WO2018131722A1 - 鋼板及びその製造方法 - Google Patents
鋼板及びその製造方法 Download PDFInfo
- Publication number
- WO2018131722A1 WO2018131722A1 PCT/JP2018/001076 JP2018001076W WO2018131722A1 WO 2018131722 A1 WO2018131722 A1 WO 2018131722A1 JP 2018001076 W JP2018001076 W JP 2018001076W WO 2018131722 A1 WO2018131722 A1 WO 2018131722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel sheet
- temperature range
- temperature
- seconds
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 215
- 239000010959 steel Substances 0.000 title claims abstract description 215
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 101
- 229910000734 martensite Inorganic materials 0.000 claims abstract description 71
- 230000000717 retained effect Effects 0.000 claims abstract description 58
- 239000002184 metal Substances 0.000 claims abstract description 46
- 229910052751 metal Inorganic materials 0.000 claims abstract description 46
- 229910000859 α-Fe Inorganic materials 0.000 claims abstract description 27
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 9
- 239000012535 impurity Substances 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052742 iron Inorganic materials 0.000 claims abstract description 3
- 238000001816 cooling Methods 0.000 claims description 60
- 238000005096 rolling process Methods 0.000 claims description 40
- 238000010438 heat treatment Methods 0.000 claims description 23
- 239000010960 cold rolled steel Substances 0.000 claims description 20
- 229910001567 cementite Inorganic materials 0.000 claims description 18
- 238000005097 cold rolling Methods 0.000 claims description 18
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims description 18
- 238000005098 hot rolling Methods 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 12
- 238000005246 galvanizing Methods 0.000 claims description 11
- 229910052718 tin Inorganic materials 0.000 claims description 10
- 229910052758 niobium Inorganic materials 0.000 claims description 9
- 229910052797 bismuth Inorganic materials 0.000 claims description 8
- 238000005554 pickling Methods 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 abstract description 4
- 238000000137 annealing Methods 0.000 description 48
- 238000000034 method Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 15
- 230000002829 reductive effect Effects 0.000 description 15
- 238000012360 testing method Methods 0.000 description 13
- 229910052761 rare earth metal Inorganic materials 0.000 description 10
- 238000007747 plating Methods 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 229910052720 vanadium Inorganic materials 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 229910052804 chromium Inorganic materials 0.000 description 7
- 229910052749 magnesium Inorganic materials 0.000 description 7
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000005275 alloying Methods 0.000 description 6
- 229910052787 antimony Inorganic materials 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 230000001771 impaired effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 238000001878 scanning electron micrograph Methods 0.000 description 5
- 239000013585 weight reducing agent Substances 0.000 description 5
- 238000001887 electron backscatter diffraction Methods 0.000 description 4
- 229910000794 TRIP steel Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- HQFCOGRKGVGYBB-UHFFFAOYSA-N ethanol;nitric acid Chemical compound CCO.O[N+]([O-])=O HQFCOGRKGVGYBB-UHFFFAOYSA-N 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
- C21D1/19—Hardening; Quenching with or without subsequent tempering by interrupted quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/26—Methods of annealing
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0426—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0421—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
- C21D8/0436—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/003—Cementite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
Definitions
- the present disclosure relates to a steel sheet having excellent formability and a manufacturing method thereof, and specifically relates to a steel sheet having high uniform Mn concentration having excellent uniform elongation characteristics and high strength and a manufacturing method thereof.
- Residual austenite is obtained by concentrating C in austenite so that austenite does not transform into another structure even at room temperature.
- a technique for stabilizing austenite it has been proposed to contain carbide precipitation-inhibiting elements such as Si and Al in the steel sheet, and to enrich C in the austenite during the bainite transformation that occurs in the steel sheet during the manufacturing stage of the steel sheet. Yes.
- the C content contained in the steel plate is large, austenite can be further stabilized and the amount of retained austenite can be increased.
- a steel plate having both excellent strength and elongation can be produced.
- welding is often performed on the steel plate.
- the C content in the steel plate is large, the weldability is deteriorated, so that use as a structural member is limited. Therefore, it is desired to improve both the elongation and strength of the steel sheet with a smaller C content.
- Non-Patent Document 1 steels with more than 4.0% Mn added have been proposed as steel sheets having a retained austenite amount greater than that of the TRIP steel and having a ductility exceeding that of the TRIP steel. Since the steel contains a large amount of Mn, the effect of reducing the weight of the member used is also remarkable. However, the steel requires a long heating process such as box annealing. Therefore, the material design in a short-time heating process such as continuous annealing suitable for manufacturing high-strength steel sheets used for automobile members has not been sufficiently studied, and the requirements for improving the elongation characteristics in that case have not been clear.
- Patent Document 2 a steel added with Mn of more than 4.0% is cold-rolled and heated for a short time of 300 seconds to 1200 seconds to control ferrite to 30% to 80% in area%. Discloses a steel sheet with significantly improved elongation.
- the steel sheet described in Patent Document 2 has a high content of Mn and contains a large amount of non-recrystallized ferrite, so it does not work harden, and as shown in FIG. That is, a steel sheet having a high Mn concentration and having a structure containing ferrite cannot have both the tensile strength and the formability required for a steel sheet for automobiles.
- the present inventors have tempered martensite in the steel sheet in an area of 25% to 90%, ferrite, Of 3% or less, 5% or less of bainite, and 10% or more and 75% or less of retained austenite were found to be effective.
- the steel sheet of the present disclosure has been made based on the above findings, and the summary thereof is as follows.
- the steel sheet of this indication is in one embodiment.
- the balance consists of iron and inevitable impurities
- the metal structure at the 1/4 position of the thickness from the surface is tempered martensite of 25% or more and 90% or less in area%, 3% or less of ferrite, 10% or more and 75% or less of retained austenite, and 5 % Steel sheet containing bainite or less.
- the metal structure at a 1/4 position from the surface includes a mixed structure composed of the retained austenite and fresh martensite, The mixed structure occupies 10% or more and 75% or less in area ratio with respect to the entire metal structure, The retained austenite occupies 10% or more and 50% or less in area ratio with respect to the entire metal structure,
- the structure having an aspect ratio of 1.5 or more and the angle formed by the major axis with respect to the rolling direction is 30 degrees or more and 60 degrees or less is 10% in area ratio with respect to the entire mixed structure.
- the steel material having the chemical composition according to any one of (1) and (4) to (8) is hot-rolled to perform hot rolling. And Subjecting the hot-rolled steel sheet to pickling and cold rolling to form a cold-rolled steel sheet, Raising the temperature of the cold-rolled steel sheet to 650 ° C. at an average heating rate of 5 to 30 ° C./second and holding it in a temperature range of 740 ° C.
- a method for producing a steel sheet characterized by the above. (12) Holding for 5 seconds or more in the temperature range of 600 ° C. or more and less than Ac 3 includes raising the temperature range from 500 ° C. to 600 ° C. at an average of 2 to 10 ° C./sec. The manufacturing method of the steel plate as described in 11).
- the steel sheet is cooled, subjected to a galvanizing treatment, the steel sheet according to any one of (11) - (15) Manufacturing method.
- FIG. 1 is a stress-strain curve of a steel plate.
- FIG. 2 is a scanning electron micrograph of the metal structure of the steel sheet obtained in the example.
- FIG. 3 is an example of an austenite band having a band structure.
- C is an extremely important element for increasing the strength of the steel and securing retained austenite.
- a C content of more than 0.10% is required.
- the upper limit of the C content is less than 0.55%.
- the lower limit of the C content is preferably 0.15% or more, more preferably 0.20% or more.
- the upper limit value of the C content is preferably 0.40% or less, more preferably 0.35% or less.
- Si 0.001% or more and less than 3.50%
- Si is an element effective for strengthening tempered martensite, homogenizing the structure, and improving workability. Si also has the effect of suppressing the precipitation of cementite and promoting the retention of austenite. In order to acquire the said effect, 0.001% or more of Si content is required. On the other hand, if Si is contained excessively, the plateability and chemical conversion property of the steel sheet are impaired, so the upper limit value of the Si content is set to less than 3.50%.
- the lower limit of the Si content is preferably 0.01% or more, more preferably 0.30% or more, and further preferably 0.50% or more. By setting the lower limit value of the Si content within the above range, the uniform elongation characteristic of the steel sheet can be further improved.
- the upper limit of the Si content is preferably 3.00% or less, more preferably 2.50% or less.
- Mn is an element that stabilizes austenite and improves hardenability. Moreover, in the steel plate of this indication, Mn is distributed in austenite and austenite is stabilized more. In order to stabilize austenite at room temperature, more than 4.00% Mn is required. On the other hand, if the steel sheet contains excessive Mn, the ductility is impaired, so the upper limit of the Mn content is set to less than 9.00%.
- the lower limit of the Mn content is preferably 4.30% or more, more preferably 4.80% or more.
- the upper limit of the Mn content is preferably 8.00% or less, more preferably 7.50% or less.
- Al is a deoxidizer and should be contained by 0.001% or more.
- Al has an effect of improving material stability in order to widen the two-phase temperature range during annealing. The effect increases as the Al content increases.
- excessive addition of Al leads to deterioration of surface properties, paintability, weldability, and the like.
- the upper limit of Al was made less than 3.00%.
- the lower limit of the Al content is preferably 0.005% or more, more preferably 0.01% or more, and further preferably 0.02% or more. sol.
- the upper limit of the Al content is preferably 2.50% or less, more preferably 1.80% or less. sol.
- the upper limit of the P content is 0.100% or less.
- the upper limit of the P content is preferably 0.050% or less, more preferably 0.030% or less, and still more preferably 0.020% or less. Since the steel plate according to the present embodiment does not require P, the lower limit value of the P content is 0.000%.
- the lower limit of the P content may be more than 0.000% or 0.001% or more, but the lower the P content, the better.
- S (S: 0.010% or less) S is an impurity, and if the steel sheet contains excessive S, MnS stretched by hot rolling is generated, which causes deterioration of formability such as bendability and hole expansibility. Therefore, the upper limit of the S content is 0.010% or less.
