+

WO2018131617A1 - Double-row self-aligning roller bearing and protrusion prevention jig - Google Patents

Double-row self-aligning roller bearing and protrusion prevention jig Download PDF

Info

Publication number
WO2018131617A1
WO2018131617A1 PCT/JP2018/000378 JP2018000378W WO2018131617A1 WO 2018131617 A1 WO2018131617 A1 WO 2018131617A1 JP 2018000378 W JP2018000378 W JP 2018000378W WO 2018131617 A1 WO2018131617 A1 WO 2018131617A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
rollers
double
inner ring
roller bearing
Prior art date
Application number
PCT/JP2018/000378
Other languages
French (fr)
Japanese (ja)
Inventor
一将 ▲瀬▼古
貴志 山本
井上 靖之
径生 堀
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017160074A external-priority patent/JP7029249B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to CN201880006607.7A priority Critical patent/CN110168238A/en
Priority to EP18738555.4A priority patent/EP3569882B1/en
Publication of WO2018131617A1 publication Critical patent/WO2018131617A1/en
Priority to US16/507,661 priority patent/US10883544B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/082Ball or roller bearings self-adjusting by means of at least one substantially spherical surface
    • F16C23/086Ball or roller bearings self-adjusting by means of at least one substantially spherical surface forming a track for rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C23/00Bearings for exclusively rotary movement adjustable for aligning or positioning
    • F16C23/06Ball or roller bearings
    • F16C23/08Ball or roller bearings self-adjusting
    • F16C23/088Ball or roller bearings self-adjusting by means of crowning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/34Rollers; Needles
    • F16C33/36Rollers; Needles with bearing-surfaces other than cylindrical, e.g. tapered; with grooves in the bearing surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles

Definitions

  • the present invention provides a double-row automatic adjustment applied to a bearing that supports a shaft such as a main shaft of a wind power generator or an industrial machine, for example, in applications where an uneven load is applied to the two rows of rollers arranged in the bearing width direction.
  • the present invention relates to a center roller bearing and a pop-out preventing jig.
  • the bearing that supports the main shaft (shaft) of the wind turbine generator is incorporated in the housing, and in addition to the radial load due to the weight of the blade and the rotor head, an axial load due to wind force acts.
  • the bearing for supporting the main shaft is a double row self-aligning roller bearing 41 as shown in FIG. 16, the axial load Fa is mainly selected from the two rows 44 and 45 interposed between the inner ring 42 and the outer ring 43. Only the roller 45 in one row on the rear side receives the axial load Fa. That is, one row of rollers 45 receives both a radial load and an axial load, while the other row of rollers 44 receives only a radial load.
  • the roller 45 in the row receiving the axial load has a larger contact surface pressure than the roller 44 in the row receiving only the radial load, and the surface damage and wear of the rolling surface of the roller 45 and the raceway surface 43a of the outer ring 43 are increased. Is likely to occur and the rolling life is short. Therefore, the actual life of the entire bearing is determined by the rolling life of the row of rollers 45 that receive the axial load.
  • the lengths L1 and L2 of the two rows of rollers 54 and 55 interposed between the inner ring 52 and the outer ring 53 are made different from each other like a double row spherical roller bearing 51 shown in FIG.
  • the load capacity of the rollers 55 in the row that receives the axial load be larger than the load capacity of the rollers 54 in the row that hardly receive the axial load (Patent Document 1).
  • the contact angles ⁇ 1 and ⁇ 2 of the two rows of rollers 64 and 65 interposed between the inner ring 62 and the outer ring 63 are made different from each other, so that the contact angle ⁇ 2
  • a roller 65 having a larger diameter can receive a large axial load
  • a roller 64 having a smaller contact angle ⁇ 1 can receive a large radial load
  • Patent Document 2 By setting the contact angles ⁇ 1 and ⁇ 2 so that the load capacities of the rollers 64 and 65 in each row become appropriate, the rolling lives of the rollers 64 and 65 in each row become substantially the same, and the actual life of the entire bearing Can be improved.
  • the center of gravity in the bearing width direction does not match the center position in the bearing width direction. For this reason, the balance is poor, and when the bearing is assembled or assembled into another device, the aligning operation may be performed arbitrarily, and it is necessary to pay attention to handling. For example, as shown in FIG.
  • FIG. 19 shows a double-row self-aligning roller bearing 1 in which the contact angles ⁇ 1, ⁇ 2 of the left and right rows of rollers 4 and 5 are different from each other. The same operation is performed.
  • the object of the present invention is suitable for use in applications in which axial loads and radial loads are received, and loads having different sizes act on two rows of rollers arranged in the axial direction.
  • An object of the present invention is to provide a double row self-aligning roller bearing capable of preventing self-aligning operation.
  • Another object of the present invention is to provide an assembling method capable of incorporating a double row spherical roller bearing into another device safely and efficiently.
  • Still another object of the present invention is to use the double-row spherical roller bearing in the state where the inner ring and the outer ring of the double-row spherical roller bearing face each other by being used when the double-row spherical roller bearing is assembled or incorporated into another device.
  • Another object of the present invention is to provide a pop-out preventing jig that can be inclined with respect to each other and prevent the width surface of the inner ring from protruding in the bearing width direction rather than the width surface of the outer ring.
  • the double-row self-aligning roller bearing according to the present invention has two rows of rollers arranged in the bearing width direction between the inner ring and the outer ring, the raceway surface of the outer ring is spherical, and the two-row roller Is a cross-sectional shape of the outer peripheral surface along the raceway surface of the outer ring, In the two rows of rollers, either one or both of the shape and the contact angle are different from each other, A mounting hole is provided in the width surface of one or both of the inner ring and the outer ring, and the inner ring and the outer ring are inclined to each other with respect to a state in which the inner ring and the outer ring face each other, and more than the width surface of the outer ring. It is possible to attach a pop-out preventing jig that prevents the width surface of the inner ring from popping out in the bearing width direction.
  • This double row spherical roller bearing has different load capacity for each row of rollers because either one or both of the shape and contact angle of the two rows of rollers are different from each other.
  • this double row spherical roller bearing is used under conditions where an axial load and a radial load are applied, the roller having the larger load capacity bears almost all of the axial load and a part of the radial load. The smaller roller bears the rest of the radial load.
  • a pop-out prevention jig is attached to the mounting hole provided in either the inner ring or the outer ring.
  • the inner ring and the outer ring are inclined to each other with respect to the facing state, and the width surface of the inner ring is prevented from jumping out in the bearing width direction rather than the width surface of the outer ring. It can be performed safely and efficiently.
  • the mounting hole may be a screw hole.
  • the attachment hole is a screw hole, the pop-out preventing jig can be easily and firmly attached.
  • This double row self-aligning roller bearing is suitable for supporting the main shaft of the wind power generator.
  • a radial load due to the weight of the blade and the rotor head and an axial load due to wind force are applied to the double row spherical roller bearing that supports the main shaft of the wind power generator.
  • the roller of the row that receives the axial load is the roller with the larger load capacity
  • the roller of the row that receives only the radial load is the roller with the smaller load capacity.
  • the pressure can be made almost uniform.
  • Each of the rows of rollers is provided with a cage, and each cage has an annular ring portion that guides an axially inner end face of each row of rollers, an axially extending from the annular portion, and a circular shape.
  • a plurality of pillars provided at intervals defined along the circumferential direction, and a pocket for holding the rollers between the pillars, and holding one of the rows of rollers that receive an axial load.
  • the vessel may have an inclination angle such that the outer diameter surface of the column portion is inclined inward in the radial direction from the proximal end side toward the distal end side.
  • the predetermined interval is an interval arbitrarily determined by design or the like.
  • Each of the rollers may have a DLC film on the roller rolling surface.
  • the DLC is an abbreviation for Diamond-like Carbon.
  • wear on the raceway surfaces of the roller rolling surface, the inner ring, and the outer ring is less likely to occur, and the wear resistance can be improved as compared with those without the DLC film.
  • Each roller may have a crowning at the end of the roller rolling surface. In this case, the edge stress can be relaxed.
  • the inner ring is provided between the two rows of rollers on the outer peripheral surface of the inner ring and guides the two rows of rollers, and the end surface on the outer side in the axial direction of each row of rollers provided on both ends of the outer peripheral surface.
  • the inner ring has a slot into which the roller is inserted into the bearing in the small brim facing the axially outer end surface of the roller of the row receiving the axial load among the small brims. May be. Since such an insertion groove is provided, it is possible to further improve the assemblability of the row roller receiving the axial load into the bearing.
  • the method of assembling the double row spherical roller bearing according to the present invention is a method of incorporating the double row spherical roller bearing into a shaft or a housing, wherein the inner ring and the outer ring are separated by the pop-out preventing jig.
  • the inner ring is incorporated in the shaft and the housing in a state where the inner ring is prevented from jumping out in the bearing width direction with respect to the facing state, and the inner ring is prevented from jumping in the bearing width direction. According to this assembling method, the double row spherical roller bearing can be safely and efficiently incorporated into the shaft and the housing.
  • the pop-out preventing jig of the present invention is used for the double-row self-aligning roller bearing, and a contact material applied to the same width surface of the inner ring and the outer ring in the bearing width direction, A fixing tool that is inserted into the mounting hole and fixes the contact member to the race ring provided with the mounting hole of the inner ring and the outer ring.
  • the inner ring and the outer ring of the double-row self-aligning roller bearing are inclined relative to each other so that the width of the inner ring protrudes in the bearing width direction rather than the width of the outer ring. Therefore, it is possible to safely and efficiently perform the bearing assembly work and the assembly work of the double row spherical roller bearing.
  • FIG. 5 is a partial view showing a state in which the double row self-aligning roller bearing shown in FIG. 4 is suspended by a wire. It is sectional drawing of the double row self-aligning roller bearing which concerns on 2nd Embodiment of this invention. It is an expanded sectional view showing crowning etc. of a roller of a double row self-aligning roller bearing concerning a 3rd embodiment of this invention. It is a figure which shows the relationship between the straight length and PV value of the same time.
  • FIG. 1 is a sectional view of a double row self-aligning roller bearing according to a first embodiment of the present invention.
  • this double-row self-aligning roller bearing 1
  • left and right two-row rollers 4, 5 aligned in the bearing width direction are interposed between an inner ring 2 attached to a shaft 60 and an outer ring 3 attached to a housing 70.
  • the raceway surface 3 a of the outer ring 3 has a spherical shape, and the rollers 4 and 5 in each of the left and right rows have a cross-sectional shape along the raceway surface 3 a of the outer ring 3.
  • the outer peripheral surfaces of the rollers 4 and 5 are rotating curved surfaces obtained by rotating an arc along the raceway surface 3a of the outer ring 3 around the center lines C1 and C2.
  • the inner ring 2 is formed with double-row raceway surfaces 2a and 2b having a cross-sectional shape along the outer peripheral surfaces of the rollers 4 and 5 in the left and right rows.
  • the left and right rows of rollers 4 and 5 are held by cages 6 and 7, respectively.
  • the cage 6 for the left row is defined by an annular ring portion 32 that guides the axially inner end face of the roller 4 in the left row, the axial portion extending from the annular portion 32, and the circumferential direction.
  • a plurality of pillar portions 33 provided at intervals are provided, and a pocket Pt for holding the roller 4 is provided between the pillar portions.
  • the right row retainer 7 is defined by an annular ring portion 34 that guides an axially inner end face of the right row roller 5, an axial direction extending from the annular portion 34, and a circumferential direction.
  • a plurality of pillar portions 35 provided at intervals are provided, and a pocket Pt for holding the roller 5 is provided between the pillar portions.
  • collars 8 and 9 are provided, respectively.
  • An intermediate collar 10 is provided at the center of the outer peripheral surface of the inner ring 2, that is, between the left row roller 4 and the right row roller 5.
  • the inner ring 2 may have no collar.
  • the outer ring 3 has an annular oil groove 11 between the left and right roller rows on the outer peripheral surface, and oil holes 12 penetrating from the oil groove 11 to the inner peripheral surface are provided at one or a plurality of locations in the circumferential direction. ing.
  • the left and right rollers 4 and 5 have the same lengths L1 and L2 along the center lines C1 and C2, the same maximum diameters D1max and D2max, and the left and right rows.
  • the rollers 4 and 5 are all asymmetric rollers.
  • the asymmetric roller is an asymmetrical roller in which the positions of the maximum diameters D1max and D2max deviate from the center of the roller length.
  • the position of the maximum diameter D1max of the roller 4 in the left row is on the right side of the center of the roller length
  • the position of the maximum diameter D2max of the roller 5 in the right row is on the left side of the center of the roller length. is there.
  • the contact angle ⁇ 2 of the roller 5 in the right row is set larger than the contact angle ⁇ 1 of the roller 4 in the left row.
  • the action lines S1 and S2 forming the contact angles ⁇ 1 and ⁇ 2 of the rollers 4 and 5 in each row intersect with each other at the alignment center point P on the bearing center axis O. Thereby, the inner ring 2 and the rollers 4 and 5 can be aligned along the raceway surface 3 a of the outer ring 3. The position of the alignment center point P in the bearing width direction is shifted toward the roller 4 having the smaller contact angle ⁇ 1 than the center position Q of the middle collar 8 in the bearing width direction.
  • the action lines S1 and S2 are lines on which a combined force of forces acting on the contact portions between the rollers 4 and 5 and the inner ring 2 and the outer ring 3 acts.
  • crowning may be provided on the rolling surface 13 of one or both of the rollers 4 and 5 in each of the left and right rows.
  • the curvature diameters of both end portions 13b and 13c are made smaller than the central portion 13a of the rolling surface 13.
  • the shape of the crowning is, for example, a logarithmic curve. In addition to the logarithmic curve, a straight line, a single arc, or a combination of a plurality of arcs may be used.
  • the crowning at both ends of the rolling surfaces 13 of the rollers 4 and 5 in this way, the surface pressures at both ends 13b and 13c having a large sliding speed on the rolling surfaces 13 of the rollers 4 and 5 are reduced, and the PV value (surface The absolute value of (pressure ⁇ sliding speed) is suppressed, and friction can be reduced.
  • the double-row self-aligning roller bearing 1 shown in FIG. 1 has a center of gravity (not shown) and a bearing in the bearing width direction because the contact angles ⁇ 1 and ⁇ 2 of the rollers 4 and 5 in the left and right rows are different as described above.
  • the center position Q in the width direction does not match and the balance is poor. For this reason, there is a possibility that a self-aligning operation may be performed at the time of assembling the double-row self-aligning roller bearing 1 or assembling it into another device. Therefore, mounting holes 15 and 16 are provided at three or more locations in the circumferential direction on the width surfaces 2c and 3b of the inner ring 2 and the outer ring 3 to which pop-out preventing jigs (see FIG.
  • These mounting holes 15 and 16 are preferably provided in the width surfaces 2c and 3b which are wider in the radial direction among the width surfaces 2c, 2d, 3b and 3c on both sides of the inner ring 2 and the outer ring 3 in the bearing width direction.
  • the attachment holes 15 and 16 are screw holes.
  • FIG. 3 is an exploded perspective view of the pop-out preventing jig according to the first embodiment.
  • the pop-out stopper 17 includes a pad 18 and a fixture 19.
  • the contact member 18 is an elongated plate member, and a fixture insertion hole 18a penetrating in the thickness direction is provided at one end in the longitudinal direction.
  • the fixing tool 19 is made of a bolt, can be inserted into the fixing tool insertion hole 18a of the abutting member 18, and can be screwed into the mounting holes 15 and 16 including screw holes.
  • the pop-out stopper 17 is attached to the mounting holes 15 and 16 of the double-row self-aligning roller bearing 1. That is, the contact member 18 is applied to the width surfaces 2 c and 3 c (or the width surfaces 2 d and 3 b) on the same side in the bearing width direction of the inner ring 2 and the outer ring 3, and the contact member 18 is fixed to the inner ring 2 or the outer ring 3 by the fixture 19.
  • the fixing method is such that the fixing tool 19 is placed on the outer side in the bearing width direction in a state where the fixing tool insertion hole 18a of the abutting member 18 and the mounting holes 15 and 16 of the inner ring 2 or the outer ring 3 are aligned in the circumferential direction and radial position.
  • the pop-out preventing jig 17 can be easily and firmly attached.
  • the contact member 18 of the pop-out stopper 17 causes the width surfaces 2 c, 3 c of the inner ring 2 and the outer ring 3.
  • the width surfaces 2d and 3b is prevented from inclining with respect to the state in which the inner ring 2 and the outer ring 3 face each other.
  • the width surfaces 2d and 2c of the inner ring 2 are prevented from jumping out in the bearing width direction from the width surfaces 3b and 3c of the outer ring 3.
  • the double-row self-aligning roller bearing 1 is incorporated in the shaft 60 or the housing 70 with the pop-out stopper 17 attached to the mounting holes 15 and 16. After completion of the assembly of the double-row self-aligning roller bearing 1, the pop-out stopper 17 is removed from the mounting holes 15 and 16.
  • the pop-out stoppers 17 are respectively attached to the mounting holes 15 and 16 of both the inner ring 2 and the outer ring 3, but the pop-out stoppers 17 are attached only to the one mounting hole 15 or the mounting hole 16. It may be attached.
  • the center position Q in the bearing width direction is located on the right side of the drawing with respect to the centering center point P. A force that tends to rotate in the bearing width direction along the raceway surface 3a of the outer ring 3 is likely to act. For this reason, when attaching the pop-out stopper 17 only to one of the attachment holes 15 or 16, it is desirable to attach the pop-out stopper 17 to the attachment hole 16 of the outer ring 3 so as to receive the force.
  • the mounting holes 15 and 16 of the double-row self-aligning roller bearing 1 are screw holes and the fixing tool 19 of the pop-out stopper 17 is a bolt, but the present invention is not limited to this.
  • the attachment holes 15 and 16 and the fixture 19 may be configured so that the contact member 18 can be fixed to the inner ring 2 or the outer ring 3.
  • the mounting holes 15 and 16 may be pin holes
  • the fixing tool 19 may be a pin inserted in a fixed state in the pin hole.
  • the double-row spherical roller bearing 1 When the double-row spherical roller bearing 1 is assembled or assembled into another device, as shown in FIG. 5, the double-row spherical roller bearing 1 is in a posture in which the bearing center axis O is in the vertical direction. A pin 71 is inserted into the oil hole 12 of the outer ring 3, and a wire 72 is hooked on the pin 71 and suspended. At this time, if the pop-out stopper 17 is attached to the attachment holes 15 and 16, the inner ring 2 and the outer ring 3 are inclined with respect to the facing state, and the inner ring 2 is more than the width surfaces 3 b and 3 c of the outer ring 3. The width surfaces 2d and 2c are prevented from jumping out in the bearing width direction. For this reason, the bearing assembly work and the assembly work of the double row self-aligning roller bearing 1 can be performed safely and efficiently.
  • the double-row self-aligning roller bearing 1 having this configuration is used in applications where axial loads and radial loads are applied and loads having different sizes act on the left and right roller arrays, for example, as a spindle support bearing for a wind power generator.
  • the double row self-aligning roller bearing 1 is installed so that the left row roller 4 is located on the side closer to the swirl blade (front side) and the right row roller 5 is located on the far side (rear side).
  • the roller 5 in the right row having a large contact angle ⁇ 2 bears almost all of the axial load and a part of the radial load
  • the roller 4 in the left row having a small contact angle ⁇ 1 bears the rest of the radial load.
  • the double-row self-aligning roller bearing 1 of the first embodiment is different from each other in both shapes and contact angles ⁇ 1 and ⁇ 2 of the two rows of rollers 4 and 5, but only one of the shape and the contact angle.
  • the present invention can also be applied to double-row self-aligning roller bearings having different diameters. Different shapes include a difference in roller length, a difference in maximum diameter, a difference between a symmetric roller and an asymmetric roller, and the like.
  • This double row self-aligning roller bearing 1 includes a cage 7A with an inclination angle.
  • One retainer 7A for the right row shown in FIG. 6 is a retainer for holding the rollers 5 in the row receiving the axial load.
  • the retainer 7A has an inclination angle ⁇ that is inclined inward in the radial direction as the outer diameter surface 35Aa of the column portion 35A moves from the proximal end side toward the distal end side.
  • This inclination angle ⁇ is an angle with respect to the bearing center axis O.
  • the inclination angle ⁇ of the cage 7A is set to a range (0 ⁇ ⁇ ⁇ 2) that is larger than zero and equal to or less than the maximum diameter angle ⁇ 2 of the roller 5.
  • the maximum diameter angle ⁇ 2 is an inclination angle of a position where the maximum diameter D2max of the rollers 5 in the right row is relative to a plane perpendicular to the bearing center axis O.
  • the inner diameter surface of the column portion 35A has an inclined surface portion 35Ab and a flat surface portion 35Ac connected to the inclined surface portion 35Ab.
  • the inclined surface portion 35Ab extends from the base end side of the inner diameter surface of the column portion 35A to the vicinity of the middle in the axial direction of the inner diameter surface, and has an inclination angle ⁇ inclined inward in the radial direction from the base end side toward the vicinity of the axial middle.
  • the inclination angle ⁇ is also an angle with respect to the bearing center axis O, and the inclination angle ⁇ is set to be equal to or larger than the inclination angle ⁇ ( ⁇ ⁇ ⁇ ).
  • the inclination angle ⁇ is set to be several degrees larger than the inclination angle ⁇ .
  • the flat surface portion 35Ac is a flat surface parallel to the bearing center axis O extending in the axial direction from the tip edge of the inclined surface portion 35Ab.
  • the outer diameter surface and the inner diameter surface of the column portion 33 do not have an inclination angle, in other words, are parallel to the bearing center axis O.
  • the pocket surface of the cage 7A can hold the maximum diameter position of the roller 5. As a result, the posture stability of the rollers 5 in the row receiving the axial load is not impaired, and the roller 5 can be easily assembled.
  • the left and right rows of rollers 4 and 5 each have crowning Cw at the end portions 13 b and 13 c of the roller rolling surface 13. It may be.
  • composite R crowning that increases the drop amount by applying the end portions 13b and 13c of the roller rolling surface 13 to be smaller than the reference R of the roller rolling surface 13 is applied.
  • the length Ls (hereinafter referred to as “straight length”) of the roller central portion 13a not provided with the crowning Cw is 50% to 70%, preferably 60% of the total length L1 (L2).
  • FIG. 8 is a graph showing the relationship between the PV value (surface pressure ⁇ slip speed) and the straight length when an average wind load is applied to the double row spherical roller bearing for the wind turbine main bearing.
  • the rollers 4 and 5 in each row may have a DLC film 14 on the roller rolling surface 13.
  • the DLC film 14 in this example employs a multilayer structure having high adhesion to the rollers 4 and 5 as the base material.
  • the DLC film 14 has a surface layer 36, an intermediate layer 37, and a stress relaxation layer 38.
  • the surface layer 36 is a film mainly composed of DLC in which only a solid target graphite is used as a carbon supply source and the amount of mixed hydrogen is suppressed.
  • the intermediate layer 37 is a layer mainly composed of at least Cr or W formed between the surface layer 36 and the base material.
  • the stress relaxation layer 38 is formed between the intermediate layer 37 and the surface layer 36.
  • the intermediate layer 37 has a structure including a plurality of layers having different compositions, and FIG. 10 illustrates a three-layer structure of 37a to 37c.
  • a layer 37c mainly composed of Cr is formed on the surface of the substrate, a layer 37b mainly composed of W is formed thereon, and a layer 37a mainly composed of W and C is formed thereon.
  • the intermediate layer 37 may include a number of layers less than or greater than that as necessary.
  • the layer 37a adjacent to the stress relaxation layer 38 can improve the adhesion between the intermediate layer 37 and the stress relaxation layer 38 by mainly including the metal that is the main component of the adjacent layer 37b and carbon.
  • the layer 37a is mainly composed of W and C
  • the W content is decreased from the intermediate layer 37b mainly composed of W toward the stress relaxation layer 38 mainly composed of C.
  • the adhesion can be further improved.
  • the stress relaxation layer 38 is an inclined layer whose main component is C and whose hardness increases continuously or stepwise from the intermediate layer 37 side to the surface layer 36 side. Specifically, it is a DLC gradient layer obtained by forming a film by using a graphite target in the UBMS method and increasing the bias voltage with respect to the substrate continuously or stepwise.
  • the reason why the hardness increases continuously or stepwise is that the constituent ratio of the graphite structure (SP2) and the diamond structure (SP3) in the DLC structure is biased toward the latter as the bias voltage increases.
  • the surface layer 36 is a film mainly composed of DLC formed by extension of the stress relaxation layer 38, and in particular, is a DLC film with a reduced hydrogen content in the structure. Abrasion resistance is improved by reducing the hydrogen content.
  • a method in which hydrogen and a compound containing hydrogen are not mixed into a raw material used for the sputtering process and a sputtering gas by using the UBMS method is used.
  • the case of using the UBMS method has been exemplified for the method of forming the stress relaxation layer 38 and the surface layer 36, but any other known film forming method can be used as long as the hardness can be changed continuously or stepwise. Can be adopted.
  • the total thickness of the multilayer including the intermediate layer 37, the stress relaxation layer 38, and the surface layer 36 is preferably 0.5 ⁇ m to 3.0 ⁇ m. If the total film thickness is less than 0.5 ⁇ m, the abrasion resistance and mechanical strength are inferior, and if the total film thickness exceeds 3.0 ⁇ m, peeling tends to occur.
  • the DLC film 14 is provided only on the outer peripheral surfaces of the rollers 4 and 5, but the DLC film 14 may be provided on both end faces of the rollers 4 and 5.
  • the DLC film 14 is provided on one end surface of each roller 4, 5 guided to the middle collar 10 (FIG. 6), the one end surface of each roller 4, 5 becomes difficult to wear. Abrasion resistance can be further increased.
  • the inner ring 2 is the axial direction of the roller 5 in the row that receives the axial load among the small collars 8 and 9 (FIG. 6).
  • An insertion groove 20 for inserting the roller 5 into the bearing may be provided in the small collar 9 facing the outer end surface.
  • an arc-shaped insertion groove 20 is provided at one place in the circumferential direction of the small collar 9 of the inner ring 2.
  • the radius of curvature of the arc 20a of the insertion groove 20 is appropriately set according to the maximum diameter of the roller 5 to be inserted (FIG. 11).
  • the inclination angle ⁇ of the outer diameter surface 35Aa of the column portion 35A in one of the cages 7A for the right row is less than zero.
  • the inclination angle ⁇ of the inner diameter surface 35Ad of the column portion 35A may be set to be the same as the inclination angle ⁇ of the outer diameter surface 35Aa.
  • the inclination angle ⁇ in this example is set to an angle that is equal to or less than the maximum diameter angle ⁇ 2 and is substantially close to the maximum diameter angle ⁇ 2.
  • the inner diameter surface 35Ad of the column portion 35A is composed only of an inclined surface portion, and the above-described flat surface portion is not provided.
  • the pocket Pt surface of the cage 7A is more reliably maintained near the pitch circle diameter of the roller 5, and is retained during the bearing operation.
  • the pocket Pt surface of the container 7A can hold the maximum diameter position of the roller 5 smoothly and reliably. Also, the roller 5 can be assembled more easily.
  • a casing 23a of the nacelle 23 is installed on the support base 21 via a swivel bearing 22 (FIG. 15) so as to be horizontally swivelable.
  • a main shaft 26 is rotatably installed via a main shaft support bearing 25 installed in the bearing housing 24, and a blade 27 serving as a swirl wing is formed at a portion protruding from the casing 23 a of the main shaft 26. Is attached.
  • the other end of the main shaft 26 is connected to the speed increaser 28, and the output shaft of the speed increaser 28 is coupled to the rotor shaft of the generator 29.
  • the nacelle 23 is turned at an arbitrary angle by the turning motor 30 via the speed reducer 31.
  • two main shaft support bearings 25 are arranged side by side, but may be one.
  • the double-row self-aligning roller bearing 1 according to any one of the above embodiments is used.
  • the roller 5 having the larger contact angle ⁇ 2 is used as the row farther from the blade 27.
  • the roller 4 having the smaller contact angle ⁇ 1 is used as the roller closer to the blade 27.
  • the present invention is not limited to the above embodiment, and various additions, changes, or deletions are possible without departing from the gist of the present invention. Therefore, such a thing is also included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

