+

WO2018135506A1 - Reduction method using ruthenium complex - Google Patents

Reduction method using ruthenium complex Download PDF

Info

Publication number
WO2018135506A1
WO2018135506A1 PCT/JP2018/001084 JP2018001084W WO2018135506A1 WO 2018135506 A1 WO2018135506 A1 WO 2018135506A1 JP 2018001084 W JP2018001084 W JP 2018001084W WO 2018135506 A1 WO2018135506 A1 WO 2018135506A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituted
ruthenium complex
unsubstituted
Prior art date
Application number
PCT/JP2018/001084
Other languages
French (fr)
Japanese (ja)
Inventor
大岡 浩仁
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to JP2018563349A priority Critical patent/JP6751162B2/en
Publication of WO2018135506A1 publication Critical patent/WO2018135506A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/02Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions involving the formation of amino groups from compounds containing hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/68Compounds containing amino and hydroxy groups bound to the same carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings and hydroxy groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/13Monohydroxylic alcohols containing saturated rings
    • C07C31/133Monohydroxylic alcohols containing saturated rings monocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/18Monohydroxylic alcohols containing only six-membered aromatic rings as cyclic part
    • C07C33/20Monohydroxylic alcohols containing only six-membered aromatic rings as cyclic part monocyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/18Monohydroxylic alcohols containing only six-membered aromatic rings as cyclic part
    • C07C33/20Monohydroxylic alcohols containing only six-membered aromatic rings as cyclic part monocyclic
    • C07C33/22Benzylalcohol; phenethyl alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C33/00Unsaturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C33/26Polyhydroxylic alcohols containing only six-membered aromatic rings as cyclic part