- the upper limit of the S content is preferably 0.007% or less, more preferably 0.003% or less. Since the steel plate according to the present embodiment does not require S, the lower limit value of the S content is 0.000%.
- the lower limit of the S content may be more than 0.000% or 0.001% or more, but the lower the S content, the better.
- N is an impurity, and if the steel sheet contains 0.050% or more of N, the toughness is deteriorated. Therefore, the upper limit of the N content is less than 0.050%.
- the upper limit of the N content is preferably 0.010% or less, more preferably 0.006% or less. Since the steel plate according to this embodiment does not require N, the lower limit of the N content is 0.000%.
- the lower limit of the N content may be more than 0.000% or 0.003% or more, but the lower the N content, the better.
- O is an impurity, and if the steel sheet contains 0.020% or more of O, ductility is deteriorated. Therefore, the upper limit of the O content is less than 0.020%.
- the upper limit of the O content is preferably 0.010% or less, more preferably 0.005% or less, and still more preferably 0.003% or less. Since the steel plate according to the present embodiment does not require O, the lower limit value of the O content is 0.000%.
- the lower limit value of the O content may be more than 0.000% or 0.001% or more, but the lower the O content, the better.
- the steel plate of the present embodiment is further selected from the group consisting of Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn, and Bi, or You may contain 2 or more types.
- the steel plate according to the present embodiment does not require Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn, and Bi, so Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn and Bi may not be contained, that is, the lower limit of the content may be 0%.
- Cr, Mo, W, Cu, and Ni are not essential elements for the steel sheet according to this embodiment. However, since Cr, Mo, W, Cu, and Ni are elements that improve the strength of the steel sheet, they may be contained. In order to obtain the effect of improving the strength of the steel plate, the steel plate may contain 0.01% or more of each of one or more elements selected from the group consisting of Cr, Mo, W, Cu, and Ni. .
- the steel sheet contains these elements in excess, surface scratches during hot rolling are likely to be generated, and further, the strength of the hot rolled steel sheet becomes too high, and cold rollability may be reduced. Therefore, among the contents of one or more elements selected from the group consisting of Cr, Mo, W, Cu, and Ni, the upper limit value of the Cr content is less than 2.00%, and Mo , W, Cu, and Ni, the upper limit of each content shall be 2.00% or less.
- Ti, Nb, and V are not essential elements for the steel sheet according to the present embodiment.
- Ti, Nb, and V are elements that generate fine carbides, nitrides, or carbonitrides, they are effective in improving the strength of the steel sheet. Therefore, the steel sheet may contain one or more elements selected from the group consisting of Ti, Nb, and V.
- the lower limit value of the content of each of one or more elements selected from the group consisting of Ti, Nb, and V is preferably 0.005% or more. .
- the upper limit of the content of each of one or more elements selected from the group consisting of Ti, Nb, and V is set to 0.300% or less.
- B, Ca, Mg, Zr, and REM are not essential elements for the steel sheet of the present disclosure.
- B, Ca, Mg, Zr, and REM improve the local ductility and hole expandability of the steel sheet.
- the lower limit of each of one or more elements selected from the group consisting of B, Ca, Mg, Zr, and REM is preferably 0.0001% or more, more preferably 0. 0.001% or more.
- the upper limit of the content of each of these elements is 0.010% or less, and is selected from the group consisting of B, Ca, Mg, Zr, and REM.
- the total content of one or more elements is preferably 0.030% or less.
- Sb, Sn, and Bi are not essential elements for the steel sheet of the present disclosure.
- Sb, Sn, and Bi suppress oxidizable elements such as Mn, Si, and / or Al in the steel sheet from diffusing into the steel sheet surface to form oxides, and improve the surface properties and plating properties of the steel sheet.
- the lower limit of the content of each of one or more elements selected from the group consisting of Sb, Sn, and Bi is preferably 0.0005% or more, more preferably 0.001. % Or more.
- the content of each of these elements exceeds 0.050%, the effect is saturated, so the upper limit of the content of each of these elements is set to 0.050% or less.
- the metal structure at a 1 ⁇ 4 position (also referred to as a 1 ⁇ 4 t portion) of the thickness from the surface of the steel sheet according to the present embodiment is 25% to 90% tempered martensite, 3% or less ferrite, 10% or more and 75% or less of retained austenite, and 5% or less of bainite.
- the metal structure in the 1 ⁇ 4 t part of the steel sheet contains area percent of cementite of 1.0% or less.
- the metal structure in the 1/4 t part of the steel sheet includes a mixed structure composed of retained austenite and fresh martensite with tempered martensite as a parent phase, and the mixed structure is an area ratio with respect to the entire metal structure.
- the retained austenite occupies 10% or more and 50% or less of the entire metal structure. That is, the metal structure can include 25-90% tempered martensite, 10-50% retained austenite, and 0-65% fresh martensite.
- the fraction of each structure varies depending on the annealing conditions, and affects the materials such as strength, uniform elongation characteristics, and hole expandability. Since the required material varies depending on, for example, parts for automobiles, an annealing condition may be selected as necessary, and the tissue fraction may be controlled within the above range.
- the area percentage of fresh martensite is calculated by subtracting the area percentage of residual austenite from the total area percentage of residual austenite and fresh martensite.
- the area ratio of residual austenite and fresh martensite includes the area ratio of the mixed structure.
- the L cross section refers to a surface cut so as to pass through the central axis of the steel plate in parallel with the plate thickness direction and the rolling direction.
- Tempered martensite is a structure that increases the strength of the steel sheet and improves the ductility. In order to keep both strength and ductility within the desired strength level range, the area ratio of tempered martensite is 25 to 90 area%.
- the lower limit of the tempered martensite content is preferably 35 area%, more preferably 50 area%.
- the upper limit of the content of tempered martensite is preferably 70% by area. As described above, by setting the C content to 0.15% or more and further controlling the content of tempered martensite to 35 area% or more and 70 area% or less as described later, uniform elongation characteristics are obtained. Without damage, it is possible to obtain a high-strength steel sheet having a tensile strength (TS) of 1180 MPa or more.
- TS tensile strength
- the amount of ferrite in the metal structure is small. This is because when the ferrite content in the metal structure is increased, the uniform elongation characteristic is remarkably lowered.
- the area ratio of ferrite in the metal structure is set to 3% or less, more preferably 1% or less, and still more preferably 0%.
- the amount of cementite in the metal structure is preferably small. This is because when the content of cementite in the metal structure is reduced, the uniform elongation characteristics are improved, and the product “TS ⁇ uEL” of the tensile strength and uniform elongation of 15000 MPa ⁇ % or more, which is a more preferable range, is obtained.
- the area ratio of cementite in the metal structure is preferably 1.0% or less, more preferably 0%.
- Residual austenite is a structure that improves the ductility and formability of the steel sheet, particularly the uniform elongation characteristic and the hole expansion property of the steel sheet, by transformation-induced plasticity. Residual austenite can be transformed into martensite by stretching, drawing, stretch flange processing, or bending with tensile deformation, which contributes to the improvement of the strength of the steel sheet. In order to obtain these effects, the steel sheet according to the present embodiment needs to contain 10% or more of retained austenite by area ratio in the metal structure.
- the lower limit of the area ratio of retained austenite is preferably 15%, more preferably 18%, and even more preferably 20%.
- the area ratio of retained austenite is 15% or more, the hole expandability is further improved.
- the product of tensile strength and uniform elongation “TS ⁇ uEL” is preferably 13500 MPa ⁇ % or more, more preferably 14000 MPa ⁇ % or more, and further preferably 15000 MPa ⁇ % or more, The uniform elongation characteristic is maintained even at higher strength.
- the mixed structure of retained austenite and fresh martensite in the metal structure occupies 10% or more and 75% or less in terms of the area ratio with respect to the entire metal structure.
- the mixed structure of retained austenite and fresh martensite becomes substantially one hard fresh martensite structure due to the processing-induced transformation of retained austenite. Residual austenite alone also becomes substantially one hard fresh martensite structure due to processing-induced transformation. That is, the mixed structure also means a retained austenite single structure when the area ratio of fresh martensite is 0%.
- the hole expandability is improved. Therefore, not only the amount of retained austenite alone but also the amount of mixed structure that substantially acts as one fresh martensite structure after processing-induced transformation is important from the viewpoint of improving hole expandability.
- the area ratio of the mixed structure of fresh martensite and retained austenite By setting the area ratio of the mixed structure to 10% or more, the area ratio of retained austenite becomes 10% or more, so that the hole expandability is improved.
- the area ratio of the mixed structure By setting the area ratio of the mixed structure to 75% or less, generation of voids at the interface between retained austenite and fresh martensite during processing-induced transformation can be suppressed, and excellent hole expansibility can be maintained. .
- the area ratio of the mixed structure of retained austenite and fresh martensite is 10% or more and 75% or less. That is, as long as the area ratio of retained austenite is in the range of 10 to 50% and the area ratio of the mixed structure is in the range of 10 to 75%, the area ratio of fresh martensite is 0 to 65%. it can.
- the area ratio of the mixed tissue is preferably 15% to 70%, more preferably 20% to 65%.
- Fresh martensite is martensite that has not been tempered.
- Fresh martensite is a hard structure and is effective in securing the strength of the steel sheet.
- the lower the content of fresh martensite the higher the bendability of the steel sheet.
- the area ratio of fresh martensite is better.
- the metal structure of the steel sheet is preferably an area ratio, preferably more than 0%, more preferably 1% or more, further preferably 2% or more, More preferably, it contains 3% or more of fresh martensite.
- the upper limit of the content of fresh martensite is preferably 55%, more preferably 45%, and still more preferably 20% in terms of area ratio from the viewpoint of ensuring bendability.
- tempered bainite As the remaining structure other than tempered martensite, ferrite, cementite, retained austenite, bainite, and fresh martensite, tempered bainite is desirable.
- the area ratio of tempered bainite can be measured by scanning electron microscope observation in the same manner as the measurement of the area ratio of tempered martensite, ferrite, cementite, retained austenite, bainite, and fresh martensite.
