WO2018138767A1 - Travel characteristic learning method and driving control device - Google Patents
Travel characteristic learning method and driving control device Download PDFInfo
- Publication number
- WO2018138767A1 WO2018138767A1 PCT/JP2017/002283 JP2017002283W WO2018138767A1 WO 2018138767 A1 WO2018138767 A1 WO 2018138767A1 JP 2017002283 W JP2017002283 W JP 2017002283W WO 2018138767 A1 WO2018138767 A1 WO 2018138767A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vehicle
- driving
- inter
- distance
- learning method
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/08—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
Definitions
- the present invention relates to a driving characteristic learning method for learning driving data during manual driving by a driver in a vehicle capable of switching between manual driving and automatic driving by a driver, and driving in which the learning result is applied to driving characteristics of automatic driving.
- the present invention relates to a control device.
- Patent Document 1 is disclosed as an automatic travel control device that learns the operation method of a driver during manual driving and reflects it in the automatic travel control in order to provide automatic travel control according to the driver's preference. ing.
- the automatic travel control device disclosed in Patent Document 1 the relationship between the vehicle speed and the inter-vehicle distance is learned in consideration of environmental conditions such as road width, brightness, and weather.
- the present invention has been proposed in view of the above-described circumstances, and an object thereof is to provide a driving characteristic learning method and a driving control device that can accurately learn the inter-vehicle distance that captures the driver's feeling.
- the driving characteristic learning method and the driving control device give priority to learning the inter-vehicle distance during the deceleration operation in the driver's manual driving.
- the inter-vehicle distance that captures the driver's feeling can be learned with high accuracy.
- FIG. 1 is a block diagram showing a configuration of an operation control system including an operation control apparatus according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing a processing procedure of a travel characteristic learning process by the operation control apparatus according to the embodiment of the present invention.
- FIG. 3 is a diagram illustrating an example of data input in the travel characteristic learning process according to the embodiment of the present invention.
- FIG. 4 is a diagram for explaining the coefficients of the multiple regression analysis executed in the travel characteristic learning process according to the embodiment of the present invention.
- FIG. 5 is a diagram illustrating an example of data indicating a relationship between the vehicle speed and the inter-vehicle distance during the deceleration operation.
- FIG. 1 is a block diagram showing a configuration of an operation control system including an operation control apparatus according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing a processing procedure of a travel characteristic learning process by the operation control apparatus according to the embodiment of the present invention.
- FIG. 3 is a diagram
- FIG. 6 is a diagram illustrating an example of data indicating the relationship between the vehicle speed and the inter-vehicle distance not only during the deceleration operation but in all cases.
- FIG. 7 is a diagram for explaining a method for determining the degree of effort by the travel characteristic learning process according to the embodiment of the present invention.
- FIG. 8 is a diagram for explaining a method for determining the degree of carefulness by the running characteristic learning process according to the embodiment of the present invention.
- FIG. 9 is a flowchart showing a processing procedure of automatic driving control processing by the driving control device according to the embodiment of the present invention.
- FIG. 1 is a block diagram illustrating a configuration of an operation control system including an operation control device according to the present embodiment.
- the driving control system 100 includes a driving control device 1, a driving state detection unit 3, a driving environment detection unit 5, a driving changeover switch 7, and a control state presenting unit 9. It has. Furthermore, the operation control system 100 is connected to an actuator 11 mounted on the vehicle.
- the driving control device 1 learns driving data during manual driving by the driver in a vehicle that can be switched between manual driving and automatic driving by the driver, and executes processing for applying the learning result to the driving characteristics of the automatic driving. Controller.
- the driving control device 1 executes driving characteristic learning processing for learning the inter-vehicle distance from the preceding vehicle of the vehicle using the driving data during the deceleration operation in the driver's manual driving with priority.
- travel characteristic learning process travel data during deceleration operation is selected from travel data during manual operation, and learning is performed using the selected travel data during deceleration operation. That is, learning is performed using only the traveling data during the deceleration operation.
- the learning is performed in consideration of the traveling data of the distance between the stopped vehicles and the environment information of the environment in which the vehicle is traveling.
- the driving control device 1 includes a learning data storage unit 21, a travel characteristic learning unit 23, and an automatic driving control execution unit 25.
- this embodiment demonstrates the case where the driving control apparatus 1 is mounted in a vehicle, you may install a communication apparatus in a vehicle and install the driving control apparatus 1 in an external server.
- deceleration operation from when the accelerator pedal is turned off until it stops, from when the brake pedal is turned on until it stops, from when the acceleration becomes negative, until it stops, etc. The start time is not questioned.
- the driving control device 1 When the driving control device 1 is mounted on a vehicle, the driving characteristics of the driver who owns or uses the vehicle can be learned. Further, traveling data for a predetermined period (for example, the latest one month) can be stored and reflected in the automatic driving of the vehicle owned or used by the driver. On the other hand, when it is installed on an external server, it is possible to learn using long-term driving data of the driver himself, so that a more stable learning result can be calculated. In addition, when learning is not completed, the driving data of other drivers can be utilized to reflect the average driving characteristics of the driver in the area in automatic driving.
- the traveling state detection unit 3 indicates the traveling state of the vehicle such as the vehicle speed, the steering angle, the acceleration, the inter-vehicle distance with the preceding vehicle, the relative speed with the preceding vehicle, the current position, the direction indicator display state, the wiper operating state, and the like. Detect driving data. For example, an in-vehicle network such as CAN (Controller Area Network), a navigation device, a laser radar, a camera, and the like. In particular, the traveling state detection unit 3 detects the operation amount of the brake pedal and the accelerator pedal of the vehicle and the deceleration of the vehicle as data for determining whether or not the driver is decelerating.
- CAN Controller Area Network
- the traveling environment detection unit 5 includes the number of lanes on the road on which the vehicle is traveling, the speed limit, the road gradient, the display state of the traffic signal in front of the vehicle, the distance to the intersection in front of the vehicle, the number of vehicles traveling in front of the vehicle, and the intersection in front of the vehicle.
- Environment information representing an environment in which the vehicle is traveling, such as a scheduled route, is detected.
- the display state of the traffic light in front of the vehicle may be detected using road-to-vehicle communication, and the number of vehicles traveling in front of the vehicle may be detected using vehicle-to-vehicle communication or a cloud service linked to a smartphone. .
- the planned course at the intersection in front of the vehicle is obtained from the display state of the navigation device or the direction indicator. Furthermore, the illuminance, temperature, and weather conditions around the vehicle are acquired from the illuminance sensor, the outside temperature sensor, and the wiper switch, respectively. However, the illuminance may be obtained from a headlight switch.
- the operation changeover switch 7 is a switch that is mounted on the vehicle and is switched between automatic operation and manual operation when operated by a vehicle occupant.
- a switch installed on the steering of the vehicle.
- the control state presentation unit 9 displays whether the current control state is manual operation or automatic operation on a meter display unit, a display screen of a navigation device, a head-up display, or the like. In addition, a notification sound that informs the start and end of automatic driving is also output to indicate whether or not learning of driving characteristics has ended.
- Actuator 11 receives an execution command from operation control device 1 and drives each part such as an accelerator, a brake, and a steering of the vehicle.
- the learning data storage unit 21 acquires travel data related to the travel state of the vehicle and environmental information related to the travel environment around the vehicle from the travel state detection unit 3 and the travel environment detection unit 5, and stores data necessary for the travel characteristic learning process. To do.
- the learning data storage unit 21 stores travel data during a deceleration operation that is used for learning the inter-vehicle distance during manual driving. At this time, the learning data storage unit 21 stores the traveling data during the deceleration operation in association with the traveling state and traveling environment of the vehicle.
- the inter-vehicle distance when stopped is followed.
- Store data such as duration.
- environmental information is stored.
- the environmental information includes the number of lanes on the road on which the vehicle is traveling, the speed limit, the road gradient or traffic light display status, the distance from the vehicle to the intersection, the number of vehicles ahead of the vehicle, the display status of the direction indicator, and the weather around the vehicle. Temperature or illuminance.
- the driving characteristic learning unit 23 reads the driving data stored in the learning data storage unit 21 and learns the driving characteristic of the vehicle in consideration of the influence state from the driving state and the driving environment.
- the driving data during the deceleration operation in the driver's manual driving is preferentially used to learn the inter-vehicle distance from the preceding vehicle among the driving characteristics of the vehicle.
- the travel characteristic learning unit 23 selects travel data during the deceleration operation from travel data during the manual operation, and learns using the selected travel data during the deceleration operation. That is, the inter-vehicle distance from the preceding vehicle is learned using only the traveling data during the deceleration operation.
- learning is performed in consideration of travel data on the distance between the vehicles being stopped and environmental information of the environment in which the vehicle is traveling. Further, the travel characteristic learning unit 23 learns for each trip of the vehicle. Further, the driving style of the driver may be determined based on the learning result of the inter-vehicle distance from the preceding vehicle. The learning result calculated in this way is stored in the running characteristic learning unit 23 as needed.
- the automatic operation control execution unit 25 executes automatic operation control when an automatic operation section is entered or when the driver selects automatic operation using the operation changeover switch 7. At this time, the automatic driving control execution unit 25 applies the learning result learned by the driving characteristic learning unit 23 to the driving characteristic of automatic driving. In particular, the learning result of the inter-vehicle distance from the preceding vehicle is applied to the inter-vehicle distance during automatic driving.
- the operation control device 1 includes a general-purpose electronic circuit including a microcomputer, a microprocessor, and a CPU, and peripheral devices such as a memory. And by operating a specific program, it operates as the above-described learning data storage unit 21, travel characteristic learning unit 23, and automatic driving control execution unit 25.
- Each function of the operation control apparatus 1 can be implemented by one or a plurality of processing circuits.
- the processing circuit includes a programmed processing device such as, for example, a processing device including an electrical circuit, and an application specific integrated circuit (ASIC) or conventional circuit arranged to perform the functions described in the embodiments. It also includes devices such as parts.
- step S ⁇ b> 101 the learning data storage unit 21 determines whether or not the vehicle is in manual operation according to the state of the operation changeover switch 7. If the vehicle is in manual driving, the process proceeds to step S103. If the vehicle is in automatic driving, the driving characteristic learning process is terminated and automatic driving control is executed.
- the learning data storage unit 21 detects travel data related to the travel state of the vehicle and environmental information related to the travel environment around the vehicle from the travel state detection unit 3 and the travel environment detection unit 5.
- the detected travel data includes vehicle speed, steering angle, acceleration, deceleration, inter-vehicle distance from the preceding vehicle, relative speed with the preceding vehicle, current position, planned route at the front intersection, brake pedal and accelerator pedal operation amount, The duration of following the preceding vehicle, the operating state of the wiper, etc. are detected.
- the environmental information includes the number of lanes of the road on which the vehicle is traveling, the speed limit, the road gradient or the display state of the traffic light, the distance from the vehicle to the intersection, the number of vehicles ahead of the vehicle, the display state of the vehicle direction indicator, the vehicle Detect ambient weather, temperature, illuminance, etc.
- step S105 the learning data storage unit 21 determines whether or not the current vehicle is being decelerated or stopped.
- a method of determining whether or not the vehicle is decelerating it is determined that the vehicle is decelerating when the deceleration operation is performed, for example, when the brake pedal operation is ON or when the accelerator pedal operation is OFF. . Alternatively, it may be determined that the vehicle is decelerating when a deceleration greater than a predetermined value is generated in the vehicle.
- the method for determining whether or not the vehicle is stopped determines that the vehicle is stopped when the vehicle speed is zero. If it is determined that the vehicle is decelerating or stopped, the process proceeds to step S107. If it is determined that the vehicle is not decelerating or stopped, the process returns to step S103.
- the learning data storage unit 21 determines whether or not the current running state of the vehicle matches the learning condition.
- the learning condition is a condition for determining whether or not the current driving state is appropriate for acquiring data used for learning of driving characteristics.
- the learning conditions (A) and (B) it is possible to exclude data in an excessive state immediately after the interruption of the preceding vehicle or immediately after leaving, and to apply the learning condition (C).
- the learning condition (D) it is possible to exclude data targeted for vehicles other than the preceding vehicle existing in the intersection or ahead of the intersection while the vehicle is stopped. Therefore, by setting these learning conditions (A) to (D), the driving characteristics can be learned using the driving data when the vehicle is in a stable condition.
- the learning condition (E) the driving characteristics with higher accuracy can be learned by setting the learning condition (E) at a place where the driver is likely to adjust the inter-vehicle distance sensitively. Therefore, the learning condition (E) may not always be applied, and may be applied only when it is desired to improve learning accuracy. Further, these learning conditions are not necessarily applied, and may not be applied depending on the situation.
- step S109 the learning data storage unit 21 stores the travel data and environment information detected in step S103 and selected in the processes in steps S105 and 107 as learning data.
- the data is stored after being selected in advance has been described. However, after all the data during manual operation is stored once, the above-described steps S105 and 107 may be performed for selection. Good.
- stores one data about one stop. This is to prevent the same data from being stored repeatedly.
- FIG. 3 an example of the learning data stored in the learning data storage unit 21 is shown in FIG.
- data of the inter-vehicle distance D during the deceleration operation, the vehicle speed V during the deceleration operation, x1 to x7, and y1 are recorded.
- x1 to x7 and y1 are data set based on the environment information, and a value of 0 or 1 is set according to the setting method shown in FIG.
- x1 is set to 1 when the vehicle is traveling on a road with two or more lanes on one side when data on the inter-vehicle distance D and speed V shown in FIG. 0 is set when driving.
- the speed limit may be used instead of the number of lanes.
- 1 is set when the speed limit of the road on which the vehicle is traveling is lower than a predetermined value (40 or 50 km / h), and 0 is set when the speed limit is equal to or higher than the predetermined value.
- x2 is set to 1 when the vehicle is traveling on an uphill, 0 is set otherwise (flat road and downhill), and x3 is set when the traffic light ahead of the vehicle is a red signal. Is set to 1; otherwise, 0 is set (blue light or no traffic light). However, a yellow signal may be included in the red signal.
- x4 is set to 1 when the distance from the vehicle to the intersection is less than a predetermined value J [m]
- 0 is set when the distance is not less than the predetermined value J [m]
- x5 is set to L in front of the vehicle. 1 is set when there are N or more vehicles within the predetermined value [m], and 0 is set when there are N-1 or less vehicles.
- the degree of congestion may be determined using VICS (registered trademark) information.
- x6 is set to 1 when the turn indicator for turning right or left of the vehicle is ON, and is set to 0 when it is OFF.
- y1 is set to 1 when the distance to the stop line is equal to or greater than a predetermined value K [m] while the vehicle is stopped, and is set to 0 when the distance is less than the predetermined value K [m].
- 1 may be set when the weather around the vehicle is bad, and 0 may be set when the weather is not bad.
- a method for determining whether or not the weather is bad when the wiper of the vehicle is set to OFF or intermittent, it is determined that the weather is not bad, and when it is ON, it is determined that the weather is bad.
- conditions such as temperature and illuminance may be added.