Definitions

  • the present invention relates to a reduction method using a ruthenium complex.
  • Non-Patent Document 1 discloses a ruthenium complex having a nitrogen-containing bidentate ligand represented by the formula (1), and performs structural analysis of the crystal.
  • Patent Document 1 discloses a ruthenium complex represented by the formula (2). is doing. By using the ruthenium complex, amides or lactams can be reduced to alcohols or amino alcohols, respectively.
  • Non-Patent Document 2 discloses a ruthenium complex represented by the formula (3). Using the ruthenium complex, cyclohexanone is reduced to cyclohexyl alcohol.
  • An object of the present invention is to provide a ruthenium complex that can be a reduction catalyst that can be applied to industrial production.
  • the inventor has conducted studies to achieve the above object, and as a result, has completed the present invention including the following aspects.
  • At least one selected from compounds, Formula [III] AB [III] (In the formula [III], A and B are bonded by a single bond.
  • A represents the formula [a1].
  • R 1 represents a substituent
  • p represents an integer of 0 to 3
  • * represents a bonding position with B.
  • R 2 represents a substituent
  • q represents an integer of 0 to 4
  • * represents a bonding position with B
  • B represents a substituted or unsubstituted heterocyclyl. Indicates a group.
  • At least one of the atoms adjacent to the ring atom bonded to A is a heteroatom or a carbene carbon.
  • the ruthenium complex according to the present invention is useful as a reduction catalyst.
  • the reduction catalyst according to the present invention for example, ketones, aldehydes, esters and amides can be reduced. Since the catalyst according to the present invention has high activity, the reduction reaction rate can be sufficiently improved even with a small amount of use.
  • the ruthenium complex of the present invention is a complex prepared from at least one selected from the compounds represented by the formulas [I] and [II] and the compound represented by the formula [III].
  • X 1 represents an anionic group.
  • the anionic group include CF 3 SO 3 ⁇ , BF 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ ; halogeno groups such as fluoro group, chloro group, bromo group and iodo group; hydride group; hydroxyl group; acetylacetonate and the like A substituted or unsubstituted diketonate group; a substituted or unsubstituted cyclopentadienyl group; a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, 1- Methyl-2-propenyl group, 2-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-methyl-2-butenyl group, 2-methyl-2 -
  • Alkenyl group methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-pentyl group, n-hexyl group, etc.
  • Substituted or unsubstituted alkyl group substituted or unsubstituted aryl group such as phenyl group and naphthyl group; methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, s-butoxy group, i A substituted or unsubstituted alkoxy group such as -butoxy group and t-butoxy group; a substituted or unsubstituted aryloxy group such as phenoxy group and 1-naphthoxy group; a methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, Substituted or unsubstituted alkyl such as i-propoxycarbonyl group, n-butoxycarbonyl group, t-butoxycarbonyl group, etc.
  • Z 1 represents a substituted or unsubstituted cyclopentadienyl group.
  • Z 1 include a cyclopentadienyl group, 1,3-diisopropylcyclopentadienyl group, tetraphenylcyclopentadienyl group, pentamethylcyclopentadienyl group and the like.
  • L 1 represents a neutral ligand.
  • the neutral ligand may be a monodentate ligand or a bidentate ligand.
  • m represents 2 or 3 when L 1 is a monodentate ligand, and represents 1 when L 1 is a bidentate ligand.
  • Examples of the “substituent” in “substituted or unsubstituted” of the groups exemplified for X 1 and Z 1 include the same groups as those in the formula [III] described later.
  • Specific examples of the compound represented by the formula [I] include chloro (1,5-cyclooctadiene) (pentamethylcyclopentadienyl) ruthenium (II), chloro (norbornadiene) (pentamethylcyclopentadienyl). ) Ruthenium (II), chloro (isoprene) (pentamethylcyclopentadienyl) ruthenium (II), and the like.
  • X 2 represents an anionic group.
  • the anionic group include CF 3 SO 3 ⁇ , BF 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ ; halogeno groups such as fluoro group, chloro group, bromo group and iodo group; hydride group; hydroxyl group; acetylacetonate and the like A substituted or unsubstituted diketonate group; a substituted or unsubstituted cyclopentadienyl group; a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, 1- Methyl-2-propenyl group, 2-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-methyl-2-butenyl group, 2-methyl-2-butenyl group,
  • Alkenyl group methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-pentyl group, n-hexyl group, etc.
  • Substituted or unsubstituted alkyl group substituted or unsubstituted aryl group such as phenyl group and naphthyl group; methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, s-butoxy group, i A substituted or unsubstituted alkoxy group such as -butoxy group and t-butoxy group; a substituted or unsubstituted aryloxy group such as phenoxy group and 1-naphthoxy group; a methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, Substituted or unsubstituted alkyl such as i-propoxycarbonyl group, n-butoxycarbonyl group, t-butoxycarbonyl group, etc.
  • Z 2 represents a substituted or unsubstituted cyclopentadienyl group.
  • Z 2 include a cyclopentadienyl group, 1,3-diisopropylcyclopentadienyl group, tetraphenylcyclopentadienyl group, pentamethylcyclopentadienyl group and the like.
  • n represents an integer of 2 to 4.
  • Examples of the “substituent” in “substituted or unsubstituted” of the groups exemplified as X 2 and Z 2 include the same groups as the substituents in the formula [III] described later.
  • A represents a structure represented by the formula [a1] or the formula [a2].
  • R 1 represents a substituent.
  • Substituents include C1-6 alkyl groups, C3-8 cycloalkyl groups, C6-10 aryl groups, 3-6 membered heterocyclyl groups, hydroxyl groups, C1-6 alkoxy groups, C6-10 aryloxy groups, carboxyl groups, Halogeno group, C1-6 haloalkyl group, C6-10 haloaryl group, C1-6 haloalkoxy group, amino group (group represented by NH 2 ), C1-6 alkyl-substituted amino group, C6-10 arylamino group, C1 ⁇ 7 acylamino group, C1-6 alkoxycarbonylamino group, C1-6 alkylthio group, C6-10 arylthio group, heteroarylthio group, C7-11 aralkylthio group, C1-6 alkylsulfinyl group, C6-10 arylsulfinyl group , Heteroarylsulfiny
  • p represents an integer of 0 to 3.
  • R 2 represents a substituent.
  • Substituents include C1-6 alkyl groups, C3-8 cycloalkyl groups, C6-10 aryl groups, 3-6 membered heterocyclyl groups, hydroxyl groups, C1-6 alkoxy groups, C6-10 aryloxy groups, carboxyl groups, Halogeno group, C1-6 haloalkyl group, C6-10 haloaryl group, C1-6 haloalkoxy group, amino group (group represented by NH 2 ), C1-6 alkyl-substituted amino group, C6-10 arylamino group, C1 -7 acylamino group, C1-6 alkoxycarbonylamino group, C1-6 alkylthio group, C6-10 arylthio group, heteroarylthio group, C7-11 aralkylthio group, C1-6 alkylsulfinyl group, C6-10 arylsulfinyl group , Heteroarylsulfinyl
  • q represents an integer of 0 to 4.
  • C1-6 alkyl group includes methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, and n-pentyl group. And n-hexyl group.
  • the “C3-8 cycloalkyl group” is a monocyclic or polycyclic alkyl group, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a bicyclooctyl group. And a bicycloheptyl group.
  • “C6-10 aryl group” means a monocyclic or polycyclic aryl group.
  • a partially saturated group is included in addition to the fully unsaturated group.
  • Examples thereof include a phenyl group, a naphthyl group, an azulenyl group, an indenyl group, an indanyl group, and a tetralinyl group.
  • Examples of the “3- to 6-membered heterocyclyl group” include the same groups as those exemplified for B in the formula [III] described later.
  • Examples of the “C1-6 alkoxy group” include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, s-butoxy group, i-butoxy group, t-butoxy group and the like.
  • Examples of the “C6-10 aryloxy group” include a phenoxy group and a 1-naphthoxy group.
  • Examples of the “halogeno group” include a fluoro group, a chloro group, a bromo group, and an iodo group.
  • C1-6 haloalkyl group examples include chloromethyl group, bromomethyl group, fluoromethyl group, trifluoromethyl group, trichloromethyl group, tribromomethyl group, 2,2,2-trichloroethyl group, 2,2,3 , 3,3-pentafluoropropyl group or 1-chlorobutyl group, 6-fluorohexyl group, 6,6,6-trifluorohexyl group and the like.
  • C6-10 haloaryl group examples include 4-chlorophenyl, 4-bromophenyl, 3,5-dichlorophenyl and the like.
  • Examples of the “C1-6 haloalkoxy group” include chloromethoxy group, bromomethoxy group, fluoromethoxy, trifluoromethoxy group and the like.
  • Examples of the “C1-6 alkyl-substituted amino group” include monoalkylamino groups such as methylamino group, ethylamino group, n-propylamino group, n-butylamino group, n-hexylamino group; dimethylamino group, diethylamino group And dialkylamino groups such as a di-n-propylamino group, a di-n-butylamino group, and an N-methyl-N-hexylamino group.
  • Examples of the “C6-10 arylamino group” include a phenylamino group and a diphenylamino group.
  • Examples of the “C1-7 acylamino group” include an acetylamino group and a diacetylamino group.
  • Examples of the “C1-6 alkoxycarbonylamino group” include a methoxycarbonylamino group and a dimethoxycarbonylamino group.
  • Examples of the “C1-6 alkylthio group” include methylthio group, ethylthio group, n-propylthio group, t-butylthio group, 1-ethylpropylthio group, n-hexylthio group and the like.
  • Examples of the “C6-10 arylthio group” include a phenylthio group and a naphthylthio group.
  • Examples of the “heteroarylthio group” include a furylthio group, a thienylthio group, a pyrrolylthio group, a pyridinylthio group, a pyrazinylthio group, and a pyridinylthio group.
  • Examples of the “C7-11 aralkylthio group” include benzylthio group, phenethylthio group, naphthylmethylthio group and the like.
  • C1-6 alkylsulfinyl group examples include methylsulfinyl group, ethylsulfinyl group, t-butylsulfinyl group and the like.
  • C6-10 arylsulfinyl group examples include a phenylsulfinyl group and a naphthylsulfinyl group.
  • heteroarylsulfinyl group examples include a furylsulfinyl group, a thienylsulfenyl group, a pyrrolylsulfenyl group, a pyridinylsulfenyl group, a pyrazinylsulfenyl group, and a pyridinylsulfenyl group.
  • C7-11 aralkylsulfinyl group include benzylsulfenyl group, phenethylsulfenyl group, naphthylmethylsulfenyl group and the like.
  • C1-6 alkylsulfonyl group examples include a methylsulfonyl group, an ethylsulfonyl group, a t-butylsulfonyl group and the like.
  • C6-10 arylsulfonyl group examples include a phenylsulfonyl group and a naphthylsulfonyl group.
  • heterocyclylsulfonyl group examples include an aziridinylsulfonyl group, an epoxysulfonyl group, a pyrrolyl sulfonyl group, a furylsulfonyl group, a thienylsulfonyl group, and the like.
  • B represents a substituted or unsubstituted heterocyclyl group.
  • at least one of the atoms adjacent to the ring atom bonded to A is a heteroatom or a carbene carbon.
  • heterocyclyl group includes 1 to 4 heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom as ring constituent atoms.
  • the heterocyclyl group may be monocyclic or polycyclic. In the polycyclic heterocyclyl group, if at least one ring is a hetero ring, the remaining ring may be a saturated alicyclic ring, an unsaturated alicyclic ring or an aromatic ring.
  • heterocyclyl group examples include a 3-6 membered saturated heterocyclyl group, a 5-6 membered heteroaryl group, a 5-6 membered partially unsaturated heterocyclyl group, and a 9-10 membered heteroaryl group.
  • Examples of the 3- to 6-membered saturated heterocyclyl group include aziridinyl group, epoxy group, pyrrolidinyl group, tetrahydrofuranyl group, thiazolidinyl group, piperidyl group, piperazinyl group, morpholinyl group, dioxolanyl group and dioxanyl group.
  • Examples of 5-membered heteroaryl groups include pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl Can do.
  • Examples of the 6-membered heteroaryl group include a pyridyl group, a pyrazinyl group, a pyrimidinyl group, a pyridanidyl group, and a triazinyl group.
  • Examples of the 5- to 6-membered partially unsaturated heterocyclyl group include 2,3-dihydropyrrolyl group, 2,3-dihydropyridinyl group, 2,3-dihydrothiazolyl group, 2,3-dihydrofuranyl group, An imidazolinyl group etc. can be mentioned.
  • the 9 to 10 membered heteroaryl group is a bicyclic heterocyclyl group having a benzene ring, and examples thereof include an indolyl group, a quinolinyl group, a benzimidazolyl group, a benzofuranyl group, and a benzothiazolinyl group.
  • Examples of the substituent for the heterocyclyl group include a C1-6 alkyl group, a C3-8 cycloalkyl group, a C6-10 aryl group, a 3-6 membered heterocyclyl group, a hydroxyl group, a C1-6 alkoxy group, a C6-10 aryloxy group, Carboxyl group, halogeno group, C1-6 haloalkyl group, C6-10 haloaryl group, C1-6 haloalkoxy group, amino group (group represented by NH 2 ), C1-6 alkyl-substituted amino group, C6-10 arylamino Group, C1-7 acylamino group, C1-6 alkoxycarbonylamino group, C1-6 alkylthio group, C6-10 arylthio group, heteroarylthio group, C7-11 aralkylthio group, C1-6 alkylsulfinyl group, C6-10 Arylsulfinyl group, heteroarylsulf
  • R 1 and R a each independently represent a substituent
  • p represents an integer of 0 to 3
  • p1 represents an integer of 0 to 4.
  • Substituents in R 1, R a may be mentioned the same as R 1 in the formula [a1].
  • R 1 and R b each independently represent a substituent
  • p represents an integer of 0 to 3
  • p2 represents an integer of 0 to 3.
  • Substituents in R 1, R b may be exemplified the same as R 1 in the formula [a1].
  • R 1 and R c each independently represents a substituent
  • p represents an integer of 0 to 3
  • p3 represents an integer of 0 to 3.
  • Substituents in R 1, R c may be mentioned the same as R 1 in the formula [a1].
  • R 1 and R d each independently represent a substituent
  • R 3 represents a C1-6 alkyl group
  • p represents an integer of 0 to 3
  • p4 represents 0 to 4 represents any integer.
  • Substituents in R 1, R d may include the same ones as R 1 in the formula [a1].
  • R 1 and R e each independently represents a substituent
  • R 4 represents a C1-6 alkyl group
  • p represents an integer of 0 to 3
  • p5 represents 0 to 4 represents any integer.
  • Substituents in R 1, R e may be mentioned the same as R 1 in the formula [a1].
  • R 2 and R f each independently represent a substituent
  • q represents an integer of 0 to 4
  • p6 represents an integer of 0 to 4.
  • Substituent in R 2, R f may be mentioned the same as R 2 in the formula [a2].
  • R 2 and R g each independently represent a substituent
  • q represents an integer of 0 to 4
  • p7 represents an integer of 0 to 2.
  • Examples of the substituent for R 2 and R g include the same as R 2 in formula [a2].
  • R 2 and R h each independently represent a substituent
  • q represents an integer of 0 to 4
  • p8 represents an integer of 0 to 4.
  • R 2, R h definitive substituent group include the same as R 2 in the formula [a2].
  • the ruthenium complex of the present invention is obtained by mixing and reacting at least one selected from the compounds represented by the formula [I] and the formula [II] with the compound represented by the formula [III] in an organic solvent. Can be prepared.
  • organic solvent used in the reaction examples include aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as pentane and hexane; dichloromethane, chloroform, trichloromethane, carbon tetrachloride, and 1,2-dichloroethane.
  • Halogen ethers such as; ethers such as diethyl ether, tetrahydrofuran (THF), 1,2-dimethoxyethane, 1,4-dioxane; alcohols such as methanol, ethanol, n-propanol, isopropanol, butanol, and benzyl alcohol N, N-dimethylformamide (DMF), N, N-dimethylacetamide, 1,3-dimethylimidazolidine, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, hexamethylphosphoric triamide (HMPT) Amides; acetonitrile, nitriles such as benzonitrile; and the like dimethyl sulfoxide (DMSO). These solvents can be used alone or in admixture of two or more.
  • ethers such as diethyl ether, tetrahydrofuran (THF), 1,2-dimethoxyethane, 1,
  • the amount of solvent used is preferably 1 to 100 ml, more preferably 5 to 30 ml, with respect to 1 g of the reactant.
  • the temperature during the reaction is usually room temperature to the boiling point of the reaction solvent, preferably 25 to 100 ° C.
  • the reaction time varies depending on the reaction scale, but is usually 0.1 to 48 hours, preferably 0.1 to 18 hours.
  • the solution containing the ruthenium complex may be used as it is as a catalyst for the reduction reaction, or the ruthenium complex is isolated from the solution containing the ruthenium complex by a known method and used as the catalyst for the reduction reaction, etc. May be used.
  • the amount of the compound represented by the formula [III] is preferably 0.5 to 5 mol, more preferably 1.0 to 1 mol with respect to 1 mol of the compound represented by the formula [I] and the formula [II]. 1.5 moles.
  • the method of the present invention uses a ruthenium complex prepared from at least one selected from a compound represented by the formula [I] and a compound represented by the formula [II] and a compound represented by the formula [III].
  • ketones, aldehydes, esters and amides are reduced in the presence of a hydrogen donor and a base.
  • Examples of the hydrogen donor include hydrogen gas, isopropanol, formic acid, formate, and the like. These can be used alone or in combination of two or more. Of these, hydrogen gas is preferred.
  • Examples of the base include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, alkoxides such as sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium t-butoxide, ammonia, C3-30
  • bases such as organic amines. These can be used alone or in combination of two or more.
  • Specific examples of the C3-30 organic amines include triethylamine, tributylamine, diisopropylethylamine, isopropyldimethylamine, trimethylamine, n-trioctylamine, iso-trioctylamine, 1,8-diazabicyclo [5.4.0].
  • the amount of the base to be used is not particularly limited, but is an amount that is 1 mol or more with respect to 1 mol of the ruthenium complex.
  • ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, and benzophenone.
  • aldehydes examples include formaldehyde, acetaldehyde, and benzaldehyde.
  • esters examples include methyl benzoate, ethyl benzoate, isopropyl benzoate, methyl 3-phenylpropionate, methyl cyclopropanecarboxylate, and phthalide.
  • amides examples include N-methylacetanilide and 1-phenyl-2-pyrrolidone.
  • solvent used for the reduction reaction water; alcohol solvents such as methanol, ethanol, 2-propanol, tert-butyl alcohol, trifluoroethanol, hexafluoroisopropanol; aromatic solvents such as toluene and xylene; diethyl ether, tetrahydrofuran Ether solvents such as 2-methyltetrahydrofuran; halogen solvents such as dichloromethane and chloroform can be used.
  • alcohol solvents such as methanol, ethanol, 2-propanol, tert-butyl alcohol, trifluoroethanol, hexafluoroisopropanol
  • aromatic solvents such as toluene and xylene
  • diethyl ether, tetrahydrofuran Ether solvents such as 2-methyltetrahydrofuran
  • halogen solvents such as dichloromethane and chloroform
  • the amount of the ruthenium complex used is such that ruthenium in the complex is preferably 0.001 to 100 mmol, more preferably 0.06 to 20 mmol, relative to 1 mol of the substrate.
  • the amount of the hydrogen donor to be used is preferably 1 mol or more, more preferably 2 mol or more, further preferably 10 mol or more, still more preferably 20 mol or more with respect to 1 mol of the functional group to be reduced in the substrate. It is.
  • the temperature during the reduction reaction can be selected from the range of preferably ⁇ 20 to 150 ° C., more preferably 0 to 100 ° C.
  • the time for the reduction reaction varies depending on the amount of catalyst used, but is preferably 0.1 to 100 hours, more preferably 0.1 to 10 hours.
  • the product can be separated and purified by general operations such as distillation, extraction, chromatography, and recrystallization.
  • Example 1 (Hydrogenation of acetophenone) To a glass autoclave were added 5 mg (0.01 mmol) of ruthenium complex 1 and 11 mg (0.1 mmol) of potassium t-butoxide, and the atmosphere was replaced with argon. 1.20 g (10 mmol) of acetophenone was dissolved in 5 ml of isopropanol, degassed, and then purged with argon. The acetophenone solution was transferred to an autoclave and stirred at room temperature for 1 hour under a hydrogen atmosphere of 0.9 MPa. After releasing the residual pressure, GC analysis (FID) was performed. 1-phenylethane-1-ol was obtained at a relative area ratio of 98.9%.
  • FID GC analysis
  • Example 2 (Hydrogenation of acetophenone) The hydrogenation reaction of acetophenone was performed in the same manner as in Example 1 except that the ruthenium complex 4 was used instead of the ruthenium complex 1. 1-Phenylethane-1-ol was obtained at a relative area ratio of 99.6%.
  • Example 3 (Hydrogenation of acetophenone) The hydrogenation reaction of acetophenone was performed in the same manner as in Example 1 except that the ruthenium complex 5 was used instead of the ruthenium complex 1. 1-phenylethane-1-ol was obtained at a relative area ratio of 96.3%.
  • Example 4 (Hydrogenation of acetophenone) The hydrogenation reaction of acetophenone was performed in the same manner as in Example 1 except that the ruthenium complex 6 was used instead of the ruthenium complex 1. 1-Phenylethane-1-ol was obtained at a relative area ratio of 99.7%.
  • Example 5 (Hydrogenation of acetophenone) The hydrogenation reaction of acetophenone was carried out in the same manner as in Example 1 except that ruthenium complex 3 was used instead of ruthenium complex 1. 1-phenylethane-1-ol was obtained at a relative area ratio of 98.6%.
  • Example 6 (hydrogenation of methyl benzoate) After adding 5 mg (0.01 mmol) of ruthenium complex 1 to the metal autoclave, the reaction system was purged with argon. 2.72 g (20 mmol) of methyl benzoate was dissolved in 7.5 ml of tetrahydrofuran, degassed, and purged with argon. The ester solution was transferred to the autoclave followed by the addition of 1 ml of 1M potassium t-butoxide / tetrahydrofuran solution. The mixture was stirred at 80 ° C. for 3 hours under a hydrogen atmosphere of 5 MPa. After cooling, HPLC analysis was performed.
  • Benzyl alcohol was produced with a relative area ratio of 95.6% (quantitative analysis yield 92.4%).
  • methyl benzoate was present in a relative area ratio of 1.7% and benzyl benzoate was present in a relative area ratio of 0.3%.
  • Example 7 (hydrogenation of methyl benzoate) A hydrogenation reaction of methyl benzoate was carried out in the same manner as in Example 6 except that ruthenium complex 3 was used instead of ruthenium complex 1. Benzyl alcohol was produced with a relative area ratio of 77.1%. In addition, methyl benzoate was present in a relative area ratio of 15.4% and benzyl benzoate was present in a relative area ratio of 5.7%.
  • Comparative Example 1 (hydrogenation of methyl benzoate) A hydrogenation reaction of methyl benzoate was performed in the same manner as in Example 6 except that ruthenium complex A was used instead of ruthenium complex 1. Benzyl alcohol was produced with a relative area ratio of 39.7%. In addition, methyl benzoate was present at a relative area ratio of 54.0% and benzyl benzoate was present at a relative area ratio of 4.5%.
  • Example 8 (hydrogenation of phthalide)
  • a metal autoclave 2.68 g (20 mmol) of phthalide and 4 mg (0.01 mmol) of ruthenium complex 2 were added and substituted with argon.
  • 10 ml of degassed tetrahydrofuran 1 ml (5 mol%) of a potassium t-butoxide / tetrahydrofuran solution (1M)
  • the reaction solution was neutralized with acetic acid and concentrated by silica gel column chromatography to obtain 2.47 g (yield 89%) of 1,2-benzenedimethanol.
  • Example 9 (phthalide hydrogenation)
  • a metal autoclave 2.68 g (20 mmol) of phthalide and 4 mg (0.01 mmol) of ruthenium complex 3 were placed and substituted with argon. Thereto were added 10 ml of degassed tetrahydrofuran and 1 ml (5 mol%) of a potassium t-butoxide / tetrahydrofuran solution (1M), and the mixture was stirred at 80 ° C. for 5 hours in a 5 MPa hydrogen atmosphere. After cooling, the reaction mixture was neutralized with acetic acid and concentrated by silica gel column chromatography to obtain 2.30 g of 1,2-benzenedimethanol (yield 83%).
  • Example 10 (hydrogenation of phthalides) A metal autoclave was charged with 2.68 g (20 mmol) of phthalide and 5 mg (0.01 mmol) of ruthenium complex 1 and substituted with argon. Thereto were added 10 ml of degassed tetrahydrofuran and 1 ml (5 mol%) of a potassium t-butoxide / tetrahydrofuran solution (1M), and the mixture was stirred at 80 ° C. for 5 hours in a 5 MPa hydrogen atmosphere. After cooling, the reaction solution was neutralized with acetic acid and concentrated by silica gel column chromatography to obtain 2.47 g (yield 89%) of 1,2-benzenedimethanol.
  • Example 11 (hydrogenation of isopropyl benzoate) 5 mg (0.01 mmol) of ruthenium complex 1 was added to the metal autoclave, and the atmosphere was replaced with argon. 3.28 g (20 mmol) of isopropyl benzoate was dissolved in 7.5 ml of tetrahydrofuran, degassed, and purged with argon. The ester solution was transferred to an autoclave followed by the addition of 1 ml of 1M potassium t-butoxide / tetrahydrofuran solution. The mixture was stirred at 80 ° C. for 1.5 hours under a hydrogen atmosphere of 5 MPa. After cooling, the reaction solution was sampled and subjected to HPLC analysis (UV wavelength: 210 nm) to obtain benzyl alcohol with a relative area ratio of 91.2% (quantitative analysis yield: 87.8%).
  • HPLC analysis UV wavelength: 210 nm
  • Example 12 (Hydrogenation of methyl 3-phenylpropionate) 5 mg (0.01 mmol) of ruthenium complex 1 was placed in a metal autoclave and purged with argon. In a Schlenk tube, 1.64 g (10 mmol) of methyl 3-phenylpropionate was added to 10 ml of tetrahydrofuran, deaerated, and purged with argon. The ester solution was transferred to an autoclave, and then 0.5 ml (5 mol%) of potassium t-butoxide / tetrahydrofuran solution (1M) was added. The mixture was stirred at 80 ° C. for 5 hours under a hydrogen atmosphere of 5 MPa. After cooling and neutralizing with acetic acid, the reaction solution was concentrated. Purification by silica gel column chromatography gave 1.15 g (yield 84%) of 3-phenylpropanol.
  • Example 13 (hydrogenation of methyl cyclopropanecarboxylate) 5 mg (0.01 mmol) of ruthenium complex 1 was added to the metal autoclave, and the atmosphere was replaced with argon. 1.00 g (10 mmol) of methyl cyclopropanecarboxylate was dissolved in 10 ml of tetrahydrofuran, degassed, and purged with argon. The ester solution was transferred to an autoclave, followed by the addition of 0.5 ml of 1M potassium t-butoxide / tetrahydrofuran solution. The mixture was stirred at 80 ° C. for 5 hours under a hydrogen atmosphere of 5 MPa.
  • reaction solution was sampled and subjected to GC analysis (FID) to obtain cyclopropylmethanol with a relative area ratio of 80.1%.
  • FID GC analysis
  • Example 14 (Hydrogenation of 1-phenyl-2-pyrrolidone) A metal autoclave was charged with 5 mg (0.01 mmol) of ruthenium complex 1 and purged with argon. In a Schlenk tube, 1.61 g (10 mmol) of 1-phenyl-2-pyrrolidone was added to 10 ml of tetrahydrofuran, deaerated, and purged with argon. The lactam solution was transferred to the autoclave, and then 0.5 ml (5 mol%) of potassium t-butoxide / tetrahydrofuran solution (1M) was added. The mixture was stirred at 80 ° C. for 5 hours under a hydrogen atmosphere of 5 MPa.
  • Example 15 (Hydrogenation of methyl benzoate) A hydrogenation reaction of methyl benzoate was carried out in the same manner as in Example 6 except that ruthenium complex 7 was used instead of ruthenium complex 1. Benzyl alcohol was produced with a relative area ratio of 80%. In addition, methyl benzoate was present in a relative area ratio of 7.7% and benzyl benzoate was present in a relative area ratio of 5.6%.
  • Example 16 (hydrogenation of methyl benzoate) A hydrogenation reaction of methyl benzoate was carried out in the same manner as in Example 6 except that ruthenium complex 8 was used instead of ruthenium complex 1. Benzyl alcohol was produced with a relative area ratio of 63.9%. In addition, methyl benzoate was present in a relative area ratio of 21.9% and benzyl benzoate was present in a relative area ratio of 12.2%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The purpose of the present invention is to provide a ruthenium complex which is capable of serving as a reduction catalyst that is applicable to an industrial production. According to the present invention, ketones, aldehydes, esters or amides are reduced, in the presence of a hydrogen donor and a base, with use of a ruthenium complex that is prepared from at least one compound selected from among compounds represented by formula (I) Ru(X1)(L1)m(Z1) (in formula (I), X1 represents an anionic group; Z1 represents a substituted or unsubstituted cyclopentadienyl group; L1 represents a neutral ligand; and m represents an integer of 1-3) and compounds represented by formula (II) [Ru(X2)(Z2)]n (in formula (II), X2 represents an anionic group; Z2 represents a substituted or unsubstituted cyclopentadienyl group; and n represents an integer of 2-4), and a compound represented by formula (III) A-B (in formula (III), A represents a group represented by formula (a1) or the like; and B represents a substituted or unsubstituted heterocyclyl group, provided that at least one atom adjacent to a ring atom bonded to A in the substituted or unsubstituted heterocyclyl group is a heteroatom or a carbene carbon atom).