- the mixed structure of retained austenite and fresh martensite includes a structure having an aspect ratio of 1.5 or more.
- the aspect ratio of the mixed structure can be measured based on the observation of the microstructure by the above-described scanning electron microscope observation.
- the aspect ratio of the mixed tissue refers to an aspect ratio of a region (tissue) in which contrast is uniformly seen by observation with a scanning electron microscope.
- the orientation of the mixed structure having an aspect ratio of 1.5 or more greatly affects the hole expandability.
- the mixed structure When the long axis of the mixed structure has an angle of less than 30 degrees with respect to the rolling direction, the mixed structure exhibits a structure oriented in the rolling direction, thereby impairing the homogeneity.
- the mixed structure When the long axis of the mixed structure has an angle of more than 60 degrees with respect to the rolling direction, the mixed structure exhibits a structure oriented in the plate thickness direction, thereby impairing homogeneity. Therefore, when the long axis of the mixed structure has an angle of 30 degrees or more and 60 degrees or less with respect to the rolling direction, good hole expandability can be obtained.
- the angle of the long axis of the mixed structure with respect to the rolling direction can be measured based on the observation of the microstructure by the above-mentioned scanning electron microscope observation.
- the major axis of the mixed tissue is the same as the length in the longitudinal direction in the measurement of the aspect ratio of the mixed tissue.
- the value obtained by dividing the area of the mixed structure in which the aspect ratio is 1.5 or more and the long axis is 30 degrees or more and 60 degrees or less with respect to the rolling direction by the area of the entire mixed structure is 10% or more, It can be suppressed that the long axis of the structure is oriented in the rolling direction, the hole expanding property can be improved, and an SF value of 10% or more can be obtained in the stretch flange test.
- the ratio of the structure in which the aspect ratio is 1.5 or more and the angle of the major axis to the rolling direction is 30 degrees or more and 60 degrees or less occupies the mixed structure is 10% or more, preferably 20% or more in terms of area ratio. It is.
- the ratio of the structure in which the aspect ratio is 1.5 or more and the angle of the major axis to the rolling direction is 30 degrees or more and 60 degrees or less is the ratio of the mixed structure to the microstructure measured by the above-mentioned scanning electron microscope observation. Can be performed based on observation.
- the following may be performed.
- the second moment of the target mixed tissue region is calculated.
- an inertia main axis and a main inertia moment are calculated from the secondary moment.
- the first inertia main axis direction is defined as the major axis direction.
- the pitch (also referred to as interval) of the austenite band of the band structure is preferably 12 ⁇ m or less.
- the austenite band interval is within the above range, the steel sheet has better hole expansibility.
- FIG. 3 shows an example of an austenite band having a band structure.
- the part shown with the arrow is an austenite zone.
- FIG. 3 is a distribution image of austenite and ferrite in a range of 80 ⁇ m in the sample rolling direction and 40 ⁇ m in the sample plate thickness direction measured by EBSD (Electron Back Scatter Diffraction Patterns).
- the interval between the austenite bands of the band structure is the pitch between the arrows shown in FIG.
- the distance between the austenite bands of the band structure is 80 ⁇ m in the sample rolling direction and 40 ⁇ m in the sample plate thickness direction using EBSD, and the length in the sample plate thickness direction is 40 ⁇ m in the sample plate thickness direction. It can be calculated by dividing by the number of peaks in the austenite volume fraction profile along.
- the TS of the steel sheet according to this embodiment is preferably 780 MPa or more, more preferably 1000 MPa or more, and further preferably 1180 MPa. This is because when a steel plate is used as an automobile material, the plate thickness is reduced by increasing the strength, thereby contributing to weight reduction. Moreover, in order to use the steel plate which concerns on this embodiment for press forming, it is desirable that uniform elongation (uEL) is excellent. In that case, TS ⁇ uEL is preferably 12000 MPa ⁇ % or more, more preferably 13500 MPa ⁇ % or more, further preferably 14000 MPa ⁇ % or more, and even more preferably 15000 MPa ⁇ % or more.
- the hole expansibility is also excellent.
- the hole expandability can be evaluated by the SF value, and the SF value is preferably 10% or more, more preferably 12% or more, and further preferably 15% or more.
- the steel sheet of the present disclosure has high strength, good uniform elongation characteristics, preferably good hole expansibility, and excellent formability. Therefore, automobiles such as pillars and cross members Ideal for structural parts applications. Furthermore, since the steel sheet of the present disclosure has a high Mn concentration, it contributes to the weight reduction of automobiles, and thus the industrial contribution is extremely remarkable.
- the steel sheet according to the present embodiment is a hot-rolled steel sheet obtained by melting a steel having the above-described chemical composition by a conventional method, casting it to produce a slab or a steel ingot, and heating and hot rolling it. After pickling, it is manufactured by annealing.
- Hot rolling may be performed on a normal continuous hot rolling line.
- annealing can be performed with a continuous annealing line, and it is excellent in productivity. If the conditions described later are satisfied, the annealing may be performed in either an annealing furnace or a continuous annealing line.
- skin pass rolling may be performed on the steel sheet after cold rolling.
- heat treatment conditions are performed within the following ranges.
- the molten steel may be melted by a normal blast furnace method, and the raw material contains a large amount of scrap like steel produced by the electric furnace method. May be included.
- the slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.
- the above slab or steel ingot is heated and hot rolled.
- the temperature of the steel material used for hot rolling is preferably 1100 ° C. or higher and 1300 ° C. or lower.
- the deformation resistance during hot rolling can be further reduced.
- the temperature of the steel material used for hot rolling is reducing to 1300 ° C. or less, it is possible to suppress a decrease in yield due to an increase in scale loss.
- the time for holding in the temperature range of 1100 ° C. or higher and 1300 ° C. or lower before hot rolling is not particularly limited, but in order to improve bendability, it is preferably 30 minutes or longer, and more preferably 1 hour or longer. preferable. Moreover, in order to suppress an excessive scale loss, it is preferable to set it as 10 hours or less, and it is more preferable to set it as 5 hours or less. In addition, it is a case where direct feed rolling or direct rolling is performed, and it may be subjected to hot rolling as it is without performing heat treatment.
- the finishing rolling start temperature is preferably 700 ° C. or higher and 1000 ° C. or lower.
- the finish rolling start temperature is more preferably more than 850 ° C., further preferably 900 ° C. or more.
- the finish rolling start temperature By setting the finish rolling start temperature to 700 ° C. or higher, the deformation resistance during rolling can be reduced.
- the finish rolling start temperature By making the finish rolling start temperature more preferably more than 850 ° C., and more preferably 900 ° C. or more, the embrittlement structure is preferentially generated at the large-angle grain boundary of the martensite structure and ferrite is formed in the hot-rolled steel sheet. Therefore, the interval between the austenite bands of the band structure can be narrowed, and the hole expandability can be further improved.
- the hot-rolled steel sheet obtained by finish rolling can be cooled, wound, and coiled.
- the winding temperature after cooling is preferably 700 ° C. or lower. By setting the coiling temperature to 700 ° C. or less, internal oxidation is suppressed, and subsequent pickling becomes easy.
- the winding temperature is more preferably 650 ° C. or less, and further preferably 600 ° C. or less.
- the hot-rolled sheet may be tempered at 300 ° C. or more and 600 ° C. or less after being cooled to room temperature and before cold rolling.
- the hot-rolled steel sheet is pickled by a conventional method and then cold-rolled to obtain a cold-rolled steel sheet.
- the rolling reduction of the cold rolling is 20% or more. From the viewpoint of suppressing breakage during cold rolling, the rolling reduction of cold rolling is preferably 70% or less.
- the interval between the austenite bands is preferably 12 ⁇ m or less. By setting the interval between the austenite bands to 12 ⁇ m or less, the hole expandability can be further improved.
- the cold-rolled steel sheet obtained through the hot rolling process and the cold rolling process is heated, the temperature is increased to 650 ° C. at an average heating rate of 5 to 30 ° C./second, and the temperature range is 740 ° C. or higher for 10 seconds.
- the temperature range from the temperature maintained in the temperature range of 740 ° C. or higher to 500 ° C. or lower is then cooled at an average cooling rate of 2 ° C./second or higher and 2000 ° C./second or lower. Heat and hold at 600 ° C. or more and less than Ac 3 point for 5 seconds or more.
- the heat treatment of the cold-rolled steel sheet is preferably performed in a reducing atmosphere, more preferably in a reducing atmosphere containing nitrogen and hydrogen, for example, a reducing atmosphere of 98% nitrogen and 2% hydrogen.
- a reducing atmosphere containing nitrogen and hydrogen
- a reducing atmosphere of 98% nitrogen and 2% hydrogen By performing heat treatment in a reducing atmosphere, it is possible to prevent the scale from adhering to the surface of the steel sheet, and it can be sent directly to the plating step without requiring acid cleaning. Holding 100 ° C. or higher 500 ° C. 1000 seconds or less 10 seconds or more or less temperature range, then cooled to room temperature, then heated again, it is preferable to hold 600 ° C. or higher Ac in a temperature range of less than 3 points 5 seconds or more .
- the distribution of ferrite in the steel sheet after annealing can be made more uniform and the ferrite content in the steel sheet can be reduced, and uniform elongation characteristics Further, the hole expandability and strength can be improved.
- the ferrite content in the metal structure can be further reduced, and the area ratio of ferrite in the metal structure is 3% or less. More preferably, it can be made 1% or less, more preferably 0%.
- the annealing temperature after cold rolling is preferably 740 ° C. or higher and Ac 3 points or higher.
- the annealing temperature after cold rolling is preferably 740 ° C. or higher and Ac 3 points or higher.
- recrystallization can be remarkably promoted, and the ferrite content in the steel sheet can be reduced to 0%.
- Ac 3 points can be calculated using this equation.
- the upper limit of the annealing temperature after cold rolling is preferably 950 ° C. or lower.
- the annealing temperature after cold rolling is preferably 800 ° C. or lower. By setting the annealing temperature after cold rolling to 800 ° C. or less, the content of ferrite and cementite in the metal structure can be further reduced.
