WO2018135553A1 - 流体制御装置および血圧計 - Google Patents
流体制御装置および血圧計 Download PDFInfo
- Publication number
- WO2018135553A1 WO2018135553A1 PCT/JP2018/001291 JP2018001291W WO2018135553A1 WO 2018135553 A1 WO2018135553 A1 WO 2018135553A1 JP 2018001291 W JP2018001291 W JP 2018001291W WO 2018135553 A1 WO2018135553 A1 WO 2018135553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- self
- circuit
- power supply
- supply voltage
- duty ratio
- Prior art date
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 51
- 238000005259 measurement Methods 0.000 claims description 10
- 230000036772 blood pressure Effects 0.000 claims description 9
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 claims description 2
- 230000010355 oscillation Effects 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 description 30
- 238000000034 method Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 7
- 230000008859 change Effects 0.000 description 6
- 230000004913 activation Effects 0.000 description 3
- 238000009530 blood pressure measurement Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/02141—Details of apparatus construction, e.g. pump units or housings therefor, cuff pressurising systems, arrangements of fluid conduits or circuits
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/022—Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
- A61B5/0225—Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/003—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by piezoelectric means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/08—Machines, pumps, or pumping installations having flexible working members having tubular flexible members
- F04B43/09—Pumps having electric drive
- F04B43/095—Piezoelectric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/06—Control using electricity
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/08—Regulating by delivery pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0204—Operational features of power management
- A61B2560/0214—Operational features of power management of power generation or supply
Definitions
- the present invention relates to a fluid control device including a piezoelectric pump, and a sphygmomanometer including the fluid control device.
- Patent Document 1 Conventionally, as a fluid control device that controls a fluid by driving a piezoelectric element included in a piezoelectric pump, for example, there is one described in Patent Document 1.
- the device disclosed in Patent Document 1 includes a boost regulator that boosts a battery voltage, and an H-bridge circuit that drives a piezoelectric element with both positive and negative polarities using a voltage boosted by the boost regulator as a power source.
- the battery voltage is boosted by a boost regulator, and the peak-to-two of the output voltage of the boost regulator is doubled by the H-bridge circuit. • The piezoelectric element is driven at the peak voltage. Therefore, even if the battery voltage is low, the piezoelectric element is driven with a predetermined high voltage.
- the H bridge circuit has a transistor in each of the upper arm and the lower arm, and the transistors are connected in multiple stages in the shunt direction, and there is a restriction on the minimum drive voltage.
- a piezoelectric element driving circuit is configured by a circuit using an operational amplifier or the like that operates at a low voltage, it is difficult in terms of a semiconductor process to widen the dynamic range of the operational amplifier so as to operate even at a low voltage. Thus, in any case, there is a limit in reducing the drive voltage of the piezoelectric element.
- An object of the present invention is to provide a fluid control device capable of operating a piezoelectric pump even when a low discharge pressure or a low pressurization speed is required, and a sphygmomanometer including the fluid control device.
- the fluid control device of the present invention comprises: A piezoelectric pump comprising a piezoelectric element; A self-excited circuit for driving the piezoelectric element by self-oscillating by application of a driving power supply voltage; A control circuit for determining an on-duty ratio for driving the piezoelectric element.
- the self-excited circuit since the piezoelectric element is driven while satisfying the restriction on the minimum voltage of the drive power supply voltage with respect to the self-excited circuit, the self-excited circuit operates without duty self-oscillation without stopping the self-excited circuit. Depending on the duty ratio, the pressurization speed of the piezoelectric pump can be moderated. As a result, stable operation is possible even at a low pressure, which has been impossible until now. Further, since the active element of the self-excited circuit operates in the saturation region, it operates with high efficiency and suppresses heat generation of the active element.
- a switch for interrupting a driving voltage for the piezoelectric element is provided, and the control circuit switches the state of the switch at a predetermined on-duty ratio.
- the switch is preferably composed of an FET, or an FET and a circuit that drives the FET. This facilitates low cost and downsizing.
- a DC / DC converter for controlling the drive power supply voltage is further provided, and the control circuit sets the drive power supply voltage to a lower limit voltage at which the self-excited circuit can operate when the required pressure is less than a predetermined value. It is preferable to control the on-duty ratio in a state where the required pressure is within a predetermined value or more, and to control the driving power supply voltage in a voltage range higher than the lower limit voltage with the on-duty ratio being 100%. . As a result, the self-excited circuit continuously operates in a region where the discharge pressure of the piezoelectric pump is high, so that the pressurization speed can be increased.
- the self-excited circuit can be normally operated even in a region where the voltage of a DC input power source such as a battery is lower.
- the pressurization speed can be increased by increasing the drive voltage of the self-excited circuit in the region where the discharge pressure of the piezoelectric pump is high.
- the self-excited circuit can be normally operated even in a region where the voltage of a DC input power source such as a battery is lower.
- the control circuit includes an MCU having a PWM signal generation circuit for generating a PWM signal, and the on-duty ratio is determined by the PWM signal.
- the circuit for controlling the on-duty ratio and its control are simplified.
- the blood pressure monitor of the present invention A cuff, a fluid control device that pressurizes the cuff, a valve that adjusts the pressure in the cuff, and a measurement unit that measures blood pressure based on a pulse wave or Korotkoff sound and the pressure of the cuff
- the fluid control device comprises: A piezoelectric pump comprising a piezoelectric element; A self-excited circuit for driving the piezoelectric element by self-oscillating by application of a driving power supply voltage; A switch for intermittently driving the drive power supply voltage to the self-excited circuit; A control circuit that changes the on-duty ratio of the self-excited circuit by switching the state of the switch at a predetermined switching frequency and a predetermined on-duty ratio.
- the switching frequency is a frequency in the range of 10 times or more the reciprocal of the measurement period of the measurement unit and 1/10 or less of the driving frequency of the piezoelectric element.
- the switching frequency is 10 times or more the reciprocal of the measurement cycle, the decrease in measurement accuracy due to duty ratio control can be substantially eliminated.
- the switching frequency is a frequency within 1/10 or less of the driving frequency of the piezoelectric element, the harmonic component due to the intermittent circuit of the self-excited circuit does not substantially affect the driving frequency of the piezoelectric element. A reduction in the driving efficiency of the element is suppressed.
- a fluid control device capable of operating a piezoelectric pump at a low discharge pressure or a slow pressurization speed and a sphygmomanometer including the fluid control device are configured.
- FIG. 1 is a block diagram showing a configuration of a fluid control apparatus 101 according to the first embodiment.
- FIG. 2 is a circuit diagram of the switch 40.
- FIG. 3 is a waveform diagram showing the duty operation of the self-excited circuit 20.
- FIG. 4 is a diagram illustrating a change in the on-duty ratio of the drive power supply voltage with respect to the elapsed time since the start of the fluid control apparatus 101, and a change in the discharge pressure of the piezoelectric pump 10 with respect to the elapsed time.
- FIG. 5 is a diagram showing the relationship between the on-duty ratio and the discharge pressure.
