+

WO2018135252A1 - 半透膜及びその使用 - Google Patents

半透膜及びその使用 Download PDF

Info

Publication number
WO2018135252A1
WO2018135252A1 PCT/JP2017/046650 JP2017046650W WO2018135252A1 WO 2018135252 A1 WO2018135252 A1 WO 2018135252A1 JP 2017046650 W JP2017046650 W JP 2017046650W WO 2018135252 A1 WO2018135252 A1 WO 2018135252A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell culture
cells
semipermeable membrane
cell
tissue
Prior art date
Application number
PCT/JP2017/046650
Other languages
English (en)
French (fr)
Inventor
俊明 竹澤
Original Assignee
国立研究開発法人農業・食品産業技術総合研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業・食品産業技術総合研究機構 filed Critical 国立研究開発法人農業・食品産業技術総合研究機構
Priority to KR1020197020709A priority Critical patent/KR20190104159A/ko
Priority to EP17892982.4A priority patent/EP3572144A4/en
Priority to US16/476,512 priority patent/US20210403850A1/en
Priority to JP2018563245A priority patent/JP7112736B2/ja
Priority to CN201780083709.4A priority patent/CN110198777A/zh
Publication of WO2018135252A1 publication Critical patent/WO2018135252A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/04Filters; Permeable or porous membranes or plates, e.g. dialysis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/087Single membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/089Modules where the membrane is in the form of a bag, membrane cushion or pad
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/74Natural macromolecular material or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/08Bioreactors or fermenters specially adapted for specific uses for producing artificial tissue or for ex-vivo cultivation of tissue
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/10Petri dish
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/58Reaction vessels connected in series or in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • C12Q1/06Quantitative determination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/02Elements in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/04Elements in parallel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin

Definitions

  • the present invention relates to a semipermeable membrane, a cell culture device, a tissue chip, an organ chip, an organ chip system, a cell culture method using the cell culture device, and a cell using the cell culture device It relates to a method for measuring numbers.
  • tissue-type culture model examples include various gel-embedded culture techniques, spheroid culture techniques (for example, see Patent Document 1), various chamber culture techniques (for example, see Patent Document 2), and the like. Is mentioned.
  • Patent Document 3 discloses a thin film made of a hydrated vitrified matrix gel thin film containing an extracellular matrix component, and a hydrogel thin film integrated with a holder such as a ring or a net. Yes.
  • the film is deflected when the liquid is injected into the inside, and the hydrogel thin film portion is further removed with tweezers or the like. There was a problem that it would be damaged if held.
  • the thin film is not easily damaged and has an appropriate strength, but the holding body such as gauze absorbs water and expands, so the film is bent. The problem of being left behind was left.
  • the present invention has been made in view of the above circumstances, and provides a semipermeable membrane having moderate strength that is difficult to bend and easy to handle. Further, the present invention provides a cell culturing device that not only has excellent cell protection performance but also is easy to handle, can cultivate cells for a long period of time, and can measure the number of cells.
  • the present inventor has produced a cell culture device having a lattice-like and low water-absorbing semipermeable membrane, and injecting cells into the cell culture device.
  • the present inventors have found that a tissue-type chip that can be held with tweezers without being bent and can be handled easily and has a high function is obtained, and the present invention has been completed.
  • the semipermeable membrane according to the first aspect of the present invention includes a low water-absorbing holding body that is semipermeable in a liquid phase and has a lattice structure.
  • the lattice structure of the holding body may function as a scale in units of micrometers.
  • the holding body may be made of polyester or polystyrene.
  • the semipermeable membrane according to the first aspect may include a biocompatible material.
  • the semipermeable membrane according to the first aspect may be an extracellular matrix-derived component that gels the biocompatible material.
  • the extracellular matrix-derived component to be gelated may be native collagen or atelocollagen.
  • the device for cell culture according to the second aspect of the present invention includes at least a part of the semipermeable membrane according to the first aspect.
  • the device for cell culture according to the second aspect may further have liquid tightness in the gas phase.
  • the device for cell culture according to the second aspect can inject cells suspended in a culture solution, and the internal volume may be 10 mL or less.
  • the cell culture device according to the second aspect may be entirely made of the semipermeable membrane.
  • the tissue type chip according to the third aspect of the present invention includes the cell culture device according to the second aspect including one type of cell.
  • the density of the cells may be 2.0 ⁇ 10 3 cells / mL or more and 1.0 ⁇ 10 9 cells / mL or less.
  • the organotypic chip according to the fourth aspect of the present invention includes the cell culture device according to the second aspect including at least two types of cells.
  • the density of the cells may be 2.0 ⁇ 10 3 cells / mL or more and 1.0 ⁇ 10 9 cells / mL or less.
  • the kit according to the fifth aspect of the present invention is a kit for providing a multicellular structure, wherein the tissue type chip according to the third aspect or the organ type chip according to the fourth aspect, a culture solution, And an openable / closable sealed container.
  • An organ type chip system includes at least two tissue type chips according to the third aspect or the organ type chip according to the fourth aspect, and the tissue type chip or the organ type chip is hermetically sealed. It is connected while maintaining the sex.
  • the cell culture method according to the seventh aspect of the present invention is a method using the cell culture device according to the second aspect.
  • the method for measuring the number of cells according to the eighth aspect of the present invention is a method using the device for cell culture according to the second aspect.
  • the semipermeable membrane of the above aspect has an appropriate strength that is difficult to bend and easy to handle.
  • the device for cell culture of the above aspect not only has excellent cell protection performance, but is easy to handle, can cultivate cells for a long period of time, and can measure the number of cells.
  • FIG. 1 is a perspective view schematically showing a cell culture device according to a first embodiment of the present invention. It is a perspective view which shows typically the device for cell culture which concerns on 2nd Embodiment of this invention. It is a perspective view which shows typically the device for cell culture which concerns on 3rd Embodiment of this invention. It is a perspective view which shows typically the device for cell culture which concerns on 4th Embodiment of this invention (The inside of a device and the exterior are connecting via an injection hole). It is a perspective view which shows typically the device for cell culture which concerns on 4th Embodiment of this invention (The inside of a device and the exterior do not connect).
  • FIG. 1 is a perspective view schematically showing an organotypic chip system according to a first embodiment of the present invention. It is a perspective view showing typically an organ type chip system concerning a 2nd embodiment of the present invention. It is a perspective view showing typically an organ type chip system concerning a 3rd embodiment of the present invention.
  • FIG. 3 is an image showing a semipermeable membrane produced in Production Example 1. It is an image which shows the state which injected PBS into the device for cell culture provided with the semipermeable membrane with which the holding body in Example 1 was embedded, and was picked with tweezers. It is an image which shows the state which inject
  • the present invention provides a semipermeable membrane comprising a low water-absorbing holding body that is semipermeable in a liquid phase and has a lattice structure.
  • the semipermeable membrane of the present embodiment has an appropriate strength that is difficult to bend and easy to handle. Therefore, the device for cell culture provided with the semipermeable membrane of the present embodiment can be held without being damaged, even if it is picked with tweezers without being bent, and is easy to handle.
  • FIG. 1 is a plan view schematically showing a semipermeable membrane according to the first embodiment of the present invention.
  • the semipermeable membrane 10 shown here includes a low water absorption holder 1 having a lattice structure.
  • the holding body 1 may be adhered to at least a part of the surface of the semipermeable membrane, or may be in a state where at least a part is embedded in the semipermeable membrane.
  • the semipermeable membrane 10 is semipermeable in the liquid phase.
  • “semi-permeable” means a property that allows only molecules or ions having a certain molecular weight or less to pass through
  • “semi-permeable membrane” means a film having the property.
  • the semipermeable membrane is used for cell culture. While not permeating the outside of the device, the nutrients dissolved in the culture solution are permeated into the inside of the device for cell culture, and the cell product including waste products dissolved in the culture solution inside the device for cell culture is removed.
  • the device for cell culture of this embodiment can be used for long-term culture of cells. More specifically, the semipermeable membrane according to the present embodiment can transmit, for example, a high molecular compound having a molecular weight of about 1,000,000 or less, for example, a molecular compound having a molecular weight of about 200,000 or less. It can be transparent.
  • the semipermeable membrane 10 has a circular shape, but may have other shapes such as, but not limited to, a polygon (including a regular polygon), an ellipse, a sector, and the like. .
  • the holding body 1 is shown as a square, but may have other shapes, such as a polygon (including a regular polygon), an ellipse, a sector, and the like. Not.
  • the holding body in the present embodiment is preferably in a lattice shape and has low water absorption.
  • “lattice” means a state in which a plurality of vertical lines and horizontal lines intersect each other vertically.
  • the holding body in the present embodiment preferably has a portion in which vertical lines and horizontal lines are arranged at equal intervals in units of micrometers. That is, the holding body in the present embodiment preferably functions as a scale in units of micrometers.
  • the distance between the vertical lines and the horizontal lines forming the lattice is preferably 100 ⁇ m or more and 500 ⁇ m or less, and more preferably 200 ⁇ m or more and 300 ⁇ m or less.
  • the diameters of the vertical lines and the horizontal lines forming the lattice can be, for example, 0.1 ⁇ m or more and 100 ⁇ m or less, for example, 1 ⁇ m or more and 80 ⁇ m or less.
  • low water absorption in the present specification means that the water absorption measured by Japanese Industrial Standard (JIS K 7209) is low. Specifically, the water absorption is preferably less than 1%.
  • a plastic material that can form a lattice by processing a fiber (yarn) or a film, has low water absorption, appropriate hardness, and low cytotoxicity is used. be able to.
  • the plastic include polyvinyl chloride, styrene copolymer, polyacrylate (acrylic resin), polycarbonate, polyester (especially polyethylene terephthalate), urea resin, phenol resin, melamine resin, polyacetal, polyethylene, polypropylene, polytetrafluoride. Examples thereof include, but are not limited to, ethylene, polydifluoroethylene, polyvinylidene chloride, and polystyrene.
  • examples of the polyacrylate (acrylic resin) include poly (methyl methacrylate), poly (ethyl methacrylate), poly (butyl methacrylate), poly (isobutyl methacrylate), and poly (hexyl methacrylate).
  • polyester or polystyrene is preferable because the production cost and the semipermeable membrane of the present embodiment are usually used for handling cells, and polyethylene terephthalate or polystyrene is preferable. More preferably.
  • the holding body As a manufacturing method of the holding body, it can be manufactured using a known mesh manufacturing method using a plastic resin fiber (yarn) or film.
  • fibers (yarns) having a desired wire diameter made of the above-described material are latticed using a machine or the like. It can be manufactured by weaving into a shape. At this time, the intersection of the vertical fiber (yarn) and the horizontal fiber (yarn) may be fused by applying heat or pressure. By fusing the intersections, a smooth holding body without a step can be obtained.
  • a film having a desired film thickness made of the above-described material is manufactured by cutting a hole in a lattice shape using a machine or the like. can do.
  • the porous shape is uniform and may function as a scale in units of micrometers, and examples thereof include, but are not limited to, a polygon (including a square), a circle, and an ellipse.
  • a non-cytotoxic material in the semipermeable membrane of the present embodiment, as a constituent material other than the holder, a non-cytotoxic material can be used, which may be a natural polymer compound or a synthetic polymer compound.
  • the material having the above properties is preferably a biocompatible material.
  • biocompatibility means an evaluation standard indicating compatibility between a living tissue and a material, and “having biocompatibility” means that the material itself has no toxicity. It means a state that does not have components derived from microorganisms such as endotoxin, does not physically reject the body tissue, and is not rejected even if it interacts with proteins or cells constituting the body tissue.
  • biocompatible natural polymer compound examples include gelled extracellular matrix-derived components, polysaccharides (eg, alginate, cellulose, dextran, pullulane, polyhyaluronic acid, and derivatives thereof), Chitin, poly (3-hydroxyalkanoate) (especially poly ( ⁇ -hydroxybutyrate), poly (3-hydroxyoctanoate)), poly (3-hydroxy fatty acid), fibrin, agar, agarose, etc.
  • polysaccharides eg, alginate, cellulose, dextran, pullulane, polyhyaluronic acid, and derivatives thereof
  • Chitin poly (3-hydroxyalkanoate) (especially poly ( ⁇ -hydroxybutyrate), poly (3-hydroxyoctanoate)
  • poly (3-hydroxy fatty acid) especially fibrin, agar, agarose, etc.
  • the cellulose includes those modified by synthesis, and examples thereof include cellulose derivatives (for example, alkyl cellulose, hydroxyalkyl cellulose, cellulose ether, cellulose ester, nitrocellulose, chitosan, etc.).
  • cellulose derivatives for example, alkyl cellulose, hydroxyalkyl cellulose, cellulose ether, cellulose ester, nitrocellulose, chitosan, etc.
  • cellulose derivatives for example, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxypropyl methyl cellulose, hydroxybutyl methyl cellulose, cellulose acetate, cellulose propionate, cellulose acetate butyrate, cellulose acetate phthalate, carboxymethyl cellulose, cellulose triacetate, A cellulose sulfate sodium salt etc. are mentioned.
  • the natural polymer compound is preferably an extracellular matrix-derived component that gels, fibrin, agar, or agarose because it has excellent water retention.
  • extracellular matrix-derived components that gel include collagen (type I, type II, type III, type V, type XI, etc.), mouse EHS tumor extract (type IV collagen, laminin, heparan sulfate proteoglycan, etc.) ) Reconstituted basement membrane component (trade name: Matrigel), glycosaminoglycan, hyaluronic acid, proteoglycan, gelatin and the like, but are not limited thereto. It is possible to produce a semipermeable membrane by selecting components such as salt, concentration, pH and the like that are optimal for each gelation. Moreover, the semipermeable membrane which imitated various in-vivo tissues can be obtained by combining raw materials.
  • Examples of synthetic polymer compounds having biocompatibility include polyphosphazene, poly (vinyl alcohol), polyamide (for example, nylon), polyesteramide, poly (amino acid), polyanhydride, polysulfone, polycarbonate, polyacrylate ( Acrylic resin), polyalkylene (for example, polyethylene), polyacrylamide, polyalkylene glycol (for example, polyethylene glycol), polyalkylene oxide (for example, polyethylene oxide), polyalkylene terephthalate (for example, polyethylene terephthalate), poly Ortho ester, polyvinyl ether, polyvinyl ester, polyvinyl halide, polyvinyl pyrrolidone, polyester, polysiloxane, polyurethane, polyhydroxy acid (eg Polylactide, polyglycolide, etc.), poly (hydroxybutyric acid), poly (hydroxyvaleric acid), poly [lactide-co- ( ⁇ -caprolactone)], poly [glycolide-co- ( ⁇ -caprolactone)] etc
  • polyhydroxy acid for example, polylactide, polyglycolide, etc.
  • polyethylene terephthalate poly (hydroxybutyric acid), poly (hydroxyvaleric acid), poly [lactide-co- ( ⁇ -caprolactone) ], Poly [glycolide-co- ( ⁇ -caprolactone)], etc.
  • poly (hydroxyalkanoate) polyorthoester, or copolymer.
  • the constituent material other than the holding body may be composed of one type of the materials exemplified above, or may be composed of two or more types.
  • the material of the semipermeable membrane in the present embodiment may be composed of either a natural polymer compound or a synthetic polymer compound, and is composed of both a natural polymer compound and a synthetic polymer compound. May be.
  • the semipermeable membrane when the semipermeable membrane is composed of two or more of the materials exemplified above, the semipermeable membrane may be composed of a mixture of the materials exemplified above.
  • the semipermeable membrane may be formed by laminating two or more semipermeable membranes made of one kind of material, and the materials constituting each semipermeable membrane may be made of different films.
  • the semipermeable membrane of the present embodiment as a constituent material other than the holding body, a natural polymer compound is preferable, an extracellular matrix-derived component that gels is more preferable, and collagen is more preferable. Moreover, as a more preferable raw material in collagen, native collagen or atelocollagen can be illustrated.
  • the extracellular matrix-derived component is preferably contained in an amount of 0.1 mg to 10.0 mg per 1 cm 2 of the semipermeable membrane, It is more preferable to contain 0.5 mg or more and 5.0 mg or less.
  • the extracellular matrix-derived component is collagen
  • the collagen is preferably contained in an amount of 0.2 mg to 10.0 mg per cm 2 of the semipermeable membrane, and preferably contained in an amount of 0.25 mg to 5.0 mg per cm 2. More preferably.
  • the cell can be made strong enough to be injected into the cell culture device and cultured.
  • the “weight per 1 cm 2 unit area of the film” refers to the weight of the component contained per 1 cm 2 of the material piece with the thickness of the film being arbitrary.
  • the thickness of the semipermeable membrane in the present embodiment is not particularly limited, but is preferably 1 ⁇ m or more and 1000 ⁇ m or less, more preferably 1 ⁇ m or more and 500 ⁇ m or less, further preferably 5 ⁇ m or more and 300 ⁇ m or less, and more preferably 10 ⁇ m or more. It is especially preferable that it is 200 micrometers or less.
  • the thickness of the semipermeable membrane is in the above range, it is possible to obtain a strength that allows cells to be injected into a cell culture device and cultured.
  • the “thickness of the semipermeable membrane” means the thickness of the entire semipermeable membrane.
  • the thickness of the semipermeable membrane composed of a plurality of layers is the sum of all the layers constituting the semipermeable membrane. Means the thickness.
  • the semipermeable membrane in the present embodiment does not break during use, and is very excellent in practical use.
  • Method for producing semipermeable membrane using synthetic polymer compound having biocompatibility
  • a known method e.g. Semi-permeable membranes can be produced by using the method disclosed in Japanese Patent No. -1497663.
  • a membrane forming stock solution in which the synthetic polymer compound is dissolved in an organic solvent is prepared.
  • a solvent for the synthetic polymer compound can be used, and examples thereof include tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone and the like, but are not limited thereto.
  • the mixing ratio of the synthetic polymer compound and the organic solvent can be appropriately adjusted according to the type of the synthetic polymer compound and the organic solvent to be used, for example, 15% by weight of the synthetic polymer compound and 85% by weight of the organic solvent. can do.
  • dissolution can be normally 30 to 100 degreeC, and it is preferable that it is 50 to 80 degreeC.
  • the prepared film-forming stock solution is solidified in a coagulating liquid using, for example, a method of discharging from a nozzle to produce a semipermeable membrane having a predetermined shape.
  • the semi-permeable membrane can be produced by arranging the holding body in the coagulation liquid and discharging the film-forming stock solution uniformly so as to include the holding body.
  • the coagulation liquid it is preferable to use a mixed liquid of an organic solvent and water.
  • the organic solvent used for the coagulation liquid the same organic solvents as exemplified for the organic solvent used for dissolving the synthetic polymer compound can be used.
  • the organic solvent used for the coagulation liquid may be the same type as the organic solvent used for dissolving the synthetic polymer compound or may be a different type.
  • the ratio of the water in a coagulation liquid can be 30 weight% or more and 80 weight% or less, for example.
  • alcohols such as methanol, ethanol, isopropanol and glycerin and glycols such as ethylene glycol and propylene glycol may be added to the coagulation liquid.
  • the semipermeable membrane may be produced by sandwiching the holding body using two membranes solidified into a predetermined shape, and bonding and drying using an adhesive.
  • the adhesive one having no cytotoxicity can be used, and it may be a synthetic compound adhesive or a natural compound adhesive.
  • Examples of the synthetic compound adhesive include urethane adhesives, cyanoacrylate adhesives, polymethyl methacrylate (PMMA), calcium phosphate adhesives, and resin cements.
  • Examples of natural compound adhesives include fibrin glue and gelatin glue.
  • the obtained semipermeable membrane can be used after being washed with distilled water or the like and further sterilized by ultraviolet irradiation or the like.
  • hydrogel refers to a substance in which a polymer compound has a network structure formed by chemical bonds and has a large amount of water in the network, and more specifically, a natural product polymer compound. Or a synthetic polymer compound artificial material that is gelled by introducing crosslinks.
  • Hydrogels include, for example, the above-mentioned gelling extracellular matrix-derived components, natural polymer compounds such as fibrin, agar, agarose, cellulose, and polyacrylamide, polyvinyl alcohol, polyethylene oxide, poly (II-hydroxyethyl methacrylate) / polycaprolactone. Synthetic polymer compounds such as
  • a hydrogel that is not completely gelated on a template in which a holder is previously arranged (hereinafter referred to as “sol”).
  • sol a hydrogel that is not completely gelated on a template in which a holder is previously arranged
  • the sol is a collagen sol
  • the collagen sol has an optimum salt concentration, such as physiological saline, PBS (Phosphate Buffered Saline), HBSS (Hank's Balanced Salt Solution), basic culture solution, and serum-free culture solution.
  • the pH of the solution at the time of gelatinization of collagen can be 6 or more and 8 or less, for example.
  • the collagen sol may be prepared at about 4 ° C., for example. Thereafter, the heat retention during gelation can be set to a temperature lower than the collagen denaturation temperature depending on the animal species of the collagen to be used. In general, the temperature is kept at a temperature of 20 ° C. to 37 ° C. for several minutes. Gelation can be performed in a few hours.
  • the concentration of the collagen sol for producing the semipermeable membrane is preferably 0.1% or more and 1.0% or less, and more preferably 0.2% or more and 0.6% or less.
  • the collagen sol concentration is equal to or higher than the lower limit value, gelation is not too weak, and when the collagen sol concentration is equal to or lower than the upper limit value, a semipermeable membrane containing a uniform collagen gel can be obtained. it can.
  • the obtained hydrogel may be dried to obtain a dried hydrogel.
  • the free water in the hydrogel can be completely removed, and further the partial removal of the bound water can proceed.
  • vitrigel registered trademark
  • Vitrigel obtained by rehydration after vitrification for a short period of time can be washed with PBS or the like and then vitrified again.
  • Vitrigel refers to a gel in a stable state obtained by rehydrating a conventional hydrogel after vitrification.
  • Vitrigel® refers to a gel in a stable state obtained by rehydrating a conventional hydrogel after vitrification.
  • drying method for example, various methods such as air drying, drying in a sealed container (circulating air in the container and always supplying dry air), drying in an environment where silica gel is placed, and the like can be used.
  • air drying method include a method of drying in an incubator kept sterile at 10 ° C. and 40% humidity for 2 days, or drying at room temperature all day and night in a clean bench in an aseptic state.
  • Vitrigel (registered trademark) dried product may be re-hydrated with PBS, a culture medium to be used, or the like to form Vitrigel (registered trademark) again.
  • the obtained Vitrigel (registered trademark) may be re-dried by re-drying to obtain a dried Vitrigel (registered trademark).
  • drying method the same method as exemplified above can be used.
  • the obtained Vitrigel (registered trademark) dried product may be irradiated with ultraviolet rays, and the Vitrigel (registered trademark) dried product may be subjected to ultraviolet irradiation treatment to obtain a dried Vitrigel (registered trademark) material.
  • a known ultraviolet irradiation device can be used for ultraviolet irradiation.
  • the total irradiation dose per unit area is preferably 0.1 mJ / cm 2 or more 6000 mJ / cm 2 or less, 10 mJ / cm 2 or more 4000 mJ / cm more preferably 2 or less, and more preferably 100 mJ / cm 2 or more 3000 mJ / cm 2 or less.
  • the transparency and strength of the Vitrigel (registered trademark) material obtained in the subsequent rehydration step can be made particularly preferable.
  • Vitrigel (registered trademark) dried product is repeatedly irradiated with UV light, Vitrigel (Registered Trademark) dried product is subjected to UV irradiation treatment after the first UV irradiation is performed on Vitrigel (Registered Trademark) dried product It is preferable to perform the steps of rehydration and revitalization of the dried (registered trademark) material, and then irradiate the dried vitrigel (registered trademark) material after the second and subsequent revitrification with ultraviolet rays.
  • the Vitrigel (registered trademark) dried body is irradiated with ultraviolet rays divided into a plurality of times, and repeatedly obtained in the subsequent rehydration step (
  • the transparency and strength of the (registered trademark) material can be further increased. Further, the larger the number of divisions, the better.
  • the total irradiation amount per unit area of ultraviolet irradiation to the Vitrigel (registered trademark) dry body is in the range of 1000 mJ / cm 2 to 4000 mJ / cm 2
  • the number of irradiations within the range is twice. It is preferably 10 times or less and more preferably 2 times or more and 6 times or less.
  • the irradiated portion is irradiated on one side and the other side (upper surface and lower surface) of the dried Vitrigel (registered trademark).
  • the total irradiation amount may be the total ultraviolet irradiation amount per unit area on the dried Vitrigel (registered trademark).
  • the strength and transparency of the Vitrigel (registered trademark) material obtained in the subsequent rehydration step is increased. It is considered that the compounds are cross-linked by ultraviolet rays. That is, by this operation, it is considered that high transparency and strength can be maintained in the Vitrigel (registered trademark) material.
  • the obtained Vitrigel (registered trademark) dried product obtained by subjecting the dried Vitrigel (registered trademark) material to UV irradiation treatment is rehydrated with PBS or a culture solution to be used, thereby obtaining a Vitrigel (registered trademark) material. Also good.
  • the obtained Vitrigel (registered trademark) material may be dried to be revitrified to obtain a dried Vitrigel (registered trademark) material.
  • drying method the same method as exemplified above can be used.
  • a semipermeable membrane may be produced by sandwiching a holding body using two film-forming bodies, and bonding and drying using an adhesive or sol.
  • the adhesive one having no cytotoxicity can be used, which is the same as that exemplified in the above-mentioned “1.
  • Method for producing semipermeable membrane using synthetic polymer compound having biocompatibility Is mentioned.
  • the present invention provides a device for cell culture comprising at least a part of the semipermeable membrane described above.
  • the device for cell culture according to the present embodiment can be held without damaging the membrane even if the semipermeable membrane is picked with tweezers or the like.
  • the cell culturing device of this embodiment can cultivate cells for a long period of about 3 to 30 days and is not subject to time restrictions.
  • the device for cell culture of the present embodiment includes a holder inside or on the surface of the semipermeable membrane (outside the top surface or bottom surface of the device for cell culture), it can be used as a substitute for a hemocytometer, The number of cells contained in the cell culture device can be easily measured.
  • the device for cell culture of this embodiment includes at least a part of the above-described semipermeable membrane. Therefore, for example, when the device for cell culture of the present embodiment containing cells is immersed in a container containing a culture solution, the semipermeable membrane does not allow the cells to permeate outside the device for cell culture, To allow nutrients dissolved in the culture medium to permeate inside the cell culture device and to allow cell products including waste products dissolved in the culture medium inside the cell culture device to permeate outside the cell culture device. Can do. For this reason, the device for cell culture of this embodiment can be used for long-term culture of cells.
  • the device for cell culture of this embodiment preferably further has liquid tightness in the gas phase.
  • liquid tightness means a state where liquid does not leak.
  • the device for cell culture of the present embodiment includes a liquid such as a culture solution inside, the liquid does not leak from any surface in the gas phase and can be kept inside.
  • gas since gas can be passed, when the liquid is contained inside, the liquid inside evaporates with time. Therefore, the device for cell culture according to the present embodiment can be maintained in a state where the cells are enclosed inside.
  • the “multicellular structure” means a three-dimensional structure composed of a single layer cell or a multilayer cell in which a plurality of cells form a cell-substrate bond and a cell-cell bond.
  • the multicellular structure in this embodiment is composed of one or more types of functional cells and a substrate that serves as a scaffold. That is, the multicellular structure in the present embodiment is constructed by constructing a form more similar to a tissue or organ in a living body by interaction of a plurality of functional cells and a substrate. Therefore, a capillary network-like structure such as at least one of blood vessels and bile ducts may be three-dimensionally constructed in the multicellular structure. Such a capillary network-like structure may be formed only inside the multicellular structure, or may be formed so that at least a part thereof is exposed on the surface or bottom surface of the multicellular structure.
  • FIG. 2 is a perspective view schematically showing the cell culture device according to the first embodiment of the present invention.
  • the cell culture device 100 shown here has a semi-permeable membrane 10 on the top and bottom, and has a cylindrical shape whose side is sealed by a member 11.
  • the semi-permeable membrane provided on the top surface and the bottom surface is exemplified, but the semi-permeable membrane may be provided on a part of the top surface, the bottom surface, or the side surface. It may be composed of Especially, when using the device for cell culture of this embodiment as a culture model, what equips a top surface and a bottom face with a semipermeable membrane is preferable.
  • the cell culture device has a cylindrical shape. However, other shapes may be used, and the cell culture device according to the present embodiment can store cells.
  • the nutrient solution dissolved in the liquid can be spread, and the culture medium may be filled in the device, or the gas portion may be left without filling the culture medium.
  • Examples of the shape of the cell culture device of the present embodiment include a cylinder (eg, a ring-like cylinder, a hollow fiber-like cylinder), a cone, a truncated cone, a pyramid, a truncated pyramid, a sphere, and a polyhedron (eg, tetrahedron, A pentahedron, a hexahedron (including a cube), an octahedron, a dodecahedron, an icosahedron, a twenty-fourhedron, a Kepler-Poinzo solid, and the like.
  • a cylinder eg, a ring-like cylinder, a hollow fiber-like cylinder
  • a cone e.g, a truncated cone, a pyramid, a truncated pyramid, a sphere
  • a polyhedron eg, tetrahedron, A pentahedron, a hexahe
  • the inner diameter of the device for cell culture is preferably 1 mm or more and 60 mm or less, more preferably 3 mm or more and 35 mm or less, More preferably, it is 5 mm or more and 30 mm or less.
  • the outer diameter of the cell culture device is preferably 3 mm or more and 68 mm or less, more preferably 5 mm or more and 43 mm or less, and further preferably 7 mm or more and 35 mm or less.
  • the thickness of the device for cell culture (the height of the ring-shaped cylinder) is 5 ⁇ m or more, preferably 50 ⁇ m or more and 15 mm or less, more preferably 100 ⁇ m or more and 10 mm or less, and more preferably 500 ⁇ m or more and 2 mm or less. More preferably.
  • the thickness of the cell culture device (the height of the ring-shaped cylinder) is the distance from the outer edge of the top surface of the cell culture device to the outer edge of the bottom surface. means.
  • the top surface and the bottom surface are planar, but the top surface and the bottom surface may have a concave structure or a convex structure.
  • the central portion of the concave portion inside the top surface (the most concave portion inside the top surface) and the central portion of the concave portion inside the bottom surface (the most concave portion inside the bottom surface) It is preferable that a certain distance (for example, 5 ⁇ m or more) is maintained without contact.
  • the thickness of the cell culture device (the height of the ring-shaped cylinder), that is, the distance from the outer edge of the top surface of the cell culture device to the outer edge of the bottom surface is the outside of the top surface.
  • the top and bottom surfaces have a concave structure, it is possible to newly seed cells on the outside of the top and bottom surfaces and culture them.
  • the top surface, the bottom surface, and the side members are vertically joined, but at least one edge of the top surface and the bottom surface is linear, convex curve shape, concave curve shape, Or you may join to the member of a side surface, drawing a substantially S-shaped curve-like inclination.
  • edge of the bottom surface is joined to the side member while drawing the inclination of the shape described above, when sandwiching and lifting the top and bottom surfaces of the device for cell culture of this embodiment using tweezers or the like A bun set or the like enters the inclined part and can be easily lifted.
  • the internal volume of the device for cell culture is capable of injecting cells suspended in a culture solution, and constructing a multicellular structure used in an in vitro test system such as a test for assaying cell activity. It can be a small scale as much as possible, preferably 10 mL or less, more preferably 10 ⁇ L or more and 5 mL or less, further preferably 15 ⁇ L or more and 2 mL or less, and particularly preferably 20 ⁇ L or more and 1 mL or less. preferable.
  • oxygen and nutrients of the culture solution are sufficiently supplied, and the cells can be efficiently cultured for a long period of time.
  • the internal volume is not less than the above lower limit, cells having a sufficient cell number and cell density for use in an in vitro test system can be obtained.
  • FIG. 3 is a perspective view schematically showing a cell culture device according to the second embodiment of the present invention.
  • the cell culture device 200 shown here is the same as the cell culture device 100 shown in FIG.
  • the cell culture device 200 has a semipermeable membrane 10 on the top and bottom surfaces, has a cylindrical shape whose side surfaces are sealed by the member 11, and includes the support 12 on the outer surface.
  • the cell culture device 200 When the cell culture device 200 has the support 12, for example, by fixing the cell culture device 200 containing cells in a slightly larger container, the cells can be cultured in the gas phase.
  • the cell culture device 200 including cells can float by buoyancy in a culture solution, and the cell culture device 200 can be celestial like the cell culture device 200.
  • the semipermeable membrane 10 is provided on the surface and the bottom surface, the top surface is in contact with air and the bottom surface is in contact with the culture solution, so that the cells can be cultured in the gas phase and the liquid phase.
  • the support 12 may be fixed to the cell culture device 200 or may be removable.
  • FIG. 4 is a perspective view schematically showing a cell culture device according to the third embodiment of the present invention.
  • the cell culture device 300 shown here is the same as the cell culture device 100 shown in FIG. That is, the device for cell culture 300 has a semi-permeable membrane 10 on the top and bottom surfaces, and has a cylindrical shape whose side surfaces are sealed by the member 11. Furthermore, the tube 13 is provided so that it may face in the outer surface of the cell culture device 300, the tube 13 is inserted in the inside of the cell culture device 300, and the two tubes 13 and the cell culture device 300 are connected. .
  • the cell culture device 300 can supply the culture solution from the side surface by providing the tube 13. Furthermore, by connecting the cell culture devices 300 including the tube 13 to each other, an organotypic chip system described later can be constructed.
  • a tip such as a stopper or a valve is provided at the tip of the tube 13 opposite to the side where the cell culture device 300 is inserted.
  • FIG. 5A and 5B are perspective views schematically showing a cell culture device according to a fourth embodiment of the present invention.
  • the inside and outside of the device communicate with each other through the injection hole.
  • the inside and outside of the device are not connected.
  • the cell culture devices 400a and 400b shown here are semipermeable membranes 10a including a holder 1 having a circular semipermeable membrane, and include an injection hole 14 including a first injection hole 14a and a second injection hole 14b.
  • 2 is the same as the device 100 for cell culture shown in FIG. 2 except that the member is composed of the first member 11a and the second member 11b. That is, the cell culture devices 400a and 400b have a semi-permeable membrane 10a including a circular holding body 1 on the top and bottom surfaces, and have a cylindrical shape whose side surfaces are sealed by the member 11.
  • the member 11 includes a first member 11a and a second member 11b, and includes a second member 11b so as to be in contact with the outer peripheral surface of the first member 11a.
  • the 1st member 11a and the 2nd member 11b are each provided with the 1st injection hole 14a and the 2nd injection hole 14b which penetrate an inner peripheral surface and an outer peripheral surface. Therefore, by rotating and adjusting the positions of the first member 11a and the second member 11b to the left and right, as shown in the device for cell culture 400a, the first injection hole 14a and the second injection hole 14b Can connect the inside and outside of the device. On the other hand, as shown in the cell culture device 400b, by shifting the positions of the first injection hole 14a and the second injection hole 14b, the inside and outside of the device can be disconnected (blocked).
  • the device for cell culture 400a rotates the positions of the first member 11a and the second member 11b to the left and right to connect the first injection hole 14a and the second injection hole 14b, so that the inside of the device Communication with the outside is possible, and the culture solution can also be supplied from the side.
  • the cell culture device 400b rotates the positions of the first member 11a and the second member 11b to the left and right to shift the positions of the first injection hole 14a and the second injection hole 14b, Without opening and closing devices such as plugs and valves, the inside and outside of the device can be disconnected (blocked).
  • FIG. 6A and 6B are cross-sectional views schematically showing a cell culture device according to a fifth embodiment of the present invention.
  • the inside and outside of the device communicate with each other through the injection hole.
  • the inside and outside of the device are not connected.
  • the cell culture devices 500a and 500b shown here are semi-permeable membranes 10a including a holder 1 whose semi-permeable membrane is circular, and include an injection hole 14 including a first injection hole 14a and a second injection hole 14b.
  • 2 is the same as the device 100 for cell culture shown in FIG. 2 except that the member is composed of the first member 11a and the second member 11b. That is, the device for cell culture 500a and 500b has a semi-permeable membrane 10a including a circular holding body 1 on the top surface and the bottom surface, and has a cylindrical shape whose side surfaces are sealed by the member 11.
  • the member 11 includes a first member 11a and a second member 11b, and includes a second member 11b so as to be in contact with the outer peripheral surface of the first member 11a. Furthermore, the 1st member 11a and the 2nd member 11b are each provided with the 1st injection hole 14a and the 2nd injection hole 14b which penetrate an inner peripheral surface and an outer peripheral surface. Therefore, by adjusting the position of the first member 11a and the second member 11b up and down, the first injection hole 14a and the second injection hole 14b are connected as shown in the cell culture device 500a. Can communicate between the inside and outside of the device. On the other hand, as shown in the device for cell culture 500b, by shifting the positions of the first injection hole 14a and the second injection hole 14b up and down, the inside and outside of the device can be disconnected (blocked). .
  • the cell culture device 500a moves the position of the first member 11a and the second member 11b up and down to connect the first injection hole 14a and the second injection hole 14b, so that the inside and the outside of the device are externally connected. And the culture medium can be supplied from the side.
  • the device for cell culture 500b moves the positions of the first member 11a and the second member 11b up and down and shifts the positions of the first injection hole 14a and the second injection hole 14b, thereby closing the plug. Without providing a device that can be opened and closed such as a valve or a valve, the inside and outside of the device can be disconnected (blocked).
  • the shape of the engaging portion of the first member 11a and the second member 11b is tapered. A structure is preferred.
  • FIG. 7 is a perspective view schematically showing a cell culture device according to a sixth embodiment of the present invention.
  • a device for cell culture 600 shown here is a semipermeable membrane 10a including a holder 1 having a circular semipermeable membrane, and includes an injection hole 14 including a first injection hole 14a and a second injection hole 14b, and a member. 2 is the same as the device 100 for cell culture shown in FIG. 2 except that it comprises the first member 11a and the second member 11b. That is, the cell culture device 600 has a semi-permeable membrane 10 a including a circular holding body 1 on the top and bottom surfaces, and has a cylindrical shape whose side surfaces are sealed by the member 11. Moreover, the member 11 consists of the 1st member 11a and the 2nd member 11b, and the 1st member 11a and the 2nd member 11b are the same shapes.
  • the 1st member 11a and the 2nd member 11b are each provided with the 1st injection hole 14a and the 2nd injection hole 14b which are a semicylindrical hollow from the outer peripheral surface toward the center in the top
  • the cell culture device 600 provided with the injection hole 14 penetrating from the outer peripheral surface to the inner peripheral surface shown in FIG. 7 is obtained.
  • the cell culture device 600 can supply the culture solution from the side surface by providing the injection hole 14.
  • a device such as a stopper or a valve is provided on the side of the cell culture device 600 that contacts the outside of the injection hole 14.
  • the cell culture device of the present embodiment is not limited to the one shown in FIGS. 2 to 7, and a part of the configuration shown in FIGS. 2 to 7 is within the range that does not impair the effect of the cell culture device of the present embodiment. May be changed or deleted, or another configuration may be added to what has been described so far.
  • the top surface may not be provided, and an open system shape may be used.
  • the member may be provided with an injection hole.
  • the injection hole it is preferable to provide a stopper for closing the injection hole.
  • the shape of the injection hole is not particularly limited, and examples thereof include a circle, a polygon (including a regular polygon), and an ellipse.
  • the radius of the injection hole can be appropriately adjusted according to the thickness of the cell culture device (that is, the height of the member), and can be, for example, from 10 ⁇ m to 1000 ⁇ m.
  • the cell culture device shown in FIGS. 5A to 7 is shown as having one injection hole, but it may be provided with two or more.
  • the top and bottom surfaces are semipermeable membranes including a holder, but the top or bottom surface does not have a holder. It may be.
  • the semipermeable membrane including the holder on either the top surface or the bottom surface, the number of cells can be measured more easily.
  • an adhesive layer may be provided between the semipermeable membrane and the member.
  • the semipermeable membrane may be detachable from the member via the adhesive layer.
  • the semipermeable membrane can be attached to and detached from the outer surface of the porous membrane by using an adhesive having low adhesion to the member and high adhesion to the semipermeable membrane.
  • a film having airtightness may be provided on the outer surface of the semipermeable membrane via an adhesive layer.
  • the airtight film may be detachable from the semipermeable membrane via the adhesive layer.
  • the film having airtightness can be attached to and detached from the outer surface of the porous film by using an adhesive having low adhesion to the film having airtightness and high adhesion to the porous film.
  • each component can be arbitrarily adjusted according to the purpose.
  • the semipermeable membrane used in the cell culture device of the present embodiment has liquid tightness in the gas phase.
  • the liquid can be kept inside without leaking from the semipermeable membrane. This liquid tightness is due to the surface tension on the semipermeable membrane.
  • gas since gas can be passed, when the liquid is contained inside, the liquid inside evaporates with time.
  • the semipermeable membrane used in the cell culture device of the present embodiment is semipermeable in the liquid phase
  • the cell culture device of the present embodiment containing cells is placed in a container containing a culture solution.
  • the cells in the cell culture device do not permeate the outside of the device, while the nutrients dissolved in the culture medium permeate the cell culture device,
  • the cell product containing the waste dissolved in the culture solution inside the cell culture device can be permeated to the outside of the cell culture device. For this reason, the device for cell culture of this embodiment can be used for long-term culture of cells.
  • the semipermeable membrane used in the device for cell culture according to the present embodiment can pass, for example, a polymer compound having a molecular weight of about 1,000,000 or less. , which can penetrate molecular compounds having a molecular weight of about 200,000 or less.
  • Examples of the material of the semipermeable membrane having the above-described properties include the same materials as those exemplified in the “constituent material” of the above “semipermeable membrane”.
  • a member having a liquid-tight property can be used as a member constituting a portion other than the semipermeable membrane.
