WO2018134930A1 - Orthopedic implant and method for manufacturing same - Google Patents
Orthopedic implant and method for manufacturing same Download PDFInfo
- Publication number
- WO2018134930A1 WO2018134930A1 PCT/JP2017/001635 JP2017001635W WO2018134930A1 WO 2018134930 A1 WO2018134930 A1 WO 2018134930A1 JP 2017001635 W JP2017001635 W JP 2017001635W WO 2018134930 A1 WO2018134930 A1 WO 2018134930A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- orthopedic implant
- pores
- pore diameter
- average pore
- Prior art date
Links
- 239000007943 implant Substances 0.000 title claims abstract description 48
- 230000000399 orthopedic effect Effects 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000034 method Methods 0.000 title description 10
- 239000011148 porous material Substances 0.000 claims abstract description 65
- 239000000463 material Substances 0.000 claims abstract description 19
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 9
- 239000011777 magnesium Substances 0.000 claims abstract description 9
- 229910000861 Mg alloy Inorganic materials 0.000 claims abstract description 7
- 238000007743 anodising Methods 0.000 claims description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 14
- 239000008151 electrolyte solution Substances 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 10
- 229910021529 ammonia Inorganic materials 0.000 claims description 7
- 229910019142 PO4 Inorganic materials 0.000 claims description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 6
- 239000010452 phosphate Substances 0.000 claims description 6
- 239000010407 anodic oxide Substances 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 2
- 239000003792 electrolyte Substances 0.000 claims 1
- 238000000465 moulding Methods 0.000 claims 1
- 230000003647 oxidation Effects 0.000 abstract description 4
- 238000007254 oxidation reaction Methods 0.000 abstract description 4
- 239000011248 coating agent Substances 0.000 abstract 2
- 238000000576 coating method Methods 0.000 abstract 2
- 210000000130 stem cell Anatomy 0.000 description 25
- 210000000988 bone and bone Anatomy 0.000 description 22
- 210000000963 osteoblast Anatomy 0.000 description 22
- 230000004069 differentiation Effects 0.000 description 10
- 230000011164 ossification Effects 0.000 description 7
- 230000008468 bone growth Effects 0.000 description 5
- 230000005012 migration Effects 0.000 description 4
- 238000013508 migration Methods 0.000 description 4
- 238000006065 biodegradation reaction Methods 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 239000010839 body fluid Substances 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- 230000021164 cell adhesion Effects 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 210000002449 bone cell Anatomy 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 229910000388 diammonium phosphate Inorganic materials 0.000 description 1
- 235000019838 diammonium phosphate Nutrition 0.000 description 1
- KKEZAVVOJGHSFU-UHFFFAOYSA-N diazanium dihydrogen phosphate Chemical compound [NH4+].[NH4+].OP(O)([O-])=O.OP(O)([O-])=O KKEZAVVOJGHSFU-UHFFFAOYSA-N 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
Definitions
- the present invention relates to an orthopedic implant and a method for producing the same.
- an orthopedic magnesium implant having a surface formed by anodization is known (for example, see Patent Document 1).
- the process of bone formation consists of (1) migration, adhesion and proliferation of osteoblasts and their progenitor cells, (2) differentiation of progenitor cells into bone cells, (3) formation of new bone, (4) bone It proceeds in four stages: infiltration and bone attachment.
- the implant described in Patent Document 1 has pores of about several ⁇ m to several tens of ⁇ m in the film. Such micrometer-sized structures are known to promote bone growth and bone bonding.
- Patent Document 1 can promote bone growth and bone bonding as described above, it does not affect osteoblast and progenitor cell adhesion and progenitor cell differentiation, which are the initial stages of the osteogenesis process. There's a problem.
- the present invention has been made in view of the above-described circumstances, and provides an orthopedic implant that can promote the adhesion of osteoblasts and their progenitor cells and the differentiation of progenitor cells, and a method for producing the same. Objective.
- a first aspect of the present invention includes a base material formed from pure magnesium or a magnesium alloy, and an anodized film formed on the surface of the base material and having a number of pores on the surface.
- the orthopedic implant has an average pore diameter of 0.01 ⁇ m or more and 1 ⁇ m or less.
- osteoblasts and their progenitor cells existing in the living body migrate to the orthopedic implant and are placed on the surface of the implant. It adheres and osteoblasts form bone. Progenitor cells form bone after differentiation into osteoblasts.
- the pores formed in at least a part of the surface of the anodized film have a pore diameter of less than 1 ⁇ m.
- the migration and adhesion of osteoblasts and progenitor cells and the differentiation of progenitor cells into osteoblasts are facilitated by nanometer-sized structures. Therefore, the pores of the anodized film can promote the adhesion of osteoblasts and progenitor cells to the orthopedic implant and differentiation of the progenitor cells.
- a region in which the average pore diameter is 0.01 ⁇ m or more and 1 ⁇ m or less and a region in which the average pore diameter is more than 1 ⁇ m and 10 ⁇ m or less are mixed. May be. By doing so, bone growth and bone bonding are promoted in the region where pores having a pore diameter larger than 1 ⁇ m are formed. Thereby, the initial stage to the final stage of the bone formation process can be accelerated.
- the ratio of the area of the region where the average pore diameter of the pores is 0.01 ⁇ m or more and 1 ⁇ m or less to the area of the region where the average pore diameter of the pores exceeds 1 ⁇ m and is 10 ⁇ m or less is 1: It may be 1 or more and 1: 3 or less.
- the second aspect of the present invention includes an anodizing step of anodizing a substrate formed from pure magnesium or a magnesium alloy to form an anodized film on the surface of the substrate,
- This is a method for producing an orthopedic implant using an electrolytic solution containing 0.005 mol / L or more and 0.049 mol / L or less phosphate and 1.0 mol / L or more and 6.0 mol / L or less ammonia.
- a large number of pores are formed on the surface of the anodized film formed by anodizing the substrate.
- an anodic oxide film having pores having an average pore diameter of 0.01 ⁇ m or more and 1 ⁇ m or less can be formed in at least a part of the region by using the electrolytic solution having the above components.
- a current may be passed through the electrolytic solution so that a current density in the base material is 2 A / dm 2 or more and 4 A / dm 2 or less. By doing so, pores having an average pore diameter of 0.01 ⁇ m or more and 1 ⁇ m or less can be efficiently formed.
