WO2018137571A1 - 一种数据复用和数据解析方法、装置及系统 - Google Patents
一种数据复用和数据解析方法、装置及系统 Download PDFInfo
- Publication number
- WO2018137571A1 WO2018137571A1 PCT/CN2018/073439 CN2018073439W WO2018137571A1 WO 2018137571 A1 WO2018137571 A1 WO 2018137571A1 CN 2018073439 W CN2018073439 W CN 2018073439W WO 2018137571 A1 WO2018137571 A1 WO 2018137571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- terminal
- data signal
- multiplexing
- indication information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0617—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0626—Channel coefficients, e.g. channel state information [CSI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/0632—Channel quality parameters, e.g. channel quality indicator [CQI]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/14—Spectrum sharing arrangements between different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/16—Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
- H04W28/18—Negotiating wireless communication parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present application relates to the field of wireless communication technologies, and in particular, to a data multiplexing and parsing method, apparatus, and system.
- Hybrid beamforming is an option that includes both the digital beamforming of the baseband and the analog beamforming at the radio frequency.
- the beam being scanned may not cover the terminal. Conversely, if the base station does not perform beam scanning, the beam serving the terminal will point to the terminal in which the CSI-RS that can be transmitted is used for CSI measurement.
- the inventors found that the CSI-RS has extremely low resource utilization when undertaking the function of CSI measurement.
- the present application provides a data multiplexing method, a network side device, and a terminal.
- a data multiplexing method provided by the application includes:
- the network side device transmits a channel state information reference signal CSI-RS and a data signal to the terminal, where the CSI-RS is used for channel state measurement or beam quality measurement;
- the network side device sends the CSI-RS multiplexing indication information to the terminal, where the CSI-RS multiplexing indication information is used to indicate whether the data signal transmitted to the terminal is frequency-division multiplexed with the CSI-RS;
- the terminal After receiving the CSI-RS multiplexing indication information from the network side device, the terminal performs frequency division multiplexing with the data signal indicated by the CSI-RS multiplexing indication information according to the CSI-RS multiplexing indication information.
- the data signal is parsed on the OFDM symbol where the RS is located.
- the network side device carries the CSI-RS multiplexing indication information by using L1/L2/L3 signaling, and sends the CSI-RS multiplexing indication information to the terminal.
- the L1 signaling may be DCI signaling
- the L2 signaling may be MAC CE signaling
- the L3 signaling may be RRC signaling.
- the embodiment of the present application uses the CSI-RS multiplexing indication information to indicate whether the CSI-RS is multiplexed with the data channel, thereby making multiplexing of the CSI-RS and the data channel possible, and the terminal according to the CSI-RS multiplexing indication.
- Information can correctly analyze user data and greatly improve the resource utilization efficiency of the terminal.
- the embodiment of the present application provides a network side device, which may be a base station or a control node.
- the network side device includes:
- a transceiver configured to transmit a channel state information reference signal CSI-RS and a data signal to the terminal, where the CSI-RS is used to perform channel state measurement or beam quality measurement;
- the transceiver is further configured to send CSI-RS multiplexing indication information to the terminal, where the CSI-RS multiplexing indication information is used to indicate whether the data signal transmitted to the terminal is frequency-divided with the CSI-RS. And configured to enable the terminal to perform data signal analysis according to the CSI-RS multiplexing indication information.
- the embodiment of the present application provides a base station, which has a function of realizing the behavior of the base station in the actual method.
- the functions may be implemented by hardware or by corresponding software implemented by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- the structure of the base station includes a processor and a transceiver configured to support the base station to perform the corresponding functions in the above methods.
- the transceiver is configured to support communication between the base station and the UE, and send information or signaling involved in the foregoing method to the UE, and receive information or instructions sent by the base station.
- the base station can also include a memory for coupling with the processor that stores the necessary program instructions and data for the base station.
- an embodiment of the present application provides a control node, which may include a controller/processor, a memory, and a communication unit.
- the controller/processor can be used to coordinate resource management and configuration between multiple base stations.
- the memory can be used to store program code and data for the control node.
- the communication unit is configured to support the control node to communicate with the base station, for example, to send information of the configured resource to the base station.
- the embodiment of the present application provides a terminal, where the terminal has a function of implementing terminal behavior in the design of the foregoing method.
- the function can be implemented by hardware, and the structure of the terminal includes a transceiver and a processor.
- the corresponding software implementation can also be performed by hardware.
- the hardware or software includes one or more modules corresponding to the functions described above.
- the modules can be software and/or hardware.
- the terminal includes:
- a transceiver configured to receive a channel state information reference signal CSI-RS and a data signal from a network side device, where the CSI-RS is used to perform channel state measurement or beam quality measurement;
- a processor configured to parse the data signal on an Orthogonal Frequency Division Multiplexing (OFDM) symbol indicated by the CSI-RS multiplexing indication information, where the data signal and the CSI-RS are performed on the OFDM symbol Frequency division multiplexing.
- OFDM Orthogonal Frequency Division Multiplexing
- the embodiment of the present application further provides a data multiplexing method, a network side device, and a terminal:
- the network side device notifies the terminal to transmit the analog beam information of all CSI-RSs in the time slot and the information of the analog beam used for data transmission;
- the terminal determines whether there is an analog beam of a certain CSI-RS and an analog beam of the data signal of the transmission terminal; if yes, the terminal determines that the data signal is mapped on the OFDM symbol of the CSI-RS. Further, the terminal parses the data signal on the OFDM symbol to which the data signal is mapped.
- the terminal determines that the data signal is not mapped on the OFDM symbol where the CSI-RS is located.
- the network side device sends the CSI-RS analog beam information and the analog beam information of the data signal to the terminal, and the terminal determines whether the CSI-RS is multiplexed with the data signal, and can correctly parse the user data, thereby greatly improving The resource utilization efficiency of the terminal.
- the data signal is determined to be frequency division multiplexed with the CSI-RS.
- an embodiment of the present application provides a communication system, where the system includes the base station and the terminal in the foregoing aspect.
- the control node in the above embodiment may also be included.
- the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the network side device, which includes a program designed to perform the above aspects.
- the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the terminal, which includes a program designed to execute the above aspects.
- 1 is a schematic diagram of a base station performing beam scanning
- FIG. 2 is a schematic diagram of a pilot pattern used by a CSI-RS for beam measurement
- FIG. 3 is a schematic diagram of a communication system provided by an embodiment of the present application.
- FIG. 4 is a schematic diagram of data multiplexing between a terminal and a network side device according to an embodiment of the present application
- FIG. 5 is still another schematic diagram of data multiplexing between a terminal and a network side device according to an embodiment of the present application
- FIG. 6 is a schematic diagram of CSI-RS multiplexing indication information in Embodiment 1 of a data multiplexing method according to an embodiment of the present application;
- FIG. 7 is a schematic diagram of CSI-RS multiplexing indication information in Embodiment 2 of a data multiplexing method according to an embodiment of the present application;
- FIG. 8 is a schematic diagram of CSI-RS multiplexing indication information in Embodiment 3 of a data multiplexing method according to an embodiment of the present application.
- FIG. 9 is a schematic diagram of CSI-RS multiplexing indication information in Embodiment 4 of the data multiplexing method according to the embodiment of the present application.
- Embodiment 5 of a data multiplexing method according to an embodiment of the present application.
- FIG. 11 is a schematic diagram of inferring multiplexing by CSI-RS beam information in Embodiment 5 of the data multiplexing method in the embodiment of the present application;
- FIG. 12 is still another schematic diagram of inferring multiplexing by CSI-RS beam information in Embodiment 5 of the data multiplexing method in the embodiment of the present application.
- LTE Long Term Evolution
- FIG. 2 shows an example of a pilot pattern for CSI-RS for beam measurement, which maps CSI-RS on consecutive OFDM symbols 10 and OFDM symbols 11, each OFDM symbol can be scanned for simultaneous transmission of up to 8
- An analog beam referred to herein as a beam group.
