光軸と実装面P2との交点におけるX、Yの各方向の移動速度を算出する。
 速度補正部2244は、積分部2243により算出された、光軸と実装面P2との交点におけるX、Yの各方向の移動速度と、カメラ本体10で算出された、光軸と実装面P1との交点におけるX、Yの各方向の移動速度とに基づいて、上記式(11)に基づいて、前側主点位置におけるX、Yの各方向の移動速度を算出する。なお、この場合は、前側主点位置におけるX方向の移動速度は、上記式(11)におけるD2、D1を、光軸と実装面P2との交点におけるX方向の移動速度、光軸と実装面P1との交点におけるX方向の移動速度とに置き換えることにより算出することができる。前側主点位置におけるY方向の移動速度も同様にして算出することができる。なお、速度補正部2244の内部構成については、図16を用いて後述する。
 乗算部2245は、速度補正部2244により算出された、前側主点位置におけるX、Yの各方向の移動速度に、撮影光学系21の像倍率を乗算し、撮像素子11の撮像面上でのX、Yの各方向の像移動速度に変換する。
 積分部2246は、乗算部2245の乗算結果である、撮像面上でのX、Yの各方向の像移動速度を時間積分し、撮像面上でのX、Yの各方向の像移動量(像ぶれ量)を算出する。
 補正量算出部2247は、積分部2246により算出された、X、Yの各方向の像ぶれ量を打ち消すためのX、Yの各方向の補正量(シフトぶれ補正量)を算出する。
 図16は、速度補正部2244の内部構成例を示す図である。
 図16に示したように、速度補正部2244は、速度保持部22441、比率算出部22442、係数算出部22443、乗算部22444、乗算部22445、乗算部22446、及び加算部22447を含む。
 速度保持部22441は、積分部2243により算出された、光軸と実装面P2との交点におけるX、Yの各方向の移動速度を、カメラ本体10から通知される同期信号の同期タイミングに同期して保持する。
 比率算出部22442は、光軸と実装面P1との交点におけるX、Yの各方向の移動速度が、カメラ本体10から通信部221を介して通知される。この移動速度は、システムコントローラ13から通知される同期信号の同期タイミングに同期してぶれ補正マイコン14により算出され、周期的に通知される。比率算出部22442は、カメラ本体10から通知される、光軸と実装面P1との交点における移動速度と、その移動速度と同じ同期タイミングに速度保持部22441に保持された、光軸と実装面P2との交点における移動速度との比率を、X、Yの方向毎に算出する。
 乗算部22444は、積分部2243により算出された、光軸と実装面P2との交点における移動速度に対して、比率算出部22442により算出された比率をX、Yの方向毎に乗算して、光軸と実装面P1との交点におけるX、Yの各方向の移動速度を算出する。
 係数算出部22443は、撮影光学系21の前側主点位置に関する情報(主点位置情報)と、上記式(11)に基づいて、前側主点位置におけるX、Yの各方向の移動速度を算出するための係数K5、K6を算出する。より詳しくは、係数K5は、K5=Lb/(Lb-La)により算出され、係数K6は、K6=-La/(Lb-La)により算出される。なお、前側主点位置は、撮影光学系21の変倍率やフォーカスの設定により変化することから、係数算出部22443では、その設定が変更される毎に係数の再算出が行われる。この前側主点位置に関する情報は、例えば、レンズ制御部222により取得され、通信部221を介してシフトぶれ量算出部224の速度補正部2244に入力される。また、距離La、Lbは、前側主点位置に関する情報、各加速度センサ15の実装位置に関する情報、及び各加速度センサ24の実装位置に関する情報に基づいて算出される。各加速度センサ15の実装位置に関する情報は、ぶれ補正マイコン14からシステムコントローラ13、通信部221を介して、シフトぶれ量算出部224の速度補正部2244に入力される。
 乗算部22446は、積分部2243により算出された、光軸と実装面P2との交点におけるX、Yの各方向の移動速度に対し、係数算出部22443により算出された係数K5を乗算する。
 乗算部22445は、乗算部22444により算出された、光軸と実装面P1との交点におけるX、Yの各方向の移動速度に対し、係数算出部22443により算出された係数K6を乗算する。
 加算部22447は、乗算部22445の乗算結果と乗算部22446の乗算結果とをX、Yの方向毎に加算し、前側主点位置におけるX、Yの各方向の移動速度を算出(推定)する。
 図17は、ぶれ補正マイコン14の内部構成例を示す図である。