  • the member constituting the part other than the semipermeable membrane may be breathable or may not be breathable.
  • the member is one having a breathable, oxygen permeability coefficient, for example 100cm 3 / m 2 ⁇ 24hr ⁇ atm or more 5000cm 3 / m 2 ⁇ 24hr ⁇ atm can be less, e.g., 1000 cm 3 / m 2 ⁇ 24hr ⁇ atm or more 3000cm 3 / m 2 ⁇ 24hr ⁇ atm can be less, for example, 1200cm 3 / m 2 ⁇ 24hr ⁇ atm or more 2500cm 3 / m 2 ⁇ 24hr ⁇ atm can be less.
  • 100cm 3 / m 2 ⁇ 24hr ⁇ atm or more 5000cm 3 / m 2 ⁇ 24hr ⁇ atm can be less, e.g., 1000 cm 3 / m 2 ⁇ 24hr ⁇ atm or more 3000cm 3 / m 2 ⁇ 24hr ⁇ atm can be less, for example, 1200
  • the carbon dioxide permeability coefficient for example, 1000cm 3 / m 2 ⁇ 24hr ⁇ atm or more 20000cm 3 / m 2 ⁇ 24hr ⁇ atm can be less, for example, 3000cm 3 / m 2 ⁇ 24hr ⁇ atm or more 15000 cm 3 / m 2 ⁇ 24 hr ⁇ atm or less, for example, 5000 cm 3 / m 2 ⁇ 24 hr ⁇ atm or more and 10,000 cm 3 / m 2 ⁇ 24 hr ⁇ atm or less.
  • the oxygen permeability coefficient can be, for example, 100 cm 3 / m 2 ⁇ 24 hr ⁇ atm or less, for example, 50 cm 3 / m 2 ⁇ 24 hr ⁇ atm or less. be able to.
  • the carbon dioxide permeability coefficient can be, for example, 1000 cm 3 / m 2 ⁇ 24 hr ⁇ atm or less, for example, 500 cm 3 / m 2 ⁇ 24 hr ⁇ atm or less.
  • a material suitable for culturing cells can be used as a material for members constituting the part other than the semipermeable membrane.
  • the material constituting the portion other than the semipermeable membrane include, but are not limited to, a glass material, an elastomer material, a plastic including a dendritic polymer, and a copolymer.
  • glass material examples include soda lime glass, Pyrex (registered trademark) glass, Vycor (registered trademark) glass, and quartz glass.
  • elastomer material examples include urethane rubber, nitrile rubber, silicone rubber, silicone resin (for example, polydimethylsiloxane), fluorine rubber, acrylic rubber, isoprene rubber, ethylene propylene rubber, chlorosulfonated polyethylene rubber, epichlorohydrin rubber, and chloroprene rubber. Styrene-butadiene rubber, butadiene rubber, polyisobutylene rubber and the like.
  • dendritic polymers examples include poly (vinyl chloride), poly (vinyl alcohol), poly (methyl methacrylate), poly (vinyl acetate-co-maleic anhydride), poly (dimethylsiloxane) monomethacrylate, and cyclic olefin polymers. , Fluorocarbon polymer, polystyrene, polypropylene, polyethyleneimine and the like.
  • copolymer examples include poly (vinyl acetate-co-maleic anhydride), poly (styrene-co-maleic anhydride), poly (ethylene-co-acrylic acid), and derivatives thereof.
  • the material of the member may be composed of one type of the materials exemplified above, or may be composed of two or more types.
  • the member when the member is comprised from 2 or more types among the materials illustrated above, the member may be comprised from the mixture of the material illustrated above.
  • the members may be formed by combining members made of one type of material, and the materials constituting each member may be different from each other.
  • the shape of the member can be appropriately selected according to the overall shape of the cell culture device of the present embodiment and the portion constituting the cell culture device of the present embodiment.
  • the member in this embodiment can be manufactured using a well-known method according to the material to be used.
  • examples of the manufacturing method in the case of using an elastomer material or plastic as the material of the member include, but are not limited to, a compression molding method, an injection molding method, and an extrusion molding method.
  • a manufacturing method in the case of using a glass material as a material of a member for example, a droplet forming method, a dunner method, an overflow method, a float method, a blow molding method, a press molding method, and the like can be mentioned, but the method is not limited thereto Not.
  • the injection hole may be formed by laser irradiation or the like to manufacture a member having the injection hole. Or you may manufacture the member provided with an injection hole by bonding two pieces of the same shape member which has the semicircle-shaped hollow of the part which corresponds to an injection hole. Alternatively, after a part of the member is protruded, an injection hole may be formed in the protrusion.
  • the embedded plug used is preferably made of a material harder than the member. Specific examples include metals such as iron and stainless steel, but are not limited thereto.
  • the stopper used may be an embedded type or a covered type.
  • the shape of the stopper can be a shape that can close the injection hole, and in the case of an embedded type, for example, spherical, conical, truncated cone, pyramid, truncated pyramid, cylindrical, prismatic
  • an embedded type for example, spherical, conical, truncated cone, pyramid, truncated pyramid, cylindrical, prismatic
  • cap shapes such as a spherical shell shape, a dome shape, a conical cylinder shape, a truncated cone cylinder shape, a cylindrical shape, a pyramidal cylinder shape, a truncated pyramid cylinder shape, and a rectangular tube shape are mentioned. However, it is not limited to these.
  • the material for the support used in the cell culture device of the present embodiment may be, for example, an organic material or an inorganic material.
  • organic material examples include polyamide (for example, nylon), polyolefin resin, polyester resin, polystyrene resin, polycarbonate, polyamide resin, silicone resin, and the like, and there is no particular limitation.
  • Examples of the inorganic material include ceramics and glass, and are not particularly limited.
  • examples of the shape of the support include, but are not limited to, a sheet shape and a rod shape.
  • the support in the present embodiment can be produced using a known method depending on the material used.
  • examples of the manufacturing method in the case of using an organic material as the material for the support include, but are not limited to, a compression molding method, a calendar molding method, an injection molding method, an extrusion molding method, and an inflation molding method.
  • a dry molding method for example, a die molding method, a cold isostatic pressing method, a hot press method, a hot isostatic forming method, etc.
  • Plastic molding methods for example, potter's wheel molding method, extrusion molding method, injection molding method
  • casting molding methods for example, mud casting method, pressure casting method, rotary casting method, etc.
  • tape molding methods etc. It is not limited to.
  • the material of the tube used in the device for cell culture of the present embodiment is not particularly limited, and may be a material having the above-described biocompatibility or a material suitable for cell culture.
  • Examples of the material having biocompatibility include the same materials as those exemplified in “Others” of “Constituent materials” of “Semipermeable membrane” described above.
  • Examples of the material suitable for the cell culture include the same materials as those exemplified in the above-mentioned “member”.
  • examples of the tube suitably used include a medical catheter and an indwelling catheter.
  • the tube in this embodiment can be manufactured using a well-known method according to the material to be used.
  • the thickness of the airtight film can be, for example, from 10 ⁇ m to 500 ⁇ m, for example, from 30 ⁇ m to 300 ⁇ m, for example, from 50 ⁇ m to 150 ⁇ m.
  • the thickness of the film having airtightness means the thickness of the entire film having airtightness.
  • the thickness of the film having airtightness composed of a plurality of layers means the film having airtightness. Means the total thickness of all the layers that make up.
  • any material having airtightness may be used.
  • the material of the film having airtightness may be an organic material or an inorganic material.
  • organic material examples include polyamide (for example, nylon), polyolefin resin, polyester resin, polystyrene resin, polycarbonate, polyamide resin, silicone resin, and the like, and there is no particular limitation.
  • Examples of the inorganic material include ceramics and glass, and are not particularly limited.
  • the film having airtightness may be composed of one kind of the materials exemplified above, or may be composed of two or more kinds.
  • the film which has airtightness when the film which has airtightness is comprised from 2 or more types among the materials illustrated above, the film which has airtightness may be comprised from the mixture of the material illustrated above.
  • the film having airtightness may be formed by laminating two or more layers having airtightness composed of one kind of material, and the materials constituting each film having airtightness may be different from each other.
  • the film having airtightness can be produced by a known method depending on the material to be used.
  • examples of the manufacturing method in the case of using an organic material as the material of the film having airtightness include, but are not limited to, compression molding, calendar molding, injection molding, extrusion molding, inflation molding, and the like. .
  • a dry molding method for example, a die molding method, a cold isostatic pressing method, a hot press method, a hot isostatic forming
  • plastic molding methods for example, potter's wheel molding method, extrusion molding method, injection molding method
  • casting molding methods for example, mud casting method, pressure casting method, rotary casting method, etc.
  • tape molding methods etc.
  • a dry molding method for example, a die molding method, a cold isostatic pressing method, a hot press method, a hot isostatic forming
  • plastic molding methods for example, potter's wheel molding method, extrusion molding method, injection molding method
  • casting molding methods for example, mud casting method, pressure casting method, rotary casting method, etc.
  • tape molding methods etc.
  • the device for cell culture of the present embodiment can be produced by assembling only the semipermeable membrane or the semipermeable membrane and a member so as to have a desired shape. Moreover, a support body and a tube can be provided as needed.
  • Examples of the bonding method of the semipermeable membrane 10 and the member 11 include a bonding method using an adhesive, a bonding method using a double-sided tape, a method of bonding by heat welding using a heat sealer, a hot plate, ultrasonic waves, a laser, or the like, Tensile and mortise joining methods (for example, with a single cylinder, with a two-sided cylinder, with a three-sided cylinder, with a four-sided cylinder, with a radish, with a lumbar tenon, two mortises, two mortises, etc. ) And the like, but is not limited thereto. One of these joining methods may be used, or two or more may be used in combination.
  • the adhesive one having no cytotoxicity can be used, and it may be a synthetic compound adhesive or a natural compound adhesive.
  • Examples of the synthetic compound adhesive include urethane adhesives, cyanoacrylate adhesives, polymethyl methacrylate (PMMA), calcium phosphate adhesives, and resin cements.
  • Examples of natural compound adhesives include fibrin glue and gelatin glue.
  • the double-sided tape one having no cytotoxicity can be used, and one used for medical use is preferably used.
  • the double-sided tape has a structure in which an adhesive layer is laminated on both surfaces of a support, and the adhesive layer is made of a known adhesive such as rubber, acrylic, urethane, silicone, or vinyl ether. And the like.
  • double-faced tape for skin application product numbers: 1510, 1504XL, 1524, etc.
  • double-faced adhesive tape for skin product numbers: ST502, ST534, etc.
  • Nitto Denko Corporation Nichiban Medical's double-sided medical tape (product numbers: # 1088, # 1022, # 1010, # 809SP, # 414125, # 1010R, # 1088R, # 8810R, # 2110R, etc.)
  • thin foam base made by DIC And double-sided adhesive tapes (product numbers: # 84010, # 84015, # 84020, etc.).
  • the semipermeable membrane is transparent or When it is translucent, the top side and the bottom side can be easily distinguished visually.
  • a cell culture device 100 can be obtained.
  • the device for cell culture of this embodiment shown in FIG. 2 for example, first, using a semipermeable membrane not including a holder, using a method similar to the above-described manufacturing method, The membrane and the member are joined to produce a device for cell culture. Next, the cell culture device may be manufactured by adhering and drying the holding body to the member using the above-described adhesive.
  • the support body 12 when the support body 12 is provided like the device for cell culture 200 of this embodiment shown in FIG. 3, the support body 12 may be joined to the semipermeable membrane 10 or the member 11 in advance, or assembled.
  • the cell culture device 200 may be joined.
  • a joining method it may be fixed by the same method as the above-mentioned joining method of the semipermeable membrane and the member, or may be attached so as to be removable using a fastener or the like.
  • the tube 13 may be inserted in advance into the semipermeable membrane 10 or the member 11, and the assembled cell culture device.
  • the tube 13 may be inserted into 300.
  • a method for inserting the tube for example, when a catheter of an indwelling needle is used as the tube, the tube can be inserted by inserting the indwelling needle into the cell culture device and then withdrawing the inner cylinder needle.
  • the device for cell culture of this embodiment can be used for, for example, cell culture, cell transport, tissue type chip, organ type chip, organ type chip system and the like.
  • tissue refers to a unit of structure assembled in a pattern based on a certain lineage in which one type of stem cell differentiates, and has a single role as a whole.
  • epidermal keratinocytes differentiate from the stem cells in the basal layer of the epidermis to cells that form the granule layer via the spinous layer, and form the stratum corneum by terminal differentiation to form a barrier function as the epidermis.
  • the tissue type chip of this embodiment reproduces, for example, epithelial tissue, connective tissue, muscle tissue, nerve tissue, etc. by constructing a multicellular structure including one type of cell derived from one cell lineage. can do.
  • organ is composed of two or more types of tissues and has a single function as a whole. Therefore, the organotypic chip of this embodiment can reproduce, for example, the stomach, intestine, liver, kidney, and the like by constructing a multicellular structure including at least two types of cells having different cell lineages.
  • the “organ system” indicates a group of two or more organs having similar functions or two or more organs having a series of functions as a whole. Therefore, the organ type chip system of the present embodiment can be obtained by combining a plurality of tissue type chips or organ type chips, for example, digestive system, circulatory system, respiratory system, urinary system, genital system, endocrine system, sensory system. It can reproduce organ systems such as organ system, nervous system, musculoskeletal system, and nervous system. The living body maintains homeostasis by the interaction of these organ systems. In the organ type chip system of the present embodiment, since a plurality of organ type chips having different organ systems can be combined, it is also possible to analyze the interaction of organs having different organ systems.
  • the liver type chip For example, in an organ type chip system in which a small intestine type chip, a liver type chip, and a nerve type chip are connected in this order, when a drug is added to the small intestine type chip, the drug absorbed by the small intestine type chip is metabolized by the liver type chip, and the liver It becomes possible to analyze the toxicity and the like that the liver metabolite of the drug discharged from the mold chip has on the nerve chip.
  • the present invention provides a method for culturing cells using the cell culture device described above.
  • cells can be easily cultured and a multicellular structure can be constructed. Further, the cells can be maintained for about 3 to 30 days, and the cells can be maintained for a longer period than before. Furthermore, according to the culture method of the present embodiment, a tissue type chip described later can be obtained.
  • a culture solution in which cells are suspended First, prepare a culture solution in which cells are suspended. Next, the suspension is injected into the above-described cell culture device using a nozzle such as a pipette, a dropper, or an injection needle (including a winged needle, an indwelling needle, etc.).
  • a nozzle such as a pipette, a dropper, or an injection needle (including a winged needle, an indwelling needle, etc.).
  • the cell suspension When the cell culture device has an injection hole, the cell suspension is injected from the injection hole. However, when an injection needle is used, the cell suspension may be injected from the injection hole or directly inserted into the member. Good.
  • the injection hole is closed with an embedded stopper made of a material having a hardness higher than that of the member and a lower elasticity after injection of the culture solution in which the cells are suspended.
  • an embedded stopper made of a material having a hardness higher than that of the member and a lower elasticity after injection of the culture solution in which the cells are suspended.
  • the injection hole may be closed with a stainless steel ball or the like.
  • the cell culture device into which the culture solution in which the cells are suspended is injected can be cultured in at least one of the gas phase and the liquid phase to construct a multicellular structure.
  • the culture in the gas phase can be performed using, for example, an empty container such as a petri dish, and can be performed in such a time that the cells do not dry and die.
  • the culture in the gas phase and the liquid phase may be performed, for example, by using the cell culture device having the support shown in FIG. 3 and floating the cell culture device on a container such as a petri dish containing the culture solution. .
  • Examples of cells used in the culturing method of the present embodiment include vertebrate cells such as mammalian cells, avian cells, reptile cells, amphibian cells, fish cells; insect cells, crustacean cells, mollusc cells, protozoan cells.
  • Invertebrate cells such as: Gram-positive bacteria (eg, Bacillus species, etc.), Gram-negative bacteria (eg, Escherichia coli, etc.), etc .: yeast, plant cells, and single or multiple cells thereof Small living individuals.
  • Examples of the small living individuals include unicellular organisms such as amoeba, Paramecium, Mikazukiki, honey beetle, chlorella, Euglena, prickly beetle, etc .; Crustacea larvae, larvae larvae, terrestrial larvae, crustaceans; planarians (including regenerated planarians after shredding), terrestrial arthropod larvae, linear animals, plants Seeds (especially germinated seeds), callus, protoplasts, marine microorganisms (for example, Vibrio spp., Pseudomonas spp., Aeromonas spp., Alteromonas spp., Flavobacterium spp., Cytophaga spp., Flexibacter spp.
  • unicellular organisms such as amoeba, Paramecium, Mikazukiki, honey beetle, chlorella, Euglena, prickly beetle, etc .
  • the top surface of the cell culture device has a hardness that allows the germinated buds to penetrate and is made of a biodegradable material.
  • the thing which put the germinating seed in the device can be planted in soil as it is, and a plant body can be grown.
  • biodegradable material means a material having a property of being decomposed into inorganic substances by microorganisms in soil or water.
  • vertebrate cells include germ cells (sperm, ova, etc.), somatic cells constituting the living body, stem cells, progenitor cells, cancer cells separated from the living body, and separated from the living body.
  • Examples include cells that have been immortalized and stably maintained outside the body (cell lines), cells that have been isolated from living organisms and artificially genetically modified, and cells that have been isolated from living organisms and have been artificially exchanged in nucleus However, it is not limited to these.
  • somatic cells constituting the living body include skin, kidney, spleen, adrenal gland, liver, lung, ovary, pancreas, uterus, stomach, colon, small intestine, large intestine, bladder, prostate, testis, thymus, muscle, connective tissue, Examples include, but are not limited to, cells collected from any tissue such as bone, cartilage, vascular tissue, blood, heart, eye, brain, and nerve tissue.
  • somatic cells for example, fibroblasts, bone marrow cells, immune cells (for example, B lymphocytes, T lymphocytes, neutrophils, macrophages, monocytes, etc.), erythrocytes, platelets, bone cells , Bone marrow cells, pericytes, dendritic cells, keratinocytes, adipocytes, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, lymphatic endothelial cells, hepatocytes, islet cells (Eg, ⁇ cells, ⁇ cells, ⁇ cells, ⁇ cells, PP cells, etc.), chondrocytes, cumulus cells, glial cells, neurons (neurons), oligodendrocytes, microglia, astrocytes, cardiomyocytes , Esophageal cells, muscle cells (for example, smooth muscle cells, skeletal muscle cells, etc.), melanocytes, mononu
  • Stem cells are cells that have both the ability to replicate themselves and the ability to differentiate into other cell lines.
  • Stem cells include, for example, embryonic stem cells (ES cells), embryonic tumor cells, embryonic germ stem cells, induced pluripotent stem cells (iPS cells), neural stem cells, hematopoietic stem cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells , Muscle stem cells, germ stem cells, intestinal stem cells, cancer stem cells, hair follicle stem cells, and the like.
  • Progenitor cells are cells that are in the process of being differentiated from the stem cells into specific somatic cells or germ cells.
  • Cancer cells are cells that have been derived from somatic cells and have acquired unlimited proliferative potential, and are malignant neoplasms that infiltrate surrounding tissues or cause metastasis.
  • cancers from which cancer cells are derived include breast cancer (for example, invasive breast cancer, non-invasive breast cancer, inflammatory breast cancer, etc.), prostate cancer (for example, hormone-dependent prostate cancer, hormone-independent).
  • pancreatic cancer eg, pancreatic duct cancer, etc.
  • stomach cancer eg, papillary adenocarcinoma, mucinous adenocarcinoma, adenosquamous carcinoma, etc.
  • lung cancer eg, non-small cell lung cancer, small cell lung cancer, malignant mesothelioma
  • Colon cancer eg, gastrointestinal stromal tumor
  • rectal cancer eg, gastrointestinal stromal tumor
  • colorectal cancer eg, familial colorectal cancer, hereditary non-polyposis colorectal cancer, gastrointestinal tract
  • small intestine cancer eg, non-Hodgkin lymphoma, gastrointestinal stromal tumor
  • esophageal cancer duodenal cancer, tongue cancer, pharyngeal cancer (eg, nasopharyngeal cancer, oropharyngeal cancer, hypopharyngeal cancer, etc.),
  • cancer is used to represent a diagnosis name
  • cancer is used to represent a general term for malignant neoplasms.
  • a cell line is a cell that has acquired infinite proliferative capacity through artificial manipulation in vitro.
  • Examples of cell lines include HCT116, Huh7, HEK293 (human embryonic kidney cells), HeLa (human cervical cancer cell line), HepG2 (human hepatoma cell line), UT7 / TPO (human leukemia cell line), CHO (Chinese hamster ovary cell line), MDCK, MDBK, BHK, C-33A, HT-29, AE-1, 3D9, Ns0 / 1, Jurkat, NIH3T3, PC12, S2, Sf9, Sf21, High Five, Vero, etc. However, it is not limited to these.
  • the culture solution used in the culture method of the present embodiment is a basis containing components (inorganic salts, carbohydrates, hormones, essential amino acids, non-essential amino acids, vitamins) and the like necessary for cell survival and proliferation.
  • a culture solution can be used and can be appropriately selected depending on the type of cells. Examples of the culture solution include DMEM, Minimum Essential Medium (MEM), RPMI-1640, Basal Medium Eagle (BME), Dulbecco's Modified Eagle's Medium: Nutrient Mix-12F (NuclearMixF). Examples include, but are not limited to, Glassgow Minimum Essential Medium (Glasgow MEM).
  • the culture solution of the composition suitable for each growth should just prepare the culture solution of the small living individual comprised from bacteria, yeast, a plant cell, and those single cells or several cells.
  • an extracellular matrix-derived component, a physiologically active substance, or the like may be mixed and injected into a culture solution in which cells are suspended.
  • cell matrix-derived component examples include the same components as those exemplified in “Others” of “Constituent materials” of “Semipermeable membrane” described above.
  • physiologically active substance examples include, but are not limited to, a cell growth factor, a differentiation-inducing factor, and a cell adhesion factor.
  • a cell to be injected is a stem cell or a progenitor cell by including a differentiation-inducing factor
  • the stem cell or the progenitor cell is induced to differentiate to construct a multicellular structure reproducing a desired tissue. it can.
  • the culture solution in which the cells are suspended may be injected so as to fill the capacity of the cell culture device, or an amount less than the capacity of the cell culture device is injected. Also good.
  • the device for cell culture has a structure having a semipermeable membrane on the top and bottom as shown in FIG. 2 and the material of the semipermeable membrane is collagen
  • a culture solution in which cells are suspended by an injection needle or the like is used.
  • the top and bottom surfaces of the cell culture device are recessed by decompression, and the cells are sandwiched between the semipermeable membrane on the top surface and the semipermeable membrane on the bottom surface, Sandwich culture using collagen can be performed.
  • the culture conditions can be appropriately selected depending on the type of cells to be cultured.
  • the culture temperature may be, for example, from 25 ° C. to 40 ° C., for example, from 30 ° C. to 39 ° C., for example, from 35 ° C. to 39 ° C.
  • the CO 2 concentration at the time of culture may be, for example, about 5% CO 2 condition.
  • the culture time can be appropriately selected depending on the cell type, the number of cells, etc., and may be, for example, 3 days or more and 30 days or less, for example, 5 days or more and 20 days or less, for example, 7 days or more. It may be 15 days or less.
  • the present invention provides a method for measuring the number of cells using the device for cell culture described above.
  • the number of cells contained in the cell culture device can be easily measured without using a hemocytometer.
  • a culture solution in which cells are suspended is prepared.
  • a nozzle such as a pipette, a dropper, or an injection needle (including a winged needle, an indwelling needle, etc.)
  • a culture solution in which cells are suspended is injected into the above-described cell culture device.
  • Examples of the cells used in the measurement method of the present embodiment include the same cells as those exemplified in the above-mentioned “cell culture method”.
  • examples of the culture solution used in the measurement method of the present embodiment include the same ones as exemplified in the above-mentioned “cell culture method”.
  • the injection hole is closed with a stopper and mixed so that the cells are uniformly dispersed in the cell culture device, and then the cell culture device is set on a microscope.
  • the cells contained in one cell of the lattice formed by the holder are measured.
  • a grid having a vertical and horizontal length of 250 ⁇ m is formed in the holding body, a grid of 16 squares of 4 squares ⁇ 4 squares (that is, 1 mm of vertical 1 mm ⁇ horizontal 1 mm). (16 square grids of 4 squares ⁇ 4 squares) formed in 2 ), the cells included in each of the 16 squares are measured, and the total number of cells in the 16 squares is calculated.
  • the number of cells is measured at least once or more, and the average value of the number of cells contained in 1 mm 2 is calculated.
  • the number of cells “C” per 1 cm 2 can be calculated by substituting the average value of the number of cells for “N” in the following formula [1].
  • C N ⁇ 10 2 ... [1]
  • 10 2 means a converted value of capacity with respect to 1 cm 2 .
  • the cells By measuring the number of cells, the cells can be cultured in the cell culture device until the desired number of cells is reached. Furthermore, by using a reagent that stains only dead cells such as Trypanpblue, the cell viability in the cell culture device can be measured without being taken out from the cell culture device.
  • a reagent that stains only dead cells such as Trypanpblue
  • the present invention provides a tissue type chip comprising the above-mentioned cell culture device containing one type of cell.
  • the tissue-type chip of this embodiment does not require the construction of a culture model from scratch, but instead of conventional culture models or animal experiments, screening of candidate drugs for various diseases or chemical substances including candidate drugs It can be used in a test system for evaluating kinetics and toxicity to normal tissues.
  • the conventional culture model must be used immediately after construction, and there is a time restriction, whereas the tissue type chip of this embodiment can be cultured for a long time.
  • Examples of the cells contained in the tissue type chip of the present embodiment include the same cells as those exemplified in the above-mentioned “cell culture method”. Further, the type of cells contained can be appropriately selected according to the type of tissue to be constructed.
  • the cells included in the tissue-type chip of the present embodiment may be in a stage where the multicellular structure is constructed or after the multicellular structure is constructed.
  • the tissue-type chip of this embodiment can be cultured for a long period of about 3 to 21 days even after the contained cells have constructed a multicellular structure.
  • the density of cells contained in the tissue-type chip of the present embodiment varies depending on the type of tissue to be constructed, but is preferably 2.0 ⁇ 10 3 cells / mL or more and 1.0 ⁇ 10 9 cells / mL or less, More preferably, it is 2.0 ⁇ 10 5 cells / mL or more and 1.0 ⁇ 10 8 cells / mL or less.
  • tissue type chip having a cell density closer to that of a living tissue can be obtained.
  • the tissue type chip of the present embodiment can be manufactured by using the method described in the above-mentioned “Cell culture method”.
  • the conditions for maintaining the tissue-type chip after production can also be the same as the culture conditions described in the above-mentioned “Cell culture method”.
  • the tissue type chip may contain a gas such as a culture solution or air, or may not contain a gas such as a culture solution or air.
  • the tissue type chip does not contain a gas such as a culture solution or air, the cells or cells and components derived from the extracellular matrix are closely adhered, and a multicellular structure having a structure closer to the tissue in the living body is constructed. ing.
  • the present invention provides an organotypic chip comprising the aforementioned cell culture device comprising at least two types of cells.
  • the organotypic chip of this embodiment does not require a culture model to be built from scratch, and as a substitute for conventional culture models or animal experiments, screening of candidate drugs for various diseases, or chemical substances including candidate drugs It can be used in a test system for evaluating the kinetics and toxicity of normal organs.
  • the conventional culture model must be used immediately after construction, and there is a time restriction, whereas the organotypic chip of this embodiment can be cultured for a long time.
  • Examples of the cells contained in the organotypic chip of the present embodiment include those similar to those exemplified in the above-mentioned “Cell Culture Method”. Moreover, the kind of cell contained should just contain at least 2 types of cell, and can be suitably selected according to the kind of organ to construct
  • the cells contained in the organotypic chip of this embodiment may be in the middle of the construction of the multicellular structure or after the multicellular structure is constructed.
  • the organotypic chip of this embodiment can be cultured for a long period of about 3 to 21 days even after the contained cells have constructed a multicellular structure.
  • the density of cells contained in the organotypic chip of this embodiment varies depending on the type of organ to be constructed, but is preferably 2.0 ⁇ 10 3 cells / mL or more and 1.0 ⁇ 10 9 cells / mL or less, More preferably, it is 2.0 ⁇ 10 5 cells / mL or more and 1.0 ⁇ 10 8 cells / mL or less.
  • an organotypic chip having a cell density closer to that of an organ in a living body can be obtained.
  • the organotypic chip of the present embodiment can be produced using the method described in the above-mentioned “Cell Culturing Method”. Also, the maintenance conditions for the organotypic chip after production can be the same as the culture conditions described in the above-mentioned “Cell culture method”. Further, the organ-type chip may contain a gas such as a culture solution or air, or may not contain a gas such as a culture solution or air. When the organ-type chip does not contain a medium such as a culture solution or air, cells or cells and components derived from the extracellular matrix are closely adhered to each other, and a multicellular structure having a structure closer to the organ in the living body is constructed. ing.
  • the present invention provides a kit for providing a multicellular structure, which comprises a tissue container or the above-mentioned hermetically sealed container containing an organ chip and a culture solution. provide.
  • the kit of this embodiment does not require the construction of a culture model from scratch, and as a substitute for conventional culture models or animal experiments, screening of candidate drugs for various diseases, or normal chemical substances including candidate drugs It can be used in a system for evaluating the kinetics and toxicity of tissues and organs.
  • the conventional culture model must be used immediately after construction, and there is a time restriction, whereas the kit of this embodiment can be cultured for a long time.
  • the cells contained in the tissue-type chip or the organ-type chip in the kit of the present embodiment may be in the stage where the multicellular structure is constructed, or even after the multicellular structure is constructed. Good. Especially, since it can utilize for an in vitro test system immediately, it is preferable that the cell contained in the tissue type
  • the sealed container in the kit of this embodiment can be opened and closed, and is not particularly limited.
  • the sealed container include, but are not limited to, a conical tube with a screw cap, a cell culture flask with a screw cap, a bag with a zipper, a bag with a chuck, and the like.
  • the sealed container As the material for the sealed container, a liquid-tight material can be used. Further, the sealed container may be air permeable or may not be air permeable. More specifically, examples of the material for the sealed container include the same materials as those exemplified above in [Member]. Among them, the material of the sealed container is preferably plastic because it is hard to break and is lightweight.
  • the culture medium in the kit of the present embodiment can be appropriately selected depending on the type of cells contained in the tissue type chip or the organ type chip, and specifically, those exemplified in the above-mentioned “cell culture method” The same thing is mentioned.
  • the culture solution is contained in the full capacity of the sealed container.
  • the culture medium is poured into a sealed container to a full capacity and sealed to prevent drying of the tissue type chip or organ type chip, and the tissue type chip or organ type chip can be safely carried.
  • the tissue type chip or the organ type chip included in the sealed container may be one, or two or more. When there are two or more, it is preferably a tissue-type chip or an organ-type chip in which the same type of multicellular structure is constructed.
  • the kit of this embodiment may further include a culture solution separately from the culture solution contained in the sealed container.
  • the culture solution may be the same type as that contained in the sealed container or may be a different type.
  • the kit of the present embodiment can be used as a replacement culture solution for culturing a tissue type chip or an organ type chip until it is used in an in vitro test system or the like.
  • the present invention comprises at least two tissue type chips as described above or organ type chips as described above, and the tissue type chip or the organ type in which the organ type chip is connected while maintaining hermeticity. Provide a chip system.
  • the organotypic chip system according to the present embodiment does not need to construct a culture model from scratch, and can be used as a substitute for conventional culture models or animal experiments for screening candidate drugs for various diseases, or for chemicals including candidate drugs. It can be expected to be used for evaluation tests on the dynamics and toxicity of multiple normal tissues and organs.
  • “sealed” means a state of being closed without a gap.
  • FIG. 8A is a perspective view schematically showing the organotypic chip system according to the first embodiment of the present invention.
  • the organ type chip system 10A shown here has a structure in which three tissue type chips 1A are connected via a tube 101, respectively.
  • the three tissue type chips 1A can be cultured while being connected. Also, for example, by flowing candidate drugs for various diseases from the direction of the left arrow to the direction of the right arrow, the drug efficacy against the disease, the metabolic pathway and cytotoxicity of the drug and its metabolite, etc. can be verified.
  • the tissue type chip 1A shown in FIG. 8A is the same as that described in the above-mentioned “organization type chip”.
  • the type of cells (not shown) constituting the multicellular structure constructed on the tissue type chip 1A can be appropriately selected depending on the type of desired organ or organ system.
  • tube 101 shown in FIG. 8A is the same as the tube 13 shown in FIG. 4, and the configuration is the same as that described in the above-mentioned “tube”.
  • FIG. 8B is a perspective view schematically showing an organotypic chip system according to the second embodiment of the present invention.
  • the organ type chip system 10B shown here has a structure in which three tissue type chips 1B of the same size are stacked. At this time, at least the top and bottom surfaces of each tissue type chip 1B are semipermeable membranes.
  • the three tissue-type chips 1B can be cultured while being stacked.
  • candidate drugs for various diseases from the direction of the upper arrow to the direction of the lower arrow, the drug efficacy against the disease, the metabolic pathway of the drug and its metabolite, cytotoxicity, etc. can be verified.
  • FIG. 8C is a perspective view schematically showing an organotypic chip system according to the third embodiment of the present invention.
  • the organ type chip system 10C shown here has four tissue type chips 1C of different sizes, and has a structure in which a small tissue type chip 1C is enclosed in the largest tissue type chip 1C. At this time, at least the top and bottom surfaces of the largest tissue-type chip 1C are semipermeable membranes, and the tissue-type chip 1C sealed in the largest tissue-type chip 1C is a whole surface semipermeable membrane.
  • culture can be performed by placing the organotypic chip system 1C in a petri dish or the like containing a culture solution.
  • organotypic chip system 1C in a petri dish or the like containing a candidate drug for various diseases, the drug efficacy against the disease, the metabolic pathway and cytotoxicity of the drug and its metabolites, etc. can be verified.
  • FIG. 8D is a perspective view schematically showing an organotypic chip system according to the fourth embodiment of the present invention.
  • the organ type chip system 10D shown here has a structure in which four tissue type chips 1D having different sizes are stacked from the bottom in the descending order. At this time, at least the top surface and the bottom surface of each tissue type chip 1D are semipermeable membranes.
  • the four tissue-type chips 1D can be cultured while being stacked.
  • candidate drugs for various diseases from the direction of the upper arrow to the direction of the lower arrow, the drug efficacy against the disease, the metabolic pathway of the drug and its metabolite, cytotoxicity, and the like can be verified.
  • the organotypic chip system of the present embodiment is not limited to FIGS. 8A to 8D, and a part of the configuration shown in FIGS. 8A to 8D is not limited to the effect of the organotypic chip system of the present embodiment. What was changed or deleted, and what was further added to what was demonstrated so far may be used.
  • the organ type may be provided at least partially.
  • each tube may be provided with an openable / closable device such as a stopper or a valve.
  • each tissue type chip may have a support, and in order to fix each tissue type chip, the outer periphery of the top surface and the bottom surface May be fixed with an adhesive or the like.
  • the size and shape of each component can be arbitrarily adjusted according to the purpose.
  • the organ-type chip system of the present embodiment can reproduce organs such as the liver, stomach, and intestine by itself. Furthermore, by combining a plurality of organotypic chip systems of this embodiment, for example, digestive system, circulatory system, respiratory system, urinary system, genital system, endocrine system, sensory organ system, nervous system, musculoskeletal system, The organ system such as the nervous system can be reproduced.
  • the semipermeable membrane was produced by holding a native body embedded collagen vitrigel (registered trademark) membrane (content per unit area of native collagen: 0.5 mg / cm 2 ) (hereinafter referred to as “semipermeable membrane”).
  • Membrane 1 is sometimes prepared according to a known method (reference: JP-A-8-228768). Two semipermeable membranes 1 were manufactured.
  • the native collagen gel in which the holding body was embedded was transferred into a simple clean bench installed in a constant temperature and humidity chamber at 10 ° C. and humidity 40% (40% RH). Then, it left still for 2 days, it was made to dry and the native collagen gel dry body which embedded the holding body was obtained.
  • the native collagen Vitrigel (registered trademark) membrane in which the obtained support was embedded was placed on a 96 ⁇ 96 ⁇ 15 mm dish (As One # D-210-16) laid with vinyl, Transfer to a simple clean bench installed in a constant temperature and humidity chamber at 10 ° C and humidity of 40% (40% RH), re-dry, and obtain a dried native collagen vitrigel (registered trademark) membrane embedded with a holder It was.
  • the dried native collagen vitrigel (registered trademark) membrane embedded with this support was cut into a circle having a diameter of 13 mm with scissors, and the dried collagen vitrigel (registered trademark) membrane (semipermeable membrane 1) embedded in the retainer was cut out. Obtained (see FIG. 9).
  • semipermeable membrane 2 The semipermeable membrane was manufactured using 0.25% collagen sol as an adhesive according to a known method (reference: JP-A-2015-203018). It was prepared by sandwiching and holding a holder between Rigel (registered trademark) membranes (content of native collagen per unit area: 0.5 mg / cm 2 ) (hereinafter referred to as “semipermeable membrane 2”). is there.). Two semipermeable membranes 2 were manufactured.
  • Example 1 Manufacture of device for cell culture By attaching semi-permeable membranes including a holder to both sides of an acrylic resin ring (outer diameter 13 mm, inner diameter 7.98 mm, thickness 2.0 mm, injection hole diameter 0.7 mm), the following 3 A variety of cell culture devices were manufactured. In addition, as a control, a cell culture device was produced in which only a semipermeable membrane without a holder was attached to both sides of an acrylic resin ring. In this embodiment, the semipermeable membrane including the holding body is attached to both surfaces of the acrylic resin ring, but the semipermeable membrane including the holding body is attached to only one surface of the acrylic resin ring, and the other surface is attached. May be attached with a semipermeable membrane without a holder.
  • control 3-1
  • the two semipermeable membranes (control) manufactured in Production Example 2 were rehydrated, and then a known method (reference: Japanese Patent Laid-Open According to 2007-185107 gazette), it was sandwiched between two annular rubber magnets, fixed by magnetic force, and then dried again to obtain a dried product of a semipermeable membrane (control) without wrinkles.
  • FIG. 10B shows that the cell culture device 1 having two semipermeable membranes 1 was smooth without being bent even when PBS was filled. The same phenomenon was confirmed for the cell culture device 2 and the cell culture device 3.
  • both of the membranes were bent and swelled in a convex shape by filling PBS.
  • the cell culture device 1, the cell culture device 2, the cell culture device 3, and the cell culture device (control) filled with PBS are tweezered. Used to pick up the surface of the semipermeable membrane.
  • the state of the cell culture device 1 and the cell culture device (control) are shown in FIGS. 10A and 11A, respectively.
  • control the device for cell culture (control) provided with two semipermeable membranes (control)
  • control the membrane was compressed and damaged by tweezers.
  • the cell culturing device provided with the semipermeable membrane including the holder is held without being damaged by tweezers and is easy to handle.
  • HepG2 cell culture of human hepatoma cell line using cell culture device (1) HepG2 cells cultured in advance (purchased from RIKEN BioResource Center, RCB1648) were collected and 1.0 ⁇ It mixed with the culture solution so that it might become 10 ⁇ 5 > cells / mL, and the suspension of HepG2 cell was prepared.
  • the suspension of HepG2 cells was filled into a 1 mL syringe with an indwelling needle.
  • the tip of the indwelling needle was injected from the injection holes of the cell culture device 1, the cell culture device 2, and the cell culture device 3 prepared in Example 1.
  • 100 ⁇ L of the HepG2 cell suspension was injected into the device for cell culture 1, the device for cell culture 2, and the device for cell culture 3, and the injection hole was closed using a stainless steel ball.
  • the culture solution is changed every other day, and the HepG2 cells encapsulated in the cell culture device are cultured on the first day, the second day, the fourth day, and the seventh day using a phase contrast microscope.
  • the images were observed and photographed over time on the 10th and 14th days.
  • the results of the cell culture device 3 are shown in FIGS. 12A to 12F.
  • FIG. 12A to FIG. 12F it was shown that cells contained in one cell of the lattice of the holding body can be measured using a phase contrast microscope until around day 7 of culture. The same phenomenon was confirmed for the cell culture device 1 and the cell culture device 2.
  • HepG2 cells proliferate over time and can be cultured using a cell culture device.
  • the semipermeable membrane of the present embodiment has an appropriate strength that is difficult to bend and easy to handle.
  • the cell culture device of the present embodiment is not only excellent in cell protection performance, but also easy to handle, can cultivate cells for a long period of time, and can measure the number of cells.
  • the medicinal efficacy against diseases can be used as an alternative to conventional culture models or animal experiments.
  • it can be expected to be used for confirmation tests of the metabolic pathway and cytotoxicity of drugs and their metabolites.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Clinical Laboratory Science (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