- the orthopedic implant according to the present embodiment includes a base material mainly composed of magnesium and an anodized film that is formed on the surface of the base material and covers the base material.
- the base material is formed from pure magnesium or a magnesium alloy.
- a large number of pores are formed over the entire surface of the anodized film.
- the average pore diameter of the pores on the entire surface of the anodized film is 0.01 ⁇ m or more and 1 ⁇ m or less. That is, most of the pores have a pore diameter of less than 1 ⁇ m.
- Such a method for manufacturing an orthopedic implant includes an anodizing step of anodizing the substrate to form an anodized film on the surface of the substrate.
- Anodizing treatment involves immersing a base material and a cathode made of stainless steel or the like in the electrolytic solution, and applying a constant current to the electrolytic solution from the constant current power source connected between the base material and the cathode, using the base material as an anode. It is done by flowing.
- As the electrolytic solution an aqueous solution containing 0.005 mol / L or more and 0.049 mol / L or less phosphate and 1.0 mol / L or more and 6.0 mol / L or less ammonia is used.
- the magnitude of the constant current is adjusted so that the current density on the surface of the substrate is 2 A / dm 2 or more and 4 A / dm 2 or less.
- the voltage between the substrate and the cathode increases with time.
- the voltage between the substrate and the cathode reaches a predetermined final voltage, the current is stopped and the anodizing process is terminated.
- the final voltage reached is set in the range of 300V to 400V.
- a large number of pores are formed on the surface of the anodized film formed by such anodizing treatment, and the pores have an average pore diameter of 0.01 ⁇ m or more and 1 ⁇ m or less in at least a part of the region of the anodized film.
- the pores have an average pore diameter of 0.01 ⁇ m or more and 1 ⁇ m or less in at least a part of the region of the anodized film.
- the operation of the orthopedic implant according to this embodiment configured as described above will be described below.
- the anodized film provided on the outermost surface of the orthopedic implant comes into contact with the body fluid, and the magnesium contained in the anodized film and the water in the body fluid By reacting, biodegradation of the anodized film starts.
- An anodized film having corrosion resistance is gradually biodegraded over time. When the anodized film disappears and the surface of the base material is exposed, the base material comes into contact with the body fluid and biodegradation of the base material starts.
- bone formation occurs around the orthopedic implant.
- osteoblasts and osteoblast progenitor cells that have migrated from surrounding tissues adhere to the surface of the orthopedic implant, and osteoblasts form new bone on the surface of the orthopedic implant.
- Progenitor cells also form new bone after differentiation into osteoblasts. Then, the new bone is combined with the surrounding bone of the orthopedic implant, whereby the orthopedic implant is combined with the surrounding bone through the new bone.
- nanometer-sized structures on the implant surface act on osteoblasts and progenitor cells. Specifically, a structure of 0.01 ⁇ m to 0.03 ⁇ m promotes migration and proliferation of osteoblasts and their progenitor cells, and a structure of 0.07 ⁇ m to 0.1 ⁇ m promotes progenitor cells to osteoblasts. It is thought to induce differentiation.
- the orthopedic implant According to the orthopedic implant according to the present embodiment, migration and adhesion of osteoblasts and progenitor cells to the orthopedic implant are performed by pores having a pore diameter of less than 1 ⁇ m formed on the outer surface of the anodized film. Proliferation is promoted and further differentiation of progenitor cells into osteoblasts is promoted. Thereby, the bone formation can be accelerated.
- pores having an average pore diameter of 0.01 ⁇ m or more and 1 ⁇ m or less are formed on the entire surface of the anodized film.
- a first region in which pores having an average pore diameter of 01 ⁇ m or more and 1 ⁇ m or less are formed may be mixed with a second region in which pores having an average pore diameter of more than 1 ⁇ m and 10 ⁇ m or less are formed.
- the ratio of the area of the first region to the area of the second region is preferably 1: 1 or more and 1: 3 or less.
- a magnesium alloy WE43 was used as a base material.
- an electrolytic solution containing diammonium hydrogen phosphate (phosphate) and ammonia and not urea was used.
- 1 and 2 show conditions 1 to 18 in the anodic oxidation treatment.
- the concentration of diammonium hydrogen phosphate and ammonia, the current density (target current value), and the final ultimate voltage in the electrolytic solution are varied to make a total of 18 types of shaping.
- a surgical implant was manufactured.
- Conditions 1 to 12 shown in FIG. 1 are conditions under which pores having an average pore diameter of 0.01 ⁇ m or more and 1 ⁇ m or less are formed on the entire anodized film.
- Conditions 13 to 18 shown in FIG. 2 include a mixture of a region where pores having an average pore size of 0.01 ⁇ m or more and 1 ⁇ m or less are formed and a region where pores having an average pore size of more than 1 ⁇ m and less than 10 ⁇ m are formed. This is a condition for forming an anodized film.
- An example of the manufactured orthopedic implant is shown in FIGS.
- FIGS. 3, 4 and 5 show photographs of the surface of an orthopedic implant manufactured according to conditions 1, 4 and 15 taken with a scanning electron microscope, respectively.
- nanometer-sized pores were distributed over the entire surface of the anodized film formed by the anodizing treatment under conditions 1 to 12.
- nanometer-sized pores and micrometer-sized pores are distributed in different regions on the surface of the anodized film formed by anodizing treatment under conditions 13 to 18. It was.
- a region in which micrometer-sized pores are distributed depends on the concentrations of phosphate and ammonia and the final voltage. Specifically, an electrolytic solution containing 0.049 mol / L phosphate and 2.3 mol / L or more and 4.0 mol / L or less ammonia is used, and the final voltage is set to 350 V or more and 400 V or less. As a result, it is possible to form an anodized film in which a region having an average pore diameter of 0.01 ⁇ m or more and 1 ⁇ m or less and a region having an average pore diameter of more than 1 ⁇ m and 10 ⁇ m or less are mixed.
Landscapes
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Epidemiology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Cardiology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Prostheses (AREA)
- Materials For Medical Uses (AREA)
Abstract
An orthopedic implant according to the present invention is provided with: a base material formed of pure magnesium or a magnesium alloy; and an anode oxidation coating that has numerous pores on the surface and that is formed on the surface of the base material, wherein the average pore diameter of the pores is 0.01-1 µm in at least a partial region of the anode oxidation coating.