 図17に示したように、ぶれ補正マイコン14は、角度ぶれ量算出部141、シフトぶれ量算出部142、加算部143、駆動制御部144、スイッチ145、及び通信部146を含む。
 角度ぶれ量算出部141は、角速度センサ16からの角速度検出結果に基づいて、カメラシステム100の回転運動により撮像素子11の撮像面上に生じる像ぶれのX、Yの各方向の像ぶれ量を算出し、その像ぶれ量を打ち消すためのX、Yの各方向の補正量(回転ぶれ補正量)を算出する。
 シフトぶれ量算出部142は、加速度センサ15aの検出結果(加速度a)と加速度センサ15bの検出結果(加速度b)に基づいて、カメラシステム100の平行移動により撮像素子11の撮像面上に生じる像ぶれのX、Yの各方向の像ぶれ量を算出し、その像ぶれ量を打ち消すためのX、Yの各方向の補正量(シフトぶれ補正量)を算出する。また、シフトぶれ量算出部142は、その像ぶれ量算出の過程で算出した、光軸と実装面P1との交点におけるX、Yの各方向の移動速度を保持する。なお、シフトぶれ量算出部142の内部構成については、図18を用いて後述する。
 加算部143は、角度ぶれ量算出部141及びシフトぶれ量算出部142の各々で算出された補正量をX、Yの方向毎に合算する。
 駆動制御部144は、加算部143により合算されたX、Yの各方向の補正量を、駆動部12を駆動するための駆動パルスに変換し、駆動部12へ出力する。駆動部12は、その駆動パルスに従って駆動し、撮像素子11を移動させる。これにより、撮像素子11の撮像面上に生じる像ぶれが打ち消されるように、撮像素子11が移動する。
 スイッチ145は、交換式レンズ20が並進ぶれ補正機能を有する場合に、システムコントローラ13の指示に応じてオフされる。スイッチ145がオフした場合は、加算部143による合算は行われず、駆動制御部144は、角度ぶれ量算出部141により算出されたX、Yの各方向の補正量を、駆動部12を駆動するための駆動パルスに変換し、駆動部12へ出力する。従って、この場合は、撮像素子11の移動による並進ぶれ補正は行われない。
 通信部146は、システムコントローラ13の制御の下に、シフトぶれ量算出部142に保持されている、光軸と実装面P1との交点におけるX、Yの各方向の移動速度を、システムコントローラ13へ出力する。そして、システムコントローラ13は、その移動速度を、マウントを介してLCU22に通知する。
 図18は、シフトぶれ量算出部142の内部構成例を示す図である。
 図18に示したように、シフトぶれ量算出部142は、2つの信号処理部1421(1421a、1421b)、推定値算出部1422、積分部1423、乗算部1424、積分部1425、補正量算出部1426、及び速度保持部1427を含む。
 各信号処理部1421は、入力されたX、Yの各方向の加速度に対し、重力成分を除去する処理やフィルタ処理等を行う。これにより、入力されたX、Yの各方向の加速度は、静止時では0、それ以外では絶対値が加速度の大きさを示し且つ符号が加速度の向きを示すデジタル値に変換される。本実施形態では、加速度センサ15aにより検出されたX、Yの各方向の加速度aが信号処理部1421aに入力され、加速度センサ15bにより検出されたX、Yの各方向の加速度bが信号処理部1421bに入力されて処理が行われる。
 推定値算出部1422は、光軸から各加速度センサ15の実装位置までの距離の比率から、上記式(5)、(6)(又は(7)、(8))に基づいて、光軸と実装面P1との交点におけるX、Yの各方向の加速度推定値を算出する。
 積分部1423は、推定値算出部1422により算出されたX、Yの各方向の加速度推定値を時間積分し、光軸と実装面P1との交点におけるX、Yの各方向の移動速度を算出する。
 乗算部1424は、積分部1423により算出されたX、Yの各方向の移動速度に、撮影光学系21の像倍率を乗算し、撮像素子11の撮像面上でのX、Yの各方向の像移動速度に変換する。
 積分部1425は、乗算部1424の乗算結果である、撮像面上でのX、Yの各方向の像移動速度を時間積分し、撮像面上でのX、Yの各方向の像移動量(像ぶれ量)を算出する。
 補正量算出部1426は、積分部1425により算出されたX、Yの各方向の像ぶれ量を打ち消すためのX、Yの各方向の補正量(シフトぶれ補正量)を算出する。
 速度保持部1427は、システムコントローラ13から通知される同期信号の同期タイミングに同期して、積分部1423により算出された、光軸と実装面P1との交点におけるX、Yの各方向の移動速度を保持する。保持された移動速度は、通信部146を介してシステムコントローラ13により定期的に読み出される。