- Each analog beam corresponds to one port, and each port adopts frequency division multiplexing or code division multiplexing. If you want to support more analog beam scanning, you can choose more OFDM symbols for beam scanning.
- the inventors have found that in the prior art, since the analog beam of the terminal scheduled for data transmission and the analog beam used for mapping the OFDM symbol of the CSI-RS are not consistent when beam scanning is performed, the CSI-RS is used for CSI-RS. On the OFDM symbol of the beam measurement, although there is still idle resources, it cannot be used for the transmission of the data signal of the terminal.
- the CSI-RS can be used not only for the function of beam measurement, but also for performing CSI measurement on the terminal.
- the terminal that is required to perform CSI measurement is always covered by the beam, so the analog beam does not change or does not change much during the CSI measurement process.
- the terminal within the range covered by the analog beam can use the idle resources on the OFDM symbol where the CSI-RS is located to improve the utilization efficiency of the user resources.
- GSM Global System for Mobile communications
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access Wireless
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- UMTS Universal Mobile Communication System
- 5G next-generation mobile communication system
- the embodiment of the present application provides a communication system 100.
- the communication system 100 includes at least one base station (BS) 20 and a plurality of terminals, such as terminal 1, terminal 2, terminal 3, terminal 4, and the like.
- the control node 60 connected to the base station 20 can perform unified scheduling on resources in the system, and can allocate resources to the terminal, perform resource reuse decision, or interfere with coordination.
- the network side device referred to in the embodiment of the present application may include an improved system and device as a peer device in a conventional wireless telecommunication system.
- Such advanced or next generation devices may be included in an evolved wireless communication standard, such as Long Term Evolution (LTE).
- LTE Long Term Evolution
- an LTE system may include an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB), a wireless access point, or the like instead of a conventional base station.
- E-UTRAN Evolved Universal Terrestrial Radio Access Network
- eNB Evolved Universal Terrestrial Radio Access Network
- Any such components will be referred to herein as eNBs, but it should be understood that such components are not necessarily eNBs.
- the next generation communication system will use "gNB" instead of the eNB of the LTE system.
- the network side device may be the base station 20 or the control node 60 as shown in FIG. 3.
- the base station involved in the embodiment of the present application is a device deployed in the radio access network to provide a wireless communication function for the terminal.
- the base station may include various forms of macro base stations, micro base stations (also referred to as small stations), relay stations, access points, and the like.
- the name of a device having a base station function may be different, for example, in an LTE system, an evolved Node B (evolved NodeB, eNB or eNodeB), in the third In a 3rd generation (3G) system, it is called a Node B or the like.
- a base station or a BS the foregoing apparatus for providing a wireless communication function to a terminal.
- the control node involved in the embodiment of the present application is a control node 60 in a communication system, which can connect multiple base stations and allocate resources for multiple terminals covered by multiple base stations.
- the base station can be a Node B in a UMTS system
- the control node can be a network controller.
- the base station may be a small station
- the control node may be a macro base station that covers the small station.
- the control node may be a wireless network cross-system cooperative controller or the like, and the base station is a base station in the wireless network, which is not limited in the embodiment of the present application.
- the terminal involved in the embodiment of the present application may include various handheld devices, in-vehicle devices, and wearable devices having wireless communication functions. , a computing device, or other processing device connected to a wireless modem.
- the terminal may also be referred to as a mobile station (MS), and may also include a subscriber unit, a cellular phone, a smart phone, a wireless data card, and a personal digital assistant (personal).
- WLL wireless local loop
- MTC machine type communication
- FIG. 4 is a schematic structural diagram of data multiplexing between a terminal and a network side device according to an embodiment of the present application.
- the terminal provided by the embodiment of the present application includes: a transceiver 10 and a processor 11, and the terminal may further include a memory 12, which stores a computer execution instruction; a system bus 13, which is connected to the processor 11, the transceiver 10, and the memory. 12 and so on.
- the network side device includes a transceiver 20 and a processor 21, which may further include a memory 22 that stores computer execution instructions, a system bus 23 that connects the processor 21, the transceiver 20, the memory 22, and the like.
- the transceiver 20 of the network side device sends a data signal, a CSI-RS, and a corresponding CSI-RS multiplexing indication information to the transceiver 10 of the terminal through an antenna.
- the transceiver 11 of the terminal receives, by using an antenna, a data signal, a CSI-RS, and a corresponding CSI-RS multiplexing indication information, which are sent by the transceiver 20 of the network side device, according to the CSI-RS multiplexing indication information, in the CSI-RS.
- the transmission time slot here generally refers to a time unit for performing data modulation and demodulation, and may generally be a TTI (transmission time interval).
- the transceiver 20 of the network side device sends, by using an antenna, the analog beam information of all CSI-RSs in the transmission slot and the information of the analog beam used for data transmission to the transceiver 10 of the terminal;
- the transceiver 10 of the terminal receives the analog beam information of all CSI-RSs in the transmission time slot and the information of the analog beam used for data transmission, and the processor 11 of the terminal determines whether there is an analog beam and a transmission terminal of a certain CSI-RS.
- the analog beam of the data signal is the same; if so, the processor 11 of the terminal determines that the data signal is mapped on the OFDM symbol of the CSI-RS. Further, the processor 11 of the terminal parses the data signal on the OFDM symbol on which the data signal is mapped. If not, the processor 11 of the terminal determines that the data signal is not mapped on the OFDM symbol of the CSI-RS.
- the processor 11 of the terminal and the processor 21 of the network side device may be a central processing unit (CPU), a network processor (NP) or a combination of a CPU and an NP.
- the processor may further include a hardware chip.
- the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
- the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination.
- the memory 12 of the terminal and the memory 22 of the network side device may include a volatile memory, such as a random access memory (RAM); and may also include a non-volatile memory.
- a volatile memory such as a random access memory (RAM)
- non-volatile memory such as a flash memory, a hard disk drive (HDD) or a solid-state drive (SSD); the memory may also include a combination of the above types of memories.
- the present application implements the multiplexing of the CSI-RS and the data signal based on the CSI-SI multiplexing indication information.
- the specific scheme is shown in FIG. 5.
- the data multiplexing method in the embodiment of the present application is as follows:
- the processor 21 of the network side device determines whether the data signal of the terminal and the CSI-RS need to be frequency-replicated according to the actual application scenario or the function of the CSI-RS and the resource usage of the OFDM symbol where the CSI-RS is located. And multiplexed on which OFDM symbols are used, and then the configuration of the CSI-RS multiplexing indication information is performed.
- the processor 21 of the network side device determines the data signal of the terminal and the CSI-RS. Perform frequency division multiplexing;
- the processor 21 of the network side device determines that the data signal of the terminal is not performed with the CSI-RS.
- the processor 21 of the network side device determines that the data signal of the terminal is not frequency division multiplexed with the CSI-RS.
- the processor 21 on the network side device side performs resource mapping between the data and the pilot OFDM symbol.
- the transceiver 20 of the network side device selects an appropriate manner to notify the terminal according to different configuration manners of the CSI-RS multiplexing indication information, so that the terminal can correctly complete the solution mapping.
- the CSI-RS multiplexing indication information is carried by L1/L2/L3 signaling, or other methods.
- the transceiver 10 of the terminal receives the CSI-RS multiplexing indication information, and the processor 11 performs the resource mapping according to the CSI-RS multiplexing indication information.
- the processor 21 of the network side device configures the CSI-RS multiplexing indication information, and has the following implementation manners:
- the processor 21 of the network-side device configures the CSI-RS multiplexing indication information to indicate that all the OFDM symbols are already frequency-coded.
- the processor 21 of the network side device configures the CSI-RS multiplexing indication information to indicate that all the OFDM symbols are not Frequency division multiplexing
- the processor 21 of the network side device configures the CSI-RS multiplexing indication information to indicate whether each OFDM symbol is frequently used.
- the processor 21 of the network side device configures the CSI-RS multiplexing indication information to indicate the frequency division multiplexed OFDM.
- the symbol; or the indication information is configured to indicate an OFDM symbol that is not frequency division multiplexed.