Description
本発明は、整形外科用インプラントおよびその製造方法に関するものである。
The present invention relates to an orthopedic implant and a method for producing the same.
従来、陽極酸化処理によって表面に皮膜が形成された整形外科用のマグネシウム製インプラントが知られている(例えば、特許文献1参照。)。一般に、骨形成のプロセスは、(1)骨芽細胞およびその前駆細胞の遊走、接着および増殖、(2)前駆細胞の骨系細胞への分化、(3)新生骨の形成、(4)骨浸潤および骨結合の4つの段階で進む。特許文献1に記載のインプラントは、皮膜に約数μm~数十μmの気孔を有する。このようなマイクロメートルサイズの構造は骨成長および骨結合を促進することが知られている。
Conventionally, an orthopedic magnesium implant having a surface formed by anodization is known (for example, see Patent Document 1). In general, the process of bone formation consists of (1) migration, adhesion and proliferation of osteoblasts and their progenitor cells, (2) differentiation of progenitor cells into bone cells, (3) formation of new bone, (4) bone It proceeds in four stages: infiltration and bone attachment. The implant described in Patent Document 1 has pores of about several μm to several tens of μm in the film. Such micrometer-sized structures are known to promote bone growth and bone bonding.
生体内に埋植されたインプラントにおいて骨形成のプロセスが開始されるためには、骨芽細胞および前駆細胞がインプラントに遊走して接着すること、および、前駆細胞が骨芽細胞に分化することが必要である。特許文献1のインプラントは、上記のように骨成長および骨結合を促進することはできるものの、骨形成プロセスの初期段階である骨芽細胞および前駆細胞の接着と前駆細胞の分化には作用しないという問題がある。
In order for the bone formation process to begin in an implant implanted in vivo, osteoblasts and progenitor cells must migrate and adhere to the implant, and the progenitor cells must differentiate into osteoblasts. is necessary. Although the implant of Patent Document 1 can promote bone growth and bone bonding as described above, it does not affect osteoblast and progenitor cell adhesion and progenitor cell differentiation, which are the initial stages of the osteogenesis process. There's a problem.
本発明は、上述した事情に鑑みてなされたものであって、骨芽細胞およびその前駆細胞の接着と前駆細胞の分化を促進することができる整形外科用インプラントおよびその製造方法を提供することを目的とする。
The present invention has been made in view of the above-described circumstances, and provides an orthopedic implant that can promote the adhesion of osteoblasts and their progenitor cells and the differentiation of progenitor cells, and a method for producing the same. Objective.
上記目的を達成するため、本発明は以下の手段を提供する。
本発明の第1の態様は、純マグネシウムまたはマグネシウム合金から形成される基材と、該基材の表面に形成され、表面に多数の気孔を有する陽極酸化皮膜とを備え、該陽極酸化皮膜の少なくとも一部の領域において、前記気孔の平均孔径が0.01μm以上1μm以下である整形外科用インプラントである。 In order to achieve the above object, the present invention provides the following means.
A first aspect of the present invention includes a base material formed from pure magnesium or a magnesium alloy, and an anodized film formed on the surface of the base material and having a number of pores on the surface. In at least some of the regions, the orthopedic implant has an average pore diameter of 0.01 μm or more and 1 μm or less.
本発明の第1の態様は、純マグネシウムまたはマグネシウム合金から形成される基材と、該基材の表面に形成され、表面に多数の気孔を有する陽極酸化皮膜とを備え、該陽極酸化皮膜の少なくとも一部の領域において、前記気孔の平均孔径が0.01μm以上1μm以下である整形外科用インプラントである。 In order to achieve the above object, the present invention provides the following means.
A first aspect of the present invention includes a base material formed from pure magnesium or a magnesium alloy, and an anodized film formed on the surface of the base material and having a number of pores on the surface. In at least some of the regions, the orthopedic implant has an average pore diameter of 0.01 μm or more and 1 μm or less.
本発明の第1の態様によれば、整形外科用インプラントが生体内に移植された後、生体内に存在する骨芽細胞およびその前駆細胞が整形外科用インプラントへ遊走して該インプラントの表面に接着し、骨芽細胞が骨形成を行う。前駆細胞は、骨芽細胞に分化した後に骨形成を行う。
According to the first aspect of the present invention, after the orthopedic implant is implanted in the living body, osteoblasts and their progenitor cells existing in the living body migrate to the orthopedic implant and are placed on the surface of the implant. It adheres and osteoblasts form bone. Progenitor cells form bone after differentiation into osteoblasts.
この場合に、陽極酸化皮膜の表面の少なくとも一部の領域に形成されている気孔は、1μm未満の孔径を有する。骨芽細胞および前駆細胞の遊走および接着と前駆細胞の骨芽細胞への分化は、ナノメートルサイズの構造によって促進される。したがって、陽極酸化皮膜の気孔によって、骨芽細胞および前駆細胞の整形外科用インプラントへの接着と前駆細胞の分化とを促進することができる。
In this case, the pores formed in at least a part of the surface of the anodized film have a pore diameter of less than 1 μm. The migration and adhesion of osteoblasts and progenitor cells and the differentiation of progenitor cells into osteoblasts are facilitated by nanometer-sized structures. Therefore, the pores of the anodized film can promote the adhesion of osteoblasts and progenitor cells to the orthopedic implant and differentiation of the progenitor cells.
上記第1の態様においては、前記陽極酸化皮膜において、前記気孔の平均孔径が0.01μm以上1μm以下である領域と、前記気孔の平均孔径が1μmを超え10μm以下である領域とが混在していてもよい。
このようにすることで、1μmよりも大きい孔径の気孔が形成されている領域においては、骨成長および骨結合が促進される。これにより、骨形成プロセスの初期段階から最終段階までを促進することができる。 In the first aspect, in the anodic oxide film, a region in which the average pore diameter is 0.01 μm or more and 1 μm or less and a region in which the average pore diameter is more than 1 μm and 10 μm or less are mixed. May be.
By doing so, bone growth and bone bonding are promoted in the region where pores having a pore diameter larger than 1 μm are formed. Thereby, the initial stage to the final stage of the bone formation process can be accelerated.
このようにすることで、1μmよりも大きい孔径の気孔が形成されている領域においては、骨成長および骨結合が促進される。これにより、骨形成プロセスの初期段階から最終段階までを促進することができる。 In the first aspect, in the anodic oxide film, a region in which the average pore diameter is 0.01 μm or more and 1 μm or less and a region in which the average pore diameter is more than 1 μm and 10 μm or less are mixed. May be.