 以上述べてきたように、本実施形態によれば、交換式レンズ20の構成上の制約から、撮影光学系21の前側主点位置付近に加速度センサを配置することができない場合であっても、前側主点位置における加速度を算出(推定)することができる。従って、その加速度に基づいてぶれ補正を行うことにより、シフトぶれを高精度に補正することができる。
 次に、本実施形態の変形例について、図19乃至図26を用いて説明する。
 図19は、本変形例に係るカメラシステム100の構成例を示す図である。図20は、送信データのフォーマット例を示す図である。図21は、送信データのタイミングチャートを示す図である。
 本変形例に係るカメラシステム100では、図19に示したように、ぶれ補正マイコン14とLCU22との間で直接且つ高速に通信ができるように、ぶれ補正マイコン14とLCU22との間にマウントを介した通信路17が更に設けられる。この通信路17では、例えばLDVS(Low Voltage Differential Signaling)の通信方式を利用して通信が行われる。これにより、ぶれ補正マイコン14とLCU22との間では、システムコントローラ13とLCU22との間よりも高速に通信が行われるようになる。そして、本変形例では、この通信路17を介して、角速度センサ16により検出されたYaw、Pitch、Rollの各方向の角速度とぶれ補正マイコン14内で算出されたX、Yの各方向の加速度推定値とが、ぶれ補正マイコン14からLCU22へリアルタイムに送信される。この場合、そのYaw、Pitch、Rollの各方向の角速度とX、Yの各方向の加速度推定値は、例えば、図20に示すフォーマットで且つ図21に示すタイミングで1ms毎に送信される。この場合、1ms周期で80ビット(16ビット×5)のデータが送信されることになるので、80000bps以上の通信速度が確保されればよい。
 図22は、本変形例に係るぶれ補正マイコン14の内部構成例を示す図である。
 図22に示したように、本変形例に係るぶれ補正マイコン14は、高速通信部147を更に含む点が、図17に示したぶれ補正マイコン14と異なる。また、これに伴い、本変形例に係るぶれ補正マイコン14では、図17に示した通信部146が除かれている。
 高速通信部147は、角速度センサ16により検出されたYaw、Pitch、Rollの各方向の角速度とシフトぶれ量算出部142において算出されたX、Yの各方向の加速度推定値とを、マウントを介した通信路17を介してLCU22へ送信する。この送信は、例えば、図20に示すフォーマットで且つ図21に示すタイミングで1ms毎に行われる。
 図23は、本変形例に係るシフトぶれ量算出部142の内部構成例を示す図である。
 図23に示したように、本変形例に係るシフトぶれ量算出部142は、推定値算出部1422により算出(推定)されたX、Yの各方向の加速度推定値が高速通信部147へも出力される点が、図18に示したシフトぶれ量算出部142と異なる。また、これに伴い、本変形例に係るシフトぶれ量算出部142では、積分部1423で算出されたX、Yの各方向の移動速度の保持は行われず、図18に示した速度保持部1427が除かれている。
 図24は、本変形例に係るLCU22の内部構成例を示す図である。
 図24に示したように、本変形例に係るLCU22は、高速通信部227を更に含む点が、図14に示したLCU22と異なる。高速通信部227は、ぶれ補正マイコン14から1ms毎に送信されるYaw、Pitch、Rollの各方向の角速度とX、Yの各方向の推定加速度値を受信し、その中のX、Yの各方向の推定加速度値をシフトぶれ量算出部224へ通知する。
 図25は、本変形例に係るシフトぶれ量算出部224の内部構成例を示す図である。
 図25に示したように、本変形例に係るシフトぶれ量算出部224は、図15に示したシフトぶれ量算出部224における推定値算出部2242が、内部構成が異なると共に高速通信部227から通知されるX、Yの各方向の推定加速度値が更に入力される推定値算出部2248に置き換えられた点が、その図15に示したシフトぶれ量算出部224と異なる。
 図26は、本変形例に係る推定値算出部2248の内部構成例を示す図である。
 図26に示したように、本変形例に係る推定値算出部2248は、係数算出部22481、係数算出部22482、乗算部22483a、乗算部22483b、加算部22484、乗算部22485a、乗算部22485b、及び加算部22486を含む。
 係数算出部22481、乗算部22483a、乗算部22483b、及び加算部22484は、光軸から各加速度センサ24の実装位置までの距離の比率から、上記式(5)、(6)(又は(7)、(8))に基づいて、光軸と実装面P2との交点におけるX、Yの各方向の加速度推定値を算出する。