This double-row self-aligning roller bearing (1) has rollers (4, 5) interposed in two rows in parallel in the bearing width direction between an inner ring (2) and an outer ring (3). The raceway surface (3a) of the outer ring (3) has a spherical shape. The outer circumferential surface of each of the rollers (4, 5) has a cross-sectional shape conforming to the raceway surface (3a) of the outer ring (3). Either or both of the shapes and contact angles (θ1, θ2) of the rollers (4, 5) differ from each other. Mounting holes (15, 16), in which a protrusion prevention jig (17) can be mounted, are provided in width surfaces (2c, 3b) of at least any one among the inner ring (2) and the outer ring (3). The protrusion prevention jig (17) prevents the width surfaces (2c, 2d) of the inner ring (2) from protruding further in the bearing width direction than the width surfaces (3b, 3c) of the outer ring (3).

Description

複列自動調心ころ軸受および飛出し止め治具Double row self-aligning roller bearing and pop-out prevention jig 関連出願Related applications
 この出願は、2017年1月13日出願の特願2017-003895および2017年8月23日出願の特願2017-160074の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2017-003895 filed on Jan. 13, 2017 and Japanese Patent Application No. 2017-160074 filed on Aug. 23, 2017, which is incorporated herein by reference in its entirety. Cited as what constitutes
 この発明は、軸受幅方向に並ぶ2列のころに不均等な荷重が負荷される用途、例えば風力発電装置や産業機械の主軸のようなシャフトを支持する軸受等に適用される複列自動調心ころ軸受、および飛出し止め治具に関する。 The present invention provides a double-row automatic adjustment applied to a bearing that supports a shaft such as a main shaft of a wind power generator or an industrial machine, for example, in applications where an uneven load is applied to the two rows of rollers arranged in the bearing width direction. The present invention relates to a center roller bearing and a pop-out preventing jig.
 風力発電装置の主軸(シャフト)を支持する軸受は、ハウジングに組み込まれた状態で、ブレードやロータヘッドの自重によるラジアル荷重の他に、風力によるアキシアル荷重が作用する。主軸支持用の軸受が図16に示すような複列自動調心ころ軸受41である場合、内輪42と外輪43との間に介在する2列のころ44,45のうち、主にアキシアル荷重Faに対して後ろ側となる一方の列のころ45だけがアキシアル荷重Faを受ける。つまり、一方の列のころ45がラジアル荷重とアキシアル荷重の両方を受けるのに対し、他方の列のころ44はほぼラジアル荷重だけを受ける。このため、アキシアル荷重を受ける列のころ45は、ラジアル荷重だけを受ける列のころ44と比べて接触面圧が大きくなり、ころ45の転動面および外輪43の軌道面43aの表面損傷や摩耗が生じやすく、転がり寿命が短い。よって、アキシアル荷重を受けるころ45の列の転がり寿命により、軸受全体の実質寿命が決定される。 The bearing that supports the main shaft (shaft) of the wind turbine generator is incorporated in the housing, and in addition to the radial load due to the weight of the blade and the rotor head, an axial load due to wind force acts. When the bearing for supporting the main shaft is a double row self-aligning roller bearing 41 as shown in FIG. 16, the axial load Fa is mainly selected from the two rows 44 and 45 interposed between the inner ring 42 and the outer ring 43. Only the roller 45 in one row on the rear side receives the axial load Fa. That is, one row of rollers 45 receives both a radial load and an axial load, while the other row of rollers 44 receives only a radial load. For this reason, the roller 45 in the row receiving the axial load has a larger contact surface pressure than the roller 44 in the row receiving only the radial load, and the surface damage and wear of the rolling surface of the roller 45 and the raceway surface 43a of the outer ring 43 are increased. Is likely to occur and the rolling life is short. Therefore, the actual life of the entire bearing is determined by the rolling life of the row of rollers 45 that receive the axial load.
 上記課題に対して、図17に示す複列自動調心ころ軸受51のように、内輪52と外輪53との間に介在する2列のころ54,55の長さL1,L2を互いに異ならせることで、アキシアル荷重を受ける列のころ55の負荷容量を、アキシアル荷重を殆ど受けない列のころ54の負荷容量よりも大きくすることが提案されている(特許文献1)。各列のころ54,55の負荷容量が適切な大きさとなるようにころ長さL1,L2を設定することにより、各列のころ54,55の転がり寿命がほぼ同じになり、軸受全体の実質寿命を向上させることができる。 In order to solve the above problem, the lengths L1 and L2 of the two rows of rollers 54 and 55 interposed between the inner ring 52 and the outer ring 53 are made different from each other like a double row spherical roller bearing 51 shown in FIG. Thus, it has been proposed that the load capacity of the rollers 55 in the row that receives the axial load be larger than the load capacity of the rollers 54 in the row that hardly receive the axial load (Patent Document 1). By setting the roller lengths L1 and L2 so that the load capacities of the rollers 54 and 55 in each row become appropriate, the rolling life of the rollers 54 and 55 in each row becomes substantially the same, and the actual bearing as a whole. Lifespan can be improved.
 また、図18に示す複列自動調心ころ軸受61のように、内輪62と外輪63との間に介在する2列のころ64,65の接触角θ1,θ2を互いに異ならせ、接触角θ2が大きい方のころ65で大きなアキシアル荷重を受けられるようにし、かつ接触角θ1が小さい方のころ64で大きなラジアル荷重を受けられるようにした提案がされている(特許文献2)。各列のころ64,65の負荷容量が適切な大きさとなるように接触角θ1,θ2を設定することにより、各列のころ64,65の転がり寿命がほぼ同じになり、軸受全体の実質寿命を向上させることができる。 Further, like the double-row self-aligning roller bearing 61 shown in FIG. 18, the contact angles θ1 and θ2 of the two rows of rollers 64 and 65 interposed between the inner ring 62 and the outer ring 63 are made different from each other, so that the contact angle θ2 There has been a proposal in which a roller 65 having a larger diameter can receive a large axial load and a roller 64 having a smaller contact angle θ1 can receive a large radial load (Patent Document 2). By setting the contact angles θ1 and θ2 so that the load capacities of the rollers 64 and 65 in each row become appropriate, the rolling lives of the rollers 64 and 65 in each row become substantially the same, and the actual life of the entire bearing Can be improved.
国際公開第2005/050038号パンフレットInternational Publication No. 2005/050038 Pamphlet 米国特許第2014/0112607号明細書US 2014/0112607
 図17のように左右の列でころ54,55の形状が互いに異なる複列自動調心ころ軸受51や、図18のように左右の列のころ64,65の接触角θ1,θ2が互いに異なる複列自動調心ころ軸受61は、軸受幅方向の重心と軸受幅方向の中心位置とが一致しない。このため、バランスが悪く、軸受組立時や他の装置への組込時に、勝手に調心動作を行うことがあり、取扱いに注意を払う必要がある。例えば図19に示すように、内輪2と外輪3とが、正対する状態に対して互いに傾いて、外輪3の幅面3b,3cよりも内輪2の幅面2d,2cが軸受幅方向に飛び出す。ころ4,5は内輪2と共に動作する。図19は左右の列のころ4,5の接触角θ1,θ2が互いに異なる複列自動調心ころ軸受1を示すが、左右の列でころの形状が互いに異なる複列自動調心ころ軸受も同様の動作をする。 The contact angles θ1 and θ2 of the double row self-aligning roller bearing 51 in which the shapes of the rollers 54 and 55 are different from each other in the left and right rows as shown in FIG. 17 and the roller 64 and 65 in the left and right rows as shown in FIG. In the double row spherical roller bearing 61, the center of gravity in the bearing width direction does not match the center position in the bearing width direction. For this reason, the balance is poor, and when the bearing is assembled or assembled into another device, the aligning operation may be performed arbitrarily, and it is necessary to pay attention to handling. For example, as shown in FIG. 19, the inner ring 2 and the outer ring 3 are inclined with respect to the facing state, and the width surfaces 2d and 2c of the inner ring 2 protrude in the bearing width direction rather than the width surfaces 3b and 3c of the outer ring 3. The rollers 4 and 5 operate together with the inner ring 2. FIG. 19 shows a double-row self-aligning roller bearing 1 in which the contact angles θ1, θ2 of the left and right rows of rollers 4 and 5 are different from each other. The same operation is performed.
 クレーンを用いて行う複列自動調心ころ軸受の組立時や他の装置への組込時に、前記の勝手な調心動作を防ぐには、内輪と外輪の両方をクレーンで吊るす方法や、内輪および外輪の片方または両方に錘を取り付けてバランスをとる方法等がある。しかし、前者の方法は作業に手間がかかり、後者の方法は安定性に欠けるという問題がある。このため、一般的には、特別の対策をとることなく、単に複列自動調心ころ軸受が調心動作をしないように作業者が注意を払いながら慎重に作業をしていた。 In order to prevent the above-mentioned self-aligning operation when assembling a double-row spherical roller bearing using a crane or installing it in another device, a method of hanging both the inner ring and the outer ring with a crane, And a method of balancing by attaching a weight to one or both of the outer rings. However, the former method requires a lot of work, and the latter method has a problem of lacking stability. For this reason, in general, without taking special measures, an operator pays attention carefully so that the double-row self-aligning roller bearing does not perform the aligning operation.
 この発明の目的は、アキシアル荷重およびラジアル荷重を受け、軸方向に並ぶ2列のころに互いに大きさが異なる荷重が作用する用途で用いるのに適し、軸受組立時や他の装置に組み込む際に、勝手に調心動作を行うことを防止できる複列自動調心ころ軸受を提供することである。
 この発明の他の目的は、複列自動調心ころ軸受を安全にかつ効率良く他の装置に組み込むことができる組込方法を提供することである。
 この発明のさらに他の目的は、複列自動調心ころ軸受の組立時や他の装置への組込時に用いることで、複列自動調心ころ軸受の内輪と外輪とが、正対する状態に対して互いに傾いて、外輪の幅面よりも前記内輪の幅面が軸受幅方向に飛び出すことを防止することができる飛出し止め治具を提供することである。
The object of the present invention is suitable for use in applications in which axial loads and radial loads are received, and loads having different sizes act on two rows of rollers arranged in the axial direction. An object of the present invention is to provide a double row self-aligning roller bearing capable of preventing self-aligning operation.
Another object of the present invention is to provide an assembling method capable of incorporating a double row spherical roller bearing into another device safely and efficiently.
Still another object of the present invention is to use the double-row spherical roller bearing in the state where the inner ring and the outer ring of the double-row spherical roller bearing face each other by being used when the double-row spherical roller bearing is assembled or incorporated into another device. Another object of the present invention is to provide a pop-out preventing jig that can be inclined with respect to each other and prevent the width surface of the inner ring from protruding in the bearing width direction rather than the width surface of the outer ring.
 この発明の複列自動調心ころ軸受は、内輪と外輪との間に、軸受幅方向に並んで2列にころが介在し、前記外輪の軌道面が球面状であり、前記2列のころは外周面が前記外輪の軌道面に沿う断面形状であって、
 前記2列のころは、それぞれの形状および接触角のいずれか一方または両方が互いに異なり、
 前記内輪および前記外輪のいずれか一方または両方における幅面に取付孔が設けられ、この取付孔に、前記内輪と前記外輪とが、正対する状態に対して互いに傾いて、前記外輪の幅面よりも前記内輪の幅面が軸受幅方向に飛び出すことを防止する飛出し止め治具を取付可能であることを特徴とする。
The double-row self-aligning roller bearing according to the present invention has two rows of rollers arranged in the bearing width direction between the inner ring and the outer ring, the raceway surface of the outer ring is spherical, and the two-row roller Is a cross-sectional shape of the outer peripheral surface along the raceway surface of the outer ring,
In the two rows of rollers, either one or both of the shape and the contact angle are different from each other,
A mounting hole is provided in the width surface of one or both of the inner ring and the outer ring, and the inner ring and the outer ring are inclined to each other with respect to a state in which the inner ring and the outer ring face each other, and more than the width surface of the outer ring. It is possible to attach a pop-out preventing jig that prevents the width surface of the inner ring from popping out in the bearing width direction.
 この複列自動調心ころ軸受は、2列のころの形状および接触角のいずれか一方または両方が互いに異なっているため、各列のころの負荷容量が異なる。この複列自動調心ころ軸受を、アキシアル荷重およびラジアル荷重が作用する条件下で用いる場合、負荷容量が大きい方のころでアキシアル荷重のほぼすべてとラジアル荷重の一部を負担させ、負荷容量が小さい方のころでラジアル荷重の残りを負担させる。このような分担割合で2列のころでアキシアル荷重とラジアル荷重を分担して負担することにより、両列のころの接触面圧を均等にすることができる。これにより、軸受全体で大きな負荷容量を確保すると共に、軸受全体の実質寿命を向上することができる。 This double row spherical roller bearing has different load capacity for each row of rollers because either one or both of the shape and contact angle of the two rows of rollers are different from each other. When this double row spherical roller bearing is used under conditions where an axial load and a radial load are applied, the roller having the larger load capacity bears almost all of the axial load and a part of the radial load. The smaller roller bears the rest of the radial load. By sharing the axial load and the radial load between the two rows of rollers at such a sharing ratio, the contact surface pressure of the rollers in both rows can be made uniform. As a result, a large load capacity can be ensured in the entire bearing, and the substantial life of the entire bearing can be improved.
 この複列自動調心ころ軸受の組立時や他の装置への組込時には、内輪および外輪のうちのどちらか一方に設けられた取付孔に飛出し止め治具を取り付ける。この状態では、内輪と外輪とが、正対する状態に対して互いに傾いて、外輪の幅面よりも前記内輪の幅面が軸受幅方向に飛び出すことが防止されるので、軸受組立作業や組込作業を安全にかつ効率良く行うことができる。 ¡When this double-row spherical roller bearing is assembled or assembled into another device, a pop-out prevention jig is attached to the mounting hole provided in either the inner ring or the outer ring. In this state, the inner ring and the outer ring are inclined to each other with respect to the facing state, and the width surface of the inner ring is prevented from jumping out in the bearing width direction rather than the width surface of the outer ring. It can be performed safely and efficiently.
 この発明において、前記取付孔はねじ孔であるとよい。
 取付孔がねじ孔であると、飛出し止め治具を容易にかつ堅固に取り付けることができる。
In the present invention, the mounting hole may be a screw hole.
When the attachment hole is a screw hole, the pop-out preventing jig can be easily and firmly attached.
 この複列自動調心ころ軸受は、風力発電装置の主軸の支持に適する。
 風力発電装置の主軸を支持する複列自動調心ころ軸受には、ブレードやロータヘッドの自重によるラジアル荷重、および風力によるアキシアル荷重が作用する。軸受幅方向に並ぶ2列のころのうち片方のころ列はラジアル荷重とアキシアル荷重の両方を受け、もう片方の列のころは殆どラジアル荷重だけを受ける。その場合、アキシアル荷重を受ける列のころは負荷容量が大きい方のころとし、殆どラジアル荷重だけを受ける列のころは負荷容量が小さい方のころとすることで、左右各列のころの接触面圧をほぼ均等にすることができる。
This double row self-aligning roller bearing is suitable for supporting the main shaft of the wind power generator.
A radial load due to the weight of the blade and the rotor head and an axial load due to wind force are applied to the double row spherical roller bearing that supports the main shaft of the wind power generator. Of the two rows of rollers arranged in the bearing width direction, one roller row receives both a radial load and an axial load, and the other row roller receives almost only a radial load. In that case, the roller of the row that receives the axial load is the roller with the larger load capacity, and the roller of the row that receives only the radial load is the roller with the smaller load capacity. The pressure can be made almost uniform.
 前記各列のころをそれぞれ保持する保持器を備え、各保持器は、各列のころの軸方向内側の端面を案内する環状の円環部と、この円環部から軸方向に延び且つ円周方向に沿って定められた間隔置きに設けられた複数の柱部とを備え、これら柱部間に前記ころを保持するポケットが設けられ、アキシアル荷重を受ける列のころを保持する一方の保持器は、前記柱部の外径面が基端側から先端側に向かうに従って半径方向内方に傾斜する傾斜角度を有するものであってもよい。
 前記定められた間隔は、設計等によって任意に定める間隔である。
Each of the rows of rollers is provided with a cage, and each cage has an annular ring portion that guides an axially inner end face of each row of rollers, an axially extending from the annular portion, and a circular shape. A plurality of pillars provided at intervals defined along the circumferential direction, and a pocket for holding the rollers between the pillars, and holding one of the rows of rollers that receive an axial load. The vessel may have an inclination angle such that the outer diameter surface of the column portion is inclined inward in the radial direction from the proximal end side toward the distal end side.