- the temperature is set to 1 when the outside air temperature sensor is negative, and is set to 0 when it is positive. Thereby, it can respond to the difference in the characteristic by road surface freezing.
- the illuminance may be set to 1 when the illuminance sensor is bright and 0 when it is dark. Further, it may be set depending on whether or not the headlight is turned on.
- the case of classifying into two levels of 0 or 1 is described, but it may be classified into three or more levels.
- the environmental information of x1 to x6 and y1 is associated with the travel data of the inter-vehicle distance D during the deceleration operation and the vehicle speed V during the deceleration operation. Therefore, in the present embodiment, learning is performed using travel data of the inter-vehicle distance D during the deceleration operation and the vehicle speed V during the deceleration operation, and further, the travel characteristics are learned by associating the environment in which the vehicle is traveling with the inter-vehicle distance. can do.
- FIG. 5 shows an example of data indicating the relationship between the vehicle speed and the inter-vehicle distance during the deceleration operation
- FIG. 6 shows not only the case where the process of step S105 is not performed, that is, not only during the deceleration operation.
- An example of data showing the relationship between all vehicle speeds and inter-vehicle distances is shown.
- FIG. 6 when the speed is not limited during the deceleration operation, the data varies widely. Therefore, even if the relationship between the vehicle speed and the inter-vehicle distance is learned, the learning accuracy cannot be improved.
- the driver positively adjusts the inter-vehicle distance, so that data variation is suppressed as shown in FIG.
- the inter-vehicle distance that matches the driver's feeling can be learned with high accuracy, and the learning accuracy can be improved.
- step S111 the learning data storage unit 21 determines whether or not a predetermined amount of learning data has been stored. If the predetermined amount is not reached, the process returns to step S103. Proceed to step S113.
- step S113 the travel characteristic learning unit 23 learns the travel characteristics of the vehicle.
- the inter-vehicle distance from the preceding vehicle is learned among the travel characteristics using travel data during the deceleration operation in the manual operation of the driver.
- a multiple regression model represented by the following equation (1) is created and learned using a data set as shown in FIG.
- Vf is the current vehicle speed
- Df is the inter-vehicle distance from the preceding vehicle calculated from the model.
- x1 to x7 and y1 are environmental factors
- a0 to a6, b0 and b1 are coefficients obtained by learning.
- the term (a0 to a6 ⁇ 6) in the equation (1) is the time to the preceding vehicle while traveling (the vehicle head time, but the time to the position obtained by subtracting the stop inter-vehicle distance).
- (b0 + b1y1) is the distance between the stopped vehicles, and is the distance between the vehicle and the preceding vehicle when the vehicle speed becomes zero.
- the multiple regression model represented by the equation (1) indicates that the inter-vehicle distance from the preceding vehicle and the inter-vehicle distance at the time of stop vary depending on environmental factors.
- a0 is a reference value set for each trip, and the average value of the vehicle head time within the trip when the values of x1 to x6 are 0 It is.
- b0 is a reference value set for each driver, and is the inter-vehicle distance when the vehicle stops when the value of y1 is zero. For example, an average value of the inter-vehicle distance at the time of stopping may be used.
- the running characteristic learning unit 23 performs a multiple regression analysis using learning data as shown in FIG. 3, and calculates coefficients of a0 to a6, b0, and b1 in Expression (1). Since the learning data used here is only the driving data during the deceleration operation by the driver as shown in FIG. 5, the variation is suppressed, and as a result, the distance between the preceding vehicle calculated from the equation (1) The distance Df is a straight line F in FIG. As described above, in the present embodiment, since the inter-vehicle distance from the preceding vehicle is learned using only the traveling data during the deceleration operation, the inter-vehicle distance that matches the driver's feeling can be learned with high accuracy.
- learning can be performed in consideration of environmental information of the environment in which the vehicle is traveling according to the terms a1x1 to a6x6. That is, the correction can be made based on the environmental information. Furthermore, in the present embodiment, learning can be performed in consideration of traveling data of the distance between the vehicles being stopped by b0 + b1y1. That is, it can correct
- the learning data may use a plurality of trip data, or may use only one trip data. If environmental factor data is not available with only one trip, environmental factor coefficients are calculated using multiple trip learning data, and reference a0 and b0 coefficients are the learning data in the trip. You may calculate using. In this case, it is possible to provide a learning result with no sense of incongruity even when the trip of the day tends to be slow or rushed compared to other trips.
- the distance between vehicles while traveling and the distance between vehicles when stopped may have different characteristics for each trip. For example, when you are in a hurry to the destination, want to drive slowly, or when a passenger is present, the mood and conditions when driving may differ. Therefore, by performing multiple regression analysis for each trip, the characteristics of the inter-vehicle distance for each trip can be obtained. Furthermore, by performing inter-vehicle distance control during automatic driving with the characteristics of inter-vehicle distance learned for each trip, it is possible to provide automatic driving control that matches the driver's mood and conditions during the trip.
- the inter-vehicle distance Df with the preceding vehicle in equation (1) is This value is larger than when driving on a road with two or more lanes. Therefore, when the vehicle is traveling on a road with one lane or less on one side, the inter-vehicle distance Df with the preceding vehicle is corrected to be longer than when the vehicle is traveling on a road with two or more lanes.
- the speed limit may be used instead of the number of lanes, when the speed limit of the road on which the vehicle is traveling is equal to or higher than a predetermined value, the speed limit is lower than that of the preceding vehicle. The inter-vehicle distance Df is corrected to be longer.
- the inter-vehicle distance Df with the preceding vehicle in Expression (1) is other than the red signal. A larger value than in the case of. Therefore, when the traffic light ahead of the vehicle is a red signal, the inter-vehicle distance Df from the preceding vehicle is corrected to be longer than when the signal is not a red signal.
- x4 in equation (1) is 1 and a4 is a positive value, so the inter-vehicle distance Df with the preceding vehicle in equation (1) is The distance to the intersection is larger than when the distance is equal to or greater than a predetermined value. Therefore, when the distance to the intersection ahead of the vehicle is less than the predetermined value, the inter-vehicle distance Df with the preceding vehicle is corrected to be longer than when the distance is greater than or equal to the predetermined value.
- x5 in equation (1) is 1 and a5 is a positive value, so the inter-vehicle distance Df with the preceding vehicle in equation (1) is the vehicle
- the number is larger than when the number is less than a predetermined value. Therefore, when the number of vehicles ahead of the vehicle is greater than or equal to a predetermined value, the inter-vehicle distance from the preceding vehicle is corrected to be longer than when the number of vehicles is less than the predetermined value.
- x6 in equation (1) is 1 and a6 is a positive value, so the inter-vehicle distance Df from the preceding vehicle in equation (1) is determined by the direction indicator. It becomes a larger value than when it is OFF. Therefore, when the vehicle direction indicator is ON, the inter-vehicle distance Df from the preceding vehicle is corrected to be longer than when it is OFF. Similarly, when the weather around the vehicle is bad, the inter-vehicle distance Df with the preceding vehicle is corrected to be longer than when the weather is not bad.
- the inter-vehicle distance Df with the preceding vehicle is corrected to be longer.
- the inter-vehicle distance from the preceding vehicle in equation (1) Df is a larger value than when the distance to the stop line is less than a predetermined value. Therefore, when the distance to the stop line ahead of the vehicle is greater than or equal to a predetermined value, the inter-vehicle distance Df with the preceding vehicle is corrected to be longer than when the distance is less than the predetermined value.
- the driving characteristic learning unit 23 may determine the driving style of the driver based on the learning result of the inter-vehicle distance from the preceding vehicle.
- the characteristics of the inter-vehicle distance may show a tendency to match the individual driving style of the driver.
- the value of a0 + a1 in equation (1) indicates the characteristics of the inter-vehicle distance of roads with two or more lanes on one side, and reflects the driver's impatient tendency as shown in FIG. Since the value of a1 is negative, the degree of effort increases as the value of a0 + a1 decreases. That is, since there is a tendency to travel favorably on roads with two or more lanes rather than roads with one lane, it can be determined to be impatient.
- the average value and standard deviation of the sum (b0 + b1) of the coefficients of the inter-vehicle distance at the time of the stop reflect the driver's merit, and the average + standard deviation ( ⁇ ) value or standard
- the personal driving style determined in this way may be provided to the driver himself, or by using an external server to compare with other drivers, how much of the overall tendency
- the driver or the manager may be provided with information by determining whether or not the screen has a tendency.
- step S115 the driving characteristic learning unit 23 stores the calculated coefficients a0 to a6, b0, and b1 of the equation (1) as calculation results, and ends the driving characteristic learning process according to the present embodiment.
- step S ⁇ b> 201 the automatic driving control execution unit 25 determines whether or not learning of the inter-vehicle distance from the preceding vehicle has been completed by the travel characteristic learning process shown in FIG. 2. If learning has been completed, the process proceeds to step S203, and if learning has not been completed, the process proceeds to step S211.
- step S ⁇ b> 203 the automatic driving control execution unit 25 detects travel data regarding the travel state of the vehicle and environment information regarding the travel environment around the vehicle from the travel state detection unit 3 and the travel environment detection unit 5.
- step S205 the automatic driving control execution unit 25 sets the inter-vehicle distance from the preceding vehicle based on the learning result. Specifically, the coefficients of learning results a0 to a6, b0, b1 are set in equation (1), and the detected vehicle speed of the current vehicle is input into equation (1). The distance Df is calculated. Then, the automatic driving control execution unit 25 sets the calculated inter-vehicle distance Df as the inter-vehicle distance applied to the automatic driving. That is, the learning result of the inter-vehicle distance with the preceding vehicle is applied to the inter-vehicle distance during automatic driving.
- step S207 the automatic driving control execution unit 25 executes the automatic driving control using the set inter-vehicle distance. Specifically, the automatic driving control execution unit 25 transmits a control execution command to the actuator 11 and executes operations such as an accelerator, a brake, and a steering necessary for automatic driving.
- step S209 the automatic operation control execution unit 25 determines whether or not the automatic operation has ended. If not, the automatic operation control execution unit 25 returns to step S203 and continues the automatic operation. On the other hand, when the automatic operation is switched to the manual operation and the automatic operation is finished, the automatic operation control process according to the present embodiment is finished.
- step S ⁇ b> 211 the automatic driving control execution unit 25 detects traveling data related to the traveling state of the vehicle and environmental information related to the traveling environment around the vehicle from the traveling state detection unit 3 and the traveling environment detection unit 5.
- step S213 the automatic driving control execution unit 25 sets a predetermined value set in advance as the inter-vehicle distance from the preceding vehicle.
- a predetermined value a general inter-vehicle distance value or average value may be used.
- step S215 the automatic driving control execution unit 25 executes the automatic driving control using the set inter-vehicle distance. Specifically, the automatic driving control execution unit 25 transmits a control execution command to the actuator 11 and executes operations such as an accelerator, a brake, and a steering necessary for automatic driving.
- step S217 the automatic operation control execution unit 25 determines whether or not the automatic operation has ended. If not, the automatic operation control execution unit 25 returns to step S211 and continues the automatic operation. On the other hand, when the automatic operation is switched to the manual operation and the automatic operation is finished, the automatic operation control process according to the present embodiment is finished.
- the driving characteristic learning method it is detected whether or not the driver is decelerating from at least one of brake pedal operation, accelerator pedal operation, and vehicle deceleration.
- the inter-vehicle distance when the driver is decelerating can be acquired with certainty.
- the brake pedal when the brake pedal is operated, it is a clear deceleration operation, and therefore the inter-vehicle distance with the least variation can be acquired.
- the inter-vehicle distance when the accelerator pedal is not operated it is possible to acquire the data including the deceleration preparation action data.
- it is determined that the vehicle is decelerating when the deceleration is equal to or greater than a predetermined value it is possible to detect a deceleration operation in any scene.
- traveling characteristic learning method learning is performed using traveling data of the vehicle speed during the deceleration operation and the inter-vehicle distance during the deceleration operation. As a result, it is possible to accurately learn the inter-vehicle distance that captures the driver's feeling at each vehicle speed, and to give the driver a sense of security.
- the traveling characteristic learning method the distance between vehicles when the vehicle is stopped is learned. As a result, it is possible to learn including the inter-vehicle distance during stoppage, so that it is possible to perform learning that captures the driver's senses even during stoppage.
- the driving characteristic learning method learning is performed in correspondence with the environment in which the vehicle is traveling and the inter-vehicle distance.
- the inter-vehicle distance during traveling and the inter-vehicle distance during stoppage have different characteristics depending on environmental conditions. Therefore, by learning the environment in which the vehicle is traveling in correspondence with the inter-vehicle distance, it is possible to learn the inter-vehicle distance that captures the driver's feeling in each environment. By applying the learning result to automatic driving, the environmental conditions can be accurately reflected in the inter-vehicle distance during automatic driving.
- the number of lanes of the road on which the vehicle is traveling, the speed limit, the road gradient, or the display state of the traffic light is used as the environment in which the vehicle is traveling. Further, the distance from the vehicle to the intersection, the number of vehicles in front of the vehicle, the display state of the direction indicator of the vehicle, the weather around the vehicle, the temperature or the illuminance are used. Accordingly, the inter-vehicle distance can be corrected by individually reflecting different environmental conditions.
- learning is performed for each trip of the vehicle. Since the distance between vehicles while traveling and the distance between vehicles that are stopped may have different characteristics for each trip, learning by each trip provides a distance that reflects the driver's mood and conditions during that trip. be able to.
- the inter-vehicle distance is learned in which the continuation time during which the vehicle follows the preceding vehicle is a predetermined time or more.
- learning can be performed by excluding the transitional driving state immediately after interruption of the preceding vehicle or immediately after leaving, so that it is possible to learn accurately using the inter-vehicle distance under stable conditions.
- the inter-vehicle distance when the absolute value of the relative speed with respect to the preceding vehicle is equal to or less than a predetermined value is learned.
- the inter-vehicle distance is learned when the absolute value of the vehicle steering angle is equal to or less than a predetermined value.
- the driving characteristic learning method learning is performed when the inter-vehicle distance while the vehicle is stopped is equal to or less than a predetermined value.
- the driving characteristic learning method when the learning result is applied to the driving characteristic of automatic driving, when the vehicle is traveling on a road with one lane or less on one side, a road with two or more lanes is selected.
- the inter-vehicle distance from the preceding vehicle is made longer than when traveling.
- the speed limit of the road on which the vehicle is traveling is greater than or equal to a predetermined value
- the speed limit is The inter-vehicle distance with the preceding vehicle is made longer than when it is lower than the predetermined value.
- the driving characteristic learning method when the learning result is applied to the driving characteristic of the automatic driving, when the vehicle is traveling on the downhill, than when the vehicle is traveling on the uphill, Increase the inter-vehicle distance from the preceding vehicle. As a result, safety can be improved and automatic driving can be executed on a downhill where braking is difficult, so that a sense of security can be given to the driver.