半透膜は、液相中で半透性を有し、且つ、格子構造を有する低吸水性の保持体を含む。細胞培養用デバイスは、前記半透膜を少なくとも一部に備える。組織型チップは、1種類の細胞を含む前記細胞培養用デバイスを備える。器官型チップは、少なくとも2種類の細胞を含む前記細胞培養用デバイスを備える。多細胞構造体を提供するためのキットは、前記組織型チップ又は前記器官型チップと、培養液と、を含む開閉可能な密封容器を備える。器官型チップシステムは、前記組織型チップ又は前記器官型チップを少なくとも2つ備え、前記組織型チップ又は前記器官型チップが密閉性を保ちながら連結されている。細胞の培養方法は、前記細胞培養用デバイスを用いる方法である。細胞数の測定方法は、細胞培養用デバイスを用いる方法である。

Description

半透膜及びその使用
 本発明は、半透膜、細胞培養用デバイス、組織型チップ、器官型チップ、器官型チップシステム、前記細胞培養用デバイスを用いた細胞の培養方法、及び、前記細胞培養用デバイスを用いた細胞数の測定方法に関する。
 本願は、2017年1月18日に、日本に出願された特願2017-006741号に基づき優先権を主張し、その内容をここに援用する。
 創薬や動物実験代替法に関連する企業では、細胞バンク等から凍結細胞を購入後、継代培養して増殖した細胞を凍結保存するとともに、一部の細胞で培養モデルを作製して開発に必要な試験を実施している。つまり、開発に必要な試験を実施するまでに、莫大なコストと時間を消費している。さらに、単層培養の細胞ではなく、より生体に近しい「組織型培養モデル」が求められている。
 「組織型培養モデル」に関連した技術としては、例えば、各種ゲル包埋培養技術、スフェロイド培養技術(例えば、特許文献1参照。)、及び各種チャンバー培養技術(例えば、特許文献2参照。)等が挙げられる。
 一方、本発明者は、これまでに細胞外マトリックス成分を含有するハイドロゲル薄膜、及び該ハイドロゲル薄膜を備えるチャンバー等を開発してきた。例えば、特許文献3には細胞外マトリックス成分を含有するガラス化されたマトリックスゲル薄膜の水和物からなる薄膜、及び環状体又は網状体等の保持体と一体化したハイドロゲル薄膜が開示されている。
特開2012-65555号公報 再公表WO2008/130025号公報 特開平8-228768号公報
 特許文献1及び2に記載の「組織型培養モデル」に関連した従来技術は、いずれも培養操作が煩雑であり、組織型培養モデルの構築にコスト及び時間を要するのみならず、生産再現性が必ずしも良くないため、ロット間の差もある。さらに、スフェロイド培養技術等、細胞が露出された状態にある培養技術は、3次元組織を構成している個々の細胞の保護性能が必ずしも良くない。
また、上述の「組織型培養モデル」に関連した従来技術では、細胞を長期的に培養下で維持することが難しく、培養モデルを構築後、即座に使用しなければならず、時間的制約がある。
 また、特許文献3に記載の細胞外マトリックス成分を含有するハイドロゲル薄膜を備える細胞培養用デバイスでは、内部に液体を注入した際に膜がたわんでしまい、さらにハイドロゲル薄膜の部分をピンセット等で保持すると損傷してしまうという課題があった。また、ガーゼ等の保持体と一体化されたハイドロゲル薄膜を備える細胞培養用デバイスでは、薄膜が損傷しにくく適度な強度を有するが、ガーゼ等の保持体が吸水し膨張するため、膜がたわんでしまうという課題は残されていた。
 本発明は、上記事情を鑑みてなされたものであり、たわみにくく、取扱いが容易な適度な強度を有する半透膜を提供する。また、細胞保護性能が優れるのみならず、取扱いも容易であって、細胞の長期間培養が可能であり、且つ、細胞数を計測可能な細胞培養用デバイスを提供する。
 本発明者は、上記課題を解決すべく鋭意研究した結果、格子状であって、低吸水性の半透膜を備えた細胞培養用デバイスを作製し、当該細胞培養用デバイスに細胞を注入し培養することで、膜がたわむことなく、ピンセットで保持可能であり、取り扱いが容易で、且つ、高機能な組織型チップが得られることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下の態様を含む。
本発明の第1態様に係る半透膜は、液相中で半透性を有し、且つ、格子構造を有する低吸水性の保持体を含む。
上記第1態様に係る半透膜において、前記保持体の格子構造がマイクロメートル単位の目盛りとして機能してもよい。
上記第1態様に係る半透膜において、前記保持体がポリエステル又はポリスチレンからなってもよい。
上記第1態様に係る半透膜は、生体適合性を有する材料を含んでもよい。
上記第1態様に係る半透膜において、前記生体適合性を有する材料がゲル化する細胞外マトリックス由来成分であってもよい。
上記第1態様に係る半透膜において、前記ゲル化する細胞外マトリックス由来成分がネイティブコラーゲン、又はアテロコラーゲンであってもよい。
本発明の第2態様に係る細胞培養用デバイスは、上記第1態様に係る半透膜を少なくとも一部に備える。
上記第2態様に係る細胞培養用デバイスは、さらに、気相中で液密性を有してもよい。
上記第2態様に係る細胞培養用デバイスは、培養液に懸濁された細胞を注入可能であり、内部容積が10mL以下であってもよい。
上記第2態様に係る細胞培養用デバイスは、全体が前記半透膜からなってもよい。
本発明の第3態様に係る組織型チップは、1種類の細胞を含む上記第2態様に係る細胞培養用デバイスを備える。
上記第3態様に係る組織型チップにおいて、前記細胞の密度が、2.0×10細胞/mL以上1.0×10細胞/mL以下であってもよい。
本発明の第4態様に係る器官型チップは、少なくとも2種類の細胞を含む上記第2態様に係る細胞培養用デバイスを備える。
上記第4態様に係る器官型チップにおいて、前記細胞の密度が、2.0×10細胞/mL以上1.0×10細胞/mL以下であってもよい。
本発明の第5態様に係るキットは、多細胞構造体を提供するためのキットであって、上記第3態様に係る組織型チップ又は上記第4態様に係る器官型チップと、培養液と、を含む開閉可能な密封容器を備える。
本発明の第6態様に係る器官型チップシステムは、上記第3態様に係る組織型チップ又は上記第4態様に係る器官型チップを少なくとも2つ備え、前記組織型チップ又は前記器官型チップが密閉性を保ちながら連結されている。
本発明の第7態様に係る細胞の培養方法は、上記第2態様に係る細胞培養用デバイスを用いる方法である。
本発明の第8態様に係る細胞数の測定方法は、上記第2態様に係る細胞培養用デバイスを用いる方法である。
上記態様の半透膜は、たわみにくく、取扱いが容易な適度な強度を有する。また、上記態様の細胞培養用デバイスは、細胞保護性能が優れるのみならず、取扱いも容易であって、細胞の長期間培養が可能であり、且つ、細胞数を計測可能である。
本発明の第1実施形態に係る半透膜を模式的に示す平面図である。 本発明の第1実施形態に係る細胞培養用デバイスを模式的に示す斜視図である。 本発明の第2実施形態に係る細胞培養用デバイスを模式的に示す斜視図である。 本発明の第3実施形態に係る細胞培養用デバイスを模式的に示す斜視図である。 本発明の第4実施形態に係る細胞培養用デバイス(デバイス内部と外部とが注入孔を介して連通)を模式的に示す斜視図である。 本発明の第4実施形態に係る細胞培養用デバイス(デバイス内部と外部とが不通)を模式的に示す斜視図である。 本発明の第5実施形態に係る細胞培養用デバイス(デバイス内部と外部とが注入孔を介して連通)を模式的に示す断面図である。 本発明の第5実施形態に係る細胞培養用デバイス(デバイス内部と外部とが不通)を模式的に示す断面図である。 本発明の第6実施形態に係る細胞培養用デバイスを模式的に示す斜視図である。 本発明の第1実施形態に係る器官型チップシステムを模式的に示す斜視図である。 本発明の第2実施形態に係る器官型チップシステムを模式的に示す斜視図である。 本発明の第3実施形態に係る器官型チップシステムを模式的に示す斜視図である。 本発明の第4実施形態に係る器官型チップシステムを模式的に示す斜視図である。 製造例1において作製された半透膜を示す画像である。 実施例1における保持体が包埋された半透膜を備える細胞培養用デバイスにPBSを注入して、ピンセットで摘まんだ状態を示す画像である。 実施例1における保持体が包埋された半透膜を備える細胞培養用デバイスにPBSを注入して、縦置きで静置した状態を示す画像である。 実施例1における保持体を含まない半透膜を備える細胞培養用デバイスにPBSを注入して、ピンセットで摘まんだ状態を示す画像である。 実施例1における保持体を含まない半透膜を備える細胞培養用デバイスにPBSを注入して、縦置きで静置した状態を示す画像である。 試験例1における培養1日目のHepG2細胞の様子を示す画像である。 試験例1における培養2日目のHepG2細胞の様子を示す画像である。 試験例1における培養4日目のHepG2細胞の様子を示す画像である。 試験例1における培養7日目のHepG2細胞の様子を示す画像である。 試験例1における培養10日目のHepG2細胞の様子を示す画像である。 試験例1における培養14日目のHepG2細胞の様子を示す画像である。
 以下、実施形態を示して本発明をさらに詳細に説明するが、本発明は以下の実施形態に何ら限定されるものではない。
≪半透膜≫
 一実施形態において、本発明は、液相中で半透性を有し、且つ、格子構造を有する低吸水性の保持体を含む半透膜を提供する。
 本実施形態の半透膜は、たわみにくく、取扱いが容易な適度な強度を有する。そのため、本実施形態の半透膜を備える細胞培養用デバイスは、膜がたわむことなく、さらにピンセットで摘まんでも破損することなく保持することができ、取扱いが容易である。
<構造>
[第1実施形態]
 図1は、本発明の第1実施形態に係る半透膜を模式的に示す平面図である。
 ここに示す半透膜10は、格子構造を有する低吸水性の保持体1を含む。保持体1は、半透膜表面の少なくとも一部に接着していてもよく、半透膜内に少なくとも一部が包埋された状態であってもよい。
 半透膜10は、液相中で半透性を有する。
 なお、本明細書において、「半透性」とは、一定の分子量以下の分子又はイオンのみを透過可能な性質を意味し、「半透膜」とは、当該性質を有する膜である。本実施形態の半透膜を備える細胞培養用デバイスにおいて、例えば、細胞を含む該細胞培養用デバイスを、培養液を含む容器内に浸した場合に、前記半透膜は、細胞を細胞培養用デバイスの外部に透過させず、一方、培養液に溶解している栄養分を細胞培養用デバイスの内部に透過させるとともに、細胞培養用デバイスの内部の培養液に溶解した老廃物を含む細胞生産物を細胞培養用デバイスの外部に透過させることができる。このため、本実施形態の細胞培養用デバイスは、細胞の長期間培養に用いることができる。
より具体的には、本実施形態の半透膜は、例えば、分子量約100万以下の高分子化合物を透過することができるものとすることができ、例えば、分子量約20万以下の分子化合物を透過することができるものとすることができる。
 図1において、半透膜10は円形であるものを示したが、その他の形状でもよく、例えば、多角形(正多角形等も含む)、楕円形、扇形等が挙げられ、これらに限定されない。
 また、図1において、保持体1は正方形であるものを示したが、その他の形状でもよく、例えば、多角形(正多角形等も含む)、楕円形、扇形等が挙げられ、これらに限定されない。
<構成材料>
[保持体]
 本実施形態における保持体は、格子状であって低吸水性であることが好ましい。
 本明細書において、「格子状」とは、複数の縦の線と横の線とがそれぞれ垂直に交差した状態を意味する。本実施形態における保持体は、縦の線及び横の線がそれぞれマイクロメートル単位で等間隔に並んでいる部分を有することが好ましい。すなわち、本実施形態における保持体はマイクロメートル単位の目盛りとして機能することが好ましい。これにより、本実施形態の半透膜を備える細胞培養用デバイスにおいて、細胞を含む場合に、血球計算盤の代わりとして用いることができ、細胞培養用デバイス内に含まれる細胞数を容易に計測することができる。
 格子を形成する縦の線及び横の線のそれぞれの間隔(すなわち、目開き)は、100μm以上500μm以下であることが好ましく、200μm以上300μm以下であることがより好ましい。
 また、格子を形成する縦の線及び横の線の線径は、例えば0.1μm以上100μm以下とすることができ、例えば1μm以上80μm以下とすることができる。
 また、本明細書における「低吸水性」とは、日本工業規格(JIS K 7209)で測定される吸水率が低いことを意味する。具体的には、吸水率が1%未満であることが好ましい。
 本実施形態における保持体の材料としては、プラスチックであって、繊維(糸)又はフィルムの加工により格子を形成でき、低吸水性及び適度な硬度を有し、且つ、細胞毒性が低いものを用いることができる。前記プラスチックとしては、例えば、ポリ塩化ビニル、スチレンコポリマー、ポリアクリレート(アクリル樹脂)、ポリカーボネート、ポリエステル(特に、ポリエチレンテレフタレート)、ユリア樹脂、フェノール樹脂、メラミン樹脂、ポリアセタール、ポリエチレン、ポリプロピレン、ポリ四フッ化エチレン、ポリ二フッ化エチレン、ポリ塩化ビニリデン、ポリスチレン等が挙げられ、これらに限定されない。
 前記ポリアクリレート(アクリル樹脂)としてより具体的には、例えば、ポリ(メタクリル酸メチル)、ポリ(メタクリル酸エチル)、ポリ(メタクリル酸ブチル)、ポリ(メタクリル酸イソブチル)、ポリ(メタクリル酸ヘキシル)、ポリ(メタクリル酸イソデシル)、ポリ(メタクリル酸ラウリル)、ポリ(メタクリル酸フェニル)、ポリ(アクリル酸メチル)、ポリ(アクリル酸イソプロピル)、ポリ(アクリル酸イソブチル)、ポリ(アクリル酸オクタデシル)等が挙げられる。
 中でも、本実施形態における保持体の材料としては、製造コスト、及び本実施形態の半透膜は細胞を取り扱うために通常用いられることから、ポリエステル又はポリスチレンであることが好ましく、ポリエチレンテレフタレート又はポリスチレンであることがより好ましい。
 保持体の製造方法としては、可塑性樹脂の繊維(糸)又はフィルムを用いて公知のメッシュの製造方法を用いて製造することができる。
 具体的には、繊維(糸)を用いた保持体の製造方法としてより具体的には、まず、上述の材料からなる所望の線径である繊維(糸)を、機械等を用いて、格子状に編みこむことで製造することができる。このとき、縦の繊維(糸)と横の繊維(糸)との交点を熱又は圧力等を加えて融着させてもよい。交点を融着させることにより、段差のない平滑な保持体を得ることができる。
 また、フィルムを用いた保持体の製造方法としてより具体的には、まず、上述の材料からなる所望の膜厚であるフィルムを、機械等を用いて、格子状に多孔を切削することで製造することができる。このとき、前記多孔の形状は均一で、マイクロメートル単位の目盛りとして機能するものであってよく、例えば、多角形(正方形を含む)、円形、楕円形等が挙げられ、これらに限定されない。
[その他]
 本実施形態の半透膜において、保持体以外の構成材料としては、細胞毒性のないものを用いることができ、天然高分子化合物であってもよく、合成高分子化合物であってもよい。また、前記性質を有する材料としては、生体適合性を有する材料であることが好ましい。
 なお、本明細書において、「生体適合性」とは、生体組織と材料との適合性を示す評価基準を意味し、「生体適合性を有する」とは、材料それ自体が毒性を有さず、内毒素等の微生物由来の成分を有さず、生体組織を物理的に刺激することなく、生体組織を構成するタンパク質や細胞等と相互作用しても拒絶されない状態を意味する。
 生体適合性を有する天然高分子化合物としては、例えば、ゲル化する細胞外マトリックス由来成分、多糖類(例えば、アルギネート、セルロース、デキストラン、プルラン(pullulane)、ポリヒアルロン酸、及びそれらの誘導体等)、キチン、ポリ(3-ヒドロキシアルカノエート)(特に、ポリ(β-ヒドロキブチレート)、ポリ(3-ヒドロキシオクタノエート))、ポリ(3-ヒドロキシ脂肪酸)、フィブリン、寒天、アガロース等が挙げられ、これらに限定されない。
前記セルロースには、合成により改質されたものも含み、例えば、セルロース誘導体(例えば、アルキルセルロース、ヒドロキシアルキルセルロース、セルロースエーテル、セルロースエステル、ニトロセルロース、キトサン等)等が挙げられる。より具体的なセルロース誘導体としては、例えば、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシブチルメチルセルロース、セルロースアセテート、セルロースプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、カルボキシメチルセルロース、セルローストリアセテート、セルローススルフェートナトリウム塩等が挙げられる。
中でも、前記天然高分子化合物としては、優れた保水性を有することから、ゲル化する細胞外マトリックス由来成分、フィブリン、寒天、又はアガロースであることが好ましい。
ゲル化する細胞外マトリックス由来成分としては、例えば、コラーゲン(I型、II型、III型、V型、XI型等)、マウスEHS腫瘍抽出物(IV型コラーゲン、ラミニン、ヘパラン硫酸プロテオグリカン等を含む)より再構成された基底膜成分(商品名:マトリゲル)、グリコサミノグリカン、ヒアルロン酸、プロテオグリカン、ゼラチン等が挙げられ、これらに限定されない。それぞれのゲル化に至適な塩等の成分、その濃度、pH等を選択し半透膜を作製することが可能である。また、原料を組み合わせることで、様々な生体内組織を模倣した半透膜を得ることができる。
 生体適合性を有する合成高分子化合物としては、例えば、ポリホスファゼン、ポリ(ビニルアルコール)、ポリアミド(例えば、ナイロン等)、ポリエステルアミド、ポリ(アミノ酸)、ポリ無水物、ポリスルホン、ポリカーボネート、ポリアクリレート(アクリル樹脂)、ポリアルキレン(例えば、ポリエチレン等)、ポリアクリルアミド、ポリアルキレングリコール(例えば、ポリエチレングリコール等)、ポリアルキレンオキシド(例えば、ポリエチレンオキシド等)、ポリアルキレンテレフタレート(例えば、ポリエチレンテレフタレート等)、ポリオルトエステル、ポリビニルエーテル、ポリビニルエステル、ポリビニルハライド、ポリビニルピロリドン、ポリエステル、ポリシロキサン、ポリウレタン、ポリヒドロキシ酸(例えば、ポリラクチド、ポリグリコリド等)、ポリ(ヒドロキシ酪酸)、ポリ(ヒドロキシ吉草酸)、ポリ[ラクチド-co-(ε-カプロラクトン)]、ポリ[グリコリド-co-(ε-カプロラクトン)]等)、ポリ(ヒドロキシアルカノエート)、及びこれらのコポリマー等が挙げられ、これらに限定されない。
 中でも、前記合成高分子化合物としては、ポリヒドロキシ酸(例えば、ポリラクチド、ポリグリコリド等)、ポリエチレンテレフタレート、ポリ(ヒドロキシ酪酸)、ポリ(ヒドロキシ吉草酸)、ポリ[ラクチド-co-(ε-カプロラクトン)]、ポリ[グリコリド-co-(ε-カプロラクトン)]等)、ポリ(ヒドロキシアルカノエート)、ポリオルトエステル、又はコポリマーであることが好ましい。
 本実施形態の半透膜において、保持体以外の構成材料としては、上記に例示された材料のうち1種類から構成されていてもよく、2種類以上から構成されていてもよい。また、本実施形態における半透膜の材料は、天然高分子化合物、又は合成高分子化合物のうちいずれかで構成されていてもよく、天然高分子化合物及び合成高分子化合物の両方から構成されていてもよい。
また、半透膜が上記に例示された材料のうち2種類以上から構成されている場合、半透膜は、上記に例示された材料の混合物から構成されていてもよい。又は、半透膜は、1種類の材料からなる半透膜を2層以上積層してなり、各半透膜を構成する材料が互いに異なる膜から構成されていてもよい。
 中でも、本実施形態の半透膜において、保持体以外の構成材料としては、天然高分子化合物が好ましく、ゲル化する細胞外マトリックス由来成分がより好ましく、コラーゲンがさらに好ましい。また、コラーゲンの中でもより好ましい原料としては、ネイティブコラーゲン、又はアテロコラーゲンを例示できる。
 本実施形態における半透膜の材料が、細胞外マトリックス由来成分である場合に、細胞外マトリックス由来成分を半透膜の単位面積1cmあたり0.1mg以上10.0mg以下含有することが好ましく、0.5mg以上5.0mg以下含有することがより好ましい。特に、細胞外マトリックス由来成分がコラーゲンである場合、コラーゲンを半透膜の単位面積1cmあたり0.2mg以上10.0mg以下含有することが好ましく、1cmあたり0.25mg以上5.0mg以下含有することがより好ましい。
半透膜における細胞外マトリックス由来成分(特に、コラーゲン)の含有量が上記範囲であることにより、細胞を細胞培養用デバイス内に注入し、培養することが可能な強度とすることができる。
なお、「該膜の単位面積1cmあたりの重量」とは、膜の厚さを任意として、該材料片1cmあたりに含有される成分の重量を指す。
 本実施形態における半透膜の厚さは特に制限されないが、1μm以上1000μm以下であることが好ましく、1μm以上500μm以下であることがより好ましく、5μm以上300μm以下であることがさらに好ましく、10μm以上200μm以下であることが特に好ましい。半透膜の厚さが上記範囲であることにより、細胞を細胞培養用デバイス内に注入し、培養することが可能な強度とすることができる。
 ここで、「半透膜の厚さ」とは、半透膜全体の厚さを意味し、例えば、複数層からなる半透膜の厚さとは、半透膜を構成するすべての層の合計の厚さを意味する。
 また、本実施形態における半透膜は、使用時に破損することがなく、実用上大変優れるものである。
<半透膜の製造方法>
1.生体適合性を有する合成高分子化合物を用いた半透膜の製造方法
 例えば、半透膜の構成材料が生体適合性を有する合成高分子化合物である場合は、公知の方法(例えば、特開2001-149763号公報等参照。)を利用して、半透膜を製造することができる。
 生体適合性を有する合成高分子化合物を用いた半透膜の製造方法としてより具体的には、まず、合成高分子化合物を有機溶剤中に溶解した製膜原液を調製する。
 有機溶剤としては、合成高分子化合物に対する溶剤を用いることができ、例えば、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチル-2-ピロリドン等が挙げられ、これらに限定されない。
 合成高分子化合物と有機溶剤との混合割合は、使用する合成高分子化合物及び有機溶剤の種類に応じて適宜調整することができ、例えば、合成高分子化合物15重量%、有機溶剤85重量%とすることができる。
また、溶解時における有機溶剤の温度は、通常30℃以上100℃以下とすることができ、50℃以上80℃以下であることが好ましい。
次いで、調製した製膜原液を例えばノズルから吐出させる方法等を用いて、凝固液中で凝固させ、所定の形状の半透膜を製造する。このとき、保持体を凝固液中に配置しておき、保持体を含むように、前記製膜原液を万遍なく吐出させることで半透膜を製造することができる。
前記凝固液としては、有機溶剤と水との混合液を用いることが好ましい。凝固液に用いる有機溶剤としては、合成高分子化合物の溶解に用いた有機溶剤として例示されたものと同様のものを用いることができる。なお、凝固液に用いる有機溶剤は、合成高分子化合物の溶解に用いた有機溶剤とは同じ種類であってもよく、異なる種類であってもよい。
また、凝固液中における水の割合は、例えば、30重量%以上80重量%以下とすることができる。
さらに、凝固速度を調整する目的で、凝固液中に、例えば、メタノール、エタノール、イソプロパノール、グリセリン等のアルコール類やエチレングリコール、プロピレングリコール等のグリコール類を添加してもよい。
又は、所定の形状に凝固させた製膜2枚を用いて、保持体を挟みこみ、接着剤を用いて接着及び乾燥させることで、半透膜を製造してもよい。
前記接着剤としては、細胞毒性がないものを用いることができ、合成化合物の接着剤であってもよく、天然化合物の接着剤であってもよい。
合成化合物の接着剤としては、例えば、ウレタン系接着剤、シアノアクリレート系接着剤、ポリメチルメタクリレート(PMMA)、リン酸カルシウム系接着剤、レジン系セメント等が挙げられる。
天然化合物の接着剤としては、例えば、フィブリン糊、ゼラチン糊等が挙げられる。
得られた半透膜は、蒸留水等で洗浄し、さらに、紫外線照射等による滅菌を行い、使用することができる。
2.ハイドロゲルを用いた半透膜の製造方法
 また、例えば、半透膜の構成材料がハイドロゲルである場合は、公知の方法(例えば、特開平8-228768号公報、国際公開第2012/026531号、特開2012-115262号公報、及び特開2015-35978号公報等参照。)を利用して、半透膜を製造することができる。
 なお、本明細書において、「ハイドロゲル」とは、高分子化合物が化学結合によって網目構造をとり、その網目に多量の水を保有した物質を示し、より具体的には、天然物高分子化合物や合成高分子化合物の人工素材に架橋を導入してゲル化させたものを意味する。
ハイドロゲルには、例えば、上述のゲル化する細胞外マトリックス由来成分、フィブリン、寒天、アガロース、セルロース等の天然高分子化合物、及びポリアクリルアミド、ポリビニルアルコール、ポリエチレンオキシド、poly(II-hydroxyethylmethacrylate)/polycaprolactone等の合成高分子化合物が含まれる。
 ハイドロゲルを用いた半透膜の製造方法としてより具体的には、まず、予め保持体を配置しておいた鋳型に完全にはゲル化していない状態のハイドロゲル(以下、「ゾル」と称することがある。)を配置し、ゲル化を誘導する。
 ゾルがコラーゲンゾルである場合、コラーゲンゾルは至適な塩濃度を有するものとして、生理食塩水、PBS(Phosphate Buffered Saline)、HBSS(Hank’s Balanced Salt Solution)、基礎培養液、無血清培養液、血清含有培養液等を用いて、調製したものを用いることができる。また、コラーゲンのゲル化の際の溶液のpHは、例えば6以上8以下とすることができる。
 また、コラーゲンゾルの調製は例えば4℃程度で行えばよい。その後、ゲル化する際の保温は、用いるコラーゲンの動物種に依存したコラーゲンの変性温度より低い温度とすることができ、一般的には20℃以上37℃以下の温度で保温することで数分から数時間でゲル化を行うことができる。
 また、半透膜を作製するためのコラーゲンゾルの濃度は、0.1%以上1.0%以下であることが好ましく、0.2%以上0.6%以下であることがより好ましい。コラーゲンゾルの濃度が上記下限値以上であることにより、ゲル化が弱すぎず、また、コラーゲンゾルの濃度が上記上限値以下であることにより、均一なコラーゲンゲルを含む半透膜を得ることができる。
 さらに、得られたハイドロゲルを乾燥し、ハイドロゲル乾燥体としてもよい。ハイドロゲルを乾燥させることにより、ハイドロゲル内の自由水を完全に除去し、さらに結合水の部分除去を進行させることができる。
 このガラス化工程(ハイドロゲル内の自由水を完全に除去した後に、結合水の部分除去を進行させる工程)の期間を長くするほど、再水和した際には透明度、強度に優れたガラス化後のハイドロゲル、すなわちビトリゲル(登録商標)を得ることができる。なお、必要に応じて短期間のガラス化後に再水和して得たビトリゲル(登録商標)をPBS等で洗浄し、再度ガラス化することもできる。