By doing so, bone growth and bone bonding are promoted in the region where pores having a pore diameter larger than 1 μm are formed. Thereby, the initial stage to the final stage of the bone formation process can be accelerated.
上記第1の態様においては、前記気孔の平均孔径が0.01μm以上1μm以下である領域の面積と、前記気孔の平均孔径が1μmを超え10μm以下である領域の面積との比が、1:1以上1:3以下であってもよい。
このようにすることで、比較的狭い領域で細胞の接着および分化が促進され、比較的広い領域で骨成長および骨結合が促進される。これにより、より強固な骨結合を達成することができる。 In the first aspect, the ratio of the area of the region where the average pore diameter of the pores is 0.01 μm or more and 1 μm or less to the area of the region where the average pore diameter of the pores exceeds 1 μm and is 10 μm or less is 1: It may be 1 or more and 1: 3 or less.
By doing so, cell adhesion and differentiation are promoted in a relatively narrow area, and bone growth and bone bonding are promoted in a relatively wide area. Thereby, a stronger bone connection can be achieved.
このようにすることで、比較的狭い領域で細胞の接着および分化が促進され、比較的広い領域で骨成長および骨結合が促進される。これにより、より強固な骨結合を達成することができる。 In the first aspect, the ratio of the area of the region where the average pore diameter of the pores is 0.01 μm or more and 1 μm or less to the area of the region where the average pore diameter of the pores exceeds 1 μm and is 10 μm or less is 1: It may be 1 or more and 1: 3 or less.
By doing so, cell adhesion and differentiation are promoted in a relatively narrow area, and bone growth and bone bonding are promoted in a relatively wide area. Thereby, a stronger bone connection can be achieved.
本発明の第2の態様は、純マグネシウムまたはマグネシウム合金から形成される基材を陽極酸化処理して前記基材の表面に陽極酸化皮膜を形成する陽極酸化工程を含み、前記陽極酸化処理において、0.005mol/L以上0.049mol/L以下のリン酸塩と、1.0mol/L以上6.0mol/L以下のアンモニアとを含む電解液を使用する整形外科用インプラントの製造方法である。
本発明の第2の態様によれば、基材を陽極酸化処理することによって形成された陽極酸化皮膜の表面には、多数の気孔が形成される。この場合に、上記成分を有する電解液を使用することによって、少なくとも一部の領域において0.01μm以上1μm以下の平均孔径を有する気孔が形成された陽極酸化皮膜を形成することができる。 The second aspect of the present invention includes an anodizing step of anodizing a substrate formed from pure magnesium or a magnesium alloy to form an anodized film on the surface of the substrate, This is a method for producing an orthopedic implant using an electrolytic solution containing 0.005 mol / L or more and 0.049 mol / L or less phosphate and 1.0 mol / L or more and 6.0 mol / L or less ammonia.
According to the second aspect of the present invention, a large number of pores are formed on the surface of the anodized film formed by anodizing the substrate. In this case, an anodic oxide film having pores having an average pore diameter of 0.01 μm or more and 1 μm or less can be formed in at least a part of the region by using the electrolytic solution having the above components.
本発明の第2の態様によれば、基材を陽極酸化処理することによって形成された陽極酸化皮膜の表面には、多数の気孔が形成される。この場合に、上記成分を有する電解液を使用することによって、少なくとも一部の領域において0.01μm以上1μm以下の平均孔径を有する気孔が形成された陽極酸化皮膜を形成することができる。 The second aspect of the present invention includes an anodizing step of anodizing a substrate formed from pure magnesium or a magnesium alloy to form an anodized film on the surface of the substrate, This is a method for producing an orthopedic implant using an electrolytic solution containing 0.005 mol / L or more and 0.049 mol / L or less phosphate and 1.0 mol / L or more and 6.0 mol / L or less ammonia.
According to the second aspect of the present invention, a large number of pores are formed on the surface of the anodized film formed by anodizing the substrate. In this case, an anodic oxide film having pores having an average pore diameter of 0.01 μm or more and 1 μm or less can be formed in at least a part of the region by using the electrolytic solution having the above components.
上記第2の態様においては、前記陽極酸化処理において、前記基材における電流密度が2A/dm2以上4A/dm2以下となるように前記電解液に電流を流してもよい。
このようにすることで、0.01μm以上1μm以下の平均孔径を有する気孔を効率的に形成することができる。 In the second aspect, in the anodic oxidation treatment, a current may be passed through the electrolytic solution so that a current density in the base material is 2 A / dm 2 or more and 4 A / dm 2 or less.
By doing so, pores having an average pore diameter of 0.01 μm or more and 1 μm or less can be efficiently formed.
このようにすることで、0.01μm以上1μm以下の平均孔径を有する気孔を効率的に形成することができる。 In the second aspect, in the anodic oxidation treatment, a current may be passed through the electrolytic solution so that a current density in the base material is 2 A / dm 2 or more and 4 A / dm 2 or less.
By doing so, pores having an average pore diameter of 0.01 μm or more and 1 μm or less can be efficiently formed.
本発明によれば、骨芽細胞およびその前駆細胞の接着と前駆細胞の分化を促進することができるという効果を奏する。
According to the present invention, it is possible to promote the adhesion of osteoblasts and their progenitor cells and the differentiation of progenitor cells.
以下に、本発明の一実施形態に係る整形外科用インプラントおよびその製造方法について図面を参照して説明する。
本実施形態に係る整形外科用インプラントは、マグネシウムを主成分とする基材と、該基材の表面に形成され基材を被覆する陽極酸化皮膜とを備えている。 Hereinafter, an orthopedic implant and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings.
The orthopedic implant according to the present embodiment includes a base material mainly composed of magnesium and an anodized film that is formed on the surface of the base material and covers the base material.
本実施形態に係る整形外科用インプラントは、マグネシウムを主成分とする基材と、該基材の表面に形成され基材を被覆する陽極酸化皮膜とを備えている。 Hereinafter, an orthopedic implant and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the drawings.
The orthopedic implant according to the present embodiment includes a base material mainly composed of magnesium and an anodized film that is formed on the surface of the base material and covers the base material.