- the following describes in detail the implementation process of the CSI-RS multiplexing indication information and the sending to the terminal in the network side device in the embodiment of the present application.
- Embodiment 1 is a diagrammatic representation of Embodiment 1:
- the transceiver 20 of the network side device may carry the CSI-RS multiplexing indication information by using L1/L2 signaling.
- the processor 21 of the network side device may select a 1 bit resource in the Downlink Control Information (DCI) to mark the Information, 0 means no multiplexing, 1 means multiplexing; or 0 means no multiplexing, 1 means no multiplexing.
- DCI Downlink Control Information
- the processor 21 of the network side device may configure 1 bit indication information for the OFDM symbols in which each CSI-RS is located, and independently indicate whether the CSI-RS is to be used. It is multiplexed with the data signal of the terminal.
- FIG. 6 shows a practical application scheme of CSI-RS multiplexing indication information.
- the OFDM symbol includes an OFDM symbol portion where a demodulation reference signal (DMRS) is located, an OFDM symbol portion where the data signal is located, and an OFDM symbol portion where the physical downlink control channel (PDCCH) is located, CSI - The portion of the OFDM symbol in which the RS is located.
- DMRS demodulation reference signal
- PDCCH physical downlink control channel
- the network side device uses the DCI signaling to carry the CSI-RS multiplexing indication information, which is only an example.
- the L2 signaling for example, the MAC CE (medium access control control element, Media access control control element) signaling bearer.
- the processor 21 of the network side device may indicate only part of the CSI-RS and user data. Reuse information to reduce the overhead of the indication information. Specific instructions include:
- the processor 21 of the network side device determines that only the OFDM symbol without the mapped data signal is indicated, and the transceiver 20 directly informs the terminal through which the OFDM symbol has no mapped data signal through the DCI;
- the processor 21 of the network side device determines that only the OFDM symbol with the mapped data signal is indicated, and the transceiver 20 directly informs the terminal on which OFDM symbols the data signal is mapped by the DCI.
- Figure 7 illustrates a schematic diagram of DCI indicating CSI-RS multiplexing on multiple OFDM symbols.
- DCI information only the OFDM symbols to be multiplexed are indicated, and the OFDM symbols in which the remaining CSI-RSs are located are not multiplexed by default.
- only the OFDM symbols that are not to be multiplexed need to be indicated in the DCI, and the OFDM symbols in which the remaining CSI-RSs are multiplexed by default are OFDM symbols.
- the OFDM symbols that are not multiplexed are indicated, and if there are many OFDM symbols that are not multiplexed, the OFDM symbols that are multiplexed are indicated to achieve the purpose of saving the indication information overhead.
- some terminals may be in a certain state for a long time.
- the CSI-RS multiplexing indication information needs to be carried by L3 signaling, such as Radio Resource Control (RRC) signaling.
- RRC Radio Resource Control
- the terminal resides in a certain beam coverage for a long time, and the communication quality is good, and beam scanning is not required frequently; or the terminal is always in high-speed movement, and beam scanning may be performed frequently.
- FIG. 8 is a schematic diagram of carrying CSI-RS multiplexing indication information by using RRC signaling.
- the processor 21 of the network side device transmits the indication information through the RRC bearer CSI-RS and transmits it to the terminal through its transceiver 20, and the RRC signaling can use a longer update period to avoid frequent signaling overhead.
- RRC signaling is only an example, and other L3 signaling may also be used to carry the CSI-RS multiplexing indication information as long as the technical solution of the present application can be implemented.
- L3 signaling is combined with L1/L2 signaling to implement more flexible CSI-RS resource settings and CSI report settings to meet various CSI measurements. demand.
- the CSI-RS multiplexing indication information is simultaneously configured when the CSI-RS resource configuration is performed, that is, the CSI-RS resource settings information or the CSI-RS configuration (CSI-RS settings). ) Information or CSI-RS initial settings information.
- the CSI-RS multiplexing indication information directly indicates, by the network side device, the OFDM symbol position corresponding to the frequency division multiplexed CSI-RS according to the current application and the scheduling requirement, or indicates the OFDM symbol position that is not multiplexed.
- the specific instructions are as follows:
- the processor 21 of the network side device performs initial configuration of the CSI-RS.
- a default multiplexing mode is configured as the data signal of the CSI-RS and the terminal. Multiplexing in a longer communication cycle.
- the processor 21 of the network side device changes the setting of the terminal application scenario, for example, the terminal enters the high speed mobile state, and then the setting of the CSI-RS multiplexing indication information is no longer applicable.
- the processor 21 of the network side device updates the setting of the CSI-RS multiplexing indication information, and the transceiver 20 notifies the terminal of the new CSI-RS multiplexing mode by using L1/L2 signaling.
- FIG. 9 is a schematic diagram of the embodiment, wherein the change of the application scenario may be that the processor 21 of the network side device determines according to the channel quality that the terminal feedbacks in real time; if the terminal can determine its own application scenario, the transceiver may also pass through the transceiver. 10 Actively report to the network side device for decision.
- the change of the application scenario may be that the processor 21 of the network side device determines according to the channel quality that the terminal feedbacks in real time; if the terminal can determine its own application scenario, the transceiver may also pass through the transceiver. 10 Actively report to the network side device for decision.
- the CSI-RS multiplexing indication information is part of a CSI-RS configuration that is updated along with the CSI-RS configuration.
- the CSI-RS configuration is also an important part of the CSI measurement. This also facilitates the network side device to set the CSI-RS multiplexing mode according to different application scenarios.
- Embodiments 1 to 4 describe an implementation manner in which the network side device performs CSI-RS multiplexing indication information configuration and sends it to the terminal by using different signaling.
- the terminal receives the CSI-RS multiplexing indication information sent by the network side device, and then parses the data on the OFDM symbol where the CSI-RS multiplexed with the data signal is located according to the CSI-RS multiplexing indication information.
- the signal is demodulated together with the data signal in the transmission time slot in which the OFDM symbol is located. This is a technique well known to those skilled in the art and will not be described herein.
- the terminal may infer whether the data signal is mapped on the OFDM symbol where the CSI-RS is located by using the analog beam information of a CSI-RS, which is described in detail in Embodiment 5.
- FIG. 10 The specific process of the data multiplexing method provided in this embodiment is shown in FIG. 10:
- Step 100 The transceiver 20 of the network side device notifies the terminal to transmit the analog beam information of all CSI-RSs in the time slot. Specifically, the transceiver 20 of the network side device sends the analog beam information of all CSI-RSs in the time slot by using the L1/L2/L3 signaling, such as DCI, MAC CE, or RRC signaling.
- the information may be Other methods that can represent the analog beam of the CSI-RS should also be included in the embodiments of the present application, such as analog beam identification or CSI-RS resource identification and port number.
- Step 101 The transceiver 20 of the network side device notifies the terminal of the analog beam information used for data signal transmission. Specifically, the transceiver 20 of the network side device notifies the terminal for the analog beam information used for data signal transmission by means of DCI or RRC before starting the data signal transmission.
- Step 102 After receiving the analog beam information of the CSI-RS and the analog beam information for data signal transmission, the transceiver 10 of the terminal determines whether there is an analog beam and a transmission terminal corresponding to a certain CSI-RS.
- the analog beams of the data signals are the same;
- Step 103 if present, the processor 11 of the terminal considers that the data signal is mapped on the OFDM symbol of the CSI-RS; further, the processor 11 of the terminal parses the data signal on the OFDM symbol where the CSI-RS is located.
- Step 104 if not present, the processor 11 of the terminal considers that no data signals are mapped on the OFDM symbols of all CSI-RSs.
- FIG. 11 is a schematic diagram of inferring multiplexing by the processor 11 of the terminal through analog beam information of the CSI-RS.
- the analog beam for data signal transmission of the terminal is beam 0.
- the CSI-RS on OFDM symbol 6 is transmitted in beam 0.
- the OFDM symbol 12 is transmitted in beam 1.