 なお、本明細書において、「ビトリゲル(登録商標)」とは、従来のハイドロゲルをガラス化(vitrification)した後に再水和して得られる安定した状態にあるゲルのことを指し、本発明者によって、「ビトリゲル(vitrigel)(登録商標)」と命名されている。
 乾燥方法としては、例えば、風乾、密閉容器内で乾燥(容器内の空気を循環させ、常に乾燥空気を供給する)、シリカゲルを置いた環境下で乾燥する等、種々の方法を用いることができる。例えば、風乾の方法としては、10℃40%湿度で無菌に保たれたインキュベーターで2日間乾燥させる、若しくは無菌状態のクリーンベンチ内で一昼夜、室温で乾燥する等の方法を例示することができる。
 さらに、得られたビトリゲル(登録商標)乾燥体をPBSや使用する培養液等で再水和することで、再度、ビトリゲル(登録商標)としてもよい。
 また、本明細書においては、ハイドロゲルからなる半透膜の製造工程を詳細に説明するにあたり、当該ガラス化工程の直後であり再水和の工程を経ていないハイドロゲルの乾燥体に対しては、単に「ハイドロゲル乾燥体」とした。そして、当該ガラス化工程の後に再水和の工程を経て得られたゲルを「ビトリゲル(登録商標)」として区別して表し、そのビトリゲル(登録商標)をガラス化させて得られた乾燥体を「ビトリゲル(登録商標)乾燥体」とした。また、ビトリゲル(登録商標)乾燥体に紫外線照射する工程を施して得られるものを「ビトリゲル(登録商標)乾燥体に紫外線照射処理を施したビトリゲル(登録商標)材料乾燥体」とし、該ビトリゲル(登録商標)材料乾燥体に再水和する工程を施して得られるゲルを「ビトリゲル(登録商標)材料」とした。従って、「ビトリゲル(登録商標)」及び「ビトリゲル(登録商標)材料」は水和体である。
 つまり、得られたビトリゲル(登録商標)を再乾燥することで、再ガラス化させて、ビトリゲル(登録商標)乾燥体としてもよい。
 乾燥方法としては、上述に例示した方法と同様の方法が挙げられる。
 また、得られたビトリゲル(登録商標)乾燥体に紫外線を照射して、ビトリゲル(登録商標)乾燥体に紫外線照射処理を施したビトリゲル(登録商標)材料乾燥体としてもよい。
 紫外線の照射には、公知の紫外線照射装置を使用することができる。
 ビトリゲル(登録商標)乾燥体への紫外線の照射エネルギーは、単位面積あたりの総照射量が、0.1mJ/cm以上6000mJ/cm以下であることが好ましく、10mJ/cm以上4000mJ/cm以下であることがより好ましく、100mJ/cm以上3000mJ/cm以下であることがさらに好ましい。総照射量が上記の範囲であることにより、続く再水和工程において得られるビトリゲル(登録商標)材料の透明度及び強度を特に好ましいものとすることができる。
 また、ビトリゲル(登録商標)乾燥体への紫外線の照射は、複数回繰り返し行ってもよい。ビトリゲル(登録商標)乾燥体への紫外線の照射を繰り返す場合、1度目の紫外線の照射をビトリゲル(登録商標)乾燥体に行った後に、ビトリゲル(登録商標)乾燥体に紫外線照射処理を施したビトリゲル(登録商標)材料乾燥体の再水和及び再ガラス化の工程を行い、その後2度目以降の再ガラス化後のビトリゲル(登録商標)材料乾燥体への紫外線の照射を行うことが好ましい。
 単位面積あたりの紫外線総照射量が同一であるとき、ビトリゲル(登録商標)乾燥体への紫外線の照射を、複数回に分割して繰り返して行うことで、続く再水和工程において得られるビトリゲル(登録商標)材料の透明度及び強度をより高めることができる。また分割の回数は多いほど好ましい。例えば、ビトリゲル(登録商標)乾燥体への紫外線の照射の単位面積あたりの総照射量が、1000mJ/cm以上4000mJ/cm以下の範囲であるとき、該範囲内での照射回数が2回以上10回以下であることが好ましく、2回以上6回以下であることがより好ましい。
 また、ビトリゲル(登録商標)乾燥体への紫外線の照射を繰り返す場合、紫外線の照射部位を、ビトリゲル(登録商標)乾燥体の一方の面と他方の面(上面と下面)とに分けて照射して、その総照射量を、ビトリゲル(登録商標)乾燥体への単位面積あたりの紫外線総照射量としてもよい。
 紫外線の照射を、ビトリゲル(登録商標)乾燥体に行うことで、続く再水和工程において得られるビトリゲル(登録商標)材料の強度と透明度が高まることは、ビトリゲル(登録商標)材料内の高分子化合物同士が、紫外線によって架橋されるからと考えられる。つまり、当該操作により、高い透明度及び強度をビトリゲル(登録商標)材料に維持させることができると考えられる。
 さらに、得られたビトリゲル(登録商標)乾燥体に紫外線照射処理を施したビトリゲル(登録商標)材料乾燥体をPBSや使用する培養液等で再水和することで、ビトリゲル(登録商標)材料としてもよい。
 さらに、得られたビトリゲル(登録商標)材料を乾燥することで、再ガラス化させて、ビトリゲル(登録商標)材料乾燥体としてもよい。
 乾燥方法としては、上述に例示した方法と同様の方法が挙げられる。
又は、上述の製造方法を用いて、通常の半分程度の厚みのハイドロゲル、ハイドロゲル乾燥体、ビトリゲル(登録商標)、ビトリゲル(登録商標)乾燥体、ビトリゲル材料、又はビトリゲル(登録商標)材料乾燥体からなる製膜2枚を用いて、保持体を挟みこみ、接着剤、又はゾルを用いて接着及び乾燥させることで、半透膜を製造してもよい。
前記接着剤としては、細胞毒性がないものを用いることができ、上述の「1.生体適合性を有する合成高分子化合物を用いた半透膜の製造方法」において例示されたものと同様のものが挙げられる。
≪細胞培養用デバイス≫
 一実施形態において、本発明は、上述の半透膜を少なくとも一部に備える細胞培養用デバイスを提供する。
 本実施形態の細胞培養用デバイスは、膜がたわむことなく、さらにピンセット等で半透膜を摘まんでも破損することなく保持することができる。
また、従来では、培養モデルとして多細胞構造体を作製後、1~3日以内に使用しなければならず、時間的制約があった。これに対し、本実施形態の細胞培養用デバイスは、細胞を3~30日程度、長期間培養することが可能であり、時間的制約を受けない。
さらに、本実施形態の細胞培養用デバイスは、半透膜の内部又は表面(細胞培養用デバイスの天面若しくは底面の外側)に保持体を含むため、血球計算盤の代わりとして用いることができ、細胞培養用デバイス内に含まれる細胞数を容易に計測することができる。
本実施形態の細胞培養用デバイスは上述の半透膜を少なくとも一部に備える。よって、例えば、細胞を含む本実施形態の細胞培養用デバイスを、培養液を含む容器内に浸した場合に、前記半透膜において、細胞を細胞培養用デバイスの外部に透過させず、一方、培養液に溶解している栄養分を細胞培養用デバイスの内部に透過させるとともに、細胞培養用デバイスの内部の培養液に溶解した老廃物を含む細胞生産物を細胞培養用デバイスの外部に透過させることができる。このため、本実施形態の細胞培養用デバイスは、細胞の長期間培養に用いることができる。
 本実施形態の細胞培養用デバイスは、さらに、気相中で液密性を有することが好ましい。
 本明細書において、「液密性」とは、液体が漏れない状態を意味する。本実施形態の細胞培養用デバイスは、例えば、内部に培養液等の液体を含んでいる場合に、気相中において、いずれの面からも液体が漏れず、内部に保つことができる。一方、気体を通すことができるため、内部に液体を含む場合、内部の液体は経時的に蒸発する。よって、本実施形態の細胞培養用デバイスは、細胞が内部に封入された状態で保つことができる。
 本明細書において、「多細胞構造体」とは、複数の細胞が細胞-基質間の結合、及び細胞-細胞間の結合を形成した単層細胞又は多層細胞からなる3次元構造体を意味する。本実施形態における多細胞構造体は、1種類以上の機能細胞と、その足場の役割を果たす基質と、により構成されている。すなわち、本実施形態における多細胞構造体は、複数の機能細胞と基質とが相互作用することで、より生体内の組織又は器官に類似した形態を構築しているものである。したがって、多細胞構造体には、血管及び胆管のうち少なくともいずれか等の毛細管網様構造が3次元的に構築されていてもよい。このような毛細管網様構造は、多細胞構造体の内部にのみ形成されていてもよく、少なくともその一部が多細胞構造体の表面又は底面に露出されるように形成されていてもよい。
<構造>
[第1実施形態]
 図2は、本発明の第1実施形態に係る細胞培養用デバイスを模式的に示す斜視図である。
 ここに示す細胞培養用デバイス100は、半透膜10を天面及び底面に備え、部材11により側面を封止された円柱の形状をしている。図2において、半透膜を天面及び底面に備えるものを例示したが、天面、底面又は側面等の一部に備えるものでもよく、天面、底面、及び側面等の全体が半透膜からなるものでもよい。中でも、本実施形態の細胞培養用デバイスは、培養モデルとして用いる場合には、半透膜を天面及び底面に備えるものが好ましい。
 図2において、細胞培養用デバイスの形状が円柱であるものを示したが、その他の形状でもよく、本実施形態の細胞培養用デバイスの形状は、細胞を格納でき、細胞に均一に酸素及び培養液に溶解している栄養分が行き渡る形状とすることができ、培養液をデバイス内部に満たしていてもよく、培養液を満たさずに気体部分を残していてもよい。本実施形態の細胞培養用デバイスの形状としては、例えば、円柱(例えば、リング状の円柱、中空糸状の円柱等)、円錐、円錐台、角錐、角錐台、球、多面体(例えば、四面体、五面体、六面体(立方体含む)、八面体、十二面体、二十面体、二十四面体、ケプラー・ポアンソ立体等)等が挙げられ、これらに限定されない。
 図2に示すように細胞培養用デバイスの形状がリング状の円柱である場合、細胞培養用デバイスの内径は、1mm以上60mm以下であることが好ましく、3mm以上35mm以下であることがより好ましく、5mm以上30mm以下であることがさらに好ましい。
 また、細胞培養用デバイスの外径は、3mm以上68mm以下であることが好ましく、5mm以上43mm以下であることがより好ましく、7mm以上35mm以下であることがさらに好ましい。
 また、細胞培養用デバイスの厚み(リング状の円柱の高さ)は、5μm以上であって、50μm以上15mm以下であることが好ましく、100μm以上10mm以下であることがより好ましく、500μm以上2mm以下であることがさらに好ましい。
 なお、本明細書において、「細胞培養用デバイスの厚み(リング状の円柱の高さ)」は、細胞培養用デバイスの天面の外側の縁部から、底面の外側の縁部までの距離を意味する。
 図2において、天面及び底面が平面であるものを示したが、天面及び底面が凹部構造、又は凸部構造であってもよい。特に、天面及び底面が凹部構造であるとき、天面の内側の凹部の中心部(天面の内側の最凹部)と底面の内側の凹部の中心部(底面の内側の最凹部)とが接触せず、一定の距離(例えば、5μm以上)を保っていることが好ましい。これにより、細胞培養用デバイスの厚み(リング状の円柱の高さ)、すなわち、細胞培養用デバイスの天面の外側の縁部から、底面の外側の縁部までの距離が、天面の外側の凹部の中心部(天面の外側の最凹部)から底面の外側の凹部(底面の外側の最凹部)の中心部までの距離よりも長くなり、例えば、天面から薬剤を添加した場合に、添加した薬剤の方向性を維持することができる。さらに、天面及び底面が凹部構造であるため、天面及び底面の外側に新たに細胞を播種して培養することが可能となる。
 また、図2において、天面及び底面と側面の部材とが垂直に接合されたものを示したが、天面及び底面のうち少なくとも一方の縁部が直線状、凸曲線状、凹曲線状、又は略S字曲線状の傾斜を描きながら側面の部材に接合されていてもよい。特に、底面の縁部が上述の形状の傾斜を描きながら側面の部材に接合されている場合、ピンセット等を用いて本実施形態の細胞培養用デバイスの天面及び底面を挟みこんで持ち上げる際に、傾斜の部分にプンセット等が入り込み、容易に持ち上げることができる。
本実施形態の細胞培養用デバイスの内部容積は、培養液に懸濁した細胞を注入可能であり、細胞の活性をアッセイする試験等のインビトロ試験系で用いられる多細胞構造体を構築することができる程度のスモールスケールとすることができ、10mL以下であることが好ましく、10μL以上5mL以下であることがより好ましく、15μL以上2mL以下であることがさらに好ましく、20μL以上1mL以下であることが特に好ましい。内部容積が上記の上限値以下であることにより、十分に酸素及び培養液の栄養分が供給され、細胞を効率よく長期間に渡り培養することができる。また、内部容積が上記の下限値以上であることにより、インビトロ試験系で用いるのに十分な細胞数及び細胞密度の細胞を得ることができる。
[第2実施形態]
 図3は、本発明の第2実施形態に係る細胞培養用デバイスを模式的に示す斜視図である。
 なお、図3以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。
 ここに示す細胞培養用デバイス200は、支持体12を備えている以外は、図2に示す細胞培養用デバイス100と同じものである。すなわち、細胞培養用デバイス200は、半透膜10を天面及び底面に備え、部材11により側面を封止された円柱の形状をしており、外側面に支持体12を備える。
細胞培養用デバイス200は、支持体12を有することにより、例えば、細胞を含む細胞培養用デバイス200を一回り大きい容器に固定することにより、細胞を気相にて培養することができる。また、細胞培養用デバイス200は、支持体12を有することにより、例えば、細胞を含む細胞培養用デバイス200は、培養液中において、浮力により浮くことができ、細胞培養用デバイス200のように天面及び底面に半透膜10を備える場合、天面は空気に接し、底面は培養液に接するため、細胞を気相及び液相にて培養することができる。
また、支持体12は、細胞培養用デバイス200に固定されていてもよく、取り外し可能であってもよい。
[第3実施形態]
 図4は、本発明の第3実施形態に係る細胞培養用デバイスを模式的に示す斜視図である。
 ここに示す細胞培養用デバイス300は、チューブ13を備えている以外は、図2に示す細胞培養用デバイス100と同じものである。すなわち、細胞培養用デバイス300は、半透膜10を天面及び底面に備え、部材11により側面を封止された円柱の形状をしている。さらに、細胞培養用デバイス300の外側面において向かい合うようにチューブ13を備え、チューブ13は細胞培養用デバイス300の内部に挿入されており、2つのチューブ13及び細胞培養用デバイス300は連通している。
 細胞培養用デバイス300は、チューブ13を備えることにより、培養液を側面からも供給することができる。さらに、チューブ13を備える細胞培養用デバイス300同士を連結させることにより、後述に示す器官型チップシステムを構築することができる。
 また、チューブ13の細胞培養用デバイス300が挿入されている側と反対側の先端には、栓や弁等の開閉可能な装置(図示せず)を備えることが好ましい。
[第4実施形態]
 図5A及び図5Bは、本発明の第4実施形態に係る細胞培養用デバイスを模式的に示す斜視図である。図5Aに示す細胞培養用デバイス400aは、デバイス内部と外部とが注入孔14を介して連通している。一方、図5Bに示す細胞培養用デバイス400bはデバイス内部と外部とが不通である。
 ここに示す細胞培養用デバイス400a及び400bは、半透膜が円形の保持体1を含む半透膜10aであり、第1の注入孔14a及び第2の注入孔14bからなる注入孔14を備え、部材が第1の部材11a及び第2の部材11bからなる以外は、図2に示す細胞培養用デバイス100と同じものである。すなわち、細胞培養用デバイス400a及び400bは、円形の保持体1を含む半透膜10aを天面及び底面に備え、部材11により側面を封止された円柱の形状をしている。また、部材11が第1の部材11a及び第2の部材11bからなり、第1の部材11aの外周面に接するように第2の部材11bを備える。さらに、第1の部材11a及び第2の部材11bは、内周面と外周面とを貫通する第1の注入孔14a及び第2の注入孔14bをそれぞれ備える。そのため、第1の部材11aと第2の部材11bとの位置を左右に回転させて調節することで、細胞培養用デバイス400aに示すように、第1の注入孔14a及び第2の注入孔14bが接続してデバイス内部と外部とを連通させることができる。一方、細胞培養用デバイス400bに示すように、第1の注入孔14a及び第2の注入孔14bの位置をずらすことで、デバイス内部と外部とを不通とする(遮断する)ことができる。
 細胞培養用デバイス400aは、第1の部材11aと第2の部材11bとの位置を左右に回転させて、第1の注入孔14a及び第2の注入孔14bが接続させることで、デバイス内部と外部とを連通させることができ、培養液を側面からも供給することができる。一方、細胞培養用デバイス400bは、第1の部材11aと第2の部材11bとの位置を左右に回転させて、第1の注入孔14a及び第2の注入孔14bの位置をずらすことで、栓や弁等の開閉可能な装置を備えずに、デバイス内部と外部とを不通とする(遮断する)ことができる。
[第5実施形態]
 図6A及び図6Bは、本発明の第5実施形態に係る細胞培養用デバイスを模式的に示す断面図である。図6Aに示す細胞培養用デバイス500aは、デバイス内部と外部とが注入孔14を介して連通している。一方、図6Bに示す細胞培養用デバイス500bはデバイス内部と外部とが不通である。
 ここに示す細胞培養用デバイス500a及び500bは、半透膜が円形の保持体1を含む半透膜10aであり、第1の注入孔14a及び第2の注入孔14bからなる注入孔14を備え、部材が第1の部材11a及び第2の部材11bからなる以外は、図2に示す細胞培養用デバイス100と同じものである。すなわち、細胞培養用デバイス500a及び500bは、円形の保持体1を含む半透膜10aを天面及び底面に備え、部材11により側面を封止された円柱の形状をしている。また、部材11が第1の部材11a及び第2の部材11bからなり、第1の部材11aの外周面に接するように第2の部材11bを備える。さらに、第1の部材11a及び第2の部材11bは、内周面と外周面とを貫通する第1の注入孔14a及び第2の注入孔14bをそれぞれ備える。そのため、第1の部材11aと第2の部材11bとの位置を上下に調節することで、細胞培養用デバイス500aに示すように、第1の注入孔14a及び第2の注入孔14bが接続してデバイス内部と外部とを連通させることができる。一方、細胞培養用デバイス500bに示すように、第1の注入孔14a及び第2の注入孔14bの位置を上下にずらすことで、デバイス内部と外部とを不通とする(遮断する)ことができる。
 細胞培養用デバイス500aは、第1の部材11aと第2の部材11bとの位置を上下に動かして、第1の注入孔14a及び第2の注入孔14bが接続させることで、デバイス内部と外部とを連通させることができ、培養液を側面からも供給することができる。一方、細胞培養用デバイス500bは、第1の部材11aと第2の部材11bとの位置を上下に動かして、第1の注入孔14a及び第2の注入孔14bの位置をずらすことで、栓や弁等の開閉可能な装置を備えずに、デバイス内部と外部とを不通とする(遮断する)ことができる。
 また、図6A及び図6Bに示すように、細胞培養用デバイス500a及び500bは、上下の操作が簡便であることから、第1の部材11a及び第2の部材11bのかみ合わせる部分の形状がテーパー構造となっていることが好ましい。
[第6実施形態]
 図7は、本発明の第6実施形態に係る細胞培養用デバイスを模式的に示す斜視図である。
 ここに示す細胞培養用デバイス600は、半透膜が円形の保持体1を含む半透膜10aであり、第1の注入孔14a及び第2の注入孔14bからなる注入孔14を備え、部材が第1の部材11a及び第2の部材11bからなる以外は、図2に示す細胞培養用デバイス100と同じものである。すなわち、細胞培養用デバイス600は、円形の保持体1を含む半透膜10aを天面及び底面に備え、部材11により側面を封止された円柱の形状をしている。また、部材11が第1の部材11a及び第2の部材11bからなり、第1の部材11a及び第2の部材11bは同一の形状である。さらに、第1の部材11a及び第2の部材11bは、その天面に外周面から中心に向かって、半円柱状の窪みである第1の注入孔14a及び第2の注入孔14bをそれぞれ備える。この第1の部材11a及び第2の部材11bを天面同士が接するように、且つ、第1の注入孔14a及び第2の注入孔14bが合わさるように接着剤等を用いて貼りあわせることで、図7に示す外周面から内周面へ貫通する注入孔14を備える細胞培養用デバイス600が得られる。
 細胞培養用デバイス600は、注入孔14を備えることにより、培養液を側面からも供給することができる。
 また、細胞培養用デバイス600の注入孔14の外部と接する側には、栓や弁等の開閉可能な装置(図示せず)を備えることが好ましい。
 本実施形態の細胞培養用デバイスは、図2~7に示すものに限定されず、本実施形態の細胞培養用デバイスの効果を損なわない範囲内において、図2~7に示すものの一部の構成が変更又は削除されたものや、これまでに説明したものにさらに他の構成が追加されたものであってもよい。
 例えば、図2~7に示す細胞培養用デバイスにおいて、天面を備えず、開放系の形状であってもよい。
 また、例えば、図2~4に示す細胞培養用デバイスにおいて、部材は注入孔を備えていてもよい。注入孔を備える場合、該注入孔を閉じるための栓を備えることが好ましい。
 注入孔の形状は、特別な限定はなく、例えば、円形、多角形(正多角形等も含む)、楕円形等が挙げられる。
 注入孔の半径は、細胞培養用デバイスの厚み(すなわち、部材の高さ)に応じて適宜調整することができ、例えば10μm以上1000μm以下とすることができる。
 また、例えば、図5A~図7に示す細胞培養用デバイスについて、注入孔を1つ備えるものを示したが、2つ以上備えていてもよい。
 また、例えば、図2~7に示す細胞培養用デバイスにおいて、天面及び底面が保持体を含む半透膜であるものを示したが、天面又は底面が保持体を有さない半透膜であってもよい。保持体を含む半透膜を天面又は底面のいずれかの面に有することにより、細胞数がより計測しやすくなる。
 また、例えば、図2~7に示す細胞培養用デバイスにおいて、半透膜と部材との間に、接着剤層を備えていてもよい。この場合、半透膜は、接着剤層を介して、部材に対して着脱可能となっていてもよい。半透膜は、部材に対する接着性が低く、半透膜に対する接着性が高い接着剤を用いることで、多孔質膜の外面に対して着脱可能とすることができる。これにより、本実施形態の細胞培養用デバイスを用いて細胞を培養後、半透膜をデバイス内の細胞とともに簡便に取出すことができる。
 また、例えば、図2~7に示す細胞培養用デバイスにおいて、半透膜の外面に、接着剤層を介して、気密性を有するフィルムを備えていてもよい。この場合、気密性を有するフィルムは、接着剤層を介して、半透膜に対して着脱可能となっていてもよい。気密性を有するフィルムは、気密性を有するフィルムに対する接着性が低く、多孔質膜に対する接着性が高い接着剤を用いることで、多孔質膜の外面に対して着脱可能とすることができる。
 また、本実施形態の細胞培養用デバイスにおいては、各構成(半透膜、部材等)の大きさや形状は、目的に応じて任意に調節できる。
<各構成>
[半透膜]
 本実施形態の細胞培養用デバイスに用いられる半透膜は、気相中で液密性を有するため、例えば、本実施形態の細胞培養用デバイスの内部に培養液等の液体を含んでいる場合に、気相中において、半透膜から液体が漏れることなく、内部に保つことができる。この液密性は、半透膜上での表面張力によるものである。一方、気体を通すことができるため、内部に液体を含む場合、内部の液体は経時的に蒸発する。
また、本実施形態の細胞培養用デバイスに用いられる半透膜は、液相中で半透性を有するため、例えば、細胞を含む本実施形態の細胞培養用デバイスを、培養液を含む容器内に浸した場合に、前記半透膜において、細胞培養用デバイス内の細胞はデバイスの外部に透過させず、一方、培養液に溶解している栄養分を細胞培養用デバイスの内部に透過させるとともに、細胞培養用デバイスの内部の培養液に溶解した老廃物を含む細胞生産物を細胞培養用デバイスの外部に透過させることができる。このため、本実施形態の細胞培養用デバイスは、細胞の長期間培養に用いることができる。
より具体的には、本実施形態の細胞培養用デバイスに用いられる半透膜は、例えば、分子量約1,000,000以下の高分子化合物を透過することができるものとすることができ、例えば、分子量約200,000以下の分子化合物を透過することができるものとすることができる。
 前記性質を有する半透膜の材料としては、上述の「半透膜」の「構成材料」において例示されたものと同様のものが挙げられる。
[部材]
 本実施形態の細胞培養用デバイスにおいて、半透膜以外の部分を構成する部材は、液密性を有するものを用いることができる。また、本実施形態の細胞培養用デバイスにおいて、半透膜以外の部分を構成する部材は、通気性を有するものであってもよく、通気性を有さないものであってもよい。
前記部材が、通気性を有するものである場合、酸素透過係数が、例えば100cm/m・24hr・atm以上5000cm/m・24hr・atm以下とすることができ、例えば1000cm/m・24hr・atm以上3000cm/m・24hr・atm以下とすることができ、例えば1200cm/m・24hr・atm以上2500cm/m・24hr・atm以下とすることができる。さらに、二酸化炭素透過係数が、例えば1000cm/m・24hr・atm以上20000cm/m・24hr・atm以下とすることができ、例えば3000cm/m・24hr・atm以上15000cm/m・24hr・atm以下とすることができ、例えば5000cm/m・24hr・atm以上10000cm/m・24hr・atm以下とすることができる。
また、前記部材が通気性を有さないものである場合、酸素透過係数が例えば100cm/m・24hr・atm以下とすることができ、例えば50cm/m・24hr・atm以下とすることができる。さらに、二酸化炭素透過係数が、例えば1000cm/m・24hr・atm以下とすることができ、例えば500cm/m・24hr・atm以下とすることができる。
 本実施形態の細胞培養用デバイスにおいて、半透膜以外の部分を構成する部材の材料としては、細胞の培養に適したものを用いることができる。半透膜以外の部分を構成する材料としては、例えば、ガラス材料、エラストマー材料、樹状ポリマーを含むプラスチック、コポリマー等が挙げられ、これらに限定されない。
ガラス材料としては、例えば、ソーダ石灰ガラス、パイレックス(登録商標)ガラス、バイコール(登録商標)ガラス、石英ガラス等が挙げられる。
エラストマー材料としては、例えば、ウレタンゴム、ニトリルゴム、シリコーンゴム、シリコーン樹脂(例えば、ポリジメチルシロキサン)、フッ素ゴム、アクリルゴム、イソプレンゴム、エチレンプロピレンゴム、クロロスルホン化ポリエチレンゴム、エピクロルヒドリンゴム、クロロプレンゴム、スチレン・ブタジエンゴム、ブタジエンゴム、ポリイソブチレンゴム等が挙げられる。
樹状ポリマーとしては、例えば、ポリ(塩化ビニル)、ポリ(ビニルアルコール)、ポリ(メタクリル酸メチル)、ポリ(酢酸ビニル-共-無水マレイン酸)、ポリ(ジメチルシロキサン)モノメタクリレート、環状オレフィンポリマー、フルオロカーボンポリマー、ポリスチレン、ポリプロピレン、ポリエチレンイミン等が挙げられる。
コポリマーとしては、例えば、ポリ(酢酸ビニル-共-無水マレイン酸)、ポリ(スチレン-共-無水マレイン酸)、ポリ(エチレン-共-アクリル酸)、及び、これらの誘導体等が挙げられる。