Description

ルテニウム錯体を用いた還元方法Reduction method using ruthenium complex
 本発明は、ルテニウム錯体を用いた還元方法に関する。本願は、2017年1月19日に出願された日本国特許出願第2017-007132号に対し優先権を主張し、その内容をここに援用する。 The present invention relates to a reduction method using a ruthenium complex. This application claims priority to Japanese Patent Application No. 2017-007132 filed on January 19, 2017, the contents of which are incorporated herein by reference.
 非特許文献1は、式(1)で表される窒素含有二座配位子を有するルテニウム錯体を開示しており、その結晶の構造解析を行っている。 Non-Patent Document 1 discloses a ruthenium complex having a nitrogen-containing bidentate ligand represented by the formula (1), and performs structural analysis of the crystal.
Figure JPOXMLDOC01-appb-C000003
 
Figure JPOXMLDOC01-appb-C000003
 
 また、窒素含有二座配位子を有するルテニウム錯体は還元反応の触媒などとして様々な構造のものが提案されており、例えば、特許文献1は、式(2)で表されるルテニウム錯体を開示している。そのルテニウム錯体を用いることでアミド類又はラクタム類を、それぞれアルコール類又はアミノアルコール類に還元することができる。 Further, ruthenium complexes having a nitrogen-containing bidentate ligand have been proposed in various structures as catalysts for reduction reactions. For example, Patent Document 1 discloses a ruthenium complex represented by the formula (2). is doing. By using the ruthenium complex, amides or lactams can be reduced to alcohols or amino alcohols, respectively.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 非特許文献2は、式(3)で表されるルテニウム錯体を開示している。そのルテニウム錯体を用いて、シクロヘキサノンをシクロヘキシルアルコールに還元している。 Non-Patent Document 2 discloses a ruthenium complex represented by the formula (3). Using the ruthenium complex, cyclohexanone is reduced to cyclohexyl alcohol.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 そのルテニウム錯体による還元は、水素化以外にも脱水素化も進行し、様々な副生成物も併せて得られるようである。 The reduction with the ruthenium complex also proceeds with dehydrogenation in addition to hydrogenation, and it seems that various by-products are also obtained.
WO2010/073974号公報WO2010 / 073974 Publication
 本発明の目的は、工業的な生産に適用できる還元触媒となり得るルテニウム錯体を提供することである。 An object of the present invention is to provide a ruthenium complex that can be a reduction catalyst that can be applied to industrial production.
 本発明者は、上記目的を達成するために検討を重ねた結果、以下の態様を包含する本発明を完成するに至った。 The inventor has conducted studies to achieve the above object, and as a result, has completed the present invention including the following aspects.
式〔I〕
 Ru(X)(L(Z)   〔I〕
(式〔I〕中、Xは、アニオン性基を示し、Zは、置換若しくは無置換のシクロペンタジエニル基を示し、Lは、中性の配位子を示し、mは、Lが単座配位子の場合は2又は3を示し、Lが二座配位子の場合は1を示す。)で表される化合物、及び式〔II〕
 [Ru(X)(Z)]n   〔II〕
(式〔II〕中、Xは、アニオン性基を示し、Zは、置換若しくは無置換のシクロペンタジエニル基を示し、nは、2~4の整数を示す。)で表される化合物から選ばれる少なくとも一種と、
式〔III〕
A-B   〔III〕
(式〔III〕中、AとBは単結合で結合する。Aは、式〔a1〕
Figure JPOXMLDOC01-appb-C000006
(式〔a1〕中、Rは置換基を示し、pは0~3いずれかの整数を示し、*はBとの結合位置を示す。)
又は、式〔a2〕
Figure JPOXMLDOC01-appb-C000007
(式〔a2〕中、Rは置換基を示し、qは0~4いずれかの整数を示し、*はBとの結合位置を示す。)を示し、Bは、置換若しくは無置換のヘテロシクリル基を示す。ただし、前記置換若しくは無置換のヘテロシクリル基は、Aと結合する環構成原子に隣接する原子の少なくとも1つが、ヘテロ原子又はカルベン炭素である。)で表される化合物とから調製されるルテニウム錯体を用いて、水素供与体及び塩基の存在下で、ケトン類、アルデヒド類、エステル類又はアミド類を還元する方法。
Formula [I]
Ru (X 1 ) (L 1 ) m (Z 1 ) [I]
(In Formula [I], X 1 represents an anionic group, Z 1 represents a substituted or unsubstituted cyclopentadienyl group, L 1 represents a neutral ligand, and m represents When L 1 is a monodentate ligand, it represents 2 or 3, and when L 1 is a bidentate ligand, it represents 1.) and a compound represented by formula [II]
[Ru (X 2 ) (Z 2 )] n [II]
(In the formula [II], X 2 represents an anionic group, Z 2 represents a substituted or unsubstituted cyclopentadienyl group, and n represents an integer of 2 to 4). At least one selected from compounds,
Formula [III]
AB [III]
(In the formula [III], A and B are bonded by a single bond. A represents the formula [a1].
Figure JPOXMLDOC01-appb-C000006
(In the formula [a1], R 1 represents a substituent, p represents an integer of 0 to 3, and * represents a bonding position with B.)
Or the formula [a2]
Figure JPOXMLDOC01-appb-C000007
(In the formula [a2], R 2 represents a substituent, q represents an integer of 0 to 4, and * represents a bonding position with B), and B represents a substituted or unsubstituted heterocyclyl. Indicates a group. However, in the substituted or unsubstituted heterocyclyl group, at least one of the atoms adjacent to the ring atom bonded to A is a heteroatom or a carbene carbon. A method for reducing ketones, aldehydes, esters or amides in the presence of a hydrogen donor and a base, using a ruthenium complex prepared from a compound represented by
 本発明に係るルテニウム錯体は、還元触媒として有用である。本発明に係る還元触媒を用いると、例えば、ケトン類、アルデヒド類、エステル類、アミド類を還元することができる。本発明に係る触媒は活性が高いので少量の使用でも十分に還元反応速度を向上させることができる。 The ruthenium complex according to the present invention is useful as a reduction catalyst. When the reduction catalyst according to the present invention is used, for example, ketones, aldehydes, esters and amides can be reduced. Since the catalyst according to the present invention has high activity, the reduction reaction rate can be sufficiently improved even with a small amount of use.
(ルテニウム錯体)
 本発明のルテニウム錯体は、式〔I〕及び式〔II〕で表される化合物から選ばれる少なくとも一種と、式〔III〕で表される化合物とから調製される錯体である。
(Ruthenium complex)
The ruthenium complex of the present invention is a complex prepared from at least one selected from the compounds represented by the formulas [I] and [II] and the compound represented by the formula [III].
(式〔I〕で表される化合物)
 式〔I〕で表される化合物は、以下で表される。
Ru(X)(L(Z)   〔I〕
(Compound represented by Formula [I])
The compound represented by the formula [I] is represented by the following.
Ru (X 1 ) (L 1 ) m (Z 1 ) [I]
 式〔I〕において、Xは、アニオン性基を示す。アニオン性基としては、CFSO 、BF 、PF 、ClO ;フルオロ基、クロロ基、ブロモ基、ヨード基などのハロゲノ基;ヒドリド基;ヒドロキシル基;アセチルアセトネートなどの置換若しくは無置換のジケトネート基;置換若しくは無置換のシクロペンタジエニル基;ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-メチル-2-ブテニル基、2-メチル-2-ブテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基などの置換若しくは無置換のアルケニル基;メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基などの置換若しくは無置換のアルキル基;フェニル基、ナフチル基などの置換若しくは無置換のアリール基;メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、s-ブトキシ基、i-ブトキシ基、t-ブトキシ基などの置換若しくは無置換のアルコキシ基;フェノキシ基、1-ナフトキシ基などの置換若しくは無置換のアリールオキシ基;メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、i-プロポキシカルボニル基、n-ブトキシカルボニル基、t-ブトキシカルボニル基などの置換若しくは無置換のアルコキシカルボニル基;カルボキシル基、メトキシカルボニル基、エトキシカルボニル基などの置換若しくは無置換のカルボキシル基;メチルスルフォネート基、エチルスルフォネート基、t-ブチルスルフォネート基などの置換若しくは無置換のアルキルスルフォネート基;フェニルスルフォネート基などの置換若しくは無置換のアリールスルフォネート基;メチルチオ基、エチルチオ基、n-プロピルチオ基、i-プロピルチオ基、n-ブチルチオ基、i-ブチルチオ基、s-ブチルチオ基、t-ブチルチオ基などの置換若しくは無置換のアルキルチオ基;ビニルチオ基、アリルチオ基などの置換若しくは無置換のアルケニルチオ基;フェニルチオ基、ナフチルチオ基などの置換若しくは無置換のアリールチオ基;メチルスルホニル基、エチルスルホニル基、t-ブチルスルホニル基などの置換若しくは無置換のアルキルスルホニル基;及び メチルスルフィニル基、エチルスルフィニル基、t-ブチルスルフィニル基などの置換若しくは無置換のアルキルスルフィニル基を挙げることができる。これらのうち、CFSO 、PF 、ハロゲノ基、置換若しくは無置換のアルコキシ基が好ましい。 In the formula [I], X 1 represents an anionic group. Examples of the anionic group include CF 3 SO 3 , BF 4 , PF 6 , ClO 4 ; halogeno groups such as fluoro group, chloro group, bromo group and iodo group; hydride group; hydroxyl group; acetylacetonate and the like A substituted or unsubstituted diketonate group; a substituted or unsubstituted cyclopentadienyl group; a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, 1- Methyl-2-propenyl group, 2-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-methyl-2-butenyl group, 2-methyl-2 -Substituted or unsubstituted butenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group, etc. Alkenyl group: methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-pentyl group, n-hexyl group, etc. Substituted or unsubstituted alkyl group; substituted or unsubstituted aryl group such as phenyl group and naphthyl group; methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, s-butoxy group, i A substituted or unsubstituted alkoxy group such as -butoxy group and t-butoxy group; a substituted or unsubstituted aryloxy group such as phenoxy group and 1-naphthoxy group; a methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, Substituted or unsubstituted alkyl such as i-propoxycarbonyl group, n-butoxycarbonyl group, t-butoxycarbonyl group, etc. Coxoxycarbonyl group; Substituted or unsubstituted carboxyl group such as carboxyl group, methoxycarbonyl group, and ethoxycarbonyl group; Substituted or unsubstituted group such as methylsulfonate group, ethylsulfonate group, and t-butylsulfonate group Alkyl sulfonate groups of the above; substituted or unsubstituted aryl sulfonate groups such as phenyl sulfonate groups; methylthio groups, ethylthio groups, n-propylthio groups, i-propylthio groups, n-butylthio groups, i-butylthio groups , Substituted or unsubstituted alkylthio groups such as s-butylthio group and t-butylthio group; substituted or unsubstituted alkenylthio groups such as vinylthio group and allylthio group; substituted or unsubstituted arylthio groups such as phenylthio group and naphthylthio group Methylsulfonyl group, It may be mentioned and methylsulfinyl group, ethylsulfinyl group, a substituted or unsubstituted alkylsulfinyl group, such as t-butyl sulfinyl group; Rusuruhoniru group, t- butyl sulfo-substituted or unsubstituted alkylsulfonyl group such group. Of these, CF 3 SO 3 , PF 6 , halogeno groups, and substituted or unsubstituted alkoxy groups are preferred.
 式〔I〕において、Zは、置換若しくは無置換のシクロペンタジエニル基を示す。Zの具体例としては、シクロペンタジエニル基、1,3-ジイソプロピルシクロペンタジエニル基、テトラフェニルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基などを挙げることができる。 In the formula [I], Z 1 represents a substituted or unsubstituted cyclopentadienyl group. Specific examples of Z 1 include a cyclopentadienyl group, 1,3-diisopropylcyclopentadienyl group, tetraphenylcyclopentadienyl group, pentamethylcyclopentadienyl group and the like.
 式〔I〕において、Lは、中性の配位子を示す。中性の配位子は、単座配位子であってもよいし、二座配位子であってもよい。
 中性の単座配位子としては、水(HO)、アルコール類(ROH)、エーテル類(ROR’)ケトン類(RC(=O)R’)、エステル類(RC(=O)OR’)、チオール類(RSH)、スルフィド類(RSR’)、スルホキシド類(RS(=O)R’)、アミン類(RR’R”N)、アミド類(RR’NC(=O)R”)、アセトニトリルなどのニトリル類(RCN)、イソニトリル類(RNC)、二級ホスフィン類(RR’PH)、二級ホスフィンオキシド類(RR’P(=O)H)、トリフェニルホスフィンなどの三級ホスフィン類(RR’R”P)、ホスファイト類((RO)(R’O)(R”O)P)、カルベン(RR’C:)、ナイトレン(RN::)、シリレン(RR’Si:)、水素分子(H)、窒素分子(N)、一酸化炭素(CO)及び一酸化窒素(NO)などを挙げることができる。
 中性の二座配位子としては、上記の単座配位子2つが結合した二座配位子や、1,5-シクロオクタジエン、ノルボルナジエン、イソプレンなどを挙げることができる。
In the formula [I], L 1 represents a neutral ligand. The neutral ligand may be a monodentate ligand or a bidentate ligand.
Neutral monodentate ligands include water (H 2 O), alcohols (ROH), ethers (ROR ′) ketones (RC (═O) R ′), esters (RC (═O) OR) '), Thiols (RSH), sulfides (RSR'), sulfoxides (RS (= O) R '), amines (RR'R "N), amides (RR'NC (= O) R" ), Nitriles such as acetonitrile (RCN), isonitriles (RNC), secondary phosphines (RR′PH), secondary phosphine oxides (RR′P (═O) H), and tertiary such as triphenylphosphine Phosphines (RR′R ″ P), phosphites ((RO) (R′O) (R ″ O) P), carbene (RR′C :), nitrene (RN: :), silylene (RR′Si) :), hydrogen molecule (H 2 ), nitrogen molecule (N 2 ), carbon monoxide (C O) and nitric oxide (NO).
Examples of neutral bidentate ligands include bidentate ligands in which two monodentate ligands are combined, 1,5-cyclooctadiene, norbornadiene, and isoprene.
 式〔I〕において、mは、Lが単座配位子の場合は2又は3を示し、Lが二座配位子の場合は1を示す。 In the formula [I], m represents 2 or 3 when L 1 is a monodentate ligand, and represents 1 when L 1 is a bidentate ligand.
 上記X及びZに例示された基の「置換若しくは無置換の」における「置換基」としては、後述する式〔III〕における置換基と同様の基が挙げられる。 Examples of the “substituent” in “substituted or unsubstituted” of the groups exemplified for X 1 and Z 1 include the same groups as those in the formula [III] described later.
 式〔I〕で表される化合物として、具体的には、クロロ(1,5-シクロオクタジエン)(ペンタメチルシクロペンタジエニル)ルテニウム(II)、クロロ(ノルボルナジエン)(ペンタメチルシクロペンタジエニル)ルテニウム(II)、クロロ(イソプレン)(ペンタメチルシクロペンタジエニル)ルテニウム(II)などを挙げることができる。 Specific examples of the compound represented by the formula [I] include chloro (1,5-cyclooctadiene) (pentamethylcyclopentadienyl) ruthenium (II), chloro (norbornadiene) (pentamethylcyclopentadienyl). ) Ruthenium (II), chloro (isoprene) (pentamethylcyclopentadienyl) ruthenium (II), and the like.
(式〔II〕で表される化合物)
 式〔II〕で表される化合物は、以下で表される。
[Ru(X)(Z)]n   〔II〕
(Compound represented by Formula [II])
The compound represented by the formula [II] is represented by the following.
[Ru (X 2 ) (Z 2 )] n [II]
 式〔II〕において、Xは、アニオン性基を示す。アニオン性基としては、CFSO 、BF 、PF 、ClO ;フルオロ基、クロロ基、ブロモ基、ヨード基などのハロゲノ基;ヒドリド基;ヒドロキシル基;アセチルアセトネートなどの置換若しくは無置換のジケトネート基;置換若しくは無置換のシクロペンタジエニル基;ビニル基、1-プロペニル基、2-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基、1-ペンテニル基、2-ペンテニル基、3-ペンテニル基、4-ペンテニル基、1-メチル-2-ブテニル基、2-メチル-2-ブテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基などの置換若しくは無置換のアルケニル基;メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基などの置換若しくは無置換のアルキル基;フェニル基、ナフチル基などの置換若しくは無置換のアリール基;メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、s-ブトキシ基、i-ブトキシ基、t-ブトキシ基などの置換若しくは無置換のアルコキシ基;フェノキシ基、1-ナフトキシ基などの置換若しくは無置換のアリールオキシ基;メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、i-プロポキシカルボニル基、n-ブトキシカルボニル基、t-ブトキシカルボニル基などの置換若しくは無置換のアルコキシカルボニル基;カルボキシル基、メトキシカルボニル基、エトキシカルボニル基などの置換若しくは無置換のカルボキシル基;メチルスルフォネート基、エチルスルフォネート基、t-ブチルスルフォネート基などの置換若しくは無置換のアルキルスルフォネート基;フェニルスルフォネート基などの置換若しくは無置換のアリールスルフォネート基;メチルチオ基、エチルチオ基、n-プロピルチオ基、i-プロピルチオ基、n-ブチルチオ基、i-ブチルチオ基、s-ブチルチオ基、t-ブチルチオ基などの置換若しくは無置換のアルキルチオ基;ビニルチオ基、アリルチオ基などの置換若しくは無置換のアルケニルチオ基;フェニルチオ基、ナフチルチオ基などの置換若しくは無置換のアリールチオ基;メチルスルホニル基、エチルスルホニル基、t-ブチルスルホニル基などの置換若しくは無置換のアルキルスルホニル基;及び メチルスルフィニル基、エチルスルフィニル基、t-ブチルスルフィニル基などの置換若しくは無置換のアルキルスルフィニル基を挙げることができる。これらのうち、CFSO 、PF 、ハロゲノ基、置換若しくは無置換のアルコキシ基が好ましい。 In the formula [II], X 2 represents an anionic group. Examples of the anionic group include CF 3 SO 3 , BF 4 , PF 6 , ClO 4 ; halogeno groups such as fluoro group, chloro group, bromo group and iodo group; hydride group; hydroxyl group; acetylacetonate and the like A substituted or unsubstituted diketonate group; a substituted or unsubstituted cyclopentadienyl group; a vinyl group, a 1-propenyl group, a 2-propenyl group, a 1-butenyl group, a 2-butenyl group, a 3-butenyl group, 1- Methyl-2-propenyl group, 2-methyl-2-propenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group, 1-methyl-2-butenyl group, 2-methyl-2 -Substituted or unsubstituted butenyl group, 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group, etc. Alkenyl group: methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, n-pentyl group, n-hexyl group, etc. Substituted or unsubstituted alkyl group; substituted or unsubstituted aryl group such as phenyl group and naphthyl group; methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, s-butoxy group, i A substituted or unsubstituted alkoxy group such as -butoxy group and t-butoxy group; a substituted or unsubstituted aryloxy group such as phenoxy group and 1-naphthoxy group; a methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, Substituted or unsubstituted alkyl such as i-propoxycarbonyl group, n-butoxycarbonyl group, t-butoxycarbonyl group, etc. Coxoxycarbonyl group; Substituted or unsubstituted carboxyl group such as carboxyl group, methoxycarbonyl group, and ethoxycarbonyl group; Substituted or unsubstituted group such as methylsulfonate group, ethylsulfonate group, and t-butylsulfonate group Alkyl sulfonate groups of the above; substituted or unsubstituted aryl sulfonate groups such as phenyl sulfonate groups; methylthio groups, ethylthio groups, n-propylthio groups, i-propylthio groups, n-butylthio groups, i-butylthio groups , Substituted or unsubstituted alkylthio groups such as s-butylthio group and t-butylthio group; substituted or unsubstituted alkenylthio groups such as vinylthio group and allylthio group; substituted or unsubstituted arylthio groups such as phenylthio group and naphthylthio group Methylsulfonyl group, It may be mentioned and methylsulfinyl group, ethylsulfinyl group, a substituted or unsubstituted alkylsulfinyl group, such as t-butyl sulfinyl group; Rusuruhoniru group, t- butyl sulfo-substituted or unsubstituted alkylsulfonyl group such group. Of these, CF 3 SO 3 , PF 6 , halogeno groups, and substituted or unsubstituted alkoxy groups are preferred.
 式〔II〕において、Zは、置換若しくは無置換のシクロペンタジエニル基を示す。Zの具体例としては、シクロペンタジエニル基、1,3-ジイソプロピルシクロペンタジエニル基、テトラフェニルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基などを挙げることができる。 In the formula [II], Z 2 represents a substituted or unsubstituted cyclopentadienyl group. Specific examples of Z 2 include a cyclopentadienyl group, 1,3-diisopropylcyclopentadienyl group, tetraphenylcyclopentadienyl group, pentamethylcyclopentadienyl group and the like.
 式〔II〕において、nは、2~4の整数を示す。 In the formula [II], n represents an integer of 2 to 4.
 上記X及びZに例示された基の「置換若しくは無置換の」における「置換基」としては、後述する式〔III〕における置換基と同様の基が挙げられる。 Examples of the “substituent” in “substituted or unsubstituted” of the groups exemplified as X 2 and Z 2 include the same groups as the substituents in the formula [III] described later.
 式〔II〕で表される化合物として、具体的には(ペンタメチルシクロペンタジエニル)ルテニウム(II)クロリド四量体、(ペンタメチルシクロペンタジエニル)ルテニウム(II)メトキシド二量体などを挙げることができる。 Specific examples of the compound represented by the formula [II] include (pentamethylcyclopentadienyl) ruthenium (II) chloride tetramer, (pentamethylcyclopentadienyl) ruthenium (II) methoxide dimer, and the like. Can be mentioned.
(式〔III〕で表される化合物)
 式〔III〕で表される化合物は、以下で表される。
A-B    〔III〕
(Compound represented by Formula [III])
The compound represented by the formula [III] is represented by the following.
AB      [III]
 式〔III〕中、AとBは単結合で結合する。 In the formula [III], A and B are bonded by a single bond.
 式〔III〕中、Aは、式〔a1〕又は式〔a2〕で表される構造を示す。 In the formula [III], A represents a structure represented by the formula [a1] or the formula [a2].
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式〔a1〕中、Rは、置換基を示す。置換基としては、C1~6アルキル基、C3~8シクロアルキル基、C6~10アリール基、3~6員ヘテロシクリル基、ヒドロキシル基、C1~6アルコキシ基、C6~10アリールオキシ基、カルボキシル基、ハロゲノ基、C1~6ハロアルキル基、C6~10ハロアリール基、C1~6ハロアルコキシ基、アミノ基(NHで表される基)、C1~6アルキル置換アミノ基、C6~10アリールアミノ基、C1~7アシルアミノ基、C1~6アルコキシカルボニルアミノ基、C1~6アルキルチオ基、C6~10アリールチオ基、ヘテロアリールチオ基、C7~11アラルキルチオ基、C1~6アルキルスルフィニル基、C6~10アリールスルフィニル基、ヘテロアリールスルフィニル基、C7~11アラルキルスルフィニル基、C1~6アルキルスルホニル基、C6~10アリールスルホニル基、ヘテロシクリルスルホニル基、シアノ基、ニトロ基などを挙げることができる。 In the formula [a1], R 1 represents a substituent. Substituents include C1-6 alkyl groups, C3-8 cycloalkyl groups, C6-10 aryl groups, 3-6 membered heterocyclyl groups, hydroxyl groups, C1-6 alkoxy groups, C6-10 aryloxy groups, carboxyl groups, Halogeno group, C1-6 haloalkyl group, C6-10 haloaryl group, C1-6 haloalkoxy group, amino group (group represented by NH 2 ), C1-6 alkyl-substituted amino group, C6-10 arylamino group, C1 ~ 7 acylamino group, C1-6 alkoxycarbonylamino group, C1-6 alkylthio group, C6-10 arylthio group, heteroarylthio group, C7-11 aralkylthio group, C1-6 alkylsulfinyl group, C6-10 arylsulfinyl group , Heteroarylsulfinyl group, C7-11 aralkylsulfinyl group, C7 Examples thereof include a 1-6 alkylsulfonyl group, a C6-10 arylsulfonyl group, a heterocyclylsulfonyl group, a cyano group, and a nitro group.
 式〔a1〕中、pは0~3いずれかの整数を示す。 In the formula [a1], p represents an integer of 0 to 3.
 式〔a1〕中、*はBとの結合位置を示す。 In the formula [a1], * indicates a bonding position with B.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式〔a2〕中、Rは置換基を示す。置換基としては、C1~6アルキル基、C3~8シクロアルキル基、C6~10アリール基、3~6員ヘテロシクリル基、ヒドロキシル基、C1~6アルコキシ基、C6~10アリールオキシ基、カルボキシル基、ハロゲノ基、C1~6ハロアルキル基、C6~10ハロアリール基、C1~6ハロアルコキシ基、アミノ基(NHで表される基)、C1~6アルキル置換アミノ基、C6~10アリールアミノ基、C1~7アシルアミノ基、C1~6アルコキシカルボニルアミノ基、C1~6アルキルチオ基、C6~10アリールチオ基、ヘテロアリールチオ基、C7~11アラルキルチオ基、C1~6アルキルスルフィニル基、C6~10アリールスルフィニル基、ヘテロアリールスルフィニル基、C7~11アラルキルスルフィニル基、C1~6アルキルスルホニル基、C6~10アリールスルホニル基、ヘテロシクリルスルホニル基、シアノ基、ニトロ基などを挙げることができる。 In the formula [a2], R 2 represents a substituent. Substituents include C1-6 alkyl groups, C3-8 cycloalkyl groups, C6-10 aryl groups, 3-6 membered heterocyclyl groups, hydroxyl groups, C1-6 alkoxy groups, C6-10 aryloxy groups, carboxyl groups, Halogeno group, C1-6 haloalkyl group, C6-10 haloaryl group, C1-6 haloalkoxy group, amino group (group represented by NH 2 ), C1-6 alkyl-substituted amino group, C6-10 arylamino group, C1 -7 acylamino group, C1-6 alkoxycarbonylamino group, C1-6 alkylthio group, C6-10 arylthio group, heteroarylthio group, C7-11 aralkylthio group, C1-6 alkylsulfinyl group, C6-10 arylsulfinyl group , Heteroarylsulfinyl group, C7-11 aralkylsulfinyl group, C7 Examples thereof include a 1-6 alkylsulfonyl group, a C6-10 arylsulfonyl group, a heterocyclylsulfonyl group, a cyano group, and a nitro group.
 式〔a2〕中、qは0~4いずれかの整数を示す。 In the formula [a2], q represents an integer of 0 to 4.
 式〔a2〕中、*はBとの結合位置を示す。 In the formula [a2], * indicates the position of binding to B.
 上記R及びRにおいて、
 「C1~6アルキル基」としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、i-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基などが挙げられる。
 「C3~8シクロアルキル基」としては、単環又は多環のアルキル基であり、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロへキシル基、シクロヘプチル基、シクロオクチル基、ビシクロオクチル基、ビシクロヘプチル基などが挙げられる。
 「C6~10アリール基」は、単環又は多環のアリール基を意味する。ここで、多環アリール基の場合は、完全不飽和に加え、部分飽和の基も包含する。例えばフェニル基、ナフチル基、アズレニル基、インデニル基、インダニル基、テトラリニル基などが挙げられる。
 「3~6員ヘテロシクリル基」としては、後述する式〔III〕のBに例示するものと同様の基が挙げられる。
 「C1~6アルコキシ基」としては、メトキシ基、エトキシ基、n-プロポキシ基、i-プロポキシ基、n-ブトキシ基、s-ブトキシ基、i-ブトキシ基、t-ブトキシ基などが挙げられる。
 「C6~10アリールオキシ基」としては、フェノキシ基、1-ナフトキシ基などが挙げられる。
 「ハロゲノ基」としては、フルオロ基、クロロ基、ブロモ基、ヨード基などが挙げられる。
 「C1~6ハロアルキル基」としては、クロロメチル基、ブロモメチル基、フルオロメチル基、トリフルオロメチル基、トリクロロメチル基、トリブロモメチル基、2,2,2-トリクロロエチル基、2,2,3,3,3-ペンタフルオロプロピル基又は1-クロロブチル基、6-フルオロへヘキシル基、6,6,6―トリフルオロへキシル基などが挙げられる。
 「C6~10ハロアリール基」としては、4-クロロフェニル、4-ブロモフェニル、3,5-ジクロロフェニルなどが挙げられる。
 「C1~6ハロアルコキシ基」としては、クロロメトキシ基、ブロモメトキシ基、フルオロメトキシ、トリフルオロメトキシ基などが挙げられる。
 「C1~6アルキル置換アミノ基」としては、メチルアミノ基、エチルアミノ基、n-プロピルアミノ基、n-ブチルアミノ基、n-へキシルアミノ基などのモノアルキルアミノ基;ジメチルアミノ基、ジエチルアミノ基、ジ-n-プロピルアミノ基、ジ-n-ブチルアミノ基、N-メチル-N-ヘキシルアミノ基などのジアルキルアミノ基が挙げられる。
 「C6~10アリールアミノ基」としては、フェニルアミノ基、ジフェニルアミノ基などが挙げられる。
 「C1~7アシルアミノ基」としては、アセチルアミノ基、ジアセチルアミノ基などが挙げられる。
 「C1~6アルコキシカルボニルアミノ基」としては、メトキシカルボニルアミノ基、ジメトキシカルボニルアミノ基などが挙げられる。
 「C1~6アルキルチオ基」としては、メチルチオ基、エチルチオ基、n-プロピルチオ基、t-ブチルチオ基、1-エチルプロピルチオ基、n-ヘキシルチオ基などが挙げられる。
 「C6~10アリールチオ基」としては、フェニルチオ基、ナフチルチオ基などが挙げられる。
 「ヘテロアリールチオ基」としては、フリルチオ基、チエニルチオ基、ピロリルチオ基、ピリジニルチオ基、ピラジニルチオ基、ピリジニルチオ基などが挙げられる。
 「C7~11アラルキルチオ基」としては、ベンジルチオ基、フェネチルチオ基、ナフチルメチルチオ基などが挙げられる。
 「C1~6アルキルスルフィニル基」としては、メチルスルフィニル基、エチルスルフィニル基、t-ブチルスルフィニル基などが挙げられる。
 「C6~10アリールスルフィニル基」としては、フェニルスルフィニル基、ナフチルスルフィニル基などが挙げられる。
 「ヘテロアリールスルフィニル基」としては、フリルスルフィニル基、チエニルスルフェニル基、ピロリルスルフェニル基、ピリジニルスルフェニル基、ピラジニルスルフェニル基、ピリジニルスルフェニル基などが挙げられる。
 「C7~11アラルキルスルフィニル基」としては、ベンジルスルフェニル基、フェネチルスルフェニル基、ナフチルメチルスルフェニル基などが挙げられる。
 「C1~6アルキルスルホニル基」としては、メチルスルホニル基、エチルスルホニル基、t-ブチルスルホニル基などが挙げられる。
 「C6~10アリールスルホニル基」としては、フェニルスルホニル基、ナフチルスルホニル基などが挙げられる。
 「ヘテロシクリルスルホニル基」としては、アジリジニルスルホニル基、エポキシスルホニル基、ピロリルフルホニル基、フリルスルホニル基、チエニルスルホニル基などが挙げられる。
In R 1 and R 2 above,
“C1-6 alkyl group” includes methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, t-butyl group, and n-pentyl group. And n-hexyl group.
The “C3-8 cycloalkyl group” is a monocyclic or polycyclic alkyl group, for example, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a bicyclooctyl group. And a bicycloheptyl group.
“C6-10 aryl group” means a monocyclic or polycyclic aryl group. Here, in the case of a polycyclic aryl group, a partially saturated group is included in addition to the fully unsaturated group. Examples thereof include a phenyl group, a naphthyl group, an azulenyl group, an indenyl group, an indanyl group, and a tetralinyl group.
Examples of the “3- to 6-membered heterocyclyl group” include the same groups as those exemplified for B in the formula [III] described later.
Examples of the “C1-6 alkoxy group” include methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, s-butoxy group, i-butoxy group, t-butoxy group and the like.
Examples of the “C6-10 aryloxy group” include a phenoxy group and a 1-naphthoxy group.
Examples of the “halogeno group” include a fluoro group, a chloro group, a bromo group, and an iodo group.
Examples of the “C1-6 haloalkyl group” include chloromethyl group, bromomethyl group, fluoromethyl group, trifluoromethyl group, trichloromethyl group, tribromomethyl group, 2,2,2-trichloroethyl group, 2,2,3 , 3,3-pentafluoropropyl group or 1-chlorobutyl group, 6-fluorohexyl group, 6,6,6-trifluorohexyl group and the like.
Examples of the “C6-10 haloaryl group” include 4-chlorophenyl, 4-bromophenyl, 3,5-dichlorophenyl and the like.
Examples of the “C1-6 haloalkoxy group” include chloromethoxy group, bromomethoxy group, fluoromethoxy, trifluoromethoxy group and the like.
Examples of the “C1-6 alkyl-substituted amino group” include monoalkylamino groups such as methylamino group, ethylamino group, n-propylamino group, n-butylamino group, n-hexylamino group; dimethylamino group, diethylamino group And dialkylamino groups such as a di-n-propylamino group, a di-n-butylamino group, and an N-methyl-N-hexylamino group.
Examples of the “C6-10 arylamino group” include a phenylamino group and a diphenylamino group.
Examples of the “C1-7 acylamino group” include an acetylamino group and a diacetylamino group.
Examples of the “C1-6 alkoxycarbonylamino group” include a methoxycarbonylamino group and a dimethoxycarbonylamino group.
Examples of the “C1-6 alkylthio group” include methylthio group, ethylthio group, n-propylthio group, t-butylthio group, 1-ethylpropylthio group, n-hexylthio group and the like.
Examples of the “C6-10 arylthio group” include a phenylthio group and a naphthylthio group.
Examples of the “heteroarylthio group” include a furylthio group, a thienylthio group, a pyrrolylthio group, a pyridinylthio group, a pyrazinylthio group, and a pyridinylthio group.
Examples of the “C7-11 aralkylthio group” include benzylthio group, phenethylthio group, naphthylmethylthio group and the like.
Examples of the “C1-6 alkylsulfinyl group” include methylsulfinyl group, ethylsulfinyl group, t-butylsulfinyl group and the like.
Examples of the “C6-10 arylsulfinyl group” include a phenylsulfinyl group and a naphthylsulfinyl group.
Examples of the “heteroarylsulfinyl group” include a furylsulfinyl group, a thienylsulfenyl group, a pyrrolylsulfenyl group, a pyridinylsulfenyl group, a pyrazinylsulfenyl group, and a pyridinylsulfenyl group.
Examples of the “C7-11 aralkylsulfinyl group” include benzylsulfenyl group, phenethylsulfenyl group, naphthylmethylsulfenyl group and the like.
Examples of the “C1-6 alkylsulfonyl group” include a methylsulfonyl group, an ethylsulfonyl group, a t-butylsulfonyl group and the like.
Examples of the “C6-10 arylsulfonyl group” include a phenylsulfonyl group and a naphthylsulfonyl group.
Examples of the “heterocyclylsulfonyl group” include an aziridinylsulfonyl group, an epoxysulfonyl group, a pyrrolyl sulfonyl group, a furylsulfonyl group, a thienylsulfonyl group, and the like.
 式〔III〕中、Bは、置換若しくは無置換のヘテロシクリル基を示す。ただし、前記置換若しくは無置換のヘテロシクリル基は、Aと結合する環構成原子に隣接する原子の少なくとも1つが、ヘテロ原子又はカルベン炭素である。 In the formula [III], B represents a substituted or unsubstituted heterocyclyl group. However, in the substituted or unsubstituted heterocyclyl group, at least one of the atoms adjacent to the ring atom bonded to A is a heteroatom or a carbene carbon.
 上記の「ヘテロシクリル基」とは、窒素原子、酸素原子及び硫黄原子からなる群から選ばれる1~4個のヘテロ原子を環の構成原子として含むものである。ヘテロシクリル基は、単環及び多環のいずれであってもよい。多環ヘテロシクリル基は、少なくとも一つの環がヘテロ環であれば、残りの環が飽和脂環、不飽和脂環又は芳香環のいずれであってもよい。「ヘテロシクリル基」としては、3~6員飽和ヘテロシクリル基、5~6員ヘテロアリール基、5~6員部分不飽和ヘテロシクリル基、9~10員ヘテロアリール基などを挙げることができる。 The above-mentioned “heterocyclyl group” includes 1 to 4 heteroatoms selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom as ring constituent atoms. The heterocyclyl group may be monocyclic or polycyclic. In the polycyclic heterocyclyl group, if at least one ring is a hetero ring, the remaining ring may be a saturated alicyclic ring, an unsaturated alicyclic ring or an aromatic ring. Examples of the “heterocyclyl group” include a 3-6 membered saturated heterocyclyl group, a 5-6 membered heteroaryl group, a 5-6 membered partially unsaturated heterocyclyl group, and a 9-10 membered heteroaryl group.
 3~6員飽和ヘテロシクリル基としては、アジリジニル基、エポキシ基、ピロリジニル基、テトラヒドロフラニル基、チアゾリジニル基、ピペリジル基、ピペラジニル基、モルホリニル基、ジオキソラニル基、ジオキサニル基などを挙げることができる。 Examples of the 3- to 6-membered saturated heterocyclyl group include aziridinyl group, epoxy group, pyrrolidinyl group, tetrahydrofuranyl group, thiazolidinyl group, piperidyl group, piperazinyl group, morpholinyl group, dioxolanyl group and dioxanyl group.
 5員ヘテロアリール基としては、ピロリル基、フリル基、チエニル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、イソオキサゾリル基、チアゾリル基、イソチアゾリル基、トリアゾリル基、オキサジアゾリル基、チアジアゾリル基、テトラゾリル基などを挙げることができる。
 6員ヘテロアリール基としては、ピリジル基、ピラジニル基、ピリミジニル基、ピリダニジル基、トリアジニル基などを挙げることができる。
Examples of 5-membered heteroaryl groups include pyrrolyl, furyl, thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, triazolyl, oxadiazolyl, thiadiazolyl, tetrazolyl Can do.