- the network side device causes the terminal to perform beam measurement on the beam 1. Since both the network side device and the terminal are uncertain whether the beam 1 can cover the terminal, the terminal considers that the data signal on the OFDM symbol 12 and the CSI-RS are not frequency division multiplexed.
- the network side device and the terminal may maintain a backup list of multiple beam pairs with better communication quality to achieve more robust and reliable transmission.
- a beam pair contains information about a corresponding pair of transmitted analog beams and received analog beams. Therefore, although the transmit analog beam corresponding to a CSI-RS and the analog signal transmitted by the data signal of the terminal are different, if the CSI-RS corresponds to the transmit analog beam, and the receive analog beam corresponding to the terminal at the time is in the beam pair In the backup list, the processor 11 of the terminal also considers that the data and the CSI-RS are multiplexed. Therefore, in this case, as shown in FIG. 12, the received analog beam pairing of the beam 1 and the terminal on the OFDM symbol 12 can also achieve reliable communication between the network side device and the terminal.
- the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be implemented in the present application.
- the implementation of the examples constitutes any limitation.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
- the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
- the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请实施例提供了一种数据复用的方法、网络侧设备和终端,所述方法包括:网络侧设备向终端传输信道状态信息参考信号CSI-RS和数据信号,所述CSI-RS用于进行信道状态测量或波束质量测量;网络侧设备向终端发送CSI-RS复用指示信息,所述CSI-RS复用指示信息用于指示向终端传输的所述数据信号是否与所述CSI-RS频分复用。本申请实施例利用CSI-RS复用指示信息来指示CSI-RS是否与数据信道进行复用,从而使得CSI-RS与数据信道的复用变成可能,并且终端根据该CSI-RS复用指示信息,可以正确解析用户数据,大幅提高了终端的资源利用效率。
Description
本申请涉及无线通信技术领域,尤其涉及一种数据复用和解析方法、装置及系统。
随着通信需求的增长和通信技术的发展,未来的通信系统相对于LTE(Long Term Evolution,长期演进)系统,将会采用更高的载波频率,如39GHz等,以实现更大带宽、更高传输速率的无线通信。
由于载波频率大幅提高,载波波长变短,无线信号的衍射、散射能力下降,使其在空间传播过程中经历更加严重的衰落,进而使得基站的覆盖能力受限,甚至在接收端难以检测到发射的无线信号。为此,未来的通信系统将采用波束赋形(beamforming)技术来获得具有良好方向性的波束,以提高在发射方向上的功率,从而改善接收端的信干噪比(Signal to Interference plus Noise Ratio,SINR)。为了增加覆盖范围和控制天线阵列成本,混合波束赋形(Hybrid beamforming)成为一种选择,它同时包含了基带的数字波束赋形(Digital beamforming)和射频端的模拟波束赋形(Analog beamforming)。
如图1所示,当基站在进行波束扫描时,正在扫描的波束可能无法覆盖终端。相反,如果基站没有进行波束扫描,服务于终端的波束会指向终端,在该波束中可以发送的CSI-RS用于CSI测量。
发明人在创造本申请技术方案的过程中发现,CSI-RS在承担CSI测量的功能的时候资源利用率极低。
发明内容
为解决现有技术存在的技术问题,本申请提供了一种数据复用的方法、网络侧设备和终端。
本申请提供的一种数据复用方法,包括:
网络侧设备向终端传输信道状态信息参考信号CSI-RS和数据信号,该CSI-RS用于进行信道状态测量或波束质量测量;
网络侧设备向终端发送CSI-RS复用指示信息,所述CSI-RS复用指示信息用于指示向终端传输的所述数据信号是否与所述CSI-RS进行了频分复用;
终端接收到来自网络侧设备的CSI-RS复用指示信息之后,根据该CSI-RS复用指示信息,在该CSI-RS复用指示信息指示的与数据信号进行了频分复用的CSI-RS所在OFDM符号上解析所述数据信号。
一种实现方式中,所述网络侧设备通过L1/L2/L3信令承载所述CSI-RS复用指示信息并向所述终端发送。
其中,所述的L1信令可以为DCI信令,所述L2信令可以为MAC CE信令,所述L3信令可以为RRC信令。
本申请实施例利用CSI-RS复用指示信息来指示CSI-RS是否与数据信道进行复用,从而使得CSI-RS与数据信道的复用变成可能,并且终端根据该CSI-RS复用指示信息,可以正确解析用户数据,大幅提高了终端的资源利用效率。
另一方面,本申请实施例提供了网络侧设备,该网络侧设备可以是一种基站,也可以是一种控制节点。该网络侧设备包括:
收发器,用于向终端传输信道状态信息参考信号CSI-RS和数据信号,所述CSI-RS用于进行信道状态测量或波束质量测量;
所述收发器还用于向终端发送CSI-RS复用指示信息,所述CSI-RS复用指示信息用于指示向终端传输的所述数据信号是否与所述CSI-RS进行了频分复用,以使所述终端根据该CSI-RS复用指示信息进行数据信号的解析。
另一方面,本申请实施例提供了一种基站,该基站具有实现上述方法实际中基站行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一个可能的设计中,基站的结构中包括处理器和收发器,所述处理器被配置为支持基站执行上述方法中相应的功能。所述收发器用于支持基站与UE之间的通信,向UE发送上述方法中所涉及的信息或者信令,接收基站所发送的信息或指令。所述基站还可以包括存储器,所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本申请实施例提供了一种控制节点,可以包括控制器/处理器,存储器以及通信单元。所述控制器/处理器可以用于协调多个基站之间的资源管理和配置。存储器可以用于存储控制节点的程序代码和数据。所述通信单元,用于支持该控制节点与基站进行通信,譬如将所配置的资源的信息发送给基站。
又一方面,本申请实施例提供了一种终端,该终端具有实现上述方法设计中终端行为的功能。所述功能可以通过硬件实现,终端的结构中包括收发器和处理器。也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。所述模块可以是软件和/或硬件。该终端包括:
收发器,用于接收来自网络侧设备的信道状态信息参考信号CSI-RS和数据信号,所述CSI-RS用于进行信道状态测量或波束质量测量;
处理器,用于在所述CSI-RS复用指示信息指示的正交频分复用OFDM符号上解析所述数据信号,在所述OFDM符号上所述数据信号与所述CSI-RS进行了频分复用。
另一方面,本申请实施例还提供了一种数据复用方法、网络侧设备和终端:
网络侧设备通知终端传输时隙里所有的CSI-RS的模拟波束信息和用于数据传输的模拟波束的信息;
终端判断是否存在某个CSI-RS的模拟波束和传输终端的数据信号的模拟波束相同;若是,终端则判断该CSI-RS所在OFDM符号上映射有数据信号。进一步的,终端在映射有数据信号的OFDM符号上解析数据信号。
若否,终端则判断该CSI-RS所在OFDM符号上未映射有数据信号。
本申请实施例中,网络侧设备向终端发送CSI-RS模拟波束信息和数据信号的模拟波束信息,终端据此判断CSI-RS是否与数据信号进行了复用,可以正确解析用户数据,大幅提高了终端的资源利用效率。
一种实现方式中,当所述CSI-RS的模拟波束和传输终端的数据信号的模拟波束互为配对波束对时,确定所述数据信号与所述CSI-RS进行频分复用。
又一方面,本申请实施例提供了一种通信系统,该系统包括上述方面所述的基站和终端。可选地,还可以包括上述实施例中的控制节点。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述网络侧设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
再一方面,本申请实施例提供了一种计算机存储介质,用于储存为上述终端所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是基站进行波束扫描的示意图;
图2是CSI-RS用于波束测量的导频图案的示意图;
图3是本申请实施例提供的通信系统的示意图;
图4是本申请实施例的终端与网络侧设备之间进行数据复用的一个示意图;
图5是本申请实施例的终端与网络侧设备之间进行数据复用的又一示意图;
图6是本申请实施例的数据复用方法实施例一中CSI-RS复用指示信息的示意图;
图7是本申请实施例的数据复用方法实施例二中CSI-RS复用指示信息的示意图;
图8是本申请实施例的数据复用方法实施例三中CSI-RS复用指示信息的示意图;
图9是本申请实施例的数据复用方法实施例四中CSI-RS复用指示信息的示意图。
图10是本申请实施例的数据复用方法实施例五的流程示意图;
图11是本申请实施例中数据复用方法实施例五中通过CSI-RS波束信息推断复用情况的一个示意图;
图12是本申请实施例中数据复用方法实施例五中通过CSI-RS波束信息推断复用情况的又一示意图。
为进一步描述本申请,首先,对本申请实施例涉及到的相关技术作简单介绍。
为了获得更大的传输带宽、更快的传输速率等特性,下一代通信系统中将使用相对长期演进技术(LTE,Long Term Evolution)更高的载波频率。
高频通信需要通过波束扫描来实现基站侧和用户侧的波束配对,从而保证有较好的通信质量。图2给出了一种CSI-RS用于波束测量的导频图案的示例,它在连续的OFDM符号10和OFDM符号11上都映射CSI-RS,每个OFDM符号可以扫描同时发射的最多8个模拟 波束,这里称其为一个波束组。每个模拟波束对应到一个端口,并且各个端口之间采用频分复用或码分复用的方式。如果要支持更多模拟波束的扫描,可以选择更多的OFDM符号用于波束扫描。
发明人发现,在现有技术中,由于在进行波束扫描时,不能保证被调度了数据传输的终端的模拟波束和映射CSI-RS的OFDM符号所使用的模拟波束一致,故在CSI-RS用于波束测量的OFDM符号上,尽管还有闲置资源,但也无法用于终端的数据信号的传输。
在下一代通信系统中,CSI-RS不仅可以用于承担波束测量的功能,而且还可以用于承担对终端进行CSI测量的功能。当CSI-RS用于CSI测量时,则要求被执行CSI测量的终端始终被波束覆盖,因此模拟波束在CSI测量过程中不会发生变化或不会发生较多的变换。在这种情况下,模拟波束所覆盖的范围内的终端可以使用CSI-RS所在OFDM符号上的空闲资源,以提高用户资源的利用效率。
本申请实施例提供的技术方案,可以应用于无线蜂窝网络的各种通信系统,例如:全球移动通信(Global System for Mobile communications,GSM)系统,码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,长期演进(Long Term Evolution,LTE)系统,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),下一代移动通信系统(例如,5G)等。
如图3所示,本申请实施例提供了一种通信系统100。该通信系统100至少包括至少一个基站(base station,BS)20和多个终端,例如终端1、终端2、终端3,终端4等等。与基站20连接的控制节点60,可以对系统中的资源进行统一调度,可以给终端配置资源,进行资源复用决策,或者干扰协调等。
本申请实施例所指网络侧设备可以包括作为对传统无线电信系统中的对等设备的改进的系统和设备。这种高级或下一代设备可以包含在演进无线通信标准(例如长期演进LTE)中。例如,LTE系统可以包括演进通用陆地无线接入网(E-UTRAN)节点B(eNB)、无线接入点或类似组件,而不是传统的基站。任何此类组件将在本文中被称作eNB,但是应当理解的是,此类组件不一定是eNB。下一代通信系统,将使用“gNB”代替LTE系统的eNB。
具体的,网络侧设备可以是如图3所示的基站20或者控制节点60。
本申请实施例所涉及的基站,如图3所示的基站20等,它是一种部署在无线接入网中用以为终端提供无线通信功能的装置。基站可以包括各种形式的宏基站,微基站(也称为小站),中继站,接入点等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd generation,3G)系统中,称为节点B(Node B)等。为方便描述,本申请所有实施例中,上述为终端提供无线通信功能的装置统称为基站或BS。
本申请实施例中所涉及到的控制节点,如图3所示通信系统中的控制节点60,其可以 连接多个基站,并为多个基站覆盖下的多个终端配置资源。例如,基站可以为UMTS系统中的Node B,控制节点可以为网络控制器。又例如,基站可以为小站,则控制节点可以为覆盖小站的宏基站。再例如,控制节点可以为无线网络跨制式协同控制器等,基站为无线网络中的基站,在本申请实施例中不作限定说明。
本申请实施例中所涉及到的终端,如图3所示的通信系统100中的终端1、终端2、终端3等,可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。所述终端也可以称为移动台(mobile station,简称MS),还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端等。为方便描述,本申请所有实施例中,上面提到的设备统称为终端。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图4示意了本申请实施例的终端与网络侧设备之间进行数据复用的结构示意图。
本申请实施例提供的终端,包括:收发器10和处理器11,该终端还可以包括存储器12,其存储计算机执行指令;系统总线13,该系统总线13连接处理器11,收发器10和存储器12等。网络侧设备包括收发器20和处理器21,该网络侧设备还可以包括存储器22,其存储计算机执行指令;系统总线23,该系统总线23连接处理器21,收发器20和存储器22等。
一种实现方式中,网络侧设备的收发器20通过天线向终端的收发器10发送数据信号、CSI-RS和相应的CSI-RS复用指示信息。终端的收发器11通过天线接收来自网络侧设备的收发器20发送的数据信号、CSI-RS和相应CSI-RS复用指示信息,根据该CSI-RS复用指示信息,在所述CSI-RS复用指示信息指示的正交频分复用OFDM符号上解析所述数据信号,并与该OFDM符号所在的传输时隙里的数据信号一起进行解调,其中,在所述OFDM符号上所述数据信号与所述CSI-RS进行了频分复用。这里的传输时隙通常是指的进行数据调制和解调的一个时间单元,通常可以是一个TTI(transmission time interval,传输时间间隔)。
或者在另一种实现方式中,网络侧设备的收发器20通过天线向终端的收发器10发送传输时隙里所有的CSI-RS的模拟波束信息和用于数据传输的模拟波束的信息;
终端的收发器10接收上述传输时隙里所有的CSI-RS的模拟波束信息和用于数据传输的模拟波束的信息,终端的处理器11判断是否存在某个CSI-RS的模拟波束和传输终端的数据信号的模拟波束相同;若是,终端的处理器11则判断该CSI-RS所在OFDM符号上映射有数据信号。进一步的,终端的处理器11在映射有数据信号的OFDM符号上解析数据信号。若否,终端的处理器11则判断该CSI-RS所在OFDM符号上未映射有数据信号。
需要说明的是:终端的处理器11和网络侧设备的处理器21可以是中央处理器(central processing unit,简称CPU),网络处理器(network processor,简称NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,简称ASIC),可编程逻辑器件(programmable logic device,简称PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,简称CPLD),现场可编程逻辑门阵列(field-programmable gate array,简称FPGA),通用阵列逻辑(generic array logic,简称GAL)或其任意组合。
终端的存储器12和网络侧设备的存储器22可以包括易失性存储器(volatile memory),例如随机存取内存(random access memory,简称RAM);还可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,简称HDD)或固态硬盘(solid-state drive,简称SSD);存储器还可以包括上述种类的存储器的组合。
本申请基于CSI-SI复用指示信息实现CSI-RS与数据信号的复用,具体方案如图5所示,结合图4,本申请实施例的数据复用方法如下:
第一步,网络侧设备的处理器21根据实际应用场景或者CSI-RS的功能,以及CSI-RS所在OFDM符号的资源使用情况,判断是否需要将终端的数据信号和CSI-RS进行频分复用,以及在哪些OFDM符号上进行复用,然后进行CSI-RS复用指示信息的配置。