 部材の材料は、上記に例示された材料のうち1種類から構成されていてもよく、2種類以上から構成されていてもよい。
また、部材が上記に例示された材料のうち2種類以上から構成されている場合、部材は、上記に例示された材料の混合物から構成されていてもよい。又は、部材は、1種類の材料からなる部材を組み合わせて形成されており、各部材を構成する材料が互いに異なっていてもよい。
 また、部材の形状は、本実施形態の細胞培養用デバイスの全体形状、及び、本実施形態の細胞培養用デバイスを構成する部分に応じて、適宜選択することができる。
(部材の製造方法)
 本実施形態における部材は、用いる材料に応じて、公知の方法を用いて製造することができる。
 例えば、部材の材料としてエラストマー材料又はプラスチックを用いる場合の製造方法としては、圧縮成形法、射出成形法、押出成形法等が挙げられ、これらに限定されない。
 また、例えば、部材の材料としてガラス材料を用いる場合の製造方法としては、例えば、液滴成形法、ダンナー法、オーバーフロー法、フロート法、ブロー成形法、プレス成型法等が挙げられ、これらに限定されない。
 また、注入孔を備える部材を製造する場合、部材を製造した後に、レーザー照射等により、注入孔を形成させ、注入孔を備える部材を製造してもよい。又は、注入孔にあたる部分の半円状の窪みを有する同じ形状の部材を2枚貼り合せることで注入孔を備える部材を製造してもよい。又は、部材の一部を突起させた後、当該突起部に注入孔を形成させてもよい。
[栓]
 本実施形態の細胞培養用デバイスにおいて、部材が注入孔を備える場合に、用いられる埋め込み型の栓は、部材よりも硬い材質のものが好ましい。具体的には、例えば、鉄、ステンレス鋼等の金属等が挙げられ、これらに限定されない。また、部材の突起部に注入孔を備える場合には、用いられる栓は、埋め込み型であっても、被覆型であってもよい。
 また、栓の形状は、注入孔を塞ぐことができる形状とすることができ、埋め込み型の場合は、例えば、球状、円錐状、円錐台状、角錐状、角錐台状、円柱状、角柱状等が挙げられ、被覆型の場合は、例えば、球殻状、ドーム状、円錐筒状、円錐台筒状、円筒状、角錐筒状、角錐台筒状、角筒状等のキャップ形状が挙げられ、これらに限定されない。
[支持体]
 本実施形態の細胞培養用デバイスに用いられる支持体の材料としては、例えば、有機材料であってもよく、無機材料であってもよい。
有機材料としては、例えば、ポリアミド(例えば、ナイロン等)、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリカーボネート、ポリアミド系樹脂、シリコーン樹脂等が挙げられ、特別な限定はない。
無機材料としては、例えば、セラミックス、ガラス等が挙げられ、特別な限定はない。
 また、支持体の形状は、例えばシート状、棒状等が挙げられ、これらに限定されない。
(支持体の製造方法)
 本実施形態における支持体は、用いる材料に応じて、公知の方法を用いて製造することができる。
 例えば、支持体の材料として有機材料を用いる場合の製造方法としては、例えば、圧縮成形法、カレンダー成形法、射出成形法、押出成形法、インフレーション成形等が挙げられ、これらに限定されない。
 また、例えば、支持体の材料としてガラスを用いる場合の製造方法としては、例えば、上述の(部材の製造方法)に例示された方法と同様のものが挙げられる。
 また、例えば、支持体の材料としてセラミックスを用いる場合の製造方法としては、例えば、乾式成形法(例えば、金型成形法、冷間静水圧成形法、ホットプレス法、熱間静水成形法等)、塑性成形法(例えば、ろくろ成形法、押出成形法、射出成型法)、鋳込み成形法(例えば、泥漿鋳込み法、加圧鋳込み法、回転鋳込み法等)、テープ成形法等が挙げられ、これらに限定されない。
[チューブ]
 本実施形態の細胞培養用デバイスに用いられるチューブの材料としては、特別な限定はなく、上記生体適合性を有する材料であってもよく、又は細胞の培養に適した材料であってもよい。前記生体適合性を有する材料としては、上述の「半透膜」の「構成材料」の「その他」において例示されたものと同様のものが挙げられる。前記細胞の培養に適した材料としては、上述の「部材」において例示されたものと同様のものが挙げられる。
 また、チューブとして好適に用いられるものとしてより具体的には、例えば、医療用のカテーテル、留置針のカテーテル等が挙げられる。
(チューブの製造方法)
 本実施形態におけるチューブは、用いる材料に応じて、公知の方法を用いて製造することができる。
 具体的な製造方法としては、上述の「半透膜」の「半透膜の製造方法」及び上述の「部材」の「部材の製造方法」において例示された方法と同様の方法を用いて、チューブ状となるように成形することができる。
[気密性を有するフィルム]
 気密性を有するフィルムの厚さは、例えば10μm以上500μm以下とすることができ、例えば30μm以上300μm以下とすることができ、例えば50μm以上150μm以下とすることができる。
 ここで、「気密性を有するフィルムの厚さ」とは、気密性を有するフィルム全体の厚さを意味し、例えば、複数層からなる気密性を有するフィルムの厚さとは、気密性を有するフィルムを構成するすべての層の合計の厚さを意味する。
 気密性を有するフィルムの材料としては、気密性を有する材料であればよい。
 気密性を有するフィルムの材料として具体的には、有機材料であってもよく、無機材料であってもよい。
有機材料としては、例えば、ポリアミド(例えば、ナイロン等)、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリカーボネート、ポリアミド系樹脂、シリコーン樹脂等が挙げられ、特別な限定はない。
無機材料としては、例えば、セラミックス、ガラス等が挙げられ、特別な限定はない。
 気密性を有するフィルムは、上記に例示された材料のうち1種類から構成されていてもよく、2種類以上から構成されていてもよい。
また、気密性を有するフィルムが上記に例示された材料のうち2種類以上から構成されている場合、気密性を有するフィルムは、上記に例示された材料の混合物から構成されていてもよい。又は、気密性を有するフィルムは、1種類の材料からなる気密性を有するフィルムを2層以上積層してなり、各気密性を有するフィルムを構成する材料が互いに異なってもよい。
(気密性を有するフィルムの製造方法)
 気密性を有するフィルムは、用いる材料に応じて、公知の方法を用いて製造することができる。
 例えば、気密性を有するフィルムの材料として有機材料を用いる場合の製造方法としては、例えば、圧縮成形法、カレンダー成形法、射出成形法、押出成形法、インフレーション成形等が挙げられ、これらに限定されない。
 また、例えば、気密性を有するフィルムの材料としてガラスを用いる場合の製造方法としては、例えば、上述の(部材の製造方法)に例示された方法と同様のものが挙げられる。
 また、例えば、気密性を有するフィルムの材料としてセラミックスを用いる場合の製造方法としては、例えば、乾式成形法(例えば、金型成形法、冷間静水圧成形法、ホットプレス法、熱間静水成形法等)、塑性成形法(例えば、ろくろ成形法、押出成形法、射出成型法)、鋳込み成形法(例えば、泥漿鋳込み法、加圧鋳込み法、回転鋳込み法等)、テープ成形法等が挙げられ、これらに限定されない。
<細胞培養用デバイスの製造方法>
 本実施形態の細胞培養用デバイスは、所望の形状となるように、半透膜のみ、又は、半透膜と部材とを組み立てることにより製造することができる。また、必要に応じて、支持体及びチューブを備え付けることができる。
 半透膜、部材、支持体及びチューブそれぞれの製造方法は、先に説明したとおりである。
 より具体的には、図2に示す本実施形態の細胞培養用デバイスの製造方法を以下に詳細に説明する。
 まず、部材11の天面及び底面と同じ大きさ、又は、部材11の天面及び底面よりも一回り大きい半透膜10を2枚準備する。次いで、準備した半透膜10をそれぞれ部材11の天面及び底面となるように、接合させる。
 半透膜10と部材11との接合方法としては、例えば、接着剤による接合方法、両面テープによる接合方法、ヒートシーラーや熱板、超音波、レーザー等を用いて熱溶着により接合する方法、ほぞとほぞ穴とを作製することにより接合するほぞ接ぎによる方法(例えば、片胴付き、二方胴付き、三方胴付き、四方胴付き、小根付き、面腰ほぞ、二枚ほぞ、二段ほぞ等)等が挙げられ、これらに限定されない。また、これらの接合方法のうち1種類を用いてもよく、2種類以上を組み合わせて用いてもよい。
また、前記接着剤としては、細胞毒性がないものを用いることができ、合成化合物の接着剤であってもよく、天然化合物の接着剤であってもよい。
合成化合物の接着剤としては、例えば、ウレタン系接着剤、シアノアクリレート系接着剤、ポリメチルメタクリレート(PMMA)、リン酸カルシウム系接着剤、レジン系セメント等が挙げられる。
天然化合物の接着剤としては、例えば、フィブリン糊、ゼラチン糊等が挙げられる。
また、前記両面テープとしては、細胞毒性がないものを用いることができ、医療用途にて用いられているもの等が好適に用いられる。具体的には、例えば、支持体の両面に粘着剤層が積層された構造を有し、前記粘着剤層がゴム系、アクリル系、ウレタン系、シリコーン系、ビニルエーテル系の公知の粘着剤からなるもの等が挙げられる。より具体的には、例えば、3Mジャパン社製の皮膚貼付用両面テープ(製品番号:1510、1504XL、1524等)、日東電工社製の皮膚用両面粘着テープ(製品番号:ST502、ST534等)、ニチバンメディカル社製の医療用両面テープ(製品番号:#1088、#1022、#1010、#809SP、#414125、#1010R、#1088R、#8810R、#2110R等)、DIC社製の薄型発泡体基材両面接着テープ(製品番号:#84010、#84015、#84020等)等が挙げられる。
なお、白や黒等の着色された色の異なる両面接着テープ(例えば、DIC社製の#84010WHITE及び#84010BLACK等)を、それぞれ部材の天面及び底面に用いることで、半透膜が透明又は半透明である場合には、天面側及び底面側を目視で容易に区別することができる。
 次いで、γ線照射、電子線照射、UV照射、又は、酸化エチレンガス(ethylene oxide gas:EOG)等により滅菌し、必要に応じて、半透膜10又は部材11の大きさを整えることで、細胞培養用デバイス100を得ることができる。
 又は、図2に示す本実施形態の細胞培養用デバイスの製造方法としては、例えば、まず、保持体を含まない半透膜を用いて、上述の製造方法と同様の方法を用いて、半透膜と部材とを接合し、細胞培養用デバイスを製造する。次いで、保持体を、上述の接着剤を用いて部材に接着及び乾燥させて、細胞培養用デバイスを製造してもよい。
また、図3に示す本実施形態の細胞培養用デバイス200のように支持体12を備える場合、予め支持体12を半透膜10又は部材11に接合させておいてもよく、また、組み立てられた細胞培養用デバイス200に接合させてもよい。接合方法としては、上述の半透膜と部材との接合方法と同様の方法により固定されていてもよく、留具等を用いて取り外し可能なように取り付けられていてもよい。
 また、図4に示す本実施形態の細胞培養用デバイス300のようにチューブを備える場合、予め半透膜10又は部材11にチューブ13を挿入しておいてもよく、組み立てられた細胞培養用デバイス300にチューブ13を挿入してもよい。チューブの挿入方法としては、例えば、チューブとして留置針のカテーテルを用いる場合、細胞培養用デバイスに留置針を差し込み、その後、内筒針を抜くことで、チューブを挿入することができる。
≪細胞培養用デバイスの使用方法≫
 本実施形態の細胞培養用デバイスは後述に示すとおり、例えば、細胞の培養、細胞の運搬、組織型チップ、器官型チップ、器官型チップシステム等に使用することができる。
 本明細書において、「組織」とは、1種類の幹細胞が分化していく一定の系譜に基づいたパターンで集合した構造の単位を示し、全体として一つの役割を有する。例えば、表皮角化細胞は、表皮の基底層に存在する幹細胞が有棘層を経て顆粒層を構成する細胞へと分化し、終末分化して角質層を形成することで、表皮としてのバリア機能を発揮している。よって、本実施形態の組織型チップは、1つの細胞系譜に由来する1種類の細胞を含み多細胞構造体を構築することにより、例えば、上皮組織、結合組織、筋組織、神経組織等を再現することができる。
 また、本明細書において、「器官」とは、2種類以上の組織から構成され、全体として一つの機能を担う。よって、本実施形態の器官型チップは、細胞系譜の異なる少なくとも2種類の細胞を含み多細胞構造体を構築することにより、例えば、胃、腸、肝臓、腎臓等を再現することができる。
さらに、本明細書において、「器官系」とは、同じような機能をもった2つ以上の器官や、全体として一連の機能を担う2つ以上の器官のまとまりを示す。よって、本実施形態の器官型チップシステムは、組織型チップ、又は器官型チップを複数組み合わせることにより、例えば、消化器系、循環器系、呼吸器系、泌尿器系、生殖器系、内分泌系、感覚器系、神経系、運動器系、神経系等の器官系を再現することができる。なお、生体はこれらの器官系の相互作用によりホメオスタシスを維持している。本実施形態の器官型チップシステムでは、器官系の異なる器官型チップを複数組み合わせることができるため、器官系の異なる器官の相互作用を解析することも可能となる。例えば、小腸型チップ、肝臓型チップ、神経型チップの順に連結した器官型チップシステムにおいて、小腸型チップに薬剤を添加した場合、小腸型チップで吸収された薬剤が肝臓型チップで代謝され、肝臓型チップで排出された薬剤の肝代謝物が神経型チップに及ぼす毒性等を解析することが可能となる。
<細胞の培養方法>
 一実施形態において、本発明は、上述の細胞培養用デバイスを用いる細胞の培養方法を提供する。
 本実施形態の培養方法によれば、容易に細胞を培養し、多細胞構造体を構築することができる。また、細胞を3~30日程度維持することができ、従来よりも長期間細胞を維持することができる。さらに、本実施形態の培養方法によれば、後述の組織型チップを得ることができる。
 本実施形態の培養方法において、以下に詳細を説明する。
 まず、細胞を懸濁した培養液を準備する。次いで、ピペット、スポイト、又は注射針(翼状針、留置針等含む)等のノズルを使用して、上述の細胞培養用デバイス内に懸濁液を注入する。
細胞培養用デバイスが注入孔を有する場合、細胞懸濁液の注入は注入孔より行うが、注射針を用いた場合は、注入孔から注入してもよく、部材に直接刺して注入してもよい。
また、細胞を懸濁した培養液の注入後、部材の材質よりも硬度が高く弾性が低い材質の埋め込み型の栓で注入孔を塞ぐことが好ましい。また、部材の突起部に注入孔を備える場合には、埋め込み型又は被覆型の栓で注入孔を塞ぐことが好ましい。
より具体的には、例えば、注入した部位がプラスチックからなる部材である場合は、ステンレス鋼の球等で注入孔を塞げばよい。
次いで、細胞を懸濁した培養液が注入された細胞培養用デバイスは、気相及び液相のうち少なくともいずれかにて培養し、多細胞構造体を構築することができる。気相での培養は、例えば、空のシャーレ等の容器を用いて行うことができ、細胞が乾燥し死滅しない程度の時間において培養することができる。
また、液相での培養は、例えば、培養液を含むシャーレ等の容器を用いて行えばよい。又は、例えば、スピナーフラスコ等を用いて、撹拌培養することができる。これにより、細胞を懸濁した培養液が注入された細胞培養用デバイスを複数同時に培養することができ、大量の多細胞構造体を短期間で簡便に得ることができる。
また、気相及び液相での培養は、例えば、図3に示す支持体を有する細胞培養用デバイスを用いて、培養液を含むシャーレ等の容器に該細胞培養用デバイスを浮かべて行えばよい。
 本実施形態の培養方法において用いられる細胞としては、例えば、哺乳動物細胞、鳥類細胞、は虫類細胞、両生類細胞、魚類細胞等の脊椎動物細胞;昆虫細胞、甲殻類細胞、軟体動物細胞、原生動物細胞等の無脊椎動物細胞;グラム陽性細菌(例えば、バチルス種等)、グラム陰性細菌(例えば、大腸菌等)等の細菌:酵母、植物細胞、及び、それらの単一細胞又は複数の細胞から構成される小さな生命個体等が挙げられる。
前記小さな生命個体としては、例えば、アメーバ、ゾウリムシ、ミカヅキモ、ハネケイソウ、クロレラ、ミドリムシ、ウチワヒゲムシ等の単細胞生物;ミジンコ、アルテミアの幼生、カイアシ亜網類、貝虫亜綱類、鞘甲亜綱の幼生、コノハエビ亜綱の幼生、フクロエビ上目類の幼生、ホンエビ上目類の幼生等の微小甲殻類動物;プラナリア(細切断後の再生プラナリアも含む)、陸生節足動物の幼生、線形動物、植物の種子(特に、発芽種子)、カルス、プロトプラスト、海洋微生物(例えば、ビブリオ属、シュードモナス属、エロモナス属、アルテロモナス属、フラボバクテリウム属、サイトファーガ属、フレキシバクター属等の海洋細菌、藍藻、クリプト藻、渦鞭毛藻、珪藻、ラフィド藻、黄金色藻、ハプト藻、ユーグレナ藻、プラシノ藻、緑藻等の藻類等)、仔稚魚、仔稚貝等が挙げられ、これらに限定されない。
例えば、本実施形態の細胞培養用デバイスを用いて発芽種子を培養する場合において、細胞培養用デバイスの天面は発芽した芽が貫くことができる程度の硬度を有し、且つ生分解性材料からなることにより、発芽種子をデバイス内に入れたものをそのまま土壌に植え込み、植物体を生育することができる。
なお、本明細書において「生分解性材料」とは、土壌中又は水中の微生物等によって無機物に分解される性質を有する材料を意味する。
 前記脊椎動物細胞(特に、哺乳動物細胞)としては、例えば、生殖細胞(精子、卵子等)、生体を構成する体細胞、幹細胞、前駆細胞、生体から分離されたがん細胞、生体から分離され不死化能を獲得して体外で安定して維持される細胞(細胞株)、生体から分離され人為的に遺伝子改変された細胞、生体から分離され人為的に核が交換された細胞等が挙げられ、これらに限定されない。また、これら細胞の多細胞性球状凝集塊(スフェロイド)を用いてもよい。また、生体の正常組織又はがん組織から分離された小さな組織片を、そのまま細胞塊と同様に用いてもよい。
 生体を構成する体細胞としては、例えば、皮膚、腎臓、脾臓、副腎、肝臓、肺、卵巣、膵臓、子宮、胃、結腸、小腸、大腸、膀胱、前立腺、精巣、胸腺、筋肉、結合組織、骨、軟骨、血管組織、血液、心臓、眼、脳、神経組織等の任意の組織から採取される細胞等が挙げられ、これらに限定されない。体細胞として、より具体的には、例えば、線維芽細胞、骨髄細胞、免疫細胞(例えば、Bリンパ球、Tリンパ球、好中球、マクロファージ、単球、等)、赤血球、血小板、骨細胞、骨髄細胞、周皮細胞、樹状細胞、表皮角化細胞(ケラチノサイト)、脂肪細胞、間葉細胞、上皮細胞、表皮細胞、内皮細胞、血管内皮細胞、リンパ管内皮細胞、肝細胞、膵島細胞(例えば、α細胞、β細胞、δ細胞、ε細胞、PP細胞等)、軟骨細胞、卵丘細胞、グリア細胞、神経細胞(ニューロン)、オリゴデンドロサイト、マイクログリア、星状膠細胞、心筋細胞、食道細胞、筋肉細胞(例えば、平滑筋細胞、骨格筋細胞等)、メラニン細胞、単核細胞等が挙げられ、これらに限定されない。
 幹細胞とは、自己を複製する能力と他の複数系統の細胞に分化する能力を兼ね備えた細胞である。幹細胞としては、例えば、胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)、神経幹細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸幹細胞、がん幹細胞、毛包幹細胞等が挙げられ、これらに限定されない。
 前駆細胞とは、前記幹細胞から特定の体細胞又は生殖細胞に分化する途中の段階にある細胞である。
 がん細胞とは、体細胞から派生して無限の増殖能を獲得した細胞であり、周囲の組織に浸潤し、又は転移を起こす悪性新生物である。がん細胞の由来となる癌としては、例えば、乳癌(例えば、浸潤性乳管癌、非浸潤性乳管癌、炎症性乳癌等)、前立腺癌(例えば、ホルモン依存性前立腺癌、ホルモン非依存性前立腺癌等)、膵癌(例えば、膵管癌等)、胃癌(例えば、乳頭腺癌、粘液性腺癌、腺扁平上皮癌等)、肺癌(例えば、非小細胞肺癌、小細胞肺癌、悪性中皮腫等)、結腸癌(例えば、消化管間質腫瘍等)、直腸癌(例えば、消化管間質腫瘍等)、大腸癌(例えば、家族性大腸癌、遺伝性非ポリポーシス大腸癌、消化管間質腫瘍等)、小腸癌(例えば、非ホジキンリンパ腫、消化管間質腫瘍等)、食道癌、十二指腸癌、舌癌、咽頭癌(例えば、上咽頭癌、中咽頭癌、下咽頭癌等)、頭頚部癌、唾液腺癌、脳腫瘍(例えば、松果体星細胞腫瘍、毛様細胞性星細胞腫、びまん性星細胞腫、退形成性星細胞腫等)、神経鞘腫、肝臓癌(例えば、原発性肝癌、肝外胆管癌等)、腎臓癌(例えば、腎細胞癌、腎盂と尿管の移行上皮癌等)、胆嚢癌、膵臓癌、子宮内膜癌、子宮頸癌、卵巣癌(例、上皮性卵巣癌、性腺外胚細胞腫瘍、卵巣性胚細胞腫瘍、卵巣低悪性度腫瘍等)、膀胱癌、尿道癌、皮膚癌(例えば、眼内(眼)黒色腫、メルケル細胞癌等)、血管腫、悪性リンパ腫(例えば、細網肉腫、リンパ肉腫、ホジキン病等)、メラノーマ(悪性黒色腫)、甲状腺癌(例えば、甲状腺髄様癌等)、副甲状腺癌、鼻腔癌、副鼻腔癌、骨腫瘍(例えば、骨肉腫、ユーイング腫瘍、子宮肉腫、軟部組織肉腫等)、転移性髄芽腫、血管線維腫、隆起性皮膚線維肉腫、網膜肉腫、陰茎癌、精巣腫瘍、小児固形癌(例えば、ウィルムス腫瘍、小児腎腫瘍等)、カポジ肉腫、AIDSに起因するカポジ肉腫、上顎洞腫瘍、線維性組織球腫、平滑筋肉腫、横紋筋肉腫、慢性骨髄増殖性疾患、白血病(例えば、急性骨髄性白血病、急性リンパ芽球性白血病等)等が挙げられ、これらに限定されない。
 また、本明細書において、「癌」とは、診断名を表す際に用いられ、「がん」とは、悪性新生物の総称を表す際に用いられる。
 細胞株とは、生体外での人為的な操作により無限の増殖能を獲得した細胞である。細胞株としては、例えば、HCT116、Huh7、HEK293(ヒト胎児腎細胞)、HeLa(ヒト子宮頸がん細胞株)、HepG2(ヒト肝がん細胞株)、UT7/TPO(ヒト白血病細胞株)、CHO(チャイニーズハムスター卵巣細胞株)、MDCK、MDBK、BHK、C-33A、HT-29、AE-1、3D9、Ns0/1、Jurkat、NIH3T3、PC12、S2、Sf9、Sf21、High Five、Vero等が挙げられ、これらに限定されない。
 本実施形態の培養方法に用いられる培養液は、細胞が動物細胞である場合、細胞の生存増殖に必要な成分(無機塩、炭水化物、ホルモン、必須アミノ酸、非必須アミノ酸、ビタミン)等を含む基礎培養液を用いることができ、細胞の種類により適宜選択することができる。前記培養液としては、例えば、DMEM、Minimum Essential Medium(MEM)、RPMI-1640、Basal Medium Eagle(BME)、Dulbecco’s Modified Eagle’s Medium:Nutrient Mixture F-12(DMEM/F-12)、Glasgow Minimum Essential Medium(Glasgow MEM)等が挙げられ、これらに限定されない。
 また、細菌、酵母、植物細胞、及びそれらの単一細胞又は複数の細胞から構成される小さな生命個体の培養液は、各々の生育に適した組成の培養液を調製すればよい。
 また、本実施形態の培養方法において、細胞を懸濁する培養液に、細胞外マトリックス由来成分、生理活性物質等を混合し、注入してもよい。
 前記細胞マトリックス由来成分としては、上述の「半透膜」の「構成材料」の「その他」において例示されたものと同様のものが挙げられる。
 また、前記生理活性物質としては、例えば、細胞増殖因子、分化誘導因子、細胞接着因子等が挙げられ、これらに限定されない。例えば、分化誘導因子を含むことにより、注入する細胞が幹細胞、又は前駆細胞等である場合、該幹細胞、又は前駆細胞を分化誘導し、所望の組織を再現した多細胞構造体を構築させることができる。
 また、本実施形態の培養方法において、細胞を懸濁した培養液を細胞培養用デバイスの容量一杯になるように注入してもよく、又は細胞培養用デバイスの容量に満たない量を注入してもよい。例えば、細胞培養用デバイスが図2に示すように半透膜を天面及び底面に備える構造であり、半透膜の材料がコラーゲンである場合、注射針等により細胞を懸濁した培養液を細胞培養用デバイスの容量に満たない量注入し、引き抜くことにより、減圧により細胞培養用デバイスの天面と底面とが凹み、天面の半透膜と底面の半透膜に細胞が挟まれ、コラーゲンを用いたサンドイッチ培養を行うことができる。
 本実施形態の培養方法において、培養条件としては、培養する細胞の種類により適宜選択することができる。
培養温度としては、例えば25℃以上40℃以下であってもよく、例えば30℃以上39℃以下であってもよく、例えば35℃以上39℃以下であってもよい。
また、培養時のCO濃度は、例えば約5%のCO条件下であってもよい。
 培養時間としては、細胞の種類、細胞数等により適宜選択することができ、例えば3日以上30日以下であってもよく、例えば5日以上20日以下であってもよく、例えば7日以上15日以下であってもよい。
<細胞数の測定方法>
 一実施形態において、本発明は、上述の細胞培養用デバイスを用いる細胞数の測定方法を提供する。
 本実施形態の測定方法によれば、血球計算盤を用いずに、細胞培養用デバイス内に含まれる細胞数を容易に計測することができる。
 本実施形態の測定方法について、以下に詳細に説明する。
 まず、細胞を懸濁した培養液を準備する。次いで、ピペット、スポイト、又は注射針(翼状針、留置針等含む)等のノズルを使用して、上述の細胞培養用デバイス内に細胞を懸濁した培養液を注入する。
本実施形態の測定方法において用いられる細胞としては、上述の「細胞の培養方法」において例示されたものと同様のものが挙げられる。また、本実施形態の測定方法において用いられる培養液としては、上述の「細胞の培養方法」において例示されたものと同様のものが挙げられる。
次いで、注入孔を栓で閉じて、細胞培養用デバイス内に細胞が均一に分散するように混和させた後、細胞培養用デバイスを顕微鏡にセットする。次いで、保持体が形成している格子の1マスに含まれる細胞を計測する。次いで、例えば、保持体において、1マスの縦及び横の長さが250μmの格子が形成されている場合、そのうちの4マス×4マスの16マスの格子(すなわち、縦1mm×横1mmの1mmの中に形成された4マス×4マスの16マスの格子)を用いて、該16マスにおいて、それぞれ1マスに含まれる細胞を計測し、16マス内の細胞数の合計を算出する。異なる位置の16マス(1mm)を用いて、少なくとも1回以上、細胞数を計測し、1mm中に含まれる細胞数の平均値を算出する。次いで、以下の式[1]の「N」に前記細胞数の平均値を代入することで、1cm当たりの細胞数「C」を算出することができる。
C = N × 10  ・・・[1]
上記式[1]において、「10」は1cmに対する容量の変換値を意味する。
さらに、以下の式[2]の「S」に細胞培養用デバイスの底面積を代入することで、細胞培養用デバイスに含まれる全ての細胞数「A」を算出することができる。
 A = C × S ・・・[2]
 細胞数を測定することで、所望の細胞数となるまで細胞培養用デバイス内において、細胞を培養することができる。さらに、Trypan blue等の死細胞のみを染色する試薬を用いることで、細胞培養用デバイス内の細胞の生存率を細胞培養用デバイスから取り出さずに測定することができる。
<組織型チップ>
 一実施形態において、本発明は、1種類の細胞を含む上述の細胞培養用デバイスを備える組織型チップを提供する。