- the annealing time is set to 10 seconds or longer, preferably 40 seconds or longer. From the viewpoint of productivity, the annealing time is preferably within 300 seconds.
- the grain boundary Since segregation can be suppressed and bendability can be improved, and the formation of ferrite in cold-rolled steel sheets can be suppressed, the austenite band interval of the band structure is narrowed, and the hole expandability is further improved. be able to.
- the average cooling rate after annealing is preferably 20 ° C./second or more, more preferably 50 ° C./second or more, further preferably 200 ° C./second or more, and even more preferably 250 ° C./second or more.
- the average cooling rate after annealing is preferably 20 ° C./second or more, more preferably 50 ° C./second or more, further preferably 200 ° C./second or more, and even more preferably 250 ° C./second or more.
- the practical upper limit of the average cooling rate after annealing is 2000 ° C. / Sec.
- the cooling stop temperature of the average cooling rate in the above range is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 50 ° C. or lower.
- the temperature is maintained in a temperature range of 100 ° C. to 500 ° C. for 10 seconds to 1000 seconds.
- the holding time in the temperature range is more preferably 30 seconds or more. From the viewpoint of productivity, the holding time in the temperature range is more preferably 300 seconds or less.
- the holding temperature in the above temperature range is preferably 100 ° C. or higher, more preferably 200 ° C. or higher, the efficiency of the continuous annealing line can be improved.
- the holding temperature is preferably 500 ° C. or lower, grain boundary segregation can be suppressed and bendability can be improved.
- the steel sheet After cooling after the annealing, the steel sheet is cooled to room temperature after being preferably held in a temperature range of 100 ° C. or more and 500 ° C. or less.
- the annealing time is set to 5 seconds or longer, preferably 30 seconds or longer, more preferably 60 seconds or longer. From the viewpoint of productivity, it is preferable that the annealing time is 300 seconds or less.
- the temperature range from 500 ° C. to 600 ° C. is increased at an average heating rate of 2 to 10 ° C./second.
- the cementite content in the metal structure can be reduced.
- the area ratio of cementite in the metal structure can be reduced to 1.0% or less, more preferably 0%.
- the cooling after the annealing may be performed to room temperature as it is when the steel plate is not plated. Moreover, when plating on a steel plate, it manufactures as follows.
- the cooling after the annealing is stopped in a temperature range of 430 to 500 ° C., and then the cold rolled steel sheet is immersed in a hot dip galvanizing bath. Then, hot dip galvanizing is performed.
- the conditions for the plating bath may be within the normal range. What is necessary is just to cool to room temperature after a plating process.
- an alloyed hot dip galvanized steel sheet by subjecting the surface of the steel sheet to galvannealed steel, after the hot dip galvanizing process is performed on the steel sheet, before the steel sheet is cooled to room temperature, the temperature of 450 to 620 ° C An alloying treatment of hot dip galvanizing is performed at a temperature.
- the alloying treatment conditions may be within a normal range.
- a high strength steel plate having a tensile strength (TS) of preferably 780 MPa or more, more preferably 1180 MPa or more can be obtained.
- TS tensile strength
- the plate thickness can be reduced by increasing the strength, thereby contributing to weight reduction.
- uniform elongation (uEL) can be improved, and a steel sheet excellent in high strength and uniform elongation characteristics of TS ⁇ uEL, preferably 12000 MPa ⁇ % or more can be obtained.
- the steel sheet produced by the production method of the present disclosure has high strength, good uniform elongation characteristics, and excellent formability, so it is suitable for structural parts of automobiles such as pillars. Can be used. Furthermore, after the cold-rolled steel sheet is annealed, by setting the cooling stop temperature to 100 ° C. or less, a steel sheet having not only high strength and excellent uniform elongation characteristics but also excellent hole expandability can be obtained. For example, it can be suitably used for structural parts of automobiles that require stretch flange processing.
- the steel sheet of the present disclosure has a high content of Mn, it contributes to the weight reduction of automobiles, and thus the industrial contribution is extremely remarkable.
- the steel sheet of the present disclosure will be described more specifically with reference to an example.
- the following examples are examples of the steel sheet of the present disclosure and the manufacturing method thereof, and the steel sheet of the present disclosure and the manufacturing method thereof are not limited to the following examples.
- the obtained slab was hot-rolled under the conditions shown in Table 2 to produce a 2.6 mm thick hot-rolled steel sheet, and then the obtained hot-rolled steel sheet was pickled, cold-rolled, and 1 A cold-rolled steel sheet having a thickness of 2 mm was made.
- the heat processing of the conditions shown in Table 3 was performed, and the annealed cold-rolled steel plate was produced.
- the cold-rolled steel sheet is heated and held at a temperature range of 740 ° C. or higher for 10 seconds or longer, and then the temperature range from the temperature held at a temperature range of 740 ° C. or higher to 500 ° C. or lower is average cooling rate 2 ° C./second.
- the cooling was performed at 2000 ° C./second or less. Thereafter, in some examples, the temperature was maintained at 10 ° C. or more and 500 ° C. or less for 10 seconds or more and 1000 seconds or less. After cooling to room temperature, heated again, and kept 600 ° C. or higher Ac in a temperature range of less than 3 points 5 seconds or more.
- the heat treatment of the cold rolled steel sheet was performed in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
- Some examples of annealed cold-rolled steel sheets were hot-dip galvanized and then subjected to alloying without cooling to room temperature. It heated to 520 degreeC, hold
- the annealed cold-rolled steel sheet thus obtained was temper-rolled at an elongation of 0.1% to prepare various evaluation steel sheets.
- the area ratios of tempered martensite, ferrite, cementite, retained austenite, bainite, tempered bainite, and fresh martensite were calculated from microstructure observation and X-ray diffraction measurement using a scanning electron microscope.
- the L cross-section obtained by cutting the steel sheet in parallel with the plate thickness direction and the rolling direction was mirror-polished, and then the microstructure was revealed with 3% nital, and 1/4 from the surface with a scanning electron microscope with a magnification of 5000 times.
- X-ray diffraction analysis using Co tube was carried out three times, the obtained profiles were analyzed, the average of each was calculated to calculate the area ratio of residual austenite, and the total area of residual austenite and fresh martensite The area ratio of fresh martensite was calculated by subtracting the area ratio of retained austenite from the ratio.
- the area ratio was measured using image analysis software ImageJ. First, an SEM image (24 ⁇ m ⁇ 18 ⁇ m) was obtained by observing the microstructure at a 1/4 position from the surface at a magnification of 5000 using an SEM, and the SEM image was arranged so that the rolling direction was horizontal. Next, 1280 ⁇ 960 divided regions were formed on the SEM image using ImageJ. For each divided region, binarization processing was performed so that the mixed tissue was black and the other regions were white.
- the threshold value for binarization is the average value of the luminance values described in “Glasbey, CA (1993),“ An analysis of histogram-based thresholding algorithms ”, CVGIP: Graphical Models and Image Processing 55: 532-537”. It was determined using the method adopted as the threshold.
- the aspect ratio is 1.5 or more,
- the ratio of the mixed structure in which the angle formed by the major axis with the rolling direction is 30 ° to 60 ° C. was calculated.
- the area ratio of the retained austenite and fresh martensite includes the area ratio of the mixed structure.
- the distance between the austenite bands is 80 ⁇ m in the sample rolling direction and 40 ⁇ m in the sample plate thickness direction using EBSD, and the length of 40 ⁇ m in the sample plate thickness direction is the austenite volume ratio along the sample plate thickness direction. It was calculated by dividing by the number of peaks in the profile.
- Test method for mechanical properties A JIS No. 5 tensile specimen was taken from the direction perpendicular to the rolling direction of the steel sheet, and the tensile strength (TS) and uniform elongation (uEL) were measured.
- the tensile test was performed by a method defined in JIS-Z2201 using a JIS No. 5 tensile test piece.
- the uniform elongation test was performed by a method defined in JIS-Z2201 using a JIS No. 5 test piece having a parallel part length of 50 mm.
- SF stretch flange test value
- SF 100 ⁇ (d ⁇ 10) / 10 It is represented by The mixed structure occupies 10% to 75% in area ratio with respect to the entire metal structure, and the retained austenite occupies 10% to 50% in area ratio with respect to the entire metal structure.
- the austenite band pitch exceeds 12 ⁇ m, an SF value of 10 to 12% can be obtained.
- the austenite band pitch is 12 ⁇ m or less, a preferable SF value of 12% or more can be obtained.
- the pitch is 11 ⁇ m or less, a more preferable SF value of 15% or more can be obtained.
- FIG. 1 shows stress-strain curves of a comparative example (prior art) of Example No. 3 and a steel plate of the Example of Example No. 1.
- FIG. 2 the scanning electron micrograph of the metal structure in the 1/4 position of thickness from the surface in the L cross section of the steel plate obtained by the Example of example number 18 is shown. A portion surrounded by a dotted line is a mixed structure of retained austenite and fresh martensite. The remaining black part is tempered martensite.
- the solid line arrow represents the rolling direction and the major axis direction of the mixed structure of retained austenite and fresh martensite, the broken line represents the range of the angle between the rolling direction and 30 degrees or more and 60 degrees or less. Represents the lengths of the major axis and minor axis of the mixed tissue.
- the angle formed by the long axis of the mixed structure and the rolling direction is represented as ⁇ .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
質量%で、
C:0.10%超0.55%未満、
Si:0.001%以上3.50%未満、
Mn:4.00%超9.00%未満、及び
sol.Al:0.001%以上3.00%未満、
を含有し、
P:0.100%以下、
S:0.010%以下、
N:0.050%未満、及び
O:0.020%未満、
に制限し、残部が鉄および不可避的不純物からなり、
L断面において表面から厚みの1/4位置における金属組織が、面積%で、25%以上90%以下の焼き戻しマルテンサイト、3%以下のフェライト、10%以上75%以下の残留オーステナイト、及び5%以下のベイナイトを含む
ことを特徴とする鋼板。
(2)前記L断面において表面から厚みの1/4位置における金属組織が、面積%で、1.0%以下のセメンタイトを含む、前記(1)に記載の鋼板。
(3)前記L断面において表面から厚みの1/4位置における金属組織が、前記残留オーステナイトとフレッシュマルテンサイトとからなる混合組織を含み、
前記混合組織は、前記金属組織の全体に対して面積率で10%以上75%以下を占め、
前記残留オーステナイトは、前記金属組織の全体に対して面積率で10%以上50%以下を占め、
前記混合組織の中でアスペクト比が1.5以上であり且つ長軸が前記圧延方向と成す角度が30度以上60度以下である組織が、前記混合組織の全体に対して面積率で10%以上を占める、
前記(1)または(2)に記載の鋼板。
(4)質量%で、
Cr:2.00%未満、
Mo:2.00%以下、
W:2.00%以下、
Cu:2.00%以下、
Ni:2.00%以下、
Ti:0.300%以下、
Nb:0.300%以下、
V:0.300%以下、
B:0.010%以下、
Ca:0.010%以下、
Mg:0.010%以下、
Zr:0.010%以下、
REM:0.010%以下、
Sb:0.050%以下、
Sn:0.050%以下、及び
Bi:0.050%以下
からなる群から選択される1種又は2種以上をさらに含有する、前記(1)~(3)のいずれかに記載の鋼板。
(5)質量%で、
Cr:0.01%以上2.00%未満、
Mo:0.01%以上2.00%以下、
W:0.01%以上2.00%以下、
Cu:0.01%以上2.00%以下、及び
Ni:0.01%以上2.00%以下
からなる群から選択される1種又は2種以上をさらに含有する、前記(4)に記載の鋼板。
(6)質量%で、
Ti:0.005%以上0.300%以下、
Nb:0.005%以上0.300%以下、及び
V:0.005%以上0.300%以下
からなる群から選択される1種又は2種以上をさらに含有する、前記(4)または(5)に記載の鋼板。
(7)質量%で、
B:0.0001%以上0.010%以下、
Ca:0.0001%以上0.010%以下、
Mg:0.0001%以上0.010%以下、
Zr:0.0001%以上0.010%以下、及び
REM:0.0001%以上0.010%以下
からなる群から選択される1種又は2種以上をさらに含有する、前記(4)~(6)のいずれかに記載の鋼板。
(8)質量%で、
Sb:0.0005%以上0.050%以下、
Sn:0.0005%以上0.050%以下、及び
Bi:0.0005%以上0.050%以下
からなる群から選択される1種又は2種以上をさらに含有する、前記(4)~(7)のいずれかに記載の鋼板。
(9)前記鋼板の表面に溶融亜鉛めっき層を有する、前記(1)~(8)のいずれかに記載の鋼板。
(10)前記鋼板の表面に合金化溶融亜鉛めっき層を有する、前記(1)~(8)のいずれかに記載の鋼板。
(11)本開示の鋼板の製造方法は一実施形態において、前記(1)及び(4)~(8)のいずれかに記載の化学組成を有する鋼材に、熱間圧延を施して熱延鋼板とすること、
前記熱延鋼板に酸洗と冷間圧延とを施して冷延鋼板とすること、
前記冷延鋼板を、5~30℃/秒の平均加熱速度で650℃まで昇温して740℃以上の温度域で10秒以上保持すること、
前記740℃以上の温度域で保持した温度から500℃以下までの温度範囲の冷却を、平均冷却速度2℃/秒以上2000℃/秒以下で行うこと、
前記冷却後に室温まで冷却すること、並びに
前記室温まで冷却した後、600℃以上Ac3点未満の温度域で5秒以上保持すること、
を特徴とする鋼板の製造方法。
(12)前記600℃以上Ac3点未満の温度域で5秒以上保持することが、500℃から600℃までの温度範囲を平均2~10℃/秒で昇温することを含む、前記(11)に記載の鋼板の製造方法。
(13)前記平均冷却速度が200℃/秒以上2000℃/秒以下である、前記(11)または(12)に記載の鋼板の製造方法。
(14)前記平均冷却速度で、前記740℃以上の温度域で保持した温度から、100℃以下までの温度範囲の冷却を行う、前記(11)~(13)のいずれかに記載の鋼板の製造方法。
(15)前記平均冷却速度で冷却した後、100℃以上500℃以下の温度域で10秒以上1000秒以下保持する、前記(11)~(14)のいずれかに記載の鋼板の製造方法。
(16)前記600℃以上Ac3点未満の温度域で5秒以上保持した後、前記鋼板を冷却し、溶融亜鉛めっき処理を施す、前記(11)~(15)のいずれかに記載の鋼板の製造方法。
(17)前記溶融亜鉛めっき処理を施した後、450℃以上620℃以下の温度域で前記溶融亜鉛めっきの合金化処理を施す、前記(16)に記載の鋼板の製造方法。
本開示の鋼板の化学組成を上述のように規定した理由を説明する。以下の説明において、各元素の含有量を表す「%」は特に断りがない限り質量%を意味する。
Cは、鋼の強度を高め、残留オーステナイトを確保するために、極めて重要な元素である。十分な残留オーステナイト量を得るためには、0.10%超のC含有量が必要となる。一方、Cを過剰に含有すると鋼板の溶接性を損なうので、C含有量の上限を0.55%未満とした。
Siは、焼き戻しマルテンサイトを強化し、組織を均一化し、加工性を改善するのに有効な元素である。また、Siは、セメンタイトの析出を抑制し、オーステナイトの残留を促進する作用も有する。上記効果を得るために、0.001%以上のSi含有量が必要となる。一方、Siを過剰に含有すると鋼板のメッキ性や化成処理性を損なうので、Si含有量の上限値を3.50%未満とした。
Mnは、オーステナイトを安定化させ、焼入れ性を高める元素である。また、本開示の鋼板においては、Mnをオーステナイト中に分配させ、よりオーステナイトを安定化させる。室温でオーステナイトを安定化させるためには、4.00%超のMnが必要である。一方、鋼板がMnを過剰に含有すると延性を損なうので、Mn含有量の上限を9.00%未満とした。
Alは、脱酸剤であり、0.001%以上含有させる必要がある。また、Alは、焼鈍時の二相温度域を広げるため、材質安定性を高める作用も有する。Alの含有量が多いほどその効果は大きくなるが、Alを過剰に含有させると、表面性状、塗装性、及び溶接性などの劣化を招くので、sol.Alの上限を3.00%未満とした。
Pは不純物であり、鋼板がPを過剰に含有すると靭性や溶接性を損なう。したがって、P含有量の上限を0.100%以下とする。P含有量の上限値は、好ましくは0.050%以下、より好ましくは0.030%以下、さらに好ましくは0.020%以下である。本実施形態に係る鋼板はPを必要としないので、P含有量の下限値は0.000%である。P含有量の下限値は0.000%超または0.001%以上でもよいが、P含有量は少ないほど好ましい。
Sは不純物であり、鋼板がSを過剰に含有すると、熱間圧延によって伸張したMnSが生成し、曲げ性及び穴広げ性などの成形性の劣化を招く。したがって、S含有量の上限を0.010%以下とする。S含有量の上限値は、好ましくは0.007%以下、より好ましくは0.003%以下である。本実施形態に係る鋼板はSを必要としないので、S含有量の下限値は0.000%である。S含有量の下限値を0.000%超または0.001%以上としてもよいが、S含有量は少ないほど好ましい。
Nは不純物であり、鋼板が0.050%以上のNを含有すると靭性の劣化を招く。したがって、N含有量の上限を0.050%未満とする。N含有量の上限値は、好ましくは0.010%以下、より好ましくは0.006%以下である。本実施形態に係る鋼板はNを必要としないので、N含有量の下限値は0.000%である。N含有量の下限値を0.000%超または0.003%以上としてもよいが、N含有量は少ないほど好ましい。
Oは不純物であり、鋼板が0.020%以上のOを含有すると延性の劣化を招く。したがって、O含有量の上限を0.020%未満とする。O含有量の上限値は、好ましくは0.010%以下、より好ましくは0.005%以下、さらに好ましくは0.003%以下である。本実施形態に係る鋼板はOを必要としないので、O含有量の下限値は0.000%である。O含有量の下限値を0.000%超または0.001%以上としてもよいが、O含有量は少ないほど好ましい。
(Mo:2.00%以下)
(W:2.00%以下)
(Cu:2.00%以下)
(Ni:2.00%以下)
Cr、Mo、W、Cu、及びNiはそれぞれ、本実施形態に係る鋼板に必須の元素ではない。しかしながら、Cr、Mo、W、Cu、及びNiは、鋼板の強度を向上させる元素であるので、含有されてもよい。鋼板の強度向上効果を得るために、鋼板は、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれを0.01%以上含有してもよい。しかしながら、鋼板がこれらの元素を過剰に含有すると、熱延時の表面傷が生成しやすくなり、さらには、熱延鋼板の強度が高くなりすぎて、冷間圧延性が低下する場合がある。したがって、Cr、Mo、W、Cu、及びNiからなる群から選択された1種又は2種以上の元素それぞれの含有量のうち、Crの含有量の上限値を2.00%未満とし、Mo、W、Cu、及びNiのそれぞれの含有量の上限値を2.00%以下とする。
(Nb:0.300%以下)
(V:0.300%以下)
Ti、Nb、及びVは、本実施形態に係る鋼板に必須の元素ではない。しかし、Ti、Nb、及びVは、微細な炭化物、窒化物または炭窒化物を生成する元素であるので、鋼板の強度向上に有効である。したがって、鋼板は、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素を含有してもよい。鋼板の強度向上効果を得るためには、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素それぞれの含有量の下限値を0.005%以上とすることが好ましい。一方で、これらの元素を過剰に含有させると、熱延鋼板の強度が上昇しすぎて、冷間圧延性が低下する場合がある。したがって、Ti、Nb、及びVからなる群から選択される1種または2種以上の元素それぞれの含有量の上限値を0.300%以下とする。
(Ca:0.010%以下)
(Mg:0.010%以下)
(Zr:0.010%以下)
(REM:0.010%以下)
B、Ca、Mg、Zr、及びREMは、本開示の鋼板に必須の元素ではない。しかしながら、B、Ca、Mg、Zr、及びREMは、鋼板の局部延性及び穴広げ性を向上させる。この効果を得るためには、B、Ca、Mg、Zr、及びREMからなる群から選択される1種または2種以上の元素それぞれの下限値を好ましくは0.0001%以上、より好ましくは0.001%以上とする。しかし、過剰量のこれら元素は、鋼板の加工性を劣化させるので、これら元素それぞれの含有量の上限を0.010%以下とし、B、Ca、Mg、Zr、及びREMからなる群から選択される1種または2種以上の元素の含有量の合計を0.030%以下とすることが好ましい。
(Sn:0.050%以下)
(Bi:0.050%以下)
Sb、Sn、及びBiは、本開示の鋼板に必須の元素ではない。しかしながら、Sb、Sn、及びBiは、鋼板中のMn、Si、および/又はAl等の易酸化性元素が鋼板表面に拡散され酸化物を形成することを抑え、鋼板の表面性状やめっき性を高める。この効果を得るために、Sb、Sn、及びBiからなる群から選択される1種又は2種以上の元素それぞれの含有量の下限値を好ましくは0.0005%以上、より好ましくは0.001%以上とする。一方、これら元素それぞれの含有量が0.050%を超えると、その効果が飽和するので、これら元素それぞれの含有量の上限値を0.050%以下とした。