Examples of the 6-membered heteroaryl group include a pyridyl group, a pyrazinyl group, a pyrimidinyl group, a pyridanidyl group, and a triazinyl group.
 5~6員部分不飽和ヘテロシクリル基としては、2,3-ジヒドロピロリル基、2,3-ジヒドロピリジニル基、2,3-ジヒドロチアゾリル基、2,3-ジヒドロフラニル基、イミダゾリニル基などを挙げることができる。 Examples of the 5- to 6-membered partially unsaturated heterocyclyl group include 2,3-dihydropyrrolyl group, 2,3-dihydropyridinyl group, 2,3-dihydrothiazolyl group, 2,3-dihydrofuranyl group, An imidazolinyl group etc. can be mentioned.
 9~10員ヘテロアリール基は、ベンゼン環を有する二環式ヘテロシクリル基であり、インドリル基、キノリニル基、ベンゾイミダゾリル基、ベンゾフラニル基、ベンゾチアゾリニル基などを挙げることができる。 The 9 to 10 membered heteroaryl group is a bicyclic heterocyclyl group having a benzene ring, and examples thereof include an indolyl group, a quinolinyl group, a benzimidazolyl group, a benzofuranyl group, and a benzothiazolinyl group.
 ヘテロシクリル基の置換基としては、C1~6アルキル基、C3~8シクロアルキル基、C6~10アリール基、3~6員ヘテロシクリル基、ヒドロキシル基、C1~6アルコキシ基、C6~10アリールオキシ基、カルボキシル基、ハロゲノ基、C1~6ハロアルキル基、C6~10ハロアリール基、C1~6ハロアルコキシ基、アミノ基(NH2で表される基)、C1~6アルキル置換アミノ基、C6~10アリールアミノ基、C1~7アシルアミノ基、C1~6アルコキシカルボニルアミノ基、C1~6アルキルチオ基、C6~10アリールチオ基、ヘテロアリールチオ基、C7~11アラルキルチオ基、C1~6アルキルスルフィニル基、C6~10アリールスルフィニル基、ヘテロアリールスルフィニル基、C7~11アラルキルスルフィニル基、C1~6アルキルスルホニル基、C6~10アリールスルホニル基、ヘテロシクリルスルホニル基、シアノ基、ニトロ基などを挙げることができる。 Examples of the substituent for the heterocyclyl group include a C1-6 alkyl group, a C3-8 cycloalkyl group, a C6-10 aryl group, a 3-6 membered heterocyclyl group, a hydroxyl group, a C1-6 alkoxy group, a C6-10 aryloxy group, Carboxyl group, halogeno group, C1-6 haloalkyl group, C6-10 haloaryl group, C1-6 haloalkoxy group, amino group (group represented by NH 2 ), C1-6 alkyl-substituted amino group, C6-10 arylamino Group, C1-7 acylamino group, C1-6 alkoxycarbonylamino group, C1-6 alkylthio group, C6-10 arylthio group, heteroarylthio group, C7-11 aralkylthio group, C1-6 alkylsulfinyl group, C6-10 Arylsulfinyl group, heteroarylsulfinyl group, C7-11 aralkyl Rufiniru group, and C1 ~ 6 alkylsulfonyl group, C6 ~ 10 arylsulfonyl group, heterocyclylsulfonyl group, a cyano group, a nitro group.
 式〔III〕で表される化合物としては、具体的に、式〔III-1〕~式〔III-8〕で表される化合物を挙げることができる。 Specific examples of the compound represented by the formula [III] include compounds represented by the formula [III-1] to the formula [III-8].
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式〔III-1〕中、R、Rはそれぞれ独立に置換基を示し、pは0~3いずれかの整数を示し、p1は0~4いずれかの整数を示す。R、Rにおける置換基は、式〔a1〕中のRと同じものを挙げることができる。 In the formula [III-1], R 1 and R a each independently represent a substituent, p represents an integer of 0 to 3, and p1 represents an integer of 0 to 4. Substituents in R 1, R a may be mentioned the same as R 1 in the formula [a1].
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式〔III-2〕中、R、Rはそれぞれ独立に置換基を示し、pは0~3いずれかの整数を示し、p2は0~3いずれかの整数を示す。R、Rにおける置換基は、式〔a1〕中のRと同じものを挙げることができる。 In the formula [III-2], R 1 and R b each independently represent a substituent, p represents an integer of 0 to 3, and p2 represents an integer of 0 to 3. Substituents in R 1, R b may be exemplified the same as R 1 in the formula [a1].
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式〔III-3〕中、R、Rはそれぞれ独立に置換基を示し、pは0~3いずれかの整数を示し、p3は0~3いずれかの整数を示す。R、Rにおける置換基は、式〔a1〕中のRと同じものを挙げることができる。 In the formula [III-3], R 1 and R c each independently represents a substituent, p represents an integer of 0 to 3, and p3 represents an integer of 0 to 3. Substituents in R 1, R c may be mentioned the same as R 1 in the formula [a1].
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式〔III-4〕中、R、Rはそれぞれ独立に置換基を示し、Rは、C1~6アルキル基を示し、pは0~3いずれかの整数を示し、p4は0~4いずれかの整数を示す。R、Rにおける置換基は、式〔a1〕中のRと同じものを挙げることができる。 In the formula [III-4], R 1 and R d each independently represent a substituent, R 3 represents a C1-6 alkyl group, p represents an integer of 0 to 3, and p4 represents 0 to 4 represents any integer. Substituents in R 1, R d may include the same ones as R 1 in the formula [a1].
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式〔III-5〕中、R、Rはそれぞれ独立に置換基を示し、Rは、C1~6アルキル基を示し、pは0~3いずれかの整数を示し、p5は0~4いずれかの整数を示す。R、Rにおける置換基は、式〔a1〕中のRと同じものを挙げることができる。 In the formula [III-5], R 1 and R e each independently represents a substituent, R 4 represents a C1-6 alkyl group, p represents an integer of 0 to 3, and p5 represents 0 to 4 represents any integer. Substituents in R 1, R e may be mentioned the same as R 1 in the formula [a1].
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式〔III-6〕中、R、Rはそれぞれ独立に置換基を示し、qは0~4いずれかの整数を示し、p6は0~4いずれかの整数を示す。R、Rにおける置換基は、式〔a2〕中のRと同じものを挙げることができる。 In the formula [III-6], R 2 and R f each independently represent a substituent, q represents an integer of 0 to 4, and p6 represents an integer of 0 to 4. Substituent in R 2, R f may be mentioned the same as R 2 in the formula [a2].
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式〔III-7〕中、R、Rはそれぞれ独立に置換基を示し、qは0~4いずれかの整数を示し、p7は0~2いずれかの整数を示す。R、Rにおける置換基は、式〔a2〕中のRと同じものを挙げることができる。 In the formula [III-7], R 2 and R g each independently represent a substituent, q represents an integer of 0 to 4, and p7 represents an integer of 0 to 2. Examples of the substituent for R 2 and R g include the same as R 2 in formula [a2].
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式〔III-8〕中、R、Rはそれぞれ独立に置換基を示し、qは0~4いずれかの整数を示し、p8は0~4いずれかの整数を示す。R、Rおける置換基は、式〔a2〕中のRと同じものを挙げることができる。 In the formula [III-8], R 2 and R h each independently represent a substituent, q represents an integer of 0 to 4, and p8 represents an integer of 0 to 4. R 2, R h definitive substituent group include the same as R 2 in the formula [a2].
(ルテニウム錯体の調製方法)
 本発明のルテニウム錯体は、有機溶媒中で、式〔I〕及び式〔II〕で表される化合物から選ばれる少なくとも一種と、式〔III〕で表される化合物とを混合し、反応させることにより、調製することができる。
(Method for preparing ruthenium complex)
The ruthenium complex of the present invention is obtained by mixing and reacting at least one selected from the compounds represented by the formula [I] and the formula [II] with the compound represented by the formula [III] in an organic solvent. Can be prepared.
 反応に用いる有機溶媒としては、例えば、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類;ペンタン、ヘキサンなどの脂肪族炭化水素類;ジクロロメタン、クロロホルム、トリクロロメタン、四塩化炭素、1,2-ジクロロエタンなどのハロゲン炭化水素類;ジエチルエーテル、テトラヒドロフラン(THF)、1,2-ジメトキシエタン、1,4-ジオキサンなどのエーテル類;メタノール、エタノール、n-プロパノール、イソプロパノール、ブタノール、ベンジルアルコールなどのアルコール類;N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセタミド、1,3-ジメチルイミダゾリジン、1,3-ジメチル-2-イミダゾリジノン、N-メチルピロリドン、ヘキサメチルリン酸トリアミド(HMPT)などのアミド類;アセトニトリル、ベンゾニトリルなどのニトリル類;ジメチルスルホキシド(DMSO)などを挙げることができる。これらの溶媒は単独で又は2種以上を混合して使用することができる。 Examples of the organic solvent used in the reaction include aromatic hydrocarbons such as benzene, toluene and xylene; aliphatic hydrocarbons such as pentane and hexane; dichloromethane, chloroform, trichloromethane, carbon tetrachloride, and 1,2-dichloroethane. Halogen ethers such as; ethers such as diethyl ether, tetrahydrofuran (THF), 1,2-dimethoxyethane, 1,4-dioxane; alcohols such as methanol, ethanol, n-propanol, isopropanol, butanol, and benzyl alcohol N, N-dimethylformamide (DMF), N, N-dimethylacetamide, 1,3-dimethylimidazolidine, 1,3-dimethyl-2-imidazolidinone, N-methylpyrrolidone, hexamethylphosphoric triamide (HMPT) Amides; acetonitrile, nitriles such as benzonitrile; and the like dimethyl sulfoxide (DMSO). These solvents can be used alone or in admixture of two or more.
 溶媒の使用量は、反応物質1gに対して、好ましくは1~100ml、より好ましくは5~30mlである。 The amount of solvent used is preferably 1 to 100 ml, more preferably 5 to 30 ml, with respect to 1 g of the reactant.
 反応時の温度は、通常、室温~反応溶媒の沸点、好ましくは25~100℃である。反応に掛ける時間は、反応スケールによっても異なるが、通常、0.1~48時間、好ましくは0.1~18時間である。 The temperature during the reaction is usually room temperature to the boiling point of the reaction solvent, preferably 25 to 100 ° C. The reaction time varies depending on the reaction scale, but is usually 0.1 to 48 hours, preferably 0.1 to 18 hours.
 反応完了後、ルテニウム錯体を含む溶液をそのまま還元反応用の触媒などとして使用してもよいし、ルテニウム錯体を含む溶液から公知の方法でルテニウム錯体を単離し、それを還元反応用の触媒などとして使用してもよい。 After completion of the reaction, the solution containing the ruthenium complex may be used as it is as a catalyst for the reduction reaction, or the ruthenium complex is isolated from the solution containing the ruthenium complex by a known method and used as the catalyst for the reduction reaction, etc. May be used.
 式〔III〕で表される化合物の使用量は、式〔I〕及び式〔II〕で表される化合物1モルに対して、好ましくは0.5~5モル、より好ましくは1.0~1.5モルである。 The amount of the compound represented by the formula [III] is preferably 0.5 to 5 mol, more preferably 1.0 to 1 mol with respect to 1 mol of the compound represented by the formula [I] and the formula [II]. 1.5 moles.
(還元方法)
 本発明の方法は、式〔I〕で表される化合物及び式〔II〕で表される化合物から選ばれる少なくとも一種と、式〔III〕で表される化合物とから調製されるルテニウム錯体を用いて、水素供与体及び塩基の存在下で、ケトン類、アルデヒド類、エステル類、アミド類を還元する方法である。
(Reduction method)
The method of the present invention uses a ruthenium complex prepared from at least one selected from a compound represented by the formula [I] and a compound represented by the formula [II] and a compound represented by the formula [III]. In this method, ketones, aldehydes, esters and amides are reduced in the presence of a hydrogen donor and a base.
 水素供与体としては、水素ガス、イソプロパノール、ギ酸、ギ酸塩などを挙げることができる。これらは1種単独で又は2種以上を組み合わせて用いることができる。なかでも水素ガスが好ましい。 Examples of the hydrogen donor include hydrogen gas, isopropanol, formic acid, formate, and the like. These can be used alone or in combination of two or more. Of these, hydrogen gas is preferred.
 塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどの無機塩基類、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシドなどのアルコキシド、アンモニア、C3~30の有機アミン類などの塩基を挙げることができる。これらは1種単独で又は2種以上を組み合わせて用いることができる。
 C3~30の有機アミン類としては具体的にはトリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、イソプロピルジメチルアミン、トリメチルアミン、n-トリオクチルアミン、iso-トリオクチルアミン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン、1,4-ジアザビシクロ[2.2.2]オクタンなどが挙げられる。
 使用する塩基の量は、特に限定されないが、ルテニウム錯体1モルに対して、1モル以上となる量である。
Examples of the base include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, alkoxides such as sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium t-butoxide, ammonia, C3-30 Examples include bases such as organic amines. These can be used alone or in combination of two or more.
Specific examples of the C3-30 organic amines include triethylamine, tributylamine, diisopropylethylamine, isopropyldimethylamine, trimethylamine, n-trioctylamine, iso-trioctylamine, 1,8-diazabicyclo [5.4.0]. ] Undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, 1,4-diazabicyclo [2.2.2] octane and the like.
The amount of the base to be used is not particularly limited, but is an amount that is 1 mol or more with respect to 1 mol of the ruthenium complex.
 ケトン類としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノンなどを挙げることができる。 Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, and benzophenone.
 アルデヒド類としては、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒドなどを挙げることができる。 Examples of aldehydes include formaldehyde, acetaldehyde, and benzaldehyde.
 エステル類としては、安息香酸メチル、安息香酸エチル、安息香酸イソプロピル、3-フェニルプロピオン酸メチル、シクロプロパンカルボン酸メチル、フタリドなどを挙げることができる。 Examples of esters include methyl benzoate, ethyl benzoate, isopropyl benzoate, methyl 3-phenylpropionate, methyl cyclopropanecarboxylate, and phthalide.
 アミド類としては、N-メチルアセトアニリド、1-フェニル-2-ピロリドンなどを挙げることができる。 Examples of amides include N-methylacetanilide and 1-phenyl-2-pyrrolidone.
 還元反応に用いられる溶媒として、水;メタノール、エタノール、2-プロパノール、tert-ブチルアルコール、トリフルオロエタノール、ヘキサフルオロイソプロパノールなどのアルコール系溶媒;トルエン、キシレンなどの芳香族系溶媒;ジエチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル系溶媒;ジクロロメタン、クロロホルムなどのハロゲン系溶媒などを用いることができる。ギ酸及び/又はギ酸塩を水素供与体として用いる場合は、ギ酸及び/又はギ酸塩が溶媒の役割を兼ねるので、前記の溶媒を用いてもよいし、用いなくてもよい。これら溶媒は、1種単独で又は2種以上を組み合わせて使用することができる。 As a solvent used for the reduction reaction, water; alcohol solvents such as methanol, ethanol, 2-propanol, tert-butyl alcohol, trifluoroethanol, hexafluoroisopropanol; aromatic solvents such as toluene and xylene; diethyl ether, tetrahydrofuran Ether solvents such as 2-methyltetrahydrofuran; halogen solvents such as dichloromethane and chloroform can be used. When formic acid and / or formate is used as a hydrogen donor, formic acid and / or formate also serves as a solvent, and thus the above-mentioned solvent may or may not be used. These solvents can be used alone or in combination of two or more.
 ルテニウム錯体の使用量は、錯体中のルテニウムが、基質1モルに対して、好ましくは0.001~100ミリモル、より好ましくは0.06~20ミリモルとなる量である。 The amount of the ruthenium complex used is such that ruthenium in the complex is preferably 0.001 to 100 mmol, more preferably 0.06 to 20 mmol, relative to 1 mol of the substrate.
 水素供与体の使用量は、基質中の還元対象となる官能基1モルに対して、好ましくは1モル以上、より好ましくは2モル以上、さらに好ましくは10モル以上、よりさらに好ましくは20モル以上である。 The amount of the hydrogen donor to be used is preferably 1 mol or more, more preferably 2 mol or more, further preferably 10 mol or more, still more preferably 20 mol or more with respect to 1 mol of the functional group to be reduced in the substrate. It is.
 還元反応時の温度は、好ましくは-20~150℃、より好ましくは0~100℃の範囲などから選択することができる。 The temperature during the reduction reaction can be selected from the range of preferably −20 to 150 ° C., more preferably 0 to 100 ° C.
 還元反応に掛ける時間は、触媒の使用量によって異なるが、好ましくは0.1~100時間、より好ましくは0.1~10時間である。 The time for the reduction reaction varies depending on the amount of catalyst used, but is preferably 0.1 to 100 hours, more preferably 0.1 to 10 hours.
 反応完了後、蒸留、抽出、クロマトグラフィー、再結晶などの一般的操作により、生成物を分離、精製することができる。 After completion of the reaction, the product can be separated and purified by general operations such as distillation, extraction, chromatography, and recrystallization.
 次に、実施例を示し、本発明をより詳しく説明する。ただし、本発明はこれら実施例に限定されるものではない。 Next, examples will be shown to explain the present invention in more detail. However, the present invention is not limited to these examples.
合成例1
 シュレンク管にテトラヒドロフラン2mlと、2-(2-ピリジル)ベンズイミダゾール(下記化合物(1))40mg(0.2mmol)を加え、脱気した後、反応容器内をアルゴン置換した。そこに、クロロ(1,5-シクロオクタジエン)(ペンタメチルシクロペンタジエニル)ルテニウム(II)76mg(0.2mmol)を加え、5分間還流した。溶液を濃縮後、乾固することによりルテニウム錯体1を調製した。
Synthesis example 1
To the Schlenk tube, 2 ml of tetrahydrofuran and 40 mg (0.2 mmol) of 2- (2-pyridyl) benzimidazole (the following compound (1)) were added and deaerated, and then the inside of the reaction vessel was purged with argon. Thereto was added 76 mg (0.2 mmol) of chloro (1,5-cyclooctadiene) (pentamethylcyclopentadienyl) ruthenium (II), and the mixture was refluxed for 5 minutes. The solution was concentrated and then dried to prepare ruthenium complex 1.
合成例2~合成例8