 より詳しくは、係数算出部22481は、上述の係数K1、K2、K3、K4に対応する4つの係数を算出する。なお、これらの4つの係数は、2つの加速度センサ24の実装位置で決まるものであり、固定値である。本変形例でも、2つの加速度センサ24が光軸を中心に対向して配置されているので、いずれの係数も1/2となる。乗算部22483aは、信号処理部2241aによる処理後のX方向、Y方向の加速度aに対して、K1に対応する係数、K3に対応する係数を乗算する。乗算部22483bは、信号処理部2241bによる処理後のX方向、Y方向の加速度bに対して、K2に対応する係数、K4に対応する係数を乗算する。加算部22484は、乗算部22483aの乗算結果と乗算部22483bの乗算結果とを、X、Yの方向毎に加算して、X、Yの各方向の加速度推定値を算出する。
 係数算出部22482、乗算部22485a、乗算部22485b、及び加算部22486は、高速通信部227から通知された、光軸と実装面P1との交点におけるX、Yの各方向の加速度推定値と、加算部22484の算出結果である、光軸と実装面P2との交点におけるX、Yの各方向の加速度推定値と、前側主点位置に関する情報とから、上記式(11)に基づいて、前側主点位置におけるX、Yの各方向の加速度推定値を算出する。
 より詳しくは、係数算出部22482は、上述の係数算出部22443と同様に、係数K5、K6を算出する。乗算部22485aは、高速通信部227から通知された、光軸と実装面P1との交点におけるX、Yの各方向の加速度推定値に対して係数K6を乗算する。乗算部22485bは、加算部22484の算出結果である、光軸と実装面P2との交点におけるX、Yの各方向の加速度推定値に対して係数K5を乗算する。加算部22486は、乗算部22485aの乗算結果と乗算部22485bの乗算結果とを、X、Yの方向毎に加算して、前側主点位置におけるX、Yの各方向の加速度推定値を算出する。
 なお、カメラ本体10から通知される加速度推定値は、1ms周期で検出(算出)されてリアルタイムに送信されるので、加算部22486により算出される加速度推定値の検出(算出)タイミングとの差は1ms以下となる。
 本変形例によれば、LCU22とぶれ補正マイコン14との間に通信路17を設けることで、前側主点位置における加速度をリアルタイムに算出(推定)することができるので、その加速度の推定精度をより向上させることができる。なお、本実施形態では、上述の推定値算出部2242または2248、及び積分部2243のように、加速度を算出(推定)した後に、それに基づいて移動速度を算出しているが、この移動速度の算出は、これに限定されるものではない。例えば、各加速度センサの実装位置における移動速度を算出した後に、それに基づいて、各加速度センサの実装面と光軸との交点における移動速度を算出(推定)するようにしてもよい。
 以上、本発明は、上記実施形態にそのまま限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、様々の発明を形成できる。例えば、実施形態に示される全構成要素のいくつかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1       カメラ
2       撮影光学系
3       撮像素子
4       駆動部
5       システムコントローラ
6       ぶれ補正マイコン
7、7a、7b 加速度センサ
8       角速度センサ
10      カメラ本体
11      撮像素子
12      駆動部
13      システムコントローラ
14      ぶれ補正マイコン
15、15a、15b 加速度センサ
16      角速度センサ
17      通信路
20      交換式レンズ
21      撮影光学系
22      LCU
23      駆動部
24、24a、24b 加速度センサ
25      角速度センサ
61      角度ぶれ量算出部
62      シフトぶれ量算出部
63      加算部
64      駆動制御部
65      通信部
100     カメラシステム
141     角度ぶれ量算出部
142     シフトぶれ量算出部
143     加算部
144     駆動制御部
145     スイッチ
146     通信部
147     高速通信部
221     通信部
222     レンズ制御部
223     角度ぶれ量算出部
224     シフトぶれ量算出部
225     加算部
226     駆動制御部
227     高速通信部
621、621a、621b 信号処理部
622     推定値算出部
623     積分部
624     乗算部
625     積分部