- the driving characteristic learning method when the learning result is applied to the driving characteristic of automatic driving, when the traffic light ahead of the vehicle is a red signal, the preceding vehicle is more than the case other than the red signal. Increase the inter-vehicle distance. As a result, the safety can be improved and the automatic operation can be executed in the case of a red light that needs to be stopped, so that the driver can feel safe.
- the driving characteristic learning method when the learning result is applied to the driving characteristic of automatic driving, when the number of vehicles ahead of the vehicle is equal to or greater than a predetermined value, the number of vehicles is less than the predetermined value.
- the inter-vehicle distance from the preceding vehicle is made longer than in some cases.
- the driving characteristic learning method when the learning result is applied to the driving characteristic of the automatic driving, when the weather around the vehicle is bad weather, the distance between the preceding vehicle and the preceding vehicle is lower than when the bad weather is not. Increase the distance. Thereby, when the surroundings of the vehicle are in bad weather, the safety can be improved and the automatic driving can be executed, so that it is possible to give the driver a sense of security.
- the driving control device is installed in an external server to learn the driving characteristic of the vehicle. Thereby, the processing load in the vehicle can be reduced.
- the driving style of the driver is determined based on the learning result of the inter-vehicle distance from the preceding vehicle. Therefore, since a qualitative tendency of the driver can be known, safety can be improved by referring to the manual driving. Further, when there are a plurality of control modes such as a sports mode, an eco mode, and an elderly person mode, an appropriate control mode may be selected with reference to this driving style.
- the learning result of the inter-vehicle distance from the preceding vehicle is applied to the inter-vehicle distance during automatic driving of the vehicle.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
This travel characteristic learning method preferentially learns vehicle-to-vehicle distance during a decelerating operation during manual driving by a driver in a vehicle that can be switched by the driver between manual driving and automatic driving.
Description
本発明は、運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転中の走行データを学習する走行特性学習方法及びその学習結果を自動運転の走行特性に適用する運転制御装置に関する。
The present invention relates to a driving characteristic learning method for learning driving data during manual driving by a driver in a vehicle capable of switching between manual driving and automatic driving by a driver, and driving in which the learning result is applied to driving characteristics of automatic driving. The present invention relates to a control device.
従来では、運転者の好みに合わせた自動走行制御を提供するために、手動運転中の運転者の操作方法を学習して自動走行制御に反映させる自動走行制御装置として、特許文献1が開示されている。特許文献1に開示された自動走行制御装置では、道幅、明るさ、天候等の環境条件を考慮して車速と車間距離の関係を学習していた。
Conventionally, Patent Document 1 is disclosed as an automatic travel control device that learns the operation method of a driver during manual driving and reflects it in the automatic travel control in order to provide automatic travel control according to the driver's preference. ing. In the automatic travel control device disclosed in Patent Document 1, the relationship between the vehicle speed and the inter-vehicle distance is learned in consideration of environmental conditions such as road width, brightness, and weather.
しかしながら、一般道を走行する際の先行車との車間距離は、同じ車速、同じ環境条件であっても走行データにばらつきが大きいので、運転者の感覚を捉えた車間距離を精度よく学習することができないという問題点があった。
However, the distance between the vehicle and the preceding vehicle when driving on ordinary roads varies greatly even when the vehicle speed and environmental conditions are the same. There was a problem that could not.
そこで、本発明は、上述した実情に鑑みて提案されたものであり、運転者の感覚を捉えた車間距離を精度よく学習することのできる走行特性学習方法及び運転制御装置を提供することを目的とする。
Accordingly, the present invention has been proposed in view of the above-described circumstances, and an object thereof is to provide a driving characteristic learning method and a driving control device that can accurately learn the inter-vehicle distance that captures the driver's feeling. And
上述した課題を解決するために、本発明の一態様に係る走行特性学習方法及び運転制御装置は、運転者の手動運転における減速操作中の車間距離を優先して学習する。
In order to solve the above-described problem, the driving characteristic learning method and the driving control device according to one aspect of the present invention give priority to learning the inter-vehicle distance during the deceleration operation in the driver's manual driving.
本発明によれば、運転者の感覚を捉えた車間距離を精度よく学習することができる。
According to the present invention, the inter-vehicle distance that captures the driver's feeling can be learned with high accuracy.
以下、本発明を適用した一実施形態について図面を参照して説明する。
Hereinafter, an embodiment to which the present invention is applied will be described with reference to the drawings.
[運転制御システムの構成]
図1は、本実施形態に係る運転制御装置を含む運転制御システムの構成を示すブロック図である。図1に示すように、本実施形態に係る運転制御システム100は、運転制御装置1と、走行状態検出部3と、走行環境検出部5と、運転切替スイッチ7と、制御状態呈示部9とを備えている。さらに、運転制御システム100は、車両に搭載されたアクチュエータ11に接続されている。 [Operation control system configuration]
FIG. 1 is a block diagram illustrating a configuration of an operation control system including an operation control device according to the present embodiment. As shown in FIG. 1, thedriving control system 100 according to the present embodiment includes a driving control device 1, a driving state detection unit 3, a driving environment detection unit 5, a driving changeover switch 7, and a control state presenting unit 9. It has. Furthermore, the operation control system 100 is connected to an actuator 11 mounted on the vehicle.
図1は、本実施形態に係る運転制御装置を含む運転制御システムの構成を示すブロック図である。図1に示すように、本実施形態に係る運転制御システム100は、運転制御装置1と、走行状態検出部3と、走行環境検出部5と、運転切替スイッチ7と、制御状態呈示部9とを備えている。さらに、運転制御システム100は、車両に搭載されたアクチュエータ11に接続されている。 [Operation control system configuration]
FIG. 1 is a block diagram illustrating a configuration of an operation control system including an operation control device according to the present embodiment. As shown in FIG. 1, the
運転制御装置1は、運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転中の走行データを学習し、この学習結果を自動運転の走行特性に適用する処理を実行するコントローラである。特に、運転制御装置1は、運転者の手動運転における減速操作中の走行データを優先して使用して、車両の先行車との車間距離を学習する走行特性学習処理を実行する。この走行特性学習処理では、手動運転中の走行データの中から減速操作中の走行データを選別し、選別された減速操作中の走行データを使用して学習する。すなわち、減速操作中の走行データのみを使用して学習する。このとき、停止中の車間距離の走行データと車両が走行している環境の環境情報を考慮して学習する。ここで、運転制御装置1は、学習用データ記憶部21と、走行特性学習部23と、自動運転制御実行部25とを備えている。また、本実施形態では、運転制御装置1を車両に搭載した場合について説明するが、車両に通信装置を設置して運転制御装置1を外部サーバに設置してもよい。尚、減速操作中は、アクセルペダルをオフにしてから停止するまで、ブレーキペダルをオンにしてから停止するまで、加速度がマイナスになってから停止するまで、など停止するまでの間であれば、開始時点は問われない。
The driving control device 1 learns driving data during manual driving by the driver in a vehicle that can be switched between manual driving and automatic driving by the driver, and executes processing for applying the learning result to the driving characteristics of the automatic driving. Controller. In particular, the driving control device 1 executes driving characteristic learning processing for learning the inter-vehicle distance from the preceding vehicle of the vehicle using the driving data during the deceleration operation in the driver's manual driving with priority. In this travel characteristic learning process, travel data during deceleration operation is selected from travel data during manual operation, and learning is performed using the selected travel data during deceleration operation. That is, learning is performed using only the traveling data during the deceleration operation. At this time, the learning is performed in consideration of the traveling data of the distance between the stopped vehicles and the environment information of the environment in which the vehicle is traveling. Here, the driving control device 1 includes a learning data storage unit 21, a travel characteristic learning unit 23, and an automatic driving control execution unit 25. Moreover, although this embodiment demonstrates the case where the driving control apparatus 1 is mounted in a vehicle, you may install a communication apparatus in a vehicle and install the driving control apparatus 1 in an external server. In addition, during deceleration operation, from when the accelerator pedal is turned off until it stops, from when the brake pedal is turned on until it stops, from when the acceleration becomes negative, until it stops, etc. The start time is not questioned.
運転制御装置1を車両に搭載した場合には、車両を所有または使用する運転者の走行特性を学習することができる。また、所定期間(例えば、最新1ヶ月間)の走行データを記憶しておき、その運転者が所有または使用する車両の自動運転に反映させることができる。一方、外部サーバに設置した場合には、運転者自身の長期間の走行データを用いて学習することができるので、より安定した学習結果を算出することができる。また、学習が完了していないときには、他の運転者の走行データを活用して、その地域の平均的な運転者の走行特性を自動運転に反映させることができる。
When the driving control device 1 is mounted on a vehicle, the driving characteristics of the driver who owns or uses the vehicle can be learned. Further, traveling data for a predetermined period (for example, the latest one month) can be stored and reflected in the automatic driving of the vehicle owned or used by the driver. On the other hand, when it is installed on an external server, it is possible to learn using long-term driving data of the driver himself, so that a more stable learning result can be calculated. In addition, when learning is not completed, the driving data of other drivers can be utilized to reflect the average driving characteristics of the driver in the area in automatic driving.
走行状態検出部3は、車速や操舵角、加速度、先行車との車間距離、先行車との相対速度、現在位置、方向指示器の表示状態、ワイパーの作動状態等の車両の走行状態を示す走行データを検出する。例えば、CAN(Controller Area Network)のような車載ネットワークやナビゲーション装置、レーザレーダ、カメラ等である。特に、走行状態検出部3は、運転者が減速操作中であるか否かを判定するためのデータとして、車両のブレーキペダル及びアクセルペダルの操作量と車両の減速度を検出する。
The traveling state detection unit 3 indicates the traveling state of the vehicle such as the vehicle speed, the steering angle, the acceleration, the inter-vehicle distance with the preceding vehicle, the relative speed with the preceding vehicle, the current position, the direction indicator display state, the wiper operating state, and the like. Detect driving data. For example, an in-vehicle network such as CAN (Controller Area Network), a navigation device, a laser radar, a camera, and the like. In particular, the traveling state detection unit 3 detects the operation amount of the brake pedal and the accelerator pedal of the vehicle and the deceleration of the vehicle as data for determining whether or not the driver is decelerating.
走行環境検出部5は、車両が走行する道路の車線数、制限速度、道路勾配、車両前方の信号機の表示状態、車両前方の交差点までの距離、車両前方を走行する車両台数、車両前方の交差点の予定進路等の車両が走行している環境を表す環境情報を検出する。例えば、車両に搭載されたカメラやレーザレーダ、ナビゲーション装置である。尚、車両前方の信号機の表示状態は路車間通信を利用して検出してもよく、車両前方を走行する車両台数は車車間通信やスマートフォンと連携したクラウドサービスを利用して検出してもよい。また、車両前方の交差点の予定進路はナビゲーション装置や方向指示器の表示状態等から取得する。さらに、車両周囲の照度、気温、天候状態を照度センサ、外気温センサ、ワイパースイッチからそれぞれ取得する。ただし、照度はヘッドライトのスイッチから取得してもよい。
The traveling environment detection unit 5 includes the number of lanes on the road on which the vehicle is traveling, the speed limit, the road gradient, the display state of the traffic signal in front of the vehicle, the distance to the intersection in front of the vehicle, the number of vehicles traveling in front of the vehicle, and the intersection in front of the vehicle. Environment information representing an environment in which the vehicle is traveling, such as a scheduled route, is detected. For example, a camera, a laser radar, or a navigation device mounted on a vehicle. The display state of the traffic light in front of the vehicle may be detected using road-to-vehicle communication, and the number of vehicles traveling in front of the vehicle may be detected using vehicle-to-vehicle communication or a cloud service linked to a smartphone. . Further, the planned course at the intersection in front of the vehicle is obtained from the display state of the navigation device or the direction indicator. Furthermore, the illuminance, temperature, and weather conditions around the vehicle are acquired from the illuminance sensor, the outside temperature sensor, and the wiper switch, respectively. However, the illuminance may be obtained from a headlight switch.
運転切替スイッチ7は、車両に搭載され、車両の乗員が操作することによって自動運転と手動運転の切り替えを行うスイッチである。例えば、車両のステアリングに設置されたスイッチである。
The operation changeover switch 7 is a switch that is mounted on the vehicle and is switched between automatic operation and manual operation when operated by a vehicle occupant. For example, a switch installed on the steering of the vehicle.
制御状態呈示部9は、現在の制御状態が手動運転であるか自動運転であるかをメータ表示部やナビゲーション装置の表示画面、ヘッドアップディスプレイ等に表示する。また、自動運転の開始、終了を伝える報知音も出力し、走行特性の学習が終了したか否かも呈示する。
The control state presentation unit 9 displays whether the current control state is manual operation or automatic operation on a meter display unit, a display screen of a navigation device, a head-up display, or the like. In addition, a notification sound that informs the start and end of automatic driving is also output to indicate whether or not learning of driving characteristics has ended.
アクチュエータ11は、運転制御装置1からの実行指令を受信して、車両のアクセルやブレーキ、ステアリング等の各部を駆動する。
Actuator 11 receives an execution command from operation control device 1 and drives each part such as an accelerator, a brake, and a steering of the vehicle.
次に、運転制御装置1を構成する各部について説明する。学習用データ記憶部21は、走行状態検出部3及び走行環境検出部5から車両の走行状態に関する走行データや車両周囲の走行環境に関する環境情報を取得し、走行特性学習処理に必要なデータを記憶する。特に、学習用データ記憶部21は、手動運転中のときに車間距離の学習に使用する減速操作中の走行データを記憶する。このとき、学習用データ記憶部21は、減速操作中の走行データを車両の走行状態や走行環境と関連付けて記憶する。記憶される走行データとしては、減速操作中の速度や減速操作中の車間距離の他に、停止中の車間距離や先行車との相対速度、操舵角、減速度、先行車に追従している継続時間等のデータを記憶する。また、環境情報についても記憶する。環境情報としては、車両が走行する道路の車線数、制限速度、道路勾配または信号機の表示状態、車両から交差点までの距離、車両前方の車両台数、方向指示器の表示状態、車両の周辺の天候、気温または照度等である。
Next, each part constituting the operation control device 1 will be described. The learning data storage unit 21 acquires travel data related to the travel state of the vehicle and environmental information related to the travel environment around the vehicle from the travel state detection unit 3 and the travel environment detection unit 5, and stores data necessary for the travel characteristic learning process. To do. In particular, the learning data storage unit 21 stores travel data during a deceleration operation that is used for learning the inter-vehicle distance during manual driving. At this time, the learning data storage unit 21 stores the traveling data during the deceleration operation in association with the traveling state and traveling environment of the vehicle. As travel data to be stored, in addition to the speed during the deceleration operation and the inter-vehicle distance during the deceleration operation, the inter-vehicle distance when stopped, the relative speed with the preceding vehicle, the steering angle, the deceleration, and the preceding vehicle are followed. Store data such as duration. Also, environmental information is stored. The environmental information includes the number of lanes on the road on which the vehicle is traveling, the speed limit, the road gradient or traffic light display status, the distance from the vehicle to the intersection, the number of vehicles ahead of the vehicle, the display status of the direction indicator, and the weather around the vehicle. Temperature or illuminance.