 化合物(1)の代わりに下記化合物(2)~(8)を用いること以外は、合成例1と同様にして、ルテニウム錯体2~ルテニウム錯体8を調製した。
Synthesis Example 2 to Synthesis Example 8
Ruthenium complex 2 to ruthenium complex 8 were prepared in the same manner as in Synthesis Example 1 except that the following compounds (2) to (8) were used in place of compound (1).
比較合成例1、2
 化合物(1)の代わりに下記化合物(A)を用いること以外は、合成例1と同様にして、ルテニウム錯体Aを調製した。
 同様に下記化合物(B)を用いることで、ルテニウム錯体Bを調製した。
Comparative Synthesis Examples 1 and 2
Ruthenium complex A was prepared in the same manner as in Synthesis Example 1, except that the following compound (A) was used instead of compound (1).
Similarly, ruthenium complex B was prepared by using the following compound (B).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
実施例1 (アセトフェノンの水素化)
 ガラスオートクレーブにルテニウム錯体1を5mg(0.01mmol)とカリウムt-ブトキシド11mg(0.1mmol)を加え、アルゴン置換した。アセトフェノン1.20g(10mmol)をイソプロパノール5mlに溶解し、脱気した後、アルゴン置換した。オートクレーブにアセトフェノン溶液を移送し、0.9MPaの水素雰囲気下、室温で1時間撹拌した。残圧を解放後、GC分析(FID)を行った。相対面積比98.9%にて1-フェニルエタン-1-オールが得られた。
Example 1 (Hydrogenation of acetophenone)
To a glass autoclave were added 5 mg (0.01 mmol) of ruthenium complex 1 and 11 mg (0.1 mmol) of potassium t-butoxide, and the atmosphere was replaced with argon. 1.20 g (10 mmol) of acetophenone was dissolved in 5 ml of isopropanol, degassed, and then purged with argon. The acetophenone solution was transferred to an autoclave and stirred at room temperature for 1 hour under a hydrogen atmosphere of 0.9 MPa. After releasing the residual pressure, GC analysis (FID) was performed. 1-phenylethane-1-ol was obtained at a relative area ratio of 98.9%.
実施例2 (アセトフェノンの水素化)
 ルテニウム錯体1の代わりにルテニウム錯体4を用いること以外は、実施例1と同様にしてアセトフェノンの水素化反応を行った。相対面積比99.6%にて1-フェニルエタン-1-オールが得られた。
Example 2 (Hydrogenation of acetophenone)
The hydrogenation reaction of acetophenone was performed in the same manner as in Example 1 except that the ruthenium complex 4 was used instead of the ruthenium complex 1. 1-Phenylethane-1-ol was obtained at a relative area ratio of 99.6%.
実施例3 (アセトフェノンの水素化)
 ルテニウム錯体1の代わりにルテニウム錯体5を用いること以外は、実施例1と同様にしてアセトフェノンの水素化反応を行った。相対面積比96.3%にて1-フェニルエタン-1-オールが得られた。
Example 3 (Hydrogenation of acetophenone)
The hydrogenation reaction of acetophenone was performed in the same manner as in Example 1 except that the ruthenium complex 5 was used instead of the ruthenium complex 1. 1-phenylethane-1-ol was obtained at a relative area ratio of 96.3%.
実施例4 (アセトフェノンの水素化)
 ルテニウム錯体1の代わりにルテニウム錯体6を用いること以外は、実施例1と同様にしてアセトフェノンの水素化反応を行った。相対面積比99.7%にて1-フェニルエタン-1-オールが得られた。
Example 4 (Hydrogenation of acetophenone)
The hydrogenation reaction of acetophenone was performed in the same manner as in Example 1 except that the ruthenium complex 6 was used instead of the ruthenium complex 1. 1-Phenylethane-1-ol was obtained at a relative area ratio of 99.7%.
実施例5 (アセトフェノンの水素化)
 ルテニウム錯体1の代わりにルテニウム錯体3を用いること以外は、実施例1と同様にしてアセトフェノンの水素化反応を行った。相対面積比98.6%にて1-フェニルエタン-1-オールが得られた。
Example 5 (Hydrogenation of acetophenone)
The hydrogenation reaction of acetophenone was carried out in the same manner as in Example 1 except that ruthenium complex 3 was used instead of ruthenium complex 1. 1-phenylethane-1-ol was obtained at a relative area ratio of 98.6%.
実施例6(安息香酸メチルの水素化)
 金属オートクレーブにルテニウム錯体1を5mg(0.01mmol)加えた後、反応系内をアルゴン置換した。安息香酸メチル2.72g(20mmol)をテトラヒドロフラン7.5mlに溶解し、脱気した後、アルゴン置換した。オートクレーブにエステル溶液を移送し、続いて1M カリウムt-ブトキシド/テトラヒドロフラン溶液1mlを加えた。5MPaの水素雰囲気下、80℃で3時間撹拌した。冷却後、HPLC分析を行った。ベンジルアルコールが、相対面積比95.6%(定量分析収率92.4%)で生成した。その他に、安息香酸メチルが、相対面積比1.7%、安息香酸ベンジルが相対面積比0.3%で存在していた。
Example 6 (hydrogenation of methyl benzoate)
After adding 5 mg (0.01 mmol) of ruthenium complex 1 to the metal autoclave, the reaction system was purged with argon. 2.72 g (20 mmol) of methyl benzoate was dissolved in 7.5 ml of tetrahydrofuran, degassed, and purged with argon. The ester solution was transferred to the autoclave followed by the addition of 1 ml of 1M potassium t-butoxide / tetrahydrofuran solution. The mixture was stirred at 80 ° C. for 3 hours under a hydrogen atmosphere of 5 MPa. After cooling, HPLC analysis was performed. Benzyl alcohol was produced with a relative area ratio of 95.6% (quantitative analysis yield 92.4%). In addition, methyl benzoate was present in a relative area ratio of 1.7% and benzyl benzoate was present in a relative area ratio of 0.3%.
実施例7 (安息香酸メチルの水素化)
 ルテニウム錯体1の代わりにルテニウム錯体3を用いること以外は、実施例6と同様にして安息香酸メチルの水素化反応を行った。ベンジルアルコールが、相対面積比77.1%で生成した。その他に、安息香酸メチルが相対面積比15.4%、安息香酸ベンジルが相対面積比5.7%で存在していた。
Example 7 (hydrogenation of methyl benzoate)
A hydrogenation reaction of methyl benzoate was carried out in the same manner as in Example 6 except that ruthenium complex 3 was used instead of ruthenium complex 1. Benzyl alcohol was produced with a relative area ratio of 77.1%. In addition, methyl benzoate was present in a relative area ratio of 15.4% and benzyl benzoate was present in a relative area ratio of 5.7%.
比較例1 (安息香酸メチルの水素化)
 ルテニウム錯体1の代わりにルテニウム錯体Aを用いること以外は、実施例6と同様にして安息香酸メチルの水素化反応を行った。ベンジルアルコールが、相対面積比39.7%で生成した。その他に、安息香酸メチルが相対面積比54.0%、安息香酸ベンジルが相対面積比4.5%で存在していた。
Comparative Example 1 (hydrogenation of methyl benzoate)
A hydrogenation reaction of methyl benzoate was performed in the same manner as in Example 6 except that ruthenium complex A was used instead of ruthenium complex 1. Benzyl alcohol was produced with a relative area ratio of 39.7%. In addition, methyl benzoate was present at a relative area ratio of 54.0% and benzyl benzoate was present at a relative area ratio of 4.5%.
比較例2 (アセトフェノンの水素化)
 ガラスオートクレーブにルテニウム錯体Bを10mg(0.02mmol)とカリウムt-ブトキシド22mg(0.2mmol)を加え、アルゴン置換した。アセトフェノン1.20g(10mmol)をイソプロパノール5mlに溶解し、脱気した後、アルゴン置換した。オートクレーブにアセトフェノン溶液を移送し、0.9MPaの水素雰囲気下、室温で1時間撹拌した。残圧を解放後、GC分析(FID)を行った。相対面積比2.3%にて1-フェニルエタン-1-オールが得られた。
Comparative Example 2 (Hydrogenation of acetophenone)
To a glass autoclave were added 10 mg (0.02 mmol) of ruthenium complex B and 22 mg (0.2 mmol) of potassium t-butoxide, and the atmosphere was replaced with argon. 1.20 g (10 mmol) of acetophenone was dissolved in 5 ml of isopropanol, degassed, and then purged with argon. The acetophenone solution was transferred to an autoclave and stirred at room temperature for 1 hour under a hydrogen atmosphere of 0.9 MPa. After releasing the residual pressure, GC analysis (FID) was performed. 1-Phenylethane-1-ol was obtained at a relative area ratio of 2.3%.
実施例8(フタリドの水素化)
 金属オートクレーブにフタリド2.68g(20mmol)及びルテニウム錯体2を4mg(0.01mmol)入れ、アルゴン置換した。そこに脱気したテトラヒドロフラン10mlとカリウムt-ブトキシド/テトラヒドロフラン溶液(1M)1ml(5mol%)を加え、5MPaの水素雰囲気下、80℃で5時間撹拌した。冷却後、酢酸で中和して反応液を濃縮し、シリカゲルカラムクロマトグラフィーにて精製することで、1,2-ベンゼンジメタノールを2.47g(収率89%)得た。
Example 8 (hydrogenation of phthalide)
In a metal autoclave, 2.68 g (20 mmol) of phthalide and 4 mg (0.01 mmol) of ruthenium complex 2 were added and substituted with argon. Thereto were added 10 ml of degassed tetrahydrofuran and 1 ml (5 mol%) of a potassium t-butoxide / tetrahydrofuran solution (1M), and the mixture was stirred at 80 ° C. for 5 hours in a 5 MPa hydrogen atmosphere. After cooling, the reaction solution was neutralized with acetic acid and concentrated by silica gel column chromatography to obtain 2.47 g (yield 89%) of 1,2-benzenedimethanol.
実施例9 (フタリドの水素化)
 金属オートクレーブにフタリド2.68g(20mmol)及びルテニウム錯体3を4mg(0.01mmol)入れ、アルゴン置換した。そこに脱気したテトラヒドロフラン10mlとカリウムt-ブトキシド/テトラヒドロフラン溶液(1M)1ml(5mol%)を加え、5MPaの水素雰囲気下、80℃で5時間撹拌した。冷却後、酢酸で中和して反応液を濃縮し、シリカゲルカラムクロマトグラフィーにて精製することで、1,2-ベンゼンジメタノールを2.30g(収率83%)得た。
Example 9 (phthalide hydrogenation)
In a metal autoclave, 2.68 g (20 mmol) of phthalide and 4 mg (0.01 mmol) of ruthenium complex 3 were placed and substituted with argon. Thereto were added 10 ml of degassed tetrahydrofuran and 1 ml (5 mol%) of a potassium t-butoxide / tetrahydrofuran solution (1M), and the mixture was stirred at 80 ° C. for 5 hours in a 5 MPa hydrogen atmosphere. After cooling, the reaction mixture was neutralized with acetic acid and concentrated by silica gel column chromatography to obtain 2.30 g of 1,2-benzenedimethanol (yield 83%).
実施例10(フタリドの水素化)
 金属オートクレーブにフタリド2.68g(20mmol)及びルテニウム錯体1を5mg(0.01mmol)を入れ、アルゴン置換した。そこに脱気したテトラヒドロフラン10mlとカリウムt-ブトキシド/テトラヒドロフラン溶液(1M)1ml(5mol%)を加え、5MPaの水素雰囲気下、80℃で5時間撹拌した。冷却後、酢酸で中和して反応液を濃縮し、シリカゲルカラムクロマトグラフィーにて精製することで、1,2-ベンゼンジメタノールを2.47g(収率89%)得た。
Example 10 (hydrogenation of phthalides)
A metal autoclave was charged with 2.68 g (20 mmol) of phthalide and 5 mg (0.01 mmol) of ruthenium complex 1 and substituted with argon. Thereto were added 10 ml of degassed tetrahydrofuran and 1 ml (5 mol%) of a potassium t-butoxide / tetrahydrofuran solution (1M), and the mixture was stirred at 80 ° C. for 5 hours in a 5 MPa hydrogen atmosphere. After cooling, the reaction solution was neutralized with acetic acid and concentrated by silica gel column chromatography to obtain 2.47 g (yield 89%) of 1,2-benzenedimethanol.
実施例11 (安息香酸イソプロピルの水素化)
 金属オートクレーブにルテニウム錯体1を5mg(0.01mmol)を加え、アルゴン置換した。安息香酸イソプロピル3.28g(20mmol)をテトラヒドロフラン7.5mlに溶解し、脱気した後、アルゴン置換した。オートクレーブにエステル溶液を移送し、続いて1Mカリウムt-ブトキシド/テトラヒドロフラン溶液1mlを加えた。5MPaの水素雰囲気下、80℃で1.5時間撹拌した。冷却後、反応液をサンプリングしてHPLC分析(UV波長210nm)を行い、相対面積比91.2%(定量分析収率87.8%)でベンジルアルコールを得た。
Example 11 (hydrogenation of isopropyl benzoate)
5 mg (0.01 mmol) of ruthenium complex 1 was added to the metal autoclave, and the atmosphere was replaced with argon. 3.28 g (20 mmol) of isopropyl benzoate was dissolved in 7.5 ml of tetrahydrofuran, degassed, and purged with argon. The ester solution was transferred to an autoclave followed by the addition of 1 ml of 1M potassium t-butoxide / tetrahydrofuran solution. The mixture was stirred at 80 ° C. for 1.5 hours under a hydrogen atmosphere of 5 MPa. After cooling, the reaction solution was sampled and subjected to HPLC analysis (UV wavelength: 210 nm) to obtain benzyl alcohol with a relative area ratio of 91.2% (quantitative analysis yield: 87.8%).
実施例12 (3-フェニルプロピオン酸メチルの水素化)
 金属オートクレーブにルテニウム錯体1を5mg(0.01mmol)入れ、アルゴン置換した。シュレンクチューブ中、3-フェニルプロピオン酸メチル1.64g(10mmol)をテトラヒドロフラン10mlに加え、脱気した後、アルゴン置換した。オートクレーブにエステル溶液を移送し、続いてカリウムt-ブトキシド/テトラヒドロフラン溶液(1M)0.5ml(5mol%)を加えた。5MPaの水素雰囲気下、80℃で5時間撹拌した。冷却後、酢酸で中和した後、反応液を濃縮した。シリカゲルカラムクロマトグラフィーにて精製することで、3-フェニルプロパノールを1.15g(収率84%)得た。
Example 12 (Hydrogenation of methyl 3-phenylpropionate)
5 mg (0.01 mmol) of ruthenium complex 1 was placed in a metal autoclave and purged with argon. In a Schlenk tube, 1.64 g (10 mmol) of methyl 3-phenylpropionate was added to 10 ml of tetrahydrofuran, deaerated, and purged with argon. The ester solution was transferred to an autoclave, and then 0.5 ml (5 mol%) of potassium t-butoxide / tetrahydrofuran solution (1M) was added. The mixture was stirred at 80 ° C. for 5 hours under a hydrogen atmosphere of 5 MPa. After cooling and neutralizing with acetic acid, the reaction solution was concentrated. Purification by silica gel column chromatography gave 1.15 g (yield 84%) of 3-phenylpropanol.
実施例13(シクロプロパンカルボン酸メチルの水素化)
 金属オートクレーブにルテニウム錯体1を5mg(0.01mmol)加え、アルゴン置換した。シクロプロパンカルボン酸メチル1.00g(10mmol)をテトラヒドロフラン10mlに溶解し、脱気した後、アルゴン置換した。オートクレーブにエステル溶液を移送し、続いて1Mカリウムt-ブトキシド/テトラヒドロフラン溶液0.5mlを加えた。5MPaの水素雰囲気下、80℃で5時間撹拌した。冷却後、反応液をサンプリングしてGC分析(FID)を行い、相対面積比80.1%でシクロプロピルメタノールを得た。その他はシクロプロパンカルボン酸メチル9.8%、シクロプロパンカルボン酸シクロプロピルメチル7.9%であった。
Example 13 (hydrogenation of methyl cyclopropanecarboxylate)
5 mg (0.01 mmol) of ruthenium complex 1 was added to the metal autoclave, and the atmosphere was replaced with argon. 1.00 g (10 mmol) of methyl cyclopropanecarboxylate was dissolved in 10 ml of tetrahydrofuran, degassed, and purged with argon. The ester solution was transferred to an autoclave, followed by the addition of 0.5 ml of 1M potassium t-butoxide / tetrahydrofuran solution. The mixture was stirred at 80 ° C. for 5 hours under a hydrogen atmosphere of 5 MPa. After cooling, the reaction solution was sampled and subjected to GC analysis (FID) to obtain cyclopropylmethanol with a relative area ratio of 80.1%. The others were 9.8% methyl cyclopropanecarboxylate and 7.9% cyclopropylmethyl cyclopropanecarboxylate.
実施例14 (1-フェニル-2-ピロリドンの水素化)
 金属オートクレーブにルテニウム錯体1を5mg(0.01mmol)を入れ、アルゴン置換した。シュレンクチューブ中、1-フェニル-2-ピロリドン1.61g(10mmol)をテトラヒドロフラン10mlに加え、脱気した後、アルゴン置換した。オートクレーブにラクタム溶液を移送し、続いてカリウムt-ブトキシド/テトラヒドロフラン溶液(1M)0.5ml(5mol%)を加えた。5MPaの水素雰囲気下、80℃で5時間撹拌した。冷却後、塩化アンモニウム水溶液を加えてトルエンにて抽出した後、飽和食塩水にて洗浄した。硫酸マグネシウム乾燥し、濃縮した後、シリカゲルカラムクロマトグラフィーにて精製することで、4-(フェニルアミノ)ブタノールを1.24g(収率75%)を得た。
Example 14 (Hydrogenation of 1-phenyl-2-pyrrolidone)
A metal autoclave was charged with 5 mg (0.01 mmol) of ruthenium complex 1 and purged with argon. In a Schlenk tube, 1.61 g (10 mmol) of 1-phenyl-2-pyrrolidone was added to 10 ml of tetrahydrofuran, deaerated, and purged with argon. The lactam solution was transferred to the autoclave, and then 0.5 ml (5 mol%) of potassium t-butoxide / tetrahydrofuran solution (1M) was added. The mixture was stirred at 80 ° C. for 5 hours under a hydrogen atmosphere of 5 MPa. After cooling, an aqueous ammonium chloride solution was added and the mixture was extracted with toluene, and then washed with saturated brine. Magnesium sulfate was dried, concentrated, and purified by silica gel column chromatography to obtain 1.24 g (yield 75%) of 4- (phenylamino) butanol.
実施例15 (安息香酸メチルの水素化)
 ルテニウム錯体1の代わりにルテニウム錯体7を用いること以外は、実施例6と同様にして安息香酸メチルの水素化反応を行った。ベンジルアルコールが、相対面積比80%で生成した。その他に、安息香酸メチルが相対面積比7.7%、安息香酸ベンジルが相対面積比5.6%で存在していた。
Example 15 (Hydrogenation of methyl benzoate)
A hydrogenation reaction of methyl benzoate was carried out in the same manner as in Example 6 except that ruthenium complex 7 was used instead of ruthenium complex 1. Benzyl alcohol was produced with a relative area ratio of 80%. In addition, methyl benzoate was present in a relative area ratio of 7.7% and benzyl benzoate was present in a relative area ratio of 5.6%.
実施例16 (安息香酸メチルの水素化)
 ルテニウム錯体1の代わりにルテニウム錯体8を用いること以外は、実施例6と同様にして安息香酸メチルの水素化反応を行った。ベンジルアルコールが、相対面積比63.9%で生成した。その他に、安息香酸メチルが相対面積比21.9%、安息香酸ベンジルが相対面積比12.2%で存在していた。
Example 16 (hydrogenation of methyl benzoate)
A hydrogenation reaction of methyl benzoate was carried out in the same manner as in Example 6 except that ruthenium complex 8 was used instead of ruthenium complex 1. Benzyl alcohol was produced with a relative area ratio of 63.9%. In addition, methyl benzoate was present in a relative area ratio of 21.9% and benzyl benzoate was present in a relative area ratio of 12.2%.