626     補正量算出部
1421、1421a、1421b 信号処理部
1422    推定値算出部
1423    積分部
1424    乗算部
1425    積分部
1426    補正量算出部
1427    速度保持部
2241、2241a、2241b 信号処理部
2242    推定値算出部
2243    積分部
2244    速度補正部
2245    乗算部
2246    積分部
2247    補正量算出部
2248    推定値算出部
6221    係数算出部
6222、6222a、6222b 乗算部
6223    加算部
22441   速度保持部
22442   比率算出部
22443   係数算出部
22444   乗算部
22445   乗算部
22446   乗算部
22447   加算部
22481、22482 係数算出部
22483a、22483b 乗算部
22484   加算部
22485a、22485b 乗算部
22486   加算部

Claims (7)

  1.  被写体を結像する撮影光学系を有する撮像装置であって、
     前記撮影光学系の光軸と直交する第1平面上における異なる位置に配置される、第1方向と第2方向の加速度を検出する第1加速度センサ及び前記第1方向と前記第2方向の加速度を検出する第2加速度センサと、
     前記光軸と前記第1加速度センサとの間の前記第2方向の距離と、前記光軸と前記第2加速度センサとの間の前記第2方向の距離と、前記第1加速度センサの前記第1方向の加速度検出値と、前記第2加速度センサの前記第1方向の加速度検出値とに基づいて、前記光軸上の第1位置における前記第1方向の加速度推定値を算出する第1加速度推定部と、
     前記光軸と前記第1加速度センサとの間の前記第1方向の距離と、前記光軸と前記第2加速度センサとの間の前記第1方向の距離と、前記第1加速度センサの前記第2方向の加速度検出値と、前記第2加速度センサの前記第2方向の加速度検出値とに基づいて、前記第1位置における前記第2方向の加速度推定値を算出する第2加速度推定部と、
     前記第1方向の加速度推定値と前記第2方向の加速度推定値を用いて、前記撮像装置における像ぶれ量を算出するぶれ量算出部と、
     を備えることを特徴とする。
  2.  請求項1記載の撮像装置であって、
     前記第1加速度センサと前記第2加速度センサとの間の中央に前記光軸が位置するように、前記第1加速度センサと前記第2加速度センサが配置され、
     前記第1加速度推定部は、前記第1加速度センサの前記第1方向の加速度検出値と前記第2加速度センサの前記第1方向の加速度検出値の加算平均値を、前記第1方向の加速度推定値とし、
     前記第2加速度推定部は、前記第1加速度センサの前記第2方向の加速度検出値と前記第2加速度センサの前記第2方向の加速度検出値の加算平均値を、前記第2方向の加速度推定値とする、
     ことを特徴とする。
  3.  請求項1又は2記載の撮像装置であって、
     前記光軸と直交する第2平面上における異なる位置に配置される、前記第1方向と前記第2方向の加速度を検出する第3加速度センサ及び前記第1方向と前記第2方向の加速度を検出する第4加速度センサと、
     前記光軸と前記第3加速度センサとの間の前記第2方向の距離と、前記光軸と前記第4加速度センサとの間の前記第2方向の距離と、前記第3加速度センサの前記第1方向の加速度検出値と、前記第4加速度センサの前記第1方向の加速度検出値とに基づいて、前記光軸上の第2位置における前記第1方向の加速度推定値を算出する第3加速度推定部と、
     前記光軸と前記第3加速度センサとの間の前記第1方向の距離と、前記光軸と前記第4加速度センサとの間の前記第1方向の距離と、前記第3加速度センサの前記第2方向の加速度検出値と、前記第4加速度センサの前記第2方向の加速度検出値とに基づいて、前記第2位置における前記第2方向の加速度推定値を算出する第4加速度推定部と、
     前記第1加速度推定部により算出された前記第1位置における前記第1方向の加速度推定値と、前記第3加速度推定部により算出された前記第2位置における前記第1方向の加速度推定値と、前記撮影光学系の前記光軸上の主点位置と前記第1位置との間の距離と、前記主点位置と前記第2位置との間の距離とに基づいて、前記主点位置における前記第1方向の加速度推定値を算出する第5加速度推定部と、
     前記第2加速度推定部により算出された前記第1位置における前記第2方向の加速度推定値と、前記第4加速度推定部により算出された前記第2位置における前記第2方向の加速度推定値と、前記主点位置と前記第1位置との間の距離と、前記主点位置と前記第2位置との間の距離とに基づいて、前記主点位置における前記第2方向の加速度推定値を算出する第6加速度推定部と、