走行特性学習部23は、学習用データ記憶部21で記憶された走行データを読み出し、走行状態及び走行環境からの影響度合いを考慮して、車両の走行特性を学習する。特に、運転者の手動運転における減速操作中の走行データを優先して使用して、車両の走行特性のうち先行車との車間距離を学習する。このとき、走行特性学習部23は、手動運転中の走行データの中から減速操作中の走行データを選別し、選別された減速操作中の走行データを使用して学習する。すなわち、減速操作中の走行データのみを使用して先行車との車間距離を学習する。また、停止中の車間距離の走行データと車両が走行している環境の環境情報を考慮して学習する。さらに、走行特性学習部23は、車両のトリップ毎に学習する。また、先行車との車間距離の学習結果に基づいて、運転者の運転スタイルを判定してもよい。こうして算出された学習結果は、走行特性学習部23に随時記憶される。
The driving characteristic learning unit 23 reads the driving data stored in the learning data storage unit 21 and learns the driving characteristic of the vehicle in consideration of the influence state from the driving state and the driving environment. In particular, the driving data during the deceleration operation in the driver's manual driving is preferentially used to learn the inter-vehicle distance from the preceding vehicle among the driving characteristics of the vehicle. At this time, the travel characteristic learning unit 23 selects travel data during the deceleration operation from travel data during the manual operation, and learns using the selected travel data during the deceleration operation. That is, the inter-vehicle distance from the preceding vehicle is learned using only the traveling data during the deceleration operation. In addition, learning is performed in consideration of travel data on the distance between the vehicles being stopped and environmental information of the environment in which the vehicle is traveling. Further, the travel characteristic learning unit 23 learns for each trip of the vehicle. Further, the driving style of the driver may be determined based on the learning result of the inter-vehicle distance from the preceding vehicle. The learning result calculated in this way is stored in the running characteristic learning unit 23 as needed.
自動運転制御実行部25は、自動運転区間になった場合や運転者が運転切替スイッチ7により自動運転を選択した場合に、自動運転制御を実行する。このとき、自動運転制御実行部25は、走行特性学習部23で学習した学習結果を自動運転の走行特性に適用する。特に、先行車との車間距離の学習結果を自動運転時の車間距離に適用する。
The automatic operation control execution unit 25 executes automatic operation control when an automatic operation section is entered or when the driver selects automatic operation using the operation changeover switch 7. At this time, the automatic driving control execution unit 25 applies the learning result learned by the driving characteristic learning unit 23 to the driving characteristic of automatic driving. In particular, the learning result of the inter-vehicle distance from the preceding vehicle is applied to the inter-vehicle distance during automatic driving.
尚、運転制御装置1は、マイクロコンピュータ、マイクロプロセッサ、CPUを含む汎用の電子回路とメモリ等の周辺機器から構成されている。そして、特定のプログラムを実行することにより、上述した学習用データ記憶部21、走行特性学習部23、自動運転制御実行部25として動作する。このような運転制御装置1の各機能は、1または複数の処理回路によって実装することができる。処理回路は、例えば電気回路を含む処理装置等のプログラムされた処理装置を含み、また実施形態に記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や従来型の回路部品のような装置も含んでいる。
The operation control device 1 includes a general-purpose electronic circuit including a microcomputer, a microprocessor, and a CPU, and peripheral devices such as a memory. And by operating a specific program, it operates as the above-described learning data storage unit 21, travel characteristic learning unit 23, and automatic driving control execution unit 25. Each function of the operation control apparatus 1 can be implemented by one or a plurality of processing circuits. The processing circuit includes a programmed processing device such as, for example, a processing device including an electrical circuit, and an application specific integrated circuit (ASIC) or conventional circuit arranged to perform the functions described in the embodiments. It also includes devices such as parts.
[走行特性学習処理の手順]
次に、本実施形態に係る運転制御装置1による走行特性学習処理の手順を図2のフローチャートを参照して説明する。図2に示す走行特性学習処理は、車両のイグニッションがオンされると開始する。 [Procedure for driving characteristics learning process]
Next, the procedure of the travel characteristic learning process by theoperation control apparatus 1 according to the present embodiment will be described with reference to the flowchart of FIG. The driving characteristic learning process shown in FIG. 2 starts when the ignition of the vehicle is turned on.
次に、本実施形態に係る運転制御装置1による走行特性学習処理の手順を図2のフローチャートを参照して説明する。図2に示す走行特性学習処理は、車両のイグニッションがオンされると開始する。 [Procedure for driving characteristics learning process]
Next, the procedure of the travel characteristic learning process by the
図2に示すように、まずステップS101において、学習用データ記憶部21は、運転切替スイッチ7の状態により車両が手動運転であるか否かを判定する。車両が手動運転である場合にはステップS103に進み、自動運転である場合には走行特性学習処理を終了して自動運転制御を実行する。
As shown in FIG. 2, first, in step S <b> 101, the learning data storage unit 21 determines whether or not the vehicle is in manual operation according to the state of the operation changeover switch 7. If the vehicle is in manual driving, the process proceeds to step S103. If the vehicle is in automatic driving, the driving characteristic learning process is terminated and automatic driving control is executed.
ステップS103において、学習用データ記憶部21は、走行状態検出部3及び走行環境検出部5から車両の走行状態に関する走行データと車両周囲の走行環境に関する環境情報を検出する。検出される走行データとしては、車速、操舵角、加速度、減速度、先行車との車間距離、先行車との相対速度、現在位置、前方交差点の予定進路、ブレーキペダル及びアクセルペダルの操作量、先行車に追従している継続時間、ワイパーの作動状態等を検出する。また、環境情報としては、車両が走行する道路の車線数、制限速度、道路勾配または信号機の表示状態、車両から交差点までの距離、車両前方の車両台数、車両の方向指示器の表示状態、車両周辺の天候、気温または照度等を検出する。
In step S103, the learning data storage unit 21 detects travel data related to the travel state of the vehicle and environmental information related to the travel environment around the vehicle from the travel state detection unit 3 and the travel environment detection unit 5. The detected travel data includes vehicle speed, steering angle, acceleration, deceleration, inter-vehicle distance from the preceding vehicle, relative speed with the preceding vehicle, current position, planned route at the front intersection, brake pedal and accelerator pedal operation amount, The duration of following the preceding vehicle, the operating state of the wiper, etc. are detected. The environmental information includes the number of lanes of the road on which the vehicle is traveling, the speed limit, the road gradient or the display state of the traffic light, the distance from the vehicle to the intersection, the number of vehicles ahead of the vehicle, the display state of the vehicle direction indicator, the vehicle Detect ambient weather, temperature, illuminance, etc.
ステップS105において、学習用データ記憶部21は、現在の車両が減速中または停止中であるか否かを判定する。減速中であるか否かの判定方法としては、減速操作が行われている場合、例えばブレーキペダルの操作がONである場合やアクセルペダルの操作がOFFである場合に減速中であると判定する。また、所定値以上の減速度が車両に発生している場合に減速中であると判定してもよい。さらに、車両が停止中であるか否かの判定方法は、車速が0である場合に停止中であると判定する。ここで、減速中または停止中であると判定された場合にはステップS107に進み、減速中でも停止中でもないと判定された場合にはステップS103に戻る。
In step S105, the learning data storage unit 21 determines whether or not the current vehicle is being decelerated or stopped. As a method of determining whether or not the vehicle is decelerating, it is determined that the vehicle is decelerating when the deceleration operation is performed, for example, when the brake pedal operation is ON or when the accelerator pedal operation is OFF. . Alternatively, it may be determined that the vehicle is decelerating when a deceleration greater than a predetermined value is generated in the vehicle. Furthermore, the method for determining whether or not the vehicle is stopped determines that the vehicle is stopped when the vehicle speed is zero. If it is determined that the vehicle is decelerating or stopped, the process proceeds to step S107. If it is determined that the vehicle is not decelerating or stopped, the process returns to step S103.
ステップS107において、学習用データ記憶部21は、車両の現在の走行状態が学習条件に合致するか否かを判定する。学習条件とは、現在の走行状態が走行特性の学習に使用するデータを取得するのに適当であるか否かを判定するための条件である。学習条件としては、(A)車両が先行車に追従している継続時間が所定時間以上であること、(B)先行車との相対速度の絶対値が所定値以下であること、(C)車両の操舵角の絶対値が所定値以下であること、の3つがある。さらに、(D)車両の停止中の車間距離が所定値以内であること、(E)車両が予め設定された場所、例えば交差点付近等に位置していること、の2つがある。ただし、学習条件(D)については、車両が停止中である場合に適用される。学習用データ記憶部21は、これらの学習条件に合致した場合にはステップS109に進み、合致しなかった場合にはステップS103へ戻る。
In step S107, the learning data storage unit 21 determines whether or not the current running state of the vehicle matches the learning condition. The learning condition is a condition for determining whether or not the current driving state is appropriate for acquiring data used for learning of driving characteristics. As learning conditions, (A) the duration that the vehicle follows the preceding vehicle is a predetermined time or more, (B) the absolute value of the relative speed with respect to the preceding vehicle is not more than a predetermined value, (C) There are three cases where the absolute value of the steering angle of the vehicle is not more than a predetermined value. Further, there are two cases: (D) the inter-vehicle distance when the vehicle is stopped is within a predetermined value, and (E) the vehicle is located in a preset location, for example, near an intersection. However, the learning condition (D) is applied when the vehicle is stopped. The learning data storage unit 21 proceeds to step S109 if these learning conditions are met, and returns to step S103 if they do not match.
このように、学習条件(A)、(B)を適用することにより、先行車の割り込み直後や離脱直後の過度的な状態のデータを除外することができ、学習条件(C)を適用することにより、車両が車線変更中や旋回中のデータを除外することができる。また、学習条件(D)を適用することにより、車両が停止中に交差点内や交差点の先などに存在する先行車以外の車両を対象としたデータを除外することができる。したがって、これらの学習条件(A)~(D)を設定することにより、車両が安定した条件にあるときの走行データを使用して走行特性の学習を行うことができる。さらに、学習条件(E)については、交差点等の運転者が車間距離を敏感に調節する可能性の高い場所に設定しておくことによって、より精度の高い走行特性の学習を行うことができる。したがって、学習条件(E)は常に適用しなくてもよく、学習精度を向上させたい場合のみ適用してもよい。また、これらの学習条件は必ず適用しなければならないものではなく、状況に応じて適用しない場合があってもよい。
As described above, by applying the learning conditions (A) and (B), it is possible to exclude data in an excessive state immediately after the interruption of the preceding vehicle or immediately after leaving, and to apply the learning condition (C). Thus, it is possible to exclude data when the vehicle is changing lanes or turning. In addition, by applying the learning condition (D), it is possible to exclude data targeted for vehicles other than the preceding vehicle existing in the intersection or ahead of the intersection while the vehicle is stopped. Therefore, by setting these learning conditions (A) to (D), the driving characteristics can be learned using the driving data when the vehicle is in a stable condition. Furthermore, with respect to the learning condition (E), the driving characteristics with higher accuracy can be learned by setting the learning condition (E) at a place where the driver is likely to adjust the inter-vehicle distance sensitively. Therefore, the learning condition (E) may not always be applied, and may be applied only when it is desired to improve learning accuracy. Further, these learning conditions are not necessarily applied, and may not be applied depending on the situation.
ステップS109において、学習用データ記憶部21は、ステップS103で検出されてステップS105、107の処理で選別された走行データと環境情報を学習用データとして記憶する。尚、本実施形態では、予めデータを選別した後に記憶する場合について説明したが、手動運転中のデータを一度すべて記憶してから、上述したステップS105、107の処理を実施して選別してもよい。また、停止中のデータは、1回の停止について1個のデータを記憶する。同じデータを繰り返し記憶してしまうことを防止するためである。
In step S109, the learning data storage unit 21 stores the travel data and environment information detected in step S103 and selected in the processes in steps S105 and 107 as learning data. In the present embodiment, the case where the data is stored after being selected in advance has been described. However, after all the data during manual operation is stored once, the above-described steps S105 and 107 may be performed for selection. Good. Moreover, the data during a stop memorize | stores one data about one stop. This is to prevent the same data from being stored repeatedly.
ここで、学習用データ記憶部21によって記憶される学習用データの一例を図3に示す。図3に示すように、学習用データには、減速操作中の車間距離D、減速操作中の車速V、x1~x7、y1のデータが記録されている。x1~x7、y1は環境情報に基づいて設定されたデータであり、図4に示す設定方法にしたがって0または1の値が設定される。例えば、x1は、図3に示す車間距離Dと速度Vのデータを取得したときに、車両が片側2車線以上の道路を走行している場合には1が設定され、片側1車線以下の道路を走行している場合には0が設定される。また、車線数の代わりに制限速度であってもよい。例えば、車両が走行している道路の制限速度が所定値(40または50km/h)より低い場合には1が設定され、制限速度が所定値以上である場合には0を設定する。
Here, an example of the learning data stored in the learning data storage unit 21 is shown in FIG. As shown in FIG. 3, in the learning data, data of the inter-vehicle distance D during the deceleration operation, the vehicle speed V during the deceleration operation, x1 to x7, and y1 are recorded. x1 to x7 and y1 are data set based on the environment information, and a value of 0 or 1 is set according to the setting method shown in FIG. For example, x1 is set to 1 when the vehicle is traveling on a road with two or more lanes on one side when data on the inter-vehicle distance D and speed V shown in FIG. 0 is set when driving. Further, the speed limit may be used instead of the number of lanes. For example, 1 is set when the speed limit of the road on which the vehicle is traveling is lower than a predetermined value (40 or 50 km / h), and 0 is set when the speed limit is equal to or higher than the predetermined value.
さらに、x2は、車両が上り坂を走行している場合には1、それ以外(平坦路と下り坂)の場合には0が設定され、x3は、車両前方の信号機が赤信号の場合には1、それ以外の場合(青信号または信号機なし)には0が設定される。ただし、赤信号に黄信号を含めてもよい。また、x4は、車両から交差点までの距離が所定値J[m]未満である場合には1、所定値J[m]以上である場合には0が設定され、x5は、車両前方のL[m]以内に所定値N台以上の車両がある場合には1、所定値N-1台以下である場合には0が設定される。ただし、VICS(登録商標)情報を用いて混雑度を判断してもよい。さらに、x6は、車両の右左折のための方向指示器がONの場合には1、OFFである場合には0が設定される。また、y1は、車両が停止中に停止線までの距離が所定値K[m]以上である場合には1、所定値K[m]未満である場合には0が設定される。
Furthermore, x2 is set to 1 when the vehicle is traveling on an uphill, 0 is set otherwise (flat road and downhill), and x3 is set when the traffic light ahead of the vehicle is a red signal. Is set to 1; otherwise, 0 is set (blue light or no traffic light). However, a yellow signal may be included in the red signal. Also, x4 is set to 1 when the distance from the vehicle to the intersection is less than a predetermined value J [m], 0 is set when the distance is not less than the predetermined value J [m], and x5 is set to L in front of the vehicle. 1 is set when there are N or more vehicles within the predetermined value [m], and 0 is set when there are N-1 or less vehicles. However, the degree of congestion may be determined using VICS (registered trademark) information. Further, x6 is set to 1 when the turn indicator for turning right or left of the vehicle is ON, and is set to 0 when it is OFF. Further, y1 is set to 1 when the distance to the stop line is equal to or greater than a predetermined value K [m] while the vehicle is stopped, and is set to 0 when the distance is less than the predetermined value K [m].