The predetermined interval is an interval arbitrarily determined by design or the like.
 このように、アキシアル荷重を受ける列のころを保持する一方の保持器が、前記柱部の外径面が基端側から先端側に向かうに従って半径方向内方に傾斜する傾斜角度を有する場合、保持器のポケット面がころの最大径位置を抱えることができる。これにより、アキシアル荷重を受ける列のころの姿勢安定性が損なわれることがなく、また前記ころの組込性も容易に行うことが可能となる。 As described above, when one of the cages that holds the rollers of the row receiving the axial load has an inclination angle that is inclined radially inward as the outer diameter surface of the column portion moves from the proximal end side toward the distal end side, The pocket surface of the cage can hold the maximum diameter position of the roller. As a result, the posture stability of the rows of rollers that receive the axial load is not impaired, and the roller can be easily assembled.
 前記各ころは、ころ転動面にDLC被膜を有するものであってもよい。
 前記DLCは、ダイヤモンドライクカーボン(Diamond-like Carbon)の略称である。
 この場合、ころ転動面、内輪および外輪の各軌道面の摩耗が生じ難くなり、前記DLC被膜が無いものより、耐摩耗性の向上を図ることができる。
Each of the rollers may have a DLC film on the roller rolling surface.
The DLC is an abbreviation for Diamond-like Carbon.
In this case, wear on the raceway surfaces of the roller rolling surface, the inner ring, and the outer ring is less likely to occur, and the wear resistance can be improved as compared with those without the DLC film.
 前記各ころは、ころ転動面の端部にクラウニングを有するものであってもよい。この場合、エッジ応力の緩和を図ることができる。 Each roller may have a crowning at the end of the roller rolling surface. In this case, the edge stress can be relaxed.
 前記内輪は、この内輪の外周面における前記2列のころ間に設けられ前記2列のころを案内する中つばと、前記外周面の両端にそれぞれ設けられ各列のころの軸方向外側の端面に臨む小つばとを備え、前記内輪は、前記各小つばのうち、アキシアル荷重を受ける列のころの軸方向外側の端面に臨む小つばに、前記ころを軸受内に挿入する入れ溝を備えてもよい。このような入れ溝を備えたため、アキシアル荷重を受ける列のころの軸受内への組込性をさらに向上させることができる。 The inner ring is provided between the two rows of rollers on the outer peripheral surface of the inner ring and guides the two rows of rollers, and the end surface on the outer side in the axial direction of each row of rollers provided on both ends of the outer peripheral surface. And the inner ring has a slot into which the roller is inserted into the bearing in the small brim facing the axially outer end surface of the roller of the row receiving the axial load among the small brims. May be. Since such an insertion groove is provided, it is possible to further improve the assemblability of the row roller receiving the axial load into the bearing.
 この発明の複列自動調心ころ軸受の組込方法は、前記複列自動調心ころ軸受をシャフトやハウジングに組み込む方法であって、前記飛出し止め治具により、前記内輪と前記外輪とが、正対する状態に対して互いに傾いて、前記外輪の幅面よりも前記内輪の幅面が軸受幅方向に飛び出すことを防止した状態で前記シャフトや前記ハウジングに組み込む。
 この組込方法によると、複列自動調心ころ軸受を、安全にかつ効率良くシャフトやハウジングに組み込むことができる。
The method of assembling the double row spherical roller bearing according to the present invention is a method of incorporating the double row spherical roller bearing into a shaft or a housing, wherein the inner ring and the outer ring are separated by the pop-out preventing jig. The inner ring is incorporated in the shaft and the housing in a state where the inner ring is prevented from jumping out in the bearing width direction with respect to the facing state, and the inner ring is prevented from jumping in the bearing width direction.
According to this assembling method, the double row spherical roller bearing can be safely and efficiently incorporated into the shaft and the housing.
 この発明の飛出し止め治具は、前記複列自動調心ころ軸受に対して使用されるものであって、前記内輪および前記外輪の軸受幅方向同じ側の幅面にそれぞれ当てられる当て材と、前記取付孔に挿入されて、前記当て材を前記内輪および前記外輪のうちの前記取付孔が設けられた軌道輪に固定する固定具とを有する。 The pop-out preventing jig of the present invention is used for the double-row self-aligning roller bearing, and a contact material applied to the same width surface of the inner ring and the outer ring in the bearing width direction, A fixing tool that is inserted into the mounting hole and fixes the contact member to the race ring provided with the mounting hole of the inner ring and the outer ring.
 この飛出し止め治具を用いると、複列自動調心ころ軸受の内輪と外輪とが、正対する状態に対して互いに傾いて、外輪の幅面よりも前記内輪の幅面が軸受幅方向に飛び出すことが防止されるので、複列自動調心ころ軸受の軸受組立作業や組込作業を安全にかつ効率良く行うことができる。 When this pop-out preventing jig is used, the inner ring and the outer ring of the double-row self-aligning roller bearing are inclined relative to each other so that the width of the inner ring protrudes in the bearing width direction rather than the width of the outer ring. Therefore, it is possible to safely and efficiently perform the bearing assembly work and the assembly work of the double row spherical roller bearing.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明からより明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、本発明の範囲を定めるために利用されるべきものではない。本発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の部品番号は、同一または相当部分を示す。
この発明の第1実施形態にかかる複列自動調心ころ軸受の断面図である。 同複列自動調心ころ軸受のころの形状を誇張して表した説明図である。 この発明の第1実施形態にかかる飛出し止め治具の分解斜視図である。 図1に示す複列自動調心ころ軸受の取付孔に図3に示す飛出し止め治具を取り付けた状態を示す断面図である。 図4に示す複列自動調心ころ軸受をワイヤで吊り下げた状態を示す部分図である。 この発明の第2実施形態に係る複列自動調心ころ軸受の断面図である。 この発明の第3実施形態に係る複列自動調心ころ軸受のころのクラウニング等を示す拡大断面図である。 同ころのストレート長さとPV値との関係を示す図である。 同ころのストレート長さと軸受寿命との関係を示す図である。 この発明の第4実施形態に係る複列自動調心ころ軸受のころのDLC被膜等を示す拡大断面図である。 この発明の第5実施形態に係る複列自動調心ころ軸受の内輪の入れ溝等を示す拡大断面図である。 同内輪の入れ溝等を軸方向から見た端面図である。 この発明の第6実施形態に係る複列自動調心ころ軸受の断面図である。 風力発電装置の主軸支持装置の一例の一部を切り欠いて表した斜視図である。 同主軸支持装置の破断側面図である。 従来の一般的な複列自動調心ころ軸受の断面図である。 第1の提案例の複列自動調心ころ軸受の断面図である。 第2の提案例の複列自動調心ころ軸受の断面図である。 複列自動調心ころ軸受の内輪と外輪とが正対する状態に対して互いに傾いた状態を示す断面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same part numbers in a plurality of drawings indicate the same or corresponding parts.
It is sectional drawing of the double row self-aligning roller bearing concerning 1st Embodiment of this invention. It is explanatory drawing which exaggerated and represented the shape of the roller of the same double row self-aligning roller bearing. It is a disassembled perspective view of the pop-out prevention jig concerning 1st Embodiment of this invention. It is sectional drawing which shows the state which attached the popping-out prevention jig | tool shown in FIG. 3 to the attachment hole of the double row self-aligning roller bearing shown in FIG. FIG. 5 is a partial view showing a state in which the double row self-aligning roller bearing shown in FIG. 4 is suspended by a wire. It is sectional drawing of the double row self-aligning roller bearing which concerns on 2nd Embodiment of this invention. It is an expanded sectional view showing crowning etc. of a roller of a double row self-aligning roller bearing concerning a 3rd embodiment of this invention. It is a figure which shows the relationship between the straight length and PV value of the same time. It is a figure which shows the relationship between the straight length of the same roller, and a bearing life. It is an expanded sectional view showing a DLC coat etc. of a roller of a double row self-aligning roller bearing concerning a 4th embodiment of this invention. It is an expanded sectional view showing an insertion slot etc. of an inner ring of a double row self-aligning roller bearing concerning a 5th embodiment of this invention. It is the end elevation which looked at the slot of the inner ring from the axial direction. It is sectional drawing of the double row self-aligning roller bearing which concerns on 6th Embodiment of this invention. It is the perspective view which notched and represented a part of example of the spindle support apparatus of the wind power generator. It is a fracture side view of the spindle support device. It is sectional drawing of the conventional common double row self-aligning roller bearing. It is sectional drawing of the double row self-aligning roller bearing of the 1st proposal example. It is sectional drawing of the double row self-aligning roller bearing of the 2nd proposal example. It is sectional drawing which shows the state which mutually inclined with respect to the state in which the inner ring | wheel and outer ring | wheel of a double row self-aligning roller bearing face directly.
 この発明の実施形態を図面と共に説明する。
 図1は、この発明の第1実施形態に係る複列自動調心ころ軸受の断面図である。この複列自動調心ころ軸受1は、シャフト60に取り付けられる内輪2と、ハウジング70に取り付けられる外輪3との間に、軸受幅方向に並ぶ左右2列のころ4,5が介在している。外輪3の軌道面3aは球面状であり、左右各列のころ4,5は外周面が外輪3の軌道面3aに沿う断面形状である。言い換えると、ころ4,5の外周面は、外輪3の軌道面3aに沿った円弧を中心線C1,C2回りに回転させた回転曲面である。内輪2には、左右各列のころ4,5の外周面に沿う断面形状の複列の軌道面2a,2bが形成されている。左右各列のころ4,5は、それぞれ保持器6,7により保持されている。
An embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view of a double row self-aligning roller bearing according to a first embodiment of the present invention. In this double-row self-aligning roller bearing 1, left and right two- row rollers 4, 5 aligned in the bearing width direction are interposed between an inner ring 2 attached to a shaft 60 and an outer ring 3 attached to a housing 70. . The raceway surface 3 a of the outer ring 3 has a spherical shape, and the rollers 4 and 5 in each of the left and right rows have a cross-sectional shape along the raceway surface 3 a of the outer ring 3. In other words, the outer peripheral surfaces of the rollers 4 and 5 are rotating curved surfaces obtained by rotating an arc along the raceway surface 3a of the outer ring 3 around the center lines C1 and C2. The inner ring 2 is formed with double-row raceway surfaces 2a and 2b having a cross-sectional shape along the outer peripheral surfaces of the rollers 4 and 5 in the left and right rows. The left and right rows of rollers 4 and 5 are held by cages 6 and 7, respectively.
 左列用の保持器6は、左列のころ4の軸方向内側の端面を案内する環状の円環部32と、この円環部32から軸方向に延び且つ円周方向に沿って定められた間隔置きに設けられた複数の柱部33とを備え、これら柱部間に、前記ころ4を保持するポケットPtが設けられている。右列用の保持器7は、右列のころ5の軸方向内側の端面を案内する環状の円環部34と、この円環部34から軸方向に延び且つ円周方向に沿って定められた間隔置きに設けられた複数の柱部35とを備え、これら柱部間に、前記ころ5を保持するポケットPtが設けられている。 The cage 6 for the left row is defined by an annular ring portion 32 that guides the axially inner end face of the roller 4 in the left row, the axial portion extending from the annular portion 32, and the circumferential direction. A plurality of pillar portions 33 provided at intervals are provided, and a pocket Pt for holding the roller 4 is provided between the pillar portions. The right row retainer 7 is defined by an annular ring portion 34 that guides an axially inner end face of the right row roller 5, an axial direction extending from the annular portion 34, and a circumferential direction. A plurality of pillar portions 35 provided at intervals are provided, and a pocket Pt for holding the roller 5 is provided between the pillar portions.
 内輪2の外周面の両端には、つば(小つば)8,9がそれぞれ設けられている。内輪2の外周面の中央部、すなわち左列のころ4と右列のころ5間に、中つば10が設けられている。内輪2はつば無しのものであってもよい。外輪3は、外周面における左右のころ列間に環状の油溝11を有し、この油溝11から内周面に貫通する油孔12が、円周方向の1箇所または複数箇所に設けられている。 つ At the both ends of the outer peripheral surface of the inner ring 2, collars 8 and 9 are provided, respectively. An intermediate collar 10 is provided at the center of the outer peripheral surface of the inner ring 2, that is, between the left row roller 4 and the right row roller 5. The inner ring 2 may have no collar. The outer ring 3 has an annular oil groove 11 between the left and right roller rows on the outer peripheral surface, and oil holes 12 penetrating from the oil groove 11 to the inner peripheral surface are provided at one or a plurality of locations in the circumferential direction. ing.
 第1実施形態の場合、左右各列のころ4,5は、中心線C1,C2に沿った長さL1,L2が互いに同じで、最大径D1max,D2maxも互いに同じであり、かつ左右各列のころ4,5は、いずれも非対称ころとされている。非対称ころとは、最大径D1max,D2maxの位置がころ長さの中央から外れた非対称形状のころである。図1の例では、左列のころ4の最大径D1maxの位置はころ長さの中央よりも右側にあり、右列のころ5の最大径D2maxの位置はころ長さの中央よりも左側にある。 In the case of the first embodiment, the left and right rollers 4 and 5 have the same lengths L1 and L2 along the center lines C1 and C2, the same maximum diameters D1max and D2max, and the left and right rows. The rollers 4 and 5 are all asymmetric rollers. The asymmetric roller is an asymmetrical roller in which the positions of the maximum diameters D1max and D2max deviate from the center of the roller length. In the example of FIG. 1, the position of the maximum diameter D1max of the roller 4 in the left row is on the right side of the center of the roller length, and the position of the maximum diameter D2max of the roller 5 in the right row is on the left side of the center of the roller length. is there.
 また、左列のころ4の接触角θ1よりも、右列のころ5の接触角θ2の方が大きく設定されている。左右各列のころ4,5を前述の非対称ころとすることで、最大径の位置がころ長さの中央にある対称ころ(図示せず)に対して、ころ4,5の位置を変えずに、接触角θ1,θ2を変えることができる。ころ長さの中央から最大径の位置までの距離を調整することで、最適の接触角を設定することができる。図1の例では、左列のころ4よりも右列のころ5の方が、前記距離が大きく設定されている。 Further, the contact angle θ2 of the roller 5 in the right row is set larger than the contact angle θ1 of the roller 4 in the left row. By making the rollers 4 and 5 in the left and right rows the above-mentioned asymmetric rollers, the positions of the rollers 4 and 5 are not changed with respect to a symmetrical roller (not shown) whose maximum diameter is in the center of the roller length. Further, the contact angles θ1 and θ2 can be changed. The optimal contact angle can be set by adjusting the distance from the center of the roller length to the position of the maximum diameter. In the example of FIG. 1, the distance is set larger in the roller 5 in the right row than in the roller 4 in the left row.
 各列のころ4,5の接触角θ1,θ2を成す作用線S1,S2は、軸受中心軸O上の調心中心点Pで互いに交わる。これにより、外輪3の軌道面3aに沿って、内輪2およびころ4,5が調心動作することが可能となる。調心中心点Pの軸受幅方向位置は、前記中つば8の軸受幅方向の中心位置Qよりも、接触角θ1が小さい方のころ4の側にずれている。なお、前記作用線S1,S2は、ころ4,5と内輪2および外輪3との接触部に働く力の合成力が作用する線である。 The action lines S1 and S2 forming the contact angles θ1 and θ2 of the rollers 4 and 5 in each row intersect with each other at the alignment center point P on the bearing center axis O. Thereby, the inner ring 2 and the rollers 4 and 5 can be aligned along the raceway surface 3 a of the outer ring 3. The position of the alignment center point P in the bearing width direction is shifted toward the roller 4 having the smaller contact angle θ1 than the center position Q of the middle collar 8 in the bearing width direction. The action lines S1 and S2 are lines on which a combined force of forces acting on the contact portions between the rollers 4 and 5 and the inner ring 2 and the outer ring 3 acts.