Claims (1)

  1. 式〔I〕
        Ru(X)(L(Z)   〔I〕
    (式〔I〕中、Xは、アニオン性基を示し、Zは、置換若しくは無置換のシクロペンタジエニル基を示し、Lは、中性の配位子を示し、mは、Lが単座配位子の場合は2又は3を示し、Lが二座配位子の場合は1を示す。)で表される化合物、及び式〔II〕
    [Ru(X)(Z)]n   〔II〕
    (式〔II〕中、Xは、アニオン性基を示し、Zは、置換若しくは無置換のシクロペンタジエニル基を示し、nは、2~4の整数を示す。)で表される化合物から選ばれる少なくとも一種と、
    式〔III〕
        A-B   〔III〕
    (式〔III〕中、AとBは単結合で結合する。Aは、式〔a1〕
    Figure JPOXMLDOC01-appb-C000001
    (式〔a1〕中、Rは置換基を示し、pは0~3いずれかの整数を示し、*はBとの結合位置を示す。)
    又は、式〔a2〕
    Figure JPOXMLDOC01-appb-C000002
    (式〔a2〕中、Rは置換基を示し、qは0~4いずれかの整数を示し、*はBとの結合位置を示す。)を示し、Bは、置換若しくは無置換のヘテロシクリル基を示す。ただし、前記置換若しくは無置換のヘテロシクリル基は、Aと結合する環構成原子に隣接する原子の少なくとも1つが、ヘテロ原子又はカルベン炭素である。)で表される化合物とから調製されるルテニウム錯体を用いて、水素供与体及び塩基の存在下で、ケトン類、アルデヒド類、エステル類又はアミド類を還元する方法。
    Formula [I]
    Ru (X 1 ) (L 1 ) m (Z 1 ) [I]
    (In Formula [I], X 1 represents an anionic group, Z 1 represents a substituted or unsubstituted cyclopentadienyl group, L 1 represents a neutral ligand, and m represents When L 1 is a monodentate ligand, it represents 2 or 3, and when L 1 is a bidentate ligand, it represents 1.) and a compound represented by formula [II]
    [Ru (X 2 ) (Z 2 )] n [II]
    (In the formula [II], X 2 represents an anionic group, Z 2 represents a substituted or unsubstituted cyclopentadienyl group, and n represents an integer of 2 to 4). At least one selected from compounds,
    Formula [III]
    AB [III]
    (In the formula [III], A and B are bonded by a single bond. A represents the formula [a1].
    Figure JPOXMLDOC01-appb-C000001
    (In the formula [a1], R 1 represents a substituent, p represents an integer of 0 to 3, and * represents a bonding position with B.)
    Or the formula [a2]
    Figure JPOXMLDOC01-appb-C000002
    (In the formula [a2], R 2 represents a substituent, q represents an integer of 0 to 4, and * represents a bonding position with B), and B represents a substituted or unsubstituted heterocyclyl. Indicates a group. However, in the substituted or unsubstituted heterocyclyl group, at least one of the atoms adjacent to the ring atom bonded to A is a heteroatom or a carbene carbon. A method for reducing ketones, aldehydes, esters or amides in the presence of a hydrogen donor and a base, using a ruthenium complex prepared from a compound represented by
PCT/JP2018/001084 2017-01-19 2018-01-17 Reduction method using ruthenium complex WO2018135506A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018563349A JP6751162B2 (en) 2017-01-19 2018-01-17 Reduction method using ruthenium complex