     を更に備え、
     前記ぶれ量算出部は、更に、前記主点位置における前記第1方向の加速度推定値と前記主点位置における前記第2方向の加速度推定値を用いて、前記撮像装置における像ぶれ量を算出する、
     ことを特徴とする。
  4.  請求項3記載の撮像装置であって、
     前記撮像装置は、撮像素子を有するカメラ本体と、前記撮影光学系を有する交換式レンズとにより構成されるカメラシステムであって、
     前記交換式レンズは、前記カメラ本体に対して着脱可能であり、
     前記第1位置は、前記撮像素子の撮像面の撮像中心位置であり、
     前記第2位置は、前記交換式レンズ内部の前記光軸上の任意の位置である、
     ことを特徴とする。
  5.  請求項4記載の撮像装置であって、
     前記交換式レンズは、
      前記カメラ本体との間でデータの送受信を行う第1レンズ通信部と、
      前記カメラ本体との間で前記第1レンズ通信部よりも高速にデータの送受信を行う第2レンズ通信部と、
     を備え、
     前記カメラ本体は、
      前記交換式レンズとの間でデータの送受信を行う第1カメラ通信部と、
      前記交換式レンズとの間で前記第1カメラ通信部よりも高速にデータの送受信を行う第2カメラ通信部と、
     を備え、
     前記第2カメラ通信部は、前記カメラ本体が有する前記第1加速度センサ及び前記第2加速度センサの各々の加速度検出値に基づいて算出された前記第1位置における推定加速度検出値を前記第2レンズ通信部へ送信する、
     ことを特徴とする。
  6.  請求項1記載の撮像装置であって、
     撮像素子と、
     フォーカス調整機構により調整された前記撮影光学系の状態における前記撮像素子の撮像面上の合焦位置を検出する合焦位置検出部と、
     を更に備え、
     前記第1加速度推定部は、更に、前記合焦位置と前記第1加速度センサとの間の前記第2方向の距離と、前記合焦位置と前記第2加速度センサとの間の前記第2方向の距離と、前記第1加速度センサの前記第1方向の加速度検出値と、前記第2加速度センサの前記第1方向の加速度検出値とに基づいて、前記合焦位置における前記第1方向の加速度推定値を算出し、
     前記第2加速度推定部は、更に、前記合焦位置と前記第1加速度センサとの間の前記第1方向の距離と、前記合焦位置と前記第2加速度センサとの間の前記第1方向の距離と、前記第1加速度センサの前記第2方向の加速度検出値と、前記第2加速度センサの前記第2方向の加速度検出値とに基づいて、前記合焦位置における前記第2方向の加速度推定値を算出し、
     前記ぶれ量算出部は、更に、前記合焦位置における前記第1方向の加速度推定値と前記合焦位置における前記第2方向の加速度推定値を用いて、前記撮像装置における像ぶれ量を算出する、
     ことを特徴とする。
  7.  被写体を結像する撮影光学系と、前記撮影光学系の光軸と直交する平面上の異なる位置に配置される第1加速度センサ及び第2加速度センサとを有する撮像装置の像ぶれ量算出方法であって、
     前記第1加速度センサによって、第1方向及び第2方向の加速度を検出することと、
     前記第2加速度センサによって、前記第1方向及び前記第2方向の加速度を検出することと、
     前記光軸と前記第1加速度センサとの間の前記第2方向の距離と、前記光軸と前記第2加速度センサとの間の前記第2方向の距離と、前記第1加速度センサの前記第1方向の加速度検出値と、前記第2加速度センサの前記第1方向の加速度検出値とに基づいて、前記光軸上の第1位置における前記第1方向の加速度推定値を算出することと、
     前記光軸と前記第1加速度センサとの間の前記第1方向の距離と、前記光軸と前記第2加速度センサとの間の前記第1方向の距離と、前記第1加速度センサの前記第2方向の加速度検出値と、前記第2加速度センサの前記第2方向の加速度検出値とに基づいて、前記第1位置における前記第2方向の加速度推定値を算出することと、
     前記第1方向の加速度推定値と前記第2方向の加速度推定値を用いて、前記撮像装置における像ぶれ量を算出することと、
     を有することを特徴とする。
PCT/JP2017/040122 2017-01-26 2017-11-07 撮像装置、及び、その像ぶれ量算出方法 WO2018138999A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780083264.XA CN110178078B (zh) 2017-01-26 2017-11-07 摄像装置、像抖动量计算方法及记录介质
US16/514,461 US10972665B2 (en) 2017-01-26 2019-07-17 Imaging apparatus and image blurring amount calculation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-012554 2017-01-26
JP2017012554A JP7057628B2 (ja) 2017-01-26 2017-01-26 撮像装置、及び、その像ぶれ量算出方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/514,461 Continuation US10972665B2 (en) 2017-01-26 2019-07-17 Imaging apparatus and image blurring amount calculation method therefor

Publications (1)

Publication Number Publication Date
WO2018138999A1 true WO2018138999A1 (ja) 2018-08-02

Family

ID=62979180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/040122 WO2018138999A1 (ja) 2017-01-26 2017-11-07 撮像装置、及び、その像ぶれ量算出方法

Country Status (4)

Country Link
US (1) US10972665B2 (ja)
JP (1) JP7057628B2 (ja)
CN (1) CN110178078B (ja)
WO (1) WO2018138999A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020004018A1 (ja) 2018-06-27 2020-01-02 富士フイルム株式会社 像ブレ補正装置、撮像装置、像ブレ補正方法、及び像ブレ補正プログラム
JP7159753B2 (ja) * 2018-09-26 2022-10-25 株式会社リコー 画像投影装置及び画像投影方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227613A (ja) * 1998-11-30 2000-08-15 Ricoh Co Ltd 手振れ補正装置
JP2005003719A (ja) * 2003-06-09 2005-01-06 Olympus Corp 撮影装置
JP2010286651A (ja) * 2009-06-11 2010-12-24 Canon Inc 像振れ補正装置および撮像装置
JP2011039436A (ja) * 2009-08-18 2011-02-24 Canon Inc 撮影システムおよびレンズ装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930708B1 (en) 1998-11-30 2005-08-16 Ricoh Company, Ltd. Apparatus and system for correction based upon detecting a camera shaking
JP2004295027A (ja) 2003-03-28 2004-10-21 Nikon Corp ブレ補正装置
JP2010015107A (ja) * 2008-07-07 2010-01-21 Olympus Imaging Corp ブレを補正する撮像装置
JP5491101B2 (ja) * 2009-08-26 2014-05-14 キヤノン株式会社 撮像装置
JP5181001B2 (ja) * 2010-08-09 2013-04-10 キヤノン株式会社 像振れ補正装置及びその制御方法、及び、像振れ補正装置を搭載した撮像装置及び光学機器
JP5846927B2 (ja) * 2012-01-19 2016-01-20 オリンパス株式会社 ブレ量検出装置、撮像装置、ブレ量検出方法
JP2014016451A (ja) * 2012-07-09 2014-01-30 Ricoh Co Ltd 撮像装置、手振れ補正量算出方法、手振れ補正量算出プログラム
JP6091255B2 (ja) * 2013-02-28 2017-03-08 オリンパス株式会社 ブレ量検出装置及び撮像装置
JP6410431B2 (ja) * 2014-01-30 2018-10-24 オリンパス株式会社 カメラシステム
JP6454869B2 (ja) * 2014-03-24 2019-01-23 パナソニックIpマネジメント株式会社 撮像装置
JP6411829B2 (ja) * 2014-09-17 2018-10-24 オリンパス株式会社 撮像装置及び像ブレ補正方法
JP2016181000A (ja) * 2016-06-01 2016-10-13 株式会社ニコン ブレ補正装置及び光学機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000227613A (ja) * 1998-11-30 2000-08-15 Ricoh Co Ltd 手振れ補正装置
JP2005003719A (ja) * 2003-06-09 2005-01-06 Olympus Corp 撮影装置
JP2010286651A (ja) * 2009-06-11 2010-12-24 Canon Inc 像振れ補正装置および撮像装置
JP2011039436A (ja) * 2009-08-18 2011-02-24 Canon Inc 撮影システムおよびレンズ装置

Also Published As

Publication number Publication date
JP7057628B2 (ja) 2022-04-20
US20190342498A1 (en) 2019-11-07
CN110178078A (zh) 2019-08-27
CN110178078B (zh) 2021-04-13
JP2018120144A (ja) 2018-08-02
US10972665B2 (en) 2021-04-06

Similar Documents

Publication Publication Date Title
US8811809B2 (en) Image stabilization apparatus, control method therefor, optical apparatus and imaging apparatus
US9568742B2 (en) Image stabilization apparatus, control method thereof, optical apparatus and image capturing apparatus
KR101528860B1 (ko) 디지털 촬영 장치의 흔들림 보정 방법 및 장치
JP2016224204A (ja) ブレ補正装置、光学機器、撮像装置、ブレ補正方法
JP2007171786A (ja) 防振制御装置および撮像装置
JP2018060160A (ja) 撮像装置
US10171737B2 (en) Imaging device
WO2014020924A1 (ja) ブレ量検出装置、撮像装置及びブレ量検出方法
JP2019029968A (ja) 撮像装置およびその制御方法
WO2018138999A1 (ja) 撮像装置、及び、その像ぶれ量算出方法
JP2012128356A (ja) ブレ補正装置及び光学機器
JP6250446B2 (ja) 画像処理システム、画像処理装置、画像処理方法及びプログラム
JP2012163824A (ja) ブレ補正装置及び光学機器
JP2013054316A (ja) ブレ補正装置及び光学機器
JP2013054193A (ja) ブレ補正装置及び光学機器
JP6024031B2 (ja) ブレ補正装置及び光学機器
JP2020187244A (ja) 制御装置、レンズ装置、撮像装置、制御方法、および、プログラム
JP2019095630A (ja) 像振れ補正装置を有する光学機器
JP7172214B2 (ja) 交換レンズ、カメラボディ及びカメラシステム
JP2017194531A (ja) 防振制御装置
JP7660386B2 (ja) 防振制御装置及び方法、及び撮像装置
JP7308696B2 (ja) 像ブレ補正装置及びその制御方法、プログラム、像ブレ補正装置を備える撮像装置
JP2012142837A (ja) 複眼撮像装置、及び複眼撮像装置の手振れ補正方法
JP2014215357A (ja) 像ブレ補正装置及び光学機器
JP7119678B2 (ja) 交換レンズ及びカメラボディ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894184

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载