基材は、純マグネシウムまたはマグネシウム合金から形成されている。
陽極酸化皮膜の表面には、多数の気孔が全体にわたって形成されている。陽極酸化皮膜の表面全体における気孔の平均孔径は、0.01μm以上1μm以下である。すなわち、気孔の大部分は、1μm未満の孔径を有している。 The base material is formed from pure magnesium or a magnesium alloy.
A large number of pores are formed over the entire surface of the anodized film. The average pore diameter of the pores on the entire surface of the anodized film is 0.01 μm or more and 1 μm or less. That is, most of the pores have a pore diameter of less than 1 μm.
陽極酸化皮膜の表面には、多数の気孔が全体にわたって形成されている。陽極酸化皮膜の表面全体における気孔の平均孔径は、0.01μm以上1μm以下である。すなわち、気孔の大部分は、1μm未満の孔径を有している。 The base material is formed from pure magnesium or a magnesium alloy.
A large number of pores are formed over the entire surface of the anodized film. The average pore diameter of the pores on the entire surface of the anodized film is 0.01 μm or more and 1 μm or less. That is, most of the pores have a pore diameter of less than 1 μm.
このような整形外科用インプラントの製造方法は、基材を陽極酸化処理して基材の表面に陽極酸化皮膜を形成する陽極酸化工程を含む。
陽極酸化処理は、電解液中に、基材とステンレス材等からなる陰極とを浸漬し、基材と陰極との間に接続された定電流電源から基材を陽極として電解液に定電流を流すことによって行われる。電解液としては、0.005mol/L以上0.049mol/L以下のリン酸塩と、1.0mol/L以上6.0mol/L以下のアンモニアとを含む水溶液が使用される。定電流の大きさは、基材の表面における電流密度が2A/dm2以上4A/dm2以下となるように調整される。 Such a method for manufacturing an orthopedic implant includes an anodizing step of anodizing the substrate to form an anodized film on the surface of the substrate.
Anodizing treatment involves immersing a base material and a cathode made of stainless steel or the like in the electrolytic solution, and applying a constant current to the electrolytic solution from the constant current power source connected between the base material and the cathode, using the base material as an anode. It is done by flowing. As the electrolytic solution, an aqueous solution containing 0.005 mol / L or more and 0.049 mol / L or less phosphate and 1.0 mol / L or more and 6.0 mol / L or less ammonia is used. The magnitude of the constant current is adjusted so that the current density on the surface of the substrate is 2 A / dm 2 or more and 4 A / dm 2 or less.
陽極酸化処理は、電解液中に、基材とステンレス材等からなる陰極とを浸漬し、基材と陰極との間に接続された定電流電源から基材を陽極として電解液に定電流を流すことによって行われる。電解液としては、0.005mol/L以上0.049mol/L以下のリン酸塩と、1.0mol/L以上6.0mol/L以下のアンモニアとを含む水溶液が使用される。定電流の大きさは、基材の表面における電流密度が2A/dm2以上4A/dm2以下となるように調整される。 Such a method for manufacturing an orthopedic implant includes an anodizing step of anodizing the substrate to form an anodized film on the surface of the substrate.
Anodizing treatment involves immersing a base material and a cathode made of stainless steel or the like in the electrolytic solution, and applying a constant current to the electrolytic solution from the constant current power source connected between the base material and the cathode, using the base material as an anode. It is done by flowing. As the electrolytic solution, an aqueous solution containing 0.005 mol / L or more and 0.049 mol / L or less phosphate and 1.0 mol / L or more and 6.0 mol / L or less ammonia is used. The magnitude of the constant current is adjusted so that the current density on the surface of the substrate is 2 A / dm 2 or more and 4 A / dm 2 or less.
通電開始後、基材と陰極との間の電圧は時間の経過とともに上昇する。基材と陰極との間の電圧が所定の最終到達電圧に到達したときに、電流を停止して陽極酸化処理を終了する。最終到達電圧は、300V以上400V以下の範囲に設定される。
After the start of energization, the voltage between the substrate and the cathode increases with time. When the voltage between the substrate and the cathode reaches a predetermined final voltage, the current is stopped and the anodizing process is terminated. The final voltage reached is set in the range of 300V to 400V.
このような陽極酸化処理によって形成される陽極酸化皮膜の表面には多数の気孔が形成され、陽極酸化皮膜の少なくとも一部の領域において、気孔は0.01μm以上1μm以下の平均孔径を有する。特に、リン酸塩の濃度を0.049mol/L以下に抑えた電解液を使用することによって、陽極酸化皮膜の成長速度が抑えられ、絶縁破壊時のエネルギが低減される。これにより、1μm以下の孔径の気孔が効率的に形成される。
A large number of pores are formed on the surface of the anodized film formed by such anodizing treatment, and the pores have an average pore diameter of 0.01 μm or more and 1 μm or less in at least a part of the region of the anodized film. In particular, by using an electrolytic solution in which the phosphate concentration is suppressed to 0.049 mol / L or less, the growth rate of the anodized film is suppressed, and the energy at the time of dielectric breakdown is reduced. Thereby, pores having a pore diameter of 1 μm or less are efficiently formed.
次に、このように構成された本実施形態に係る整形外科用インプラントの作用について以下に説明する。
整形外科用インプラントが生体内の骨に埋植された後、整形外科用インプラントの最も外側に設けられた陽極酸化皮膜が体液と接触して陽極酸化皮膜に含まれるマグネシウムと体液中の水分とが反応することによって、陽極酸化皮膜の生分解が開始する。耐食性を有する陽極酸化皮膜は、時間をかけて徐々に生分解される。陽極酸化皮膜が消滅して基材の表面が露出すると、基材が体液と接触して基材の生分解が開始する。 Next, the operation of the orthopedic implant according to this embodiment configured as described above will be described below.
After the orthopedic implant is implanted in the bone in the living body, the anodized film provided on the outermost surface of the orthopedic implant comes into contact with the body fluid, and the magnesium contained in the anodized film and the water in the body fluid By reacting, biodegradation of the anodized film starts. An anodized film having corrosion resistance is gradually biodegraded over time. When the anodized film disappears and the surface of the base material is exposed, the base material comes into contact with the body fluid and biodegradation of the base material starts.
整形外科用インプラントが生体内の骨に埋植された後、整形外科用インプラントの最も外側に設けられた陽極酸化皮膜が体液と接触して陽極酸化皮膜に含まれるマグネシウムと体液中の水分とが反応することによって、陽極酸化皮膜の生分解が開始する。耐食性を有する陽極酸化皮膜は、時間をかけて徐々に生分解される。陽極酸化皮膜が消滅して基材の表面が露出すると、基材が体液と接触して基材の生分解が開始する。 Next, the operation of the orthopedic implant according to this embodiment configured as described above will be described below.
After the orthopedic implant is implanted in the bone in the living body, the anodized film provided on the outermost surface of the orthopedic implant comes into contact with the body fluid, and the magnesium contained in the anodized film and the water in the body fluid By reacting, biodegradation of the anodized film starts. An anodized film having corrosion resistance is gradually biodegraded over time. When the anodized film disappears and the surface of the base material is exposed, the base material comes into contact with the body fluid and biodegradation of the base material starts.
上記の整形外科用インプラントの生分解と並行して、整形外科用インプラントの周囲では骨形成が起こる。具体的には、周辺組織から遊走してきた骨芽細胞および骨芽細胞の前駆細胞が整形外科用インプラントの表面に接着し、整形外科用インプラントの表面上に骨芽細胞が新生骨を形成する。前駆細胞も、骨芽細胞に分化した後に、新生骨を形成するようになる。そして、新生骨が整形外科用インプラントの周囲の骨と結合することによって、整形外科用インプラントが新生骨を介して周囲の骨と結合される。
In parallel with the biodegradation of the orthopedic implant, bone formation occurs around the orthopedic implant. Specifically, osteoblasts and osteoblast progenitor cells that have migrated from surrounding tissues adhere to the surface of the orthopedic implant, and osteoblasts form new bone on the surface of the orthopedic implant. Progenitor cells also form new bone after differentiation into osteoblasts. Then, the new bone is combined with the surrounding bone of the orthopedic implant, whereby the orthopedic implant is combined with the surrounding bone through the new bone.
ここで、近年の研究によって、インプラント表面のナノメートルサイズの構造が骨芽細胞および前駆細胞に作用することが分かってきた。具体的には、0.01μm~0.03μmの構造は、骨芽細胞およびその前駆細胞の遊走および増殖を促進し、0.07μm~0.1μmの構造は、前駆細胞の骨芽細胞への分化を誘導すると考えられている。
Here, recent research has shown that nanometer-sized structures on the implant surface act on osteoblasts and progenitor cells. Specifically, a structure of 0.01 μm to 0.03 μm promotes migration and proliferation of osteoblasts and their progenitor cells, and a structure of 0.07 μm to 0.1 μm promotes progenitor cells to osteoblasts. It is thought to induce differentiation.
本実施形態に係る整形外科用インプラントによれば、陽極酸化皮膜の外表面に形成されている1μm未満の孔径を有する気孔によって、骨芽細胞および前駆細胞の整形外科用インプラントへの遊走および接着と増殖が促進され、さらに前駆細胞の骨芽細胞への分化が促進される。これにより、骨形成の早期化を図ることができる。
According to the orthopedic implant according to the present embodiment, migration and adhesion of osteoblasts and progenitor cells to the orthopedic implant are performed by pores having a pore diameter of less than 1 μm formed on the outer surface of the anodized film. Proliferation is promoted and further differentiation of progenitor cells into osteoblasts is promoted. Thereby, the bone formation can be accelerated.
本実施形態においては、陽極酸化皮膜の表面全体に、0.01μm以上1μm以下の平均孔径を有する気孔が形成されていることとしたが、これに代えて、陽極酸化皮膜の表面に、0.01μm以上1μm以下の平均孔径を有する気孔が形成される第1の領域と、1μmを超え10μm以下の平均孔径を有する気孔が形成される第2の領域とが混在していてもよい。
In the present embodiment, pores having an average pore diameter of 0.01 μm or more and 1 μm or less are formed on the entire surface of the anodized film. A first region in which pores having an average pore diameter of 01 μm or more and 1 μm or less are formed may be mixed with a second region in which pores having an average pore diameter of more than 1 μm and 10 μm or less are formed.
インプラント表面のマイクロメートルサイズの構造が、骨成長、骨浸潤および骨結合を促進することが知られている。したがって、第2の領域における1μmよりも大きい孔径を有する気孔によって、整形外科用インプラントの表面に形成された新生骨の成長および整形外科用インプラントと周囲の骨との結合が促進される。これにより、骨の形成プロセスの初期段階から最終段階までを促進することができる。
It is known that a micrometer-sized structure on the implant surface promotes bone growth, bone infiltration and bone bonding. Thus, pores having a pore size greater than 1 μm in the second region promote the growth of new bone formed on the surface of the orthopedic implant and the bonding of the orthopedic implant to the surrounding bone. Thereby, the initial stage to the final stage of the bone formation process can be accelerated.
ここで、第1の領域の面積と第2の領域の面積との比(第1の領域の面積:第2の領域の面積)は、1:1以上1:3以下であることが好ましい。
このようにすることで、骨芽細胞および前駆細胞の接着と前駆細胞の分化の十分な促進効果を確保しつつ、整形外科用インプラントの骨との強固な結合力を得ることができる。 Here, the ratio of the area of the first region to the area of the second region (the area of the first region: the area of the second region) is preferably 1: 1 or more and 1: 3 or less.
By doing so, it is possible to obtain a strong binding force to the bone of the orthopedic implant while ensuring a sufficient promoting effect of the adhesion of osteoblasts and progenitor cells and differentiation of the progenitor cells.
このようにすることで、骨芽細胞および前駆細胞の接着と前駆細胞の分化の十分な促進効果を確保しつつ、整形外科用インプラントの骨との強固な結合力を得ることができる。 Here, the ratio of the area of the first region to the area of the second region (the area of the first region: the area of the second region) is preferably 1: 1 or more and 1: 3 or less.
By doing so, it is possible to obtain a strong binding force to the bone of the orthopedic implant while ensuring a sufficient promoting effect of the adhesion of osteoblasts and progenitor cells and differentiation of the progenitor cells.
次に、上述した整形外科用インプラントおよびその製造方法の実施例について説明する。
基材として、マグネシウム合金WE43を使用した。陽極酸化処理において、リン酸水素二アンモニウム(リン酸塩)およびアンモニアを含み、尿素を含まない電解液を使用した。図1および図2に、陽極酸化処理における条件1~18を示す。図1および図2に示されるように、陽極酸化処理において、電解液のリン酸水素二アンモニウムおよびアンモニアの濃度、電流密度(目標電流値)および最終到達電圧を異ならせて、合計18種類の整形外科用インプラントを製造した。 Next, an embodiment of the above-described orthopedic implant and a manufacturing method thereof will be described.
A magnesium alloy WE43 was used as a base material. In the anodizing treatment, an electrolytic solution containing diammonium hydrogen phosphate (phosphate) and ammonia and not urea was used. 1 and 2show conditions 1 to 18 in the anodic oxidation treatment. As shown in FIG. 1 and FIG. 2, in the anodizing treatment, the concentration of diammonium hydrogen phosphate and ammonia, the current density (target current value), and the final ultimate voltage in the electrolytic solution are varied to make a total of 18 types of shaping. A surgical implant was manufactured.
基材として、マグネシウム合金WE43を使用した。陽極酸化処理において、リン酸水素二アンモニウム(リン酸塩)およびアンモニアを含み、尿素を含まない電解液を使用した。図1および図2に、陽極酸化処理における条件1~18を示す。図1および図2に示されるように、陽極酸化処理において、電解液のリン酸水素二アンモニウムおよびアンモニアの濃度、電流密度(目標電流値)および最終到達電圧を異ならせて、合計18種類の整形外科用インプラントを製造した。 Next, an embodiment of the above-described orthopedic implant and a manufacturing method thereof will be described.
A magnesium alloy WE43 was used as a base material. In the anodizing treatment, an electrolytic solution containing diammonium hydrogen phosphate (phosphate) and ammonia and not urea was used. 1 and 2
図1に示される条件1~12は、0.01μm以上1μm以下の平均孔径を有する気孔が陽極酸化皮膜の全体に形成される条件である。図2に示される条件13~18は、0.01μm以上1μm以下の平均孔径を有する気孔が形成される領域と、1μmを超え10μm未満の平均孔径を有する気孔が形成される領域とが混在する陽極酸化皮膜が形成される条件である。図3、図4および図5に、製造された整形外科用インプラントの一例を示す。図3、図4および図5はそれぞれ、条件1,4,15によって製造された整形外科用インプラントの表面を走査型電子顕微鏡で撮影した写真を示している。
Conditions 1 to 12 shown in FIG. 1 are conditions under which pores having an average pore diameter of 0.01 μm or more and 1 μm or less are formed on the entire anodized film. Conditions 13 to 18 shown in FIG. 2 include a mixture of a region where pores having an average pore size of 0.01 μm or more and 1 μm or less are formed and a region where pores having an average pore size of more than 1 μm and less than 10 μm are formed. This is a condition for forming an anodized film. An example of the manufactured orthopedic implant is shown in FIGS. FIGS. 3, 4 and 5 show photographs of the surface of an orthopedic implant manufactured according to conditions 1, 4 and 15 taken with a scanning electron microscope, respectively.
図1、図3および図4に示されるように、条件1~12の陽極酸化処理によって形成された陽極酸化皮膜の表面には、ナノメートルサイズの気孔が全体にわたって分布していた。図2および図5に示されるように、条件13~18の陽極酸化処理によって形成された陽極酸化皮膜の表面には、ナノメートルサイズの気孔とマイクロメートルサイズの気孔が別々の領域に分布していた。
As shown in FIG. 1, FIG. 3 and FIG. 4, nanometer-sized pores were distributed over the entire surface of the anodized film formed by the anodizing treatment under conditions 1 to 12. As shown in FIGS. 2 and 5, nanometer-sized pores and micrometer-sized pores are distributed in different regions on the surface of the anodized film formed by anodizing treatment under conditions 13 to 18. It was.
図1および図2に示されるように、マイクロメートルサイズの気孔が分布する領域が陽極酸化皮膜に形成されるか否かは、リン酸塩およびアンモニアの濃度と、最終到達電圧に依存する。具体的には、0.049mol/Lのリン酸塩と、2.3mol/L以上4.0mol/L以下のアンモニアとを含む電解液を使用し、最終到達電圧を350V以上400V以下に設定することによって、気孔の平均孔径が0.01μm以上1μm以下である領域と、気孔の平均孔径が1μmを超え10μm以下である領域とが混在した陽極酸化皮膜を形成することができる。
As shown in FIGS. 1 and 2, whether or not a region in which micrometer-sized pores are distributed is formed in the anodized film depends on the concentrations of phosphate and ammonia and the final voltage. Specifically, an electrolytic solution containing 0.049 mol / L phosphate and 2.3 mol / L or more and 4.0 mol / L or less ammonia is used, and the final voltage is set to 350 V or more and 400 V or less. As a result, it is possible to form an anodized film in which a region having an average pore diameter of 0.01 μm or more and 1 μm or less and a region having an average pore diameter of more than 1 μm and 10 μm or less are mixed.
Claims (5)
- 純マグネシウムまたはマグネシウム合金から形成される基材と、
該基材の表面に形成され、表面に多数の気孔を有する陽極酸化皮膜とを備え、
該陽極酸化皮膜の少なくとも一部の領域において、前記気孔の平均孔径が0.01μm以上1μm以下である整形外科用インプラント。 A substrate formed from pure magnesium or a magnesium alloy;
An anodized film formed on the surface of the substrate and having a large number of pores on the surface;
An orthopedic implant wherein the average pore diameter of the pores is 0.01 μm or more and 1 μm or less in at least a partial region of the anodized film. - 前記陽極酸化皮膜において、前記気孔の平均孔径が0.01μm以上1μm以下である領域と、前記気孔の平均孔径が1μmを超え10μm以下である領域とが混在している請求項1に記載の整形外科用インプラント。 The shaping | molding of Claim 1 with which the area | region whose average pore diameter of the said pore is 0.01 micrometer or more and 1 micrometer or less and the area | region where the average pore diameter of the said pore is more than 1 micrometer and 10 micrometers or less are mixed in the said anodic oxide film. Surgical implant.
- 前記気孔の平均孔径が0.01μm以上1μm以下である領域の面積と、前記気孔の平均孔径が1μmを超え10μm以下である領域の面積との比が、1:1以上1:3以下である請求項2に記載の整形外科用インプラント。 The ratio of the area of the region where the average pore diameter of the pores is 0.01 μm or more and 1 μm or less to the area of the region where the average pore diameter of the pores is more than 1 μm and 10 μm or less is 1: 1 or more and 1: 3 or less. The orthopedic implant according to claim 2.
- 純マグネシウムまたはマグネシウム合金から形成される基材を陽極酸化処理して前記基材の表面に陽極酸化皮膜を形成する陽極酸化工程を含み、
前記陽極酸化処理において、0.005mol/L以上0.049mol/L以下のリン酸塩と、1.0mol/L以上6.0mol/L以下のアンモニアとを含む電解液を使用する整形外科用インプラントの製造方法。 Including an anodizing step of anodizing a base material formed from pure magnesium or a magnesium alloy to form an anodized film on the surface of the base material;
An orthopedic implant using an electrolyte solution containing 0.005 mol / L or more and 0.049 mol / L or less phosphate and 1.0 mol / L or more and 6.0 mol / L or less ammonia in the anodizing treatment. Manufacturing method. - 前記陽極酸化処理において、前記基材における電流密度が2A/dm2以上4A/dm2以下となるように前記電解液に電流を流す請求項4に記載の整形外科用インプラントの製造方法。 The method for producing an orthopedic implant according to claim 4, wherein in the anodizing treatment, a current is passed through the electrolyte so that a current density in the base material is 2 A / dm 2 or more and 4 A / dm 2 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/001635 WO2018134930A1 (en) | 2017-01-19 | 2017-01-19 | Orthopedic implant and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/001635 WO2018134930A1 (en) | 2017-01-19 | 2017-01-19 | Orthopedic implant and method for manufacturing same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018134930A1 true WO2018134930A1 (en) | 2018-07-26 |
Family
ID=62907903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/001635 WO2018134930A1 (en) | 2017-01-19 | 2017-01-19 | Orthopedic implant and method for manufacturing same |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018134930A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0747116A (en) * | 1993-08-05 | 1995-02-21 | Nikon Corp | Manufacture of implant |
JP2015502193A (en) * | 2011-11-07 | 2015-01-22 | シンセス・ゲーエムベーハーSynthes GmbH | Dilute electrolyte for biocompatible plasma electrolytic coating of magnesium implant materials |
JP2015085098A (en) * | 2013-11-01 | 2015-05-07 | オリンパス株式会社 | Implant for living body |
JP2015228906A (en) * | 2014-06-03 | 2015-12-21 | オリンパス株式会社 | Osteosynthetic implant |
JP2015229792A (en) * | 2014-06-05 | 2015-12-21 | オリンパス株式会社 | Implant and production method thereof |
JP2016007479A (en) * | 2014-06-26 | 2016-01-18 | オリンパス株式会社 | Implant |
JP2016103423A (en) * | 2014-11-28 | 2016-06-02 | ウシオ電機株式会社 | Light source device and lighting device |
-
2017
- 2017-01-19 WO PCT/JP2017/001635 patent/WO2018134930A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0747116A (en) * | 1993-08-05 | 1995-02-21 | Nikon Corp | Manufacture of implant |
JP2015502193A (en) * | 2011-11-07 | 2015-01-22 | シンセス・ゲーエムベーハーSynthes GmbH | Dilute electrolyte for biocompatible plasma electrolytic coating of magnesium implant materials |
JP2015085098A (en) * | 2013-11-01 | 2015-05-07 | オリンパス株式会社 | Implant for living body |
JP2015228906A (en) * | 2014-06-03 | 2015-12-21 | オリンパス株式会社 | Osteosynthetic implant |
JP2015229792A (en) * | 2014-06-05 | 2015-12-21 | オリンパス株式会社 | Implant and production method thereof |
JP2016007479A (en) * | 2014-06-26 | 2016-01-18 | オリンパス株式会社 | Implant |
JP2016103423A (en) * | 2014-11-28 | 2016-06-02 | ウシオ電機株式会社 | Light source device and lighting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100856031B1 (en) | Porous Implants and Manufacturing Method Thereof | |
Kim et al. | Anodically nanostructured titanium oxides for implant applications | |
Indira et al. | A review on TiO 2 nanotubes: influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications | |
Duarte et al. | Growth of aluminum-free porous oxide layers on titanium and its alloys Ti-6Al-4V and Ti-6Al-7Nb by micro-arc oxidation | |
Wang et al. | Review of the biocompatibility of micro-arc oxidation coated titanium alloys | |
CN101871118B (en) | Method for preparing titanium dioxide layer with multi-level pore structure on surface of medicinal titanium | |
JP2003500159A (en) | Layers disposed on bone or tissue structure implants, such implants, and methods of applying the layers | |
JP2011500970A (en) | Method for forming a bioactive coating | |
US20210156046A1 (en) | Electrolyte for preparing porous coating with hierarchical structure on surface of titanium alloy by means of micro-arc oxidation | |
EP2476390A1 (en) | Dental implant and surface treatment method of dental implant | |
KR20200066867A (en) | Coating method of bioactive elements of nano-mesh type titanium-based alloy using a plasma electrolytic oxidation method | |
KR20110113589A (en) | Method for manufacturing implant material to increase the supporting ratio of bioactive material using porous titanium oxide film and implant material thereby | |
CN106676605A (en) | Preparation method of porous biological activity ceramic film on surface of porous pure titanium or titanium alloy with lattice structure and application thereof | |
Mîndroiu et al. | Comparing performance of nanoarchitectures fabricated by Ti6Al7Nb anodizing in two kinds of electrolytes | |
CN109989089A (en) | A kind of tantalum-based coating with micro-nano structure for promoting in vitro osteogenesis differentiation and preparation method thereof | |
KR100402919B1 (en) | An electrochemical surface treating method for implants comprising metallic titanium or titanium alloys | |
JP6253528B2 (en) | Implant | |
CN104404602B (en) | Preparation method of NiTi shape memory alloy with porous surface | |
TWI462757B (en) | Method of surface treatment for titanium implant | |
JPH0731627A (en) | Implant and manufacture thereof | |
WO2018134930A1 (en) | Orthopedic implant and method for manufacturing same | |
CN113774457A (en) | Method for manufacturing medical titanium-containing material with micro-porous structure surface | |
WO2015186388A1 (en) | Implant and method for producing same | |
KR20070011200A (en) | Nanotube-shaped porous implant surface modification technology | |
KR101892448B1 (en) | A membrane and a manufacturing method for the implant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17892603 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17892603 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |