WO2018135787A1 - 공중합 폴리에틸렌테레프탈레이트 중합물, 이를 포함하는 원사/bcf/필름 및 이의 제조방법 - Google Patents
공중합 폴리에틸렌테레프탈레이트 중합물, 이를 포함하는 원사/bcf/필름 및 이의 제조방법 Download PDFInfo
- Publication number
- WO2018135787A1 WO2018135787A1 PCT/KR2018/000322 KR2018000322W WO2018135787A1 WO 2018135787 A1 WO2018135787 A1 WO 2018135787A1 KR 2018000322 W KR2018000322 W KR 2018000322W WO 2018135787 A1 WO2018135787 A1 WO 2018135787A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyethylene terephthalate
- pdms
- modified polydimethylsiloxane
- copolymerized
- weight
- Prior art date
Links
- -1 polyethylene terephthalate Polymers 0.000 title claims abstract description 140
- 229920000139 polyethylene terephthalate Polymers 0.000 title claims abstract description 107
- 239000005020 polyethylene terephthalate Substances 0.000 title claims abstract description 101
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 229920000642 polymer Polymers 0.000 title abstract description 37
- 239000004205 dimethyl polysiloxane Substances 0.000 claims abstract description 119
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims abstract description 119
- 238000000034 method Methods 0.000 claims abstract description 47
- 239000004594 Masterbatch (MB) Substances 0.000 claims abstract description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 72
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 58
- 239000002202 Polyethylene glycol Substances 0.000 claims description 52
- 229920001223 polyethylene glycol Polymers 0.000 claims description 52
- 238000006068 polycondensation reaction Methods 0.000 claims description 48
- 229940093476 ethylene glycol Drugs 0.000 claims description 24
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 23
- 238000005886 esterification reaction Methods 0.000 claims description 22
- 239000002002 slurry Substances 0.000 claims description 16
- 230000032050 esterification Effects 0.000 claims description 14
- 238000005299 abrasion Methods 0.000 claims description 10
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 239000004698 Polyethylene Substances 0.000 claims description 7
- 229920000573 polyethylene Polymers 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 6
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- 238000001816 cooling Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 12
- 239000011324 bead Substances 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 11
- 238000009987 spinning Methods 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 10
- 238000012360 testing method Methods 0.000 description 9
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- 239000010954 inorganic particle Substances 0.000 description 7
- 230000003068 static effect Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910000019 calcium carbonate Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000000839 emulsion Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 4
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 4
- WRDWHLJNDCYAQQ-UHFFFAOYSA-N bis(2-hydroxyethyl) benzene-1,4-dicarboxylate 2,3-bis(2-hydroxyethyl)terephthalic acid Chemical compound OCCC=1C(=C(C(=O)O)C=CC1C(=O)O)CCO.C(C1=CC=C(C(=O)OCCO)C=C1)(=O)OCCO WRDWHLJNDCYAQQ-UHFFFAOYSA-N 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 208000008487 fibromuscular dysplasia Diseases 0.000 description 4
- 239000012760 heat stabilizer Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 239000002685 polymerization catalyst Substances 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- 230000000171 quenching effect Effects 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 102200082816 rs34868397 Human genes 0.000 description 2
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical group C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- DEXFNLNNUZKHNO-UHFFFAOYSA-N 6-[3-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-3-oxopropyl]-3H-1,3-benzoxazol-2-one Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)C(CCC1=CC2=C(NC(O2)=O)C=C1)=O DEXFNLNNUZKHNO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000220259 Raphanus Species 0.000 description 1
- 235000006140 Raphanus sativus var sativus Nutrition 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000008570 general process Effects 0.000 description 1
- 238000009998 heat setting Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000012643 polycondensation polymerization Methods 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000002040 relaxant effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/183—Terephthalic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/91—Polymers modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/42—Block-or graft-polymers containing polysiloxane sequences
- C08G77/445—Block-or graft-polymers containing polysiloxane sequences containing polyester sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/42—Block-or graft-polymers containing polysiloxane sequences
- C08G77/46—Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/20—Compounding polymers with additives, e.g. colouring
- C08J3/22—Compounding polymers with additives, e.g. colouring using masterbatch techniques
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/10—Block- or graft-copolymers containing polysiloxane sequences
- C08L83/12—Block- or graft-copolymers containing polysiloxane sequences containing polyether sequences
Definitions
- the present invention is in addition to the existing polyethylene terephthalate bond ethylene glycol (EG, Ethyleneglycol) and terephthalic acid (TPA, Terephthalic acid) in addition to polyethylene glycol (PEG) chain number of 1 to 50 one-way end group modified PDMS
- the present invention relates to a copolymer of polyethylene terephthalate having improved wear resistance prepared by introducing (polydimethylsiloxane) and a medical or industrial yarn, a BCF or a film for a carpet.
- polyester resins especially polyethylene terephthalate resins, are linear polymers synthesized from dicarboxylic acids or their ester-forming derivatives and diols or their ester-forming derivatives, and are inexpensive, yet have excellent mechanical and chemical properties. In addition to excellent gas barrier properties, it is widely used in the manufacture of various containers, films, fibers and the like.
- polyester is produced by the condensation polymerization method, the equilibrium reaction according to external conditions to obtain a commercially available viscosity through the conditions of high temperature, high vacuum, wherein a certain amount of oligomers remain in the final polymer.
- PDMS polydimethylsiloxane
- PEG polyethylene glycol
- PEG polyethylene glycol
- PDMS polydimethylsiloxane
- the modified polydimethylsiloxane (PDMS) is added in an amount of 0.1 to 20% by weight based on the total weight of the copolymerized polyethylene terephthalate.
- PET polyethylene terephthalate
- polyethylene terephtalate (PET) 80 to 99.9% by weight; And 0.1 to 20% by weight of unidirectional end group-modified polydimethylsiloxane (PDMS), wherein the unidirectional end group-modified polydimethylsiloxane (PDMS) is a chain of polyethyleneglycol (PEG) of the general formula (I)
- PEG polyethyleneglycol
- I polyethyleneglycol
- the present invention is prepared by the method of direct copolymerization of the copolymerized polyethylene terephthalate and a method of copolymerizing one-way end group-modified polydimethylsiloxane (PDMS) to polyethylene terephthalate at high concentration and using it as a master batch.
- PDMS polydimethylsiloxane
- the copolymerized polyethylene teretate is a slurry (Slurry) step of ethylene glycol (EG, Ethyleneglycol) and terephthalic acid (TPA, Terephthalic acid); Esterification of the slurry; And a polycondensation reaction step, wherein the abrasion resistance is improved medical or industrial polyethylene, including copolymerized polyethylene terephthalate prepared by a method of injecting one aromatic end group-modified polydimethylsiloxane (PDMS) into the rear end of the polycondensation reaction.
- PDMS polydimethylsiloxane
- Polyethylene terephtalate (PET) 80 to 99.9% by weight; And 0.1 to 20% by weight of unidirectional end-modified polydimethylsiloxane (PDMS), wherein the unidirectional end-group modified polydimethylsiloxane (PDMS) has a number of chains of polyethylene glycol (PEG) of general formula (I)
- PEG polyethylene glycol
- a BCF for a carpet having improved abrasion resistance including copolymerized polyethylene terephthalate, having 1 to 50 and a number average molecular weight of 800 to 50,000.
- the present invention is prepared by the method of directly copolymerizing the copolymerized polyethylene terephthalate or a method of copolymerizing unidirectional end-group-modified polydimethylsiloxane (PDMS) to polyethylene terephthalate at high concentration and using it as a master batch.
- PDMS polydimethylsiloxane
- a BCF for a carpet.
- the copolymerized polyethylene teretate is a slurry (Slurry) step of ethylene glycol (EG, Ethyleneglycol) and terephthalic acid (TPA, Terephthalic acid); Esterification of the slurry; And a polycondensation reaction step; and a copolymer-containing BCF for a copolymer including a copolymerized polyethylene terephthalate prepared by a method of introducing one aromatic end group-modified polydimethylsiloxane (PDMS) into the rear end of the polycondensation reaction.
- Slurry slurry
- EG ethylene glycol
- TPA Terephthalic acid
- Esterification of the slurry And a polycondensation reaction step
- a copolymer-containing BCF for a copolymer including a copolymerized polyethylene terephthalate prepared by a method of introducing one aromatic end group-modified polydimethylsiloxane (PD
- a polyethylene terephthalate BCF carpet with improved wear resistance prepared using the copolymerized polyethylene terephthalate.
- polyethylene terephtalate PET
- PDMS unidirectional end group-modified polydimethylsiloxane
- PEG polyethylene glycol
- the present invention is prepared by the method of directly copolymerizing the copolymerized polyethylene terephthalate or a method of copolymerizing unidirectional end-group-modified polydimethylsiloxane (PDMS) to polyethylene terephthalate at high concentration and using it as a master batch. It provides a polyethylene terephthalate film characterized by improved wear resistance and release force.
- PDMS polydimethylsiloxane
- the copolymerized polyethylene teretate is a slurry (Slurry) step of ethylene glycol (EG, Ethyleneglycol) and terephthalic acid (TPA, Terephthalic acid); Esterification of the slurry; And a polycondensation reaction step, wherein the polyethylene has improved abrasion resistance and releasing force, including copolymerized polyethylene terephthalate prepared by a method of injecting one aromatic end group-modified polydimethylsiloxane (PDMS) into the rear end of the polycondensation reaction.
- PDMS polydimethylsiloxane
- the present invention is a polyethylene glycol (PEG) chain number of 1 to 50, copolymerized polyethylene terephthalate with improved wear resistance by adding one-way terminal group-modified PDMS having a molecular weight of 800 to 50,000 and a medical or industrial yarn comprising the same , BCF or film for the mat.
- PEG polyethylene glycol
- Figure 1 shows a wear test specimen for the friction wear characteristics analysis.
- Figure 2 shows the structure of the wear test apparatus for the friction wear characteristics analysis.
- Method for producing a copolymerized polyethylene terephthalate according to the present invention is a slurry (Slurry) step of ethylene glycol (EG, Ethyleneglycol) and terephthalic acid (TPA, Terephthalic acid); Esterification step; And a polycondensation reaction step, wherein one side end group-modified PDMS having 1 to 50 chains of polyethylene glycol (PEG) is introduced into the rear end of the polycondensation reaction.
- Slurry ethylene glycol
- TPA Terephthalic acid
- the modified PDMS it is preferable to add the modified PDMS to the end of the polycondensation reaction in order to express the wear resistance improving effect of polyethylene terephthalate.
- the modified PDMS is added after the polycondensation reaction, a binding degree of 99% or more is obtained.
- Polydimethylsiloxane further added in the present invention is a compound having a structure of the following general formula (I).
- the modified PDMS is composed of OH, -COOH, or NH2 in one aromatic terminal group, and in the present invention, the polymerizable polyethylene terephthalate is mainly used using OH, -COOH, and most preferably, existing diols (-OH).
- the modified PDMS having OH is mainly used by utilizing the polymerization bond of the group).
- the modified PDMS molecular weight of the present invention is preferably in the range of 800 to 50,000, more preferably 1,000 to 15,000. At this time, when the molecular weight of the modified PDMS is less than 800, the wear resistance and the release force is lowered, and when it exceeds 50,000, the polycondensation reactivity is lowered.
- the number of chains of polyethylene glycol (PEG) of the modified PDMS of the present invention is preferably in the range of 1 to 50, more preferably 1 to 20. At this time, when the number of chains of polyethylene glycol (PEG) of the modified PDMS is less than one, the polycondensation reactivity is lowered, and when it exceeds 50, the wear resistance and the release force are lowered.
- the present invention is characterized in that the modified PDMS is added to the rear end of the polycondensation reaction.
- the modified PDMS is preferably added at the end of the polycondensation reaction in order to express the wear resistance improving effect of polyethylene terephthalate.
- a binding degree of 99% or more is obtained.
- polycondensation reaction conditions should be set unlike the existing polyester polymerization conditions.
- 0.1-20 weight% is preferable with respect to the gross weight of copolymerized polyethylene terephthalate, and, as for the quantity of polydimethylsiloxane added, 0.5-5 weight% is more preferable. If the content of polydimethylsiloxane is less than 0.1% by weight, the amount of migration to the surface is small, and the effect of improving the wear resistance and the release force is insignificant. If the content exceeds 20% by weight, the productivity is reduced.
- a polyethylene terephthalate (PET) / polydimethylsiloxane (PDMS) masterbatch chip may be prepared.
- the master batch chip uses a twin screw extruder composed of 28 or more L / D in consideration of the effectiveness of the kneading.
- the operating temperature of the axial extruder is 240 ° C to 250 ° C, and the mixing ratio of polyethylene terephthalate and polydimethylsiloxane (PDMS) on the master batch ranges from 5% to 50% by weight, preferably 10% to 20% by weight. It is preferable to set it as.
- the melt-kneaded mixture through the twin screw extruder passes through a cooling water tank maintained at 25 ° C. to 30 ° C. and is solidified into chips using a chip cutter.
- the final content of the PDMS contained in the fiberized polyethylene terephthalate is preferably 0.1 to 20% by weight, 0.5-5 weight% is more preferable.
- the content of polydimethylsiloxane is less than 0.1% by weight, the amount of migration to the surface is small, so that the effect of improving wear resistance is insignificant.
- the productivity is reduced.
- the polyethylene terephthalate polymer or the masterbatch chip may be melt-spun according to a general process well known in the textile industry to prepare fibers of a desired shape.
- the form and production method are not particularly limited.
- the master batch chip is melt-mixed at a predetermined ratio such that polyethylene terephthalate having an intrinsic viscosity of 0.6 to 1.3 and PDMS is 0.1 to 20% by weight, or copolymerized polyethylene terephthalate containing PDMS in a conventional process.
- the mixture is spun and stretched to produce polyethylene terephthalate yarns.
- the polyethylene terephthalate chip is melt-spun through a pack and a nozzle at a temperature of 280 to 310 ° C.
- Static mixers, etc. can be installed on the top of the pack to provide this.
- the melt-discharge yarn produced in the spinning step is passed through the cooling zone to solidify.
- a heating device may be installed at a distance from the nozzle directly to the start point of the cooling zone, that is, the length of the hood. .
- This zone is called delayed cooling zone or heating zone, and may have a length of 100 to 800 mm and a temperature of 300 to 400 ° C.
- open quenching, circular closed quenching, and radial outflow quenching may be applied depending on the method of blowing the cooling air. Does not. Subsequently, the discharged sand solidified while passing through the cooling zone may be oiled by 0.5 to 1.0% by the emulsion applying device.
- the final stretched yarn is obtained by stretching, wherein the temperature of the second stage stretching is adjusted to 100 to 210 ° C. More specifically, first, 1 to 10% of free draw (free draw) is given, and then the first step stretching at 1.2 to 7 times at 80 to 200 °C, the second step stretching at 1.2 to 2.0 times at 130 to 200 °C
- the steam jet method may be applied.
- the finished yarn can be heat set to a temperature of 200 to 260 ° C (relaxing) to 1 to 6%.
- the spinning oil used in the production of the polyethylene terephthalate multifilament yarn of the present invention it is preferable to use a spinning oil having a heating loss of 1 to 10% to 298 °C measured by TGA equipment in the state of removing solvent and water. .
- the spinning emulsion having a heating loss ratio of less than 1% up to 298 ° C. is hardly present, and when the spinning emulsion having a heating loss ratio of 10% or more is applied, the effect of improving the strong retention rate after high temperature heat treatment is not sufficient.
- the polyethylene terephthalate multifilament yarn prepared according to the present invention may be used in fabrics, but not limited to seat belts, industrial webbing, ropes, and the like.
- the polyethylene terephthalate polymer prepared according to the present invention is melt-spun at 245 to 335 ° C. to pass a spinneret.
- the polyethylene terephthalate resin underlying in the present invention contains 90 mol% or more of repeating units of ethylene terephthalate.
- the cooling temperature is adjusted to 10 ⁇ 35 °C.
- the speed of the cooling air is less than 0.2m / sec, the cooling effect is insufficient, if it exceeds 1.0m / sec, the shaking of the yarn is excessive, which is a problem in the spinning workability.
- the cooling temperature is less than 10 °C economically disadvantageous, if it exceeds 35 °C cooling effect is inferior.
- the first and second stages are oiled using neat or water-soluble emulsions to improve the cohesion, lubricity and smoothness of the yarn. Increase it.
- the feed roller is supplied to the stretching roller at a speed of 100 to 1,000 m / min, preferably 400 to 800 m / min, wherein the stretching roller is at a temperature of 100 to 230 ° C. and 2.5 to 6.0 of the feed roller speed.
- stretching is preferably from 3.5 to 5.0 fold.
- the filament passed through the stretching roller passes through a texturing unit with a texturing nozzle to impart bulkiness.
- the filament is irregularly formed by spraying a heating fluid of 150 to 270 ° C at a pressure of 3 to 10 kg / cm2 inside the texturing unit. It is crimped to a dimension and the crimp rate at this time is 3 to 50%.
- the temperature of the heating fluid is preferably 150 ⁇ 270 °C, which is less than 150 °C texturing effect and exceeds 270 °C causes damage to the filament.
- the pressure of the heating fluid is preferably 3 to 10 kg / cm 2, which is less than the texture effect of less than 3 kg / cm 2 and causes damage to the filament exceeds 10 kg / cm 2.
- the filament After passing through the texturing unit, the filament is cooled while passing through the cooling section.
- a slight twist and a knot are applied at a pressure of 2.0 to 8.0 kg / m 2.
- the range is 0 to 40 times / m, preferably 10 to 25 times.
- the rollers are passed through at a speed of 0.65 to 0.95 times the speed of the stretching roller to give a relaxation rate of 5 to 35%, and then wound up at the final winding machine.
- the speed of the winder is usually adjusted so that the tension of the thread is in the range of 50 to 350 g.
- the tension in the winding machine is less than 50g, the winding is impossible, and if it exceeds 350g, the bulkiness is reduced, the yarn shrinks greatly and causes high tension, which causes trouble in the work.
- the speed of the relaxation roller is less than 0.65 times of the stretching roller speed, it is not wound, and if it exceeds 0.95 times, the bulkiness is decreased, the yarn shrinks greatly, and high tension causes the work.
- the method relates to a BCF made of polyethylene terephthalate resin only, the step-by-step process is the same as above when producing the primary yarn according to the carpet application.
- the raw material supply it is also possible to prepare the yarn by adding a predetermined amount of colorant to the base chip input amount.
- the polyethylene terephthalate multifilament prepared according to the present invention as described above is produced into a carpet through a post-process.
- Carpets made with the BCF company of the present invention can be produced in any manner known to those skilled in the art.
- Preferably a plurality of BCF yarns are cable twisted and heat set together and then weave to the primary back side.
- the latex adhesive and the secondary backside are then applied. Cut pile style carpets or loop pile style carpets with pile heights of approximately 2-20 mm can be made.
- the film produced according to the present invention contains inorganic particles comprising silica beads having a methyl group on the surface.
- Silica beads generally have a hydroxy group (OH) having a hydrophilicity on the surface.
- silica beads in which the hydroxy group on the surface is substituted with a methyl group (CH3) play a lubricating role in the film to effectively reduce the coefficient of friction of the film.
- the inorganic particles contained in the base layer calcium carbonate, colloidal silica or a mixture thereof may be used in addition to silica beads having a methyl group.
- silica beads having a methyl group those having a particle diameter of 2 m or less, preferably 1 m or less are used. The more the silica beads are used, the less the coefficient of friction of the release film, but the silica beads have a problem that the surface of the substrate layer is too rough when the particle size is large, so that the silica bead is excessively added.
- Calcium carbonate is preferred as inorganic particles other than silica beads having a methyl group. Calcium carbonate with a particle diameter of 2 ⁇ m or less, preferably 1 ⁇ m or less and 0.4 to 0.8 ⁇ m is used, but a small particle size can be obtained and it is considered to be good for preventing blocking. However, calcium carbonate alone is not effective and uniform in process. It is also not easy to disperse.
- the above inorganic particles are preferably contained within the range of 1,000 to 3,000 ppm in the base layer. When included in less than 1,000ppm it is difficult to implement the physical properties required by the present invention, when included in excess of 3,000ppm inorganic particles are agglomerated to cause a process difficulty.
- the mixing ratio between the inorganic particles, calcium carbonate and silica beads are preferably mixed in a ratio of 1: 0.3 to 1: 0.6.
- a copolymerized polyethylene terephthalate and inorganic particles are mixed to obtain a composition, and the composition is melted, coextruded, cooled in casting, stretched 3.2 times in the longitudinal direction, and stretched 3.2 times in the width direction to 188 ⁇ . It is made of a film of.
- FIG. 1 shows a wear test specimen
- FIG. 2 shows a wear test apparatus structure
- the frictional wear characteristics were analyzed by evaluating how much force was applied and the amount of wear when a ring-shaped specimen was mounted on the tester, and a constant load and speed were selected and rotated.
- Ring-shaped specimens are made of plastics and metals (S45C, copper, SUS, etc.) and other materials can be manufactured as needed.
- the load was measured in the range of 0.1 kgf to 500 kgf, the speed of 1 mm / sec to 1000 mm / sec and the wear distance in the range of 1 to 10 km.
- the wear resistance of the mat was measured under the following conditions, and the wear resistance of the mat was evaluated based on the number of wears at the time when the surface of the mat was exposed at the level equivalent to the grade 2.5 of external appearance. It was.
- the samples are measured by a tensile tester using the ASTM 2256 method.
- TYT-EW Textured Yarn Tester
- the static and dynamic friction values were measured by the frictional force between the contact surfaces of two objects and the pressure ratio in the normal direction acting between them. The analysis was performed at 23 ° C. and 50% RH.
- Static friction Static Coefficient of Friction that must be overcome by the threshold value at the start of the sliding motion
- a release force evaluation sample was prepared, and Nitto31B Tape of Nitto was used as a reference adhesive tape for measurement, and the release force was measured through a Peel Tester (Chem Instruments, AR-1000). Measured by 180 degree Peel method, the peeling rate is carried out at 300mpm (meters per minute).
- the prepared polymer was obtained by blending pellets at 260 ° C. using an extruder.
- the pellets were sufficiently dried at 105 ° C. for at least 4 hours, and then a test piece was prepared at 250 ° C. using an injection machine.
- a polymer was prepared in the same manner as in Example 1, except that 5 wt% of the aromatic terminal group-modified PDMS having a terminal group having a hydroxyl group and a molecular weight of 5,000 was added at the end of the polycondensation reaction.
- a polymer was prepared in the same manner as in Example 1 except that no modified PDMS was added.
- Example 1 Oil / 0.5 wt% 0.15 0.03 0.13 4.3
- Example 2 5% by weight 0.08 0.01 0.08 2.8
- Example 3 5% by weight 0.04 0.01 0.03 1.9 Comparative Example 1 radish 0.41 0.53 0.52 7.2
- the polyethylene terephthalate polymer was spun by using a 36-hole nozzle, and 75 denier / 36 filament yarns were manufactured under spinning conditions in which strength 4.8 gf / denier was expressed through a stretching step.
- the temperature of the high roller 4 was produced at 220 ° C.
- Example 4 Same as Example 4 except that 1.0% by weight of one-way terminal group-modified PDMS (JNC, FMDA-21) having a terminal group of hydroxyl group, one polyethylene glycol (PEG) and a molecular weight of 5,000 was added.
- the polymer was prepared by the method.
- Example 4 Same as Example 4, except that 1.0% by weight of one-way terminal group-modified PDMS (JNC, FMDA-26) having a molecular weight of 15,000 and one chain having a hydroxyl group and one polyethylene glycol (PEG).
- JNC one-way terminal group-modified PDMS
- FMDA-26 one-way terminal group-modified PDMS having a molecular weight of 15,000 and one chain having a hydroxyl group and one polyethylene glycol (PEG).
- PEG polyethylene glycol
- Polymerization was prepared in the same manner as in Example 4 except that no modified PDMS was added.
- Example 4 Example 5
- Example 6 MV 162 263 208 193 IV (dl / g) 0.68 0.80 0.80 0.77 Strength (g / d) / Elongation (%) 4.8 / 38 4.9 / 36 4.7 / 37 4.6 / 37 Wear resistance (300 times / 400 times) X / X O / O O / O O / O Static friction coefficient 0.466 0.364 0.302 0.299
- the polyethylene terephthalate polymer produced through spinneret having 128 holes and having a Y-shaped cross section is melt-spun at 290 ° C.
- the polymer exiting the spinneret is cooled by 0.5 m / s at 20 ° C. cooling air at the bottom of the nozzle and then passed through the emulsion feeder.
- the emulsified yarn is subjected to a feed roller maintained at 90 ° C. at a speed of 598 m / min, and then drawn at a speed of 190 ° C. and 2,840 m / min in a drawing roller.
- the yarn passed through the stretching roller passes through the texturing nozzle and is crimped.
- the hot air temperature is 200 °C
- the pressure is 7kg / cm2
- the back pressure is 5kg / cm2.
- 20 times / m of entanglement is applied at a pressure of 4.0 kg / m2 in the post-concentrator cooled by cooling water. It passes through the relaxation roller at 2250m / min and is relaxed by 21% and then wound up on a winding machine.
- the strength, elongation, wear resistance, and coefficient of static friction of the polyethylene terephthalate BCF yarn prepared by this process were measured and shown in Table 3 below.
- a polymer was prepared in the same manner as in Example 7, except that 1.0 wt% of the aromatic terminal group-modified PDMS having a terminal group of hydroxyl group and molecular weight of 5,000 was added to the rear stage of the polycondensation reaction.
- One-way terminal group-modified PDMS having a terminal group having a hydroxyl group and a molecular weight of 15,000 was added to the rear end of the polycondensation reaction to carry out a polycondensation reaction, to prepare a polymer in the same manner as in Example 7.
- FMNC-26 product of JNC was applied.
- a polymer was prepared in the same manner as in Example 7, except that no modified PDMS was added.
- Example 7 Example 8 Example 9 Strength (g / d) 4.9 4.9 4.7 4.5 Elongation (%) 37.7 35.6 36.9 36.6 Carpet fracture wear water (water supply) 300 (Level 2) 600 (Level 4) 650 (Level 4) 550 (Level 3)
- a polymer was prepared by carrying out a polycondensation reaction by adding 5.0% by weight of one-way terminal group-modified PDMS having a hydroxyl group, a chain number of polyethylene glycol (PEG) and a molecular weight of 5,000.
- FMNC-21 product from JNC was prepared.
- the bidirectional end group-modified PDMS copolymerized polyethylene terephthalate polymer and 1.0 ⁇ m of silica particles were added to the extruder in the content of Table 4 and melt-extruded.
- the melt was coextruded and then cooled in a 40 ° C. casting roll to prepare an unstretched film.
- the unstretched film was stretched 3.2 times in the machine direction (MD) and then stretched 3.2 times in the longitudinal direction (TD) to prepare a multilayer film having a total thickness of 25 ⁇ m.
- Example 10 except that the polymer was prepared by a polycondensation reaction by adding 10.0% by weight of one-way terminal group-modified PDMS having a hydroxyl group, a polyethylene glycol (PEG) chain, and a molecular weight of 5,000.
- a polymer was prepared in the same manner as in the following.
- a polymer was prepared in the same manner as in Example 10 except that no modified PDMS was added.
- Example 11 Coefficient of friction 0.8 0.8 0.2 0. Release force (gf / inch) 97.3 28.9 17.8 20.8
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
본 발명은 폴리에틸렌테레프탈레이트(PET, Polyethylene terephtalate) 및 한 방향 말단기 변성 폴리디메틸실록산(PDMS)을 포함하는 내마모성이 개선된 공중합 폴리에틸렌테레프탈레이트에 관한 것으로, 상기 공중합 폴리에틸렌테레프탈레이트를 직접 원사하는 방법 또는 한 방향 말단기 변성 폴리디메틸실록산(PDMS)를 고농도로 폴리에틸렌테레프탈레이트에 공중합하여 마스터배치로 활용하는 방법으로 제조되는 것으로서 이와같이 제조된 폴리에틸렌테레프탈레이트 중합물을 이용하여 내마모성 또는 이형력이 개선된 원사, 카매트용 BCF 또는 필름을 제조할 수 있다.
Description
본 발명은 기존 폴리에틸렌테레프탈레이트 결합을 이루는 에틸렌글라이콜(EG, Ethyleneglycol)과 테레프탈산(TPA, Terephthalic acid) 외에 추가로 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개인 한 방향 말단기 변성 PDMS(Polydimethylsiloxane)를 도입하여 제조된 내마모성이 개선된 공중합 폴리에틸렌테레프탈레이트 및 이를 포함하는 의료용 또는 산업용 원사, 카매트용 BCF 또는 필름에 관한 것이다.
일반적으로, 폴리에스테르 수지, 특히 폴리에틸렌테레프탈레이트 수지는 디카르복실산 또는 이의 에스테르 형성성 유도체 및 디올 또는 이의 에스테르 형성성 유도체로부터 합성되는 선상 고분자로, 가격이 저렴하면서도, 기계적 특성과 화학적 물성이 우수할 뿐만 아니라 가스 차단성 또한 우수하여 각종 용기, 필름, 섬유 등의 제조에 폭 넓게 사용되고 있다. 한편, 폴리에스테르는 축합 중합법으로 제조되는데, 외부 조건에 따른 평형반응으로 고온, 고진공의 조건을 통해 상업적으로 사용 가능한 점도를 얻게 되며, 이때 최종 중합물 내에 일정량의 올리고머가 잔류하게 된다.
종래의 폴리에틸렌테레프탈레이트는 타 수지에 비해 내마모성이 약하여 내마모성이 요구되는 분야(수지 사출물, 원사, 필름 등)에 적용하기 어려운 문제점이 있었다.
본 발명의 목적은 공중합 폴리에틸렌테레프탈레이트의 제조 시 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개인 한 방향 말단기 변성 폴리디메틸실록산(PDMS)을 추가로 도입하여 내마모성이 개선된 공중합 폴리에틸렌테레프탈레이트 및 이를 포함하는 의료용 또는 산업용 원사, 카매트용 BCF 또는 필름을 제공하는 것이다.
상술한 목적을 달성하기 위한 본 발명의 적절한 일 실시형태에 따르면, 에틸렌글라이콜(EG, Ethyleneglycol)과 테레프탈산(TPA, Terephthalic acid)의 슬러리(Slurry)화 단계; 상기 슬러리의 에스테르화 반응 단계; 및 중축합 반응 단계;를 포함하고, 상기 중축합 반응 후단에 하기 일반식(I)로 구성되고 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개이며, 수평균분자량이 800 내지 50,000인 변성 폴리디메틸실록산(PDMS)을 투입하는 공중합 폴리에틸렌테레프탈레이트의 제조방법을 제공한다.
(I)
(식 중, R= -(CH2-CH2-O)m-, m=1 내지 50, T=수산기)
본 발명의 바람직한 실시 형태에 따르면, 상기 변성 폴리디메틸실록산(PDMS)는 공중합 폴리에틸렌테레프탈레이트 총중량에 대하여 0.1 내지 20 중량% 투입된다.
본 발명의 다른 바람직한 실시 형태에 따르면, 상기 제조방법으로 제조된 폴리에틸렌테레프탈레이트(PET)를 제공한다.
본 발명의 다른 적절한 실시 형태에 따르면, 폴리에틸렌테레프탈레이트(PET, Polyethylene terephtalate) 80 내지 99.9 중량%; 및 한 방향 말단기 변성 폴리디메틸실록산(PDMS) 0.1 내지 20 중량%를 포함하고, 상기 한 방향 말단기 변성 폴리디메틸실록산(PDMS)는 하기 일반식(I)의 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개이며, 수평균 분자량이 800 내지 50,000인 것을 특징으로 하는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성이 개선된 의료용 또는 산업용 폴리에틸렌테레프탈레이트 원사를 제공한다.
(I)
(식 중, R= -(CH2-CH2-O)m-, m=1 내지 50, T=수산기)
본 발명의 바람직한 실시 형태에 따르면, 상기 공중합 폴리에틸렌테레프탈레이트를 직접 원사하는 방법과 한 방향 말단기 변성 폴리디메틸실록산(PDMS)를 고농도로 폴리에틸렌테레프탈레이트에 공중합하여 마스터배치로 활용하는 방법으로 제조되는 것을 특징으로 하는 내마모성이 개선된 의료용 또는 산업용 폴리에틸렌테레프탈레이트 원사를 제공한다.
본 발명의 다른 바람직한 실시 형태에 따르면, 상기 공중합 폴리에틸렌테레플라테이트는 에틸렌글라이콜(EG, Ethyleneglycol)과 테레프탈산(TPA, Terephthalic acid)의 슬러리(Slurry)화 단계; 상기 슬러리의 에스테르화 반응 단계; 및 중축합 반응 단계;를 포함하고, 상기 중축합 반응 후단에 한 방향 말단기 변성 폴리디메틸실록산(PDMS)을 투입하는 방법에 의해 제조되는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성이 개선된 의료용 또는 산업용 폴리에틸렌테레프탈레이트 원사를 제공한다.
본 발명의 적절한 다른 실시 형태에 따르면, 폴리에틸렌테레프탈레이트(PET, Polyethylene terephtalate) 80 내지 99.9 중량%; 및 한 방향 말단 변성 폴리디메틸실록산(PDMS) 0.1 내지 20 중량%를 포함하고, 상기 한 방향 말단기 변성 폴리디메틸실록산(PDMS)는 하기 일반식(I)의 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개이며, 수평균 분자량이 800 내지 50,000인 것을 특징으로 하는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성이 개선된 카매트용 BCF를 제공한다.
(I)
(식 중, R= -(CH2-CH2-O)m-, m=1 내지 50, T=수산기)
본 발명의 바람직한 실시 형태에 따르면, 상기 공중합 폴리에틸렌테레프탈레이트를 직접 원사하는 방법 또는 한 방향 말단기 변성 폴리디메틸실록산(PDMS)를 고농도로 폴리에틸렌테레프탈레이트에 공중합하여 마스터배치로 활용하는 방법으로 제조되는 것을 특징으로 하는 카매트용 BCF를 제공한다.
본 발명의 다른 바람직한 실시 형태에 따르면, 상기 공중합 폴리에틸렌테레플라테이트는 에틸렌글라이콜(EG, Ethyleneglycol)과 테레프탈산(TPA, Terephthalic acid)의 슬러리(Slurry)화 단계; 상기 슬러리의 에스테르화 반응 단계; 및 중축합 반응 단계;를 포함하고, 상기 중축합 반응 후단에 한 방향 말단기 변성 폴리디메틸실록산(PDMS)을 투입하는 방법에 의해 제조되는 공중합 폴리에틸렌테레프탈레이트를 포함하는 카매트용 BCF를 제공한다.
본 발명의 또 다른 바람직한 실시 형태에 따르면, 상기 공중합 폴리에틸렌테레프탈레이트를 사용하여 제조한 내마모성이 개선된 폴리에틸렌테레프탈레이트 BCF 카매트를 제공한다.
본 발명의 적절한 다른 실시 형태에 따르면, 폴리에틸렌테레프탈레이트(PET, Polyethylene terephtalate) 50 내지 99.9 중량%; 및 한 방향 말단기 변성 폴리디메틸실록산(PDMS) 0.1 내지 50 중량%를 포함하고, 상기 한 방향 말단기 변성 폴리디메틸실록산(PDMS)는 하기 일반식(I)의 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개이며, 수평균분자량이 800 내지 50,000인 것을 특징으로 하는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성 및 이형력이 개선된 폴리에틸렌테레프탈레이트 필름을 제공한다.
(I)
(식 중, R= -(CH2-CH2-O)m-, m= 1 내지 50, T= 수산기)
본 발명의 바람직한 실시 형태에 따르면, 상기 공중합 폴리에틸렌테레프탈레이트를 직접 원사하는 방법 또는 한 방향 말단기 변성 폴리디메틸실록산(PDMS)를 고농도로 폴리에틸렌테레프탈레이트에 공중합하여 마스터배치로 활용하는 방법으로 제조되는 것을 특징으로 하는 내마모성 및 이형력이 개선된 폴리에틸렌테레프탈레이트 필름을 제공한다.
본 발명의 다른 바람직한 실시 형태에 따르면, 상기 공중합 폴리에틸렌테레플라테이트는 에틸렌글라이콜(EG, Ethyleneglycol)과 테레프탈산(TPA, Terephthalic acid)의 슬러리(Slurry)화 단계; 상기 슬러리의 에스테르화 반응 단계; 및 중축합 반응 단계;를 포함하고, 상기 중축합 반응 후단에 한 방향 말단기 변성 폴리디메틸실록산(PDMS)을 투입하는 방법에 의해 제조되는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성 및 이형력이 개선된 폴리에틸렌테레프탈레이트 필름을 제공한다.
본 발명은 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개이며, 분자량이 800 내지 50,000인 한 방향 말단기 변성 PDMS를 추가하여 내마모성이 개선된 공중합 폴리에틸렌테레프탈레이트 및 이를 포함하는 의료용 또는 산업용 원사, 카매트용 BCF 또는 필름을 제공한다.
도 1은 마찰마모특성 분석을 위한 마모시험 시편을 나타낸 것이다.
도 2는 마찰마모특성 분석을 위한 마모시험 장치구조를 나타낸 것이다.
본 발명에 따른 공중합 폴리에틸렌테레프탈레이트의 제조방법은 에틸렌글라이콜(EG, Ethyleneglycol)과 테레프탈산(TPA, Terephthalic acid)의 슬러리(Slurry)화 단계; 에스테르화 반응 단계; 및 중축합 반응 단계;를 포함하고, 상기 중축합 반응 후단에 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개인 한 방향 말단기 변성 PDMS를 투입하는 것을 특징으로 한다.
본 발명에서는 상기 변성 PDMS를 폴리에틸렌테레프탈레이트의 내마모 개선 효과를 발현시키기 위하여 중축합 반응 후단에 투입하는 것이 바람직하다. 상기 변성 PDMS를 중축합 반응 후단에 투입할 경우, 결합도 99% 이상을 얻게 된다.
본 발명에서 추가로 투입되는 폴리디메틸실록산은 하기 일반식(I)의 구조를 갖는 화합물이다.
(I)
(식 중, R= -(CH2-CH2-O)m-, m=1 내지 50, T=수산기)
변성 PDMS는 한 방향 말단기가 OH, -COOH 또는 NH2로 구성되어 있으며, 본 발명에서는 OH, -COOH를 사용하여 폴리에틸렌테레프탈레이트에 중합시키는 것을 주 대상으로 하며, 가장 바람직하게는 기존 Diol류 (-OH)기의 중합 결합을 활용하여 OH를 가지는 변성 PDMS를 주 대상으로 한다.
본 발명의 상기 변성 PDMS 분자량은 800 내지 50,000의 범위인 것이 바람직하고, 더욱 바람직하게는 1,000 내지 15,000일 수 있다. 이 때, 변성 PDMS의 분자량이 800 미만이면 내마모성 및 이형력이 떨어지고, 50,000을 초과하면 중축합 반응성이 떨어지게 된다.
본 발명의 상기 변성 PDMS의 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개를 범위로 하는것이 바람직하며, 더욱 바람직하게는 1 내지 20개일 수 있다. 이 때, 변성 PDMS의 폴리에틸렌글라이콜(PEG)의 체인수가 1개 미만이면 중축합 반응성이 떨어지고 되고, 50개를 초과하면 내마모성 및 이형력이 떨어지게 된다.
본 발명은 중축합 반응 후단에 변성 PDMS를 투입하는 것을 특징으로 한다.
상기 변성 PDMS는 폴리에틸렌테레프탈레이트의 내마모 개선 효과를 발현시키기 위하여 중축합 반응 후단에 투입하는 것이 바람직하다. 상기 변성 PDMS를 중축합 반응 후단에 투입할 경우, 결합도 99% 이상을 얻게 된다. 중합물에 도입시 슬러리화 단계 및 에스테르화 반응 단계 또는 중축합 초기 단계에서 투입할 경우, 중합물의 점도 상승이 어렵고 변성 PDMS의 반응율이 낮아 기대효과를 확보하기 어려운 문제가 있다. 또한 중축합 반응 후단 투입 시에도 변성 PDMS에 따른 용융점도가 상승하는 문제가 발생되어 기존 폴리에스터 중합 조건과 달리 중축합 반응 조건을 설정하여야 한다.
이때 폴리디메틸실록산의 첨가되는 양은, 공중합 폴리에틸렌테레프탈레이트 총중량에 대하여 0.1 내지 20중량%가 바람직하며, 0.5 내지 5중량%가 보다 바람직하다. 폴리디메틸실록산의 함유량이 0.1 중량% 미만이면 표면으로 마이그레이션되는 양이 적어 내마모성 및 이형력의 개선효과가 미미하며, 함유량이 20 중량%를 초과하면 생산성이 떨어지게 된다.
이하, 본 발명에 따라 제조된 폴리에틸렌테레프탈레이트 중합체를 이용하여 원사를 제조하는 방법에 대해 상세하게 설명한다.
한편, 상기 폴리에틸렌테레프탈레이트 중합물의 방사에 폴리디메틸실록산(PDMS)을 보다 편리하게 적용하기 위하여 폴리에틸렌테레프탈레이트(PET)/폴리디메틸실록산(PDMS) 마스터배치칩을 제조할 수도 있다.
이때, 마스터배치칩은 혼련의 효과성을 고려하여 L/D가 28 이상으로 구성되어있는 이축압출기를 사용한다. 축압출기의 운전온도는 240℃에서 250℃로 하고 마스터배치상에서의 폴리폴리에틸렌테레프탈레이트와 폴리디메틸실록산(PDMS)의 혼합비는 5 중량% 내지 50중량% 범위이며 바람직하게는 10중량% 내지 20중량%로 하는 것이 바람직하다. 이축압출기를 통하여 용융혼련된 혼합물은 25℃에서 30℃를 유지하는 냉각수조를 통과하며 고화된 후 칩절단기를 이용하여 칩으로 만들어진다.
만들어진 폴리에틸렌테레프탈레이트와 폴리디메틸실록산(PDMS) 마스터배치칩 또는 상기 폴리에틸렌테레프탈레이트 중합물을 활용하여 방사를 하게 되는데 이때 섬유화된 폴리에틸렌테레프탈레이트 내에 포함되는 PDMS의 최종함량은 0.1 내지 20중량%가 바람직하며, 0.5 내지 5중량%가 보다 바람직하다. 폴리디메틸실록산의 함유량이 0.1 중량% 미만이면 표면으로 마이그레이션되는 양이 적어 내마모성의 개선효과가 미미하며, 함유량이 20 중량%를 초과하면 생산성이 떨어지게 된다.