次に、本実施形態に係る鋼板の金属組織について説明する。
焼き戻しマルテンサイトは、鋼板の強度を高め、延性を向上させる組織である。目的とする強度レベルの範囲内で、強度と延性との両方を好ましく保つために、焼き戻しマルテンサイトの面積率を25~90面積%とする。焼き戻しマルテンサイトの含有量の下限値は好ましくは35面積%、より好ましくは50面積%である。焼き戻しマルテンサイトの含有量の上限値は、好ましくは70面積%である。前述したように、C含有量を0.15%以上にして、さらに、後述するように、焼き戻しマルテンサイトの含有量を35面積%以上70面積%以下に制御することによって、均一伸び特性が損なわずに、引張強度(TS)が1180MPa以上という高強度の鋼板を得ることが可能になる。
本実施形態に係る鋼板においては、金属組織中のフェライトの量が少ないことが重要である。金属組織中のフェライト含有量が多くなると、均一伸び特性が著しく低下するためである。均一伸び特性を著しく低下させないために、金属組織中のフェライトの面積率を3%以下とし、より好ましくは1%以下とし、さらに好ましくは0%とする。
本実施形態に係る鋼板においては、好ましくは、金属組織中のセメンタイトの量が少ない。金属組織中のセメンタイト含有量を少なくすると、均一伸び特性が向上し、さらにより好ましい範囲である15000MPa・%以上の引張強度と均一伸びとの積「TS×uEL」が得られるためである。均一伸び特性を向上するために、金属組織中のセメンタイトの面積率を好ましくは1.0%以下とし、より好ましくは0%とする。
本実施形態に係る鋼板においては、金属組織中の残留オーステナイトの量が所定範囲にあることが重要である。残留オーステナイトは、変態誘起塑性によって鋼板の延性及び成形性、特に鋼板の均一伸び特性及び穴広げ性を高める組織である。残留オーステナイトは、引張変形を伴う張出し加工、絞り加工、伸びフランジ加工、または曲げ加工によってマルテンサイトに変態し得るので、鋼板の強度の向上にも寄与する。これら効果を得るために、本実施形態に係る鋼板は、金属組織中に、面積率で10%以上の残留オーステナイトを含有する必要がある。
本実施形態に係る鋼板においては、金属組織中にベイナイトが存在すると、ベイナイト中に硬質な組織である島状マルテンサイトが内在する。ベイナイト中に島状マルテンサイトが内在すると均一伸び特性が低下する。均一伸び特性を低下させないために、ベイナイトの面積率を5面積%以下とし、好ましくは0面積%である。
本実施形態に係る鋼板においては、好ましくは、金属組織中の残留オーステナイトとフレッシュマルテンサイトとの混合組織が、金属組織の全体に対して面積率で10%以上75%以下を占める。残留オーステナイト及びフレッシュマルテンサイトの混合組織は、残留オーステナイトの加工誘起変態により、実質的に一つの硬質なフレッシュマルテンサイト組織となる。また、残留オーステナイト単独も加工誘起変態により、実質的に一つの硬質なフレッシュマルテンサイト組織となる。すなわち、混合組織とは、フレッシュマルテンサイトの面積率が0%の場合の残留オーステナイト単独組織のことも意味する。したがって、残留オーステナイトとフレッシュマルテンサイトとの混合組織の量または残留オーステナイト単独の組織の量及び配向性を制御することで、穴広げ性が向上する。そのため、穴広げ性向上の観点では、残留オーステナイト単独の量だけでなく、加工誘起変態後に実質的に一つのフレッシュマルテンサイト組織としてふるまう混合組織の量も重要となる。
次に、本実施形態に係る鋼板の製造方法について説明する。
冷間圧延後に、5~30℃/秒の平均加熱速度で650℃まで昇温して740℃以上の温度域で10秒以上保持して1回目の焼鈍を行う。冷間圧延後の焼鈍温度を740℃以上にすることにより、焼鈍後の鋼板中のフェライトの分布をより均一にすることができ且つ鋼板中のフェライト含有量を少なくすることができ、均一伸び特性、穴広げ性、及び強度を向上することができる。その際、5~30℃/秒の平均加熱速度で650℃まで昇温することにより、金属組織中のフェライト含有量をさらに少なくすることができ、金属組織中のフェライトの面積率を3%以下、より好ましくは1%以下、さらに好ましくは0%にすることができる。
Ac3=910-200√C+44Si-25Mn+44Al
が得られ、この式を用いてAc3点を算出することができる。
焼鈍後の冷却において、740℃以上の温度域で保持した温度から500℃以下までの温度範囲を、平均冷却速度2℃/秒以上2000℃/秒以下で冷却する。焼鈍後の740℃以上の温度域で保持した温度から500℃以下までの温度範囲の平均冷却速度(以下、焼鈍後の平均冷却速度ともいう)を2℃/秒以上とすることによって、粒界偏析を抑制し曲げ性を向上することができ、また、冷延鋼板でのフェライトの生成を抑制することができるので、バンド組織のオーステナイト帯の間隔が狭小化して、穴広げ性をより向上させることができる。
好ましくは、上記焼鈍後の冷却の後、100℃以上500℃以下の温度域で10秒以上1000秒以下保持する。上記温度域における保持時間を10秒以上とすることにより、オーステナイトへのC分配が十分に進行して、最終熱処理前の組織にオーステナイトをより生成させることができる。その結果、最終熱処理後の組織に塊状のオーステナイトが生成することをより抑制し、強度特性の変動をより抑えることができる。一方、上記保持時間が1000秒超であっても、上記作用による効果は飽和して、生産性が低下する。上記温度域における保持時間は、より好ましくは30秒以上である。生産性の観点からは、上記温度域における保持時間は、より好ましくは300秒以下である。
上記焼鈍の冷却後に、好ましくは室温まで冷却した後に、より好ましくは100℃以上500℃以下の温度域で保持してから室温まで冷却した後または室温まで冷却してから100℃以上500℃以下の温度域で保持した後に、再度加熱して、600℃以上Ac3点未満の温度域で5秒以上保持する。焼鈍温度を600℃以上Ac3点未満にすることにより、均一伸び特性及び穴広げ性を向上することができる。セメンタイトをより確実に溶解させ、良好な靭性を安定して確保する観点から、焼鈍時間を5秒以上、好ましくは30秒以上、より好ましくは60秒以上とする。また、生産性の観点からは、焼鈍時間を300秒以内とすることが好ましい。好ましくは、600℃以上Ac3点未満の温度域に加熱するときに、500℃から600℃までの温度範囲を2~10℃/秒の平均加熱速度で昇温する。500℃~600℃の温度範囲を2~10℃/秒の平均加熱速度で昇温することにより、金属組織中のセメンタイト含有量を小さくすることができる。この2回目の焼鈍により、金属組織中のセメンタイトの面積率を1.0%以下、より好ましくは0%にすることができる。
表1に示す化学成分を有する鋼を転炉で溶製し、連続鋳造により245mm厚のスラブを得た。
各例で得られた焼鈍冷延鋼板について、ミクロ組織観察、引張試験、均一伸び試験、伸びフランジ試験を実施して、焼き戻しマルテンサイト、フェライト、セメンタイト、残留オーステナイト、ベイナイト、焼き戻しベイナイト、及びフレッシュマルテンサイトの面積率、残留オーステナイトとフレッシュマルテンサイトとの合計の面積率、混合組織のアスペクト比及び長軸が圧延方向と成す角度、引張強度(TS)、均一伸び特性、伸びフランジ性(穴広げ性)、及びオーステナイト帯の間隔を評価した。各評価の方法は次のとおりである。
鋼板の圧延方向に直角方向からJIS5号引張試験片を採取し、引張強度(TS)及び均一伸び(uEL)を測定した。引張試験は、JIS5号引張試験片を用いたJIS-Z2201に規定される方法で行った。均一伸び試験は、平行部長さ50mmのJIS5号試験片を用いたJIS-Z2201に規定される方法で行った。
SF=100×(d-10)/10
で表わされる。上記混合組織が金属組織の全体に対して面積率で10%以上75%以下を占め、残留オーステナイトが金属組織の全体に対して面積率で10%以上50%以下を占め、混合組織の中でアスペクト比が1.5以上であり且つ長軸が圧延方向と成す角度が30度以上60度以下である組織が混合組織の全体に対して面積率で10%以上を占める場合において、バンド組織のオーステナイト帯のピッチが12μm超のときに、10~12%のSF値を得ることができ、オーステナイト帯のピッチが12μm以下のときに、12%以上の好ましいSF値を得ることができ、オーステナイト帯のピッチが11μm以下のときに、15%以上のより好ましいSF値を得ることができる。
上記の評価の結果を表4に示す。実施例では、12000MPa・%以上のTS×uELが得られた。図1に、例番号3の比較例(従来技術)と、例番号1の実施例の鋼板の応力-ひずみ曲線を示す。図2に、例番号18の実施例で得られた鋼板の、L断面において表面から厚みの1/4位置における金属組織の走査型電子顕微鏡写真を示す。点線で囲んだ部分は、残留オーステナイトとフレッシュマルテンサイトとの混合組織である。残りの黒い部分は焼き戻しマルテンサイトである。実線矢印は、圧延方向、及び残留オーステナイトとフレッシュマルテンサイトとの混合組織の長軸方向を表し、破線は、圧延方向となす角度が30度以上60度以下の範囲を表し、実線の両矢印は、上記混合組織の長軸及び短軸の長さを表す。混合組織の長軸が圧延方向と成す角度をθとして表す。
Claims (17)
- 質量%で、
C:0.10%超0.55%未満、
Si:0.001%以上3.50%未満、
Mn:4.00%超9.00%未満、及び
sol.Al:0.001%以上3.00%未満、
を含有し、
P:0.100%以下、
S:0.010%以下、
N:0.050%未満、及び
O:0.020%未満、
に制限し、残部が鉄および不可避的不純物からなり、
L断面において表面から厚みの1/4位置における金属組織が、面積%で、25%以上90%以下の焼き戻しマルテンサイト、3%以下のフェライト、10%以上75%以下の残留オーステナイト、及び5%以下のベイナイトを含む
ことを特徴とする鋼板。 - 前記L断面において表面から厚みの1/4位置における金属組織が、面積%で、1.0%以下のセメンタイトを含む、請求項1に記載の鋼板。
- 前記L断面において表面から厚みの1/4位置における金属組織が、前記残留オーステナイトとフレッシュマルテンサイトとからなる混合組織を含み、
前記混合組織は、前記金属組織の全体に対して面積率で10%以上75%以下を占め、
前記残留オーステナイトは、前記金属組織の全体に対して面積率で10%以上50%以下を占め、
前記混合組織の中でアスペクト比が1.5以上であり且つ長軸が前記圧延方向と成す角度が30度以上60度以下である組織が、前記混合組織の全体に対して面積率で10%以上を占める、
請求項1または2に記載の鋼板。 - 質量%で、
Cr:2.00%未満、
Mo:2.00%以下、
W:2.00%以下、
Cu:2.00%以下、
Ni:2.00%以下、
Ti:0.300%以下、
Nb:0.300%以下、
V:0.300%以下、
B:0.010%以下、
Ca:0.010%以下、
Mg:0.010%以下、
Zr:0.010%以下、
REM:0.010%以下、
Sb:0.050%以下、
Sn:0.050%以下、及び
Bi:0.050%以下
からなる群から選択される1種又は2種以上をさらに含有する、請求項1~3のいずれか一項に記載の鋼板。 - 質量%で、
Cr:0.01%以上2.00%未満、
Mo:0.01%以上2.00%以下、
W:0.01%以上2.00%以下、
Cu:0.01%以上2.00%以下、及び
Ni:0.01%以上2.00%以下
からなる群から選択される1種又は2種以上をさらに含有する、請求項4に記載の鋼板。 - 質量%で、
Ti:0.005%以上0.300%以下、
Nb:0.005%以上0.300%以下、及び
V:0.005%以上0.300%以下
からなる群から選択される1種又は2種以上をさらに含有する、請求項4または5に記載の鋼板。 - 質量%で、
B:0.0001%以上0.010%以下、
Ca:0.0001%以上0.010%以下、
Mg:0.0001%以上0.010%以下、
Zr:0.0001%以上0.010%以下、及び
REM:0.0001%以上0.010%以下
からなる群から選択される1種又は2種以上をさらに含有する、請求項4~6のいずれか一項に記載の鋼板。 - 質量%で、
Sb:0.0005%以上0.050%以下、
Sn:0.0005%以上0.050%以下、及び
Bi:0.0005%以上0.050%以下
からなる群から選択される1種又は2種以上をさらに含有する、請求項4~7のいずれか一項に記載の鋼板。 - 前記鋼板の表面に溶融亜鉛めっき層を有する、請求項1~8のいずれか一項に記載の鋼板。