 本実施形態の組織型チップは、一から培養モデルを構築する必要がなく、従来の培養モデル、又は動物実験の代替として、各種疾患に対する候補薬剤のスクリーニング、若しくは候補薬剤をはじめとする化学物質の正常な組織に対する動態及び毒性の評価試験系に活用することができる。
さらに、従来の培養モデルは構築後、即座に使用しなければならず、時間的制約があったのに対し、本実施形態の組織型チップは、長期間培養が可能である。
 本実施形態の組織型チップに含まれる細胞としては、上述の「細胞の培養方法」において例示されたものと同様のものが挙げられる。また、含まれる細胞の種類は、構築したい組織の種類に応じて、適宜選択することができる。
また、本実施形態の組織型チップに含まれる細胞は、多細胞構造体が構築される途中の段階であってもよく、多細胞構造体が構築された後であってもよい。本実施形態の組織型チップは、含まれる細胞が多細胞構造体を構築した後であっても、3~21日程度の長期間培養が可能である。
 本実施形態の組織型チップに含まれる細胞の密度は、構築したい組織の種類により異なるが、2.0×10細胞/mL以上1.0×10細胞/mL以下であることが好ましく、2.0×10細胞/mL以上1.0×10細胞/mL以下であることがより好ましい。
 細胞密度が上記範囲内であることにより、生体組織により近い細胞密度の組織型チップを得ることができる。
 本実施形態の組織型チップは、上述の「細胞の培養方法」に記載の方法を用いて、製造することができる。また、製造後の組織型チップの維持条件についても、上述の「細胞の培養方法」に記載の培養条件と同条件とすることができる。また、組織型チップの内部には、培養液や空気等の気体を含んでいてもよく、培養液や空気等の気体を含まなくてもよい。組織型チップ内に培養液や空気等の気体を含まない場合、細胞、又は細胞及び細胞外マトリックス由来成分が密に接着しており、生体内の組織により近しい構成の多細胞構造体を構築している。
<器官型チップ>
 一実施形態において、本発明は、少なくとも2種類の細胞を含む上述の細胞培養用デバイスを備える器官型チップを提供する。
 本実施形態の器官型チップは、一から培養モデルを構築する必要がなく、従来の培養モデル、又は動物実験の代替として、各種疾患に対する候補薬剤のスクーニング、若しくは候補薬剤をはじめとする化学物質の正常な器官に対する動態及び毒性の評価試験系に活用することができる。
さらに、従来の培養モデルは構築後、即座に使用しなければならず、時間的制約があったのに対し、本実施形態の器官型チップは、長期間培養が可能である。
 本実施形態の器官型チップに含まれる細胞としては、上述の「細胞の培養方法」において例示されたものと同様のものが挙げられる。また、含まれる細胞の種類は、少なくとも2種類の細胞を含めばよく、構築したい器官の種類に応じて、適宜選択することができる。
また、本実施形態の器官型チップに含まれる細胞は、多細胞構造体が構築される途中の段階であってもよく、多細胞構造体が構築された後であってもよい。本実施形態の器官型チップは、含まれる細胞が多細胞構造体を構築した後であっても、3~21日程度の長期間培養が可能である。
 本実施形態の器官型チップに含まれる細胞の密度は、構築したい器官の種類により異なるが、2.0×10細胞/mL以上1.0×10細胞/mL以下であることが好ましく、2.0×10細胞/mL以上1.0×10細胞/mL以下であることがより好ましい。
 細胞密度が上記範囲内であることにより、生体内の器官により近い細胞密度の器官型チップを得ることができる。
 本実施形態の器官型チップは、上述の「細胞の培養方法」に記載の方法を用いて、製造することができる。また、製造後の器官型チップの維持条件についても、上述の「細胞の培養方法」に記載の培養条件と同条件とすることができる。また、器官型チップの内部には、培養液や空気等の気体を含んでいてもよく、培養液や空気等の気体を含まなくてもよい。器官型チップ内に培養液や空気等の気体を含まない場合、細胞、又は細胞及び細胞外マトリックス由来成分が密に接着しており、生体内の器官により近しい構成の多細胞構造体を構築している。
<多細胞構造体を提供するためのキット>
 一実施形態において、本発明は、多細胞構造体を提供するためのキットであって、上述の組織型チップ、又は上述の器官型チップと培養液とを含む開閉可能な密封容器を備えるキットを提供する。
 本実施形態のキットは、一から培養モデルを構築する必要がなく、従来の培養モデル、又は動物実験の代替として、各種疾患に対する候補薬剤のスクリーニング、若しくは候補薬剤をはじめとする化学物質の正常な組織や器官に対する動態及び毒性の評価試験系に活用することができる。
さらに、従来の培養モデルは構築後、即座に使用しなければならず、時間的制約があったのに対し、本実施形態のキットは、長期間培養が可能である。
 本実施形態のキットにおける組織型チップ、又は器官型チップに含まれる細胞は、多細胞構造体が構築される途中の段階であってもよく、多細胞構造体が構築された後であってもよい。中でも、すぐにインビトロ試験系に利用することができることから、本実施形態のキットにおける組織型チップ、又は器官型チップに含まれる細胞は多細胞構造体が構築された後であることが好ましい。
 本実施形態のキットにおける密封容器は、開閉可能なものを用いることができ、特別な限定はない。密封容器としては、例えば、スクリューキャップ付のコニカルチューブ、スクリューキャップ付の細胞培養用フラスコ、ジッパー付き袋、チャック付き袋等が挙げられ、これらに限定されない。
 密封容器の材料としては、液密性を有するものを用いることができる。また、密封容器は、通気性を有するものであってもよく、通気性を有さないものであってもよい。密封容器の材料としてより具体的には、上述の[部材]において例示されたものと同様のものが挙げられる。中でも、密封容器の材料としては、壊れにくく、軽量であることから、プラスチックであることが好ましい。
 本実施形態のキットにおける培養液は、組織型チップ、又は器官型チップに含まれる細胞の種類により適宜選択することができ、具体的には、上述の「細胞の培養方法」において例示されたものと同様のものが挙げられる。
また、本実施形態のキットにおいて、培養液は、密封容器の容量一杯に含まれることが好ましい。これは、密封容器に培養液を容量一杯まで注ぎ、密封することで、組織型チップ、又は器官型チップの乾燥を防ぎ、組織型チップ、又は器官型チップを安全に持ち運ぶことができる。
 本実施形態のキットにおいて、密封容器の中に含まれる組織型チップ、又は器官型チップは1つであってもよく、2つ以上であってもよい。2つ以上である場合、同じ種類の多細胞構造体が構築された組織型チップ、又は器官型チップであることが好ましい。
 本実施形態のキットは、さらに、密封容器に含まれる培養液とは別に、培養液を備えていてもよい。培養液が密封容器に含まれるものと同じ種類であってもよく、別の種類であってもよい。培養液を別に備えることにより、本実施形態のキットをインビトロ試験系等において使用するまでの間、組織型チップ、又は器官型チップを培養するための交換用培養液として用いることができる。
<器官型チップシステム>
 一実施形態において、本発明は、上述の組織型チップ、又は、上述の器官型チップを少なくとも2つ備え、前記組織型チップ、又は、前記器官型チップが密閉性を保ちながら連結された器官型チップシステムを提供する。
 本実施形態の器官型チップシステムは、一から培養モデルを構築する必要がなく、従来の培養モデル、又は、動物実験の代替として、各種疾患に対する候補薬剤のスクリーニング、若しくは候補薬剤をはじめとする化学物質の正常な複数の組織や器官に対する動態及び毒性の評価試験等への活用が期待できる。
 なお、本明細書において、「密閉」とは、隙間なく閉じられた状態を意味する。
[第1実施形態]
 図8Aは、本発明の第1実施形態に係る器官型チップシステムを模式的に示す斜視図である。
 ここに示す器官型チップシステム10Aは、3つの組織型チップ1Aがそれぞれチューブ101を介して連結した構造である。
 例えば、培養液を左側の矢印の方向から右側の矢印の方向へ流すことにより、3つの組織型チップ1Aを連結されたままの状態で培養することができる。また、例えば、各種疾患に対する候補薬剤を左側の矢印の方向から右側の矢印の方向へ流すことにより、疾患に対する薬効、薬剤及びその代謝物の代謝経路や細胞毒性等を検証することができる。
 図8Aに示す組織型チップ1Aは、上述の「組織型チップ」に記載のものと同様のものである。組織型チップ1Aに構築された多細胞構造体を構成する細胞(図示せず)の種類は、所望の器官、又は器官系の種類により適宜選択することができる。
 また、図8Aに示すチューブ101は、図4のチューブ13と同様であり、その構成は上述の「チューブ」に記載のものと同様のものである。
[第2実施形態]
 図8Bは、本発明の第2実施形態に係る器官型チップシステムを模式的に示す斜視図である。
 ここに示す器官型チップシステム10Bは、同じ大きさの3つの組織型チップ1Bが積み重ねられた構造である。このとき、それぞれの組織型チップ1Bの少なくとも天面及び底面は半透膜である。
 例えば、培養液を上側の矢印の方向から下側の矢印の方向へ流すことにより、3つの組織型チップ1Bを積み重ねたままの状態で培養することができる。また、例えば、各種疾患に対する候補薬剤を上側の矢印の方向から下側の矢印の方向へ流すことにより、疾患に対する薬効、薬剤及びその代謝物の代謝経路や細胞毒性等を検証することができる。
[第3実施形態]
 図8Cは、本発明の第3実施形態に係る器官型チップシステムを模式的に示す斜視図である。
 ここに示す器官型チップシステム10Cは、大きさの異なる4つの組織型チップ1Cを有し、一番大きな組織型チップ1Cの中に、小さな組織型チップ1Cが封入された構造である。このとき、一番大きな組織型チップ1Cの少なくとも天面及び底面は半透膜であり、一番大きな組織型チップ1Cに封入された組織型チップ1Cは全面半透膜である。
 例えば、培養液を含むシャーレ等の容器に器官型チップシステム1Cを入れることで培養することができる。また、例えば、各種疾患に対する候補薬剤を含むシャーレ等の容器に器官型チップシステム1Cを入れることにより、疾患に対する薬効、薬剤及びその代謝物の代謝経路や細胞毒性等を検証することができる。
[第4実施形態]
 図8Dは、本発明の第4実施形態に係る器官型チップシステムを模式的に示す斜視図である。
 ここに示す器官型チップシステム10Dは、大きさの異なる4つの組織型チップ1Dが大きい順に下から積み重ねられた構造である。このとき、それぞれの組織型チップ1Dの少なくとも天面及び底面は半透膜である。
 例えば、培養液を上側の矢印の方向から下側の矢印の方向へ流すことにより、4つの組織型チップ1Dを積み重ねたままの状態で培養することができる。また、例えば、各種疾患に対する候補薬剤を上側の矢印の方向から下側の矢印の方向に流すことにより、疾患に対する薬効、薬剤及びその代謝物の代謝経路や細胞毒性等を検証することができる。
 本実施形態の器官型チップシステムは、図8A~図8Dに限定されず、本実施形態の器官型チップシステムの効果を損なわない範囲内において、図8A~図8Dに示すものの一部の構成が変更又は削除されたものや、これまでに説明したものにさらに他の構成が追加されたものであってもよい。
 例えば、図8A~図8Dにおいて組織型チップを備える場合を例示したが、器官型を少なくとも一部に備えるものであってもよい。
 例えば、図8Aに示す器官型チップシステムは、各チューブが栓や弁等の開閉可能な装置を備えていてもよい。
また、図8B及び図8Dに示す器官型チップシステムは、それぞれの組織型チップが支持体を有していてもよく、さらに、それぞれの組織型チップを固定するために、天面及び底面の外周を接着剤等で固定していてもよい。
 また、本実施形態の器官型チップシステムにおいては、各構成(組織型チップ、チューブ等)の大きさや形状は、目的に応じて任意に調節できる。
 本実施形態の器官型チップシステムは、それ自体で、例えば、肝臓、胃、腸等の臓器を再現することができる。さらに、本実施形態の器官型チップシステムを複数組み合わせることにより、例えば、消化器系、循環器系、呼吸器系、泌尿器系、生殖器系、内分泌系、感覚器系、神経系、運動器系、神経系等の器官系を再現することができる。
以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
[製造例1]半透膜1の製造
1.保持体の準備
 まず、ポリエステル製メッシュ(T80-70;株式会社ヤマニ製、線径70μm、目開き248μm×248μm)を保持体として使用するために、ハサミで直径34mmの円形に切り出した。次いで、直径60mmペトリディッシュ(BD  Falcon、Cat#351007)に、70%エタノールを入れた。次いで、ペトリディッシュ中に、保持体として使用する直径34mmの円形メッシュを10分程度浸し、殺菌した。次いで、70%エタノールをペトリディッシュから取り除き、代わりに5mLのPBS(SIGMA、D8537)を入れ、保持体を洗浄した。このPBSによる洗浄は計3回繰り返した。洗浄後、保持体1枚を直径35mmディッシュ(BD  Falcon、Cat#353001)に移し入れ、10% FBS、20mM HEPES、100units/mL ペニシリン、100μg/mL ストレプトマイシン含有DMEM(以下、「培養液」と称する場合がある。)2mLを加えて10分間浸漬した。
2.半透膜1の製造
 半透膜の製造は、保持体包埋ネイティブコラーゲンビトリゲル(登録商標)膜(ネイティブコラーゲンの単位面積あたりの含有量:0.5mg/cm)(以下、「半透膜1」と称する場合がある。)を公知の方法(参考文献:特開平8-228768号公報)に準じて調製した。なお、半透膜1は2枚製造した。
(1)まず、氷上で冷却した50mLコニカルチューブに3mLの培養液を加え、さらに3mLの細胞培養用0.5%コラーゲン酸性溶液I-AC(高研社製)を加えて均一に混合することで、0.25%コラーゲンゾルを調製した。
(2)次いで、保持体1枚が入っている直径35mmディッシュより培養液を除去した後、2mLの0.25%コラーゲンゾルを注いだ。次いで、5%CO/95%空気存在下の37℃細胞培養用インキュベーター内で2時間静置することでゲル化し、保持体を包埋したネイティブコラーゲンゲルを作製した。
(3)保持体を包埋したネイティブコラーゲンゲルを、10℃、湿度40%(40%RH)の恒温恒湿機に設置した簡易クリーンベンチ内に移し入れた。その後、2日間静置し、乾燥させ、保持体を包埋したネイティブコラーゲンゲル乾燥体を得た。
(4)次いで、恒温恒湿機より取り出し、保持体を包埋したネイティブコラーゲンゲル乾燥体の入っている直径35mmディッシュに2mLのPBSを注いで10分間静置し、再水和した。PBSを除去して、再度、2mLのPBSを注いで10分間静置した後、再水和された保持体を包埋したネイティブコラーゲンビトリゲル(登録商標)膜をディッシュ底面より剥離して、予め2mLのPBSを注いだ新しい直径35mmディッシュ内に移し入れ、PBSで平衡化した。
(5)次いで、得られた保持体を包埋したネイティブコラーゲンビトリゲル(登録商標)膜をビニールを敷いた96×96×15mmのディッシュ(アズワン♯D-210-16)の上に乗せて、10℃、湿度40%(40%RH)の恒温恒湿機に設置した簡易クリーンベンチ内に移し入れ、再乾燥し、保持体を包埋したネイティブコラーゲンビトリゲル(登録商標)膜乾燥体を得た。この保持体を包埋したネイティブコラーゲンビトリゲル(登録商標)膜乾燥体を、ハサミで直径13mmの円形に切り出し、保持体包埋コラーゲンビトリゲル(登録商標)膜乾燥体(半透膜1)を得た(図9参照。)。
[製造例2]
1.半透膜(コントロール)の製造
(1)まず、ナイロン膜 (Amersham Pharmacia Cat#RPN1782B)をくり抜き機(森下製版、刃:直径24mm~33mm)でくり抜き、外径33mm、内径24mmの環状ナイロン膜支持体を作製した。次いで、直径60mmペトリディッシュ(BD  Falcon、Cat#351007)に、70%エタノールを入れた。このペトリディッシュ中に、環状ナイロン膜支持体を10分程度浸し、殺菌した。次いで、70%エタノールをペトリディッシュから取り除き、代わりに5mLのPBS(SIGMA、D8537)を入れ、環状ナイロン膜支持体を洗浄した。このPBSによる洗浄は計3回繰り返した。洗浄後、環状ナイロン膜支持体1枚を直径35mmディッシュ(BD  Falcon、Cat#353001)に移し入れ、培養液2mLを加えて10分間浸漬した。
(2)保持体の代わりに環状ナイロン膜支持体を包埋したこと以外は、製造例1の「2.半透膜1の製造」と同様の方法を用いて、環状ナイロン膜支持体を包埋したネイティブコラーゲンビトリゲル(登録商標)膜乾燥体(以下、「半透膜(コントロール)」と称する場合がある。)を得た。
[製造例3]半透膜2の製造
1.保持体の準備
 ポリエステル製メッシュ(T80-70;株式会社ヤマニ製、線径70μm、目開き248μm×248μm)を保持体として使用するために、ハサミで直径13mmの円形に切り出した。まず、直径35mmペトリディッシュ(BD  Falcon、Cat#351008)に、70%エタノールを入れた。次いで、ペトリディッシュ中に、保持体として使用する直径13mmの円形メッシュを10分程度浸し、殺菌した。次いで、70%エタノールをペトリディッシュから取り除き、代わりに2mLのPBS(SIGMA、D8537)を入れ、保持体を洗浄した。このPBSによる洗浄は計3回繰り返した。洗浄後、PBSを除去し、培養液2mLを加えて10分間浸漬した。
2.半透膜2の製造
 半透膜の製造は、公知の方法(参考文献:特開2015-203018号公報)に準じて0.25%コラーゲンゾルを接着剤として使用し、2枚のネイティブコラーゲンビトリゲル(登録商標)膜(ネイティブコラーゲンの単位面積あたりの含有量:0.5mg/cm)の間に保持体を挟み結合することで調製した(以下、「半透膜2」と称する場合がある。)。なお、半透膜2は2枚製造した。
(1)まず、製造例2の「1.半透膜(コントロール)の製造」と同様の方法を用いて、半透膜(コントロール)を作製した。
(2)次いで、2枚の半透膜(コントロール)を再水和した。ビニールを敷いた96×96×15mmのディッシュ(アズワン♯D-210-16)の上に再水和した1枚の半透膜(コントロール)を乗せ、その中央に培養液に浸した直径13mmの円形メッシュの保持体を置き、さらに、その上に製造例1の「2.半透膜1の製造(1)」と同様の方法を用いて作製した0.25%コラーゲンゾルを0.1mL添加した。次いで、その上に、再水和したもう1枚の半透膜(コントロール)を覆い被せて、気泡が入らないように再水和した2枚の半透膜(コントロール)で保持体を挟んだ。次いで、10℃、湿度40%(40%RH)の恒温恒湿機に設置した簡易クリーンベンチ内に移し入れ、一晩乾燥し、2枚の半透膜(コントロール)で保持体を挟んで接着した乾燥体を得た。
(3)2枚の半透膜(コントロール)で保持体を挟んで接着した乾燥体を、FUNA-UV-Linker(フナコシ:FS-1500/15W/254nm)内に移し入れ、200mJ/cmの照射量となるようにUVを照射した。次いで、2枚の半透膜(コントロール)で保持体を挟んで接着した乾燥体を裏返して、もう一度、200mJ/cmの照射量でUVを照射した。この合計400mJ/cmのUV照射により、再水和した際にも2枚の半透膜(コントロール)が分離されることなく接着を維持できた。
(4)保持体を挟んで接着した半透膜(コントロール)の乾燥体を、ハサミで直径13mmの円形に切り出し、保持体を挟んで接着したコラーゲンビトリゲル(登録商標)膜材料乾燥体(半透膜2)を得た。
[実施例1]
1.細胞培養用デバイスの製造
 アクリル樹脂リング(外径13mm、内径7.98mm、厚さ2.0mm、注入孔径0.7mm)の両面に保持体を含む半透膜を貼り付けることで、以下の3種類の細胞培養用デバイスを製造した。また、コントロールとして、アクリル樹脂リングの両面に保持体なしの半透膜のみを貼り付けた細胞培養用デバイスを製造した。なお、本実施例では、保持体を含む半透膜をアクリル樹脂リングの両面に貼り付けたが、保持体を含む半透膜をアクリル樹脂リングの片面のみに貼り付けて、もう一方の面には保持体なしの半透膜を貼り付けてもよい。
(1)細胞培養用デバイス1の製造
まず、アクリル樹脂リングの片面に、ポリウレタン系接着剤を塗布し、製造例1で製造した半透膜1を貼り付けた。次いで、アクリル樹脂リングを裏返したもう一方の面にも同様にポリウレタン系接着剤を塗布して、製造例1で製造した半透膜1を貼り付けた(以下、「細胞培養用デバイス1」と称する場合がある。)。
(2)細胞培養用デバイス2の製造
まず、アクリル樹脂リングの片面に、ポリウレタン系接着剤を塗布し、製造例3で製造した半透膜2を貼り付けた。次いで、アクリル樹脂リングを裏返したもう一方の面にも同様にポリウレタン系接着剤を塗布して、製造例3で製造した半透膜2を貼り付けた(以下、「細胞培養用デバイス2」と称する場合がある。)。
(3)細胞培養用デバイス(コントロール)の製造
(3-1)まず、製造例2で製造した2枚の半透膜(コントロール)を再水和した後、公知の方法(参考文献:特開2007-185107号公報)に準じて、2枚の環状ゴム磁石の間に挟持させて磁力で固定した後に再乾燥することで、しわの無い半透膜(コントロール)の乾燥体を得た。
(3-2)次いで、アクリル樹脂リングの片面に、ポリウレタン系接着剤を塗布し、環状ゴム磁石の間に挟持させた半透膜(コントロール)の乾燥体を貼り付けた後、環状ゴム磁石を除去し、さらに、アクリル樹脂リングよりはみ出た半透膜(コントロール)の乾燥体をハサミで切り落とした。アクリル樹脂リングを裏返したもう一方の面にも、同様の操作を施した(以下、「細胞培養用デバイス(コントロール)」と称する場合がある。)。
(4)細胞培養用デバイス3の製造
(4-1)まず、上記「(3)細胞培養用デバイス(コントロール)の製造」と同様の方法を用いて、細胞培養用デバイス(コントロール)を得た。
(4-2)次いで、ポリエステル製メッシュ(T80-70;株式会社ヤマニ製、線径70μm、目開き248μm×248μm)を保持体として使用するために、ハサミで直径13mmの円形に切り出し、70%エタノールに10分程度浸して殺菌した後、乾燥した。
(4-3)次いで、半透膜(コントロール)を貼り付けたアクリル樹脂リングの両面に、リング領域のみにポリウレタン系接着剤を塗布し、殺菌した直径13mmの円形メッシュの保持体を貼り付けた(以下、「細胞培養用デバイス3」と称する場合がある。)。つまり、半透膜(コントロール)の外側の保持体は外周部(リング領域)でのみ接着していた。
2.細胞培養用デバイスの膜の物性
(1)細胞培養用デバイスの膜のたわみ具合の確認
 まず、細胞培養用デバイス1、細胞培養用デバイス2、細胞培養用デバイス3、及び細胞培養用デバイス(コントロール)の注入孔から、それぞれPBSを注入し、細胞培養用デバイス1、細胞培養用デバイス2、細胞培養用デバイス3、及び細胞培養用デバイス(コントロール)内をPBSで満たし、ステンレス剛製の球を用いて、注入孔を塞いだ。次いで、細胞培養用デバイス1、細胞培養用デバイス2、細胞培養用デバイス3、及び細胞培養用デバイス(コントロール)を縦置きにて静置した。細胞培養用デバイス1及び細胞培養用デバイス(コントロール)の様子を図10B及び図11Bにそれぞれ示す。
 図10Bから、2枚の半透膜1を備える細胞培養用デバイス1では、PBSを満たしても、膜はたわむことなく、平滑であった。同様の現象が、細胞培養用デバイス2及び細胞培養用デバイス3についても確認された。
 一方、図11Bから、2枚の半透膜(コントロール)を備える細胞培養用デバイス(コントロール)では、PBSを満たすことにより、膜が2枚ともたわんでおり、凸状に膨らんでいた。
 以上のことから、保持体を含む半透膜を備える細胞培養用デバイスでは、膜はたわむことなく保持されることが示された。
(2)細胞培養用デバイスの膜の強度の確認
次いで、PBSで満たされた細胞培養用デバイス1、細胞培養用デバイス2、細胞培養用デバイス3、及び細胞培養用デバイス(コントロール)を、ピンセットを用いて、半透膜の面を摘まみ上げた。細胞培養用デバイス1及び細胞培養用デバイス(コントロール)の様子を図10A及び図11Aにそれぞれ示す。
 図10Aから、2枚の半透膜1を備える細胞培養用デバイス1では、膜はピンセットによる損傷なく保持できた。同様の現象が、細胞培養用デバイス2及び細胞培養用デバイス3についても確認された。
 一方、図11Aから、2枚の半透膜(コントロール)を備える細胞培養用デバイス(コントロール)では、膜はピンセットにより圧縮され、損傷した。
 以上のことから、保持体を含む半透膜を備える細胞培養用デバイスでは、ピンセットによる損傷なく保持され、取扱いが容易であることが示された。
[試験例1]細胞培養用デバイスを用いたヒト肝がん細胞株のHepG2細胞の培養
(1)予め培養したHepG2細胞(理化学研究所バイオリソースセンターより購入、RCB1648)を回収し、1.0×10細胞/mLとなるように培養液と混合し、HepG2細胞の懸濁液を調製した。
(2)次いで、HepG2細胞の懸濁液を留置針付き1mLシリンジ内に充填した。次いで、実施例1で作製した細胞培養用デバイス1、細胞培養用デバイス2、及び細胞培養用デバイス3の注入孔から留置針の先端を射し入れた。次いで、HepG2細胞の懸濁液100μLを細胞培養用デバイス1、細胞培養用デバイス2、及び細胞培養用デバイス3の中に注入し、ステンレス剛製の球を用いて、注入孔を塞いだ。
(3)次いで、24ウェルプレートの各ウェル内に1mLの培養液を注入し、HepG2細胞を培養した各デバイスを沈めて、培養を開始した。
(4)次いで、一日置きに培養液を交換し、細胞培養用デバイスに封入されたHepG2細胞を、位相差顕微鏡を用いて、培養1日目、2日目、4日目、7日目、10日目、及び14日目と経時的に観察し、撮影した。細胞培養用デバイス3の結果を、図12A~図12Fに示す。
 図12A~図12Fから、培養7日目頃までは、保持体の格子の1マス内に含まれる細胞を、位相差顕微鏡を用いて計測できることが示された。同様の現象は、細胞培養用デバイス1及び細胞培養用デバイス2についても確認された。
また、経時的にHepG2細胞が増殖しており、細胞培養用デバイスを用いて培養できることが示された。
 本実施形態の半透膜は、たわみにくく、取扱いが容易な適度な強度を有する。また、本実施形態の細胞培養用デバイスは、細胞保護性能が優れるのみならず、取扱いも容易であって、細胞の長期間培養が可能であり、且つ、細胞数を計測可能である。さらに、本実施形態の細胞培養用デバイスを用いて、組織型チップ、器官型チップ、又は、器官型チップシステムを構築することにより、従来の培養モデル、又は、動物実験の代替として、疾患に対する薬効、薬剤及びその代謝物の代謝経路や細胞毒性の確認試験等への活用が期待できる。
 1…保持体、10…半透膜、10a…保持体を含む半透膜、11…部材、11a…第1の部材、11b…第2の部材、12…支持体、13,101…チューブ、14…注入孔、14a…第1の注入孔、14b…第2の注入孔、100,200,300,600…細胞培養用デバイス、400a,500a…細胞培養用デバイス(デバイス内部と外部とが注入孔を介して連通)、400b,500b…細胞培養用デバイス(デバイス内部と外部とが不通)、1A,1B,1C,1D…組織型チップ、10A,10B,10C,10D…器官型チップシステム。