- FIG. 6 is a diagram illustrating an example of a pressure change after the piezoelectric pump is started.
- FIG. 1 is a block diagram showing a configuration of a fluid control apparatus 101 according to the first embodiment.
- FIG. 2 is a circuit diagram of the switch 40.
- FIG. 3 is a waveform diagram showing the duty operation of the self-excited circuit 20.
- FIG. 7 is a diagram showing the life of a battery as an input power supply in terms of the number of charge / discharge cycles.
- FIG. 8 is a block diagram showing a configuration of another fluid control device according to the first embodiment.
- FIG. 9 is a circuit diagram of a self-excited circuit of another fluid control device according to the first embodiment.
- FIG. 10 is a block diagram of the fluid control apparatus 102 according to the second embodiment.
- FIG. 11 is a block diagram showing a configuration of a main part of the control circuit 30 in FIG.
- FIG. 12 is a diagram showing the relationship of the discharge pressure of the piezoelectric pump 10 with respect to the drive power supply voltage of the self-excited circuit 20, that is, the output voltage of the DC / DC converter 50.
- FIG. 13 is a diagram illustrating changes in pressure, on-duty ratio, and drive power supply voltage over time.
- FIG. 14 is a block diagram showing the configuration of the fluid control apparatus 103 according to the third embodiment.
- FIG. 15 is a block diagram of a sphygmomanometer 201 according to the fourth embodiment.
- FIG. 1 is a block diagram showing a configuration of a fluid control apparatus 101 according to the first embodiment.
- the fluid control apparatus 101 intermittently connects the piezoelectric pump 10 including the piezoelectric element 1, the self-excited circuit 20 that drives the piezoelectric element 1 by self-oscillation by application of the driving power supply voltage, and the self-excited circuit 20.
- a switch 40 that switches between application and non-application of the drive power supply voltage, and a control circuit 30 that switches the state of the switch 40.
- a DC / DC converter 50 is further provided.
- the input power supply BAT shown in FIG. 1 is a battery, and the DC / DC converter 50 boosts the input power supply voltage and supplies the drive power supply voltage to the self-excited circuit 20.
- the self-excited oscillation circuit 20 self-oscillates by this drive power supply voltage and applies an alternating voltage to the piezoelectric element 1.
- the control circuit 30 switches the state of the switch 40 at a predetermined switching frequency and a predetermined on-duty ratio, and gradually increases the on-duty ratio according to the elapsed time from the start of the fluid control device 101.
- FIG. 2 is a circuit diagram of the switch 40.
- the switch 40 includes a P-channel MOS-FET M1, resistors R4 and R3 that generate a gate-source voltage, a bipolar transistor Q1, and resistors R1 and R2 that apply a base voltage of the transistor Q1.
- the self-excited circuit 20 includes an output current detection resistor R0, a differential amplifier circuit 21, a filter 22, a comparator 23, and a phase inversion comparator 24.
- the differential amplifier circuit 21 differentially amplifies the voltage drop across the resistor R0.
- the filter 22 passes the self-excited oscillation frequency and attenuates other unnecessary frequency components.
- a one-input comparator 23 converts the output voltage of the filter 22 into a binary voltage signal.
- the phase inversion comparator 24 inverts the phase of the output voltage of the comparator 23 (polarity inversion).
- the output voltage of the comparator 23 is input to the first end of the piezoelectric element 1 via the resistor R 0, and the output voltage of the phase inversion comparator 24 is input to the second end of the piezoelectric element 1.
- the current flowing through the piezoelectric element 1 and the voltage applied to the piezoelectric element 1 are in a positive feedback relationship and self-oscillate. Thereby, an alternating voltage having both positive and negative polarities is applied to the piezoelectric element 1.
- FIG. 3 is a waveform diagram showing the duty operation of the self-excited circuit 20.
- the drive power supply voltage is supplied to the self-excited circuit 20 when the switch 40 is on, and the drive power supply voltage for the self-excited circuit 20 is shut off when the switch 40 is off. That is, when the switch 40 is turned on, the drive power supply voltage for the self-excited circuit 20 rises, and when the switch 40 is turned off, the drive power supply voltage for the self-excited circuit 20 falls.
- connection order of the filter 22 and the comparator 23 shown in FIG. 1 may be reversed.
- the FET M1 shown in FIG. 2 has a small parasitic capacitance between the gate and the source and a parasitic capacitance between the gate and the drain.
- FIG. 4 is a diagram showing a change in the on-duty ratio of the drive power supply voltage with respect to the elapsed time since the start of the fluid control apparatus 101, and a change in the discharge pressure of the piezoelectric pump 10 with respect to the elapsed time.
- the on-duty ratio of the driving power supply voltage (this is also the on-duty ratio of the switch 40 and the on-duty of the intermittent operation of the self-excited circuit 20 with the passage of time from the start of the fluid control device 101. Is also a ratio). Along with this, the discharge pressure of the piezoelectric pump 10 also increases.
- FIG. 5 is a graph showing the relationship between the on-duty ratio and the discharge pressure.
- a characteristic line CL1 is a diagram showing the relationship between the on-duty ratio of the switch 40 and the discharge pressure of the piezoelectric pump.
- the pump works.
- the on-duty ratio and the pressure are roughly proportional. Therefore, the discharge pressure can be increased from a low pressure by controlling the on-duty ratio of the drive power supply voltage of the self-excited circuit 20. That is, the pressurization speed of the piezoelectric pump can be made moderate.
- the piezoelectric pump operates under the condition that the pressure is 9.5 kPa or more. In this way, the method of controlling the drive power supply voltage cannot be controlled unless the obtained pressure range is narrow and the pressure range is high.
- FIG. 6 is a diagram showing an example of a pressure change after the piezoelectric pump is started.
- the characteristic lines CL1 to CL4 are examples in which the duty ratio of the drive power supply voltage is gradually increased after startup
- the characteristic line CL1 is an example in which the pressurization speed is the slowest
- the characteristic line CL4 is the pressurization speed. Is the most steep example.
- the characteristic line CL0 is an example in which the drive power supply voltage is gradually increased from 0V to 8V by continuous application (on-duty ratio 100%) as in the above-described example.
- the pressure increase is controlled in accordance with the increase in the duty ratio of the drive power supply voltage.
- FIG. 7 is a diagram showing the life of a battery as an input power supply in terms of the number of charge / discharge cycles.
- the horizontal axis represents the pressurization speed, and the vertical axis represents the battery life until the battery drops to the end voltage, which is a predetermined voltage.
- marks (1) (2) (3) (4) (0) ⁇ in the characteristic curve are obtained when the activation corresponding to the characteristic lines CL1, CL2, CL3, CL4, CL0 shown in FIG. 6 is repeated. Indicates the number of times.
- FIG. 8 is a block diagram showing the configuration of another fluid control apparatus according to the first embodiment.
- the switch 40 is provided between the DC / DC converter 50 and the self-excited circuit 20.
