+

WO2018133002A1 - Dispositif d'étalonnage d'angle de rotation pour système de bras en forme de c et procédé d'étalonnage pour système de bras en forme de c - Google Patents

Dispositif d'étalonnage d'angle de rotation pour système de bras en forme de c et procédé d'étalonnage pour système de bras en forme de c Download PDF

Info

Publication number
WO2018133002A1
WO2018133002A1 PCT/CN2017/071693 CN2017071693W WO2018133002A1 WO 2018133002 A1 WO2018133002 A1 WO 2018133002A1 CN 2017071693 W CN2017071693 W CN 2017071693W WO 2018133002 A1 WO2018133002 A1 WO 2018133002A1
Authority
WO
WIPO (PCT)
Prior art keywords
arm
angle value
rotation angle
calibration
value
Prior art date
Application number
PCT/CN2017/071693
Other languages
English (en)
Chinese (zh)
Inventor
陈垦
王澄
秦文健
熊璟
谢耀钦
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Priority to PCT/CN2017/071693 priority Critical patent/WO2018133002A1/fr
Publication of WO2018133002A1 publication Critical patent/WO2018133002A1/fr

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment

Definitions

  • the present disclosure relates to the field of CT system parameter calibration techniques, for example, to a C-arm system rotation angle calibration device and a calibration method for a C-arm system.
  • the medical diagnostic equipment based on X-ray radiation is called C-arm.
  • the C-arm equipment is more and more widely used in the medical field.
  • the C-arm can move around the guide to the part to be inspected or to be treated. For the purpose of comprehensive inspection of patients who are inconvenient to move or move.
  • An X-ray device composed of an X-ray source at one end of a C-arm, an X-ray detector at the other end of the C-arm, or an image intensifier is used more and more widely as a diagnostic instrument.
  • the vibration of the mechanical structure during the operation of the C-arm system may cause the projection angle of the X-ray source to be different from the preset angle, which may cause artifacts in the reconstructed image and affect the image reconstruction quality.
  • the lack of observation of the vibration of the mechanical structure makes it difficult to calibrate and correct the jitter of the mechanical structure.
  • the method of calibrating the structural parameters of the CT system is usually to calibrate the difference between the system parameters and the design target in the static state, and cannot calibrate and correct the errors generated during the movement of the system.
  • Calibration methods in the technology also require X-ray imaging, which creates additional radiation risks to the human body.
  • the present disclosure provides a C-arm system rotation angle calibration device and a method for calibrating a C-arm system using the C-arm system rotation angle calibration device, which can solve the rotation angle of the C-arm system that cannot be used in motion.
  • the problem of calibration is a C-arm system rotation angle calibration device and a method for calibrating a C-arm system using the C-arm system rotation angle calibration device, which can solve the rotation angle of the C-arm system that cannot be used in motion.
  • a C-arm system rotation angle calibration device includes a motion conversion component, a displacement sensor, a data transmitter, and a processor.
  • the motion conversion assembly is configured to be coupled to the C-arm to convert rotational motion of the C-arm to linear motion.
  • the displacement sensor is coupled to the motion conversion assembly and configured to acquire a displacement signal of the motion conversion assembly and transmit the displacement signal to the data transmitter coupled to the displacement sensor.
  • the processor is coupled to the data transmitter and configured to receive and analyze a displacement signal transmitted by the data transmitter.
  • a method for calibrating a C-arm system by using the above-mentioned C-arm system rotation angle calibration device comprising: the processor controls the displacement sensor to be set to zero, and the displacement sensor collects and collects during a one-degree rotation of the C-arm calibration Transmitting a displacement signal of the linear motion of the motion conversion component to the data transmitter; and according to the received displacement signal sent by the data transmitter, the processor calculates a rotation angle value corresponding to the C-arm at each moment Calibrating the value, and combining the rotation angle value of each moment with the corresponding calibration value to form a standard value pair; when the C-arm is freely rotating, when the controller controls the target angle value of the C-arm and all standard values When the values of the rotation angles of the pair do not match, the target angle value is interpolated and corrected by the standard value pair.
  • the motion conversion assembly comprises: a base, a cam, a longitudinal rack, a transmission gear set and a transverse rack, the cam being fixed to the base by a fixed shaft, the fixed shaft being located at the geometry of the cam Centered on and perpendicular to the base, the geometric center of the cam is disposed in line with the center of rotation of the C-arm, one end of the longitudinal rack is in contact with the contour of the cam, and the other end is connected with an elastic member.
  • the elastic member is disposed in vertical contact with the detector at one end of the C-arm; the lateral rack is drivingly connected to the longitudinal rack through the transmission gear set, and the displacement sensor is connected to one end of the lateral rack;
  • the processor controls the displacement sensor to be set to zero.
  • the displacement sensor collects and transmits a displacement signal of the linear motion of the motion conversion component to the data transmitter, including: the processor controls the displacement The sensor is set to zero and keeps the cam fixed; during the rotation of the C-arm at a constant angular velocity ⁇ , the displacement sensor collects and outputs the linear motion of the transverse rack Shift signal to the data transmission device, record displacement signal f (t) data collected by the transmitter, wherein t is time.
  • the processor calculates a calibration value corresponding to the rotation angle value of the C-arm at each moment, and combines the rotation angle value of each moment with the corresponding calibration value to form a standard value pair, including:
  • the processor calculates a calibration value corresponding to the rotation angle value at each moment.
  • the rotation angle value ⁇ at each time and the corresponding calibration value ⁇ are combined into a standard value pair ( ⁇ , ⁇ ).
  • the controller controls the C-arm target angle value to not match the rotation angle value of all the standard value pairs, the standard value pair is used.
  • Interpolation corrections for the target angle values including:
  • the controller of the C-arm determines that the target angle value does not match the rotation angle value of all the standard value pairs, the two closest to the target angle value are selected among the standard value pairs.
  • the rotation angle values ⁇ 1 and ⁇ 2 respectively correspond to the calibration values ⁇ 1 and ⁇ 2, and the target angle values are interpolated and corrected by using the two selected calibration values ⁇ 1 and ⁇ 2 to obtain a difference result, and the difference result is the target angle value. Corresponding corrected angle.
  • the interpolation method is a linear interpolation method.
  • a C-arm system includes a C-arm, a light source, a detector, and a controller, wherein the light source is disposed at one end of the C-arm and the detector is disposed at the other end of the C-arm.
  • the C-arm is configured to drive the light source and the detector to rotate according to a control signal sent by the controller.
  • the light source is configured to emit a scan signal to the object to be detected during free rotation of the C-arm.
  • the detector is configured to collect projection data of the scan signal on the object to be detected.
  • the controller is configured to be in communication with a processor of the C-arm system rotation angle calibration device and in communication with the detector.
  • the controller is configured to receive and store a plurality of standard value pairs transmitted by a processor of the C-arm system rotation angle calibration device.
  • the controller may be configured to compare the target angle value of the C-arm with all standard value pairs during the free rotation of the C-arm, and determine the target angle value of the C-arm and all standards. When the values of the rotation angles of the pair of values do not match, the target angle value is interpolated and corrected by the plurality of standard value pairs.
  • the controller may be further configured to: when determining that the target angle value of the C-arm does not match the rotation angle value of all the standard value pairs, select the closest target angle value among the standard value pairs.
  • the two rotation angle value angles ⁇ 1 and ⁇ 2 respectively correspond to the calibration values ⁇ 1 and ⁇ 2, and the target angle values are interpolated and corrected by using the two selected calibration values ⁇ 1 and ⁇ 2 to obtain a difference result, and the difference result is the The corrected angle corresponding to the target angle value.
  • the present disclosure provides a C-arm system rotation angle calibration device and a method for calibrating a C-arm system using the C-arm system rotation angle calibration device, the calibration device including a motion conversion component, a displacement sensor, and a data transmitter, motion
  • the conversion assembly is configured to be coupled to the C-arm to convert the rotational motion of the C-arm into a linear motion.
  • the displacement sensor is coupled to the motion conversion component and configured to acquire a displacement signal of the motion conversion component and transmit the displacement signal to the data transmitter connected to the displacement sensor.
  • the device is simple in operation, stable and reliable in operation, and does not need to expose X-rays during use, which can reduce the radiation risk.
  • FIG. 1 is a schematic structural view of a C-arm system rotation angle calibration device and a C-arm system according to the embodiment.
  • the embodiment provides a C-arm system rotation angle calibration device, including a motion conversion component, a displacement sensor 8 and a data transmitter 9, and a processor 10.
  • the motion conversion assembly includes a base 1, a cam 2, a longitudinal rack 4, a spring 5, a transmission gear set 6, and a lateral rack 7.
  • the cam 2 is fixed to the base 1 by a fixed shaft 3 which is located at the geometric center of the cam 2 and which is perpendicular to the base 1. The position of the cam 2 on the base 1 can be adjusted as needed.
  • One end of the longitudinal rack 4 is in contact with the contour of the cam 2, which end is movable along the contour of the cam 2, and the other end of the longitudinal rack 4 is connected with a spring 5.
  • the transverse rack 7 is drivingly connected to the longitudinal rack 4 via a transmission gear set 6.
  • the displacement sensor 8 is connected to one end of the lateral rack 7 away from the longitudinal rack 4, and the data transmitter 9 is connected to the displacement sensor 8 and arranged to collect the reading of the displacement sensor 8.
  • the processor 10 is arranged to be coupled to the data transmitter 9 to receive and analyze the data transmitted by the data transmitter 9.
  • the transmission gear set 6 may comprise two gears, the two gears being coaxially arranged, one of which meshes with the longitudinal rack 4 and the other of which meshes with the transverse rack 7 with the longitudinal rack 4
  • the diameter of the meshing gear is smaller than the diameter of the gear that meshes with the lateral rack 7.
  • the number of gears of the transmission gear set 6 may also be more than two, and the plurality of gears may be coaxially arranged and different in diameter, one of the gears meshes with the longitudinal rack 4, and any one of the remaining gears and the lateral rack 7 In engagement, the diameter of the gear meshing with the longitudinal rack 4 is smaller than the diameter of the gear meshing with the transverse rack 7.
  • This embodiment also provides a method of calibrating a C-arm system using a C-arm system rotation angle calibration device.
  • the center of the light source 12 is center-aligned with the detector 13 at the other end of the C-arm 11.
  • the fixed shaft 3 is passed through the geometric center of the cam 2 and fixed to the base 1, and the starting point of the contour of the cam 2 is aligned with the center of the detector 13, wherein the geometric center of the cam 2 is shared with the center of rotation of the C-arm 11 line.
  • One end of the longitudinal rack 4 is brought into contact with the starting point of the contour of the cam 2, and the spring 5 connected at the other end is in contact with the detector 12.
  • the transverse rack 7 is drivingly coupled to the longitudinal rack 4 via the transmission gear set 6 such that the displacement sensor 8 is coupled to one end of the lateral rack 7.
  • the steps may include:
  • the processor 10 controls the displacement sensor 8 to be set to zero, the controller of the C-arm controls the rotation C-arm 11 to rotate in the counterclockwise direction, and the displacement sensor 8 collects and transmits the displacement signal of the linear motion of the motion conversion component to the data transmitter 9
  • the data transmitter 9 transmits the acquired displacement signal to the processor 10.
  • the holding cam 2 is fixed, and the controller 14 of the C-arm system controls the C-arm 11 to rotate counterclockwise at a constant angular velocity ⁇ , and the rotational motion of the C-arm 11
  • the displacement sensor 8 collects and outputs a displacement signal of the linear motion of the lateral rack 7 to the data transmitter 9, and the data transmitter 9 sends the obtained displacement signal to the processor.
  • the processor 10 records the displacement signal acquired by the data transmitter 9 as f(t), where t is time.
  • the processor 10 calculates a calibration value corresponding to the rotation angle value of the C-arm 11 at each moment, and combines the rotation angle value of each moment with the corresponding calibration value. Standard value pair.
  • the magnification of the transmission gear set 6 is set to ⁇ ; the processor 10 calculates a calibration value corresponding to the rotation angle of each moment.
  • the rotation angle value ⁇ at each time and the corresponding calibration value ⁇ are combined into a standard value pair ( ⁇ , ⁇ ).
  • the two rotation angle values ⁇ 1 closest to the target angle value are selected among the standard value pairs.
  • the calibration values ⁇ 1 and ⁇ 2 corresponding to ⁇ 2 respectively are interpolated and corrected by using the selected two calibration values ⁇ 1 and ⁇ 2 to obtain the difference result, and the difference result is used as the correction corresponding to the target angle value. After the angle.
  • the C-arm system is calibrated using the C-arm system rotation angle calibration device.
  • the light source 12 of the C-arm system is turned off, thereby reducing the risk of radiation.
  • the processor 10 of the apparatus can calculate a calibration value corresponding to the rotation angle value of each time of the C-arm 11 and combine the rotation angle value of each moment with the corresponding calibration value to form a standard value pair.
  • the controller 14 of the C-arm system corrects the target angle value of the C-arm 11 during the free rotation by using the rotation angle value ⁇ and the calibration value ⁇ of the standard value pair. .
  • the controller 14 of the C-arm system is communicatively coupled to the processor 10 of the C-arm system rotational angle calibration device, which transmits a plurality of standard value pairs to the controller 14.
  • the controller 14 controls the target angle value of the C-arm rotation to not match the rotation angle value of all the standard value pairs, the rotation angle value and the calibration value pair in the standard value pair are utilized.
  • the target angle value of the C-arm is interpolated.
  • the interpolation method may be a linear interpolation method. In other embodiments, other suitable interpolation methods can also be employed.
  • the method is simple in operation, stable and reliable in operation, and does not need to expose X-rays during use, and can reduce the radiation risk.
  • the C-arm system may include a C-arm 11, a light source 12, a detector 13 and a controller 14, wherein the light source 12 is disposed at C.
  • One end of the arm 11 and a detector 13 are disposed at the other end of the C-arm 11.
  • the C-arm 11 is arranged to drive the light source 12 and the detector 13 to rotate according to a control signal sent by the controller 14.
  • the light source 12 is arranged to emit a scan signal to the object being detected during free rotation of the C-arm.
  • the detector 13 is arranged to acquire projection data of the scanning signal on the object to be detected.
  • the controller 14 is arranged in communication with the processor 10 of the C-arm system rotation angle calibration device and is communicatively coupled to the detector 13.
  • the controller 14 may be arranged to receive and store a plurality of standard value pairs transmitted by the processor 10 of the C-arm system rotation angle calibration device.
  • the controller 14 may be further configured to compare the target angle value of the C-arm with the plurality of standard value pairs during the C-arm free rotation, when determining the C-arm 11 When the target angle value does not match the rotation angle value in the plurality of standard value pairs, the standard value pair is used for the target The angle value is corrected by interpolation.
  • the controller 14 may be further configured to: when determining that the target angle value of the C-arm does not match the rotation angle value of all the standard value pairs, select the closest target angle value among the standard value pairs.
  • the two rotation angle value angles ⁇ 1 and ⁇ 2 respectively correspond to the calibration values ⁇ 1 and ⁇ 2, and the selected two calibration values ⁇ 1 and ⁇ 2 are used to interpolate the target angle value to obtain a difference result, and the difference result is The corrected angle corresponding to the target angle value.
  • the light source 12 can be an X-ray source.
  • the motion conversion assembly can also be other mechanical structures that can convert the rotary motion into a linear motion, such as a crank slider mechanism. Or crank linkages, etc.
  • the present disclosure provides a C-arm system rotation angle calibration device and a method for calibrating a C-arm system using the C-arm system rotation angle calibration device.
  • the device is simple in operation, stable and reliable in operation, and does not need to expose X-rays during use, which can reduce the radiation risk.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

La présente invention concerne un dispositif d'étalonnage d'angle de rotation pour un système de bras en forme de C et un procédé d'utilisation du dispositif d'étalonnage d'angle de rotation pour un système de bras en forme de C pour étalonner un système de bras en forme de C. Le procédé comprend un élément de conversion de mouvement, un capteur de déplacement (8), un émetteur de données (9) et un processeur (10). L'élément de conversion de mouvement est conçu pour être relié à un bras en forme de C (11) et convertit un mouvement rotatif du bras en forme de C (11) en un mouvement linéaire. Le capteur de déplacement (8) est relié à l'élément de conversion de mouvement et est conçu pour acquérir un signal de déplacement de l'élément de conversion de mouvement et pour transmettre le signal de déplacement à l'émetteur de données (9) relié au capteur de déplacement (8). Le processeur (10) est relié à l'émetteur de données (9) et est conçu pour recevoir et analyser le signal de déplacement envoyé par l'émetteur de données (9).
PCT/CN2017/071693 2017-01-19 2017-01-19 Dispositif d'étalonnage d'angle de rotation pour système de bras en forme de c et procédé d'étalonnage pour système de bras en forme de c WO2018133002A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/071693 WO2018133002A1 (fr) 2017-01-19 2017-01-19 Dispositif d'étalonnage d'angle de rotation pour système de bras en forme de c et procédé d'étalonnage pour système de bras en forme de c

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/071693 WO2018133002A1 (fr) 2017-01-19 2017-01-19 Dispositif d'étalonnage d'angle de rotation pour système de bras en forme de c et procédé d'étalonnage pour système de bras en forme de c

Publications (1)

Publication Number Publication Date
WO2018133002A1 true WO2018133002A1 (fr) 2018-07-26

Family

ID=62907687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071693 WO2018133002A1 (fr) 2017-01-19 2017-01-19 Dispositif d'étalonnage d'angle de rotation pour système de bras en forme de c et procédé d'étalonnage pour système de bras en forme de c

Country Status (1)

Country Link
WO (1) WO2018133002A1 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883390A (zh) * 2005-06-23 2006-12-27 Ge医疗系统环球技术有限公司 X射线ct系统
DE102008059455A1 (de) * 2008-11-28 2010-06-02 Siemens Aktiengesellschaft Verfahren zur Bestimmung der Projektionsgeometrie einer C Bogen-Anlage
CN101810487A (zh) * 2009-02-19 2010-08-25 株式会社东芝 旋转中心位置同定方法和装置、环状伪像校正方法
CN101884546A (zh) * 2010-06-30 2010-11-17 北京航空航天大学 一种抑制c型臂断层成像中轨道振动伪影的装置与方法
CN101909524A (zh) * 2007-10-31 2010-12-08 伊姆普拉斯内部股份公司 用于校准数字x光设备的方法(变型)
US20120209555A1 (en) * 2011-02-16 2012-08-16 David Tang Rotation sensor for use with an imaging system and method for using the same
CN103325141A (zh) * 2012-03-23 2013-09-25 上海理工大学 基于非等中心c形臂2d投影图像的3d模型构建方法
CN105682558A (zh) * 2013-08-29 2016-06-15 西门子保健有限责任公司 具有运动补偿的计算机断层摄影术
CN106821403A (zh) * 2017-01-19 2017-06-13 深圳先进技术研究院 C型臂系统旋转角度校准装置及c型臂系统校准方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1883390A (zh) * 2005-06-23 2006-12-27 Ge医疗系统环球技术有限公司 X射线ct系统
CN101909524A (zh) * 2007-10-31 2010-12-08 伊姆普拉斯内部股份公司 用于校准数字x光设备的方法(变型)
DE102008059455A1 (de) * 2008-11-28 2010-06-02 Siemens Aktiengesellschaft Verfahren zur Bestimmung der Projektionsgeometrie einer C Bogen-Anlage
CN101810487A (zh) * 2009-02-19 2010-08-25 株式会社东芝 旋转中心位置同定方法和装置、环状伪像校正方法
CN101884546A (zh) * 2010-06-30 2010-11-17 北京航空航天大学 一种抑制c型臂断层成像中轨道振动伪影的装置与方法
US20120209555A1 (en) * 2011-02-16 2012-08-16 David Tang Rotation sensor for use with an imaging system and method for using the same
CN103325141A (zh) * 2012-03-23 2013-09-25 上海理工大学 基于非等中心c形臂2d投影图像的3d模型构建方法
CN105682558A (zh) * 2013-08-29 2016-06-15 西门子保健有限责任公司 具有运动补偿的计算机断层摄影术
CN106821403A (zh) * 2017-01-19 2017-06-13 深圳先进技术研究院 C型臂系统旋转角度校准装置及c型臂系统校准方法

Similar Documents

Publication Publication Date Title
US10667869B2 (en) Guidance system for needle procedures
US9675277B2 (en) Breast thickness measurement device and breast thickness measurement method
EP1000582B1 (fr) Appareil et méthode d' imagerie
US20110060185A1 (en) Medical device system and calibration method for medical instrument
JP7254457B2 (ja) 医療用x線デバイスのオンライン較正のための方法およびシステム
CN103327897B (zh) 移动型x射线装置
JP6485410B2 (ja) X線検査装置およびx線検査方法
US8213565B2 (en) Method for correcting truncated projection data
JP2012112790A (ja) X線ct装置
US7570734B2 (en) Method and apparatus for X-ray image correction
JP5060862B2 (ja) 断層撮影装置
WO2015093248A1 (fr) Dispositif de tomographie rx utilisant un bras c et son procédé de commande
CN107205719B (zh) 一种校正超音波扫描器的方法
CN106821403B (zh) C型臂系统旋转角度校准装置及c型臂系统校准方法
JP5677079B2 (ja) X線ct装置
JP5016231B2 (ja) 撮像の幾何学的パラメータを決定する方法及び装置
WO2018133002A1 (fr) Dispositif d'étalonnage d'angle de rotation pour système de bras en forme de c et procédé d'étalonnage pour système de bras en forme de c
JP5481141B2 (ja) 放射線画像撮影装置、放射線画像撮影方法及び位置算出方法
JP2006000225A (ja) X線ct装置
WO2018116870A1 (fr) Dispositif de radiographie, système de radiographie, procédé de radiographie et programme
JPWO2006028085A1 (ja) X線ct装置、画像処理プログラム、及び画像処理方法
JP2023516662A (ja) X線センサ
EP3542722B1 (fr) Équipement et procédé de génération de tomographies
JP4420186B2 (ja) X線ct装置
JP2023039621A (ja) X線診断装置及び医用画像処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17893467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/11/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17893467

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载