본 발명에서 폴리에틸렌테레프탈레이트 중합물 또는 상기 마스터배치 칩은 섬유산업에서 잘 알려져 있는 일반적인 공정에 따라 용융 방사하여 원하는 형태의 섬유를 제조할 수 있다. 형태와 제조 방법은 특별히 한정되지 않는다.
상기 마스터배치칩을 고유점도가 0.6 내지 1.3인 폴리에틸렌테레프탈레이트와 PDMS의 최종함량이 0.1 내지 20 중량%가 되도록 일정비율로 용융혼합한 것 또는 상기 PDMS가 포함된 공중합 폴리에틸렌테레프탈레이트를 통상의 공정으로 혼합하여 방사 및 연신하여 폴리에틸렌테레프탈레이트 원사를 제조한다.
방사단계에서는, 폴리에틸렌테레프탈레이트 칩을 팩 및 노즐을 통해 280 내지 310℃의 온도에서 용융방사하게 되는데 본 발명에서는 바람직하게 방사되는 중합체를 고르게 혼합시키고, 또한 중합체의 부위별 용융점도의 균일성을 높여 주기 위하여 팩 상부 부분에 스태틱 믹서등을 설치 할 수 있다.
본 발명의 고화 냉각 단계에서는, 상기 방사단계에서 생성된 용융방출사를 냉각구역을 통과시켜 고화시키는데, 필요에 따라, 노즐 직하에서 냉각구역 시작점까지의 거리, 즉 후드 길이에 가열장치를 설치할 수 있다. 이 구역을 지연 냉각구역 또는 가열구역이라 칭하는데, 100 내지 800 mm의 길이 및 300 내지 400℃의 온도를 가질 수 있다. 냉각구역에서는 냉각공기를 불어주는 방법에 따라 오픈 냉각(open quenching)법, 원형 밀폐 냉각(circular closed quenching)법 및 방사형 아웃 플로우 냉각(radial outflow quenching)법 등을 적용할 수 있으나, 이것으로 제한되지는 않는다. 이어, 냉각구역을 통과하면서 고화된 방출사를 유제 부여장치에 의해 0.5 내지 1.0%로 오일링할 수 있다.
본 발명의 연신단계에서는, 공급 롤러를 통과한 사를, 일단 미연신사를 인취한 후 별도의 연신공정을 이용하여, 또는 바람직하게는 스핀드로우(spin draw) 공법으로 일련의 연신 롤러들을 통과시키면서 다단 연신시킴으로써 최종 연신사를 수득하는데, 이때 제2단계 연신의 온도를 100 내지 210℃로 조절한다. 보다 구체적으로는, 먼저 1 내지 10%의 프리드로우(free draw)를 준 다음, 80 내지 200℃에서 1.2 내지 7배로 제1단계 연신을 행하고, 130 내지 200℃에서 1.2 내지 2.0배로 제2단계 연신을 행할 수 있으며, 제1단계 연신시 고배율 연신의 균일성을 높이기 위하여 스팀제트 공법을 적용할 수 있다. 이어, 통상적인 방법에 따라, 연신이 완료된 사를 200 내지 260℃의 온도로 열고정(heat setting)하고 1 내지 6%로 이완(relax)시킬 수 있다.
또한, 본 발명의 폴리에틸렌테레프탈레이트 멀티필라멘트 원사 제조시 사용한 방사유제는 솔벤트와 수분을 제거한 상태에서 TGA 장비로 측정한 298℃까지의 가열 감량률이 1 내지 10%인 방사유제를 사용하는 것이 바람직하다. 298℃까지의 가열 감량률이 1% 미만인 방사유제는 존재하기 어렵고, 가열 감량률이 10% 이상인 방사유제를 적용했을 때는 고온 열처리 후의 강력유지율 개선 효과가 충분하지 않다.
상기에 설명한 바와 같이 본 발명에 의하여 제조된 폴리에틸렌테레프탈레이트 멀티필라멘트 원사는 직물 등에 사용될 수 있으나, 시트벨트, 산업용 웨빙, 로프 등에 한정하지 않고 사용될 수 있다.
이하, 본 발명에 따라 제조된 폴리에틸렌테레프탈레이트 중합체를 이용하여 카매트용 BCF를 제조하는 방법에 대해 상세하게 설명한다.
우선 본 발명에 따라 제조된 폴리에틸렌테레프탈레이트 중합체를 245∼335℃로 용융방사하여 방사구금을 통과시킨다.
본 발명에서 기본이 되는 폴리에틸렌테레프탈레이트 수지는 에틸렌테레프탈레이트의 반복단위를 90몰 % 이상 함유한다.
이후 냉각구역에서 속도 0.2∼1.0m/sec의 공기로 냉각시킨다. 이때 냉각온도는 10∼35℃로 조절한다. 이때 냉각 공기의 속도가 0.2m/sec 미만이면 냉각효과가불충분하며, 1.0m/sec를 초과하면 사의 흔들림이 과도하여 방사 작업성에 문제가 된다. 또한 냉각 온도가 10℃ 미만이면 경제적인 측면에서 불리하고 35℃를 초과하면 냉각 효과가 떨어진다.
냉각 후 오일링을 하는 스핀 피니쉬(spin finish)단계를 거치는데 피니쉬 어플리케이터에서 1차, 2차 두 단계로 니트(neat)타입 유제 혹은 수용성 유제를 사용하여 오일링함으로써 사의 집속력, 윤활성 및 평활성을 높여준다.
이후 공급롤러에서 100∼1,000m/min의 속도로, 바람직하게는 400 내지 800m/min 속도로 필라멘트를 연신롤러에 공급하며, 이때 연신롤러는 100∼230℃의 온도이고 공급롤러 속도의 2.5∼6.0배의 속도로, 바람직하게는 3.5 내지 5.0배로 연신한다. 상기 연신속도가 2.5배보다 작을 경우 충분히 연신되지 못하며 6.0배보다 클 경우 폴리에틸렌테레프탈레이트 소재 특성상 연신을 견디지 못하고 사절된다.
연신롤러를 통과한 필라멘트는 벌키성을 부여하기 위해 텍스처링 노즐이 있는 텍스처링 유니트를 통과하며, 이때 텍스처링 유니트 내부에서 150∼270℃의 가열 유체를 3∼10kg/cm2의 압력으로 분사하여 필라멘트가 불규칙한 3차원으로 권축되게 하며, 이때의 크림프율은 3∼50%가 되도록 한다.
이때 가열 유체의 온도는 150∼270℃가 바람직하며, 이는 150℃ 미만에서는 텍스처링 효과가 떨어지고 270℃를 초과하면 필라멘트에 손상을 초래한다. 또한 가열 유체의 압력은 3∼10kg/cm2가 바람직하며, 이는 3kg/cm2 미만에서는 텍스처링 효과가 떨어지고 10kg/cm2를 초과하면 필라멘트에 손상을 초래한다.
텍스처링 유니트를 통과한 필라멘트는 냉각구간을 거치면서 냉각되어 교락기를 통과한다. 이 부분에서는 사의 집속력을 좋게 하기 위해 2.0∼8.0kg/m2의 압력으로 약간의 꼬임과 매듭을 주게 되는데 0∼40회/m의 범위로, 바람직하게는 10 내지 25회로 부여한다. 40회를 초과하여 교락을 줄 때는 염색, 후가공을 거쳐도 교락이 풀리지 않은 상태가 그대로 유지되어 카펫의 외관을 손상시킨다.
이후 릴렉스 롤러에서 연신롤러 속도의 0.65∼0.95배의 속도로 통과시켜 릴렉스율을 5∼35%로 준 후, 최종 권취기에서 권취한다. 권취기의 속도는 보통 실의장력이 50∼350g범위가 되도록 속도를 조절한다. 이때 권취기에서 장력이 50g 미만이면 권취가 불가능하고, 350g을 초과하면 벌키성이 감소되며 원사의 수축이 크게 일어나고 높은 장력을 유발하여 작업에도 지장을 초래한다. 또한, 릴렉스 롤러의 속도가 연신롤러 속도의 0.65배 미만으로 하면 권취가 되지 않고, 0.95배를 초과하면 벌키성이 감소되며 원사의 수축이 크게 일어나고 높은 장력을 유발하여 작업에도 지장을 초래한다.
상기 방법은 폴리에틸렌테레프탈레이트 수지만으로 제조한 BCF에 관한 것이며, 카펫 용도에 따라 원착사 제조 시에는 단계별 공정은 상기와 동일하다. 다만 원료 공급에 있어 베이스 칩 투입량에 일정량의 착색제를 투입하여 방사함으로써 원착사를 제조하는 것도 가능하다.
상기와 같이 본 발명에 따라 제조된 폴리에틸렌테레프탈레이트 멀티필라멘트는 후공정을 거쳐 카펫으로 제조된다. 본 발명의 BCF사로 제조된 카펫은 당업자에게 공지된 임의의 방식으로 제조할 수 있다. 바람직하게는 다수의 BCF사를 함께 케이블 가연 및 열고정시킨 다음, 이어서 1차 배면으로 직조한다. 이어서 라텍스 접착제 및 2차 배면을 도포한다. 대략 2 내지 20mm의 파일 높이를 갖는 컷 파일 스타일 카펫 또는 루프 파일 스타일의 카펫을 제조할 수 있다.
한편, 본 발명에 따라 제조된 폴리에틸렌테레프탈레이트 중합체를 이용하여 필름을 제조하는 방법에 대해 상세하게 설명한다.
본 발명에 따라 생성되는 필름에는 표면에 메틸기를 갖는 실리카비드를 포함하는 무기입자가 함유된다. 통상 실리카비드는 표면에 친수성을 갖는 히드록시기(OH)를 가지고 있는데, 본 발명에 따라 표면의 히드록시기가 메틸기(CH3)로 치환된 실리카비드는 필름 내에서 윤활 역할을 하여 필름의 마찰계수를 효과적으로 저하시킨다. 기재층에 함유되는 무기입자로는 메틸기를 갖는 실리카비드 이외에, 탄산칼슘이나 콜로이달 실리카 또는 이들의 혼합물이 사용될 수 있다.
메틸기를 갖는 실리카비드로는 입경 2㎛ 이하, 좋게는 1㎛ 이하의 것이 사용된다. 이러한 실리카비드를 많이 사용할수록 이형필름의 마찰계수는 적어지나, 실리카비드는 입자 크기가 대체로 커서 과량 넣게 되면 기재층의 표면이 너무 거칠어지는 문제가 있다.
메틸기를 갖는 실리카비드 이외의 무기입자로는 탄산칼슘이 선호된다. 입경 2㎛ 이하, 좋게는 1㎛ 이하, 0.4~0.8㎛의 탄산칼슘이 사용되는데, 대체로 작은 입경의 것을 얻을 수 있고 블록킹 방지에 좋을 것으로 생각되나, 탄산칼슘만에 의해서는 효과적이지 못하며 공정상 균일하게 분산시키는 것도 쉽지 않다.
본 발명에 따르면 위와 같은 무기입자는 기재층에 1,000~3,000ppm 범위 내에서 함유되는 것이 바람직하다. 1,000ppm 미만으로 포함되는 경우 본 발명에서 요구하는 물성의 구현이 어려우며, 3,000ppm을 초과하여 포함되는 경우 무기입자들이 응집되서 공정상 어려움을 초래한다.
한편 무기입자들 간의 혼합비율은, 바람직한 예로서 탄산칼슘과 실리카비드는 1:0.3~1:0.6의 비율로 혼합된다.
탄산칼슘이 위 비율보다 높게 혼합되는 경우 마찰계수의 저감 효과가 적고 이물혼입이나 스크래치를 방지하는 효과가 적다. 또한 실리카비드가 위 비율보다 높게 혼합되는 경우 마찰계수의 저감 효과가 크고 이물혼입이나 스크래치 저감 효과는 크나 필름의 표면조도가 과하게 높아지는 문제가 발생한다.
본 발명의 필름은 공중합 폴리에틸렌테레프탈레이트와 무기입자를 혼합하여 조성물을 얻는 단계 및 상기 조성물을 용융, 공압출되고 캐스팅에서 냉각 후, 길이방향으로 3.2배 연신 후, 폭방향으로 3.2배 연신하여 188㎛의 필름으로 제조된다.
이하, 본 발명을 하기 실시예에 의거하여 좀더 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 한정하지는 않으며, 본 발명의 실시예 및 비교예에서 제조된 수지, 원사 및 필름의 물성 평가는 다음과 같은 방법으로 실시하였다.
1. 수지의 내마모 평가방법(트라이볼러지(tribology)특성 측정)
도 1은 마모시험 시편을, 도 2는 마모 시험 장치 구조를 나타낸 것이다.
JIS K7218 방법에 따라 물성을 측정하였다.
즉, 링 모양의 시편을 시험기에 장착하고 일정한 하중 및 속도를 선정하여 회전시키면 얼마의 힘이 걸리는지와 마모량을 평가하여 마찰마모특성을 분석하였다. 링 모양의 시편은 플라스틱 소재 및 금속(S45C, 구리, SUS 등)이 있고 필요에 따라 다른 소재도 제작이 가능하다. 하중은 0.1 kgf ~ 500 kgf, 속도 1mm/sec ~ 1000 mm/sec 및 마모거리는 1~10km 범위에서 측정하였다.
1) Ring-on-ring 평가조건 : 상대제=금속(S45C), 하중=11.8 kgf, 속도=300mm/s, 시간=120min
2) Pin-on-disk 평가조건 : 상대제=동일수지, 하중=2kgf, 속도=2Hz, 시간=30min
2. 원사의 내마모성
미국(TABER Industries)의 표준마모시험법 NO. CS-10으로 300회 또는 400회 실시하여, 시험 전후의 중량감소 및 마모외관 상태를 육안 관찰하였다.
3. 카매트의 내마모 평가방법
카매트의 내마모성은 하기와 같은 조건으로 측정하였으며, 카매트의 내마모 횟수는 한계 내마모수로 외관 평가 2.5급에 해당되는 수준에서 카매트 바닥면이 노출되는 시점의 최종 마모수를 기준으로 평가하였다.
관련 시험방법규격 : ASTM D3884
시험방법 : 현대자동차 MS300-35
시험장비 : Taber 내마모 시험기
시료크기 : 지름 130mm 원형 시료
시험조건
1) 마모륜 : H-18
2) 회전속도 : 70회/분
3) 하중 : 1000g
4) 평가방법 : 외관평가 1~5급 (현대자동차 MS343-15 규격 3급 이상 (3,4,5급) 합격
5) 평가기준 : 5급 마모가 전혀 보이지 않음
4급 마모가 약간 보이거나 거의 눈에 띄지 않는 것
3급 마모가 약간 있으나 보이는 것
2급 마모가 약간 심한 것
1급 상당히 심한 것
4. 원사의 강신도 측정방법
원사를 표준상태인 조건, 즉 25℃ 온도와 상대습도 65%RH인 상태인 항온 항습실에서 24시간 방치 후 ASTM 2256 방법으로 시료를 인장 시험기를 통해 측정한다.
5. 원사의 마찰견뢰도
TORAY社에서 제작한 마찰시험기(모델 YF-850)를 사용하여 섬유간 정마찰계수 F/F μs는 원사끼리 3cm/min 속도로 마찰시키며 측정하였다.
6. 크림프율 및 표준편차
TYT-EW(Textured Yarn Tester) 측정기기에 의해 측정, 측정 길이는 20m, 2m 간격으로 5회 측정하며 가열 구역(Heating zone)의 온도는 130℃, 측정 속도는 20m/min이다.
7. 필름의 마찰계수
두 물체의 접촉면 사이에 생기는 마찰력과 그 사이에 작용하는 법선 방향의 압력비로 정마찰 수치 및 동마찰 수치를 측정하였다. 상기 분석은 23℃, RH 50%조건에서 실시하였다.
- 정마찰 : 미끄러짐 운동의 시작에서 임계값(threshold value)으로 극복해야 할 마찰 (Static Coefficient of Friction)
- 동마찰 : 주어진 속도에서 미끄러짐 운동 중에 지속되는 마찰 (Kinetic Coefficient of Friction)
- 마찰계수 = (마찰시 발생하중-인가하중)/인가하중
8. 이형력(박리력)
FINAT test method - 10 방법에 따라, 이형력 평가 샘플을 제조하며, 측정을 위한 기준 점착 Tape로는 Nitto社의 Nitto31B Tape를 사용하였으며, 이형력의 측정은 Peel Tester(ChemInstrument社, AR-1000)를 통해 180도 Peel방식으로 측정하였으며, 박리속도는 300mpm(meters per minute)로 실시한다.
실시예
1
테레프탈산 100 중량부에 대하여 에틸렌 글리콜 50 중량부 슬러리를 에스테르화 반응기에 투입하고, 250℃에서 4시간동안 물을 반응기 밖으로 유출시키면서 에스테르화 반응을 진행시켜 비스(2-하이드록시에틸) 테레프탈레이트[bis(2-hydroxyethyl) terephthalate]를 제조하였다. 이때, 인계 내열안정제를 에스테르화 반응 말기에 300ppm 투입하였다. 이후, 중합 촉매로서 안티몬 촉매를 중축합반응 초기에 300ppm을 투입하고, 250℃에서 285℃까지 60℃/hr로 승온함과 동시에, 압력을 0.1torr까지 감압하여 중축합 반응을 진행하였으며, 중축합 반응 후단에 말단기가 수산기이고 폴리에틸렌글라이콜(PEG)의 체인수가 1개이며 분자량이 5,000인 한 방향 말단기 변성 PDMS를 0.5중량% 투입하여 중축합 반응을 진행하여 중합물을 제조하였다. 상기 실시예에서는 JNC사의 FMDA-21 제품을 적용하였다.
상기 제조된 중합물을 260℃에서 압출기를 이용하여 혼런 펠레타이즈를 얻고, 이 펠레타이즈를 105℃에서 4시간 이상 충분히 건조한 후, 250℃에서 사출기를 이용하여 시험편을 제작하였다.
실시예
2
말단기가 수산기이고 분자량이 5,000인 한 방향 말단기 변성 PDMS를 중축합 반응 후단에 5중량% 투입한 것을 제외하고는 실시예 1과 동일한 방법으로 중합물을 제조하였다.
실시예
3
말단기가 수산기이고 분자량이 15,000인 한 방향 말단기 변성 PDMS를 중축합 반응 후단에 5중량% 투입하여 중축합 반응을 진행하여 실시예 1과 동일한 방법으로 중합물을 제조하였다. 상기 실시예에서는 JNC사의 FMDA-26 제품을 적용하였다.
비교예
1
변성 PDMS를 투입하지 않은 것을 제외하고는 실시예 1과 같은 방법으로 중합물을 제조하였다.
구분 | 변성 PDMS 투입 유무 및 투입량 | Ring-on-ring type | pin-on-disk type | ||
동마찰계수 | 비마모량(㎣/㎏f㎞) | 동마찰계수 | 비마모량(㎣/㎏f㎞) | ||
실시예 1 | 유 / 0.5중량% | 0.15 | 0.03 | 0.13 | 4.3 |
실시예 2 | 유 / 5중량% | 0.08 | 0.01 | 0.08 | 2.8 |
실시예 3 | 유 / 5중량% | 0.04 | 0.01 | 0.03 | 1.9 |
비교예 1 | 무 | 0.41 | 0.53 | 0.52 | 7.2 |
표 1에서 나타난 바와 같이 상기 일반식(I)의 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 20개이며 분자량이 5,000 내지 15,000인 한 방향 말단기 변성 PDMS를 중축합 후단에 투입한 경우, 변성 PDMS를 투입하지 않은 비교예 대비 내마모성이 매우 향상되는 것을 확인할 수 있었다.
실시예
4
테레프탈산 100 중량부에 대하여 에틸렌 글리콜 50 중량부 슬러리를 에스테르화 반응기에 투입하고, 250℃에서 4시간동안 물을 반응기 밖으로 유출시키면서 에스테르화 반응을 진행시켜 비스(2-하이드록시에틸) 테레프탈레이트[bis(2-hydroxyethyl) terephthalate]를 제조하였다. 이때, 인계 내열안정제를 에스테르화 반응 말기에 300ppm 투입하였다. 이후, 중합 촉매로서 안티몬 촉매를 중축합반응 초기에 300ppm을 투입하고, 250℃에서 285℃까지 60℃/hr로 승온함과 동시에, 압력을 0.1torr까지 감압하여 중축합 반응을 진행하였으며, 중축합 반응 후단에 말단기가 수산기이고 폴리에틸렌글라이콜(PEG)의 체인수가 1개이며 분자량이 5,000인 한 방향 말단기 변성 PDMS(JNC社를, FMDA-21) 0.5중량% 투입하여 중축합 반응을 진행하여 중합물을 제조하였다.
상기 폴리에틸렌 테레프탈레이트 중합물을 36홀(Hole) 노즐을 이용하여 방사하고 연신단계를 거쳐 강도 4.8gf/데니어가 발현되는 방사조건에서 75데니어/36필라멘트 원사를 제조하였다.
이때, 방사 과정에서 과도한 힛세팅을 하지 않기 위해 고뎃 롤러 4번의 온도를 220℃로 하여 생산하였다.
실시예
5
말단기가 수산기이고 폴리에틸렌글라이콜(PEG)의 체인수가 1개이며 분자량이 5,000인 한 방향 말단기 변성 PDMS(JNC社를, FMDA-21) 1.0중량% 투입한 것을 제외하고는 실시예 4과 동일한 방법으로 중합물을 제조하였다.
실시예
6
말단기가 수산기이고 폴리에틸렌글라이콜(PEG)의 체인수가 1개이며 분자량이 15,000인 한 방향 말단기 변성 PDMS(JNC社를, FMDA-26) 1.0중량% 투입한 것을 제외하고는 실시예 4과 동일한 방법으로 중합물을 제조하였다.
비교예
2
변성 PDMS를 투입하지 않은 것을 제외하고는 실시예 4과 같은 방법으로 중합물을 제조하였다.
비교예2 | 실시예4 | 실시예5 | 실시예6 | |
MV | 162 | 263 | 208 | 193 |
IV (dl/g) | 0.68 | 0.80 | 0.80 | 0.77 |
강도(g/d)/신도(%) | 4.8/38 | 4.9/36 | 4.7/37 | 4.6/37 |
내마모성(300회/400회) | X/X | O/O | O/O | O/O |
정마찰계수 | 0.466 | 0.364 | 0.302 | 0.299 |
표 2에서 나타난 바와 같이 상기 일반식(I)의 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 20개이며 분자량이 5,000 내지 15,000인 한 방향 말단기 변성 PDMS를 중축합 후단에 투입한 경우, 변성 PDMS를 투입하지 않은 비교예 대비 강/신도는 유지하면서 내마모성 및 마찰계수가 향상되는 것을 확인할 수 있었다.
실시예
7
테레프탈산 100 중량부에 대하여 에틸렌 글리콜 50 중량부 슬러리를 에스테르화 반응기에 투입하고, 250℃에서 4시간동안 물을 반응기 밖으로 유출시키면서 에스테르화 반응을 진행시켜 비스(2-하이드록시에틸) 테레프탈레이트[bis(2-hydroxyethyl) terephthalate]를 제조하였다. 이때, 인계 내열안정제를 에스테르화 반응 말기에 300ppm 투입하였다. 이후, 중합 촉매로서 안티몬 촉매를 중축합반응 초기에 300ppm을 투입하고, 250℃에서 285℃까지 60℃/hr로 승온함과 동시에, 압력을 0.1torr까지 감압하여 중축합 반응을 진행하였으며, 중축합 반응 후단에 말단기가 수산기이고 폴리에틸렌글라이콜(PEG)의 체인수가 1개이며 분자량이 5,000인 한 방향 말단기 변성 PDMS를 0.5중량% 투입하여 중축합 반응을 진행하여 중합물을 제조하였다. 상기 실시예에서는 JNC사의 FMDA-21 제품을 적용하였다.
128홀(Hole)이며 Y형 단면을 갖는 방사구금을 통하여 제조된 폴리에틸렌테레프탈레이트 중합체를 290℃로 용융방사한다. 방사구금을 빠져나온 폴리머는 노즐하부에서 0.5m/s, 20℃의 냉각 공기에 의해 냉각된 후 유제 공급 장치를 통과한다. 유제를 부여받은 원사는 90℃ 온도로 유지되는 공급롤러를 598m/min의 속도로 거친 후 연신롤러에서 190℃, 2,840m/min의 속도로 연신된다. 연신롤러를 통과한 원사는 텍스처링 노즐을 통과하며 크림프를 부여받는다. 이때 Hot air 온도는 200℃, 압력은 7kg/cm2이며 배압은 5kg/cm2이다. 이 후 냉각수에 의해 냉각된 후집속장치에서 4.0kg/m2의 압력으로 교락을 20회/m부여한다. 릴렉스 롤러를 2250m/min으로 통과하며 21%정도 릴렉스된 후 와인딩 머신(Winding Machine)에서 권취된다. 이러한 공정으로 제조된 폴리에틸렌테레프탈레이트 BCF 원사의 강도, 신도, 내마모성, 정마찰계수 값을 측정하여 하기 표 3에 나타내었다.
제조된 폴리에틸렌테레프탈레이트 BCF 원사를 이용하여 카매트를 제조하여 내마모성을 측정하였으며, 그 결과를 하기 표 3에 나타내었다.
실시예
8
말단기가 수산기이고 분자량이 5,000인 한 방향 말단기 변성 PDMS를 중축합 반응 후단에 1.0중량% 투입한 것을 제외하고는 실시예 7과 동일한 방법으로 중합물을 제조하였다.
실시예
9
말단기가 수산기이고 분자량이 15,000인 한 방향 말단기 변성 PDMS를 중축합 반응 후단에 1.0중량% 투입하여 중축합 반응을 진행하여 실시예 7과 동일한 방법으로 중합물을 제조하였다. 상기 실시예에서는 JNC사의 FMDA-26 제품을 적용하였다.
비교예
3
변성 PDMS를 투입하지 않은 것을 제외하고는 실시예 7과 같은 방법으로 중합물을 제조하였다.
비교예3 | 실시예7 | 실시예8 | 실시예9 | |
강도(g/d) | 4.9 | 4.9 | 4.7 | 4.5 |
신도(%) | 37.7 | 35.6 | 36.9 | 36.6 |
카매트 파단 마모수 (급수) | 300 (2급) | 600 (4급) | 650 (4급) | 550 (3급) |
표 3에서 나타난 바와 같이 상기 일반식(I)의 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 20개이며 분자량이 5,000 내지 15,000인 한 방향 말단기 변성 PDMS를 중축합 후단에 투입한 경우, 변성 PDMS를 투입하지 않은 비교예 대비 내마모성이 매우 향상되는 것을 확인 할 수 있었다.
실시예
10
테레프탈산 100 중량부에 대하여 에틸렌 글리콜 50 중량부 슬러리를 에스테르화 반응기에 투입하고, 250℃에서 4시간동안 물을 반응기 밖으로 유출시키면서 에스테르화 반응을 진행시켜 비스(2-하이드록시에틸) 테레프탈레이트[bis(2-hydroxyethyl) terephthalate]를 제조하였다. 이때, 인계 내열안정제를 에스테르화 반응 말기에 300ppm 투입하였다. 이후, 중합 촉매로서 안티몬 촉매를 중축합반응 초기에 300ppm을 투입하고, 250℃에서 285℃까지 60℃/hr로 승온함과 동시에, 압력을 0.1torr까지 감압하여 중축합 반응을 진행하였으며, 중축합 반응 후단에 말단기가 수산기이고 폴리에틸렌글라이콜(PEG)의 체인수가 1개이며 분자량이 5,000인 한 방향 말단기 변성 PDMS를 5.0중량% 투입하여 중축합 반응을 진행하여 중합물을 제조하였다. 상기 실시예에서는 JNC사의 FMDA-21 제품을 제조하였다.적용하였다.
양방향 말단기 변성 PDMS 공중합 폴리에틸렌테레프탈레이트 중합체와 1.0㎛의 실리카 입자를 표 4의 함량으로 압출기에 투입하여 용융압출하였다. 용융물을 공압출 되도록한 후, 40℃ 캐스팅롤에서 냉각하여 미연신필름을 제조하였다. 상기 미연신 필름을 기계방향(MD)으로 3.2배 연신 후, 종방향(TD)으로 3.2배 연신하여 전체 두께가 25㎛인 다층필름을 제조하였다.
실시예
11
말단기가 수산기이고 폴리에틸렌글라이콜(PEG)의 체인수가 1개이며 분자량이 5,000인 한 방향 말단기 변성 PDMS를 10.0중량% 투입하여 중축합 반응을 진행하여 중합물을 제조한 것을 제외하고는 실시예 10과 동일한 방법으로 중합물을 제조하였다.
실시예
12
말단기가 수산기이고 폴리에틸렌글라이콜(PEG)의 체인수가 1개이며 분자량이 15,000인 한 방향 말단기 변성 PDMS(JNC社를, FMDA-26) 10.0중량% 투입하여 중축합 반응을 진행하여 중합물을 제조한 것을 제외하고는 제외하고는 실시예 10과 동일한 방법으로 중합물을 제조하였다.
비교예
4
변성 PDMS를 투입하지 않은 것을 제외하고는 실시예 10과 같은 방법으로 중합물을 제조하였다.
비교예4 | 실시예10 | 실시예11 | 실시예12 | |
마찰계수 | 0.8 | 0.8 | 0.2 | 0. |
이형력(gf/inch) | 97.3 | 28.9 | 17.8 | 20.8 |
표 4에서 나타난 바와 같이 상기 일반식(I)의 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 20개이며 분자량이 5,000 내지 15,000인 한 방향 말단기 변성 PDMS를 중축합 후단에 투입한 경우, 변성 PDMS를 투입하지 않은 비교예 대비 필름의 마찰계수가 감소하고 이형력이 개선되는 것을 확인할 수 있었다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였으나, 본 발명은 상술한 실시예에 국한되는 것은 아니고, 본 발명의 취지 또는 범위를 벗어나지 않고 본 발명을 다양하게 변경하고 변형할 수 있다는 사실은 당업자에게 자명할 것이다. 따라서, 본 발명의 보호범위는 첨부한 특허청구범위 및 그와 균등한 범위로 정해져야 할 것이다.
Claims (13)
- 에틸렌글라이콜(EG, Ethyleneglycol)과 테레프탈산(TPA, Terephthalic acid)의 슬러리(Slurry)화 단계;상기 슬러리의 에스테르화 반응 단계; 및중축합 반응 단계;를 포함하고,상기 중축합 반응 후단에 하기 일반식(I)로 구성되고 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개이며, 수평균분자량이 800 내지 50,000인 한 방향 말단기 변성 폴리디메틸실록산(PDMS)을 투입하는 공중합 폴리에틸렌테레프탈레이트의 제조방법.(I)(식 중, R= -(CH2-CH2-O)m-, m=1 내지 50, T=수산기)
- 제 1항에 있어서,상기 변성 폴리디메틸실록산(PDMS)는 공중합 폴리에틸렌테레프탈레이트 총중량에 대하여 0.1 내지 20 중량% 투입되는 것을 특징으로 하는 공중합 폴리에틸렌테레프탈레이트의 제조방법.
- 제 1항의 제조방법으로 제조된 공중합 폴리에틸렌테레프탈레이트(PET).
- 폴리에틸렌테레프탈레이트(PET, Polyethylene terephtalate) 80 내지 99.9 중량%; 및한 방향 말단기 변성 폴리디메틸실록산(PDMS) 0.1 내지 20 중량%를 포함하고,상기 한 방향 말단기 변성 폴리디메틸실록산(PDMS)는 하기 일반식(I)의 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개이며, 수평균 분자량이 800 내지 50,000인 것을 특징으로 하는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성이 개선된 의료용 또는 산업용 폴리에틸렌테레프탈레이트 원사.(I)(식 중, R= -(CH2-CH2-O)m-, m=1 내지 50, T=수산기)
- 제 4항에 있어서,상기 공중합 폴리에틸렌테레프탈레이트를 직접 원사하는 방법과 한 방향 말단기 변성 폴리디메틸실록산(PDMS)를 고농도로 폴리에틸렌테레프탈레이트에 공중합하여 마스터배치로 활용하는 방법으로 제조되는 것을 특징으로 하는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성이 개선된 의료용 또는 산업용 폴리에틸렌테레프탈레이트 원사.