- the rise time of the power supply voltage of the self-excited circuit 20 is short. Therefore, the risk that the self-excited oscillation of the self-excited circuit 20 will not occur is greatly reduced.
- the capacity of the capacitor shunt-connected in the DC / DC converter 50 is increased because the risk of non-occurrence of self-excited oscillation of the self-excited oscillation circuit 20 can be kept low even if ripples and harmonic components are suppressed. Thus, ripples and harmonic components of the output voltage can be further suppressed.
- FIG. 9 is a circuit diagram of a self-excited circuit of another fluid control device according to the first embodiment. Unlike the example shown in FIG. 1, the filter 22 and the comparator 23 are not provided. Even with such a circuit configuration, self-oscillation is possible.
- the differential amplifier circuit 21 may have a low-pass filter characteristic that attenuates a higher range than the oscillation frequency.
- One of the filter 22 and the comparator 23 shown in FIG. 1 may be added.
- the present invention is not limited to this, and it is also possible to control to gradually reduce the on-duty ratio according to the elapsed time from the start of the fluid control device. For example, there is a case where “flow rate” is desired to be secured rather than “pressure” immediately after the fluid control device is started.
- a control is performed such that the on-duty ratio is set larger when the fluid control device is started, and the on-duty ratio is gradually decreased with the passage of time thereafter, so that the pressurization speed of the container is slowed down. Is possible.
- Second Embodiment An example in which not only the duty ratio of the drive power supply voltage of the self-excited circuit 20 but also the voltage is changed is shown.
- FIG. 10 is a block diagram of the fluid control apparatus 102 according to the second embodiment.
- the fluid control device 102 intermittently connects the piezoelectric pump 10 including the piezoelectric element 1, a self-excited circuit 20 that drives the piezoelectric element 1 by self-oscillation by applying a driving power supply voltage, and the self-excited circuit 20.
- a switch 40 that switches between application and non-application of a drive power supply voltage, a DC / DC converter 50 that supplies a drive power supply voltage to the self-excited circuit 20, and a control circuit 30 that controls the switch 40 and the DC / DC converter 50. Is provided.
- the DC / DC converter 50 increases or decreases the voltage of the input power supply BAT and supplies the drive power supply voltage to the self-excited circuit 20.
- the self-excited oscillation circuit 20 self-oscillates by this drive power supply voltage and applies an alternating voltage to the piezoelectric element 1.
- the drive voltage control unit determines the output voltage by controlling the on-duty ratio of the switching element of the DC / DC converter 50. Further, the duty ratio control unit determines the on-duty ratio of the switch 40.
- FIG. 11 is a block diagram showing a configuration of a main part of the control circuit 30 in FIG.
- the control circuit 30 is configured by an MCU (micro control unit), and its I / O port is connected to the switch 40 and the switching circuit of the DC / DC converter 50.
- the control circuit 30 includes a register, a timer, and a comparator, and outputs a signal having a period corresponding to a value set in the register, that is, a PWM signal, to the switch 40 via the I / O port. Since the count cycle of the timer is constant, the switch 40 is intermittently switched at a constant cycle (switching frequency is constant) and an on-duty ratio corresponding to a value set in the register. After startup, the control circuit 30 sequentially increments the set value in the register at a predetermined rate. As a result, the on-duty ratio gradually increases.
- FIG. 12 is a diagram showing the relationship of the discharge pressure of the piezoelectric pump 10 with respect to the drive power supply voltage of the self-excited circuit 20, that is, the output voltage of the DC / DC converter 50.
- the on-duty ratio is 100%.
- the pressure is 15 kPa
- the pressure is 55 kPa.
- the drive power supply voltage of the self-excited circuit 20 and the discharge pressure of the piezoelectric pump 10 are roughly proportional.
- the fluid control device 102 according to the second embodiment further increases the discharge pressure of the piezoelectric pump by increasing the drive power supply voltage after the on-duty ratio of the self-excited vibration circuit 20 reaches 100%.
- FIG. 13 is a diagram showing changes in pressure, on-duty ratio, and drive power supply voltage over time. From startup to t1, the drive power supply voltage is set to V1, and the on-duty ratio is gradually increased from 0 to 100%.
- the range from 0 to P1 corresponds to the “range where the required pressure is less than the predetermined value” in the present invention.
- the drive power supply voltage V1 corresponds to the “lower limit voltage at which the self-excited circuit can operate” in the present invention.
- the pressure gradually increases from 0 to P1.
- time t1 until t2
- the on-duty ratio is fixed to 100%, and the drive power supply voltage is gradually increased from V1 to V2.
- the pressure gradually increases from P1 to P2.
- the pressure gradually increases from P1 to P2.
- the pressure rises slowly over a wide range from 0 to P2 after activation.
- the pressure since the pressure is controlled continuously over a wide range, it can be generated from a predetermined low pressure with high accuracy to a medium pressure and a high pressure.
- FIG. 14 is a block diagram showing the configuration of the fluid control apparatus 103 according to the third embodiment.
- the fluid control device 103 includes a piezoelectric pump 10 including the piezoelectric element 1, a self-excited circuit 20 that drives the piezoelectric element 1 by self-excited oscillation by applying a drive power supply voltage, and a drive power supply voltage for the self-excited circuit 20.
- a DC / DC converter 50 that supplies power, a switch 40 that intermittently drives a drive voltage to the piezoelectric element 1, and a control circuit 30 that switches the state of the switch 40.
- the driving voltage for the piezoelectric element 1 is intermittently maintained while the self-excited circuit 20 continues self-excited oscillation.
- the input power supply BAT shown in FIG. 14 is a battery, and the DC / DC converter 50 boosts the input power supply voltage and supplies the drive power supply voltage to the self-excited circuit 20.
- the self-excited circuit 20 self-oscillates by this drive power supply voltage.
- the switch 40 is connected to the output of the phase inversion comparator 24 and the piezoelectric element 1 (on state)
- the output voltage of the self-excited circuit 20 is applied to the piezoelectric element 1 and one end of the piezoelectric element 1 is grounded (off) In the state), the driving voltage of the piezoelectric element 1 is halved.
- the piezoelectric element 1 since the piezoelectric element 1 is driven in a balanced manner with the switch 40 turned on, the piezoelectric element 1 has an output voltage of the self-excited circuit 20. Twice the voltage is applied.
- the piezoelectric element 1 since the piezoelectric element 1 is unbalanced when the switch 40 is in the OFF state, the output voltage of the self-excited circuit 20 is applied to the piezoelectric element 1 as it is.
- the configurations of the DC / DC converter 50 and the self-excited circuit 20 are as described in the first embodiment.
- the drive voltage to the piezoelectric element 1 can be switched on / off at a higher speed than in the configuration in which the drive voltage for the self-excited circuit 20 is intermittent (FIG. 1). Becomes high accuracy. Therefore, when this fluid control apparatus 103 is applied to, for example, a sphygmomanometer, blood pressure measurement accuracy can be increased.
- FIG. 15 is a block diagram of a sphygmomanometer 201 according to the fourth embodiment.