- 前記鋼板の表面に合金化溶融亜鉛めっき層を有する、請求項1~8のいずれか一項に記載の鋼板。
- 請求項1及び4~8のいずれか一項に記載の化学組成を有する鋼材に、熱間圧延を施して熱延鋼板とすること、
前記熱延鋼板に酸洗と冷間圧延とを施して冷延鋼板とすること、
前記冷延鋼板を、5~30℃/秒の平均加熱速度で650℃まで昇温して740℃以上の温度域で10秒以上保持すること、
前記740℃以上の温度域で保持した温度から500℃以下までの温度範囲の冷却を、平均冷却速度2℃/秒以上2000℃/秒以下で行うこと、
前記冷却後に室温まで冷却すること、並びに
前記室温まで冷却した後、600℃以上Ac3点未満の温度域で5秒以上保持すること、
を特徴とする鋼板の製造方法。 - 前記600℃以上Ac3点未満の温度域で5秒以上保持することが、500℃から600℃までの温度範囲を平均2~10℃/秒で昇温することを含む、請求項11に記載の鋼板の製造方法。
- 前記平均冷却速度が200℃/秒以上2000℃/秒以下である、請求項11または12に記載の鋼板の製造方法。
- 前記平均冷却速度で、前記740℃以上の温度域で保持した温度から、100℃以下までの温度範囲の冷却を行う、請求項11~13のいずれか一項に記載の鋼板の製造方法。
- 前記平均冷却速度で冷却した後、100℃以上500℃以下の温度域で10秒以上1000秒以下保持する、請求項11~14のいずれか一項に記載の鋼板の製造方法。
- 前記600℃以上Ac3点未満の温度域で5秒以上保持した後、前記鋼板を冷却し、溶融亜鉛めっき処理を施す、請求項11~15のいずれか一項に記載の鋼板の製造方法。
- 前記溶融亜鉛めっき処理を施した後、450℃以上620℃以下の温度域で前記溶融亜鉛めっきの合金化処理を施す、請求項16に記載の鋼板の製造方法。
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112019013362A BR112019013362A2 (pt) | 2017-01-16 | 2018-01-16 | chapa de aço e processo para produção da mesma |
CN201880007068.9A CN110177896B (zh) | 2017-01-16 | 2018-01-16 | 钢板及其制造方法 |
MX2019008167A MX2019008167A (es) | 2017-01-16 | 2018-01-16 | Lamina de acero y proceso para producir la misma. |
US16/478,410 US20190368002A1 (en) | 2017-01-16 | 2018-01-16 | Steel sheet and process for producing same |
JP2018561456A JP6844627B2 (ja) | 2017-01-16 | 2018-01-16 | 鋼板及びその製造方法 |
KR1020197020570A KR20190109407A (ko) | 2017-01-16 | 2018-01-16 | 강판 및 그의 제조 방법 |
EP18739322.8A EP3569727A4 (en) | 2017-01-16 | 2018-01-16 | STEEL PLATE AND PROCESS FOR PRODUCING THE SAME |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-005258 | 2017-01-16 | ||
JP2017-005250 | 2017-01-16 | ||
JP2017005265 | 2017-01-16 | ||
JP2017005250 | 2017-01-16 | ||
JP2017005258 | 2017-01-16 | ||
JP2017-005265 | 2017-01-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018131722A1 true WO2018131722A1 (ja) | 2018-07-19 |
Family
ID=62840134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/001076 WO2018131722A1 (ja) | 2017-01-16 | 2018-01-16 | 鋼板及びその製造方法 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20190368002A1 (ja) |
EP (1) | EP3569727A4 (ja) |
JP (1) | JP6844627B2 (ja) |
KR (1) | KR20190109407A (ja) |
CN (1) | CN110177896B (ja) |
BR (1) | BR112019013362A2 (ja) |
MX (1) | MX2019008167A (ja) |
TW (1) | TWI666329B (ja) |
WO (1) | WO2018131722A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020017609A1 (ja) * | 2018-07-18 | 2020-01-23 | 日本製鉄株式会社 | 鋼板 |
WO2020130560A1 (ko) * | 2018-12-18 | 2020-06-25 | 주식회사 포스코 | 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법 |
CN112714800A (zh) * | 2018-12-27 | 2021-04-27 | 日本制铁株式会社 | 钢板 |
WO2021079755A1 (ja) * | 2019-10-23 | 2021-04-29 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2021079753A1 (ja) * | 2019-10-23 | 2021-04-29 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2021079754A1 (ja) * | 2019-10-23 | 2021-04-29 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
CN113544301A (zh) * | 2019-03-27 | 2021-10-22 | 日本制铁株式会社 | 钢板 |
JP7078202B1 (ja) * | 2021-02-10 | 2022-05-31 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP7107464B1 (ja) * | 2021-02-10 | 2022-07-27 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2022172540A1 (ja) * | 2021-02-10 | 2022-08-18 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2022172539A1 (ja) * | 2021-02-10 | 2022-08-18 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW202006154A (zh) * | 2018-07-18 | 2020-02-01 | 日商日本製鐵股份有限公司 | 鋼板 |
JP7364963B2 (ja) * | 2020-04-03 | 2023-10-19 | 日本製鉄株式会社 | 鋼板およびその製造方法 |
JPWO2022102218A1 (ja) * | 2020-11-11 | 2022-05-19 | ||
KR20230066166A (ko) * | 2021-11-05 | 2023-05-15 | 주식회사 포스코 | 내충돌성능 및 성형성이 우수한 고강도 강판 및 이의 제조방법 |
WO2023111656A1 (en) * | 2021-12-17 | 2023-06-22 | Arcelormittal | Method for manufacturing an annealed steel sheet |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0559429A (ja) | 1991-09-03 | 1993-03-09 | Nippon Steel Corp | 加工性に優れた高強度複合組織冷延鋼板の製造方法 |
JP2003138345A (ja) * | 2001-08-20 | 2003-05-14 | Kobe Steel Ltd | 局部延性に優れた高強度高延性鋼および鋼板並びにその鋼板の製造方法 |
JP2012237054A (ja) | 2011-04-25 | 2012-12-06 | Jfe Steel Corp | 加工性と材質安定性に優れた高強度鋼板およびその製造方法 |
JP2016113649A (ja) * | 2014-12-12 | 2016-06-23 | 株式会社神戸製鋼所 | 加工性に優れた高強度冷延鋼板および高強度合金化溶融亜鉛めっき鋼板 |
WO2016199922A1 (ja) * | 2015-06-11 | 2016-12-15 | 新日鐵住金株式会社 | 合金化溶融亜鉛めっき鋼板およびその製造方法 |
JP2017053001A (ja) * | 2015-09-09 | 2017-03-16 | 新日鐵住金株式会社 | 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 |
JP6213696B1 (ja) * | 2016-12-05 | 2017-10-18 | 新日鐵住金株式会社 | 高強度鋼板 |
JP2017214647A (ja) * | 2016-05-30 | 2017-12-07 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5287770B2 (ja) * | 2010-03-09 | 2013-09-11 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP5136609B2 (ja) * | 2010-07-29 | 2013-02-06 | Jfeスチール株式会社 | 成形性および耐衝撃性に優れた高強度溶融亜鉛めっき鋼板およびその製造方法 |
IN2014DN11262A (ja) * | 2012-07-31 | 2015-10-09 | Jfe Steel Corp | |
TWI491742B (zh) * | 2014-01-06 | 2015-07-11 | Nippon Steel & Sumitomo Metal Corp | 鋼板及其製造方法 |
JP6554397B2 (ja) * | 2015-03-31 | 2019-07-31 | 株式会社神戸製鋼所 | 加工性および衝突特性に優れた引張強度が980MPa以上の高強度冷延鋼板、およびその製造方法 |
KR101677396B1 (ko) * | 2015-11-02 | 2016-11-18 | 주식회사 포스코 | 성형성 및 구멍확장성이 우수한 초고강도 강판 및 이의 제조방법 |
-
2018
- 2018-01-16 WO PCT/JP2018/001076 patent/WO2018131722A1/ja active Application Filing
- 2018-01-16 JP JP2018561456A patent/JP6844627B2/ja active Active
- 2018-01-16 US US16/478,410 patent/US20190368002A1/en not_active Abandoned
- 2018-01-16 CN CN201880007068.9A patent/CN110177896B/zh active Active
- 2018-01-16 KR KR1020197020570A patent/KR20190109407A/ko not_active Abandoned
- 2018-01-16 MX MX2019008167A patent/MX2019008167A/es unknown
- 2018-01-16 EP EP18739322.8A patent/EP3569727A4/en not_active Withdrawn
- 2018-01-16 TW TW107101610A patent/TWI666329B/zh not_active IP Right Cessation
- 2018-01-16 BR BR112019013362A patent/BR112019013362A2/pt not_active Application Discontinuation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0559429A (ja) | 1991-09-03 | 1993-03-09 | Nippon Steel Corp | 加工性に優れた高強度複合組織冷延鋼板の製造方法 |
JP2003138345A (ja) * | 2001-08-20 | 2003-05-14 | Kobe Steel Ltd | 局部延性に優れた高強度高延性鋼および鋼板並びにその鋼板の製造方法 |
JP2012237054A (ja) | 2011-04-25 | 2012-12-06 | Jfe Steel Corp | 加工性と材質安定性に優れた高強度鋼板およびその製造方法 |
JP2016113649A (ja) * | 2014-12-12 | 2016-06-23 | 株式会社神戸製鋼所 | 加工性に優れた高強度冷延鋼板および高強度合金化溶融亜鉛めっき鋼板 |
WO2016199922A1 (ja) * | 2015-06-11 | 2016-12-15 | 新日鐵住金株式会社 | 合金化溶融亜鉛めっき鋼板およびその製造方法 |
JP2017053001A (ja) * | 2015-09-09 | 2017-03-16 | 新日鐵住金株式会社 | 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板、並びにそれらの製造方法 |
JP2017214647A (ja) * | 2016-05-30 | 2017-12-07 | 株式会社神戸製鋼所 | 高強度鋼板およびその製造方法 |
JP6213696B1 (ja) * | 2016-12-05 | 2017-10-18 | 新日鐵住金株式会社 | 高強度鋼板 |
Non-Patent Citations (2)
Title |
---|
FURUKAWA TAKASHIMATSUMURA OSAMU: "Heat Treatment", vol. 37, 1997, THE JAPAN SOCIETY FOR HEAT TREATMENT, pages: 204 |
GLASBEY, CA: "An analysis of histogram-based thresholding algorithms", CVGIP: GRAPHICAL MODELS AND IMAGE PROCESSING, vol. 55, 1993, pages 532 - 537, XP007902398, DOI: doi:10.1006/gmip.1993.1040 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020017609A1 (ja) * | 2018-07-18 | 2020-01-23 | 日本製鉄株式会社 | 鋼板 |
JPWO2020017609A1 (ja) * | 2018-07-18 | 2020-07-27 | 日本製鉄株式会社 | 鋼板 |
CN111868282A (zh) * | 2018-07-18 | 2020-10-30 | 日本制铁株式会社 | 钢板 |
CN111868282B (zh) * | 2018-07-18 | 2021-12-31 | 日本制铁株式会社 | 钢板 |
WO2020130560A1 (ko) * | 2018-12-18 | 2020-06-25 | 주식회사 포스코 | 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법 |
US10941467B2 (en) | 2018-12-18 | 2021-03-09 | Posco | Cold-rolled steel sheet with excellent formability, galvanized steel sheet, and manufacturing method thereof |
CN112714800A (zh) * | 2018-12-27 | 2021-04-27 | 日本制铁株式会社 | 钢板 |
CN112714800B (zh) * | 2018-12-27 | 2022-10-04 | 日本制铁株式会社 | 钢板 |
CN113544301A (zh) * | 2019-03-27 | 2021-10-22 | 日本制铁株式会社 | 钢板 |
WO2021079755A1 (ja) * | 2019-10-23 | 2021-04-29 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2021079754A1 (ja) * | 2019-10-23 | 2021-04-29 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JPWO2021079754A1 (ja) * | 2019-10-23 | 2021-11-18 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JPWO2021079753A1 (ja) * | 2019-10-23 | 2021-11-18 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2021079753A1 (ja) * | 2019-10-23 | 2021-04-29 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP6930682B1 (ja) * | 2019-10-23 | 2021-09-01 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP7168072B2 (ja) | 2019-10-23 | 2022-11-09 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP7168073B2 (ja) | 2019-10-23 | 2022-11-09 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
US12221668B2 (en) | 2019-10-23 | 2025-02-11 | Jfe Steel Corporation | High strength steel sheet and method for manufacturing the same |
JP7078202B1 (ja) * | 2021-02-10 | 2022-05-31 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
JP7107464B1 (ja) * | 2021-02-10 | 2022-07-27 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2022172540A1 (ja) * | 2021-02-10 | 2022-08-18 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
WO2022172539A1 (ja) * | 2021-02-10 | 2022-08-18 | Jfeスチール株式会社 | 高強度鋼板およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW201833343A (zh) | 2018-09-16 |
US20190368002A1 (en) | 2019-12-05 |
BR112019013362A2 (pt) | 2019-12-31 |
EP3569727A4 (en) | 2020-07-15 |
EP3569727A1 (en) | 2019-11-20 |
KR20190109407A (ko) | 2019-09-25 |
JPWO2018131722A1 (ja) | 2019-11-07 |
TWI666329B (zh) | 2019-07-21 |
CN110177896B (zh) | 2021-09-14 |
MX2019008167A (es) | 2019-09-06 |
JP6844627B2 (ja) | 2021-03-17 |
CN110177896A (zh) | 2019-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018131722A1 (ja) | 鋼板及びその製造方法 | |
KR101985123B1 (ko) | 고강도 냉연 박강판 및 그 제조 방법 | |
KR101913053B1 (ko) | 고강도 강판, 고강도 용융 아연 도금 강판, 고강도 용융 알루미늄 도금 강판 및 고강도 전기 아연 도금 강판, 그리고 그것들의 제조 방법 | |
JP5983895B2 (ja) | 高強度鋼板およびその製造方法、ならびに高強度亜鉛めっき鋼板の製造方法 | |
JP5884714B2 (ja) | 溶融亜鉛めっき鋼板およびその製造方法 | |
KR102119017B1 (ko) | 고강도 냉연 박강판 및 그의 제조 방법 | |
US11453926B2 (en) | Steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing steel sheet, and method for producing plated steel sheet | |
KR20090098900A (ko) | 고장력 냉연 강판 및 그 제조 방법 | |
JP7036274B2 (ja) | 鋼板 | |
JP6737411B2 (ja) | 鋼板 | |
JP6119655B2 (ja) | 鋼帯内における材質のバラツキが小さい成形性に優れた高強度合金化溶融亜鉛めっき鋼帯およびその製造方法 | |
CN112714800B (zh) | 钢板 | |
JP5686028B2 (ja) | 合金化溶融亜鉛めっき鋼板およびその製造方法 | |
WO2019194250A1 (ja) | 鋼板及び鋼板の製造方法 | |
WO2019194251A1 (ja) | 鋼板及び鋼板の製造方法 | |
JP2018003114A (ja) | 高強度鋼板およびその製造方法 | |
JP6669325B1 (ja) | 鋼板 | |
JP2018003115A (ja) | 高強度鋼板およびその製造方法 | |
JP5682357B2 (ja) | 合金化溶融亜鉛めっき鋼板およびその製造方法 | |
WO2021200169A1 (ja) | 鋼板 | |
WO2020017606A1 (ja) | 鋼板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18739322 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018561456 Country of ref document: JP Kind code of ref document: A |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112019013362 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20197020570 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018739322 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 112019013362 Country of ref document: BR Kind code of ref document: A2 Effective date: 20190627 |