- 제 5항에 있어서,상기 공중합 폴리에틸렌테레프탈레이트는에틸렌글라이콜(EG, Ethyleneglycol)과 테레프탈산(TPA, Terephthalic acid)의 슬러리(Slurry)화 단계;상기 슬러리의 에스테르화 반응 단계; 및중축합 반응 단계;를 포함하고,상기 중축합 반응 후단에 한 방향 말단기 변성 폴리디메틸실록산(PDMS)을 투입하는 방법에 의해 제조되는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성이 개선된 의료용 또는 산업용 폴리에틸렌테레프탈레이트 원사.
- 폴리에틸렌테레프탈레이트(PET, Polyethylene terephtalate) 80 내지 99.9 중량%; 및한 방향 말단 변성 폴리디메틸실록산(PDMS) 0.1 내지 20 중량%를 포함하고,상기 한 방향 말단기 변성 폴리디메틸실록산(PDMS)는 하기 일반식(I)의 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개이며, 수평균 분자량이 800 내지 50,000인 것을 특징으로 하는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성이 개선된 카매트용 BCF.(I)(식 중, R= -(CH2-CH2-O)m-, m=1 내지 50, T=수산기)
- 제 7항에 있어서,상기 공중합 폴리에틸렌테레프탈레이트를 직접 원사하는 방법 또는 한 방향 말단기 변성 폴리디메틸실록산(PDMS)를 고농도로 폴리에틸렌테레프탈레이트에 공중합하여 마스터배치로 활용하는 방법으로 제조되는 것을 특징으로 하는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성이 개선된 카매트용 BCF.
- 제 8항에 있어서,상기 공중합 폴리에틸렌테레플라테이트는에틸렌글라이콜(EG, Ethyleneglycol)과 테레프탈산(TPA, Terephthalic acid)의 슬러리(Slurry)화 단계;상기 슬러리의 에스테르화 반응 단계; 및중축합 반응 단계;를 포함하고,상기 중축합 반응 후단에 한 방향 말단기 변성 폴리디메틸실록산(PDMS)을 투입하는 방법에 의해 제조되는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성이 개선된 카매트용 BCF.
- 제 7항의 공중합 폴리에틸렌테레프탈레이트를 사용하여 제조한 내마모성이 개선된 폴리에틸렌테레프탈레이트 BCF 카매트.
- 폴리에틸렌테레프탈레이트(PET, Polyethylene terephtalate) 50 내지 99.9 중량%; 및한 방향 말단기 변성 폴리디메틸실록산(PDMS) 0.1 내지 50 중량%를 포함하고,상기 한 방향 말단기 변성 폴리디메틸실록산(PDMS)는 하기 일반식(I)의 폴리에틸렌글라이콜(PEG)의 체인수가 1 내지 50개이며, 수평균분자량이 800 내지 50,000인 것을 특징으로 하는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성 및 이형력이 개선된 폴리에틸렌테레프탈레이트 필름.(I)(식 중, R= -(CH2-CH2-O)m-, m= 1 내지 50, T= 수산기)
- 제 11항에 있어서,상기 공중합 폴리에틸렌테레프탈레이트를 직접 원사하는 방법 또는 한 방향 말단기 변성 폴리디메틸실록산(PDMS)를 고농도로 폴리에틸렌테레프탈레이트에 공중합하여 마스터배치로 활용하는 방법으로 제조되는 것을 특징으로 하는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성 및 이형력이 개선된 폴리에틸렌테레프탈레이트 필름.
- 제 12항에 있어서,상기 공중합 폴리에틸렌테레플라테이트는에틸렌글라이콜(EG, Ethyleneglycol)과 테레프탈산(TPA, Terephthalic acid)의 슬러리(Slurry)화 단계;상기 슬러리의 에스테르화 반응 단계; 및중축합 반응 단계;를 포함하고,상기 중축합 반응 후단에 한 방향 말단기 변성 폴리디메틸실록산(PDMS)을 투입하는 방법에 의해 제조되는 공중합 폴리에틸렌테레프탈레이트를 포함하는 내마모성 및 이형력이 개선된 폴리에틸렌테레프탈레이트 필름.
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170009575A KR101888070B1 (ko) | 2017-01-20 | 2017-01-20 | 공중합 폴리에틸렌테레프탈레이트 중합물을 포함하는 의료용 또는 산업용 원사 |
KR1020170009576A KR101949403B1 (ko) | 2017-01-20 | 2017-01-20 | 공중합 폴리에틸렌테레프탈레이트 중합물을 포함하는 bcf |
KR10-2017-0009577 | 2017-01-20 | ||
KR1020170009577A KR101949401B1 (ko) | 2017-01-20 | 2017-01-20 | 공중합 폴리에틸렌테레프탈레이트 중합물을 포함하는 필름 |
KR1020170009463A KR101947491B1 (ko) | 2017-01-20 | 2017-01-20 | 공중합 폴리에틸렌테레프탈레이트 중합물 제조방법 |
KR10-2017-0009463 | 2017-01-20 | ||
KR10-2017-0009576 | 2017-01-20 | ||
KR10-2017-0009575 | 2017-01-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018135787A1 true WO2018135787A1 (ko) | 2018-07-26 |
Family
ID=62908944
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/000322 WO2018135787A1 (ko) | 2017-01-20 | 2018-01-08 | 공중합 폴리에틸렌테레프탈레이트 중합물, 이를 포함하는 원사/bcf/필름 및 이의 제조방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018135787A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR950010745B1 (ko) * | 1993-07-21 | 1995-09-22 | 주식회사코오롱 | 개질폴리에스테르섬유의 제조방법 |
JPH08501355A (ja) * | 1993-07-02 | 1996-02-13 | ローヌ−プーラン ヴィスコスイス ソシエテ アノニム | 防汚性で耐摩耗性のモノフィラメントの製造方法およびその用途 |
JP2008274182A (ja) * | 2007-05-07 | 2008-11-13 | Teijin Fibers Ltd | ポリエチレンナフタレート樹脂の製造方法 |
KR20090024780A (ko) * | 2006-07-04 | 2009-03-09 | 비와이케이-케미 게엠베하 | 폴리하이드록시 작용성 폴리실록산을 제조하는 방법 및 그의 용도 |
KR20120027199A (ko) * | 2009-04-01 | 2012-03-21 | 이스트만 케미칼 컴파니 | 폴리에스터의 개선된 제조 방법 |
-
2018
- 2018-01-08 WO PCT/KR2018/000322 patent/WO2018135787A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08501355A (ja) * | 1993-07-02 | 1996-02-13 | ローヌ−プーラン ヴィスコスイス ソシエテ アノニム | 防汚性で耐摩耗性のモノフィラメントの製造方法およびその用途 |
KR950010745B1 (ko) * | 1993-07-21 | 1995-09-22 | 주식회사코오롱 | 개질폴리에스테르섬유의 제조방법 |
KR20090024780A (ko) * | 2006-07-04 | 2009-03-09 | 비와이케이-케미 게엠베하 | 폴리하이드록시 작용성 폴리실록산을 제조하는 방법 및 그의 용도 |
JP2008274182A (ja) * | 2007-05-07 | 2008-11-13 | Teijin Fibers Ltd | ポリエチレンナフタレート樹脂の製造方法 |
KR20120027199A (ko) * | 2009-04-01 | 2012-03-21 | 이스트만 케미칼 컴파니 | 폴리에스터의 개선된 제조 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020009271A1 (ko) | 열가소성 폴리우레탄 원사 및 상기 원사로 제조된 원단 | |
WO2020190070A1 (ko) | 내절단성 폴리에틸렌 원사, 그 제조방법, 및 이것을 이용하여 제조된 보호용 제품 | |
WO2018199397A1 (ko) | 고강도 폴리에틸렌 멀티필라멘트 섬유 및 그의 제조방법 | |
EP0292336B1 (en) | Linear low density polyethylene cast film | |
WO2017183771A1 (ko) | 폴리에틸렌테레프탈레이트 중합체 및 이를 포함하는 원사 및 카매트의 제조방법 | |
WO2019225848A1 (ko) | 아라미드 나노 섬유 분산액의 제조방법 | |
WO2015023032A1 (ko) | 핫멜트 접착제와의 접착 특성이 향상된 스판덱스 섬유 및 그의 제조방법 | |
WO2019022310A1 (ko) | 고강도 폴리에틸렌 섬유로 형성되는 폴리에틸렌 물품 | |
WO2018135786A1 (ko) | 공중합 폴리에틸렌테레프탈레이트 중합물, 이를 포함하는 원사/bcf/필름 및 이의 제조방법 | |
WO2021006561A1 (ko) | 타이어 코드용 원사 및 타이어 코드 | |
US4731407A (en) | Polyetherester elastomer composition | |
WO2018135787A1 (ko) | 공중합 폴리에틸렌테레프탈레이트 중합물, 이를 포함하는 원사/bcf/필름 및 이의 제조방법 | |
WO2022086062A1 (ko) | 습식 부직포용 폴리에스테르 단섬유, 이를 포함하는 습식 부직포 및 이의 제조방법 | |
WO2018135714A2 (ko) | 폴리에틸렌테레프탈레이트 원사 및 카매트의 제조방법 | |
JP3608885B2 (ja) | シートベルト用ウエビングの製造方法 | |
WO2022203183A1 (ko) | 타이어 코드 | |
EP1651709B1 (en) | Alkyl acrylate copolymer modified oriented polypropylene films, tapes, fibers and woven and nonwoven textiles | |
US4751132A (en) | Process for making polyetherester elastomer film | |
WO2023106796A1 (ko) | 원착 폴리에틸렌 원사 및 이를 포함하는 기능성 원단 | |
WO2022075803A1 (ko) | 수축율이 향상된 고강도 폴리에틸렌 원사 및 이의 제조방법 | |
WO2017122879A1 (ko) | 해사성 개선 및 핫멜트 접착제와의 접착특성이 향상된 스판덱스 및 이의 제조방법 | |
WO2017052315A1 (ko) | 섬유 강화 수지 복합재의 제조방법, 섬유 강화 수지 복합재 및 성형품 | |
KR102278143B1 (ko) | 열안정성이 향상된 고강도 저수축 폴리에스테르사의 제조방법 | |
WO2024136031A1 (ko) | 고차단성 및 저소음도를 갖는 생분해성 필름 및 이를 위한 생분해성 수지 조성물 | |
WO2023043101A1 (ko) | 생분해성 필름, 이의 제조방법 및 이를 포함하는 친환경 포장재 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18741804 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18741804 Country of ref document: EP Kind code of ref document: A1 |