- the sphygmomanometer 201 includes a fluid control device 101, its power source BAT, a valve 60, a cuff 70, a pressure sensor 80, and a measuring unit 90.
- the configuration of the fluid control device 101 is as shown in the first embodiment.
- a cuff 70 is connected to a discharge portion of the piezoelectric pump 10 of the fluid control device 101 via a valve 60.
- the pressure sensor 80 detects the air pressure of the cuff 70.
- the valve 60 sends the air to the cuff when the piezoelectric pump 10 discharges air, and opens it to the atmosphere at a predetermined flow rate when reducing the air pressure of the cuff.
- the measuring unit 90 detects the pulse wave based on the detection value of the pressure sensor in the pressurizing process, and obtains the maximum blood pressure and the minimum blood pressure based on the oscillometric method. Thereafter, air is extracted from the valve 60 in the pressure release process.
- the method of measuring blood pressure in the pressurization process can exhaust quickly in the process of releasing the pressure after the measurement, so that the total time required for blood pressure measurement is short, and the battery consumption is only the pressurization time. Therefore, current consumption can be reduced.
- the pressure may be increased to a predetermined pressure in the cuff pressurization process, and the blood pressure may be measured in the subsequent pressure release process.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Ophthalmology & Optometry (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Reciprocating Pumps (AREA)
Abstract
低い吐出圧または遅い加圧速度が要求される場合にも圧電ポンプを作動させることのできる流体制御装置およびそれを備える血圧計を提供する。 流体制御装置(101)は、圧電素子(1)を備える圧電ポンプ(10)と、駆動電源電圧の印加により自励発振して圧電素子(1)を駆動する自励振回路(20)と、自励振回路(20)に対する駆動電源電圧を断続するスイッチ(40)と、所定のスイッチング周波数および所定のオンデューティ比でスイッチ(40)の状態を切り替えることにより、自励振回路のオンデューティ比を変化させる制御回路(30)とを備える。
Description
本発明は、圧電ポンプを備える流体制御装置、およびこの流体制御装置を備える血圧計に関する。
従来、圧電ポンプが備える圧電素子を駆動することによって流体を制御する流体制御装置として、例えば特許文献1に記載のものがある。特許文献1に示される装置は、電池電圧を昇圧する昇圧レギュレータと、この昇圧レギュレータで昇圧された電圧を電源として、圧電素子を正負両極性で駆動するHブリッジ回路と、を備える。
特許文献1に示されるようなHブリッジ回路で圧電素子を駆動する流体制御装置によれば、昇圧レギュレータで電池電圧が昇圧され、Hブリッジ回路により、昇圧レギュレータの出力電圧の2倍のピーク・ツー・ピーク電圧で圧電素子が駆動される。そのため、電池電圧が低くても所定の高い電圧で圧電素子が駆動される。
一方、低い吐出圧となるように圧電ポンプを動作させるためには、圧電素子の駆動電圧を低くする必要がある。しかし、そのためにHブリッジ回路の電源電圧をあまりに低くすると、Hブリッジ回路が動作しない。Hブリッジ回路は上アームと下アームにそれぞれトランジスタを有し、トランジスタがシャント方向に多段接続される構造であり、最低駆動電圧の制約があるからである。また、低い電圧で動作するオペアンプ等を用いた回路で圧電素子の駆動回路を構成する場合、低電圧でも動作するようにオペアンプのダイナミックレンジを広くすることは半導体のプロセス上困難である。このように、いずれにせよ圧電素子の駆動電圧を低下させるには限度があった。
例えば新生児用の血圧計であれば、カフの加圧速度を充分に緩慢にしないと、加圧開始後、カフの圧力がすぐに上昇してしまい、正確な血圧測定ができない。
本発明の目的は、低い吐出圧または遅い加圧速度が要求される場合にも圧電ポンプを作動させることのできる流体制御装置およびそれを備える血圧計を提供することにある。
(1)本発明の流体制御装置は、
圧電素子を備える圧電ポンプと、
駆動電源電圧の印加により自励発振して前記圧電素子を駆動する自励振回路と、
前記圧電素子の駆動のオンデューティ比を定める制御回路と、を備える。
圧電素子を備える圧電ポンプと、
駆動電源電圧の印加により自励発振して前記圧電素子を駆動する自励振回路と、
前記圧電素子の駆動のオンデューティ比を定める制御回路と、を備える。
上記構成により、自励振回路に対する駆動電源電圧の最低電圧の制約を満足しつつ圧電素子が駆動されるので自励発振が停止することなく、且つデューティ制御により自励振回路が動作するので、そのオンデューティ比によって、圧電ポンプの加圧速度が緩やかにできる。このことにより、これまで不可能であった低圧力でも安定動作する。また、自励振回路の能動素子は飽和領域で動作するので、高効率動作し、能動素子の発熱が抑制される。
(2)前記圧電素子に対する駆動電圧を断続するスイッチを備え、前記制御回路は、所定のオンデューティ比で前記スイッチの状態を切り替えることが好ましい。この構成により、圧電素子への駆動電圧のオン/オフが高速に切り替えられるので、圧電ポンプによる流体制御が高精度となる。
(3)前記スイッチはFET、またはFETおよび当該FETを駆動する回路、で構成されることが好ましい。これにより、低コスト、小型化が容易となる。
(4)前記駆動電源電圧を制御するDC/DCコンバータを更に備え、前記制御回路は、必要圧力が所定値未満の範囲では、前記駆動電源電圧を、前記自励振回路が動作可能な下限電圧にした状態で前記オンデューティ比を制御し、必要圧力が所定値以上の範囲では、前記オンデューティ比を100%の状態で前記駆動電源電圧を前記下限電圧より高い電圧範囲で制御する、ことが好ましい。このことにより、圧電ポンプの吐出圧が高い領域で自励振回路は連続動作することにより、加圧速度を高速化できる。また、DC/DCコンバータが昇圧動作すれば、例えば電池等の直流入力電源の電圧がより低い領域にあっても、自励振回路を正常に動作させることができる。また、圧電ポンプの吐出圧が高い領域で自励振回路の駆動電圧が高まることにより、加圧速度を高速化できる。また、DC/DCコンバータが昇圧動作すれば、例えば電池等の直流入力電源の電圧がより低い領域にあっても、自励振回路を正常に動作させることができる。
(5)前記制御回路はPWM信号を発生するPWM信号発生回路を有するMCUを備え、前記PWM信号で前記オンデューティ比を定めることが好ましい。この構成により、上記オンデューティ比の制御のための回路およびその制御が簡素化される。
(6)本発明の血圧計は、
カフと、当該カフを加圧する流体制御装置と、前記カフ内の圧力を調整するバルブと、脈波またはコロトコフ音および前記カフの圧力に基づいて血圧を測定する測定部とを備え、
前記流体制御装置は、
圧電素子を備える圧電ポンプと、
駆動電源電圧の印加により自励発振して前記圧電素子を駆動する自励振回路と、
前記自励振回路に対する前記駆動電源電圧を断続するスイッチと、
所定のスイッチング周波数および所定のオンデューティ比で前記スイッチの状態を切り替えることにより、前記自励振回路のオンデューティ比を変化させる制御回路と、を備える。
カフと、当該カフを加圧する流体制御装置と、前記カフ内の圧力を調整するバルブと、脈波またはコロトコフ音および前記カフの圧力に基づいて血圧を測定する測定部とを備え、
前記流体制御装置は、
圧電素子を備える圧電ポンプと、
駆動電源電圧の印加により自励発振して前記圧電素子を駆動する自励振回路と、
前記自励振回路に対する前記駆動電源電圧を断続するスイッチと、
所定のスイッチング周波数および所定のオンデューティ比で前記スイッチの状態を切り替えることにより、前記自励振回路のオンデューティ比を変化させる制御回路と、を備える。
上記構成により、これまで不可能であった低圧力でも高精度で安定動作する。また、高効率動作および低発熱動作する。
(7)前記スイッチング周波数は、前記測定部の測定周期の逆数の10倍以上、且つ前記圧電素子の駆動周波数の1/10以下の範囲内の周波数である、ことが好ましい。このように、スイッチング周波数が測定周期の逆数の10倍以上であれば、デューティ比制御による測定精度の低下を実質的に無くせる。また、スイッチング周波数が圧電素子の駆動周波数の1/10以下の範囲内の周波数であれば、自励振回路の断続による高調波成分が圧電素子の駆動周波数に実質的に影響を与えないので、圧電素子の駆動効率の低下が抑制される。
本発明によれば、低い吐出圧または遅い加圧速度で圧電ポンプを作動させることのできる流体制御装置およびそれを備える血圧計が構成される。
以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明または理解の容易性を考慮して、便宜上複数の実施形態に分けて示すが、異なる実施形態で示した構成の部分的な置換または組み合わせは可能である。各実施形態の説明において、共通の事柄についての重複する記述は省略し、特に異なる点について説明する。また、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
図1は第1の実施形態に係る流体制御装置101の構成を示すブロック図である。流体制御装置101は、圧電素子1を備える圧電ポンプ10と、駆動電源電圧の印加により自励発振して圧電素子1を駆動する自励振回路20と、この自励振回路20に対する駆動電源電圧を断続する(駆動電源電圧の印加と非印加を切り替える)スイッチ40と、スイッチ40の状態を切り替える制御回路30とを備える。また、本実施形態ではDC/DCコンバータ50を更に備える。
図1は第1の実施形態に係る流体制御装置101の構成を示すブロック図である。流体制御装置101は、圧電素子1を備える圧電ポンプ10と、駆動電源電圧の印加により自励発振して圧電素子1を駆動する自励振回路20と、この自励振回路20に対する駆動電源電圧を断続する(駆動電源電圧の印加と非印加を切り替える)スイッチ40と、スイッチ40の状態を切り替える制御回路30とを備える。また、本実施形態ではDC/DCコンバータ50を更に備える。
図1に示す入力電源BATは電池であり、上記DC/DCコンバータ50は、この入力電源電圧を昇圧して自励振回路20へ駆動電源電圧を供給する。この駆動電源電圧によって自励振回路20は自励発振し、圧電素子1に対して交番電圧を印加する。
制御回路30は、所定のスイッチング周波数および所定のオンデューティ比でスイッチ40の状態を切り替えるとともに、流体制御装置101の起動からの経過時間に応じてオンデューティ比を徐々に大きくする。
図2は上記スイッチ40の回路図である。このスイッチ40は、PチャンネルMOS-FET M1、そのゲート・ソース間電圧を生成する、抵抗R4,R3、バイポーラトランジスタQ1、およびトランジスタQ1のベース電圧を印加する抵抗R1,R2を備える。
図2において、制御回路30が“H”電圧を出力すると、トランジスタQ1がオンし、FET M1がオン(導通)する。逆に、制御回路30が“L”電圧を出力すると、トランジスタQ1がオフし、FET M1がオフ(遮断)する。
図1において、自励振回路20は、出力電流検出抵抗R0、差動増幅回路21、フィルタ22、コンパレータ23、および位相反転コンパレータ24を備える。差動増幅回路21は抵抗R0の降下電圧を差動増幅する。フィルタ22は自励発振周波数を通過させ、それ以外の不要な周波成分を減衰させる。1入力のコンパレータ23はフィルタ22の出力電圧を二値電圧信号に変換する。位相反転コンパレータ24はコンパレータ23の出力電圧を位相反転(極性反転)する。コンパレータ23の出力電圧は抵抗R0を介して圧電素子1の第1端に入力され、位相反転コンパレータ24の出力電圧は圧電素子1の第2端に入力される。
上記回路構成より、圧電素子1に流れる電流と、圧電素子1に対する印加電圧とが正帰還の関係となって、自励発振する。これにより、圧電素子1に正負両極性の交番電圧が印加される。
図3は上記自励振回路20のデューティ動作を示す波形図である。スイッチ40のオン状態で自励振回路20に対して駆動電源電圧が供給され、スイッチ40のオフ状態で自励振回路20に対する駆動電源電圧が遮断される。すなわち、スイッチ40のターンオンで自励振回路20に対する駆動電源電圧が立ち上がり、スイッチ40のターンオフで自励振回路20に対する駆動電源電圧が立ち下がる。
また、図1に示したフィルタ22とコンパレータ23の接続順は逆にしてもよい。
上記立ち上がり時間tsが短い程、自励振回路20の発振不発のリスクが低減されるので、立ち上がり時間tsは短い方が好ましい。そのため、図2に示したFET M1は、ゲート・ソース間の寄生容量およびゲート・ドレイン間の寄生容量が小さくて、そのことにより、高速動作するFETであることが好ましい。
図4は流体制御装置101の起動からの経過時間に対する駆動電源電圧のオンデューティ比の変化、および上記経過時間に対する圧電ポンプ10の吐出圧の変化を示す図である。
図4に示すように、流体制御装置101の起動からの時間経過に伴い、駆動電源電圧のオンデューティ比(これは、スイッチ40のオンデューティ比でもあり、自励振回路20の断続動作のオンデューティ比でもある。)が上昇する。これに伴い、圧電ポンプ10の吐出圧も上昇する。
図5は上記オンデューティ比と吐出圧との関係を示す図である。図5において特性ラインCL1は、スイッチ40のオンデューティ比と圧電ポンプの吐出圧との関係を示す図である。この例は、駆動電源電圧を8Vに固定した例であり、オンデューティ比12.5%から、すなわち、実効電圧1V(8×0.125=1)という低電圧領域から自励発振し、圧電ポンプは動作する。図5に表れているように、オンデューティ比と圧力とは概略的に比例関係にある。そのため、自励振回路20の駆動電源電圧のオンデューティ比の制御によって、低圧力から吐出圧を高めていくことができる。すなわち、圧電ポンプの加圧速度が緩やかにできる。
これに対し、同一条件で駆動電源電圧を連続印加(オンデューティ比100%)で0Vから次第に上昇させた場合、6V以上でなければ自励発振を開始しない。これを8V印加状態でのオンデューティ比に換算すると、図5中に特性ラインCL0で示したとおりである。この例では、圧力9.5kPa以上となる条件で圧電ポンプが作動する。このように駆動電源電圧を制御する方法では、得られる圧力範囲が狭く、且つ高い圧力範囲でなければ制御できない。
図6は圧電ポンプの起動後の圧力変化の例を示す図である。図6において、特性ラインCL1~CL4はいずれも起動後に駆動電源電圧のデューティ比を次第に上昇させた例であり、特性ラインCL1は加圧速度を最も緩慢にした例、特性ラインCL4は加圧速度を最も急峻にした例である。また、図6において、特性ラインCL0は、上述の例のとおり、駆動電源電圧を連続印加(オンデューティ比100%)で0Vから8Vまで次第に上昇させた場合の例である。このような従来方式であれば、起動後圧力は急激に上昇してしまうが、本実施形態では、駆動電源電圧のデューティ比の上昇に応じて圧力上昇(加圧速度)が制御される。
図7は、入力電源である電池の寿命を充放電回数で表した図である。横軸は加圧速度であり、縦軸は電池が所定の電圧である終止電圧に低下するまでの電池寿命である。図7において特性曲線中のマーク(1) (2) (3) (4) (0) は、図6に示した特性ラインCL1,CL2,CL3,CL4,CL0に対応する起動を繰り返した場合の回数を示す。
図7の例では、図6の特性ラインCL3に沿った加圧を行う場合に最も電池寿命が長くなることが分かる。このように、適切な加圧速度で加圧することで電池寿命が長くなるという効果も奏する。
図8は第1の実施形態に係る別の流体制御装置の構成を示すブロック図である。図1に示した例とは異なり、スイッチ40はDC/DCコンバータ50と自励振回路20との間に設けられている。この構成によれば、DC/DCコンバータ50から出力される電圧の断続電圧が自励振回路20の電源電圧として直接印加されるので、自励振回路20の電源電圧の立ち上がり時間が短い。そのため、自励振回路20の自励発振が不発となるリスクは大幅に低減される。また、それに伴い(リプルや高調波成分を抑制しても自励振回路20の自励発振の不発リスクを低く保てるので)、DC/DCコンバータ50の内部でシャント接続されるコンデンサの容量を大きくして、出力電圧のリプルや高調波成分をより抑制できる。
一方、図1に示した構成によれば、DC/DCコンバータ50も断続動作するので、図8に示した構成に比べて消費電力は低減される。
図9は第1の実施形態に係る別の流体制御装置の自励振回路の回路図である。図1に示した例とは異なり、フィルタ22およびコンパレータ23は無い。このような回路構成であっても自励発振は可能である。
なお、差動増幅回路21に、発振周波数より高域を減衰させるローパスフィルタ特性を持たせてもよい。また、図1に示したフィルタ22またはコンパレータ23の一方を付加してもよい。
なお、以上に示した例では、流体制御装置101,102の起動からの経過時間に応じてオンデューティ比を徐々に大きくする例について説明した。この制御により、起動からの時間経過に伴って加圧速度は次第に大きくなる。但し、本発明はこれに限らず、流体制御装置の起動からの経過時間に応じてオンデューティ比を次第に小さくする制御も可能である。例えば、流体制御装置の起動直後は、「圧力」よりも「流量」を確保したい場合がある。このような場合に、流体制御装置の起動時にオンデューティ比を大きめに設定し、その後の時間経過に伴い、オンデューティ比を次第に小さくして、容器の加圧速度を緩慢にする、といった制御も可能である。
《第2の実施形態》
第2の実施形態では、自励振回路20の駆動電源電圧のデューティ比だけでなく電圧も変化させる例を示す。
第2の実施形態では、自励振回路20の駆動電源電圧のデューティ比だけでなく電圧も変化させる例を示す。
図10は第2の実施形態に係る流体制御装置102のブロック図である。流体制御装置102は、圧電素子1を備える圧電ポンプ10と、駆動電源電圧の印加により自励発振して圧電素子1を駆動する自励振回路20と、この自励振回路20に対する駆動電源電圧を断続する(駆動電源電圧の印加と非印加を切り替える)スイッチ40と、自励振回路20に対する駆動電源電圧を供給するDC/DCコンバータ50と、スイッチ40およびDC/DCコンバータ50を制御する制御回路30とを備える。
DC/DCコンバータ50は入力電源BATの電圧を昇圧または降圧して自励振回路20へ駆動電源電圧を供給する。この駆動電源電圧によって自励振回路20は自励発振し、圧電素子1に対して交番電圧を印加する。
制御回路30のうち駆動電圧制御部はDC/DCコンバータ50のスイッチング素子のオンデューティ比の制御等によって出力電圧を定める。また、デューティ比制御部はスイッチ40のオンデューティ比を定める。
図11は、図10における制御回路30の主要部の構成を示すブロック図である。この制御回路30はMCU(マイクロコントロールユニット)で構成され、そのI/Oポートがスイッチ40およびDC/DCコンバータ50のスイッチング回路に接続される。制御回路30は、レジスタ、タイマおよび比較器を備え、レジスタに設定した値に応じた周期の信号、すなわちPWM信号をI/Oポートを介してスイッチ40に出力する。タイマのカウント周期は一定であるので、周期一定(スイッチング周波数一定)且つレジスタに設定された値に応じたオンデューティ比でスイッチ40は断続される。起動後、制御回路30はレジスタへの設定値を所定レートで順次インクリメントする。このことによって、オンデューティ比は次第に上昇する。
図12は、自励振回路20の駆動電源電圧、すなわちDC/DCコンバータ50の出力電圧、に対する圧電ポンプ10の吐出圧の関係を示す図である。この例ではオンデューティ比を100%にしている。例えば、駆動電源電圧が8Vのとき、圧力は15kPaであり、駆動電源電圧が20Vのとき、圧力は55kPaである。
このように、ポンプとして用いられる通常の駆動電源電圧の範囲内において、自励振回路20の駆動電源電圧と圧電ポンプ10の吐出圧とは概略的に比例関係にある。第2の実施形態の流体制御装置102は、自励振回路20のオンデューティ比が100%になった以降は駆動電源電圧を上昇させることで、圧電ポンプの吐出圧を更に上昇させる。
図13は、時間経過に伴う、圧力、オンデューティ比、駆動電源電圧それぞれの変化を示す図である。起動からt1までは、駆動電源電圧をV1に定め、オンデューティ比を0から100%まで次第に上昇させる。図13において、圧力が0からP1までの範囲が、本発明における、「必要圧力が所定値未満の範囲」に相当する。また、駆動電源電圧V1が本発明における、「自励振回路が動作可能な下限電圧」に相当する。これにより、圧力は0からP1まで次第に上昇する。時刻t1以降(t2まで)は、オンデューティ比を100%に固定し、駆動電源電圧をV1からV2まで次第に上昇させる。これにより、圧力はP1からP2まで次第に上昇する。結局、圧力は、起動後0からP2までの広範囲に亘って緩慢に上昇する。
本実施形態によれば、広範囲に亘って且つ連続的に圧力が制御されるので、高精度な所定の低圧力から中圧力、高圧力まで発生させることができる。
《第3の実施形態》
第3の実施形態では、圧電素子に対する駆動電圧を断続することで自励振回路の自励発振のオンデューティ比を定める例を示す。
第3の実施形態では、圧電素子に対する駆動電圧を断続することで自励振回路の自励発振のオンデューティ比を定める例を示す。
図14は第3の実施形態に係る流体制御装置103の構成を示すブロック図である。流体制御装置103は、圧電素子1を備える圧電ポンプ10と、駆動電源電圧の印加により自励発振して圧電素子1を駆動する自励振回路20と、この自励振回路20に対して駆動電源電圧を供給するDC/DCコンバータ50と、圧電素子1に対する駆動電圧を断続するスイッチ40と、スイッチ40の状態を切り替える制御回路30とを備える。
第1の実施形態とは異なり、本実施形態では、自励振回路20が自励発振を持続したまま、圧電素子1に対する駆動電圧が断続される。
図14に示す入力電源BATは電池であり、DC/DCコンバータ50は、この入力電源電圧を昇圧して自励振回路20へ駆動電源電圧を供給する。この駆動電源電圧によって自励振回路20は自励発振する。スイッチ40が、位相反転コンパレータ24の出力と圧電素子1に接続する状態(オン状態)で、自励振回路20の出力電圧が圧電素子1に印加され、圧電素子1の片端を接地する状態(オフ状態)で、圧電素子1の駆動電圧は半分になる。つまり、第1の実施形態、第2の実施形態、第3の実施形態では、スイッチ40がオン状態で圧電素子1が平衡駆動されるので、圧電素子1には自励振回路20の出力電圧の2倍の電圧が印加される。一方、この第3の実施形態において、スイッチ40がオフ状態では圧電素子1は不平衡駆動されるので、圧電素子1には自励振回路20の出力電圧がそのまま印加される。
DC/DCコンバータ50および自励振回路20の構成は第1の実施形態で示したとおりである。
本実施形態によれば、自励振回路20に対する駆動電圧を断続する構成(図1)に比べて、圧電素子1への駆動電圧のオン/オフが高速に切り替えられるので、圧電ポンプ10による流体制御が高精度となる。そのため、この流体制御装置103を例えば血圧計に適用した場合に、血圧の測定精度を高めることができる。
《第4の実施形態》
第4の実施形態では血圧計について示す。図15は第4の実施形態に係る血圧計201のブロック図である。血圧計201は流体制御装置101、その電源BAT、バルブ60、カフ70、圧力センサ80、および測定部90を備えている。
第4の実施形態では血圧計について示す。図15は第4の実施形態に係る血圧計201のブロック図である。血圧計201は流体制御装置101、その電源BAT、バルブ60、カフ70、圧力センサ80、および測定部90を備えている。
流体制御装置101の構成は第1の実施形態で示したとおりである。この流体制御装置101の圧電ポンプ10の吐出部にバルブ60を介してカフ70が接続されている。圧力センサ80はカフ70の空気圧を検出する。バルブ60は、圧電ポンプ10が空気を吐出する状態ではそれをカフへ送り、カフの空気圧を減少させる場合には所定流量で大気へ開放する。測定部90は、加圧過程で、圧力センサの検出値にもとづいて脈波を検知し、オシロメトリック法に基づいて最高血圧および最低血圧を求める。その後、圧力開放過程でバルブ60から空気を抜く。このように、加圧過程で血圧を測定する方法は、測定後の圧力開放過程で急速に排気できるので、血圧測定に要するトータル時間が短くて済み、また、電池の消費は昇圧時間のみであるので消費電流が少なくて済む。但し、カフの加圧過程で所定圧力まで加圧し、その後の圧力開放過程で血圧を測定してもよい。
最後に、上述の実施形態はすべての点で例示であって制限的なものではない。当業者にとって変形および変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
BAT…入力電源
R0…出力電流検出抵抗
R1,R2,R3,R4…抵抗
1…圧電素子
10…圧電ポンプ
20…自励振回路
21…差動増幅回路
22…フィルタ
23…コンパレータ
24…位相反転コンパレータ
30…制御回路
40…スイッチ
50…DC/DCコンバータ
60…バルブ
70…カフ
80…圧力センサ
90…測定部
101,102,103…流体制御装置
201…血圧計
R0…出力電流検出抵抗
R1,R2,R3,R4…抵抗
1…圧電素子
10…圧電ポンプ
20…自励振回路
21…差動増幅回路
22…フィルタ
23…コンパレータ
24…位相反転コンパレータ
30…制御回路
40…スイッチ
50…DC/DCコンバータ
60…バルブ
70…カフ
80…圧力センサ
90…測定部
101,102,103…流体制御装置
201…血圧計
Claims (7)
- 圧電素子を備える圧電ポンプと、
駆動電源電圧の印加により自励発振して前記圧電素子を駆動する自励振回路と、
前記圧電素子の駆動のオンデューティ比を定める制御回路と、を備える、
流体制御装置。 - 前記圧電素子に対する駆動電圧を断続するスイッチを備え、
前記制御回路は、所定のオンデューティ比で前記スイッチの状態を切り替える、請求項1に記載の流体制御装置。 - 前記スイッチはFET、またはFETおよび当該FETを駆動する回路、で構成される、請求項2に記載の流体制御装置。
- 直流入力電源電圧を変換して前記駆動電源電圧を出力するDC/DCコンバータを更に備え、
前記制御回路は、前記DC/DCコンバータを制御することで前記駆動電源電圧を制御し、必要圧力が所定値未満の範囲では、前記駆動電源電圧を前記自励振回路が動作可能な下限電圧にした状態で前記オンデューティ比を制御し、必要圧力が所定値以上の範囲では、前記オンデューティ比を100%の状態で前記駆動電源電圧を前記下限電圧より高い電圧範囲で制御する、請求項1から3のいずれかに記載の流体制御装置。 - 前記制御回路はPWM信号を発生するPWM信号発生回路を有するMCUを備え、前記PWM信号で前記オンデューティ比を定める、請求項1から4のいずれかに記載の流体制御装置。
- カフと、当該カフを加圧する流体制御装置と、前記カフ内の圧力を調整するバルブと、脈波またはコロトコフ音および前記カフの圧力に基づいて血圧を測定する測定部とを備え、
前記流体制御装置は、
圧電素子を備える圧電ポンプと、
駆動電源電圧の印加により自励発振して前記圧電素子を駆動する自励振回路と、
前記自励振回路に対する前記駆動電源電圧を断続するスイッチと、
所定のスイッチング周波数および所定のオンデューティ比で前記スイッチの状態を切り替えることにより、前記自励振回路のオンデューティ比を変化させる制御回路と、を備える、
血圧計。 - 前記スイッチング周波数は、前記測定部の測定周期の逆数の10倍以上、且つ前記圧電素子の駆動周波数の1/10以下の範囲内の周波数である、請求項6に記載の血圧計。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018562413A JP6673505B2 (ja) | 2017-01-20 | 2018-01-18 | 流体制御装置および血圧計 |
US16/508,856 US11773835B2 (en) | 2017-01-20 | 2019-07-11 | Fluid control device and sphygmomanometer |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017008772 | 2017-01-20 | ||
JP2017-008772 | 2017-01-20 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/508,856 Continuation US11773835B2 (en) | 2017-01-20 | 2019-07-11 | Fluid control device and sphygmomanometer |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018135553A1 true WO2018135553A1 (ja) | 2018-07-26 |
Family
ID=62909178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/001291 WO2018135553A1 (ja) | 2017-01-20 | 2018-01-18 | 流体制御装置および血圧計 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11773835B2 (ja) |
JP (1) | JP6673505B2 (ja) |
WO (1) | WO2018135553A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111779659A (zh) * | 2019-04-03 | 2020-10-16 | 研能科技股份有限公司 | 微型压电泵模块 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018168379A1 (ja) * | 2017-03-16 | 2018-09-20 | 株式会社村田製作所 | 流体制御装置および血圧計 |
CN114010350B (zh) * | 2021-10-28 | 2024-04-30 | 深圳市腾吉思海科技有限公司 | 基于pwm无极调速的冲牙方法及装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005080793A1 (ja) * | 2004-02-23 | 2005-09-01 | Nec Corporation | 圧電ポンプ用駆動回路およびこれを用いた冷却システム |
JP2007533902A (ja) * | 2004-04-02 | 2007-11-22 | アダプティブエナジー・リミテッド・ライアビリティー・カンパニー | 圧電装置、およびそれを駆動するための方法ならびに回路 |
JP2010148325A (ja) * | 2008-12-22 | 2010-07-01 | Sanyo Electric Co Ltd | 電圧出力ドライバーおよび圧電ポンプ |
JP2013220288A (ja) * | 2012-04-19 | 2013-10-28 | Omron Healthcare Co Ltd | 血圧計およびポンプ駆動システム |
JP2014034951A (ja) * | 2012-08-10 | 2014-02-24 | Kikuchi Seisakusho Co Ltd | 圧電式ポンプの駆動方法および駆動装置 |
JP2014144201A (ja) * | 2013-01-30 | 2014-08-14 | Citizen Holdings Co Ltd | 血圧計 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5716843B2 (ja) * | 2011-12-09 | 2015-05-13 | 株式会社村田製作所 | 圧電素子用駆動回路 |
JP5998486B2 (ja) * | 2012-01-16 | 2016-09-28 | オムロンヘルスケア株式会社 | 血圧測定装置、および、血圧測定装置の制御方法 |
TWI605681B (zh) * | 2016-10-13 | 2017-11-11 | 研能科技股份有限公司 | 壓電泵浦之驅動系統 |
TWI604821B (zh) * | 2016-11-11 | 2017-11-11 | Microlife Corp | 具有壓電幫浦的血壓測量裝置及具有壓電幫浦的血壓測量裝置的控制方法 |
-
2018
- 2018-01-18 JP JP2018562413A patent/JP6673505B2/ja active Active
- 2018-01-18 WO PCT/JP2018/001291 patent/WO2018135553A1/ja active Application Filing
-
2019
- 2019-07-11 US US16/508,856 patent/US11773835B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005080793A1 (ja) * | 2004-02-23 | 2005-09-01 | Nec Corporation | 圧電ポンプ用駆動回路およびこれを用いた冷却システム |
JP2007533902A (ja) * | 2004-04-02 | 2007-11-22 | アダプティブエナジー・リミテッド・ライアビリティー・カンパニー | 圧電装置、およびそれを駆動するための方法ならびに回路 |
JP2010148325A (ja) * | 2008-12-22 | 2010-07-01 | Sanyo Electric Co Ltd | 電圧出力ドライバーおよび圧電ポンプ |
JP2013220288A (ja) * | 2012-04-19 | 2013-10-28 | Omron Healthcare Co Ltd | 血圧計およびポンプ駆動システム |
JP2014034951A (ja) * | 2012-08-10 | 2014-02-24 | Kikuchi Seisakusho Co Ltd | 圧電式ポンプの駆動方法および駆動装置 |
JP2014144201A (ja) * | 2013-01-30 | 2014-08-14 | Citizen Holdings Co Ltd | 血圧計 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111779659A (zh) * | 2019-04-03 | 2020-10-16 | 研能科技股份有限公司 | 微型压电泵模块 |
Also Published As
Publication number | Publication date |
---|---|
US20190331101A1 (en) | 2019-10-31 |
US11773835B2 (en) | 2023-10-03 |
JPWO2018135553A1 (ja) | 2019-07-11 |
JP6673505B2 (ja) | 2020-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5944727B2 (ja) | 血圧計およびポンプ駆動システム | |
WO2018135553A1 (ja) | 流体制御装置および血圧計 | |
TW200421700A (en) | Switching constant-current power supply system | |
JP2005500680A (ja) | Ledドライバ装置 | |
TWI364014B (en) | Method and device capable of controlling soft-start dymatically | |
US11835037B2 (en) | Methods and devices for driving a piezoelectric pump | |
TW200707398A (en) | Inverter controller with feed-forward compensation, and device and method thereof | |
TWI403874B (zh) | 具電流回授之電流控制系統以及電流控制方法 | |
US9543899B2 (en) | Class D power driver peripheral | |
US5517999A (en) | Automatic blood pressure monitor with a dual-speed control circuit for the DC inflation pump motor | |
US20180007755A1 (en) | Light-source driving apparatus and light-source driving method | |
JP2003164163A (ja) | 圧電トランス駆動回路 | |
US7812504B1 (en) | Apparatus for high efficiency, high safety ultrasound power delivery with digital efficiency indicator and one clock cycle shutdown | |
JP5070555B2 (ja) | パルス波形の電源を制御するための回路および方法 | |
JP2000300662A (ja) | 電動式低圧持続吸引器 | |
CN110213990B (zh) | 流体控制装置以及血压计 | |
JP2017045716A (ja) | 光源駆動装置、表示装置および光源駆動方法 | |
JP2011130553A (ja) | 電子回路 | |
CN112260594B (zh) | 有刷直流电机及其驱动控制电路、空调 | |
JP5046518B2 (ja) | 圧電素子の駆動回路 | |
JP2019035596A (ja) | インピーダンス測定装置 | |
KR20100022774A (ko) | 백라이트 유닛의 디밍회로 | |
WO2021020404A1 (ja) | トルク検出器、モータユニット及び電動自転車 | |
JPH09232073A (ja) | 容量性負荷の駆動装置 | |
JP2004080974A (ja) | インバータ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18741634 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018562413 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18741634 Country of ref document: EP Kind code of ref document: A1 |