また、図4には記載していないが、車両周囲の天候が悪天候である場合には1、悪天候でない場合には0を設定してもよい。悪天候であるか否かの判定方法としては、車両のワイパーがOFFまたは間欠に設定されている場合には悪天候ではないと判定し、ONの場合には悪天候であると判定する。さらに、気温や照度等の条件を追加してもよい。気温は、外気温センサでマイナスである場合には1、プラスである場合には0と設定する。これにより、路面凍結による特性の違いに対応することができる。照度は、照度センサで明るい場合には1、暗い場合には0と設定すればよい。また、ヘッドライトの点灯の有無によって設定してもよい。尚、図4では、0か1の2段階に分類する場合について記載したが、3段階やそれ以上の多段階に分類してもよい。このように図3に示す学習用データでは、減速操作中の車間距離Dと減速操作中の車速Vの走行データに、x1~x6、y1の環境情報が関連付けられている。したがって、本実施形態では、減速操作中の車間距離Dと減速操作中の車速Vの走行データを使用して学習し、さらに車両が走行している環境と車間距離を対応させて走行特性を学習することができる。
Although not shown in FIG. 4, 1 may be set when the weather around the vehicle is bad, and 0 may be set when the weather is not bad. As a method for determining whether or not the weather is bad, when the wiper of the vehicle is set to OFF or intermittent, it is determined that the weather is not bad, and when it is ON, it is determined that the weather is bad. Furthermore, conditions such as temperature and illuminance may be added. The temperature is set to 1 when the outside air temperature sensor is negative, and is set to 0 when it is positive. Thereby, it can respond to the difference in the characteristic by road surface freezing. The illuminance may be set to 1 when the illuminance sensor is bright and 0 when it is dark. Further, it may be set depending on whether or not the headlight is turned on. In FIG. 4, the case of classifying into two levels of 0 or 1 is described, but it may be classified into three or more levels. As described above, in the learning data shown in FIG. 3, the environmental information of x1 to x6 and y1 is associated with the travel data of the inter-vehicle distance D during the deceleration operation and the vehicle speed V during the deceleration operation. Therefore, in the present embodiment, learning is performed using travel data of the inter-vehicle distance D during the deceleration operation and the vehicle speed V during the deceleration operation, and further, the travel characteristics are learned by associating the environment in which the vehicle is traveling with the inter-vehicle distance. can do.
また、学習用データとして記憶されるデータは、上述したステップS105、107の処理で選別されているので、データのばらつきが抑制されている。図5は、減速操作中における車速と車間距離との間の関係を示したデータの一例を示しており、図6は、ステップS105の処理を実施しなかった場合、すなわち減速操作中だけではなくすべての車速と車間距離との間の関係を示したデータの一例を示している。図6から分かるように、減速操作中に限定しない場合には、データが広くばらついてしまうので、車速と車間距離の関係を学習しても学習精度を向上させることはできない。これに対して、減速操作中に限定した場合では、運転者が車間距離を積極的に調節するので、図5に示すようにデータのばらつきが抑制されている。これにより、減速操作中に限定した場合では運転者の感覚と一致した車間距離を精度よく学習することができ、学習精度を向上させることができる。
Further, since the data stored as the learning data is selected in the above-described steps S105 and 107, the data variation is suppressed. FIG. 5 shows an example of data indicating the relationship between the vehicle speed and the inter-vehicle distance during the deceleration operation, and FIG. 6 shows not only the case where the process of step S105 is not performed, that is, not only during the deceleration operation. An example of data showing the relationship between all vehicle speeds and inter-vehicle distances is shown. As can be seen from FIG. 6, when the speed is not limited during the deceleration operation, the data varies widely. Therefore, even if the relationship between the vehicle speed and the inter-vehicle distance is learned, the learning accuracy cannot be improved. On the other hand, in the case of limiting to the deceleration operation, the driver positively adjusts the inter-vehicle distance, so that data variation is suppressed as shown in FIG. As a result, when the vehicle is limited to the deceleration operation, the inter-vehicle distance that matches the driver's feeling can be learned with high accuracy, and the learning accuracy can be improved.
ステップS111において、学習用データ記憶部21は、所定量の学習用データを記憶できたか否かを判定し、所定量に満たない場合にはステップS103に戻り、所定量以上蓄積できた場合にはステップS113に進む。
In step S111, the learning data storage unit 21 determines whether or not a predetermined amount of learning data has been stored. If the predetermined amount is not reached, the process returns to step S103. Proceed to step S113.
ステップS113において、走行特性学習部23は、車両の走行特性を学習する。特に、運転者の手動運転における減速操作中の走行データを使用して、走行特性のうち先行車との車間距離を学習する。車間距離の学習では、例えば、図3で示したようなデータセットを用いて、以下の式(1)に示す重回帰モデルを作成して学習する。
[数1]
Df=(a0+a1x1+a2x2+a3x3+a4x4+a5x5+a6x6)Vf+(b0+b1y1) (1)
式(1)において、Vfは現在の車速、Dfはモデルから計算された先行車との車間距離である。x1~x7、y1は環境要因であり、a0~a6、b0、b1は学習によって得られた係数である。式(1)の(a0~a6x6)の項は、走行中の先行車までの時間(車頭時間、但し停止車間距離を引いた位置までの時間)である。また、(b0+b1y1)の項は、停止中の車間距離であり、車両と先行車の車速がゼロになったときの車間距離である。このように式(1)に示す重回帰モデルは、環境要因によって先行車との車間距離、停止時の車間距離が変動することを示している。 In step S113, the travelcharacteristic learning unit 23 learns the travel characteristics of the vehicle. In particular, the inter-vehicle distance from the preceding vehicle is learned among the travel characteristics using travel data during the deceleration operation in the manual operation of the driver. In the learning of the inter-vehicle distance, for example, a multiple regression model represented by the following equation (1) is created and learned using a data set as shown in FIG.
[Equation 1]
Df = (a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6) Vf + (b0 + b1y1) (1)
In equation (1), Vf is the current vehicle speed, and Df is the inter-vehicle distance from the preceding vehicle calculated from the model. x1 to x7 and y1 are environmental factors, and a0 to a6, b0 and b1 are coefficients obtained by learning. The term (a0 to a6 × 6) in the equation (1) is the time to the preceding vehicle while traveling (the vehicle head time, but the time to the position obtained by subtracting the stop inter-vehicle distance). The term (b0 + b1y1) is the distance between the stopped vehicles, and is the distance between the vehicle and the preceding vehicle when the vehicle speed becomes zero. As described above, the multiple regression model represented by the equation (1) indicates that the inter-vehicle distance from the preceding vehicle and the inter-vehicle distance at the time of stop vary depending on environmental factors.
[数1]
Df=(a0+a1x1+a2x2+a3x3+a4x4+a5x5+a6x6)Vf+(b0+b1y1) (1)
式(1)において、Vfは現在の車速、Dfはモデルから計算された先行車との車間距離である。x1~x7、y1は環境要因であり、a0~a6、b0、b1は学習によって得られた係数である。式(1)の(a0~a6x6)の項は、走行中の先行車までの時間(車頭時間、但し停止車間距離を引いた位置までの時間)である。また、(b0+b1y1)の項は、停止中の車間距離であり、車両と先行車の車速がゼロになったときの車間距離である。このように式(1)に示す重回帰モデルは、環境要因によって先行車との車間距離、停止時の車間距離が変動することを示している。 In step S113, the travel
[Equation 1]
Df = (a0 + a1x1 + a2x2 + a3x3 + a4x4 + a5x5 + a6x6) Vf + (b0 + b1y1) (1)
In equation (1), Vf is the current vehicle speed, and Df is the inter-vehicle distance from the preceding vehicle calculated from the model. x1 to x7 and y1 are environmental factors, and a0 to a6, b0 and b1 are coefficients obtained by learning. The term (a0 to a6 × 6) in the equation (1) is the time to the preceding vehicle while traveling (the vehicle head time, but the time to the position obtained by subtracting the stop inter-vehicle distance). The term (b0 + b1y1) is the distance between the stopped vehicles, and is the distance between the vehicle and the preceding vehicle when the vehicle speed becomes zero. As described above, the multiple regression model represented by the equation (1) indicates that the inter-vehicle distance from the preceding vehicle and the inter-vehicle distance at the time of stop vary depending on environmental factors.
式(1)の係数のうち、図4に示すように、a0は、トリップ毎に設定される基準値であり、x1~x6の値が0である場合のトリップ内での車頭時間の平均値である。また、b0は、運転者毎に設定される基準値であり、y1の値が0である場合の停止時の車間距離である。例えば、停止時の車間距離の平均値を用いればよい。
Of the coefficients of equation (1), as shown in FIG. 4, a0 is a reference value set for each trip, and the average value of the vehicle head time within the trip when the values of x1 to x6 are 0 It is. Further, b0 is a reference value set for each driver, and is the inter-vehicle distance when the vehicle stops when the value of y1 is zero. For example, an average value of the inter-vehicle distance at the time of stopping may be used.
走行特性学習部23は、図3に示すような学習用データを用いて重回帰分析を行い、式(1)のa0~a6、b0、b1の係数を算出する。ここで使用する学習用データは、図5に示すような運転者が減速操作中の走行データだけなので、ばらつきが抑制されており、その結果として式(1)から算出される先行車との車間距離Dfは図5の直線Fとなる。このように本実施形態では、減速操作中の走行データのみを使用して先行車との車間距離を学習するので、運転者の感覚と一致した車間距離を精度よく学習することができる。
The running characteristic learning unit 23 performs a multiple regression analysis using learning data as shown in FIG. 3, and calculates coefficients of a0 to a6, b0, and b1 in Expression (1). Since the learning data used here is only the driving data during the deceleration operation by the driver as shown in FIG. 5, the variation is suppressed, and as a result, the distance between the preceding vehicle calculated from the equation (1) The distance Df is a straight line F in FIG. As described above, in the present embodiment, since the inter-vehicle distance from the preceding vehicle is learned using only the traveling data during the deceleration operation, the inter-vehicle distance that matches the driver's feeling can be learned with high accuracy.
また、式(1)に示すように、本実施形態では、a1x1~a6x6の項によって車両が走行している環境の環境情報を考慮して学習することができる。すなわち、環境情報に基づいて補正することができる。さらに、本実施形態では、b0+b1y1によって停止中の車間距離の走行データを考慮して学習することもできる。すなわち、停止中の車間距離の走行データに基づいて補正することができる。また、停止中の車間距離のみを別に学習してもよい。例えば、平均値等の統計処理によって停止中の車間距離の特性を求めて、これを自動運転時の停止車間距離の設定値としてもよい。これにより、停止中の車間距離のみを式(1)で表せない場合でも運転者の走行特性を学習することができる。
Further, as shown in the equation (1), in the present embodiment, learning can be performed in consideration of environmental information of the environment in which the vehicle is traveling according to the terms a1x1 to a6x6. That is, the correction can be made based on the environmental information. Furthermore, in the present embodiment, learning can be performed in consideration of traveling data of the distance between the vehicles being stopped by b0 + b1y1. That is, it can correct | amend based on the driving | running | working data of the distance between the vehicles in a stop. In addition, only the distance between the stopped vehicles may be learned separately. For example, characteristics of the inter-vehicle distance during stoppage may be obtained by statistical processing such as an average value, and this may be set as a set value for the inter-vehicle distance during automatic driving. As a result, the driving characteristics of the driver can be learned even when only the inter-vehicle distance during stoppage cannot be expressed by equation (1).
尚、学習用データは複数のトリップのデータを使用してもよいし、1トリップのデータだけを使用してもよい。1トリップだけでは環境要因のデータが揃わない場合には、環境要因の係数については複数のトリップの学習用データを用いて算出し、基準となるa0、b0の係数についてはトリップ内の学習用データを用いて算出してもよい。この場合、その日のトリップが他のトリップと比べて、ゆっくり傾向である場合や急ぎ傾向である場合でも違和感のない学習結果を提供することができる。
Note that the learning data may use a plurality of trip data, or may use only one trip data. If environmental factor data is not available with only one trip, environmental factor coefficients are calculated using multiple trip learning data, and reference a0 and b0 coefficients are the learning data in the trip. You may calculate using. In this case, it is possible to provide a learning result with no sense of incongruity even when the trip of the day tends to be slow or rushed compared to other trips.
また、走行中の車間距離や停止中の車間距離は、トリップ毎に異なる特性を持つことがある。例えば、目的地に急いでいるときやゆっくり運転したいとき、同乗者が存在するとき等、運転するときの気分や条件で異なる場合がある。そこで、トリップ毎に重回帰分析を行うことによって、そのトリップ毎の車間距離の特性を得ることができる。さらに、トリップ毎に学習した車間距離の特性で、自動運転時の車間距離制御を行うことで、そのトリップにおける運転者の気分や条件に合った自動運転制御を提供することができる。
In addition, the distance between vehicles while traveling and the distance between vehicles when stopped may have different characteristics for each trip. For example, when you are in a hurry to the destination, want to drive slowly, or when a passenger is present, the mood and conditions when driving may differ. Therefore, by performing multiple regression analysis for each trip, the characteristics of the inter-vehicle distance for each trip can be obtained. Furthermore, by performing inter-vehicle distance control during automatic driving with the characteristics of inter-vehicle distance learned for each trip, it is possible to provide automatic driving control that matches the driver's mood and conditions during the trip.
ここで、車両が片側1車線以下の道路を走行している場合には、式(1)のx1が0となり、a1がマイナスの値なので、式(1)の先行車との車間距離Dfは、2車線以上の道路を走行している場合より大きな値となる。したがって、車両が片側1車線以下の道路を走行している場合には、2車線以上の道路を走行している場合より、先行車との車間距離Dfは長くなるように補正される。また、車線数の代わりに、制限速度を用いてもよいので、車両が走行している道路の制限速度が所定値以上である場合には、制限速度が所定値より低い場合より、先行車との車間距離Dfは長くなるように補正される。
Here, when the vehicle is traveling on a road of one lane or less on one side, since x1 in equation (1) is 0 and a1 is a negative value, the inter-vehicle distance Df with the preceding vehicle in equation (1) is This value is larger than when driving on a road with two or more lanes. Therefore, when the vehicle is traveling on a road with one lane or less on one side, the inter-vehicle distance Df with the preceding vehicle is corrected to be longer than when the vehicle is traveling on a road with two or more lanes. In addition, since the speed limit may be used instead of the number of lanes, when the speed limit of the road on which the vehicle is traveling is equal to or higher than a predetermined value, the speed limit is lower than that of the preceding vehicle. The inter-vehicle distance Df is corrected to be longer.