Claims (18)

  1.  液相中で半透性を有し、且つ、格子構造を有する低吸水性の保持体を含む半透膜。
  2.  前記保持体の格子構造がマイクロメートル単位の目盛りとして機能する請求項1に記載の半透膜。
  3.  前記保持体がポリエステル又はポリスチレンからなる請求項1又は2に記載の半透膜。
  4.  生体適合性を有する材料を含む請求項1~3のいずれか一項に記載の半透膜。
  5.  前記生体適合性を有する材料がゲル化する細胞外マトリックス由来成分である請求項1~4のいずれか一項に記載の半透膜。
  6.  前記ゲル化する細胞外マトリックス由来成分がネイティブコラーゲン、又はアテロコラーゲンである請求項5に記載の半透膜。
  7.  請求項1~6のいずれか一項に記載の半透膜を少なくとも一部に備える細胞培養用デバイス。
  8.  さらに、気相中で液密性を有する請求項7に記載の細胞培養用デバイス。
  9.  培養液に懸濁された細胞を注入可能であり、内部容積が10mL以下である請求項7又は8に記載の細胞培養用デバイス。
  10.  全体が前記半透膜からなる請求項7~9のいずれか一項に記載の細胞培養用デバイス。
  11.  1種類の細胞を含む請求項7~10のいずれか一項に記載の細胞培養用デバイスを備える組織型チップ。
  12.  前記細胞の密度が、2.0×10細胞/mL以上1.0×10細胞/mL以下である請求項11に記載の組織型チップ。
  13.  少なくとも2種類の細胞を含む請求項7~10のいずれか一項に記載の細胞培養用デバイスを備える器官型チップ。
  14.  前記細胞の密度が、2.0×10細胞/mL以上1.0×10細胞/mL以下である請求項13に記載の器官型チップ。
  15.  多細胞構造体を提供するためのキットであって、
     請求項11若しくは12に記載の組織型チップ、又は、請求項13若しくは14に記載の器官型チップと培養液とを含む開閉可能な密封容器を備えるキット。
  16.  請求項11若しくは12に記載の組織型チップ、又は、請求項13若しくは14に記載の器官型チップを少なくとも2つ備え、前記組織型チップ又は前記器官型チップが密閉性を保ちながら連結されている器官型チップシステム。
  17.  請求項7~10のいずれか一項に記載の細胞培養用デバイスを用いる細胞の培養方法。
  18.  請求項7~10のいずれか一項に記載の細胞培養用デバイスを用いる細胞数の測定方法。
PCT/JP2017/046650 2017-01-18 2017-12-26 半透膜及びその使用 WO2018135252A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197020709A KR20190104159A (ko) 2017-01-18 2017-12-26 반투막 및 그 사용
EP17892982.4A EP3572144A4 (en) 2017-01-18 2017-12-26 SEMI-PERMEABLE MEMBRANE AND ITS USES
US16/476,512 US20210403850A1 (en) 2017-01-18 2017-12-26 Semipermeable membrane and uses thereof
JP2018563245A JP7112736B2 (ja) 2017-01-18 2017-12-26 半透膜及びその使用
CN201780083709.4A CN110198777A (zh) 2017-01-18 2017-12-26 半透膜及其应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-006741 2017-01-18
JP2017006741 2017-01-18

Publications (1)

Publication Number Publication Date
WO2018135252A1 true WO2018135252A1 (ja) 2018-07-26

Family

ID=62907960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/046650 WO2018135252A1 (ja) 2017-01-18 2017-12-26 半透膜及びその使用

Country Status (6)

Country Link
US (1) US20210403850A1 (ja)
EP (1) EP3572144A4 (ja)
JP (1) JP7112736B2 (ja)
KR (1) KR20190104159A (ja)
CN (1) CN110198777A (ja)
WO (1) WO2018135252A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008108A1 (ja) * 2021-07-27 2023-02-02 国立研究開発法人農業・食品産業技術総合研究機構 容器、及び細胞輸送装置
JP7219506B1 (ja) 2021-07-27 2023-02-08 国立研究開発法人農業・食品産業技術総合研究機構 細胞輸送装置、培養細胞の製造方法、及び細胞輸送方法
US12215448B2 (en) 2021-04-23 2025-02-04 Panasonic Intellectual Property Management Co., Ltd. Fiber assembly and method for producing fiber assembly

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210230526A1 (en) * 2016-06-28 2021-07-29 National Agriculture And Food Research Organization Cell enclosure device and use for same
CN108753569A (zh) * 2018-05-25 2018-11-06 苏州博福生物医药科技有限公司 一种用于捕获细胞或生物分子的富集筛选机构
CN111500445A (zh) * 2020-04-22 2020-08-07 苏州济研生物医药科技有限公司 一种高通量的多器官芯片及其使用方法
WO2023217767A2 (en) * 2022-05-09 2023-11-16 Imperial College Innovations Limited Scaffold supported organoid farms for controlled high-throughput in vitro organoid aggregation and regional organoid patterning
WO2024129814A2 (en) * 2022-12-13 2024-06-20 Rapid Micro Biosystems, Inc. Tube set with dual pressure regulating valve

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929583A (en) * 1975-08-14 1975-12-30 Canadian Patents Dev Apparatus for enumerating microorganisms
JPS51133344U (ja) * 1975-04-18 1976-10-27
JPS54132291A (en) * 1978-04-03 1979-10-15 Kuraray Co Ltd Novel bioreactor
WO1992014838A1 (en) * 1991-02-13 1992-09-03 Nihon Millipore Kogyo Kabushiki Kaisha Method of determining viable count
JPH04271817A (ja) * 1991-02-27 1992-09-28 Fuji Photo Film Co Ltd ろ過方法
JPH07299340A (ja) * 1994-05-09 1995-11-14 Kubota Corp 平板型膜分離体
JPH08228768A (ja) 1995-02-23 1996-09-10 Res Dev Corp Of Japan 細胞外マトリックス成分含有ハイドロゲル薄膜
JP2001149763A (ja) 1999-11-26 2001-06-05 Nikkiso Co Ltd 半透膜および半透膜の製造方法
JP2007185107A (ja) 2006-01-11 2007-07-26 National Institute Of Agrobiological Sciences 磁気付与型ハイドロゲル薄膜
WO2008130025A1 (ja) 2007-04-18 2008-10-30 Public University Corporation Yokohama City University 肝細胞培養容器及び肝細胞培養方法
WO2012026531A1 (ja) 2010-08-25 2012-03-01 独立行政法人農業生物資源研究所 ハイドロゲル乾燥体、ビトリゲル膜乾燥体およびこれらの製造方法
JP2012065555A (ja) 2010-09-21 2012-04-05 Tokyo Univ Of Agriculture & Technology スフェロイド作製装置およびスフェロイド作製方法
JP2012115262A (ja) 2010-11-12 2012-06-21 National Institute Of Agrobiological Sciences 細胞培養チャンバーとその製造方法、および、この細胞培養チャンバーを利用した組織モデルとその作製方法
WO2013011962A1 (ja) * 2011-07-15 2013-01-24 独立行政法人科学技術振興機構 細胞培養装置、細胞培養長期観察装置、細胞長期培養方法、および細胞培養長期観察方法
JP2015035978A (ja) 2013-08-13 2015-02-23 独立行政法人農業生物資源研究所 ガラス化後のハイドロゲル膜の製造方法、ハイドロゲル材料の製造方法、ガラス化後のハイドロゲル膜、ガラス化後のハイドロゲル膜の乾燥体、細胞シート、およびガラス化後のハイドロゲル膜の製造装置
JP2015203018A (ja) 2014-04-14 2015-11-16 国立研究開発法人農業生物資源研究所 多層構造のガラス化後のハイドロゲル乾燥体の製造方法、多層構造のガラス化後のハイドロゲル乾燥体、多層構造のガラス化後のハイドロゲル、徐放剤乾燥体の製造方法、接着方法、徐放剤乾燥体、及び徐放剤水和体
JP2017006741A (ja) 2016-10-17 2017-01-12 京楽産業.株式会社 遊技機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1666129B1 (en) * 2003-08-07 2017-06-21 Asahi Kasei Medical Co., Ltd. Composite porous membrane
JP4671365B2 (ja) * 2005-02-15 2011-04-13 学校法人北里研究所 高密度培養組織の製造方法及び高密度培養組織

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51133344U (ja) * 1975-04-18 1976-10-27
US3929583A (en) * 1975-08-14 1975-12-30 Canadian Patents Dev Apparatus for enumerating microorganisms
JPS54132291A (en) * 1978-04-03 1979-10-15 Kuraray Co Ltd Novel bioreactor
WO1992014838A1 (en) * 1991-02-13 1992-09-03 Nihon Millipore Kogyo Kabushiki Kaisha Method of determining viable count
JPH04271817A (ja) * 1991-02-27 1992-09-28 Fuji Photo Film Co Ltd ろ過方法
JPH07299340A (ja) * 1994-05-09 1995-11-14 Kubota Corp 平板型膜分離体
JPH08228768A (ja) 1995-02-23 1996-09-10 Res Dev Corp Of Japan 細胞外マトリックス成分含有ハイドロゲル薄膜
JP2001149763A (ja) 1999-11-26 2001-06-05 Nikkiso Co Ltd 半透膜および半透膜の製造方法
JP2007185107A (ja) 2006-01-11 2007-07-26 National Institute Of Agrobiological Sciences 磁気付与型ハイドロゲル薄膜
WO2008130025A1 (ja) 2007-04-18 2008-10-30 Public University Corporation Yokohama City University 肝細胞培養容器及び肝細胞培養方法
WO2012026531A1 (ja) 2010-08-25 2012-03-01 独立行政法人農業生物資源研究所 ハイドロゲル乾燥体、ビトリゲル膜乾燥体およびこれらの製造方法
JP2012065555A (ja) 2010-09-21 2012-04-05 Tokyo Univ Of Agriculture & Technology スフェロイド作製装置およびスフェロイド作製方法
JP2012115262A (ja) 2010-11-12 2012-06-21 National Institute Of Agrobiological Sciences 細胞培養チャンバーとその製造方法、および、この細胞培養チャンバーを利用した組織モデルとその作製方法
WO2013011962A1 (ja) * 2011-07-15 2013-01-24 独立行政法人科学技術振興機構 細胞培養装置、細胞培養長期観察装置、細胞長期培養方法、および細胞培養長期観察方法
JP2015035978A (ja) 2013-08-13 2015-02-23 独立行政法人農業生物資源研究所 ガラス化後のハイドロゲル膜の製造方法、ハイドロゲル材料の製造方法、ガラス化後のハイドロゲル膜、ガラス化後のハイドロゲル膜の乾燥体、細胞シート、およびガラス化後のハイドロゲル膜の製造装置
JP2015203018A (ja) 2014-04-14 2015-11-16 国立研究開発法人農業生物資源研究所 多層構造のガラス化後のハイドロゲル乾燥体の製造方法、多層構造のガラス化後のハイドロゲル乾燥体、多層構造のガラス化後のハイドロゲル、徐放剤乾燥体の製造方法、接着方法、徐放剤乾燥体、及び徐放剤水和体
JP2017006741A (ja) 2016-10-17 2017-01-12 京楽産業.株式会社 遊技機

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12215448B2 (en) 2021-04-23 2025-02-04 Panasonic Intellectual Property Management Co., Ltd. Fiber assembly and method for producing fiber assembly
WO2023008108A1 (ja) * 2021-07-27 2023-02-02 国立研究開発法人農業・食品産業技術総合研究機構 容器、及び細胞輸送装置
JP7219506B1 (ja) 2021-07-27 2023-02-08 国立研究開発法人農業・食品産業技術総合研究機構 細胞輸送装置、培養細胞の製造方法、及び細胞輸送方法
JP2023022847A (ja) * 2021-07-27 2023-02-16 国立研究開発法人農業・食品産業技術総合研究機構 細胞輸送装置、培養細胞の製造方法、及び細胞輸送方法
JP7251867B1 (ja) * 2021-07-27 2023-04-04 国立研究開発法人農業・食品産業技術総合研究機構 容器、及び細胞輸送装置

Also Published As

Publication number Publication date
CN110198777A (zh) 2019-09-03
US20210403850A1 (en) 2021-12-30
JPWO2018135252A1 (ja) 2019-11-07
EP3572144A1 (en) 2019-11-27
EP3572144A4 (en) 2020-11-04
KR20190104159A (ko) 2019-09-06
JP7112736B2 (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
WO2018135252A1 (ja) 半透膜及びその使用
JP5933223B2 (ja) 細胞培養チャンバーとその製造方法、および、この細胞培養チャンバーを利用した組織モデルとその作製方法
JP5042235B2 (ja) 細胞および組織の培養のためのバイオリアクター
JP6873985B2 (ja) インビトロで肝臓構築物を産生する方法およびその使用
JP6835384B1 (ja) 細胞培養装置及びその使用
CN113773959A (zh) 一种类器官培养芯片和类器官培养方法
JPH07298876A (ja) 通液性細胞培養担体と、この担体を用いる培養方法お よび培養装置
WO2018003858A1 (ja) 細胞封入用デバイス及びその使用
US20160369221A1 (en) Fluidic device and perfusion system for in vitro complex living tissue reconstruction
WO2005014774A1 (ja) 動物細胞の培養担体と、該培養担体を用いた動物細胞の培養方法および移植方法
CN113846016B (zh) 一种高通量多孔阵列芯片、装置、制备方法及应用
ES2969778T3 (es) Sistema de cultivo celular tridimensional y método de cultivo celular con utilización del mismo
US12180446B2 (en) Native extracellular matrix-derived membrane inserts for organs-on-chips, multilayer microfluidics microdevices, bioreactors, tissue culture inserts, and two-dimensional and three-dimensional cell culture systems
JP6425420B2 (ja) 細胞培養チャンバーとその製造方法、細胞培養チャンバーを利用した細胞培養方法および細胞培養キット
JP7083144B2 (ja) 吸引管付き細胞封入用デバイス及びその使用
US20200248116A1 (en) Methods for producing mature adipocytes and methods of use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17892982

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018563245

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197020709

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017892982

Country of ref document: EP

Effective date: 20190819

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载