 図2に示すように、左右各列のころ4,5のうちのいずれか一方または両方のころの転動面13にクラウニングを設けてもよい。クラウニングを設けることで、転動面13の中央部13aよりも両端部13b及び13cの曲率径を小さくする。クラウニングの形状は、例えば対数曲線とする。対数曲線以外に、直線、単一の円弧または複数の円弧を組み合わせた形状であってもよい。このようにころ4,5の転動面13の両端にクラウニングを設けることにより、ころ4,5の転動面13における滑り速度が大きい両端部13b及び13cの面圧が下がり、PV値(面圧×滑り速度)の絶対値が抑えられ、摩擦を低減することができる。特に、アキシアル荷重を受ける図1の右列のころ5にクラウニングを設けるのが好ましい。 As shown in FIG. 2, crowning may be provided on the rolling surface 13 of one or both of the rollers 4 and 5 in each of the left and right rows. By providing crowning, the curvature diameters of both end portions 13b and 13c are made smaller than the central portion 13a of the rolling surface 13. The shape of the crowning is, for example, a logarithmic curve. In addition to the logarithmic curve, a straight line, a single arc, or a combination of a plurality of arcs may be used. By providing the crowning at both ends of the rolling surfaces 13 of the rollers 4 and 5 in this way, the surface pressures at both ends 13b and 13c having a large sliding speed on the rolling surfaces 13 of the rollers 4 and 5 are reduced, and the PV value (surface The absolute value of (pressure × sliding speed) is suppressed, and friction can be reduced. In particular, it is preferable to provide a crowning on the roller 5 in the right row in FIG. 1 that receives an axial load.
 図1に示す複列自動調心ころ軸受1は、上記のように、左右各列のころ4,5の接触角θ1,θ2が互いに異なるため、軸受幅方向の重心(図示せず)と軸受幅方向の中心位置Qとが一致せず、バランスが悪い。このため、複列自動調心ころ軸受1の組立時や他の装置への組込時に、勝手に調心動作を行う可能性がある。そこで、内輪2および外輪3の幅面2c,3bにおける周方向の3箇所以上に、調心動作を防止するための飛出し止め治具(図2参照)を取付可能な取付孔15,16が設けられている。これらの取付孔15,16は、内輪2および外輪3の軸受幅方向の両側の幅面2c,2d,3b,3cのうち、径方向に広い方の幅面2c,3bに設けるとよい。この実施形態では、取付孔15,16はねじ孔である。 The double-row self-aligning roller bearing 1 shown in FIG. 1 has a center of gravity (not shown) and a bearing in the bearing width direction because the contact angles θ1 and θ2 of the rollers 4 and 5 in the left and right rows are different as described above. The center position Q in the width direction does not match and the balance is poor. For this reason, there is a possibility that a self-aligning operation may be performed at the time of assembling the double-row self-aligning roller bearing 1 or assembling it into another device. Therefore, mounting holes 15 and 16 are provided at three or more locations in the circumferential direction on the width surfaces 2c and 3b of the inner ring 2 and the outer ring 3 to which pop-out preventing jigs (see FIG. 2) for preventing the alignment operation can be mounted. It has been. These mounting holes 15 and 16 are preferably provided in the width surfaces 2c and 3b which are wider in the radial direction among the width surfaces 2c, 2d, 3b and 3c on both sides of the inner ring 2 and the outer ring 3 in the bearing width direction. In this embodiment, the attachment holes 15 and 16 are screw holes.
 図3は、第1実施形態にかかる飛出し止め治具の分解斜視図である。この飛出し止め具17は、当て材18と固定具19とからなる。当て材18は細長形状の板材であって、長手方向の一方端に厚さ方向に貫通する固定具挿通孔18aが設けられている。固定具19はボルトからなり、当て材18の固定具挿通孔18aに挿通可能で、かつねじ部19aをねじ孔からなる前記取付孔15,16に螺合可能である。 FIG. 3 is an exploded perspective view of the pop-out preventing jig according to the first embodiment. The pop-out stopper 17 includes a pad 18 and a fixture 19. The contact member 18 is an elongated plate member, and a fixture insertion hole 18a penetrating in the thickness direction is provided at one end in the longitudinal direction. The fixing tool 19 is made of a bolt, can be inserted into the fixing tool insertion hole 18a of the abutting member 18, and can be screwed into the mounting holes 15 and 16 including screw holes.
 図4に示すように、飛出し止め具17は複列自動調心ころ軸受1の取付孔15,16に取り付けられる。すなわち、内輪2および外輪3の軸受幅方向同じ側の幅面2c,3c(または幅面2d,3b)に当て材18を当て、この当て材18を固定具19によって内輪2または外輪3に固定する。その固定方法は、当て材18の固定具挿通孔18aと内輪2または外輪3の取付孔15,16の周方向および径方向の位置を一致させた状態で、固定具19を軸受幅方向の外側から固定具挿通孔18aに挿通し、そのねじ部19aを取付孔15,16に螺合させる。取付孔15,16がねじ孔であり、固定具19がボルトであると、飛出し止め治具17を容易にかつ堅固に取り付けることができる。 As shown in FIG. 4, the pop-out stopper 17 is attached to the mounting holes 15 and 16 of the double-row self-aligning roller bearing 1. That is, the contact member 18 is applied to the width surfaces 2 c and 3 c (or the width surfaces 2 d and 3 b) on the same side in the bearing width direction of the inner ring 2 and the outer ring 3, and the contact member 18 is fixed to the inner ring 2 or the outer ring 3 by the fixture 19. The fixing method is such that the fixing tool 19 is placed on the outer side in the bearing width direction in a state where the fixing tool insertion hole 18a of the abutting member 18 and the mounting holes 15 and 16 of the inner ring 2 or the outer ring 3 are aligned in the circumferential direction and radial position. Is inserted into the fixture insertion hole 18a, and the screw portion 19a is screwed into the mounting holes 15 and 16. When the attachment holes 15 and 16 are screw holes and the fixture 19 is a bolt, the pop-out preventing jig 17 can be easily and firmly attached.
 図4のように、複列自動調心ころ軸受1の取付孔15,16に飛出し止め具17を取り付けると、飛出し止め具17の当て材18が内輪2および外輪3の幅面2c,3c(または幅面2d,3b)に当接することで、内輪2と外輪3とが正対する状態に対して互いに傾くことが防止される。言い換えると、外輪3の幅面3b,3cよりも内輪2の幅面2d,2cが軸受幅方向に飛び出すことが防止される。複列自動調心ころ軸受1は、取付孔15,16に飛出し止め具17を取り付けた状態でシャフト60またはハウジング70に組み込まれる。複列自動調心ころ軸受1の組込完了後、取付孔15,16から飛出し止め具17が外される。 As shown in FIG. 4, when the pop-out stopper 17 is attached to the mounting holes 15, 16 of the double-row spherical roller bearing 1, the contact member 18 of the pop-out stopper 17 causes the width surfaces 2 c, 3 c of the inner ring 2 and the outer ring 3. (Or the width surfaces 2d and 3b) is prevented from inclining with respect to the state in which the inner ring 2 and the outer ring 3 face each other. In other words, the width surfaces 2d and 2c of the inner ring 2 are prevented from jumping out in the bearing width direction from the width surfaces 3b and 3c of the outer ring 3. The double-row self-aligning roller bearing 1 is incorporated in the shaft 60 or the housing 70 with the pop-out stopper 17 attached to the mounting holes 15 and 16. After completion of the assembly of the double-row self-aligning roller bearing 1, the pop-out stopper 17 is removed from the mounting holes 15 and 16.
 図4の例では、内輪2および外輪3の両方の取付孔15,16に飛出し止め具17がそれぞれ取り付けられているが、片方の取付孔15または取付孔16にだけ飛出し止め具17を取り付けてもよい。この複列自動調心ころ軸受1は、調心中心点Pに対して軸受幅方向の中心位置Qが図の右側に位置しているため、外輪3に対して内輪2およびころ4,5が、外輪3の軌道面3aに沿って軸受幅方向に回転しようとする力が作用しやすい。このため、片方の取付孔15または取付孔16にだけ飛出し止め具17を取り付ける場合、前記力を受けるように外輪3の取付孔16に飛出し止め具17を取り付けるのが望ましい。 In the example of FIG. 4, the pop-out stoppers 17 are respectively attached to the mounting holes 15 and 16 of both the inner ring 2 and the outer ring 3, but the pop-out stoppers 17 are attached only to the one mounting hole 15 or the mounting hole 16. It may be attached. In this double row spherical roller bearing 1, the center position Q in the bearing width direction is located on the right side of the drawing with respect to the centering center point P. A force that tends to rotate in the bearing width direction along the raceway surface 3a of the outer ring 3 is likely to act. For this reason, when attaching the pop-out stopper 17 only to one of the attachment holes 15 or 16, it is desirable to attach the pop-out stopper 17 to the attachment hole 16 of the outer ring 3 so as to receive the force.
 第1実施形態では、複列自動調心ころ軸受1の取付孔15,16がねじ孔とされ、飛出し止め具17の固定具19がボルトとされているが、これに限定されない。取付孔15,16および固定具19は、当て材18を内輪2または外輪3に固定することができる構成であればよい。例えば、取付孔15,16がピン孔で、固定具19がピン孔に固定状態に挿入されるピンであってもよい。 In the first embodiment, the mounting holes 15 and 16 of the double-row self-aligning roller bearing 1 are screw holes and the fixing tool 19 of the pop-out stopper 17 is a bolt, but the present invention is not limited to this. The attachment holes 15 and 16 and the fixture 19 may be configured so that the contact member 18 can be fixed to the inner ring 2 or the outer ring 3. For example, the mounting holes 15 and 16 may be pin holes, and the fixing tool 19 may be a pin inserted in a fixed state in the pin hole.
 この複列自動調心ころ軸受1の組立や他の装置への組込に際しては、図5に示すように、複列自動調心ころ軸受1を軸受中心軸Oが上下方向となる姿勢にし、外輪3の油孔12にピン71を挿入し、このピン71にワイヤ72を引っ掛けて吊り下げる。このとき、取付孔15,16に飛出し止め具17が取り付けられていると、内輪2と外輪3とが、正対する状態に対して互いに傾いて、外輪3の幅面3b,3cよりも内輪2の幅面2d,2cが軸受幅方向に飛び出すことが防止される。このため、複列自動調心ころ軸受1の軸受組立作業や組込作業を安全にかつ効率良く行うことができる。 When the double-row spherical roller bearing 1 is assembled or assembled into another device, as shown in FIG. 5, the double-row spherical roller bearing 1 is in a posture in which the bearing center axis O is in the vertical direction. A pin 71 is inserted into the oil hole 12 of the outer ring 3, and a wire 72 is hooked on the pin 71 and suspended. At this time, if the pop-out stopper 17 is attached to the attachment holes 15 and 16, the inner ring 2 and the outer ring 3 are inclined with respect to the facing state, and the inner ring 2 is more than the width surfaces 3 b and 3 c of the outer ring 3. The width surfaces 2d and 2c are prevented from jumping out in the bearing width direction. For this reason, the bearing assembly work and the assembly work of the double row self-aligning roller bearing 1 can be performed safely and efficiently.
 この構成の複列自動調心ころ軸受1は、アキシアル荷重およびラジアル荷重を受け、左右のころ列に互いに大きさが異なる荷重が作用する用途、例えば風力発電装置の主軸支持軸受として用いられる。その場合、旋回翼に近い側(フロント側)に左列のころ4が位置し、遠い側(リア側)に右列のころ5が位置するように、複列自動調心ころ軸受1を設置する。これにより、接触角θ2が大きい右列のころ5が、アキシアル荷重のほぼすべてとラジアル荷重の一部を負担し、接触角θ1が小さい左列のころ4が、ラジアル荷重の残りを負担する。 The double-row self-aligning roller bearing 1 having this configuration is used in applications where axial loads and radial loads are applied and loads having different sizes act on the left and right roller arrays, for example, as a spindle support bearing for a wind power generator. In that case, the double row self-aligning roller bearing 1 is installed so that the left row roller 4 is located on the side closer to the swirl blade (front side) and the right row roller 5 is located on the far side (rear side). To do. Accordingly, the roller 5 in the right row having a large contact angle θ2 bears almost all of the axial load and a part of the radial load, and the roller 4 in the left row having a small contact angle θ1 bears the rest of the radial load.
 ころ4,5の接触角θ1,θ2を適切に設定することにより、左右各列のころ4,5が持つ負荷容量に応じた比率で荷重を分担させることができる。その結果、左右各列のころ4,5の面圧が均等になる。これにより、軸受全体で大きな負荷容量を確保すると共に、軸受全体の実質寿命を向上させることができる。 By appropriately setting the contact angles θ1 and θ2 of the rollers 4 and 5, it is possible to share the load at a ratio according to the load capacity of the rollers 4 and 5 in the left and right rows. As a result, the surface pressures of the rollers 4 and 5 in the left and right rows are equalized. As a result, a large load capacity can be ensured in the entire bearing, and the substantial life of the entire bearing can be improved.
 第1実施形態の複列自動調心ころ軸受1は、2列のころ4,5のそれぞれの形状および接触角θ1,θ2の両方が互いに異なっているが、形状および接触角のいずれか一方だけが異なる複列自動調心ころ軸受にもこの発明を適用できる。互いに異なる形状とは、ころ長さの違い、最大径の違い、対称ころと非対称ころの違い等である。 The double-row self-aligning roller bearing 1 of the first embodiment is different from each other in both shapes and contact angles θ1 and θ2 of the two rows of rollers 4 and 5, but only one of the shape and the contact angle. The present invention can also be applied to double-row self-aligning roller bearings having different diameters. Different shapes include a difference in roller length, a difference in maximum diameter, a difference between a symmetric roller and an asymmetric roller, and the like.
 他の実施形態について説明する。
 以下の説明においては、各実施の形態で先行して説明している事項に対応している部分には同一の参照符号を付し、重複する説明を略する。構成の一部のみを説明している場合、構成の他の部分は、特に記載のない限り先行して説明している形態と同様とする。同一の構成から同一の作用効果を奏する。実施の各形態で具体的に説明している部分の組合せばかりではなく、特に組合せに支障が生じなければ、実施の形態同士を部分的に組合せることも可能である。
Another embodiment will be described.
In the following description, the same reference numerals are given to portions corresponding to the matters described in advance in the respective embodiments, and overlapping descriptions are omitted. When only a part of the configuration is described, the other parts of the configuration are the same as those described in advance unless otherwise specified. The same effect is obtained from the same configuration. Not only the combination of the parts specifically described in each embodiment, but also the embodiments can be partially combined as long as the combination does not hinder.
 <傾斜角度付きの保持器7Aについて>
 第2実施形態に係る複列自動調心ころ軸受を図6と共に説明する。
 この複列自動調心ころ軸受1は、傾斜角度付きの保持器7Aを備えている。同図6に示す右列用の一方の保持器7Aは、アキシアル荷重を受ける列のころ5を保持する保持器である。この保持器7Aは、柱部35Aの外径面35Aaが基端側から先端側に向かうに従って半径方向内方に傾斜する傾斜角度βを有する。この傾斜角度βは、軸受中心軸Oに対する角度である。保持器7Aの傾斜角度βは、零よりも大きく、前記ころ5の最大径角α2以下の範囲(0<β≦α2)に設定されている。前記最大径角α2は、軸受中心軸Oに垂直な平面に対する、右列のころ5の最大径D2maxとなる位置の傾き角である。
<About cage 7A with an inclination angle>
A double-row self-aligning roller bearing according to the second embodiment will be described with reference to FIG.
This double row self-aligning roller bearing 1 includes a cage 7A with an inclination angle. One retainer 7A for the right row shown in FIG. 6 is a retainer for holding the rollers 5 in the row receiving the axial load. The retainer 7A has an inclination angle β that is inclined inward in the radial direction as the outer diameter surface 35Aa of the column portion 35A moves from the proximal end side toward the distal end side. This inclination angle β is an angle with respect to the bearing center axis O. The inclination angle β of the cage 7A is set to a range (0 <β ≦ α2) that is larger than zero and equal to or less than the maximum diameter angle α2 of the roller 5. The maximum diameter angle α2 is an inclination angle of a position where the maximum diameter D2max of the rollers 5 in the right row is relative to a plane perpendicular to the bearing center axis O.
 この例の右列用の保持器7Aにおける、柱部35Aの内径面は、傾斜面部35Abと、この傾斜面部35Abに繋がる平坦面部35Acとを有する。傾斜面部35Abは、柱部35Aの内径面の基端側から同内径面の軸方向中間付近まで延び、基端側から軸方向中間付近に向かうに従って半径方向内方に傾斜する傾斜角度γを有する。この傾斜角度γも軸受中心軸Oに対する角度であり、傾斜角度γは傾斜角度β以上(γ≧β)となるように設定されている。この例では、傾斜角度γは傾斜角度βよりも数度大きく設定されている。但し、この関係(γ≧β)に限定されるものではない。平坦面部35Acは、傾斜面部35Abの先端縁から軸方向に延びる軸受中心軸Oに平行な平坦面である。なお左列用の保持器6は、柱部33の外径面および内径面が、傾斜角度を有しない、換言すれば、軸受中心軸Oに対して平行である。 In the right row retainer 7A of this example, the inner diameter surface of the column portion 35A has an inclined surface portion 35Ab and a flat surface portion 35Ac connected to the inclined surface portion 35Ab. The inclined surface portion 35Ab extends from the base end side of the inner diameter surface of the column portion 35A to the vicinity of the middle in the axial direction of the inner diameter surface, and has an inclination angle γ inclined inward in the radial direction from the base end side toward the vicinity of the axial middle. . The inclination angle γ is also an angle with respect to the bearing center axis O, and the inclination angle γ is set to be equal to or larger than the inclination angle β (γ ≧ β). In this example, the inclination angle γ is set to be several degrees larger than the inclination angle β. However, it is not limited to this relationship (γ ≧ β). The flat surface portion 35Ac is a flat surface parallel to the bearing center axis O extending in the axial direction from the tip edge of the inclined surface portion 35Ab. In the retainer 6 for the left row, the outer diameter surface and the inner diameter surface of the column portion 33 do not have an inclination angle, in other words, are parallel to the bearing center axis O.
 右列用の保持器7Aが前述のような傾斜角度βを有するため、保持器7Aのポケット面がころ5の最大径位置を抱えることができる。これにより、アキシアル荷重を受ける列のころ5の姿勢安定性が損なわれることがなく、またころ5の組込性も容易に行うことが可能となる。 Since the cage 7A for the right row has the inclination angle β as described above, the pocket surface of the cage 7A can hold the maximum diameter position of the roller 5. As a result, the posture stability of the rollers 5 in the row receiving the axial load is not impaired, and the roller 5 can be easily assembled.
 <クラウニングCwについて>
 第3実施形態に係る複列自動調心ころ軸受は、図7に示すように、左右各列のころ4,5は、それぞれころ転動面13の端部13b及び13cにクラウニングCwを有するものであってもよい。この例のクラウニングCwは、ころ転動面13の端部13b及び13cをころ転動面13の基準Rよりも小さくすることで、ドロップ量を大きくする複合Rクラウニングが適用されている。クラウニングCwを設けないころ中央部13aの長さLs(以下、「ストレート長さ」)は、ころ全長L1(L2)の50%~70%、好ましくは60%とするとよい。
<About Crowning Cw>
In the double row spherical roller bearing according to the third embodiment, as shown in FIG. 7, the left and right rows of rollers 4 and 5 each have crowning Cw at the end portions 13 b and 13 c of the roller rolling surface 13. It may be. In the crowning Cw of this example, composite R crowning that increases the drop amount by applying the end portions 13b and 13c of the roller rolling surface 13 to be smaller than the reference R of the roller rolling surface 13 is applied. The length Ls (hereinafter referred to as “straight length”) of the roller central portion 13a not provided with the crowning Cw is 50% to 70%, preferably 60% of the total length L1 (L2).
 図8は、風車主軸受用の複列自動調心ころ軸受に平均的な風荷重が負荷したときのPV値(面圧×滑り速度)と、ストレート長さとの関係を示す図である。図9は、同ストレート長さと軸受寿命との関係を示す図である。図8より、ストレート長さは短ければ短い程、PV値が低下することが分かるが、図9より、ストレート長さがころ全長の60%より小さいと、クラウニングを付与しない場合(ストレート長さ=100%)と比べて、寿命低下率が5%を超えることが分かる。したがって、ストレート長さは、ころ全長の60%であることが好ましい。
 各列のころ4,5がこのようなクラウニングCw(図5)を有する場合、エッジ応力の緩和を図ることができる。なお前記複合Rクラウニングに代えて、ころ転動面13の端部13b及び13cが対数曲線で表現される対数クラウニングにしてもよい。
FIG. 8 is a graph showing the relationship between the PV value (surface pressure × slip speed) and the straight length when an average wind load is applied to the double row spherical roller bearing for the wind turbine main bearing. FIG. 9 is a diagram showing the relationship between the straight length and the bearing life. From FIG. 8, it can be seen that the shorter the straight length, the lower the PV value. However, from FIG. 9, when the straight length is less than 60% of the total roller length, crowning is not applied (straight length = 100%), it can be seen that the life reduction rate exceeds 5%. Therefore, the straight length is preferably 60% of the total length of the rollers.
When the rollers 4 and 5 in each row have such a crowning Cw (FIG. 5), the edge stress can be reduced. Instead of the composite R crowning, logarithmic crowning in which the end portions 13b and 13c of the roller rolling surface 13 are expressed by a logarithmic curve may be used.
 <DLC被膜について>
 第4実施形態に係る複列自動調心ころ軸受は、図10に示すように、各列のころ4,5は、ころ転動面13にDLC被膜14を有するものであってもよい。この例のDLC被膜14は、基材であるころ4,5との密着性が高い多層構造が採用されている。DLC被膜14は、表面層36と、中間層37と、応力緩和層38とを有する。表面層36は、炭素供給源として固体ターゲットのグラファイトのみを使用し、水素混入量を抑えたDLCを主体とする膜である。中間層37は、表面層36と前記基材との間に形成される、少なくともCrまたはWを主体とする層である。応力緩和層38は、中間層37と表面層36との間に形成される。
<About DLC coating>
In the double-row self-aligning roller bearing according to the fourth embodiment, as shown in FIG. 10, the rollers 4 and 5 in each row may have a DLC film 14 on the roller rolling surface 13. The DLC film 14 in this example employs a multilayer structure having high adhesion to the rollers 4 and 5 as the base material. The DLC film 14 has a surface layer 36, an intermediate layer 37, and a stress relaxation layer 38. The surface layer 36 is a film mainly composed of DLC in which only a solid target graphite is used as a carbon supply source and the amount of mixed hydrogen is suppressed. The intermediate layer 37 is a layer mainly composed of at least Cr or W formed between the surface layer 36 and the base material. The stress relaxation layer 38 is formed between the intermediate layer 37 and the surface layer 36.
 中間層37は、組成の異なる複数の層を含む構造であり、図10では37a~37cの三層構造を例示している。例えば、基材の表面にCrを主体とする層37cを形成し、その上にWを主体とする層37bを形成し、その上にWおよびCを主体とする層37aを形成する。図10では三層構造を例示したが、中間層37は、必要に応じて、これ以下または以上の数の層を含むものであっても良い。 The intermediate layer 37 has a structure including a plurality of layers having different compositions, and FIG. 10 illustrates a three-layer structure of 37a to 37c. For example, a layer 37c mainly composed of Cr is formed on the surface of the substrate, a layer 37b mainly composed of W is formed thereon, and a layer 37a mainly composed of W and C is formed thereon. Although the three-layer structure is illustrated in FIG. 10, the intermediate layer 37 may include a number of layers less than or greater than that as necessary.
 応力緩和層38に隣接する層37aは、他方で隣接する層37bの主体となる金属と、炭素とを主体することで、中間層37と応力緩和層38との間の密着性を向上できる。例えば、層37aがWとCとを主体とする場合、Wを主体とする中間層37b側からCを主体とする応力緩和層38側に向けて、Wの含有量を減少させ、一方、Cの含有量を増加させる(組成傾斜)ことで、より密着性の向上が図れる。 The layer 37a adjacent to the stress relaxation layer 38 can improve the adhesion between the intermediate layer 37 and the stress relaxation layer 38 by mainly including the metal that is the main component of the adjacent layer 37b and carbon. For example, when the layer 37a is mainly composed of W and C, the W content is decreased from the intermediate layer 37b mainly composed of W toward the stress relaxation layer 38 mainly composed of C. By increasing the content of (composition gradient), the adhesion can be further improved.
 応力緩和層38は、Cを主体とし、その硬度が中間層37側から表面層36側へ連続的または段階的に上昇する傾斜層である。具体的には、UBMS法においてグラファイト製ターゲットを用い、基材に対するバイアス電圧を連続的または段階的に上昇させて成膜することで得られるDLC傾斜層である。硬度が連続的または段階的に上昇するのは、DLC構造におけるグラファイト構造(SP2)とダイヤモンド構造(SP3)との構成比率が、バイアス電圧の上昇により後者に偏っていくためである。 The stress relaxation layer 38 is an inclined layer whose main component is C and whose hardness increases continuously or stepwise from the intermediate layer 37 side to the surface layer 36 side. Specifically, it is a DLC gradient layer obtained by forming a film by using a graphite target in the UBMS method and increasing the bias voltage with respect to the substrate continuously or stepwise. The reason why the hardness increases continuously or stepwise is that the constituent ratio of the graphite structure (SP2) and the diamond structure (SP3) in the DLC structure is biased toward the latter as the bias voltage increases.
 表面層36は、応力緩和層38の延長で形成されるDLCを主体とする膜であり、特に、構造中の水素含有量を低減したDLC膜である。水素含有量を低減させたことで、耐摩耗性が向上する。このようなDLC膜を形成するためには、例えばUBMS法を用いて、スパッタリング処理に用いる原料およびスパッタリングガス中に水素および水素を含む化合物を混入させない方法を用いる。 The surface layer 36 is a film mainly composed of DLC formed by extension of the stress relaxation layer 38, and in particular, is a DLC film with a reduced hydrogen content in the structure. Abrasion resistance is improved by reducing the hydrogen content. In order to form such a DLC film, for example, a method in which hydrogen and a compound containing hydrogen are not mixed into a raw material used for the sputtering process and a sputtering gas by using the UBMS method is used.
 応力緩和層38および表面層36の成膜法に関して、UBMS法を用いる場合を例示したが、硬度を連続的または段階的に変化させることができる成膜法であれば、その他公知の成膜法を採用することができる。中間層37と、応力緩和層38と、表面層36とを含む多層の膜厚の合計が0.5μm~3.0μmとすることが好ましい。膜厚の合計が0.5μm未満であれば、耐摩耗性および機械的強度に劣り、膜厚の合計が3.0μmを超えると剥離し易くなるので好ましくない。
 なお、この例では、各ころ4,5の外周面のみにDLC被膜14を設けているが、さらに各ころ4,5の両端面にDLC被膜14を設けても良い。特に、中つば10(図6)に案内される各ころ4,5の一端面にDLC被膜14を設けた場合、各ころ4,5の前記一端面が摩耗し難くなり、ころ4,5の耐摩耗性をより高め得る。
The case of using the UBMS method has been exemplified for the method of forming the stress relaxation layer 38 and the surface layer 36, but any other known film forming method can be used as long as the hardness can be changed continuously or stepwise. Can be adopted. The total thickness of the multilayer including the intermediate layer 37, the stress relaxation layer 38, and the surface layer 36 is preferably 0.5 μm to 3.0 μm. If the total film thickness is less than 0.5 μm, the abrasion resistance and mechanical strength are inferior, and if the total film thickness exceeds 3.0 μm, peeling tends to occur.
In this example, the DLC film 14 is provided only on the outer peripheral surfaces of the rollers 4 and 5, but the DLC film 14 may be provided on both end faces of the rollers 4 and 5. In particular, when the DLC film 14 is provided on one end surface of each roller 4, 5 guided to the middle collar 10 (FIG. 6), the one end surface of each roller 4, 5 becomes difficult to wear. Abrasion resistance can be further increased.
 <入れ溝20について>
 第5実施形態に係る複列自動調心ころ軸受は、図11に示すように、内輪2は、各小つば8,9(図6)のうち、アキシアル荷重を受ける列のころ5の軸方向外側の端面に臨む小つば9に、前記ころ5を軸受内に挿入する入れ溝20を備えてもよい。図12に示すように、内輪2の前記小つば9の円周方向一箇所に、円弧形状の入れ溝20が設けられている。この入れ溝20の円弧20aの曲率半径は、挿入すべきころ5(図11)の最大径に応じて適宜設定されている。内輪2にこのような入れ溝20を備えた場合、アキシアル荷重を受ける列のころ5の軸受内への組込性をさらに向上させることができる。
<About slot 20>
In the double row spherical roller bearing according to the fifth embodiment, as shown in FIG. 11, the inner ring 2 is the axial direction of the roller 5 in the row that receives the axial load among the small collars 8 and 9 (FIG. 6). An insertion groove 20 for inserting the roller 5 into the bearing may be provided in the small collar 9 facing the outer end surface. As shown in FIG. 12, an arc-shaped insertion groove 20 is provided at one place in the circumferential direction of the small collar 9 of the inner ring 2. The radius of curvature of the arc 20a of the insertion groove 20 is appropriately set according to the maximum diameter of the roller 5 to be inserted (FIG. 11). When the inner ring 2 is provided with such an insertion groove 20, it is possible to further improve the assembling property of the row of rollers 5 receiving the axial load into the bearing.
 第6実施形態に係る複列自動調心ころ軸受は、図13に示すように、右列用の一方の保持器7Aにおける、柱部35Aの外径面35Aaの傾斜角度βが、零よりも大きく、右列のころ5の最大径角α2以下の範囲に設定され、且つ、柱部35Aの内径面35Adの傾斜角度γが外径面35Aaの傾斜角度βと同一に設定されていてもよい。この例の傾斜角度βは、最大径角α2以下で最大径角α2に略近い角度に設定されている。また柱部35Aの内径面35Adは、傾斜面部のみから成り、前述の平坦面部が設けられていない。 As shown in FIG. 13, in the double row spherical roller bearing according to the sixth embodiment, the inclination angle β of the outer diameter surface 35Aa of the column portion 35A in one of the cages 7A for the right row is less than zero. The inclination angle γ of the inner diameter surface 35Ad of the column portion 35A may be set to be the same as the inclination angle β of the outer diameter surface 35Aa. . The inclination angle β in this example is set to an angle that is equal to or less than the maximum diameter angle α2 and is substantially close to the maximum diameter angle α2. Further, the inner diameter surface 35Ad of the column portion 35A is composed only of an inclined surface portion, and the above-described flat surface portion is not provided.
 この図13の構成によれば、保持器7Aが前述のような傾斜角度βを有するため、保持器7AのポケットPt面がころ5のピッチ円直径付近でより確実に維持され、軸受運転時に保持器7AのポケットPt面がころ5の最大径位置を円滑に且つ確実に抱えることができる。また、ころ5の組込もより容易に行うことができる。 According to the configuration of FIG. 13, since the cage 7A has the inclination angle β as described above, the pocket Pt surface of the cage 7A is more reliably maintained near the pitch circle diameter of the roller 5, and is retained during the bearing operation. The pocket Pt surface of the container 7A can hold the maximum diameter position of the roller 5 smoothly and reliably. Also, the roller 5 can be assembled more easily.
 図14、図15は、風力発電装置の主軸支持装置の一例を示す。支持台21上に旋回座軸受22(図15)を介してナセル23のケーシング23aが水平旋回自在に設置されている。ナセル23のケーシング23a内には、軸受ハウジング24に設置された主軸支持軸受25を介して主軸26が回転自在に設置され、主軸26のケーシング23a外に突出した部分に、旋回翼となるブレード27が取り付けられている。主軸26の他端は、増速機28に接続され、増速機28の出力軸が発電機29のロータ軸に結合されている。ナセル23は、旋回用モータ30により、減速機31を介して任意の角度に旋回させられる。 14 and 15 show an example of a spindle support device of a wind power generator. A casing 23a of the nacelle 23 is installed on the support base 21 via a swivel bearing 22 (FIG. 15) so as to be horizontally swivelable. In the casing 23 a of the nacelle 23, a main shaft 26 is rotatably installed via a main shaft support bearing 25 installed in the bearing housing 24, and a blade 27 serving as a swirl wing is formed at a portion protruding from the casing 23 a of the main shaft 26. Is attached. The other end of the main shaft 26 is connected to the speed increaser 28, and the output shaft of the speed increaser 28 is coupled to the rotor shaft of the generator 29. The nacelle 23 is turned at an arbitrary angle by the turning motor 30 via the speed reducer 31.
 主軸支持軸受25は、図示の例では2個並べて設置してあるが、1個であっても良い。この主軸支持軸受25に、前記いずれかの実施形態の複列自動調心ころ軸受1が用いられる。その場合、ブレード27から遠い方の列にラジアル荷重とアキシアル荷重の両方がかかるので、ブレード27から遠い方の列のころとして、接触角θ2が大きい方のころ5を用いる。ブレード27に近い方の列には主にラジアル荷重のみがかかるので、ブレード27に近い方の列のころとして、接触角θ1が小さい方のころ4を用いる。 In the illustrated example, two main shaft support bearings 25 are arranged side by side, but may be one. As the main shaft support bearing 25, the double-row self-aligning roller bearing 1 according to any one of the above embodiments is used. In that case, since both radial load and axial load are applied to the row farther from the blade 27, the roller 5 having the larger contact angle θ 2 is used as the row farther from the blade 27. Since only the radial load is mainly applied to the row closer to the blade 27, the roller 4 having the smaller contact angle θ1 is used as the roller closer to the blade 27.
 本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で、種々の追加、変更または削除が可能である。したがって、そのようなものも本発明の範囲内に含まれる。 The present invention is not limited to the above embodiment, and various additions, changes, or deletions are possible without departing from the gist of the present invention. Therefore, such a thing is also included in the scope of the present invention.
1 複列自動調心ころ軸受
2 内輪
2c,2d 幅面
3 外輪
3a 軌道面
3b,3c 幅面
4,5 ころ
6,7,7A 保持器
8,9 小つば
10 中つば
13 ころ転動面
14 DLC被膜
15,16 取付孔
17 飛出し止め治具
18 当て材
19 固定具
20 入れ溝
26 主軸
32,34 円環部
33,35,35A 柱部
60 シャフト
70 ハウジング
θ1,θ2 接触角
Cw クラウニング
DESCRIPTION OF SYMBOLS 1 Double row self-aligning roller bearing 2 Inner ring 2c, 2d Width surface 3 Outer ring 3a Raceway surface 3b, 3c Width surface 4, 5 Roller 6, 7, 7A Cage 8, 9 Small collar 10 Middle collar 13 Rolling roller surface 14 DLC coating 15, 16 Mounting hole 17 Anti-jumping jig 18 Abutting material 19 Fixing tool 20 Groove 26 Main shaft 32, 34 Ring portion 33, 35, 35A Column portion 60 Shaft 70 Housing θ1, θ2 Contact angle Cw Crowning

Claims (9)

  1.  内輪と外輪との間に、軸受幅方向に並んで2列にころが介在し、前記外輪の軌道面が球面状であり、前記2列のころは外周面が前記外輪の軌道面に沿う断面形状である複列自動調心ころ軸受であって、
     前記2列のころは、それぞれの形状および接触角のいずれか一方または両方が互いに異なり、
     前記内輪および前記外輪のいずれか一方または両方における幅面に取付孔が設けられ、この取付孔に、前記内輪と前記外輪とが、正対する状態に対して互いに傾いて、前記外輪の幅面よりも前記内輪の幅面が軸受幅方向に飛び出すことを防止する飛出し止め治具を取付可能である複列自動調心ころ軸受。
    Between the inner ring and the outer ring, rollers are arranged in two rows side by side in the bearing width direction, the raceway surface of the outer ring is spherical, and the outer surface of the two rows of rollers is a cross section along the raceway surface of the outer ring. A double row spherical roller bearing having a shape,
    In the two rows of rollers, either one or both of the shape and the contact angle are different from each other,
    A mounting hole is provided in the width surface of one or both of the inner ring and the outer ring, and the inner ring and the outer ring are inclined to each other with respect to a state in which the inner ring and the outer ring face each other, and Double row spherical roller bearings that can be fitted with a pop-out prevention jig that prevents the inner ring width surface from popping out in the bearing width direction.
  2.  請求項1に記載の複列自動調心ころ軸受において、前記取付孔はねじ孔である複列自動調心ころ軸受。 2. The double row spherical roller bearing according to claim 1, wherein the mounting hole is a screw hole.
  3.  請求項1または請求項2に記載の複列自動調心ころ軸受において、風力発電装置の主軸の支持に用いられる複列自動調心ころ軸受。 The double row spherical roller bearing according to claim 1 or 2, wherein the double row spherical roller bearing is used for supporting a main shaft of a wind power generator.
  4.  請求項1ないし請求項3のいずれか1項に記載の複列自動調心ころ軸受において、前記各列のころをそれぞれ保持する保持器を備え、各保持器は、各列のころの軸方向内側の端面を案内する環状の円環部と、この円環部から軸方向に延び且つ円周方向に沿って定められた間隔置きに設けられた複数の柱部とを備え、これら柱部間に前記ころを保持するポケットが設けられ、アキシアル荷重を受ける列のころを保持する一方の保持器は、前記柱部の外径面が基端側から先端側に向かうに従って半径方向内方に傾斜する傾斜角度を有する複列自動調心ころ軸受。 The double-row self-aligning roller bearing according to any one of claims 1 to 3, further comprising cages that respectively hold the rollers of each row, wherein each cage is an axial direction of each row of rollers. An annular ring portion that guides the inner end face, and a plurality of column portions that extend in the axial direction from the ring portion and are provided at intervals defined along the circumferential direction, and between these column portions One of the cages for holding the rollers of the row receiving the axial load is inclined inward in the radial direction as the outer diameter surface of the column part moves from the proximal end side toward the distal end side. Double row spherical roller bearings with a tilting angle.
  5.  請求項1ないし請求項4のいずれか1項に記載の複列自動調心ころ軸受において、前記各ころは、ころ転動面にDLC被膜を有する複列自動調心ころ軸受。 5. The double row self-aligning roller bearing according to any one of claims 1 to 4, wherein each of the rollers has a DLC coating on a roller rolling surface.
  6.  請求項1ないし請求項5のいずれか1項に記載の複列自動調心ころ軸受において、前記各ころは、ころ転動面の端部にクラウニングを有する複列自動調心ころ軸受。 6. The double row self-aligning roller bearing according to any one of claims 1 to 5, wherein each of the rollers has a crowning at an end portion of a roller rolling surface.
  7.  請求項1ないし請求項6のいずれか1項に記載の複列自動調心ころ軸受において、前記内輪は、この内輪の外周面における前記2列のころ間に設けられ前記2列のころを案内する中つばと、前記外周面の両端にそれぞれ設けられ各列のころの軸方向外側の端面に臨む小つばとを備え、前記内輪は、前記各小つばのうち、アキシアル荷重を受ける列のころの軸方向外側の端面に臨む小つばに、前記ころを軸受内に挿入する入れ溝を備えた複列自動調心ころ軸受。 7. The double-row self-aligning roller bearing according to claim 1, wherein the inner ring is provided between the two rows of rollers on the outer peripheral surface of the inner ring and guides the two rows of rollers. Intermediate ribs and small ribs that are respectively provided at both ends of the outer peripheral surface and face axially outer end surfaces of the rollers in each row, and the inner ring is a roller in a row that receives an axial load among the respective small ribs. A double-row self-aligning roller bearing provided with a slot into which the roller is inserted into the bearing at a small brim that faces the end surface on the outer side in the axial direction.
  8.  請求項1ないし請求項7のいずれか1項に記載の複列自動調心ころ軸受をシャフトまたはハウジングに組み込む方法であって、前記飛出し止め治具により、前記内輪と前記外輪とが、正対する状態に対して互いに傾いて、前記外輪の幅面よりも前記内輪の幅面が軸受幅方向に飛び出すことを防止した状態で前記シャフトまたは前記ハウジングに組み込む複列自動調心ころ軸受の組込方法。 A method of incorporating the double-row self-aligning roller bearing according to any one of claims 1 to 7 into a shaft or a housing, wherein the inner ring and the outer ring are correctly connected by the pop-out preventing jig. A method of assembling a double row spherical roller bearing to be incorporated in the shaft or the housing in a state in which the inner ring width surface is prevented from jumping out in the bearing width direction relative to the outer ring width surface.
  9.  請求項1ないし請求項7のいずれか1項に記載の複列自動調心ころ軸受に対して使用される飛出し止め治具であって、
     前記内輪および前記外輪の軸受幅方向同じ側の幅面にそれぞれ当てられる当て材と、前記取付孔に挿入されて、前記当て材を前記内輪および前記外輪のうちの前記取付孔が設けられた軌道輪に固定する固定具とを有する飛出し止め治具。
    A pop-out preventing jig used for the double-row self-aligning roller bearing according to any one of claims 1 to 7,
    A bearing member applied to each of the width surfaces of the inner ring and the outer ring on the same side in the bearing width direction, and a bearing ring which is inserted into the mounting hole and provided with the mounting hole of the inner ring and the outer ring. A pop-out stop jig having a fixture to be fixed to the head.
PCT/JP2018/000378 2017-01-13 2018-01-10 Double-row self-aligning roller bearing and protrusion prevention jig WO2018131617A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880006607.7A CN110168238A (en) 2017-01-13 2018-01-10 Double self-aligning roller bearing and protrusion prevent fixture
EP18738555.4A EP3569882B1 (en) 2017-01-13 2018-01-10 Double-row self-aligning roller bearing
US16/507,661 US10883544B2 (en) 2017-01-13 2019-07-10 Double-row self-aligning roller bearing and protrusion prevention jig

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017003895 2017-01-13
JP2017-003895 2017-01-13
JP2017160074A JP7029249B2 (en) 2017-01-13 2017-08-23 Multi-row self-aligning roller bearings and pop-out prevention jigs
JP2017-160074 2017-08-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/507,661 Continuation US10883544B2 (en) 2017-01-13 2019-07-10 Double-row self-aligning roller bearing and protrusion prevention jig

Publications (1)

Publication Number Publication Date
WO2018131617A1 true WO2018131617A1 (en) 2018-07-19

Family

ID=62840030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000378 WO2018131617A1 (en) 2017-01-13 2018-01-10 Double-row self-aligning roller bearing and protrusion prevention jig

Country Status (1)

Country Link
WO (1) WO2018131617A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050298A1 (en) * 2020-09-04 2022-03-10 Ntn株式会社 Protrusion prevention jig and double-row self-aligning roller bearing

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065574A (en) * 1999-08-31 2001-03-16 Nsk Ltd Roller bearing
JP2004108429A (en) * 2002-09-17 2004-04-08 Nsk Ltd Tapered roller bearing
JP2004245251A (en) * 2003-02-10 2004-09-02 Nsk Ltd Automatic centering rolling bearing
JP2005061594A (en) * 2003-08-20 2005-03-10 Nsk Ltd Automatic aligning roller bearing
WO2005050038A1 (en) 2003-11-18 2005-06-02 Ntn Corporation Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
JP2005207517A (en) * 2004-01-23 2005-08-04 Ntn Corp Automatic aligning roller bearing and spindle supporting device for wind power generator
DE102010054318A1 (en) * 2010-12-13 2012-06-14 Schaeffler Technologies Gmbh & Co. Kg Rotor bearing for wind turbine, has double row spherical roller bearings with multiple barrel rollers, where pressure angle of bearing row is provided as zero degree angle
JP2013044374A (en) * 2011-08-24 2013-03-04 Ntn Corp Tapered roller bearing
US20140112607A1 (en) 2012-10-18 2014-04-24 Schaeffler Technologies AG & Co. KG Roller bearing for wind turbines

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065574A (en) * 1999-08-31 2001-03-16 Nsk Ltd Roller bearing
JP2004108429A (en) * 2002-09-17 2004-04-08 Nsk Ltd Tapered roller bearing
JP2004245251A (en) * 2003-02-10 2004-09-02 Nsk Ltd Automatic centering rolling bearing
JP2005061594A (en) * 2003-08-20 2005-03-10 Nsk Ltd Automatic aligning roller bearing
WO2005050038A1 (en) 2003-11-18 2005-06-02 Ntn Corporation Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
JP2005207517A (en) * 2004-01-23 2005-08-04 Ntn Corp Automatic aligning roller bearing and spindle supporting device for wind power generator
DE102010054318A1 (en) * 2010-12-13 2012-06-14 Schaeffler Technologies Gmbh & Co. Kg Rotor bearing for wind turbine, has double row spherical roller bearings with multiple barrel rollers, where pressure angle of bearing row is provided as zero degree angle
JP2013044374A (en) * 2011-08-24 2013-03-04 Ntn Corp Tapered roller bearing
US20140112607A1 (en) 2012-10-18 2014-04-24 Schaeffler Technologies AG & Co. KG Roller bearing for wind turbines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3569882A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022050298A1 (en) * 2020-09-04 2022-03-10 Ntn株式会社 Protrusion prevention jig and double-row self-aligning roller bearing

Similar Documents

Publication Publication Date Title
JP2018115762A (en) Double row self-aligning roller bearing and projection prevention jig
KR101554764B1 (en) Epicyclic gear system with flexpins
WO2005050038A1 (en) Double-row self-aligning roller bearing and device for supporting wind turbine generator main shaft
US20050075211A1 (en) Epicyclic gear system
US10697492B2 (en) Double-row self-aligning roller bearing
US10655674B2 (en) Double-row self-aligning roller bearing
US8376902B2 (en) Epicyclic gear system with flexpins and helical gearing
WO2017164325A1 (en) Double-row spherical roller bearing
CN101668946A (en) Multiple-row large roller bearing, especially axial radial bearing for the main arrangement of bearings of the rotor shaft of a wind power installation
JP4101844B2 (en) Bearing built-in jig, tapered roller bearing, method of assembling tapered roller bearing and main shaft support structure of wind power generator
US8608444B2 (en) Single-bearing structure and wind power plant having the single-bearing structure
JP2007536473A (en) Positioning bearing assembly for the shaft of a wind turbine transmission
WO2018131617A1 (en) Double-row self-aligning roller bearing and protrusion prevention jig
JP2017180832A (en) Double row spherical roller bearing
JP2017180831A (en) Double row spherical roller bearing
WO2018131618A1 (en) Double-row self-aligning roller bearing
WO2020203393A1 (en) Self-aligning roller bearing
JP2005207517A (en) Automatic aligning roller bearing and spindle supporting device for wind power generator
WO2022050298A1 (en) Protrusion prevention jig and double-row self-aligning roller bearing
WO2019022161A1 (en) Double-row self-aligning roller bearing
JP2011519002A (en) Rolling bearing with spherical separator
JP2006090346A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
CN116792403A (en) High-reliability welding type strut retainer wind power single-row tapered roller main shaft bearing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18738555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018738555

Country of ref document: EP

Effective date: 20190813

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载