同様に、車両が下り坂を走行している場合には、式(1)のx2が0となり、a2がマイナスの値なので、式(1)の先行車との車間距離Dfは、上り坂を走行している場合より大きな値となる。したがって、車両が下り坂を走行している場合には、上り坂を走行している場合より、先行車との車間距離Dfは長くなるように補正される。
Similarly, when the vehicle is traveling on a downhill, since x2 in equation (1) is 0 and a2 is a negative value, the inter-vehicle distance Df with the preceding vehicle in equation (1) is ascending The value is larger than when traveling. Therefore, when the vehicle is traveling downhill, the inter-vehicle distance Df with the preceding vehicle is corrected to be longer than when the vehicle is traveling uphill.
また、車両の前方の信号機が赤信号である場合には、式(1)のx3が1となり、a3がプラスの値なので、式(1)の先行車との車間距離Dfは、赤信号以外の場合より大きな値となる。したがって、車両の前方の信号機が赤信号である場合には、赤信号以外の場合より、先行車との車間距離Dfは長くなるように補正される。
Further, when the traffic light in front of the vehicle is a red signal, since x3 in Expression (1) is 1, and a3 is a positive value, the inter-vehicle distance Df with the preceding vehicle in Expression (1) is other than the red signal. A larger value than in the case of. Therefore, when the traffic light ahead of the vehicle is a red signal, the inter-vehicle distance Df from the preceding vehicle is corrected to be longer than when the signal is not a red signal.
さらに、車両の前方の交差点までの距離が所定値未満である場合には、式(1)のx4が1となり、a4がプラスの値なので、式(1)の先行車との車間距離Dfは、交差点までの距離が所定値以上である場合より大きな値となる。したがって、車両の前方の交差点までの距離が所定値未満である場合には、所定値以上である場合より、先行車との車間距離Dfは長くなるように補正される。
Further, when the distance to the intersection in front of the vehicle is less than a predetermined value, x4 in equation (1) is 1 and a4 is a positive value, so the inter-vehicle distance Df with the preceding vehicle in equation (1) is The distance to the intersection is larger than when the distance is equal to or greater than a predetermined value. Therefore, when the distance to the intersection ahead of the vehicle is less than the predetermined value, the inter-vehicle distance Df with the preceding vehicle is corrected to be longer than when the distance is greater than or equal to the predetermined value.
また、車両の前方の車両台数が所定値以上である場合には、式(1)のx5が1となり、a5がプラスの値なので、式(1)の先行車との車間距離Dfは、車両台数が所定値未満である場合より大きな値となる。したがって、車両の前方の車両台数が所定値以上である場合には、車両台数が所定値未満である場合より、先行車との車間距離は長くなるように補正される。
When the number of vehicles ahead of the vehicle is equal to or greater than a predetermined value, x5 in equation (1) is 1 and a5 is a positive value, so the inter-vehicle distance Df with the preceding vehicle in equation (1) is the vehicle The number is larger than when the number is less than a predetermined value. Therefore, when the number of vehicles ahead of the vehicle is greater than or equal to a predetermined value, the inter-vehicle distance from the preceding vehicle is corrected to be longer than when the number of vehicles is less than the predetermined value.
さらに、車両の方向指示器がONである場合には、式(1)のx6が1となり、a6がプラスの値なので、式(1)の先行車との車間距離Dfは、方向指示器がOFFである場合より大きな値となる。したがって、車両の方向指示器がONである場合には、OFFである場合より、先行車との車間距離Dfは長くなるように補正される。同様に、車両の周辺の天候が悪天候である場合には、悪天候でない場合より、先行車との車間距離Dfは長くなるように補正される。
Further, when the vehicle direction indicator is ON, x6 in equation (1) is 1 and a6 is a positive value, so the inter-vehicle distance Df from the preceding vehicle in equation (1) is determined by the direction indicator. It becomes a larger value than when it is OFF. Therefore, when the vehicle direction indicator is ON, the inter-vehicle distance Df from the preceding vehicle is corrected to be longer than when it is OFF. Similarly, when the weather around the vehicle is bad, the inter-vehicle distance Df with the preceding vehicle is corrected to be longer than when the weather is not bad.
さらに、式(1)に示すように、停止中の車間距離(b0+b1y1)が大きくなれば、先行車との車間距離Dfは長くなるように補正される。また、車両の停止中に停止線までの距離が所定値以上である場合には、式(1)のy1が1となり、b1がプラスの値なので、式(1)の先行車との車間距離Dfは、停止線までの距離が所定値未満である場合より大きな値となる。したがって、車両の前方の停止線までの距離が所定値以上である場合には、所定値未満である場合より、先行車との車間距離Dfは長くなるように補正される。
Furthermore, as shown in Expression (1), if the inter-vehicle distance (b0 + b1y1) during stoppage is increased, the inter-vehicle distance Df with the preceding vehicle is corrected to be longer. In addition, when the distance to the stop line is equal to or greater than a predetermined value while the vehicle is stopped, since y1 in equation (1) is 1 and b1 is a positive value, the inter-vehicle distance from the preceding vehicle in equation (1) Df is a larger value than when the distance to the stop line is less than a predetermined value. Therefore, when the distance to the stop line ahead of the vehicle is greater than or equal to a predetermined value, the inter-vehicle distance Df with the preceding vehicle is corrected to be longer than when the distance is less than the predetermined value.
上述したような走行特性の学習の他に、走行特性学習部23は、先行車との車間距離の学習結果に基づいて、運転者の運転スタイルを判定してもよい。車間距離の特性は、運転者個人の運転スタイルと一致する傾向を示す場合がある。例えば、式(1)のa0+a1の値は片側2車線以上の道路の車間距離の特性を示しており、図7に示すように運転者のせっかち傾向を反映している。a1の値がマイナスであるため、a0+a1の値が小さいほどせっかち度が高くなる。すなわち、1車線の道路よりも2車線以上の道路を好んで走行する傾向があるため、せっかちであると判定することができる。
In addition to learning the driving characteristics as described above, the driving characteristic learning unit 23 may determine the driving style of the driver based on the learning result of the inter-vehicle distance from the preceding vehicle. The characteristics of the inter-vehicle distance may show a tendency to match the individual driving style of the driver. For example, the value of a0 + a1 in equation (1) indicates the characteristics of the inter-vehicle distance of roads with two or more lanes on one side, and reflects the driver's impatient tendency as shown in FIG. Since the value of a1 is negative, the degree of effort increases as the value of a0 + a1 decreases. That is, since there is a tendency to travel favorably on roads with two or more lanes rather than roads with one lane, it can be determined to be impatient.
また、図8に示すように、停止時の車間距離の係数の合計(b0+b1)の平均値と標準偏差は運転者の几帳面傾向を反映しており、平均+標準偏差(σ)の値または標準偏差(σ)の値が小さいほど几帳面度が高くなる。すなわち、標準偏差が小さいので、停止時の車間距離がいつも一定であると考えられ、運転者が几帳面であると判定することができる。このようにして判定された個人の運転スタイルは、運転者自身に提供してもよいし、外部サーバを活用して他の運転者との比較を行い、全体の中でどの程度のせっかち傾向か、几帳面傾向かを判定して、運転者または管理者に情報提供してもよい。
Further, as shown in FIG. 8, the average value and standard deviation of the sum (b0 + b1) of the coefficients of the inter-vehicle distance at the time of the stop reflect the driver's merit, and the average + standard deviation (σ) value or standard The smaller the value of deviation (σ), the higher the screen quality. That is, since the standard deviation is small, it can be considered that the distance between the vehicles at the time of stopping is always constant, and it can be determined that the driver is in a careful manner. The personal driving style determined in this way may be provided to the driver himself, or by using an external server to compare with other drivers, how much of the overall tendency The driver or the manager may be provided with information by determining whether or not the screen has a tendency.
ステップS115において、走行特性学習部23は、算出した式(1)のa0~a6、b0、b1の係数を算出結果として記憶し、本実施形態に係る走行特性学習処理を終了する。
In step S115, the driving characteristic learning unit 23 stores the calculated coefficients a0 to a6, b0, and b1 of the equation (1) as calculation results, and ends the driving characteristic learning process according to the present embodiment.
[自動運転制御処理の手順]
次に、本実施形態に係る運転制御装置1による自動運転制御処理の手順を図9のフローチャートを参照して説明する。 [Procedure for automatic operation control processing]
Next, the procedure of the automatic driving control process by the drivingcontrol apparatus 1 according to the present embodiment will be described with reference to the flowchart of FIG.
次に、本実施形態に係る運転制御装置1による自動運転制御処理の手順を図9のフローチャートを参照して説明する。 [Procedure for automatic operation control processing]
Next, the procedure of the automatic driving control process by the driving
図9に示すように、ステップS201において、自動運転制御実行部25は、図2に示す走行特性学習処理によって先行車との車間距離の学習が完了しているか否かを判定する。学習が完了している場合にはステップS203に進み、学習が完了していない場合にはステップS211に進む。
As shown in FIG. 9, in step S <b> 201, the automatic driving control execution unit 25 determines whether or not learning of the inter-vehicle distance from the preceding vehicle has been completed by the travel characteristic learning process shown in FIG. 2. If learning has been completed, the process proceeds to step S203, and if learning has not been completed, the process proceeds to step S211.
まず、車間距離の学習が完了している場合について説明する。ステップS203において、自動運転制御実行部25は、走行状態検出部3及び走行環境検出部5から車両の走行状態に関する走行データと車両周囲の走行環境に関する環境情報を検出する。
First, the case where learning of the inter-vehicle distance has been completed will be described. In step S <b> 203, the automatic driving control execution unit 25 detects travel data regarding the travel state of the vehicle and environment information regarding the travel environment around the vehicle from the travel state detection unit 3 and the travel environment detection unit 5.
ステップS205において、自動運転制御実行部25は、学習結果に基づいて先行車との車間距離を設定する。具体的には、学習結果であるa0~a6、b0、b1の係数を式(1)に設定し、検出した現在の車両の車速を式(1)に入力することによって、先行車との車間距離Dfを算出する。そして、自動運転制御実行部25は、算出した車間距離Dfを自動運転に適用する車間距離として設定する。すなわち、先行車との車間距離の学習結果を、自動運転時の車間距離に適用する。
In step S205, the automatic driving control execution unit 25 sets the inter-vehicle distance from the preceding vehicle based on the learning result. Specifically, the coefficients of learning results a0 to a6, b0, b1 are set in equation (1), and the detected vehicle speed of the current vehicle is input into equation (1). The distance Df is calculated. Then, the automatic driving control execution unit 25 sets the calculated inter-vehicle distance Df as the inter-vehicle distance applied to the automatic driving. That is, the learning result of the inter-vehicle distance with the preceding vehicle is applied to the inter-vehicle distance during automatic driving.
ステップS207において、自動運転制御実行部25は、設定された車間距離を用いて自動運転制御を実行する。具体的に、自動運転制御実行部25は、制御実行指令をアクチュエータ11に送信して、自動運転に必要なアクセルやブレーキ、ステアリング等の操作を実行する。
In step S207, the automatic driving control execution unit 25 executes the automatic driving control using the set inter-vehicle distance. Specifically, the automatic driving control execution unit 25 transmits a control execution command to the actuator 11 and executes operations such as an accelerator, a brake, and a steering necessary for automatic driving.
ステップS209において、自動運転制御実行部25は、自動運転が終了したか否かを判定し、終了していない場合にはステップS203に戻って自動運転を継続する。一方、自動運転が手動運転に切り替わって自動運転が終了している場合には、本実施形態に係る自動運転制御処理を終了する。
In step S209, the automatic operation control execution unit 25 determines whether or not the automatic operation has ended. If not, the automatic operation control execution unit 25 returns to step S203 and continues the automatic operation. On the other hand, when the automatic operation is switched to the manual operation and the automatic operation is finished, the automatic operation control process according to the present embodiment is finished.
次に、車間距離の学習が完了していない場合について説明する。ステップS211において、自動運転制御実行部25は、走行状態検出部3及び走行環境検出部5から車両の走行状態に関する走行データと車両周囲の走行環境に関する環境情報を検出する。
Next, a case where learning of the inter-vehicle distance has not been completed will be described. In step S <b> 211, the automatic driving control execution unit 25 detects traveling data related to the traveling state of the vehicle and environmental information related to the traveling environment around the vehicle from the traveling state detection unit 3 and the traveling environment detection unit 5.
ステップS213において、自動運転制御実行部25は、先行車との車間距離として予め設定された所定値を設定する。この所定値は、一般的な車間距離の値や平均値を使用すればよい。
In step S213, the automatic driving control execution unit 25 sets a predetermined value set in advance as the inter-vehicle distance from the preceding vehicle. As this predetermined value, a general inter-vehicle distance value or average value may be used.
ステップS215において、自動運転制御実行部25は、設定された車間距離を用いて自動運転制御を実行する。具体的に、自動運転制御実行部25は、制御実行指令をアクチュエータ11に送信して、自動運転に必要なアクセルやブレーキ、ステアリング等の操作を実行する。
In step S215, the automatic driving control execution unit 25 executes the automatic driving control using the set inter-vehicle distance. Specifically, the automatic driving control execution unit 25 transmits a control execution command to the actuator 11 and executes operations such as an accelerator, a brake, and a steering necessary for automatic driving.
ステップS217において、自動運転制御実行部25は、自動運転が終了したか否かを判定し、終了していない場合にはステップS211に戻って自動運転を継続する。一方、自動運転が手動運転に切り替わって自動運転が終了している場合には、本実施形態に係る自動運転制御処理を終了する。
In step S217, the automatic operation control execution unit 25 determines whether or not the automatic operation has ended. If not, the automatic operation control execution unit 25 returns to step S211 and continues the automatic operation. On the other hand, when the automatic operation is switched to the manual operation and the automatic operation is finished, the automatic operation control process according to the present embodiment is finished.
[実施形態の効果]
以上詳細に説明したように、本実施形態に係る走行特性学習方法では、運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転における減速操作中の車間距離を優先して学習する。運転者が車間距離を調整する中で、特に減速操作中は運転者による車間距離の調整感度が高く、積極的に車間距離の維持を行う場面である。これにより、減速操作中の車間距離はばらつきが少なくなるため、運転者の感覚を捉えた車間距離を学習することができる。したがって、運転者の感覚を捉えた車間距離を精度よく学習することができ、運転者に安心感を与えることができる。 [Effect of the embodiment]
As described above in detail, in the driving characteristic learning method according to the present embodiment, in a vehicle that can be switched between manual driving and automatic driving by the driver, priority is given to the inter-vehicle distance during the deceleration operation in the driver's manual driving. To learn. While the driver adjusts the inter-vehicle distance, especially during the deceleration operation, the driver is highly sensitive to the adjustment of the inter-vehicle distance, and is a scene where the inter-vehicle distance is actively maintained. Thereby, since the inter-vehicle distance during the deceleration operation is less varied, it is possible to learn the inter-vehicle distance that captures the driver's feeling. Therefore, it is possible to accurately learn the inter-vehicle distance that captures the driver's feeling, and to give the driver a sense of security.