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-007132 2017-01-19
JP2017007132 2017-01-19

Publications (1)

Publication Number Publication Date
WO2018135506A1 true WO2018135506A1 (en) 2018-07-26

Family

ID=62909256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/001084 WO2018135506A1 (en) 2017-01-19 2018-01-17 Reduction method using ruthenium complex

Country Status (2)

Country Link
JP (1) JP6751162B2 (en)
WO (1) WO2018135506A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112209916A (en) * 2020-10-23 2021-01-12 河北师范大学 A kind of ruthenium complex, preparation method and catalytic use
CN113264504A (en) * 2021-06-08 2021-08-17 西安交通大学 Method for recycling biomass high-efficiency hydrogen production catalytic system
WO2023228980A1 (en) * 2022-05-25 2023-11-30 ダイキン工業株式会社 Production method for fluoropolyether group–containing compound

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217632A (en) * 2002-12-25 2004-08-05 National Institute Of Advanced Industrial & Technology Novel compound, catalyst using the same, method for producing formic acid from carbon dioxide and hydrogen using the same, and method for immobilizing carbon dioxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004217632A (en) * 2002-12-25 2004-08-05 National Institute Of Advanced Industrial & Technology Novel compound, catalyst using the same, method for producing formic acid from carbon dioxide and hydrogen using the same, and method for immobilizing carbon dioxide

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KENJIROU ARAKI; ET AL: "Isolation and Interconversion of Protic N-Heterocyclic Carbene and Imidazolyl Complexes: Application to Catalytic Dehydrative Condensation of N -(2-Pyridyl)​benzimidazole and Allyl Alcohol", ORGANOMETALLICS, vol. 27, no. 10, May 2008 (2008-05-01), pages 2176 - 2178, XP055505085 *
PACHHUNGA, ET AL.: "Reactivity studies of cyclopentadienyl ruthenium(II)​, osmium(II) and pentamethylcyclopentadienyl iridium(III) complexes towards 2-(2'-pyridyl)​imidazole derivatives", POLYHEDRON, vol. 26, no. 14, 14 August 2007 (2007-08-14), pages 3638 - 3644, XP022200587 *
RUCHI ANAND, ET AL.: "Toward the Development of a Potent and Selective Organoruthenium Mammalian Sterile 20 Kinase Inhibitor", JOURNAL OF MEDICINAL CHEMISTRY, vol. 52, no. 6, 26 March 2009 (2009-03-26), pages 1602 - 1611, XP055139702 *
SAMUEL CONSTANT,ET AL.: "TRISPHAT-N: A Chiral Hexacoordinated Phosphate Anion with Unique Asymmetric Coordinating Properties", ORGANOMETALLICS, vol. 26, no. 9, April 2007 (2007-04-01), pages 2141 - 2143, XP055076727 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112209916A (en) * 2020-10-23 2021-01-12 河北师范大学 A kind of ruthenium complex, preparation method and catalytic use
CN112209916B (en) * 2020-10-23 2021-06-01 河北师范大学 Ruthenium complex, preparation method and catalytic application
CN113264504A (en) * 2021-06-08 2021-08-17 西安交通大学 Method for recycling biomass high-efficiency hydrogen production catalytic system
CN113264504B (en) * 2021-06-08 2024-02-06 西咸新区青氢华屹能源科技有限公司 Method for recycling biomass efficient hydrogen production catalytic system
WO2023228980A1 (en) * 2022-05-25 2023-11-30 ダイキン工業株式会社 Production method for fluoropolyether group–containing compound
JP2023174585A (en) * 2022-05-25 2023-12-07 ダイキン工業株式会社 Production method for fluoropolyether group-containing compound
JP7421154B2 (en) 2022-05-25 2024-01-24 ダイキン工業株式会社 Method for producing fluoropolyether group-containing compound

Also Published As

Publication number Publication date
JP6751162B2 (en) 2020-09-02
JPWO2018135506A1 (en) 2019-11-07

Similar Documents

Publication Publication Date Title
JP6751162B2 (en) Reduction method using ruthenium complex
CN102603660B (en) Preparation method of 1H-1,2,3-triazole compound
WO2009145323A1 (en) Method for oxidizing alcohol by using polycyclic compound
CN108822145B (en) A kind of sulfonamide compound and its preparation method and application
JP5436222B2 (en) 2-Method for producing azaadamantanes
Yang et al. Synthesis of N-arylsulfonamides through a Pd-catalyzed reduction coupling reaction of nitroarenes with sodium arylsulfinates
Safaei-Ghomi et al. Multicomponent synthesis of C-tethered bispyrazol-5-ols using CeO 2 nanoparticles as an efficient and green catalyst
TWI466874B (en) A method for producing a heterocyclic derivative of a phenyl group substituted by a coupling method using a transition metal catalyst
CN112062756A (en) Mannhouse donor-acceptor adduct of furan and 3-pyridine ethylamine activated by Merlox acid and synthetic method thereof
Wang et al. Facile synthesis of sulfonyl amidines via carbon–nitrogen bond formation mediated by FeCl3
CN114181122A (en) Benzyl thioether compound and preparation method thereof
CN113121438B (en) Preparation method of isoquinolinones compound
JP6802841B2 (en) Method of synthesizing rhodamine dye
Yang et al. Direct N‐Arylation of Azaheterocycles with Aryl Halides under Ligand‐free Condition
JP5751167B2 (en) Method for producing 2-azaadamantane compound from bicyclocarbamate compound
CN118103354A (en) Process for producing halogenated vinylimidazole compound
Ji et al. Copper-catalyzed cyclization reaction: synthesis of trifluoromethylated indolinyl ketones
CN115286575A (en) Quinolinone seven-eight membered ring derivative and synthesis method and application thereof
CN112679431B (en) Method for preparing isoquinolinones compound
CN106565535A (en) Preparation method for 2-diazonium-1-alkyl ketone compound
Dhote et al. Rediscovering Bacon's hydrazine/phenylhydrazine mediated cyclization of 2, 2′-dicarbonylbi (hetero) aryls: construction of (5-azo)-/indazolo [2, 3-a] quinolines
WO2011027865A1 (en) Novel 2-aza-adamantane compound and method for producing the same
CN113980004B (en) Compound with furan-2 (5H) -ketone skeleton and preparation method thereof
CN110172062B (en) Synthesis method of monofluoro spiro compound and intermediate thereof
CN104981456B (en) The manufacture method of desmosine, isodensmosine and their derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18741971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563349

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18741971

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载