具体的,有如下几种情况:
1、当CSI-RS用于对某个模拟波束覆盖的终端进行信道状态测量,且CSI-RS所在OFDM符号存在空闲资源时,网络侧设备的处理器21确定将终端的数据信号与CSI-RS进行频分复用;
2、当CSI-RS用于对某个模拟波束覆盖的终端进行信道状态测量,但其所在OFDM符号不存在空闲资源时,网络侧设备的处理器21确定终端的数据信号不与CSI-RS进行频分复用;
3、当CSI-RS用于波束测量时,网络侧设备的处理器21确定终端的数据信号不与所述CSI-RS进行频分复用。
第二步,根据配置的CSI-RS复用指示信息的内容,网络侧设备侧的处理器21进行数据和导频OFDM符号之间的资源映射。
第三步,网络侧设备的收发器20根据CSI-RS复用指示信息配置方式的不同,选择合适的方式通知终端,以便终端能正确完成解资源映射。例如:通过L1/L2/L3信令承载CSI-RS复用指示信息,或者其他方式。
第四步,终端的收发器10接收CSI-RS复用指示信息,其处理器11根据该CSI-RS复用指示信息进行解资源映射。
上述第一步中,网络侧设备的处理器21配置CSI-RS复用指示信息,有如下几种实现方式:
1、如果所有OFDM符号上的CSI-RS都与终端的数据信号进行频分复用时,则网络侧设备的处理器21将CSI-RS复用指示信息配置用于指示该所有OFDM符号已频分复用;
2、如果所有OFDM符号上的CSI-RS都不与终端的数据信号进行频分复用时,则网络侧设备的处理器21将CSI-RS复用指示信息配置用于指示该所有OFDM符号未频分复 用;
3、如果部分OFDM符号上的CSI-RS与终端的数据信号进行频分复用时,则网络侧设备的处理器21将CSI-RS复用指示信息配置用于分别指示每个OFDM符号是否频分复用;
4、如果部分OFDM符号上的CSI-RS与终端的数据信号进行频分复用时,则网络侧设备的处理器21将CSI-RS复用指示信息配置用于指示已频分复用的OFDM符号;或指示信息配置用于指示未频分复用的OFDM符号。
下面详细描述本申请实施例中网络侧设备配置CSI-RS复用指示信息以及发送给终端的几种实现过程。
实施例一:
为了灵活地指示CSI-RS与终端的数据信号进行复用的情况,网络侧设备的收发器20可以通过L1/L2信令来承载该CSI-RS复用指示信息。
如果所有OFDM符号上的CSI-RS与终端的数据信号都同时复用或者不复用,那么网络侧设备的处理器21可在下行控制信息(Downlink control information,DCI)中选取1bit资源来标记该信息,0表示不复用,1表示复用;或者0表示不复用,1表示不复用。
如果不同OFDM符号上的CSI-RS与终端的数据信号不同时复用,那么网络侧设备的处理器21可以为每一个CSI-RS所在的OFDM符号配置1bit指示信息,独立指示是否将CSI-RS与终端的数据信号进行复用。
图6给出了一种CSI-RS复用指示信息的实际应用方案。其中,该OFDM符号包括解调参考信号(demodulation reference signal,DMRS)所在的OFDM符号部分,数据信号所在的OFDM符号部分,物理下行控制信道(Physical Downlink Control Channel,PDCCH)所在的OFDM符号部分,CSI-RS所在的OFDM符号部分。CSI-RS复用指示信息通过DCI承载,终端的处理器11通过解PDCCH获得CSI-RS复用指示信息。
应理解的是,此处网络侧设备用DCI信令承载CSI-RS复用指示信息仅为举例,在其他的实现方式中,还可以通过L2信令,例如MAC CE(medium access control control element,媒体接入控制控制元素)信令承载。
实施例二
当在多个OFDM符号上都映射CSI-RS,但只有部分OFDM符号上不和终端的数据信号进行频分复用时,网络侧设备的处理器21可以通过只指示部分CSI-RS和用户数据复用的信息,来减少指示信息的开销。具体指示方法包括:
1、网络侧设备的处理器21确定只指示没有映射数据信号的OFDM符号,其收发器20通过DCI直接通知终端在哪些OFDM符号上没有映射数据信号;
2、网络侧设备的处理器21确定只指示有映射数据信号的OFDM符号,其收发器20通过DCI直接通知终端在哪些OFDM符号上映射了数据信号。
图7示意了用DCI指示多个OFDM符号上进行CSI-RS复用的示意图。在DCI信息中,只需指示被复用的OFDM符号,其余CSI-RS所在OFDM符号则默认为不复用的。 或者,DCI中只需要指示不被复用的OFDM符号,其余CSI-RS所在OFDM符号则默认为被复用的OFDM符号。通常来讲,如果被复用的OFDM符号多则指示未被复用的OFDM符号,如果未被复用的OFDM符号多,则指示被复用的OFDM符号,以达到节约指示信息开销的目的。
实施例三
在一些应用场景中,某些终端可能长时间处于某种相同状态下,此时需要通过L3信令,例如无线资源控制(Radio Resource Control,RRC)信令来承载CSI-RS复用指示信息,避免增加L1/L2信令开销。比如,终端长时间驻留在某个波束覆盖范围内,且通信质量良好,不需要经常进行波束扫描;或者,终端一直处在高速移动中,可能会频繁地进行波束扫描。
图8给出了一种用RRC信令承载CSI-RS复用指示信息的示意图。网络侧设备的处理器21通过RRC承载CSI-RS复用指示信息并通过其收发器20发送至终端,该RRC信令可以用较长的更新周期,避免频繁的信令开销。
应理解的是,RRC信令仅为举例,其他L3信令只要能实现本申请的技术方案,也可以采用来承载CSI-RS复用指示信息。
实施例四
本实施例中,通过L3信令联合L1/L2信令,实现更加灵活的CSI-RS资源配置(CSI-RS resource settings)和CSI报告配置(CSI report settings),以满足各种不同CSI测量的需求。本实施例中,CSI-RS复用指示信息在进行CSI-RS资源配置时同时配置,也即包含在CSI-RS资源配置(CSI-RS resource settings)信息或CSI-RS配置(CSI-RS settings)信息或CSI-RS初始配置(CSI-RS initial settings)信息中。CSI-RS复用指示信息由网络侧设备根据当前应用和调度需求,直接指示被频分复用的CSI-RS对应的OFDM符号位置,或者指示没有被复用的OFDM符号位置。具体指示方式如下:
1、网络侧设备的处理器21进行CSI-RS初始配置。在该CSI-RS初始配置中,根据终端的应用场景(如终端在某个波束覆盖范围内,没有发生快速移动),配置一种默认的复用方式,作为CSI-RS和终端的数据信号在一段较长通信周期内的复用方式。
2、在通信过程中,网络侧设备的处理器21根据终端应用场景的变化,例如终端进入高速移动状态,那么之前关于CSI-RS复用指示信息的设置不再适用。此时,网络侧设备的处理器21更新CSI-RS复用指示信息的设置,由收发器20通过L1/L2信令,通知终端新的CSI-RS复用方式。
图9给出了本实施例的示意图,其中应用场景的变化可以是网络侧设备的处理器21根据终端实时反馈的信道质量进行判断;如果终端能自己判断自己的应用场景,也可以通过收发器10主动上报给网络侧设备进行决策。
在本实施方案中,CSI-RS复用指示信息是CSI-RS配置的一部分,其随着CSI-RS配置一起更新。除了配置灵活外,由于CSI-RS配置还是CSI测量的重要部分,这也便于网络侧设备根据不同应用场景设置CSI-RS的复用方式。
上述实施例一至实施例四描述了网络侧设备进行CSI-RS复用指示信息的配置和采 用不同的信令将其发送到终端的实现方式。而在终端侧,终端收到网络侧设备下发的CSI-RS复用指示信息,再根据该CSI-RS复用指示信息,在与数据信号复用的CSI-RS所在的OFDM符号上去解析数据信号,并与该OFDM符号所在的传输时隙里的数据信号一起进行解调,此为本领域技术人员熟知的技术,在此不再赘述。
在另一种实现方式中,终端可以通过某CSI-RS的模拟波束信息推断是否在CSI-RS所在OFDM符号上映射了数据信号,下面通过实施例五详细描述。
实施例五
本实施例提供的数据复用方法具体过程如图10所示:
步骤100,网络侧设备的收发器20通知终端传输时隙里所有的CSI-RS的模拟波束信息。具体的,网络侧设备的收发器20通过L1/L2/L3信令,比如DCI、MAC CE或RRC信令等,告诉终端传输时隙里的所有CSI-RS的模拟波束信息,该信息可以是模拟波束标识或者CSI-RS资源标识和端口号等,其他能表示CSI-RS的模拟波束的方法也应包括在本申请实施例中。
步骤101,网络侧设备的收发器20通知终端用于数据信号传输的模拟波束信息。具体的,网络侧设备的收发器20在开始数据信号传输之前,用DCI或者RRC等方式通知终端用于数据信号传输的模拟波束信息。
步骤102,终端的收发器10接收到上述CSI-RS的模拟波束信息和用于数据信号传输的模拟波束信息之后,其处理器11判断是否存在某个CSI-RS对应的模拟波束和传输终端的数据信号的模拟波束相同;
步骤103,如果存在,那么终端的处理器11则认为该CSI-RS所在OFDM符号上映射有数据信号;进一步的,终端的处理器11就在该CSI-RS所在OFDM符号上解析数据信号。
步骤104,如果不存在,那么终端的处理器11认为所有CSI-RS所在OFDM符号上都没有数据信号被映射。
图11为通过终端的处理器11通过CSI-RS的模拟波束信息推断复用情况的示意图。其中,用于终端的数据信号传输的模拟波束为波束0。OFDM符号6上的CSI-RS在波束0内发送。OFDM符号12在波束1中发送。此时,网络侧设备让终端在波束1上进行波束测量。由于网络侧设备和终端都不确定波束1是否能够覆盖该终端,故终端认为OFDM符号12上的数据信号和CSI-RS没有频分复用。
另外,在高频通信中,网络侧设备和终端可能会维护多个通信质量较好的波束对的备份列表,以实现更具鲁棒性和可靠性的传输。一个波束对包含了对应的一对发射模拟波束和接收模拟波束的信息。因此,尽管某个CSI-RS对应的发射模拟波束和终端的数据信号传输的模拟波束不相同,但若CSI-RS对应的发射模拟波束,和终端在该时刻对应的接收模拟波束处在波束对的备份列表中,则终端的处理器11也认为数据和CSI-RS是复用的。因此这种情况下,如图12所示,波束1和终端在OFDM符号12上的接收模拟波束配对,也能实现网络侧设备和终端之间的可靠通信。
应理解,上述各个实施例的方法中所示的步骤或操作仅仅作为示例,也可以执行其他操作或者各种操作的变形。并且,在具体实施时,各个步骤还可以按照与本申请实施 例中所述的不同的顺序来执行,并且有可能并非执行本申请实施例所示出的全部操作或步骤。或者,也可能执行本申请各实施例所示出的更多的操作或步骤。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (18)
- 一种数据复用的方法,其特征在于,包括:网络侧设备向终端传输信道状态信息参考信号CSI-RS和数据信号,所述CSI-RS用于进行信道状态测量或波束质量测量;网络侧设备向终端发送CSI-RS复用指示信息,所述CSI-RS复用指示信息用于指示所述数据信号是否与所述CSI-RS频分复用。
- 如权利要求1所述的数据复用的方法,其特征在于,所述网络侧设备向终端发送CSI-RS复用指示信息之前,包括:当所述CSI-RS用于对所述终端进行信道状态测量,且所述CSI-RS所在正交频分复用OFDM符号存在空闲资源时,确定所述数据信号与所述CSI-RS进行频分复用;或当所述CSI-RS用于对所述终端进行信道状态测量,但所述CSI-RS所在OFDM符号不存在空闲资源时,确定所述数据信号不与所述CSI-RS进行频分复用;或当所述CSI-RS用于波束测量时,确定所述数据信号不与所述CSI-RS进行频分复用。
- 如权利要求2所述的数据复用的方法,其特征在于,所述确定所述数据信号与所述CSI-RS进行频分复用之后,还包括:网络侧设备将所述数据信号映射至所述CSI-RS所在的OFDM符号的资源上。
- 如权利要求1所述的数据复用的方法,其特征在于,当所有OFDM符号上的CSI-RS都与所述数据信号进行频分复用时,所述CSI-RS复用指示信息用于指示该所有OFDM符号已频分复用;或当所有OFDM符号上的CSI-RS都不与所述数据信号进行频分复用时,所述CSI-RS复用指示信息用于指示该所有OFDM符号未频分复用;或当部分OFDM符号上的CSI-RS与所述数据信号进行频分复用时,所述CSI-RS复用指示信息用于指示每个OFDM符号是否频分复用;当部分OFDM符号上的CSI-RS与所述数据信号进行频分复用时,所述CSI-RS复用指示信息用于指示已频分复用的OFDM符号;或当部分OFDM符号上的CSI-RS与所述数据信号进行频分复用时,所述CSI-RS复用指示信息用于指示未频分复用的OFDM符号。
- 如权利要求1所述的数据复用的方法,其特征在于,所述网络侧设备向终端发送CSI-RS复用指示信息,包括:所述网络侧设备通过L1/L2/L3信令承载所述CSI-RS复用指示信息并向所述终端发送。
- 如权利要求1至5中任一项所述的数据复用的方法,其特征在于,所述CSI-RS复用指示信息包含在CSI-RS的资源配置信息中。
- 如权利要求6所述的数据复用的方法,其特征在于,所述CSI-RS复用指示信息随所述CSI-RS的资源配置信息的更新而同步更新,或随终端应用场景变化而更新。
- 一种数据解析的方法,其特征在于,包括:终端接收来自网络侧设备的信道状态信息参考信号CSI-RS和数据信号,以及CSI-RS复用指示信息;所述CSI-RS用于进行信道状态测量或波束质量测量;所述终端在所述CSI-RS复用指示信息指示的正交频分复用OFDM符号上解析所述数据信号,在所述OFDM符号上所述数据信号与所述CSI-RS进行了频分复用。
- 如权利要求8所述的数据解析方法,其特征在于,所述终端在所述CSI-RS复用指示信息指示的正交频分复用OFDM符号上解析所述数据信号,包括:所述终端根据所述CSI-RS复用指示信息指示,在所述OFDM符号上获取数据信号,并与所述OFDM符号所在的传输时隙里的数据信号一起进行解调。
- 一种网络设备,其特征在于,包括:收发器,用于向终端传输信道状态信息参考信号CSI-RS和数据信号,所述CSI-RS用于进行信道状态测量或波束质量测量;所述收发器还用于向终端发送CSI-RS复用指示信息,所述CSI-RS复用指示信息用于指示向终端传输的所述数据信号是否与所述CSI-RS频分复用。
- 如权利要求10所述的网络侧设备,其特征在于,所述网络设备还包括处理器,所述处理器用于:当所述CSI-RS用于对所述终端进行信道状态测量,且所述CSI-RS所在OFDM符号存在空闲资源时,确定所述数据信号与所述CSI-RS进行频分复用;或当所述CSI-RS用于对所述终端进行信道状态测量,但所述CSI-RS所在OFDM符号不存在空闲资源时,确定所述数据信号不与所述CSI-RS进行频分复用;或当所述CSI-RS用于波束测量时,确定所述数据信号不与所述CSI-RS进行频分复用。
- 如权利要求11所述的网络侧设备,其特征在于,在所述处理器确定所述数据信号与所述CSI-RS进行频分复用之后,还用于将所述数据信号映射至所述CSI-RS所在OFDM符号的资源上。
- 如权利要求10所述的网络侧设备,其特征在于,所有OFDM符号上的CSI-RS都与所述数据信号进行频分复用时,所述CSI-RS复用指示信息用于指示该所有OFDM符号已频分复用;或所有OFDM符号上的CSI-RS都不与所述数据信号进行频分复用时,将所述CSI-RS 复用指示信息用于指示该所有OFDM符号未频分复用;或部分OFDM符号上的CSI-RS与所述数据信号进行频分复用时,将所述CSI-RS复用指示信息用于指示每个OFDM符号是否频分复用;部分OFDM符号上的CSI-RS与所述数据信号进行频分复用时,将所述CSI-RS复用指示信息用于指示已频分复用的OFDM符号;或部分OFDM符号上的CSI-RS与所述数据信号进行频分复用时,将所述CSI-RS复用指示信息用于指示未频分复用的OFDM符号。
- 如权利要求10所述的网络侧设备,其特征在于,所述收发器通过L1/L2/L3信令承载所述CSI-RS复用指示信息并向所述终端发送。
- 如权利要求10至14中任一项所述的网络侧设备,其特征在于,所述CSI-RS复用指示信息包含在CSI-RS的资源配置信息中。
- 如权利要求15所述的网络侧设备,其特征在于,所述CSI-RS复用指示信息随所述CSI-RS的资源配置信息的更新而同步更新,或随终端应用场景变化而更新。
- 一种终端,其特征在于,包括:收发器,用于接收来自网络侧设备的信道状态信息参考信号CSI-RS和数据信号,所述CSI-RS用于进行信道状态测量或波束质量测量;所述收发器还用于接收来自网络侧设备的CSI-RS复用指示信息;处理器,用于在所述CSI-RS复用指示信息指示的正交频分复用OFDM符号上解析所述数据信号,在所述OFDM符号上所述数据信号与所述CSI-RS进行了频分复用。
- 如权利要求17所述的终端,其特征在于:所述终端的处理器根据所述CSI-RS复用指示信息指示,在所述OFDM符号上,获取数据信号并与所述OFDM所在的传输时隙里的数据信号一起进行解调。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18744710.7A EP3562191B1 (en) | 2017-01-25 | 2018-01-19 | Data multiplexing and data parsing method, device, and system |
US16/521,600 US20190349054A1 (en) | 2017-01-25 | 2019-07-25 | Data multiplexing method, data parsing method, apparatus, and system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710061366.3A CN108347273B (zh) | 2017-01-25 | 2017-01-25 | 一种数据复用和数据解析方法、装置及系统 |
CN201710061366.3 | 2017-01-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/521,600 Continuation US20190349054A1 (en) | 2017-01-25 | 2019-07-25 | Data multiplexing method, data parsing method, apparatus, and system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018137571A1 true WO2018137571A1 (zh) | 2018-08-02 |
Family
ID=62962468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/073439 WO2018137571A1 (zh) | 2017-01-25 | 2018-01-19 | 一种数据复用和数据解析方法、装置及系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20190349054A1 (zh) |
EP (1) | EP3562191B1 (zh) |
CN (1) | CN108347273B (zh) |
WO (1) | WO2018137571A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109039530A (zh) * | 2017-06-09 | 2018-12-18 | 索尼公司 | 无线通信系统中的装置和方法 |
CN110933764B (zh) * | 2018-09-20 | 2022-03-11 | 维沃移动通信有限公司 | 传输指示信号的传输方法、网络设备及终端 |
CN111182629B (zh) * | 2018-11-09 | 2023-04-07 | 深圳市中兴微电子技术有限公司 | 小区间干扰协调方法、基站及存储介质 |
US10993264B1 (en) | 2019-10-15 | 2021-04-27 | Qualcomm Incorporated | Multiplexing channel state information reports in multiple transmit-receive point (TRP) scenarios |
WO2021097625A1 (zh) * | 2019-11-18 | 2021-05-27 | 华为技术有限公司 | 信道确定的方法和通信装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102356577A (zh) * | 2009-03-16 | 2012-02-15 | 松下电器产业株式会社 | 无线电接收装置、无线电发送装置和无线电通信方法 |
US20120300653A1 (en) * | 2010-01-05 | 2012-11-29 | Ntt Docomo, Inc. | Radio base station apparatus, mobile terminal device and wireless communication method |
CN104038312A (zh) * | 2013-03-08 | 2014-09-10 | 中兴通讯股份有限公司 | 信道测量导频的指示信令的确定、csi反馈方法及装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6325249B2 (ja) * | 2013-12-26 | 2018-05-16 | 株式会社Nttドコモ | ユーザ端末及び無線通信方法 |
CN106257855A (zh) * | 2015-06-19 | 2016-12-28 | 北京信威通信技术股份有限公司 | 一种频分复用系统中控制信息与数据复用的方法 |
-
2017
- 2017-01-25 CN CN201710061366.3A patent/CN108347273B/zh active Active
-
2018
- 2018-01-19 EP EP18744710.7A patent/EP3562191B1/en active Active
- 2018-01-19 WO PCT/CN2018/073439 patent/WO2018137571A1/zh unknown
-
2019
- 2019-07-25 US US16/521,600 patent/US20190349054A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102356577A (zh) * | 2009-03-16 | 2012-02-15 | 松下电器产业株式会社 | 无线电接收装置、无线电发送装置和无线电通信方法 |
US20120300653A1 (en) * | 2010-01-05 | 2012-11-29 | Ntt Docomo, Inc. | Radio base station apparatus, mobile terminal device and wireless communication method |
CN104038312A (zh) * | 2013-03-08 | 2014-09-10 | 中兴通讯股份有限公司 | 信道测量导频的指示信令的确定、csi反馈方法及装置 |
Non-Patent Citations (2)
Title |
---|
SAMSUNG: "DL RS Designs forHigher Order MIMO", 3GPP TSG RAN WG1#56, R1-090619, 13 February 2009 (2009-02-13), XP050318503 * |
See also references of EP3562191A4 * |
Also Published As
Publication number | Publication date |
---|---|
CN108347273B (zh) | 2021-06-29 |
EP3562191A4 (en) | 2020-01-08 |
EP3562191A1 (en) | 2019-10-30 |
US20190349054A1 (en) | 2019-11-14 |
CN108347273A (zh) | 2018-07-31 |
EP3562191B1 (en) | 2021-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11419106B2 (en) | Communication method, base station, radio communication node, and user equipment | |
US11664931B2 (en) | Duplication transmission method and apparatus | |
JP7601915B2 (ja) | サービングおよび非サービングセルにわたるセル間モビリティ | |
CN108810922B (zh) | 一种通信方法及终端、基站 | |
CN108347778B (zh) | 通信方法及装置 | |
US9516535B2 (en) | User equipment carrier activation | |
RU2545527C2 (ru) | Изменение режимов согласования скорости при наличии опорного сигнала информации о состоянии канала | |
US12294960B2 (en) | Method for transmitting common signal and apparatus thereof | |
WO2018228560A1 (en) | Method and apparatus for measurement report | |
JP6825092B2 (ja) | ビーム管理方法、端末装置とネットワーク装置 | |
CN110476450A (zh) | 用户终端以及无线通信方法 | |
WO2018202130A1 (zh) | 确定参考信号序列的方法、装置、计算机程序产品及计算机可读存储介质 | |
CN109150445B (zh) | 一种下行控制信息发送与接收方法及设备 | |
WO2018137571A1 (zh) | 一种数据复用和数据解析方法、装置及系统 | |
JPWO2017038741A1 (ja) | ユーザ端末、無線基地局及び無線通信方法 | |
EP3544347B1 (en) | Method for transmitting information, network device and terminal device | |
AU2016428406B2 (en) | Signal transmission method, terminal device, and network device | |
WO2019029346A1 (zh) | 用于传输参考信号的方法和通信装置 | |
EP2879453A1 (en) | Mobile communication system, user device and processor | |
WO2018058469A1 (zh) | 信号发送的方法、终端设备和网络设备 | |
US20190028914A1 (en) | Device and Method of Handling a Measurement Configuration and a Reporting | |
JP2024514131A (ja) | 処理能力が制約されたシナリオにおいてマルチrtt測位を改善するためにprsとsrsとの関連付けを定義すること | |
US20230209487A1 (en) | Synchronization Signal Transmission Method and Apparatus | |
WO2019047190A1 (zh) | 干扰测量的方法、终端设备和网络设备 | |
KR102249124B1 (ko) | 신호 송신 방법 및 기지국 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18744710 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018744710 Country of ref document: EP Effective date: 20190723 |