以上詳細に説明したように、本実施形態に係る走行特性学習方法では、運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転における減速操作中の車間距離を優先して学習する。運転者が車間距離を調整する中で、特に減速操作中は運転者による車間距離の調整感度が高く、積極的に車間距離の維持を行う場面である。これにより、減速操作中の車間距離はばらつきが少なくなるため、運転者の感覚を捉えた車間距離を学習することができる。したがって、運転者の感覚を捉えた車間距離を精度よく学習することができ、運転者に安心感を与えることができる。 [Effect of the embodiment]
As described above in detail, in the driving characteristic learning method according to the present embodiment, in a vehicle that can be switched between manual driving and automatic driving by the driver, priority is given to the inter-vehicle distance during the deceleration operation in the driver's manual driving. To learn. While the driver adjusts the inter-vehicle distance, especially during the deceleration operation, the driver is highly sensitive to the adjustment of the inter-vehicle distance, and is a scene where the inter-vehicle distance is actively maintained. Thereby, since the inter-vehicle distance during the deceleration operation is less varied, it is possible to learn the inter-vehicle distance that captures the driver's feeling. Therefore, it is possible to accurately learn the inter-vehicle distance that captures the driver's feeling, and to give the driver a sense of security.
また、本実施形態に係る走行特性学習方法では、ブレーキペダルの操作、アクセルペダルの操作、車両の減速度のうちの少なくとも1つから運転者が減速操作中であるか否かを検出する。これにより、運転者が減速操作中であるときの車間距離を確実に取得することができる。特に、ブレーキペダルが操作されているときは明確な減速操作であるため、最もばらつきの少ない車間距離を取得することができる。また、アクセルペダルが操作されていないときの車間距離を取得すれば、減速準備行動のデータまで含めて取得することができる。さらに、減速度が所定値以上となる場合に減速中であると判定すれば、あらゆる場面での減速操作を検出することができる。
In the driving characteristic learning method according to this embodiment, it is detected whether or not the driver is decelerating from at least one of brake pedal operation, accelerator pedal operation, and vehicle deceleration. Thereby, the inter-vehicle distance when the driver is decelerating can be acquired with certainty. In particular, when the brake pedal is operated, it is a clear deceleration operation, and therefore the inter-vehicle distance with the least variation can be acquired. Moreover, if the inter-vehicle distance when the accelerator pedal is not operated is acquired, it is possible to acquire the data including the deceleration preparation action data. Furthermore, if it is determined that the vehicle is decelerating when the deceleration is equal to or greater than a predetermined value, it is possible to detect a deceleration operation in any scene.
さらに、本実施形態に係る走行特性学習方法では、減速操作中の車速と減速操作中の車間距離の走行データを使用して学習する。これにより、それぞれの車速の中で、運転者の感覚を捉えた車間距離を精度よく学習することができ、運転者に安心感を与えることができる。
Furthermore, in the traveling characteristic learning method according to the present embodiment, learning is performed using traveling data of the vehicle speed during the deceleration operation and the inter-vehicle distance during the deceleration operation. As a result, it is possible to accurately learn the inter-vehicle distance that captures the driver's feeling at each vehicle speed, and to give the driver a sense of security.
また、本実施形態に係る走行特性学習方法では、車両が停止中の車間距離を学習する。これにより、停止中の車間距離を含めて学習することができるので、停止中まで含めて運転者の感覚を捉えた学習を行うことができる。
Further, in the traveling characteristic learning method according to the present embodiment, the distance between vehicles when the vehicle is stopped is learned. As a result, it is possible to learn including the inter-vehicle distance during stoppage, so that it is possible to perform learning that captures the driver's senses even during stoppage.
さらに、本実施形態に係る走行特性学習方法では、車両が走行している環境と車間距離を対応させて学習する。走行中の車間距離や停止中の車間距離は、環境条件によって異なる特性を持つ。そのため、車両が走行している環境と車間距離を対応させて学習することにより、それぞれの環境で、運転者の感覚を捉えた車間距離を学習することができる。尚、学習結果を自動運転に適用することによって、環境条件を、自動運転中の車間距離に的確に反映させることができる。
Furthermore, in the driving characteristic learning method according to the present embodiment, learning is performed in correspondence with the environment in which the vehicle is traveling and the inter-vehicle distance. The inter-vehicle distance during traveling and the inter-vehicle distance during stoppage have different characteristics depending on environmental conditions. Therefore, by learning the environment in which the vehicle is traveling in correspondence with the inter-vehicle distance, it is possible to learn the inter-vehicle distance that captures the driver's feeling in each environment. By applying the learning result to automatic driving, the environmental conditions can be accurately reflected in the inter-vehicle distance during automatic driving.
また、本実施形態に係る走行特性学習方法では、車両が走行している環境として、車両が走行する道路の車線数、制限速度、道路勾配または信号機の表示状態を用いる。また、車両から交差点までの距離、車両の前方の車両台数、車両の方向指示器の表示状態、車両の周辺の天候、気温または照度を用いる。これにより、異なる環境条件を個別具体的に反映させて車間距離を補正することができる。
In the driving characteristic learning method according to the present embodiment, the number of lanes of the road on which the vehicle is traveling, the speed limit, the road gradient, or the display state of the traffic light is used as the environment in which the vehicle is traveling. Further, the distance from the vehicle to the intersection, the number of vehicles in front of the vehicle, the display state of the direction indicator of the vehicle, the weather around the vehicle, the temperature or the illuminance are used. Accordingly, the inter-vehicle distance can be corrected by individually reflecting different environmental conditions.
さらに、本実施形態に係る走行特性学習方法では、車両のトリップ毎に学習する。走行中の車間距離や停止中の車間距離はトリップ毎に異なる特性を持つことがあるので、トリップ毎に学習することで、そのトリップにおける運転者の気分や条件を反映させた車間距離を提供することができる。
Furthermore, in the driving characteristic learning method according to the present embodiment, learning is performed for each trip of the vehicle. Since the distance between vehicles while traveling and the distance between vehicles that are stopped may have different characteristics for each trip, learning by each trip provides a distance that reflects the driver's mood and conditions during that trip. be able to.
また、本実施形態に係る走行特性学習方法では、車両が先行車に追従している継続時間が所定時間以上となる車間距離を学習する。これにより、先行車の割り込み直後や離脱直後の過渡的な走行状態を除外して学習することができるので、安定した条件のときの車間距離を使用して精度よく学習することができる。
Further, in the driving characteristic learning method according to the present embodiment, the inter-vehicle distance is learned in which the continuation time during which the vehicle follows the preceding vehicle is a predetermined time or more. As a result, learning can be performed by excluding the transitional driving state immediately after interruption of the preceding vehicle or immediately after leaving, so that it is possible to learn accurately using the inter-vehicle distance under stable conditions.
さらに、本実施形態に係る走行特性学習方法では、先行車との相対速度の絶対値が所定値以下のときの車間距離を学習する。これにより、先行車の割り込み直後や離脱直後の過渡的な走行状態を除外して学習することができるので、安定した条件のときの走行データを使用して精度よく学習することができる。
Furthermore, in the driving characteristic learning method according to the present embodiment, the inter-vehicle distance when the absolute value of the relative speed with respect to the preceding vehicle is equal to or less than a predetermined value is learned. As a result, it is possible to learn by excluding the transitional driving state immediately after the interruption of the preceding vehicle or immediately after leaving, so that it is possible to learn accurately using the driving data under the stable condition.
また、本実施形態に係る走行特性学習方法では、車両の操舵角の絶対値が所定値以下のときの車間距離を学習する。これにより、車両が車線変更中や旋回中の車間距離を除外して学習することができるので、安定した条件のときの車間距離を精度よく学習することができる。
In the driving characteristic learning method according to the present embodiment, the inter-vehicle distance is learned when the absolute value of the vehicle steering angle is equal to or less than a predetermined value. Thereby, since it is possible to learn by excluding the inter-vehicle distance while the vehicle is changing lanes or turning, it is possible to accurately learn the inter-vehicle distance under stable conditions.
さらに、本実施形態に係る走行特性学習方法では、車両の停止中の車間距離が所定値以下のときに学習する。これにより、路肩や路外、交差点内や交差点の先などに存在する先行車を除外することができるので、安定した条件のときの車間距離を精度よく学習することができる。
Furthermore, in the driving characteristic learning method according to the present embodiment, learning is performed when the inter-vehicle distance while the vehicle is stopped is equal to or less than a predetermined value. As a result, it is possible to exclude the preceding vehicle existing on the shoulder of the road, outside the road, in the intersection, at the tip of the intersection, and the like, so that it is possible to accurately learn the inter-vehicle distance under stable conditions.
また、本実施形態に係る走行特性学習方法では、学習結果を自動運転の運転特性に適用する場合において、車両が片側1車線以下の道路を走行している場合には、2車線以上の道路を走行している場合より、先行車との車間距離を長くする。これにより、車線数の少ない道路で安全性を向上させて自動運転を実行することができるので、運転者に安心感を与えることができる。
Further, in the driving characteristic learning method according to the present embodiment, when the learning result is applied to the driving characteristic of automatic driving, when the vehicle is traveling on a road with one lane or less on one side, a road with two or more lanes is selected. The inter-vehicle distance from the preceding vehicle is made longer than when traveling. As a result, safety can be improved and automatic driving can be performed on roads with a small number of lanes, so that a sense of security can be given to the driver.
さらに、本実施形態に係る走行特性学習方法では、学習結果を自動運転の運転特性に適用する場合において、車両が走行している道路の制限速度が所定値以上である場合には、制限速度が所定値より低い場合より、先行車との車間距離を長くする。これにより、車速が高くなる道路で安全性を向上させて自動運転を実行することができるので、運転者に安心感を与えることができる。
Furthermore, in the driving characteristic learning method according to the present embodiment, when the learning result is applied to the driving characteristic of automatic driving, if the speed limit of the road on which the vehicle is traveling is greater than or equal to a predetermined value, the speed limit is The inter-vehicle distance with the preceding vehicle is made longer than when it is lower than the predetermined value. As a result, safety can be improved and automatic driving can be performed on a road where the vehicle speed is high, so that the driver can feel safe.
また、本実施形態に係る走行特性学習方法では、学習結果を自動運転の運転特性に適用する場合において、車両が下り坂を走行している場合には、上り坂を走行している場合より、先行車との車間距離を長くする。これにより、制動が困難な下り坂で安全性を向上させて自動運転を実行することができるので、運転者に安心感を与えることができる。
Further, in the driving characteristic learning method according to the present embodiment, when the learning result is applied to the driving characteristic of the automatic driving, when the vehicle is traveling on the downhill, than when the vehicle is traveling on the uphill, Increase the inter-vehicle distance from the preceding vehicle. As a result, safety can be improved and automatic driving can be executed on a downhill where braking is difficult, so that a sense of security can be given to the driver.
さらに、本実施形態に係る走行特性学習方法では、学習結果を自動運転の運転特性に適用する場合において、車両の前方の信号機が赤信号である場合には、赤信号以外の場合より、先行車との車間距離を長くする。これにより、停止する必要のある赤信号のときに安全性を向上させて自動運転を実行することができるので、運転者に安心感を与えることができる。
Furthermore, in the driving characteristic learning method according to the present embodiment, when the learning result is applied to the driving characteristic of automatic driving, when the traffic light ahead of the vehicle is a red signal, the preceding vehicle is more than the case other than the red signal. Increase the inter-vehicle distance. As a result, the safety can be improved and the automatic operation can be executed in the case of a red light that needs to be stopped, so that the driver can feel safe.
また、本実施形態に係る走行特性学習方法では、学習結果を自動運転の運転特性に適用する場合において、車両の前方の車両台数が所定値以上である場合には、車両台数が所定値未満である場合より、先行車との車間距離を長くする。これにより、車両前方が混雑しているときに安全性を向上させて自動運転を実行することができるので、運転者に安心感を与えることができる。
In the driving characteristic learning method according to the present embodiment, when the learning result is applied to the driving characteristic of automatic driving, when the number of vehicles ahead of the vehicle is equal to or greater than a predetermined value, the number of vehicles is less than the predetermined value. The inter-vehicle distance from the preceding vehicle is made longer than in some cases. As a result, when the front of the vehicle is congested, safety can be improved and automatic driving can be executed, so that the driver can feel safe.
さらに、本実施形態に係る走行特性学習方法では、学習結果を自動運転の運転特性に適用する場合において、車両の周辺の天候が悪天候である場合には、悪天候でない場合より、先行車との車間距離を長くする。これにより、車両周辺が悪天候のときに安全性を向上させて自動運転を実行することができるので、運転者に安心感を与えることができる。
Furthermore, in the driving characteristic learning method according to the present embodiment, when the learning result is applied to the driving characteristic of the automatic driving, when the weather around the vehicle is bad weather, the distance between the preceding vehicle and the preceding vehicle is lower than when the bad weather is not. Increase the distance. Thereby, when the surroundings of the vehicle are in bad weather, the safety can be improved and the automatic driving can be executed, so that it is possible to give the driver a sense of security.
また、本実施形態に係る走行特性学習方法では、運転制御装置を外部サーバに設置して車両の走行特性を学習する。これにより、車両における処理負荷を軽減することができる。
In the driving characteristic learning method according to the present embodiment, the driving control device is installed in an external server to learn the driving characteristic of the vehicle. Thereby, the processing load in the vehicle can be reduced.
さらに、本実施形態に係る走行特性学習方法では、先行車との車間距離の学習結果に基づいて、運転者の運転スタイルを判定する。これにより、運転者の定性的な傾向を知ることができるので、手動運転のときに参考にすることで安全性を向上させることができる。また、スポーツモード、エコモード、高齢者モードなど自動運転時に複数の制御モードがある場合に、この運転スタイルを参照して、適切な制御モードを選択するようにしてもよい。
Furthermore, in the driving characteristic learning method according to the present embodiment, the driving style of the driver is determined based on the learning result of the inter-vehicle distance from the preceding vehicle. Thereby, since a qualitative tendency of the driver can be known, safety can be improved by referring to the manual driving. Further, when there are a plurality of control modes such as a sports mode, an eco mode, and an elderly person mode, an appropriate control mode may be selected with reference to this driving style.
さらに、本実施形態に係る走行特性学習方法では、先行車との車間距離の学習結果を、車両の自動運転時の車間距離に適用する。これにより、減速操作中の車間距離を自動運転に適用できるので、運転者の感覚を捉えた自動運転を提供することができる。
Furthermore, in the driving characteristic learning method according to the present embodiment, the learning result of the inter-vehicle distance from the preceding vehicle is applied to the inter-vehicle distance during automatic driving of the vehicle. Thereby, since the inter-vehicle distance during the deceleration operation can be applied to automatic driving, it is possible to provide automatic driving that captures the driver's feeling.
なお、上述の実施形態は本発明の一例である。このため、本発明は、上述の実施形態に限定されることはなく、この実施形態以外の形態であっても、本発明に係る技術的思想を逸脱しない範囲であれば、設計などに応じて種々の変更が可能であることは勿論である。
The above-described embodiment is an example of the present invention. For this reason, the present invention is not limited to the above-described embodiment, and even if it is a form other than this embodiment, as long as it does not depart from the technical idea of the present invention, it depends on the design and the like. Of course, various modifications are possible.
1 運転制御装置
3 走行状態検出部
5 走行環境検出部
7 運転切替スイッチ
9 制御状態呈示部
11 アクチュエータ
21 学習用データ記憶部
23 走行特性学習部
25 自動運転制御実行部
100 運転制御システム DESCRIPTION OFSYMBOLS 1 Driving control device 3 Running state detection part 5 Running environment detection part 7 Driving | operation changeover switch 9 Control state presentation part 11 Actuator 21 Learning data storage part 23 Running characteristic learning part 25 Automatic driving control execution part 100 Driving control system
3 走行状態検出部
5 走行環境検出部
7 運転切替スイッチ
9 制御状態呈示部
11 アクチュエータ
21 学習用データ記憶部
23 走行特性学習部
25 自動運転制御実行部
100 運転制御システム DESCRIPTION OF
Claims (22)
- 運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転中における前記車両の先行車との車間距離を学習し、この学習結果を自動運転の走行特性に適用する運転制御装置の走行特性学習方法であって、
運転者の手動運転における減速操作中の車間距離を優先して学習することを特徴とする走行特性学習方法。 In a vehicle that can switch between manual driving and automatic driving by a driver, driving control for learning the inter-vehicle distance from the preceding vehicle of the vehicle during manual driving by the driver and applying the learning result to the driving characteristics of the automatic driving A driving characteristic learning method for a device,
A driving characteristic learning method characterized by prioritizing an inter-vehicle distance during a deceleration operation in a driver's manual driving. - 前記運転者の手動運転における減速操作中の車間距離のみを学習することを特徴とする請求項1に記載の走行特性学習方法。 The driving characteristic learning method according to claim 1, wherein only a distance between vehicles during a deceleration operation in the driver's manual driving is learned.
- ブレーキペダルの操作、アクセルペダルの操作、前記車両の減速度のうちの少なくとも1つから運転者が減速操作中であるか否かを検出することを特徴とする請求項1または2に記載の走行特性学習方法。 3. The travel according to claim 1, wherein whether or not the driver is decelerating is detected from at least one of a brake pedal operation, an accelerator pedal operation, and a deceleration of the vehicle. Characteristic learning method.
- 減速操作中の車速と減速操作中の車間距離を学習することを特徴とする請求項1~3のいずれか1項に記載の走行特性学習方法。 The travel characteristic learning method according to any one of claims 1 to 3, wherein the vehicle speed during the deceleration operation and the inter-vehicle distance during the deceleration operation are learned.
- 前記車両が停止中の車間距離を学習することを特徴とする請求項1~4のいずれか1項に記載の走行特性学習方法。 The driving characteristic learning method according to any one of claims 1 to 4, wherein an inter-vehicle distance while the vehicle is stopped is learned.
- 前記車両が走行している環境と前記車間距離を対応させて学習することを特徴とする請求項1~5のいずれか1項に記載の走行特性学習方法。 The driving characteristic learning method according to any one of claims 1 to 5, wherein learning is performed in association with an environment in which the vehicle is traveling and the inter-vehicle distance.
- 前記車両が走行している環境は、前記車両が走行する道路の車線数、制限速度、道路勾配または信号機の表示状態、前記車両から交差点までの距離、前記車両前方の車両台数、前記車両の方向指示器の表示状態、前記車両の周辺の天候、気温または照度のうちの少なくとも1つであることを特徴とする請求項6に記載の走行特性学習方法。 The environment in which the vehicle is traveling includes the number of lanes on the road on which the vehicle travels, the speed limit, the road gradient or the display state of traffic lights, the distance from the vehicle to the intersection, the number of vehicles in front of the vehicle, and the direction of the vehicle The driving characteristic learning method according to claim 6, wherein the driving characteristic learning method is at least one of a display state of an indicator, weather around the vehicle, temperature, and illuminance.
- 前記車間距離を前記車両のトリップ毎に学習することを特徴とする請求項1~7のいずれか1項に記載の走行特性学習方法。 The travel characteristic learning method according to any one of claims 1 to 7, wherein the inter-vehicle distance is learned for each trip of the vehicle.
- 前記車両が先行車の後ろを走行する時間である継続時間が所定時間以上の場合の車間距離を学習することを特徴とする請求項1~8のいずれか1項に記載の走行特性学習方法。 The driving characteristic learning method according to any one of claims 1 to 8, wherein an inter-vehicle distance is learned when a duration time during which the vehicle travels behind a preceding vehicle is a predetermined time or more.
- 先行車との相対速度の絶対値が所定値以下の場合の車間距離を学習することを特徴とする請求項1~9のいずれか1項に記載の走行特性学習方法。 The driving characteristic learning method according to any one of claims 1 to 9, wherein an inter-vehicle distance is learned when an absolute value of a relative speed with respect to a preceding vehicle is a predetermined value or less.
- 前記車両の操舵角の絶対値が所定値以下の場合の車間距離を学習することを特徴とする請求項1~10のいずれか1項に記載の走行特性学習方法。 The driving characteristic learning method according to any one of claims 1 to 10, wherein an inter-vehicle distance is learned when an absolute value of a steering angle of the vehicle is a predetermined value or less.
- 前記車両の停止中の車間距離が所定値以下の場合の車間距離を学習することを特徴とする請求項1~11のいずれか1項に記載の走行特性学習方法。 The travel characteristic learning method according to any one of claims 1 to 11, wherein the inter-vehicle distance is learned when the inter-vehicle distance while the vehicle is stopped is equal to or less than a predetermined value.
- 前記学習結果を自動運転の運転特性に適用する場合において、前記車両が片側1車線の道路を走行する場合には、2車線以上の道路を走行する場合より、前記先行車との車間距離を長くすることを特徴とする請求項1~12のいずれか1項に記載の走行特性学習方法。 In the case where the learning result is applied to the driving characteristics of the automatic driving, when the vehicle travels on a one-lane road, the inter-vehicle distance from the preceding vehicle is made longer than when the vehicle travels on two or more lanes. The traveling characteristic learning method according to any one of claims 1 to 12, characterized in that:
- 前記学習結果を自動運転の運転特性に適用する場合において、前記車両が走行する道路の制限速度が所定値以上である場合には、前記制限速度が所定値より低い場合より、前記先行車との車間距離を長くすることを特徴とする請求項1~13のいずれか1項に記載の走行特性学習方法。 In the case where the learning result is applied to the driving characteristics of the automatic driving, when the speed limit of the road on which the vehicle travels is equal to or higher than a predetermined value, it is more The traveling characteristic learning method according to any one of claims 1 to 13, wherein the inter-vehicle distance is increased.
- 前記学習結果を自動運転の運転特性に適用する場合において、前記車両が下り坂を走行している場合には、上り坂を走行している場合より、前記先行車との車間距離を長くすることを特徴とする請求項1~14のいずれか1項に記載の走行特性学習方法。 When applying the learning result to the driving characteristics of automatic driving, when the vehicle is traveling on a downhill, the inter-vehicle distance from the preceding vehicle is made longer than when traveling on an uphill. The traveling characteristic learning method according to any one of claims 1 to 14, wherein:
- 前記学習結果を自動運転の運転特性に適用する場合において、前記車両の前方の信号機が赤信号である場合には、赤信号以外の場合より、前記先行車との車間距離を長くすることを特徴とする請求項1~15のいずれか1項に記載の走行特性学習方法。 When applying the learning result to the driving characteristics of automatic driving, when the traffic light ahead of the vehicle is a red signal, the inter-vehicle distance from the preceding vehicle is made longer than the case other than the red signal. The traveling characteristic learning method according to any one of claims 1 to 15.
- 前記学習結果を自動運転の運転特性に適用する場合において、前記車両の前方の車両台数が所定値以上である場合には、前記車両台数が所定値未満である場合より、前記先行車との車間距離を長くすることを特徴とする請求項1~16のいずれか1項に記載の走行特性学習方法。 In the case where the learning result is applied to the driving characteristics of automatic driving, when the number of vehicles ahead of the vehicle is equal to or greater than a predetermined value, the distance between the preceding vehicle and the preceding vehicle is smaller than when the number of vehicles is less than the predetermined value. The traveling characteristic learning method according to any one of claims 1 to 16, wherein the distance is increased.
- 前記学習結果を自動運転の運転特性に適用する場合において、前記車両の周辺の天候が悪天候である場合には、悪天候でない場合より、前記先行車との車間距離を長くすることを特徴とする請求項1~17のいずれか1項に記載の走行特性学習方法。 When the learning result is applied to driving characteristics of automatic driving, when the weather around the vehicle is bad, the inter-vehicle distance from the preceding vehicle is made longer than when the weather is not bad. Item 18. The driving characteristic learning method according to any one of Items 1 to 17.
- 前記車両の外部に外部サーバを備え、前記外部サーバで前記車間距離を学習することを特徴とする請求項1~18のいずれか1項に記載の走行特性学習方法。 The driving characteristic learning method according to any one of claims 1 to 18, wherein an external server is provided outside the vehicle, and the inter-vehicle distance is learned by the external server.
- 前記先行車との車間距離の学習結果に基づいて、運転者の運転スタイルを判定することを特徴とする請求項1~19のいずれか1項に記載の走行特性学習方法。 The driving characteristic learning method according to any one of claims 1 to 19, wherein a driving style of the driver is determined based on a learning result of an inter-vehicle distance from the preceding vehicle.
- 前記先行車との車間距離の学習結果を、前記車両の自動運転時の車間距離に適用することを特徴とする請求項1~20のいずれか1項に記載の走行特性学習方法。 The driving characteristic learning method according to any one of claims 1 to 20, wherein a learning result of an inter-vehicle distance from the preceding vehicle is applied to an inter-vehicle distance during automatic driving of the vehicle.
- 運転者による手動運転と自動運転とを切り替え可能な車両において、運転者の手動運転中における前記車両の先行車との車間距離を学習し、この学習結果を自動運転の走行特性に適用する運転制御装置であって、
運転者の手動運転における減速操作中の車間距離を優先して学習することを特徴とする運転制御装置。 In a vehicle that can switch between manual driving and automatic driving by a driver, driving control for learning the inter-vehicle distance from the preceding vehicle of the vehicle during manual driving by the driver and applying the learning result to the driving characteristics of the automatic driving A device,
A driving control device that learns by giving priority to an inter-vehicle distance during a deceleration operation in a driver's manual driving.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/002283 WO2018138767A1 (en) | 2017-01-24 | 2017-01-24 | Travel characteristic learning method and driving control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/002283 WO2018138767A1 (en) | 2017-01-24 | 2017-01-24 | Travel characteristic learning method and driving control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018138767A1 true WO2018138767A1 (en) | 2018-08-02 |
Family
ID=62978122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002283 WO2018138767A1 (en) | 2017-01-24 | 2017-01-24 | Travel characteristic learning method and driving control device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018138767A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021037794A (en) * | 2019-08-30 | 2021-03-11 | 株式会社デンソー | Vehicle control device |
JP2021084502A (en) * | 2019-11-27 | 2021-06-03 | 株式会社Subaru | Control device |
US11650067B2 (en) | 2019-07-08 | 2023-05-16 | Toyota Motor North America, Inc. | System and method for reducing route time using big data |
US12319292B2 (en) | 2019-12-28 | 2025-06-03 | Shenzhen Yinwang Intelligent Technologies Co., Ltd. | Intelligent vehicle control method, apparatus, and control system |
US12337879B2 (en) | 2022-12-14 | 2025-06-24 | Toyota Jidosha Kabushiki Kaisha | Control device for vehicle |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0689400A (en) * | 1992-09-08 | 1994-03-29 | Fujitsu Ten Ltd | Alarmed vehicle-to-vehicle distance controller |
JPH07108849A (en) * | 1993-10-13 | 1995-04-25 | Hitachi Ltd | Vehicle automatic driving control device |
JP2013068115A (en) * | 2011-09-21 | 2013-04-18 | Toyota Motor Corp | Device and method for processing information for vehicle |
WO2015166721A1 (en) * | 2014-05-02 | 2015-11-05 | エイディシーテクノロジー株式会社 | Vehicle controller |
-
2017
- 2017-01-24 WO PCT/JP2017/002283 patent/WO2018138767A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0689400A (en) * | 1992-09-08 | 1994-03-29 | Fujitsu Ten Ltd | Alarmed vehicle-to-vehicle distance controller |
JPH07108849A (en) * | 1993-10-13 | 1995-04-25 | Hitachi Ltd | Vehicle automatic driving control device |
JP2013068115A (en) * | 2011-09-21 | 2013-04-18 | Toyota Motor Corp | Device and method for processing information for vehicle |
WO2015166721A1 (en) * | 2014-05-02 | 2015-11-05 | エイディシーテクノロジー株式会社 | Vehicle controller |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11650067B2 (en) | 2019-07-08 | 2023-05-16 | Toyota Motor North America, Inc. | System and method for reducing route time using big data |
JP2021037794A (en) * | 2019-08-30 | 2021-03-11 | 株式会社デンソー | Vehicle control device |
JP2021084502A (en) * | 2019-11-27 | 2021-06-03 | 株式会社Subaru | Control device |
JP7414490B2 (en) | 2019-11-27 | 2024-01-16 | 株式会社Subaru | Control device |
US12319292B2 (en) | 2019-12-28 | 2025-06-03 | Shenzhen Yinwang Intelligent Technologies Co., Ltd. | Intelligent vehicle control method, apparatus, and control system |
US12337879B2 (en) | 2022-12-14 | 2025-06-24 | Toyota Jidosha Kabushiki Kaisha | Control device for vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6773210B2 (en) | Driving support method and driving control device | |
CA3025643C (en) | Driving control method and driving control apparatus | |
JP6645587B2 (en) | Driving support method and driving support device | |
JP6856130B2 (en) | Driving characteristic learning method and driving support device | |
US10850740B2 (en) | Driving assistance method and driving assistance device | |
US20200180623A1 (en) | Implicit activation and control of driver assistance systems | |
WO2018193765A1 (en) | Presentation control device, automated driving control device, presentation control method, and automated driving control method | |
WO2018138767A1 (en) | Travel characteristic learning method and driving control device | |
JPWO2019003280A1 (en) | Driving support method and driving support device for vehicle | |
JP6756402B2 (en) | Driving control method and driving control device | |
US20240062590A1 (en) | Method for executing a test drive with at least one test vehicle | |
WO2022091308A1 (en) | Driving control method and driving control device | |
WO2019021430A1 (en) | Travel control method and travel control device | |
JP2019172167A (en) | Automatic driving system and automatic driving program | |
WO2024105863A1 (en) | Driving control method and driving control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17894242 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17894242 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |