+

WO2018131674A1 - Rub detecting sensor and electronic instrument - Google Patents

Rub detecting sensor and electronic instrument Download PDF

Info

Publication number
WO2018131674A1
WO2018131674A1 PCT/JP2018/000614 JP2018000614W WO2018131674A1 WO 2018131674 A1 WO2018131674 A1 WO 2018131674A1 JP 2018000614 W JP2018000614 W JP 2018000614W WO 2018131674 A1 WO2018131674 A1 WO 2018131674A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
rubbing
piezoelectric film
detection sensor
piezoelectric
Prior art date
Application number
PCT/JP2018/000614
Other languages
French (fr)
Japanese (ja)
Inventor
大寺 昭三
森 健一
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201890000421.6U priority Critical patent/CN210571096U/en
Publication of WO2018131674A1 publication Critical patent/WO2018131674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/22Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/02Input arrangements using manually operated switches, e.g. using keyboards or dials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H13/00Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding

Definitions

  • One embodiment of the present invention relates to a rubbing detection sensor including a piezoelectric element and an electronic apparatus using the same.
  • Patent Document 1 discloses an input device using a jog dial provided with a rotation key.
  • a drive signal for an active element is generated by a logical operation of a rotation detection signal waveform formed by a rotation operation of a rotary operator. For this reason, the time lag between rotation operation by a user and the production
  • a physical rotation mechanism such as a jog dial having a rotation key is used.
  • Such a rotation mechanism portion is bulky in structure and occupies a certain place when used in an electronic device.
  • dust or the like enters the clearance between the rotation mechanism units, not only the rotation mechanism unit but also the electronic device itself may break down.
  • the rotation mechanism portion is provided so as to protrude from the surface of the electronic device, the surface of the electronic device has an uneven shape, so that dust and the like are easily attached, and the operation part touched by a person is easily soiled. There is room.
  • an object of one embodiment of the present invention is to provide a rubbing detection sensor that can detect the direction of the rubbing operation with a simple structure that is small in bulk.
  • the rubbing detection sensor includes a first region that receives a pressing operation from a user, a second region that is at least partially adjacent to the first region and receives the pressing operation from the user, Piezoelectric elements that output potentials of opposite polarities when the pressing operation is received in the first region and when the pressing operation is received in the second region, the first region, and the second region
  • An operation detection unit that detects a rubbing operation based on a detection mode of the piezoelectric element in the region.
  • the piezoelectric element when the first region and the second region receive a rubbing operation, the piezoelectric element outputs a potential corresponding to each operation applied to the first region and the second region with a time difference.
  • a rubbing operation is accepted from the first area to the second area, the deformation of the first area is restored and the second area is deformed near the boundary between the first area and the second area.
  • a rubbing operation is accepted from the second area to the first area, the deformation of the second area is restored and the first area is deformed near the boundary between the first area and the second area. For this reason, a potential having the same polarity is generated from the first region and the second region. Therefore, for example, rubbing can be detected by looking at the peak of the potential with time. Further, the rubbing detection sensor can be formed thin using a piezoelectric element.
  • An electronic apparatus includes the rubbing detection sensor.
  • a rubbing detection sensor is used, and since the rubbing detection sensor can be formed thin, the electronic device itself can be reduced in weight and slim. In addition, since no gap is generated on the surface of the electronic device, failure due to dust or the like can be prevented. Furthermore, since the surface of the electronic device can be formed flat, contamination of the operation part is suppressed.
  • the direction of the rubbing operation can be detected with a simple structure that is small in bulk.
  • FIG. 1A is a perspective view of an electronic device provided with a rubbing detection sensor according to the first embodiment, and FIG. 1B is a cross-sectional view thereof.
  • 2A is an exploded perspective view of the piezoelectric element according to the first embodiment, and FIG. 2B is a sectional view thereof.
  • 3A to 3C are views for explaining the piezoelectric film according to the first embodiment.
  • 4A is an exploded perspective view of a piezoelectric element according to a modification, and FIG. 4B is a cross-sectional view thereof.
  • FIGS. 5A to 5D are diagrams for explaining the relationship between the direction in which the rubbing operation of the rubbing detection sensor according to the first embodiment is received and the generated potential.
  • FIGS. 5A to 5D are diagrams for explaining the relationship between the direction in which the rubbing operation of the rubbing detection sensor according to the first embodiment is received and the generated potential.
  • FIGS. 6A to 6D are diagrams for explaining generated potentials when a rubbing operation is performed in the direction opposite to that in FIGS. 5A to 5D.
  • FIGS. 7A to 7D are diagrams for explaining the generated potential of the rubbing detection sensor according to the second embodiment.
  • FIG. 8A is an exploded perspective view showing the rubbing detection sensor according to the third embodiment
  • FIG. 8B is a plan view in the XY plane
  • FIG. 8C is for explaining the generated potential.
  • FIG. 9A is a cross-sectional view of the rubbing detection sensor according to the fourth embodiment on the XZ plane
  • FIG. 9B is a plan view of the rubbing detection sensor according to the fifth embodiment on the XY plane.
  • FIG. 9 (C) and (D) are diagrams for explaining the generated potentials in the fourth and fifth embodiments.
  • 10A is a cross-sectional view of the rubbing detection sensor according to the sixth embodiment in the XZ plane
  • FIG. 10B is a plan view of the rubbing detection sensor according to the seventh embodiment in the XY plane.
  • 10 (C) and (D) are diagrams for explaining the generated potentials in the sixth and seventh embodiments.
  • FIG. 11A is a perspective view of an electronic device provided with the rubbing detection sensor according to the eighth embodiment
  • FIG. 11B is a diagram for explaining the generated potential.
  • FIG. 12A is a perspective view of an electronic apparatus provided with the rubbing detection sensor according to the first modification
  • FIG. 12B is a plan view of the rubbing detection sensor in FIG.
  • FIG. 12A, and FIG. FIG. 12B is a cross-sectional view of the rubbing detection sensor of FIG.
  • FIG. 13A is a diagram for explaining a normal time when a pressing operation is received in the first modification
  • FIGS. 13B and 13C explain an abnormal time when the housing 2 is deformed. It is a figure for doing.
  • FIG. 14A is a perspective view of an electronic apparatus provided with the rubbing detection sensor according to the second modification
  • FIG. 14B is a plan view of the rubbing detection sensor in FIG. 14A
  • FIG. FIG. 14B is a cross-sectional view of the rubbing detection sensor 14 (B) taken along II-II.
  • FIG. 15 is a cross-sectional view for explaining a rubbing detection sensor according to Modification 3.
  • FIG. 1A is a perspective view of an electronic apparatus provided with a rubbing detection sensor according to the first embodiment
  • FIG. 1B is a cross-sectional view taken along a line II shown in FIG. 2A is an exploded perspective view of the piezoelectric element according to the first embodiment
  • FIG. 2B is a cross-sectional view in the XZ plane.
  • the electronic devices illustrated in FIGS. 1A and 1B are merely examples, and are not limited thereto, and can be changed as appropriate according to specifications.
  • the electronic device 1 includes a substantially rectangular parallelepiped housing 2 having an upper surface opened.
  • the electronic device 1 includes a flat surface panel 3 disposed in an opening on the upper surface of the housing 2.
  • the front panel 3 functions as an operation surface on which a user performs a touch operation using a finger or a pen.
  • casing 2 is set to X direction
  • a length direction (vertical direction) is set to Y direction
  • the thickness direction is demonstrated as Z direction.
  • a display unit 4, a first pressing unit 5, and a second pressing unit 6 are formed on the operation surface of the front panel 3.
  • the 1st press part 5 and the 2nd press part 6 are rectangular shape by planar view, and each one part is formed adjacently along with the X direction.
  • the first pressing part 5 and the second pressing part 6 are part of the surface panel 3 and are formed continuously with the surface panel 3.
  • the first pressing part 5 and the second pressing part 6 are distinguished from other parts of the front panel 3 by color-coding a part of the front panel 3, marking them, or forming grooves around them. .
  • the shape of the 1st press part 5 and the 2nd press part 6 is not restricted to a rectangular shape, Each part should just be mutually adjacent, and another shape, such as a triangle shape, may be sufficient.
  • the first pressing portion 5 and the second pressing portion 6 are not limited to being arranged in the X direction, and may be, for example, a state arranged in the Y direction or a direction oblique to the X direction.
  • the first pressing portion 5 corresponds to a “first region R1” that receives a pressing operation according to the present invention
  • the second pressing portion 6 corresponds to a “second region R2” that receives a pressing operation according to the present invention. Since the first pressing part 5 and the second pressing part 6 are partially formed adjacent to each other, the first pressing part 5 and the second pressing part 6 can continuously receive a pressing operation. That is, the 1st press part 5 and the 2nd press part 6 receive the rubbing operation which goes to 2nd area
  • a direction from the first region R1 to the second region R2 is referred to as a “first direction”
  • a direction from the second region R2 to the first region R1 is referred to as a “second direction”.
  • a rubbing detection sensor 100 is formed inside the housing 2 and below the front panel 3 in the Z direction.
  • the rubbing detection sensor 100 includes the piezoelectric element 10 and the operation detection unit 18.
  • the piezoelectric element 10 is disposed in a portion corresponding to the first region R1 and the second region R2.
  • pressure is transmitted to the piezoelectric element 10.
  • the piezoelectric element 10 receives a pressing operation at the second pressing portion 6 that is the second region R2 when receiving a pressing operation at the first pressing portion 5 that is the first region R1. Outputs a potential of the opposite polarity.
  • the operation detection unit 18 outputs a potential corresponding to the operation received in the first region R1 and the second region R2 by the piezoelectric element 10.
  • the operation detection unit 18 is disposed inside the housing 2 and is connected to the piezoelectric element 10 by a wiring (not shown).
  • the operation detection unit 18 detects a rubbing operation corresponding to the detection mode of the potential output from the piezoelectric element 10.
  • the operation detection unit 18 may be at any position as long as it is inside the housing 2.
  • the piezoelectric element 10 preferably includes a flat film-like piezoelectric film 11 and a flat film-like electrode 12. 2A and 2B, illustrations other than the piezoelectric film 11 and the electrode 12 are omitted.
  • the piezoelectric film 11 includes a first piezoelectric film 111 and a second piezoelectric film 112.
  • the first piezoelectric film 111 is disposed in the first region R1, and the second piezoelectric film 112 is disposed in the second region R2.
  • the first piezoelectric film 111 has a rectangular shape in a plan view, like the surface of the first region R1, that is, the first pressing portion 5.
  • the second piezoelectric film 112 also has a rectangular shape in plan view, like the surface of the second region R2, that is, the second pressing portion 6.
  • the 1st piezoelectric film 111 and the 2nd piezoelectric film 112 can also be suitably changed according to the shape of the 1st press part 5 and the 2nd press part 6.
  • the electrode 12 includes an electrode 121 and an electrode 122.
  • the electrode 121 and the electrode 122 are respectively formed on both main surfaces of the first piezoelectric film 111 and the second piezoelectric film 112 so as to cover substantially the entire main surface. More specifically, the electrode 121 is formed in a rectangular shape in the same way as a plane in which the first piezoelectric film 111 and the second piezoelectric film 112 are continuous in plan view. It is formed so as to cover one main surface.
  • the electrode 122 is formed in a rectangular shape in the same way as the surface in which the first piezoelectric film 111 and the second piezoelectric film 112 are continuous in plan view, and the electrode 121 in the first piezoelectric film 111 and the second piezoelectric film 112 is formed. It is formed so as to cover the main surface on the side that is not.
  • the electrode 121 and the electrode 122 may be completely overlapped with the piezoelectric film 11 when viewed from above, or may be located on the inner side in the plane direction from the piezoelectric film 11. Thereby, the short circuit in the edge part of an electrode can be suppressed.
  • the electrode 121 and the electrode 122 are represented as solid electrodes. However, an electrode is provided for each of the first piezoelectric film 111 and the second piezoelectric film 112, so You may connect with the wiring electrode of illustration.
  • FIG. 3A to 3C are views for explaining the piezoelectric film according to the first embodiment.
  • FIG. 3A and FIG. 3B are plan views of an example of the piezoelectric film according to the first embodiment.
  • FIG. 3C is a cross-sectional view in the XZ plane of an example of the piezoelectric film according to the first embodiment.
  • the first piezoelectric film 111 generates a potential having a polarity opposite to that generated by the second piezoelectric film 112 when a pressing operation is received.
  • the first piezoelectric film 111 and the second piezoelectric film 112 may be films formed of a chiral polymer.
  • polylactic acid (PLA) particularly L-type polylactic acid (PLLA) is used as the chiral polymer.
  • PLLA made of a chiral polymer has a main chain with a helical structure.
  • PLLA has piezoelectricity when uniaxially stretched and molecules are oriented. The uniaxially stretched PLLA generates a potential when the flat surfaces of the first piezoelectric film 111 and the second piezoelectric film 112 are pressed. At this time, the amount of potential generated depends on the amount of displacement by which the flat plate surface is displaced in the direction orthogonal to the flat plate surface by the pressing amount.
  • the uniaxial stretching directions of the first piezoelectric film 111 and the second piezoelectric film 112 are opposite to the X direction and the Y direction, respectively, as indicated by arrows in FIG.
  • the direction is an angle of 45 degrees.
  • the 45 degrees includes an angle including about 45 degrees ⁇ 10 degrees, for example.
  • PLLA generates piezoelectricity by molecular orientation treatment such as stretching, and does not need to be polled like other polymers such as PVDF or piezoelectric ceramics. That is, the piezoelectricity of PLLA that does not belong to ferroelectrics is not expressed by the polarization of ions like ferroelectrics such as PVDF or PZT, but is derived from a helical structure that is a characteristic structure of molecules. is there. For this reason, the pyroelectricity generated in other ferroelectric piezoelectric materials does not occur in PLLA. Since there is no pyroelectricity, there is no influence of the temperature of the user's finger or frictional heat, so the front panel 3 can be formed thin.
  • PVDF or the like shows a change in piezoelectric constant over time, and in some cases, the piezoelectric constant may be significantly reduced, but the piezoelectric constant of PLLA is extremely stable over time. Therefore, it is possible to detect displacement caused by pressing with high sensitivity without being affected by the surrounding environment.
  • the first piezoelectric film 111 and the second piezoelectric film 112 may be made of a film formed from two types of chiral polymers.
  • L-type polylactic acid (PLLA) may be used as the first piezoelectric film 111
  • PDLA D-type polylactic acid
  • the uniaxial stretching direction is the same direction that forms an angle of 45 degrees in the direction with respect to the X direction and the Y direction, as indicated by arrows in FIG.
  • the 45 degrees includes an angle including about 45 degrees ⁇ 10 degrees, for example.
  • the first piezoelectric film 111 and the second piezoelectric film 112 are made of a film formed of a ferroelectric material in which ions are polarized, such as PVDF or PZT subjected to poling treatment. It may be.
  • PVDF whose upper side in the Z direction is positively charged
  • PVDF whose upper side in the Z direction is negatively charged may be used as the second piezoelectric film 112.
  • the electric potential generated when the first piezoelectric film 111 is pressed and the electric potential generated when the second piezoelectric film 112 is pressed have opposite polarities.
  • the electrodes 121 and 122 formed on both main surfaces of the first piezoelectric film 111 and the second piezoelectric film 112 are preferably metal electrodes such as aluminum and copper.
  • metal electrodes such as aluminum and copper.
  • a first piezoelectric film 111 and a second piezoelectric film 112 that generates a potential having a polarity opposite to that generated by the first piezoelectric film 111 when a pressing operation is received are used.
  • the piezoelectric film may be composed of a single film as shown in the following modification.
  • FIG. 4A is an exploded perspective view of a piezoelectric element according to a modification
  • FIG. 4B is a cross-sectional view thereof.
  • the piezoelectric element 13 according to the modified example preferably includes a flat film-shaped piezoelectric film 43 and a flat film-shaped pair of electrodes 14. 4A and 4B, illustrations other than the piezoelectric film 43 and the electrode 14 are omitted.
  • the piezoelectric film 43 is composed of a single film, and is disposed in the first region R1 and over the second region R2.
  • the electrode 14 includes an electrode 15 and an electrode 16.
  • the electrode 15 includes a first detection electrode 123 and a second detection electrode 124 that are continuously formed on the same plane.
  • the electrode 16 is a single ground electrode.
  • the first detection electrode 123 and the second detection electrode 124 are formed to face the electrode 16 with the piezoelectric film 43 interposed therebetween.
  • the first detection electrode 123 is disposed in the first region R1, and the second detection electrode 124 is disposed in the second region R2.
  • the first detection electrode 123 has a rectangular shape in a plan view, like the surface of the first region R1, that is, the first pressing portion 5.
  • the second detection electrode 124 has a rectangular shape in a plan view, like the surface of the second region R2, that is, the second pressing portion 6.
  • the 1st detection electrode 123 is each formed in the 1st main surface corresponding to 1st area
  • the second detection electrodes 124 are also formed on the first main surface corresponding to the second region R2 of the piezoelectric film 43 so as to cover substantially the entire first main surface.
  • the electrode 16 is formed on the second main surface corresponding to the first region R1 and the second region R2 of the piezoelectric film 43 so as to cover substantially the entire surface of the second main surface.
  • the piezoelectric film 43, the electrode 15, and the electrode 16 can be appropriately changed in accordance with the shapes of the first pressing portion 5 and the second pressing portion 6.
  • the electrode 15 is formed on the first main surface of the piezoelectric film 43
  • the electrode 16 is formed on the second main surface of the piezoelectric film 43.
  • the electrodes 15 and 16 are the main electrodes opposite to the piezoelectric film 43, respectively. It may be formed on the surface.
  • the electrode 15 and the electrode 16 may be completely overlapped with the piezoelectric film 113 when viewed from above, or may be located on the inner side in the plane direction from the piezoelectric film 113. Thereby, the short circuit in the edge part of an electrode can be suppressed.
  • the electrode 16 is represented as a solid electrode. However, an electrode is provided for each of the first detection electrode 123 or the second detection electrode 124, and a wiring (not shown) is provided. You may connect with an electrode.
  • the first detection electrode 123 outputs a signal having a polarity different from that of the second detection electrode 124.
  • the first detection electrode 123 when a pressing operation is applied in the first region R ⁇ b> 1, the first detection electrode 123 outputs a potential in a direction corresponding to the first detection electrode 123.
  • the second detection electrode 124 when a pressing operation is applied in the second region R2, the second detection electrode 124 outputs a reverse potential having a polarity different from that of the first detection electrode 123 corresponding to the second detection electrode 124.
  • the piezoelectric element 13 since different potentials are detected when a pressing operation is received in the first region R1 and the second region R2, the piezoelectric element 13 according to such a modification is also used in the present invention in the same manner as the piezoelectric element 10. can do.
  • the piezoelectric film 43 is composed of a single sheet, the structure of the piezoelectric film 43 becomes simple and the manufacture becomes easy.
  • FIGS. 5A to 5D are diagrams for explaining the relationship between the direction (first direction) in which the rubbing operation of the rubbing detection sensor according to the first embodiment is received and the generated potential.
  • FIGS. 6A to 6D are diagrams for explaining generated potentials when a rubbing operation is performed in the direction opposite to FIGS. 5A to 5D (second direction).
  • the case where the rubbing operation is performed in the direction shown in FIGS. 5A to 5D will be described, and then the case where the rubbing operation is performed in the reverse direction shown in FIGS. 6A to 6D will be described. To do.
  • FIG. 5A is an explanatory diagram of the rubbing operation
  • FIG. 5B represents a potential change with respect to the time axis that occurs only from the first region R1 when the rubbing operation is accepted in the first region R1.
  • FIG. 5C shows a potential change with respect to the time axis generated only from the second region R2 when the rubbing operation is accepted in the second region R2, and
  • FIG. 5D shows the first region R1 and the second region R2. It is a graph showing the electric potential generated when region R2 receives a rubbing operation.
  • the direction of receiving the rubbing operation is the first direction from the first region R1 toward the second region R2.
  • the piezoelectric film 11 (the first piezoelectric film 111 and the second piezoelectric film 112) of the rubbing detection sensor 100 is shown, and the rest is omitted.
  • FIG. 6A to FIG. 11B are omitted.
  • the first piezoelectric film 111 and the first The two piezoelectric films 112 receive pressing operations in order. As described above, the timing at which the first piezoelectric film 111 and the second piezoelectric film 112 receive the pressing operation is shifted.
  • the first piezoelectric film 111 disposed in the first region R1 receives the pressing operation and is greatly distorted downward in the Z-axis direction. Electric charge is generated at the portion where the pressing operation of the first piezoelectric film 111 is received. As shown in FIG.
  • the first piezoelectric film 111 generates a negative potential when greatly distorted downward in the Z-axis direction.
  • the applied pressure of the first piezoelectric film 111 is reduced to the original flat shape because the applied pressure is reduced.
  • the portion that has received the pressing operation of the first piezoelectric film 111 returns upward in the Z-axis direction, and thus generates a positive potential.
  • the second piezoelectric film 112 disposed in the second region R2 receives the pressing operation and is greatly distorted downward in the Z-axis direction. As shown in FIG.
  • the second piezoelectric film 112 generates a positive potential when greatly distorted downward in the Z-axis direction.
  • the portion that has received the pressing operation of the second piezoelectric film 112 is restored to the original flat shape.
  • the portion that has received the pressing operation of the second piezoelectric film 112 returns upward in the Z-axis direction, and thus generates a negative potential.
  • the lengths of the first piezoelectric film 111 and the second piezoelectric film 112 in the direction of receiving the rubbing operation are preferably 10 mm or more, respectively. Thereby, the pressing operation by the user's finger in each of the first region R1 and the second region R2 can be sufficiently detected.
  • the potential generated from the second piezoelectric film 112 is detected later than the potential generated from the first piezoelectric film 111.
  • the portion of the first piezoelectric film 111 that receives the pressing operation returns upward in the Z-axis direction and the second piezoelectric film 112 is greatly distorted downward in the Z-axis direction.
  • both the first piezoelectric film 111 and the second piezoelectric film 112 generate a positive potential.
  • FIG. 5D when the rubbing detection sensor 100 receives a rubbing operation in the first direction, a positive potential is simultaneously generated from the first piezoelectric film 111 and the second piezoelectric film 112. The potential when it occurs is detected.
  • the operation detection unit 18 detects that the detection value reaches the predetermined first threshold value V1, so that the user's operation is a rubbing operation in the first direction that moves from the first region R1 to the second region R2. It can be judged that there is.
  • the operation detection unit 18 sets the first region R1. It can be determined that the pressing operation is only pressing.
  • FIG. 6A is an explanatory diagram of the rubbing operation
  • FIGS. 6B and 6C show the generated potential when the pressing operation is received in the second region R2 or the first region R1, respectively.
  • FIG. 6D is a graph showing the generated potential when the first region R1 and the second region R2 receive the rubbing operation.
  • the direction of receiving the rubbing operation is the second direction from the second region R2 toward the first region R1.
  • the second piezoelectric film 112 and the first One piezoelectric film 111 receives pressing operations in order.
  • the second piezoelectric film 112 disposed in the second region R2 receives the pressing operation and is greatly distorted downward in the Z-axis direction.
  • the second piezoelectric film 112 generates a positive potential when greatly distorted downward in the Z-axis direction.
  • the applied pressure of the second piezoelectric film 112 is reduced to the original flat shape because the applied pressure is reduced.
  • the portion that has received the pressing operation of the second piezoelectric film 112 returns upward in the Z-axis direction, and thus generates a negative potential.
  • the first piezoelectric film 111 disposed in the first region R1 receives the pressing operation and is greatly distorted downward in the Z-axis direction.
  • the first piezoelectric film 111 generates a negative potential when greatly distorted downward in the Z-axis direction.
  • the portion that has received the pressing operation of the first piezoelectric film 111 is restored to the original flat shape.
  • the portion that has received the pressing operation of the first piezoelectric film 111 returns upward in the Z-axis direction, and thus generates a positive potential.
  • the potential generated from the first piezoelectric film 111 is detected later than the potential generated from the second piezoelectric film 112.
  • the portion of the second piezoelectric film 112 that has received a pressing operation returns upward in the Z-axis direction and when the first piezoelectric film 111 is greatly distorted downward in the Z-axis direction.
  • both the first piezoelectric film 111 and the second piezoelectric film 112 generate a negative potential.
  • FIG. 6D when the rubbing detection sensor 100 receives a rubbing operation in the second direction, a negative potential is generated simultaneously from the first piezoelectric film 111 and the second piezoelectric film 112.
  • the operation detection unit 18 detects that the detection value reaches the predetermined second threshold value V2, so that the user's operation is a rubbing operation in the second direction in which the user moves from the second region R2 to the first region R1. Judge that there is.
  • the operation detection unit 18 determines that the operation detection unit 18 is in the second region R2. It can be determined that the pressing operation is only pressing.
  • the operation detection part 18 can respectively determine the case where only 1st area
  • the second threshold value V2 is set to have a polarity different from that of the first threshold value V1.
  • the direction in which the rubbing operation is performed can be easily determined. That is, the potential detected by the rubbing detection sensor 100 varies depending on the direction in which the operator performs the rubbing operation. For this reason, it is possible to clearly discriminate whether the rubbing operation in the first direction or the rubbing operation in the second direction is performed according to the magnitude of the potential output from the piezoelectric element 10.
  • the second threshold value V2 may be set to have the same polarity as the first threshold value V1. In this case, the first threshold value V1 and the second threshold value V2 are set to different values. Therefore, it is possible to determine whether the rubbing operation is in the first direction or the rubbing operation in the second direction based on the difference in the magnitude of the potential output from the piezoelectric element 10.
  • the pair of press part of the 1st press part 5 and the 2nd press part 6 is formed, this pair may be formed in multiple numbers, respectively, and the operation surface of the surface panel 3 It may be arranged at any position other than the display unit 4.
  • the first pressing portion 5 and the second pressing portion 6 are formed flat with no unevenness with respect to the operation surface of the front panel 3. For this reason, it becomes difficult for dust etc. to adhere to the operation surface of the surface panel 3, and the contamination of the operation part which a person touches can be prevented.
  • FIGS. 7A to 7D are diagrams for explaining the generated potential of the rubbing detection sensor according to the second embodiment.
  • FIG. 7A is an explanatory diagram of the pushing operation
  • FIG. 7B is a graph showing the generated potential when the pressing operation is received in the adjusting piezoelectric element
  • FIG. 7C is the adjusting piezoelectric element.
  • FIG. 7D is a graph showing the potential generated when the position P1 is pressed when there is no element (that is, the first embodiment)
  • FIG. 7D shows the position when there is an adjustment piezoelectric element (that is, the second embodiment). It is a graph showing the electric potential generated when P1 receives the pushing operation.
  • the piezoelectric element 20 according to the second embodiment includes the piezoelectric film 11 and the adjusting piezoelectric element 23 according to the first embodiment.
  • the adjusting piezoelectric element 23 includes piezoelectric films 113 and 114.
  • FIG. 7A for convenience of explanation, only the piezoelectric films 113 and 114 of the adjustment piezoelectric element 23 are shown.
  • the piezoelectric film 113 is continuously formed at the end of the first piezoelectric film 111, and the piezoelectric film 114 is continuously formed at the end of the second piezoelectric film 112.
  • the piezoelectric film 113 has a polarity opposite to that of the first piezoelectric film 111, and the piezoelectric film 114 has a polarity opposite to that of the second piezoelectric film 112. That is, the second region R2 corresponding to the piezoelectric film 113 is further formed at the end portion on the first region R1 side, and the first region R1 corresponding to the piezoelectric film 114 is further formed on the end portion on the second region R2 side.
  • the lengths of the adjustment piezoelectric elements 23, that is, the directions in which the piezoelectric films 113 and 114 are subjected to the rubbing operation are preferably about 5 mm each.
  • the width at which the fingertip touches the surface panel 3 at the moment of touching the surface panel 3 with the fingertip is approximately 10 mm.
  • the rubbing detection sensor 100 When the rubbing detection sensor 100 receives a rubbing operation in the first direction, first, a pushing operation is accepted near the boundary between the first piezoelectric film 111 and the piezoelectric film 113 of P1.
  • the first piezoelectric film 111 and the piezoelectric film 113 are each greatly distorted downward in the Z-axis direction.
  • the potential as shown in FIG. 7B is generated from the first piezoelectric film 111, and at the same time, the potential opposite to that when the first region R1 as shown in FIG. It arises from the piezoelectric film 113.
  • the potential generated from the piezoelectric element 20 is the sum of the potentials generated from the first piezoelectric film 111 and the piezoelectric film 113. Therefore, as shown in FIG. 7D, the potential generated when only the first piezoelectric film 111 accepts the pushing operation is reduced by the potential generated from the piezoelectric film 113. Further, even when the pressing operation is received at the position closer to the piezoelectric film 113 than the position P1, the first piezoelectric film 111 is also distorted to some extent along with the piezoelectric film 113, so that only the piezoelectric film 113 receives the pressing operation. The generation potential of is reduced.
  • FIG. 8A is an exploded perspective view showing the rubbing detection sensor according to the third embodiment
  • FIG. 8B is a plan view in the XY plane
  • FIG. 8C is for explaining the generated potential.
  • the piezoelectric element 30 according to the third embodiment is the first embodiment except that the piezoelectric film 31 and the electrode 32 are provided instead of the piezoelectric film 11 and the electrode 12.
  • the configuration is almost the same as the form.
  • illustrations other than the piezoelectric film 31 and the electrode 32 are omitted.
  • the piezoelectric film 31 includes a first piezoelectric film 311 and a second piezoelectric film 312 that output potentials having opposite polarities when a pressing operation is received from the same direction.
  • the first piezoelectric film 311 is laminated on the second piezoelectric film 312 so as to intersect the second piezoelectric film 312.
  • a portion (lamination portion 117) laminated on the second piezoelectric film 312 is narrowly formed in the X-axis direction.
  • the laminated portion 117 since the potentials of opposite polarities are output from the first piezoelectric film 311 and the second piezoelectric film 312, they are canceled and no potential is generated.
  • the second piezoelectric film 312 is formed in a rectangular shape.
  • the electrode 32 includes a cross-shaped electrode 321 and an electrode 322.
  • the electrode 321 and the electrode 322 are respectively formed on both main surfaces of the first piezoelectric film 311 and the second piezoelectric film 312 so as to cover substantially the entire main surface.
  • the first piezoelectric film 311 is disposed in the first region R1
  • the second piezoelectric film 312 is disposed in the second region R2. Therefore, in the laminated portion 117, a part of both the first region R1 and the second region R2 is provided so as to overlap each other. As described above, no electric potential is generated in the laminated portion 117 even when a pressing operation is accepted.
  • the first piezoelectric film 311 and the second piezoelectric film 312 alternately accept the pressing operation. That is, pressing operations are received alternately and continuously in the first region R1 and the second region R2. Therefore, as shown in FIG. 8C, the potential detected by the rubbing detection sensor 100 has a wave shape. As a result, a predetermined rotation operation can be detected. In addition, in the laminated portion 117 that is a central portion that receives the rotation operation, no potential is generated even when the pressing operation is received.
  • FIG. 9A is a cross-sectional view of the rubbing detection sensor according to the fourth embodiment on the XZ plane
  • FIG. 9B is a plan view of the rubbing detection sensor according to the fifth embodiment on the XY plane.
  • 9 (C) and (D) are diagrams for explaining the generated potentials in the fourth and fifth embodiments.
  • the piezoelectric element 40 according to the fourth embodiment has substantially the same configuration as that of the first embodiment except that it includes a plurality of pairs of regions including the first region R1 and the second region R2. It has become. That is, the first piezoelectric film 111 and the second piezoelectric film 112 are alternately and continuously formed along a straight line. For this reason, when the user performs a rubbing operation in a predetermined direction, the first piezoelectric film 111 and the second piezoelectric film 112 alternately receive a pressing operation. Therefore, as shown in FIG. 9C, the fluctuation of the potential detected by the rubbing detection sensor 100 has a sine wave shape. Further, by increasing the speed of the rubbing operation, as shown in FIG. 9D, the pitch of the potential waveform is shortened. Conversely, if the rubbing operation is delayed, the pitch of the potential waveform becomes longer. Thereby, the speed of the rubbing operation can be acquired from the pitch of the detected potential waveform.
  • the piezoelectric film 51 according to the fifth embodiment is the fourth embodiment except that a pair of regions composed of the first region R1 and the second region R2 are arranged in a circle.
  • the configuration is almost the same as that. That is, the first piezoelectric film 111 and the second piezoelectric film 112 are alternately formed continuously on a circumferential curve.
  • the diameter of the circular circle is preferably 20 mm or more. Usually, when a user draws a circle with a fingertip, the width touched by the fingertip is about 5 mm. For this reason, if the diameter of the circular circle is 20 mm or more, the ring shape formed by the movement of the fingertip becomes clear.
  • the first piezoelectric film 111 and the second piezoelectric film 112 alternately receive a pressing operation. Therefore, as shown in FIG. 9C, the fluctuation of the potential detected by the rubbing detection sensor 100 has a sine wave shape. In this case, the user can repeat the rotation operation. As a result, a continuous wave-shaped potential is generated as long as the rotation operation is repeated. Therefore, the rubbing detection sensor 100 can also detect the frequency of the wave. Further, when the user changes the rotation speed, the frequency of the detected potential waveform varies. Therefore, the speed of the rubbing operation can be acquired from the frequency of the detected potential waveform.
  • FIG. 10A is a cross-sectional view of the rubbing detection sensor according to the sixth embodiment in the XZ plane
  • FIG. 10B is a plan view of the rubbing detection sensor according to the seventh embodiment in the XY plane.
  • 10 (C) and (D) are diagrams for explaining the generated potentials in the sixth and seventh embodiments.
  • the piezoelectric element 60 according to the sixth embodiment is the same except that a pair of regions consisting of a first region R1 and a second region R2 are provided at a predetermined interval.
  • the configuration is substantially the same as that of the fourth embodiment.
  • the piezoelectric film 71 according to the seventh embodiment has a pair of regions including the first region R1 and the second region R2 except that the paired regions are provided at a predetermined interval. Has substantially the same configuration as that of the fifth embodiment.
  • a pair of regions including the first region R1 and the second region R2 are provided at a predetermined interval. That is, it is the structure by which the pair of the continuous 1st piezoelectric film 111 and the 2nd piezoelectric film 112 is arrange
  • the detection potential is 0 at a predetermined interval. Further, since the rubbing operation is in the first direction, a large potential is detected in the positive direction. On the other hand, when a reverse rubbing operation in the second direction is accepted, as shown in FIG. 10D, the fluctuation of the potential detected by the rubbing detection sensor 100 is a wave shape with a predetermined interval. In addition, a large potential is detected in the negative direction. Similarly, when a rubbing operation in the clockwise direction of the arrow shown in FIG. 10B, that is, the first direction is accepted in the seventh embodiment, as shown in FIG. The detected potential fluctuation has a wave shape with a predetermined interval, and a large potential is detected in the positive direction.
  • the potential detected by the rubbing detection sensor 100 is changed as shown in FIG.
  • the fluctuation has a wave shape with a predetermined interval, and a large potential is detected in the negative direction. Therefore, the pair of regions including the first region R1 and the second region R2 are provided at a predetermined interval, so that the direction in which the rubbing operation is accepted can be determined.
  • FIG. 11A is a perspective view of an electronic device provided with a rubbing detection sensor according to the eighth embodiment
  • FIG. 11B is a diagram for explaining the generated potential.
  • the electronic device 80 has a hemispherical shape.
  • the electronic device 80 includes the above-described rubbing detection sensor.
  • the electronic device 80 includes a pair of the first piezoelectric film 111 and the second piezoelectric film 112 inside.
  • the first piezoelectric film 111 and the second piezoelectric film 112 are radially provided at predetermined intervals on the hemispherical surface portion.
  • the speed of the rubbing operation can be detected.
  • adjustment parts such as temperature and a volume, can be provided to household appliances.
  • the rubbing detection sensor 100 can also be used as a switch, it can also be used as a switch in which ON / OFF is associated with the first region R1 or the second region R2.
  • the electronic device 80 is not limited to this shape, and can be set to a three-dimensional shape corresponding to the use state, such as a spherical shape, a rectangular parallelepiped shape, or a cylindrical shape.
  • FIG. 12A is a perspective view of an electronic apparatus provided with the rubbing detection sensor according to the first modification
  • FIG. 12B is a plan view of the rubbing detection sensor in FIG. 12A
  • FIG. FIG. 12B is a cross-sectional view of the rubbing detection sensor of FIG.
  • the rubbing detection sensor 120 includes a sensor unit 127 and a drawer unit 128.
  • the sensor unit 127 and the drawer unit 128 are attached to the inner wall of the housing 2 of the electronic device 1.
  • the sensor unit 127 and the drawer unit 128 have a base 94 on the housing 2 side.
  • the base 94 is disposed on the first adhesive layer 91, the SUS plate 92, and the second adhesive layer 93 that are laminated from the housing 2 side and bonded to the housing 2.
  • the SUS plate 92 is formed of a material having a low elastic modulus that is less likely to be deformed than the housing 2 or the base 94.
  • the base 94 has a signal electrode 95 and a ground electrode 96 on the opposite side of the housing 2.
  • the signal electrode 95 and the ground electrode 96 may be disposed so as to be positioned on the base material 94, or may be formed so that at least a part thereof enters the base material 94.
  • the sensor unit 127 and the lead-out unit 128 further include a third adhesive layer 97, a shield layer 98, and the piezoelectric film 11.
  • the piezoelectric film 11 is disposed via a third adhesive layer 97.
  • the shield layer 98 is disposed so as to overlap the ground electrode 96 disposed in the lead portion 128.
  • the shield layer 98 is electrically connected to the ground electrode 96. For this reason, the charge generated from the piezoelectric film 11 can be detected by the signal electrode 95 and the ground electrode 96.
  • FIG. 13A is a diagram for explaining a normal time when a pressing operation is received in the first modification
  • FIGS. 13B and 13C explain an abnormal time when the housing 2 is deformed. It is a figure for doing. Note that in FIGS. 13A to 13C, only portions necessary for the description are shown, and the rest are omitted.
  • FIG. 13C a case where a portion of the housing 2 that does not correspond to the piezoelectric film 11 is deformed to the outside due to the housing receiving a twist or the like.
  • the presence of the SUS plate 92 makes it difficult for the piezoelectric film 11 to be deformed, so that false detection can be prevented without detecting charges.
  • the SUS plate 92 is disposed in the drawer portion 128.
  • the deformation of the base material 94 is easily transmitted to the piezoelectric film 11 when the housing 2 is deformed near the sensor portion 127.
  • the erroneous detection due to unnecessary deformation of the housing 2 can be prevented by the size and arrangement of the SUS plate 92.
  • FIG. 14A is a perspective view of an electronic apparatus provided with the rubbing detection sensor according to the second modification
  • FIG. 14B is a plan view of the rubbing detection sensor in FIG. 14A
  • FIG. FIG. 14B is a cross-sectional view of the rubbing detection sensor 14 (B) taken along II-II.
  • the arrangement of the sensor unit 127 and the drawer unit 128 is different from that of the first modification.
  • the lead portion 128 is drawn vertically from the longitudinal side of the sensor portion 127.
  • the drawer portion 128 is not easily deformed because the SUS plate 92 is partially disposed. Accordingly, since the drawer portion 128 is hardly affected by the deformation of the base material 94, it is possible to prevent erroneous detection due to unnecessary deformation of the housing 2.
  • FIG. 15 is a cross-sectional view for explaining a rubbing detection sensor according to Modification 3.
  • the configurations of Modification 1 and the base 94 and SUS plate 92 are different.
  • the SUS plate 92 is disposed only in the area of the sensor unit 127.
  • the base 94 is formed so as to be bent toward the housing 2 at the boundary between the sensor unit 127 and the lead-out unit 128 and attached to the first adhesive layer 91.
  • the base material 94 is directly attached to the housing 2 in the drawer portion 128. For this reason, the deformation
  • the SUS plate 92 is preferably sized to cover the smaller end of the piezoelectric film 11 or the signal electrode 95 in plan view, and further sized to cover the end of the shield layer 98. Preferably there is. If the SUS plate 92 does not cover the end of the shield layer 98, the shield layer 98 is stretched when a pressing operation is applied in the vicinity of the shield layer 98. Thereby, a load is applied to the piezoelectric film 11 and the piezoelectric film 11 may be stretched.
  • SUS which is a material of the SUS plate 92
  • any material may be used as long as it has a low elastic modulus and is less likely to deform than the casing 2 or the base 94.
  • the SUS plate 92 may function as a ground electrode instead of the ground electrode 96.
  • the SUS board 92 can be formed large and occupies a certain range of the rubbing detection sensor, it can be expected to prevent noise from the housing 2 side.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)

Abstract

Provided is a rub detecting sensor capable of detecting the direction of a rubbing operation using a simple structure that is not bulky. This rub detecting sensor is provided with: a first region (R1) which accepts a pressing operation from a user; a second region (R2) at least part of which is adjacent to the first region (R1) and which accepts a pressing operation from the user; a piezoelectric element (10) which outputs electric potentials having respectively opposite polarities when a pressing operation is accepted by the first region (R1) and when a pressing operation is accepted by the second region (R2); and an operation detecting unit (18) which detects a rubbing operation on the basis of states of detection by the piezoelectric element (10) in the first region (R1) and the second region (R2).

Description

こすれ検知センサ及び電子機器Rub detection sensor and electronic device
 本発明の一実施形態は、圧電素子を備えるこすれ検知センサ、及びこれを用いた電子機器に関する。 One embodiment of the present invention relates to a rubbing detection sensor including a piezoelectric element and an electronic apparatus using the same.
 特許文献1には、回転キーを備えたジョグダイヤルを用いた入力装置が開示されている。特許文献1に記載の入力装置では、回転操作子の回転動作により形成された回転検出信号波形の論理演算により、能動素子用の駆動信号を生成している。このため、ユーザによる回転操作とそれに応じた駆動信号の生成との間でのタイムラグを抑制することができる。 Patent Document 1 discloses an input device using a jog dial provided with a rotation key. In the input device described in Patent Document 1, a drive signal for an active element is generated by a logical operation of a rotation detection signal waveform formed by a rotation operation of a rotary operator. For this reason, the time lag between rotation operation by a user and the production | generation of the drive signal according to it can be suppressed.
特開2008-287650号公報JP 2008-287650 A
 特許文献1に記載の入力装置においては、回転キーを備えたジョグダイヤル等の物理的な回転機構部が用いられている。このような回転機構部は、構造上嵩張るため、電子機器に用いる場合にある程度の場所を占有する。また、回転機構部の隙間に塵などが入り込むことにより、回転機構部だけでなく、電子機器自体が故障してしまうことがある。さらに、回転機構部が電子機器の表面に突出して設けられることにより、電子機器の表面が凹凸形状となるため、塵などが付着し易くなり、人が触れる操作部分が汚れ易いという点において改善の余地がある。 In the input device described in Patent Document 1, a physical rotation mechanism such as a jog dial having a rotation key is used. Such a rotation mechanism portion is bulky in structure and occupies a certain place when used in an electronic device. In addition, when dust or the like enters the clearance between the rotation mechanism units, not only the rotation mechanism unit but also the electronic device itself may break down. Furthermore, since the rotation mechanism portion is provided so as to protrude from the surface of the electronic device, the surface of the electronic device has an uneven shape, so that dust and the like are easily attached, and the operation part touched by a person is easily soiled. There is room.
 そこで、本発明の一実施形態の目的は、嵩張りが小さく簡易な構造でこすり操作の向きを検知できるこすれ検知センサを提供することにある。 Therefore, an object of one embodiment of the present invention is to provide a rubbing detection sensor that can detect the direction of the rubbing operation with a simple structure that is small in bulk.
 本発明の一実施形態に係るこすれ検知センサは、ユーザから押圧操作を受け付ける第一領域と、前記第一領域と少なくとも一部が隣接し、前記ユーザから前記押圧操作を受け付ける第二領域と、前記第一領域で前記押圧操作を受け付けたときと、前記第二領域で前記押圧操作を受け付けたときとで、其々逆の極性の電位を出力する圧電素子と、前記第一領域及び前記第二領域における前記圧電素子の検出態様に基づいてこすり操作を検出する操作検出部と、を備えることを特徴とする。 The rubbing detection sensor according to an embodiment of the present invention includes a first region that receives a pressing operation from a user, a second region that is at least partially adjacent to the first region and receives the pressing operation from the user, Piezoelectric elements that output potentials of opposite polarities when the pressing operation is received in the first region and when the pressing operation is received in the second region, the first region, and the second region An operation detection unit that detects a rubbing operation based on a detection mode of the piezoelectric element in the region.
 この構成では、第一領域及び第二領域がこすり操作を受け付けたときに、圧電素子が第一領域及び第二領域に付加された其々の操作に対応する電位を時間差で出力する。第一領域から第二領域へ、こすり操作を受け付けたときに、第一領域及び第二領域の境界の付近では、第一領域の変形が元に戻るとともに第二領域が変形する。また、第二領域から第一領域へ、こすり操作を受け付けたときに、第一領域及び第二領域の境界の付近では、第二領域の変形が元に戻るとともに第一領域が変形する。このため、第一領域及び第二領域からは同じ極性の電位が発生する。従って、例えば電位の時間変化におけるピークを見ることによりこすり検出ができる。また、該こすれ検知センサは、圧電素子を用いて薄く形成できる。 In this configuration, when the first region and the second region receive a rubbing operation, the piezoelectric element outputs a potential corresponding to each operation applied to the first region and the second region with a time difference. When a rubbing operation is accepted from the first area to the second area, the deformation of the first area is restored and the second area is deformed near the boundary between the first area and the second area. Further, when a rubbing operation is accepted from the second area to the first area, the deformation of the second area is restored and the first area is deformed near the boundary between the first area and the second area. For this reason, a potential having the same polarity is generated from the first region and the second region. Therefore, for example, rubbing can be detected by looking at the peak of the potential with time. Further, the rubbing detection sensor can be formed thin using a piezoelectric element.
 本発明の一実施形態に係る電子機器は、前記こすれ検知センサを備えることを特徴とする。 An electronic apparatus according to an embodiment of the present invention includes the rubbing detection sensor.
 この構成では、こすれ検知センサが用いられ、該こすれ検知センサは薄く形成できるため、電子機器自体の軽量化及びスリム化が可能となる。また、電子機器の表面に隙間が生じないため、塵などによる故障を防止することができる。さらに、電子機器の表面を平らに形成できるため、操作部分の汚れが抑制される。 In this configuration, a rubbing detection sensor is used, and since the rubbing detection sensor can be formed thin, the electronic device itself can be reduced in weight and slim. In addition, since no gap is generated on the surface of the electronic device, failure due to dust or the like can be prevented. Furthermore, since the surface of the electronic device can be formed flat, contamination of the operation part is suppressed.
 本発明の一実施形態によれば、嵩張りが小さく簡易な構造で、こすり操作の向きを検知できる。 According to an embodiment of the present invention, the direction of the rubbing operation can be detected with a simple structure that is small in bulk.
図1(A)は第一実施形態に係るこすれ検知センサを備えた電子機器の斜視図、図1(B)はその断面図である。FIG. 1A is a perspective view of an electronic device provided with a rubbing detection sensor according to the first embodiment, and FIG. 1B is a cross-sectional view thereof. 図2(A)は第一実施形態に係る圧電素子の分解斜視図、図2(B)はその断面図である。2A is an exploded perspective view of the piezoelectric element according to the first embodiment, and FIG. 2B is a sectional view thereof. 図3(A)~(C)は第一実施形態に係る圧電フィルムを説明するための図である。3A to 3C are views for explaining the piezoelectric film according to the first embodiment. 図4(A)は変形例に係る圧電素子の分解斜視図、図4(B)はその断面図である。4A is an exploded perspective view of a piezoelectric element according to a modification, and FIG. 4B is a cross-sectional view thereof. 図5(A)~(D)は第一実施形態に係るこすれ検知センサのこすり操作を受ける方向と発生電位との関係を説明するための図である。FIGS. 5A to 5D are diagrams for explaining the relationship between the direction in which the rubbing operation of the rubbing detection sensor according to the first embodiment is received and the generated potential. 図6(A)~(D)は図5(A)~(D)と逆の方向にこすり操作を受けた場合の発生電位を説明するための図である。FIGS. 6A to 6D are diagrams for explaining generated potentials when a rubbing operation is performed in the direction opposite to that in FIGS. 5A to 5D. 図7(A)~(D)は、第二実施形態に係るこすれ検知センサの発生電位を説明するための図である。FIGS. 7A to 7D are diagrams for explaining the generated potential of the rubbing detection sensor according to the second embodiment. 図8(A)は、第三実施形態に係るこすれ検知センサを示す分解斜視図、図8(B)はそのX-Y平面における平面図、図8(C)はその発生電位を説明するための図である。FIG. 8A is an exploded perspective view showing the rubbing detection sensor according to the third embodiment, FIG. 8B is a plan view in the XY plane, and FIG. 8C is for explaining the generated potential. FIG. 図9(A)は、第四実施形態に係るこすれ検知センサのX-Z平面における断面図、図9(B)は第五実施形態に係るこすれ検知センサのX-Y平面における平面図、図9(C)及び(D)は第四実施形態及び第五実施形態における発生電位を説明するための図である。9A is a cross-sectional view of the rubbing detection sensor according to the fourth embodiment on the XZ plane, and FIG. 9B is a plan view of the rubbing detection sensor according to the fifth embodiment on the XY plane. 9 (C) and (D) are diagrams for explaining the generated potentials in the fourth and fifth embodiments. 図10(A)は、第六実施形態に係るこすれ検知センサのX-Z平面における断面図、図10(B)は第七実施形態に係るこすれ検知センサのX-Y平面における平面図、図10(C)及び(D)は第六実施形態及び第七実施形態における発生電位を説明するための図である。10A is a cross-sectional view of the rubbing detection sensor according to the sixth embodiment in the XZ plane, and FIG. 10B is a plan view of the rubbing detection sensor according to the seventh embodiment in the XY plane. 10 (C) and (D) are diagrams for explaining the generated potentials in the sixth and seventh embodiments. 図11(A)は、第八実施形態に係るこすれ検知センサを備えた電子機器の斜視図、図11(B)はその発生電位を説明するための図である。FIG. 11A is a perspective view of an electronic device provided with the rubbing detection sensor according to the eighth embodiment, and FIG. 11B is a diagram for explaining the generated potential. 図12(A)は、変形例1に係るこすれ検知センサを備えた電子機器の斜視図、図12(B)は図12(A)のこすれ検知センサの平面図、図12(C)は図12(B)のこすれ検知センサをI-Iで切断したときの断面図である。FIG. 12A is a perspective view of an electronic apparatus provided with the rubbing detection sensor according to the first modification, FIG. 12B is a plan view of the rubbing detection sensor in FIG. 12A, and FIG. FIG. 12B is a cross-sectional view of the rubbing detection sensor of FIG. 図13(A)は、変形例1において押圧操作を受け付けた正常時を説明するための図であり、図13(B)及び図13(C)は、筐体2が変形した異常時について説明するための図である。FIG. 13A is a diagram for explaining a normal time when a pressing operation is received in the first modification, and FIGS. 13B and 13C explain an abnormal time when the housing 2 is deformed. It is a figure for doing. 図14(A)は、変形例2に係るこすれ検知センサを備えた電子機器の斜視図、図14(B)は図14(A)のこすれ検知センサの平面図、図14(C)は図14(B)のこすれ検知センサをII-IIで切断したときの断面図である。FIG. 14A is a perspective view of an electronic apparatus provided with the rubbing detection sensor according to the second modification, FIG. 14B is a plan view of the rubbing detection sensor in FIG. 14A, and FIG. FIG. 14B is a cross-sectional view of the rubbing detection sensor 14 (B) taken along II-II. 図15は、変形例3に係るこすれ検知センサを説明するための断面図である。FIG. 15 is a cross-sectional view for explaining a rubbing detection sensor according to Modification 3.
 図1(A)は第一実施形態に係るこすれ検知センサを備えた電子機器の斜視図、図1(B)は図1(A)に示すI-I線における断面図である。図2(A)は第一実施形態に係る圧電素子の分解斜視図、図2(B)はそのX-Z平面における断面図である。なお、図1(A)及び図1(B)に示す電子機器はあくまで一例であり、これに限るものではなく仕様に応じて適宜変更することができる。 FIG. 1A is a perspective view of an electronic apparatus provided with a rubbing detection sensor according to the first embodiment, and FIG. 1B is a cross-sectional view taken along a line II shown in FIG. 2A is an exploded perspective view of the piezoelectric element according to the first embodiment, and FIG. 2B is a cross-sectional view in the XZ plane. Note that the electronic devices illustrated in FIGS. 1A and 1B are merely examples, and are not limited thereto, and can be changed as appropriate according to specifications.
 図1(A)に示すように、電子機器1は、上面が開口した略直方体形状の筐体2を備える。電子機器1は、筐体2の上面の開口部に配置された平板状の表面パネル3を備える。表面パネル3は、利用者が指やペンなどを用いてタッチ操作を行う操作面として機能する。以下では、筐体2の幅方向(横方向)をX方向とし、長さ方向(縦方向)をY方向とし、厚み方向をZ方向として説明する。 As shown in FIG. 1A, the electronic device 1 includes a substantially rectangular parallelepiped housing 2 having an upper surface opened. The electronic device 1 includes a flat surface panel 3 disposed in an opening on the upper surface of the housing 2. The front panel 3 functions as an operation surface on which a user performs a touch operation using a finger or a pen. Below, the width direction (horizontal direction) of the housing | casing 2 is set to X direction, a length direction (vertical direction) is set to Y direction, and the thickness direction is demonstrated as Z direction.
 表面パネル3の操作面には表示部4、第一押圧部5、及び第二押圧部6が形成されている。本実施形態では、第一押圧部5及び第二押圧部6は平面視で矩形状であり、X方向に並んで其々の一部が隣接して形成されている。第一押圧部5及び第二押圧部6は表面パネル3の一部の領域であり、表面パネル3と連続して形成されている。第一押圧部5及び第二押圧部6は、表面パネル3の一部を色分けする、マークを付ける、又は周囲に溝を形成することなどによって、表面パネル3の他の部分と区別されている。また、第一押圧部5及び第二押圧部6の形状は矩形状には限らず、其々の一部が互いに隣接していればよく、三角形状等別の形状であってもよい。さらに、第一押圧部5及び第二押圧部6は、X方向に並ぶことには限定されず、例えば、Y方向に並ぶ状態やX方向に対して斜めの方向であってもよい。 A display unit 4, a first pressing unit 5, and a second pressing unit 6 are formed on the operation surface of the front panel 3. In this embodiment, the 1st press part 5 and the 2nd press part 6 are rectangular shape by planar view, and each one part is formed adjacently along with the X direction. The first pressing part 5 and the second pressing part 6 are part of the surface panel 3 and are formed continuously with the surface panel 3. The first pressing part 5 and the second pressing part 6 are distinguished from other parts of the front panel 3 by color-coding a part of the front panel 3, marking them, or forming grooves around them. . Moreover, the shape of the 1st press part 5 and the 2nd press part 6 is not restricted to a rectangular shape, Each part should just be mutually adjacent, and another shape, such as a triangle shape, may be sufficient. Further, the first pressing portion 5 and the second pressing portion 6 are not limited to being arranged in the X direction, and may be, for example, a state arranged in the Y direction or a direction oblique to the X direction.
 第一押圧部5は本発明に係る押圧操作を受け付ける「第一領域R1」に相当し、第二押圧部6は本発明に係る押圧操作を受け付ける「第二領域R2」に相当する。第一押圧部5及び第二押圧部6は其々の一部が隣接して形成されているため、第一押圧部5及び第二押圧部6は連続して押圧操作を受け付けることができる。すなわち、第一押圧部5及び第二押圧部6は、第一領域R1から第二領域R2へ向かうこすり操作を受け付ける。本実施形態においては、説明の便宜上、第一領域R1から第二領域R2へ向かう方向を「第一方向」、第二領域R2から第一領域R1へ向かう方向を「第二方向」とする。 The first pressing portion 5 corresponds to a “first region R1” that receives a pressing operation according to the present invention, and the second pressing portion 6 corresponds to a “second region R2” that receives a pressing operation according to the present invention. Since the first pressing part 5 and the second pressing part 6 are partially formed adjacent to each other, the first pressing part 5 and the second pressing part 6 can continuously receive a pressing operation. That is, the 1st press part 5 and the 2nd press part 6 receive the rubbing operation which goes to 2nd area | region R2 from 1st area | region R1. In the present embodiment, for convenience of explanation, a direction from the first region R1 to the second region R2 is referred to as a “first direction”, and a direction from the second region R2 to the first region R1 is referred to as a “second direction”.
 図1(B)に示すように、筐体2内部であって表面パネル3のZ方向下方には、こすれ検知センサ100が形成されている。こすれ検知センサ100は、圧電素子10及び操作検出部18を備える。圧電素子10は、第一領域R1及び第二領域R2に対応する部分に配置されている。表面パネル3に利用者が指やペンなどを用いてタッチ操作を行うと、圧電素子10に圧力が伝わる。後で詳述するが、圧電素子10は、第一領域R1である第一押圧部5で押圧操作を受け付けたときに、第二領域R2である第二押圧部6で押圧操作を受け付けたときと逆の極性の電位を出力する。このため、圧電素子10により、操作検出部18は第一領域R1及び第二領域R2で受け付けた操作に応じた電位を出力する。操作検出部18は、筐体2内部に配置され、不図示の配線で圧電素子10と接続されている。操作検出部18は、圧電素子10が出力する電位の検出態様に対応するこすり操作を検出する。なお、操作検出部18は、筐体2内部であればいずれの位置であっても構わない。 As shown in FIG. 1B, a rubbing detection sensor 100 is formed inside the housing 2 and below the front panel 3 in the Z direction. The rubbing detection sensor 100 includes the piezoelectric element 10 and the operation detection unit 18. The piezoelectric element 10 is disposed in a portion corresponding to the first region R1 and the second region R2. When a user performs a touch operation on the front panel 3 using a finger or a pen, pressure is transmitted to the piezoelectric element 10. As will be described in detail later, the piezoelectric element 10 receives a pressing operation at the second pressing portion 6 that is the second region R2 when receiving a pressing operation at the first pressing portion 5 that is the first region R1. Outputs a potential of the opposite polarity. For this reason, the operation detection unit 18 outputs a potential corresponding to the operation received in the first region R1 and the second region R2 by the piezoelectric element 10. The operation detection unit 18 is disposed inside the housing 2 and is connected to the piezoelectric element 10 by a wiring (not shown). The operation detection unit 18 detects a rubbing operation corresponding to the detection mode of the potential output from the piezoelectric element 10. The operation detection unit 18 may be at any position as long as it is inside the housing 2.
 図2(A)及び図2(B)に示すように、圧電素子10は、平膜状の圧電フィルム11及び平膜状の電極12を備えることが好ましい。なお、図2(A)及び図2(B)では、圧電フィルム11及び電極12以外の図示は省略している。 As shown in FIGS. 2A and 2B, the piezoelectric element 10 preferably includes a flat film-like piezoelectric film 11 and a flat film-like electrode 12. 2A and 2B, illustrations other than the piezoelectric film 11 and the electrode 12 are omitted.
 圧電フィルム11は、第一圧電フィルム111及び第二圧電フィルム112からなる。第一圧電フィルム111は第一領域R1に配置され、第二圧電フィルム112は第二領域R2に配置されている。第一圧電フィルム111は、平面視で第一領域R1の面、すなわち第一押圧部5と同様、矩形状である。また第二圧電フィルム112も、平面視で第二領域R2の面、すなわち第二押圧部6と同様、矩形状である。なお、第一圧電フィルム111及び第二圧電フィルム112は、第一押圧部5及び第二押圧部6の形状に併せて適宜変更することも可能である。 The piezoelectric film 11 includes a first piezoelectric film 111 and a second piezoelectric film 112. The first piezoelectric film 111 is disposed in the first region R1, and the second piezoelectric film 112 is disposed in the second region R2. The first piezoelectric film 111 has a rectangular shape in a plan view, like the surface of the first region R1, that is, the first pressing portion 5. The second piezoelectric film 112 also has a rectangular shape in plan view, like the surface of the second region R2, that is, the second pressing portion 6. In addition, the 1st piezoelectric film 111 and the 2nd piezoelectric film 112 can also be suitably changed according to the shape of the 1st press part 5 and the 2nd press part 6. FIG.
 電極12は、電極121及び電極122からなる。電極121及び電極122は、第一圧電フィルム111及び第二圧電フィルム112の両主面に、主面の略全面を覆うように其々形成されている。詳細に説明すると、電極121は平面視で第一圧電フィルム111及び第二圧電フィルム112を連続させた面と同様に矩形状に形成されており、第一圧電フィルム111及び第二圧電フィルム112の一方の主面を覆うように形成されている。電極122は、平面視で第一圧電フィルム111及び第二圧電フィルム112を連続させた面と同様に矩形状に形成されており、第一圧電フィルム111及び第二圧電フィルム112における電極121が形成されていない側の主面を覆うように形成されている。 The electrode 12 includes an electrode 121 and an electrode 122. The electrode 121 and the electrode 122 are respectively formed on both main surfaces of the first piezoelectric film 111 and the second piezoelectric film 112 so as to cover substantially the entire main surface. More specifically, the electrode 121 is formed in a rectangular shape in the same way as a plane in which the first piezoelectric film 111 and the second piezoelectric film 112 are continuous in plan view. It is formed so as to cover one main surface. The electrode 122 is formed in a rectangular shape in the same way as the surface in which the first piezoelectric film 111 and the second piezoelectric film 112 are continuous in plan view, and the electrode 121 in the first piezoelectric film 111 and the second piezoelectric film 112 is formed. It is formed so as to cover the main surface on the side that is not.
 圧電素子10を平面視した時、電極121及び電極122の少なくとも一方は、上面視で圧電フィルム11と完全に重なるか、圧電フィルム11より面方向内側に位置していると良い。これにより、電極の端部における短絡を抑制できる。図2(A)及び図2(B)においては、電極121及び電極122はベタ電極として表されているが、第一圧電フィルム111、又は第二圧電フィルム112毎にそれぞれ電極を設けて、不図示の配線電極で接続しても良い。 When the piezoelectric element 10 is viewed in plan, at least one of the electrode 121 and the electrode 122 may be completely overlapped with the piezoelectric film 11 when viewed from above, or may be located on the inner side in the plane direction from the piezoelectric film 11. Thereby, the short circuit in the edge part of an electrode can be suppressed. In FIGS. 2A and 2B, the electrode 121 and the electrode 122 are represented as solid electrodes. However, an electrode is provided for each of the first piezoelectric film 111 and the second piezoelectric film 112, so You may connect with the wiring electrode of illustration.
 図3(A)~(C)は、第一実施形態に係る圧電フィルムを説明するための図である。図3(A)及び図3(B)は、第一実施形態に係る圧電フィルムの其々一例を平面視した図である。図3(C)は、第一実施形態に係る圧電フィルムの一例のX-Z平面における断面図である。第一圧電フィルム111は、押圧操作を受け付けたときに第二圧電フィルム112が発生する電位と逆の極性の電位を発生するものである。 3A to 3C are views for explaining the piezoelectric film according to the first embodiment. FIG. 3A and FIG. 3B are plan views of an example of the piezoelectric film according to the first embodiment. FIG. 3C is a cross-sectional view in the XZ plane of an example of the piezoelectric film according to the first embodiment. The first piezoelectric film 111 generates a potential having a polarity opposite to that generated by the second piezoelectric film 112 when a pressing operation is received.
 図3(A)に示すように、第一圧電フィルム111及び第二圧電フィルム112はキラル高分子から形成されるフィルムであってもよい。キラル高分子として、第一実施形態では、ポリ乳酸(PLA)、特にL型ポリ乳酸(PLLA)を用いている。キラル高分子からなるPLLAは、主鎖が螺旋構造を有する。PLLAは、一軸延伸されて分子が配向すると圧電性を有する。そして、一軸延伸されたPLLAは、第一圧電フィルム111及び第二圧電フィルム112の平板面が押圧されることにより、電位を発生する。この際、発生する電位量は、押圧量により平板面が当該平板面に直交する方向へ変位する変位量に依存する。 As shown in FIG. 3A, the first piezoelectric film 111 and the second piezoelectric film 112 may be films formed of a chiral polymer. In the first embodiment, polylactic acid (PLA), particularly L-type polylactic acid (PLLA) is used as the chiral polymer. PLLA made of a chiral polymer has a main chain with a helical structure. PLLA has piezoelectricity when uniaxially stretched and molecules are oriented. The uniaxially stretched PLLA generates a potential when the flat surfaces of the first piezoelectric film 111 and the second piezoelectric film 112 are pressed. At this time, the amount of potential generated depends on the amount of displacement by which the flat plate surface is displaced in the direction orthogonal to the flat plate surface by the pressing amount.
 第一実施形態では、第一圧電フィルム111及び第二圧電フィルム112(PLLA)の一軸延伸方向は、図3(A)の矢印に示すように、X方向及びY方向に対して其々逆向きに45度の角度を成す方向としている。この45度には、例えば45度±10度程度を含む角度を含む。これにより、第一圧電フィルム111が押圧されることにより発生する電位と、第二圧電フィルム112が押圧されることにより発生する電位とは逆の極性となる。 In the first embodiment, the uniaxial stretching directions of the first piezoelectric film 111 and the second piezoelectric film 112 (PLLA) are opposite to the X direction and the Y direction, respectively, as indicated by arrows in FIG. The direction is an angle of 45 degrees. The 45 degrees includes an angle including about 45 degrees ± 10 degrees, for example. Thereby, the electric potential generated when the first piezoelectric film 111 is pressed and the electric potential generated when the second piezoelectric film 112 is pressed have opposite polarities.
 PLLAは、延伸等による分子の配向処理で圧電性を生じ、PVDF等の他のポリマーや圧電セラミックスのように、ポーリング処理を行う必要がない。すなわち、強誘電体に属さないPLLAの圧電性は、PVDF又はPZT等の強誘電体のようにイオンの分極によって発現するものではなく、分子の特徴的な構造である螺旋構造に由来するものである。このため、PLLAには、他の強誘電性の圧電体で生じる焦電性が生じない。焦電性がないため、ユーザの指の温度や摩擦熱による影響が生じないため、表面パネル3を薄く形成することができる。さらに、PVDF等は経時的に圧電定数の変動が見られ、場合によっては圧電定数が著しく低下する場合があるが、PLLAの圧電定数は経時的に極めて安定している。従って、周囲環境に影響されることなく、押圧による変位を高感度に検出することができる。 PLLA generates piezoelectricity by molecular orientation treatment such as stretching, and does not need to be polled like other polymers such as PVDF or piezoelectric ceramics. That is, the piezoelectricity of PLLA that does not belong to ferroelectrics is not expressed by the polarization of ions like ferroelectrics such as PVDF or PZT, but is derived from a helical structure that is a characteristic structure of molecules. is there. For this reason, the pyroelectricity generated in other ferroelectric piezoelectric materials does not occur in PLLA. Since there is no pyroelectricity, there is no influence of the temperature of the user's finger or frictional heat, so the front panel 3 can be formed thin. Further, PVDF or the like shows a change in piezoelectric constant over time, and in some cases, the piezoelectric constant may be significantly reduced, but the piezoelectric constant of PLLA is extremely stable over time. Therefore, it is possible to detect displacement caused by pressing with high sensitivity without being affected by the surrounding environment.
 また、図3(B)に示すように、第一圧電フィルム111及び第二圧電フィルム112は、二種類のキラル高分子から形成されるフィルムからなるものであってもよい。例えば、第一圧電フィルム111としてL型ポリ乳酸(PLLA)を用い、D型ポリ乳酸(PDLA)を用いてもよい。この場合、一軸延伸方向は、図3(B)の矢印に示すように、X方向及びY方向に対して向きに45度の角度を成す同一の方向としている。この45度には、例えば45度±10度程度を含む角度を含む。これにより、第一圧電フィルム111が押圧されることにより発生する電位と、第二圧電フィルム112が押圧されることにより発生する電位とは逆の極性となる。 Further, as shown in FIG. 3B, the first piezoelectric film 111 and the second piezoelectric film 112 may be made of a film formed from two types of chiral polymers. For example, L-type polylactic acid (PLLA) may be used as the first piezoelectric film 111, and D-type polylactic acid (PDLA) may be used. In this case, the uniaxial stretching direction is the same direction that forms an angle of 45 degrees in the direction with respect to the X direction and the Y direction, as indicated by arrows in FIG. The 45 degrees includes an angle including about 45 degrees ± 10 degrees, for example. Thereby, the electric potential generated when the first piezoelectric film 111 is pressed and the electric potential generated when the second piezoelectric film 112 is pressed have opposite polarities.
 また、図3(C)に示すように、第一圧電フィルム111及び第二圧電フィルム112は、ポーリング処理を行ったPVDF又はPZT等のようなイオンが分極した強誘電体から形成されるフィルムからなるものであってもよい。例えば、図3(C)に示すように、第一圧電フィルム111としてZ方向上側がプラスに帯電したPVDFを用い、第二圧電フィルム112としてZ方向上側がマイナスに帯電したPVDFを用いてもよい。これにより、第一圧電フィルム111が押圧されることにより発生する電位と、第二圧電フィルム112が押圧されることにより発生する電位とは逆の極性となる。 Further, as shown in FIG. 3C, the first piezoelectric film 111 and the second piezoelectric film 112 are made of a film formed of a ferroelectric material in which ions are polarized, such as PVDF or PZT subjected to poling treatment. It may be. For example, as shown in FIG. 3C, PVDF whose upper side in the Z direction is positively charged may be used as the first piezoelectric film 111, and PVDF whose upper side in the Z direction is negatively charged may be used as the second piezoelectric film 112. . Thereby, the electric potential generated when the first piezoelectric film 111 is pressed and the electric potential generated when the second piezoelectric film 112 is pressed have opposite polarities.
 第一圧電フィルム111及び第二圧電フィルム112の両主面に形成されている電極121及び電極122は、アルミニウムや銅等の金属系の電極を用いるのが好適である。このような電極121及び電極122を設けることで、第一圧電フィルム111及び第二圧電フィルム112が発生する電荷を電位差として取得でき、押圧量に応じた電圧値の押圧量検出信号を外部へ出力することができる。 The electrodes 121 and 122 formed on both main surfaces of the first piezoelectric film 111 and the second piezoelectric film 112 are preferably metal electrodes such as aluminum and copper. By providing such an electrode 121 and an electrode 122, electric charges generated by the first piezoelectric film 111 and the second piezoelectric film 112 can be acquired as a potential difference, and a pressing amount detection signal having a voltage value corresponding to the pressing amount is output to the outside. can do.
 なお、圧電素子10において、第一圧電フィルム111と、押圧操作を受け付けたときに第一圧電フィルム111が発生する電位と逆の極性の電位を発生する第二圧電フィルム112と、が用いられているが、圧電フィルムは以下の変形例に示すように一枚のフィルムで構成されていてもよい。 In the piezoelectric element 10, a first piezoelectric film 111 and a second piezoelectric film 112 that generates a potential having a polarity opposite to that generated by the first piezoelectric film 111 when a pressing operation is received are used. However, the piezoelectric film may be composed of a single film as shown in the following modification.
 図4(A)は変形例に係る圧電素子の分解斜視図、図4(B)はその断面図である。図4(A)及び図4(B)に示すように、変形例に係る圧電素子13は、平膜状の圧電フィルム43及び平膜状の対の電極14を備えることが好ましい。なお、図4(A)及び図4(B)では、圧電フィルム43及び電極14以外の図示は省略している。 4A is an exploded perspective view of a piezoelectric element according to a modification, and FIG. 4B is a cross-sectional view thereof. As shown in FIGS. 4A and 4B, the piezoelectric element 13 according to the modified example preferably includes a flat film-shaped piezoelectric film 43 and a flat film-shaped pair of electrodes 14. 4A and 4B, illustrations other than the piezoelectric film 43 and the electrode 14 are omitted.
 圧電フィルム43は一枚のフィルムで構成され、第一領域R1において及び第二領域R2に亘って配置されている。電極14は、電極15及び電極16からなる。また、電極15は同一平面上に連続して形成された第一検知電極123及び第二検知電極124からなる。電極16は一枚で構成されたグランド電極である。第一検知電極123及び第二検知電極124は圧電フィルム43を挟んで電極16と対向するように形成されている。第一検知電極123は第一領域R1に配置され、第二検知電極124は第二領域R2に配置されている。第一検知電極123は、平面視で第一領域R1の面、すなわち第一押圧部5と同様、矩形状である。また第二検知電極124も、平面視で第二領域R2の面、すなわち第二押圧部6と同様、矩形状である。このように、第一検知電極123は圧電フィルム43の第一領域R1に対応する第一主面に、第一主面の略全面を覆うように其々形成されている。第二検知電極124も、圧電フィルム43の第二領域R2対応する第一主面に、第一主面の略全面を覆うように其々形成されている。電極16は圧電フィルム43の第一領域R1及び第二領域R2に対応する第二主面に、第二主面の略全面を覆うように其々形成されている。なお、圧電フィルム43、電極15、及び電極16は、第一押圧部5及び第二押圧部6の形状に併せて適宜変更することも可能である。また、電極15は圧電フィルム43の第一主面に、電極16は圧電フィルム43の第二主面に其々形成されているが、電極15及び電極16は其々圧電フィルム43の逆の主面に形成されていてもよい。 The piezoelectric film 43 is composed of a single film, and is disposed in the first region R1 and over the second region R2. The electrode 14 includes an electrode 15 and an electrode 16. The electrode 15 includes a first detection electrode 123 and a second detection electrode 124 that are continuously formed on the same plane. The electrode 16 is a single ground electrode. The first detection electrode 123 and the second detection electrode 124 are formed to face the electrode 16 with the piezoelectric film 43 interposed therebetween. The first detection electrode 123 is disposed in the first region R1, and the second detection electrode 124 is disposed in the second region R2. The first detection electrode 123 has a rectangular shape in a plan view, like the surface of the first region R1, that is, the first pressing portion 5. The second detection electrode 124 has a rectangular shape in a plan view, like the surface of the second region R2, that is, the second pressing portion 6. Thus, the 1st detection electrode 123 is each formed in the 1st main surface corresponding to 1st area | region R1 of the piezoelectric film 43 so that the substantially whole surface of a 1st main surface may be covered. The second detection electrodes 124 are also formed on the first main surface corresponding to the second region R2 of the piezoelectric film 43 so as to cover substantially the entire first main surface. The electrode 16 is formed on the second main surface corresponding to the first region R1 and the second region R2 of the piezoelectric film 43 so as to cover substantially the entire surface of the second main surface. Note that the piezoelectric film 43, the electrode 15, and the electrode 16 can be appropriately changed in accordance with the shapes of the first pressing portion 5 and the second pressing portion 6. The electrode 15 is formed on the first main surface of the piezoelectric film 43, and the electrode 16 is formed on the second main surface of the piezoelectric film 43. The electrodes 15 and 16 are the main electrodes opposite to the piezoelectric film 43, respectively. It may be formed on the surface.
 圧電素子13を平面視した時、電極15及び電極16の少なくとも一方は、上面視で圧電フィルム113と完全に重なるか、圧電フィルム113より面方向内側に位置していると良い。これにより、電極の端部における短絡を抑制できる。図2(A)及び図2(B)においては、電極16はベタ電極として表されているが、第一検知電極123、又は第二検知電極124毎にそれぞれ電極を設けて、不図示の配線電極で接続しても良い。 When the piezoelectric element 13 is viewed in a plan view, at least one of the electrode 15 and the electrode 16 may be completely overlapped with the piezoelectric film 113 when viewed from above, or may be located on the inner side in the plane direction from the piezoelectric film 113. Thereby, the short circuit in the edge part of an electrode can be suppressed. 2A and 2B, the electrode 16 is represented as a solid electrode. However, an electrode is provided for each of the first detection electrode 123 or the second detection electrode 124, and a wiring (not shown) is provided. You may connect with an electrode.
 第一検知電極123は、第二検知電極124と異なる極性の信号を出力する。例えば、第一領域R1において押圧操作が付与されると第一検知電極123は第一検知電極123に応じた向きの電位を出力する。これに対して、第二領域R2において押圧操作が付与されると第二検知電極124は第二検知電極124に応じた第一検知電極123と極性の異なる逆の電位を出力する。従って、第一領域R1と第二領域R2において押圧操作を受け付けたときに、異なった電位が検出されるため、このような変形例に係る圧電素子13も圧電素子10と同様に本発明に使用することができる。また、圧電フィルム43が一枚で構成されているため、圧電フィルム43の構造が単純なものとなり製造が容易となる。 The first detection electrode 123 outputs a signal having a polarity different from that of the second detection electrode 124. For example, when a pressing operation is applied in the first region R <b> 1, the first detection electrode 123 outputs a potential in a direction corresponding to the first detection electrode 123. On the other hand, when a pressing operation is applied in the second region R2, the second detection electrode 124 outputs a reverse potential having a polarity different from that of the first detection electrode 123 corresponding to the second detection electrode 124. Accordingly, since different potentials are detected when a pressing operation is received in the first region R1 and the second region R2, the piezoelectric element 13 according to such a modification is also used in the present invention in the same manner as the piezoelectric element 10. can do. In addition, since the piezoelectric film 43 is composed of a single sheet, the structure of the piezoelectric film 43 becomes simple and the manufacture becomes easy.
 ここで、こすれ検知センサ100がこすり操作を受けたときに発生する電位について説明する。図5(A)~(D)は第一実施形態に係るこすれ検知センサのこすり操作を受ける方向(第一方向)と発生電位との関係を説明するための図である。図6(A)~(D)は図5(A)~(D)と逆の方向(第二方向)にこすり操作を受けた場合の発生電位を説明するための図である。先に、図5(A)~(D)に示す方向にこすり操作を受けた場合を説明した後に、図6(A)~(D)に示す逆の方向にこすり操作を受けた場合を説明する。 Here, the potential generated when the rubbing detection sensor 100 receives a rubbing operation will be described. FIGS. 5A to 5D are diagrams for explaining the relationship between the direction (first direction) in which the rubbing operation of the rubbing detection sensor according to the first embodiment is received and the generated potential. FIGS. 6A to 6D are diagrams for explaining generated potentials when a rubbing operation is performed in the direction opposite to FIGS. 5A to 5D (second direction). First, the case where the rubbing operation is performed in the direction shown in FIGS. 5A to 5D will be described, and then the case where the rubbing operation is performed in the reverse direction shown in FIGS. 6A to 6D will be described. To do.
 図5(A)は、こすり操作の説明図であり、図5(B)は、第一領域R1において、こすり操作を受け付けたときの第一領域R1のみから発生する時間軸に対する電位変化を表し、図5(C)は、第二領域R2において、こすり操作を受け付けたときの第二領域R2のみから発生する時間軸に対する電位変化を表し、図5(D)は第一領域R1及び第二領域R2がこすり操作を受け付けたときの発生電位を表すグラフである。図5(A)においてこすり操作を受ける方向は、第一領域R1から第二領域R2へ向かう第一方向である。なお、図5(A)において、説明の便宜上、こすれ検知センサ100のうち圧電フィルム11(第一圧電フィルム111及び第二圧電フィルム112)を示し、あとは省略している。図6(A)から図11(B)まで同様に省略する。 FIG. 5A is an explanatory diagram of the rubbing operation, and FIG. 5B represents a potential change with respect to the time axis that occurs only from the first region R1 when the rubbing operation is accepted in the first region R1. FIG. 5C shows a potential change with respect to the time axis generated only from the second region R2 when the rubbing operation is accepted in the second region R2, and FIG. 5D shows the first region R1 and the second region R2. It is a graph showing the electric potential generated when region R2 receives a rubbing operation. In FIG. 5A, the direction of receiving the rubbing operation is the first direction from the first region R1 toward the second region R2. 5A, for convenience of explanation, the piezoelectric film 11 (the first piezoelectric film 111 and the second piezoelectric film 112) of the rubbing detection sensor 100 is shown, and the rest is omitted. Similarly, FIG. 6A to FIG. 11B are omitted.
 図5(A)に示すように、ユーザが矢印の向きに沿って指を第一領域R1から第二領域R2(第一方向)へ移動するこすり操作を行うと、第一圧電フィルム111及び第二圧電フィルム112が順に押圧操作を受け付ける。この様に、第一圧電フィルム111及び第二圧電フィルム112が押圧操作を受け付けるタイミングにはずれが生じる。第一領域R1で押圧操作を受け付けたとき、第一領域R1に配置されている第一圧電フィルム111が押圧操作を受け付け、Z軸方向の下方に大きく歪む。第一圧電フィルム111の押圧操作を受け付けた部分には電荷が発生する。図5(B)に示すように、第一圧電フィルム111はZ軸方向の下方に大きく歪むときに負の電位を生じる。ユーザが指を移動することにより、第一圧電フィルム111の押圧操作を受け付けた部分は、加えられていた圧力が軽減するため、元の平らな形状に回復する。このとき、第一圧電フィルム111の押圧操作を受け付けた部分は、Z軸方向の上方に向かって戻るため、正の電位を生じる。また、第二領域R2で押圧操作を受け付けたとき、第二領域R2に配置されている第二圧電フィルム112が押圧操作を受け付け、Z軸方向の下方に大きく歪む。図5(C)に示すように、第二圧電フィルム112はZ軸方向の下方に大きく歪むときに正の電位を生じる。ユーザが指を移動することにより、第二圧電フィルム112の押圧操作を受け付けた部分は、元の平らな形状に回復する。このとき、第二圧電フィルム112の押圧操作を受け付けた部分は、Z軸方向の上方に向かって戻るため、負の電位を生じる。 As shown in FIG. 5A, when the user performs a rubbing operation to move a finger from the first region R1 to the second region R2 (first direction) along the direction of the arrow, the first piezoelectric film 111 and the first The two piezoelectric films 112 receive pressing operations in order. As described above, the timing at which the first piezoelectric film 111 and the second piezoelectric film 112 receive the pressing operation is shifted. When a pressing operation is received in the first region R1, the first piezoelectric film 111 disposed in the first region R1 receives the pressing operation and is greatly distorted downward in the Z-axis direction. Electric charge is generated at the portion where the pressing operation of the first piezoelectric film 111 is received. As shown in FIG. 5B, the first piezoelectric film 111 generates a negative potential when greatly distorted downward in the Z-axis direction. As the user moves his / her finger, the applied pressure of the first piezoelectric film 111 is reduced to the original flat shape because the applied pressure is reduced. At this time, the portion that has received the pressing operation of the first piezoelectric film 111 returns upward in the Z-axis direction, and thus generates a positive potential. Further, when a pressing operation is received in the second region R2, the second piezoelectric film 112 disposed in the second region R2 receives the pressing operation and is greatly distorted downward in the Z-axis direction. As shown in FIG. 5C, the second piezoelectric film 112 generates a positive potential when greatly distorted downward in the Z-axis direction. When the user moves his / her finger, the portion that has received the pressing operation of the second piezoelectric film 112 is restored to the original flat shape. At this time, the portion that has received the pressing operation of the second piezoelectric film 112 returns upward in the Z-axis direction, and thus generates a negative potential.
 第一圧電フィルム111及び第二圧電フィルム112のこすり操作を受ける向きの長さは其々10mm以上であることが好ましい。これにより、第一領域R1及び第二領域R2の其々の領域におけるユーザの指による押圧操作を十分に検出することができる。 The lengths of the first piezoelectric film 111 and the second piezoelectric film 112 in the direction of receiving the rubbing operation are preferably 10 mm or more, respectively. Thereby, the pressing operation by the user's finger in each of the first region R1 and the second region R2 can be sufficiently detected.
 また、第二圧電フィルム112から生じる電位は、第一圧電フィルム111から生じる電位に比べて遅れて検出される。第一圧電フィルム111の押圧操作を受け付けた部分がZ軸方向の上方に向かって戻る時と、第二圧電フィルム112はZ軸方向の下方に大きく歪む時とが重なる時がある。このとき、第一圧電フィルム111及び第二圧電フィルム112は、共に正の電位を生じる。このため、図5(D)に示すように、こすれ検知センサ100が第一方向のこすり操作を受け付けたときの発生電位は、第一圧電フィルム111及び第二圧電フィルム112から同時に正の電位が生じた時の電位が検出される。これにより、正の電位が重なって検出されるため、正のピークが大きく検出される。これにより、操作検出部18は、検出値が所定の第一閾値V1に達することを検知することによって、ユーザの操作は第一領域R1から第二領域R2へ移動する第一方向のこすり操作であると判断することができる。また、操作検出部18は、検出値が所定の第一閾値V1に達した後、ある一定時間内に検出値が所定の第二閾値V2に達した場合、操作検出部18は第一領域R1のみを押した押圧操作であると判断することができる。 Further, the potential generated from the second piezoelectric film 112 is detected later than the potential generated from the first piezoelectric film 111. There are times when the portion of the first piezoelectric film 111 that receives the pressing operation returns upward in the Z-axis direction and the second piezoelectric film 112 is greatly distorted downward in the Z-axis direction. At this time, both the first piezoelectric film 111 and the second piezoelectric film 112 generate a positive potential. For this reason, as shown in FIG. 5D, when the rubbing detection sensor 100 receives a rubbing operation in the first direction, a positive potential is simultaneously generated from the first piezoelectric film 111 and the second piezoelectric film 112. The potential when it occurs is detected. Thereby, since positive potentials are detected in an overlapping manner, a large positive peak is detected. Thereby, the operation detection unit 18 detects that the detection value reaches the predetermined first threshold value V1, so that the user's operation is a rubbing operation in the first direction that moves from the first region R1 to the second region R2. It can be judged that there is. In addition, when the detection value reaches the predetermined second threshold value V2 within a certain time after the detection value reaches the predetermined first threshold value V1, the operation detection unit 18 sets the first region R1. It can be determined that the pressing operation is only pressing.
 図6(A)は、こすり操作の説明図であり、図6(B)及び(C)は、其々第二領域R2又は第一領域R1において、押圧操作を受け付けたときの発生電位を表すグラフであり、図6(D)は第一領域R1及び第二領域R2がこすり操作を受け付けたときの発生電位を表すグラフである。図6(A)において、こすり操作を受ける方向は第二領域R2から第一領域R1へ向かう第二方向である。 FIG. 6A is an explanatory diagram of the rubbing operation, and FIGS. 6B and 6C show the generated potential when the pressing operation is received in the second region R2 or the first region R1, respectively. FIG. 6D is a graph showing the generated potential when the first region R1 and the second region R2 receive the rubbing operation. In FIG. 6A, the direction of receiving the rubbing operation is the second direction from the second region R2 toward the first region R1.
 図6(A)に示すように、ユーザが矢印の向きに沿って指を第二領域R2から第一領域R1(第二方向)へ移動するこすり操作を行うと、第二圧電フィルム112及び第一圧電フィルム111が順に押圧操作を受け付ける。第二領域R2で押圧操作を受け付けたとき、第二領域R2に配置されている第二圧電フィルム112が押圧操作を受け付け、Z軸方向の下方に大きく歪む。これにより、図6(B)に示すように、第二圧電フィルム112はZ軸方向の下方に大きく歪むときに正の電位を生じる。ユーザが指を移動することにより、第二圧電フィルム112の押圧操作を受け付けた部分は、加えられていた圧力が軽減するため、元の平らな形状に回復する。このとき、第二圧電フィルム112の押圧操作を受け付けた部分は、Z軸方向の上方に向かって戻るため、負の電位を生じる。また、第一領域R1で押圧操作を受け付けたとき、第一領域R1に配置されている第一圧電フィルム111が押圧操作を受け付け、Z軸方向の下方に大きく歪む。これにより、図6(C)に示すように、第一圧電フィルム111はZ軸方向の下方に大きく歪むときに負の電位を生じる。ユーザが指を移動することにより、第一圧電フィルム111の押圧操作を受け付けた部分は、元の平らな形状に回復する。このとき、第一圧電フィルム111の押圧操作を受け付けた部分は、Z軸方向の上方に向かって戻るため、正の電位を生じる。 As shown in FIG. 6A, when the user performs a rubbing operation to move a finger from the second region R2 to the first region R1 (second direction) along the direction of the arrow, the second piezoelectric film 112 and the first One piezoelectric film 111 receives pressing operations in order. When a pressing operation is received in the second region R2, the second piezoelectric film 112 disposed in the second region R2 receives the pressing operation and is greatly distorted downward in the Z-axis direction. As a result, as shown in FIG. 6B, the second piezoelectric film 112 generates a positive potential when greatly distorted downward in the Z-axis direction. When the user moves his / her finger, the applied pressure of the second piezoelectric film 112 is reduced to the original flat shape because the applied pressure is reduced. At this time, the portion that has received the pressing operation of the second piezoelectric film 112 returns upward in the Z-axis direction, and thus generates a negative potential. Further, when a pressing operation is received in the first region R1, the first piezoelectric film 111 disposed in the first region R1 receives the pressing operation and is greatly distorted downward in the Z-axis direction. As a result, as shown in FIG. 6C, the first piezoelectric film 111 generates a negative potential when greatly distorted downward in the Z-axis direction. When the user moves his / her finger, the portion that has received the pressing operation of the first piezoelectric film 111 is restored to the original flat shape. At this time, the portion that has received the pressing operation of the first piezoelectric film 111 returns upward in the Z-axis direction, and thus generates a positive potential.
 また、第一方向のこすり操作を受け付けたときとは逆に第一圧電フィルム111から生じる電位は、第二圧電フィルム112から生じる電位に比べて遅れて検出される。第二圧電フィルム112の押圧操作を受け付けた部分がZ軸方向の上方に向かって戻る時と、第一圧電フィルム111はZ軸方向の下方に大きく歪む時とが重なる時がある。このとき、第一圧電フィルム111及び第二圧電フィルム112は、共に負の電位を生じる。このため、図6(D)に示すように、こすれ検知センサ100が第二方向のこすり操作を受け付けたときの発生電位は第一圧電フィルム111及び第二圧電フィルム112から同時に負の電位が生じた時の電位が検出される。これにより、負のピークが大きく検出される。これにより、操作検出部18は、検出値が所定の第二閾値V2に達することを検知することによって、ユーザの操作は第二領域R2から第一領域R1へ移動する第二方向のこすり操作であると判断する。また、操作検出部18は、検出値が所定の第二閾値V2に達した後、ある一定時間内に検出値が所定の第一閾値V1に達した場合、操作検出部18は第二領域R2のみを押した押圧操作であると判断することができる。このように、操作検出部18は、第一領域R1又は第二領域R2のみを押した場合をそれぞれ判断することができるため、こすれ検知センサ100は、第一領域R1又は第二領域R2のいずれかが押圧操作を受け付けたときに切り替わるスイッチとしても使用することができる。 In contrast to the case where the rubbing operation in the first direction is accepted, the potential generated from the first piezoelectric film 111 is detected later than the potential generated from the second piezoelectric film 112. There are times when the portion of the second piezoelectric film 112 that has received a pressing operation returns upward in the Z-axis direction and when the first piezoelectric film 111 is greatly distorted downward in the Z-axis direction. At this time, both the first piezoelectric film 111 and the second piezoelectric film 112 generate a negative potential. For this reason, as shown in FIG. 6D, when the rubbing detection sensor 100 receives a rubbing operation in the second direction, a negative potential is generated simultaneously from the first piezoelectric film 111 and the second piezoelectric film 112. Is detected. Thereby, a large negative peak is detected. Thereby, the operation detection unit 18 detects that the detection value reaches the predetermined second threshold value V2, so that the user's operation is a rubbing operation in the second direction in which the user moves from the second region R2 to the first region R1. Judge that there is. In addition, when the detection value reaches the predetermined first threshold value V1 within a certain time after the detection value reaches the predetermined second threshold value V2, the operation detection unit 18 determines that the operation detection unit 18 is in the second region R2. It can be determined that the pressing operation is only pressing. Thus, since the operation detection part 18 can respectively determine the case where only 1st area | region R1 or 2nd area | region R2 was pushed, the rubbing detection sensor 100 is either 1st area | region R1 or 2nd area | region R2. Can also be used as a switch that switches when a pressing operation is received.
 第二閾値V2は第一閾値V1と極性が異なるように設定されていることが好ましい。このように設定されることにより、こすり操作の行われた方向が判別し易くなる。すなわち、こすれ検知センサ100において検出される電位は、操作者がこすり操作行う方向によって異なる。このため、圧電素子10が出力する電位の大きさによって、第一方向のこすり操作であるか第二方向のこすり操作であるかが明確に判別できる。なお、第二閾値V2は第一閾値V1と同一の極性となるように設定されていてもよい。この場合、第一閾値V1と第二閾値V2とは異なる値に設定される。このため、圧電素子10が出力する電位の大きさの違いによって、第一方向のこすり操作であるか第二方向のこすり操作であるかが判別できる。 It is preferable that the second threshold value V2 is set to have a polarity different from that of the first threshold value V1. By setting in this manner, the direction in which the rubbing operation is performed can be easily determined. That is, the potential detected by the rubbing detection sensor 100 varies depending on the direction in which the operator performs the rubbing operation. For this reason, it is possible to clearly discriminate whether the rubbing operation in the first direction or the rubbing operation in the second direction is performed according to the magnitude of the potential output from the piezoelectric element 10. The second threshold value V2 may be set to have the same polarity as the first threshold value V1. In this case, the first threshold value V1 and the second threshold value V2 are set to different values. Therefore, it is possible to determine whether the rubbing operation is in the first direction or the rubbing operation in the second direction based on the difference in the magnitude of the potential output from the piezoelectric element 10.
 なお、本実施形態では、第一押圧部5及び第二押圧部6の一対の押圧部が形成されているが、この対は複数個形成されていてもよく、其々表面パネル3の操作面の表示部4以外のいずれの位置に配置されていてもよい。 In addition, in this embodiment, although the pair of press part of the 1st press part 5 and the 2nd press part 6 is formed, this pair may be formed in multiple numbers, respectively, and the operation surface of the surface panel 3 It may be arranged at any position other than the display unit 4.
 また、本実施形態では、第一押圧部5及び第二押圧部6が表面パネル3の操作面に対して、凹凸がなく平らに形成されている。このため、表面パネル3の操作面は、塵などが付着し難くなり、人が触れる操作部分の汚れが防止できる。 Further, in the present embodiment, the first pressing portion 5 and the second pressing portion 6 are formed flat with no unevenness with respect to the operation surface of the front panel 3. For this reason, it becomes difficult for dust etc. to adhere to the operation surface of the surface panel 3, and the contamination of the operation part which a person touches can be prevented.
 図7(A)~(D)は、第二実施形態に係るこすれ検知センサの発生電位を説明するための図である。図7(A)は押し込み操作の説明図であり、図7(B)は調整用圧電素子において、押圧操作を受け付けたときの発生電位を表すグラフであり、図7(C)は調整用圧電素子がない場合(すなわち第一実施形態)の位置P1を押したときの発生電位を表すグラフであり、図7(D)は調整用圧電素子がある場合(すなわち第二実施形態)に、位置P1が押し込み操作を受け付けたときの発生電位を表すグラフである。 FIGS. 7A to 7D are diagrams for explaining the generated potential of the rubbing detection sensor according to the second embodiment. FIG. 7A is an explanatory diagram of the pushing operation, FIG. 7B is a graph showing the generated potential when the pressing operation is received in the adjusting piezoelectric element, and FIG. 7C is the adjusting piezoelectric element. FIG. 7D is a graph showing the potential generated when the position P1 is pressed when there is no element (that is, the first embodiment), and FIG. 7D shows the position when there is an adjustment piezoelectric element (that is, the second embodiment). It is a graph showing the electric potential generated when P1 receives the pushing operation.
 図7(A)に示すように、第二実施形態に係る圧電素子20は、第一実施形態の圧電フィルム11及び調整用圧電素子23を備える。調整用圧電素子23は圧電フィルム113、114を備える。図7(A)においては説明の便宜上、調整用圧電素子23のうちの圧電フィルム113、114のみを表す。圧電フィルム113は第一圧電フィルム111の端部に、圧電フィルム114は第二圧電フィルム112の端部に其々連続して形成されている。圧電フィルム113は第一圧電フィルム111と逆の極性であり、圧電フィルム114は第二圧電フィルム112と逆の極性である。すなわち、第一領域R1側の端部にさらに圧電フィルム113に対応する第二領域R2が、第二領域R2側の端部にさらに圧電フィルム114に対応する第一領域R1が形成されている。調整用圧電素子23、すなわち圧電フィルム113、114のこすり操作を受ける向きの長さは、其々5mm程度が好ましい。指先で表面パネル3に触れた瞬間に指先が表面パネル3に触れる幅が概ね10mm程度である。 As shown in FIG. 7A, the piezoelectric element 20 according to the second embodiment includes the piezoelectric film 11 and the adjusting piezoelectric element 23 according to the first embodiment. The adjusting piezoelectric element 23 includes piezoelectric films 113 and 114. In FIG. 7A, for convenience of explanation, only the piezoelectric films 113 and 114 of the adjustment piezoelectric element 23 are shown. The piezoelectric film 113 is continuously formed at the end of the first piezoelectric film 111, and the piezoelectric film 114 is continuously formed at the end of the second piezoelectric film 112. The piezoelectric film 113 has a polarity opposite to that of the first piezoelectric film 111, and the piezoelectric film 114 has a polarity opposite to that of the second piezoelectric film 112. That is, the second region R2 corresponding to the piezoelectric film 113 is further formed at the end portion on the first region R1 side, and the first region R1 corresponding to the piezoelectric film 114 is further formed on the end portion on the second region R2 side. The lengths of the adjustment piezoelectric elements 23, that is, the directions in which the piezoelectric films 113 and 114 are subjected to the rubbing operation are preferably about 5 mm each. The width at which the fingertip touches the surface panel 3 at the moment of touching the surface panel 3 with the fingertip is approximately 10 mm.
 こすれ検知センサ100において、第一方向のこすり操作を受けた場合、はじめにP1の第一圧電フィルム111及び圧電フィルム113の境界付近で押し込み操作を受け付ける。第一圧電フィルム111及び圧電フィルム113は、同時に其々Z軸方向の下方に大きく歪む。このとき、図7(B)に示すような電位が、第一圧電フィルム111から生じると同時に、図7(C)に示すような第一領域R1が押し込み操作を受け付けたときと逆の電位が圧電フィルム113から生じる。 When the rubbing detection sensor 100 receives a rubbing operation in the first direction, first, a pushing operation is accepted near the boundary between the first piezoelectric film 111 and the piezoelectric film 113 of P1. The first piezoelectric film 111 and the piezoelectric film 113 are each greatly distorted downward in the Z-axis direction. At this time, the potential as shown in FIG. 7B is generated from the first piezoelectric film 111, and at the same time, the potential opposite to that when the first region R1 as shown in FIG. It arises from the piezoelectric film 113.
 圧電素子20から生じる電位は、第一圧電フィルム111及び圧電フィルム113から生じる電位の和になる。従って、図7(D)に示すように、第一圧電フィルム111のみが押し込み操作を受け付けたときに生じる電位が、圧電フィルム113から生じる電位によって発生電位が減少される。また、位置P1より圧電フィルム113側の位置において押し込み操作を受け付けた場合であっても、圧電フィルム113に伴って第一圧電フィルム111もある程度歪むため、圧電フィルム113のみが押し込み操作を受け付けた場合の発生電位が減少される。これは、位置P1より第一圧電フィルム111側の位置において押し込み操作を受け付けた場合であっても、同様に第一圧電フィルム111のみが押し込み操作を受け付けた場合の発生電位が減少される。このため、こすれ検知センサ100において、第一方向のこすり操作における最初の押し込み操作を受け付けた場合の電位の発生が抑制される。これにより、こすれ検知センサ100において第一方向のこすり操作によって発生する電位がより明確に検出される。さらに、圧電フィルム114を設けることにより、同様の理由で第二方向のこすり操作における最初の押し込み操作を受け付けた場合の電位の発生を抑制することができる。 The potential generated from the piezoelectric element 20 is the sum of the potentials generated from the first piezoelectric film 111 and the piezoelectric film 113. Therefore, as shown in FIG. 7D, the potential generated when only the first piezoelectric film 111 accepts the pushing operation is reduced by the potential generated from the piezoelectric film 113. Further, even when the pressing operation is received at the position closer to the piezoelectric film 113 than the position P1, the first piezoelectric film 111 is also distorted to some extent along with the piezoelectric film 113, so that only the piezoelectric film 113 receives the pressing operation. The generation potential of is reduced. Even if this is a case where the pushing operation is received at a position closer to the first piezoelectric film 111 than the position P1, similarly, the potential generated when only the first piezoelectric film 111 accepts the pushing operation is reduced. For this reason, in the rubbing detection sensor 100, generation | occurrence | production of the electric potential at the time of receiving the first pushing operation in the rubbing operation of a 1st direction is suppressed. Thereby, the potential generated by the rubbing operation in the first direction in the rubbing detection sensor 100 is more clearly detected. Furthermore, by providing the piezoelectric film 114, it is possible to suppress the generation of a potential when the first pushing operation in the rubbing operation in the second direction is accepted for the same reason.
 図8(A)は、第三実施形態に係るこすれ検知センサを示す分解斜視図、図8(B)はそのX-Y平面における平面図、図8(C)はその発生電位を説明するための図である。 FIG. 8A is an exploded perspective view showing the rubbing detection sensor according to the third embodiment, FIG. 8B is a plan view in the XY plane, and FIG. 8C is for explaining the generated potential. FIG.
 図8(A)及び図8(B)に示すように、第三実施形態に係る圧電素子30は、圧電フィルム11及び電極12の代わりに圧電フィルム31及び電極32を備えること以外は第一実施形態と概ね同様の構成となっている。なお、図8(A)では、圧電フィルム31及び電極32以外の図示は省略している。 As shown in FIGS. 8A and 8B, the piezoelectric element 30 according to the third embodiment is the first embodiment except that the piezoelectric film 31 and the electrode 32 are provided instead of the piezoelectric film 11 and the electrode 12. The configuration is almost the same as the form. In FIG. 8A, illustrations other than the piezoelectric film 31 and the electrode 32 are omitted.
 圧電フィルム31は、同一方向から押圧操作を受け付けたとき、互いに逆の極性の電位を出力する第一圧電フィルム311及び第二圧電フィルム312からなる。第一圧電フィルム311は、第二圧電フィルム312と交差するように第二圧電フィルム312上に積層されている。第一圧電フィルム311は、X軸方向において第二圧電フィルム312に積層する部分(積層部分117)が狭く形成されている。この積層部分117においては、第一圧電フィルム311及び第二圧電フィルム312から逆の極性の電位が出力されるために、打ち消されて電位が生じない。また、第二圧電フィルム312は、矩形状に形成されている。 The piezoelectric film 31 includes a first piezoelectric film 311 and a second piezoelectric film 312 that output potentials having opposite polarities when a pressing operation is received from the same direction. The first piezoelectric film 311 is laminated on the second piezoelectric film 312 so as to intersect the second piezoelectric film 312. In the first piezoelectric film 311, a portion (lamination portion 117) laminated on the second piezoelectric film 312 is narrowly formed in the X-axis direction. In the laminated portion 117, since the potentials of opposite polarities are output from the first piezoelectric film 311 and the second piezoelectric film 312, they are canceled and no potential is generated. The second piezoelectric film 312 is formed in a rectangular shape.
 電極32は、十字形状の電極321及び電極322からなる。電極321及び電極322は、第一圧電フィルム311及び第二圧電フィルム312の両主面に、主面の略全面を覆うように其々形成されている。 The electrode 32 includes a cross-shaped electrode 321 and an electrode 322. The electrode 321 and the electrode 322 are respectively formed on both main surfaces of the first piezoelectric film 311 and the second piezoelectric film 312 so as to cover substantially the entire main surface.
 第一実施形態と同様に、第一圧電フィルム311は第一領域R1に配置され、第二圧電フィルム312は第二領域R2に配置されている。このため積層部分117においては、第一領域R1及び第二領域R2の両方の領域の一部が重なって設けられている。前述のように、積層部分117においては、押圧操作を受け付けても電位が生じない。 As in the first embodiment, the first piezoelectric film 311 is disposed in the first region R1, and the second piezoelectric film 312 is disposed in the second region R2. Therefore, in the laminated portion 117, a part of both the first region R1 and the second region R2 is provided so as to overlap each other. As described above, no electric potential is generated in the laminated portion 117 even when a pressing operation is accepted.
 図8(B)に示す矢印のように、回転するようなこすり操作が圧電フィルム31に付与されると、第一圧電フィルム311及び第二圧電フィルム312が交互に押圧操作を受け付ける。すなわち、第一領域R1及び第二領域R2で交互に連続して押圧操作を受け付けることとなる。従って、図8(C)に示すように、こすれ検知センサ100において検出される電位は、波形状となる。これにより所定の回転操作を検出することが可能となる。また、回転操作を受け付ける中央部分である積層部分117においては、押圧操作を受け付けても電位が生じないため、必要に応じて、電位が発生する領域と使い分けることができる。 When a rotating rubbing operation is applied to the piezoelectric film 31 as indicated by an arrow shown in FIG. 8B, the first piezoelectric film 311 and the second piezoelectric film 312 alternately accept the pressing operation. That is, pressing operations are received alternately and continuously in the first region R1 and the second region R2. Therefore, as shown in FIG. 8C, the potential detected by the rubbing detection sensor 100 has a wave shape. As a result, a predetermined rotation operation can be detected. In addition, in the laminated portion 117 that is a central portion that receives the rotation operation, no potential is generated even when the pressing operation is received.
 図9(A)は、第四実施形態に係るこすれ検知センサのX-Z平面における断面図、図9(B)は第五実施形態に係るこすれ検知センサのX-Y平面における平面図、図9(C)及び(D)は第四実施形態及び第五実施形態における発生電位を説明するための図である。 9A is a cross-sectional view of the rubbing detection sensor according to the fourth embodiment on the XZ plane, and FIG. 9B is a plan view of the rubbing detection sensor according to the fifth embodiment on the XY plane. 9 (C) and (D) are diagrams for explaining the generated potentials in the fourth and fifth embodiments.
 図9(A)に示すように、第四実施形態に係る圧電素子40は、第一領域R1及び第二領域R2からなる対の領域を複数備えること以外は第一実施形態と概ね同様の構成となっている。すなわち、第一圧電フィルム111及び第二圧電フィルム112が交互に連続して直線に沿って形成されている。このため、ユーザが所定の方向にこすり操作を行うと、第一圧電フィルム111及び第二圧電フィルム112が交互に押圧操作を受け付ける。従って、図9(C)に示すように、こすれ検知センサ100において検出される電位の変動は、正弦波形状となる。また、こすり操作の速度を速めることにより、図9(D)に示すように、電位の波形のピッチが短くなる。逆に、こすり操作を遅くすると、電位の波形のピッチが長くなる。これにより、検出された電位の波形のピッチから前記こすり操作の速度を取得することができる。 As shown in FIG. 9A, the piezoelectric element 40 according to the fourth embodiment has substantially the same configuration as that of the first embodiment except that it includes a plurality of pairs of regions including the first region R1 and the second region R2. It has become. That is, the first piezoelectric film 111 and the second piezoelectric film 112 are alternately and continuously formed along a straight line. For this reason, when the user performs a rubbing operation in a predetermined direction, the first piezoelectric film 111 and the second piezoelectric film 112 alternately receive a pressing operation. Therefore, as shown in FIG. 9C, the fluctuation of the potential detected by the rubbing detection sensor 100 has a sine wave shape. Further, by increasing the speed of the rubbing operation, as shown in FIG. 9D, the pitch of the potential waveform is shortened. Conversely, if the rubbing operation is delayed, the pitch of the potential waveform becomes longer. Thereby, the speed of the rubbing operation can be acquired from the pitch of the detected potential waveform.
 図9(B)に示すように、第五実施形態に係る圧電フィルム51は、第一領域R1及び第二領域R2からなる対の領域が円状に配置されていること以外は第四実施形態と概ね同様の構成となっている。すなわち、第一圧電フィルム111及び第二圧電フィルム112が交互に円周状の曲線上に連続して形成されている。円状の円の直径は20mm以上であることが好ましい。通常ユーザが指先で円を描く場合、瞬間に指先が触れる幅が5mm程度である。このため、円状の円の直径は20mm以上であれば、指先の動きが形成するリング形状が明確になる。 As shown in FIG. 9B, the piezoelectric film 51 according to the fifth embodiment is the fourth embodiment except that a pair of regions composed of the first region R1 and the second region R2 are arranged in a circle. The configuration is almost the same as that. That is, the first piezoelectric film 111 and the second piezoelectric film 112 are alternately formed continuously on a circumferential curve. The diameter of the circular circle is preferably 20 mm or more. Usually, when a user draws a circle with a fingertip, the width touched by the fingertip is about 5 mm. For this reason, if the diameter of the circular circle is 20 mm or more, the ring shape formed by the movement of the fingertip becomes clear.
 ユーザが矢印に示すような所定の方向に回転状のこすり操作を行うと、第一圧電フィルム111及び第二圧電フィルム112が交互に押圧操作を受け付ける。従って、図9(C)に示すように、こすれ検知センサ100において検出される電位の変動は、正弦波形状となる。また、この場合ユーザが回転操作を繰り返すことが可能である。これにより回転操作を繰り返す分だけ連続した波形状の電位が生じる。よって、こすれ検知センサ100は、該波の周波数を検出することもできる。さらに、ユーザが回転速度を変更することにより、検出される電位の波形の周波数は変動する。従って、検出された電位の波形の周波数から前記こすり操作の速度を取得することができる。 When the user performs a rotary rubbing operation in a predetermined direction as indicated by an arrow, the first piezoelectric film 111 and the second piezoelectric film 112 alternately receive a pressing operation. Therefore, as shown in FIG. 9C, the fluctuation of the potential detected by the rubbing detection sensor 100 has a sine wave shape. In this case, the user can repeat the rotation operation. As a result, a continuous wave-shaped potential is generated as long as the rotation operation is repeated. Therefore, the rubbing detection sensor 100 can also detect the frequency of the wave. Further, when the user changes the rotation speed, the frequency of the detected potential waveform varies. Therefore, the speed of the rubbing operation can be acquired from the frequency of the detected potential waveform.
 図10(A)は、第六実施形態に係るこすれ検知センサのX-Z平面における断面図、図10(B)は第七実施形態に係るこすれ検知センサのX-Y平面における平面図、図10(C)及び(D)は第六実施形態及び第七実施形態における発生電位を説明するための図である。 10A is a cross-sectional view of the rubbing detection sensor according to the sixth embodiment in the XZ plane, and FIG. 10B is a plan view of the rubbing detection sensor according to the seventh embodiment in the XY plane. 10 (C) and (D) are diagrams for explaining the generated potentials in the sixth and seventh embodiments.
 図10(A)に示すように、第六実施形態に係る圧電素子60は、第一領域R1及び第二領域R2からなる対の領域が所定の間隔を隔てて設けられていること以外は第四実施形態と概ね同様の構成となっている。また、図10(B)に示すように、第七実施形態に係る圧電フィルム71は、第一領域R1及び第二領域R2からなる対の領域が所定の間隔を隔てて設けられていること以外は第五実施形態と概ね同様の構成となっている。 As shown in FIG. 10 (A), the piezoelectric element 60 according to the sixth embodiment is the same except that a pair of regions consisting of a first region R1 and a second region R2 are provided at a predetermined interval. The configuration is substantially the same as that of the fourth embodiment. Further, as shown in FIG. 10B, the piezoelectric film 71 according to the seventh embodiment has a pair of regions including the first region R1 and the second region R2 except that the paired regions are provided at a predetermined interval. Has substantially the same configuration as that of the fifth embodiment.
 第六実施形態及び第七実施形態においては、第一領域R1及び第二領域R2からなる対の領域が所定の間隔を隔てて設けられている。すなわち、連続する第一圧電フィルム111及び第二圧電フィルム112の対が、其々所定の間隔を隔てて配置されている構成である。このような構成においては、圧電フィルムが配置されていない所定の間隔においては押圧操作を受け付けても電位が生じない。例えば、第六実施形態において図10(A)に示す矢印の方向、すなわち第一方向のこすり操作を受け付けたときは、図10(C)に示すように、こすれ検知センサ100において検出される電位の変動は、所定の間隔を置いた波形状となる。所定の間隔において検出電位は0である。また、第一方向のこすり操作であるため、正の方向に大きな電位が検出される。これに対して、逆の第二方向のこすり操作を受け付けたときは、図10(D)に示すように、こすれ検知センサ100において検出される電位の変動は、所定の間隔を置いた波形状となり、また負の方向に大きな電位が検出される。同様に、第七実施形態において図10(B)に示す矢印の時計回りの方向、すなわち第一方向のこすり操作を受け付けたときは、図10(C)に示すように、こすれ検知センサ100において検出される電位の変動は、所定の間隔を置いた波形状となり、且つ正の方向に大きな電位が検出される。また、図10(B)に示す矢印の反時計回りの方向、すなわち第二方向のこすり操作を受け付けたときは、図10(D)に示すように、こすれ検知センサ100において検出される電位の変動は、所定の間隔を置いた波形状となり、且つ負の方向に大きな電位が検出される。従って、第一領域R1及び第二領域R2からなる対の領域が所定の間隔を隔てて設けられていることにより、こすり操作を受け付けた方向を判別することができる。 In the sixth embodiment and the seventh embodiment, a pair of regions including the first region R1 and the second region R2 are provided at a predetermined interval. That is, it is the structure by which the pair of the continuous 1st piezoelectric film 111 and the 2nd piezoelectric film 112 is arrange | positioned at predetermined intervals, respectively. In such a configuration, no electric potential is generated even if a pressing operation is accepted at a predetermined interval where the piezoelectric film is not disposed. For example, in the sixth embodiment, when a rubbing operation in the direction of the arrow shown in FIG. 10A, that is, the first direction is accepted, the potential detected by the rubbing detection sensor 100 as shown in FIG. The fluctuation of the waveform becomes a wave shape with a predetermined interval. The detection potential is 0 at a predetermined interval. Further, since the rubbing operation is in the first direction, a large potential is detected in the positive direction. On the other hand, when a reverse rubbing operation in the second direction is accepted, as shown in FIG. 10D, the fluctuation of the potential detected by the rubbing detection sensor 100 is a wave shape with a predetermined interval. In addition, a large potential is detected in the negative direction. Similarly, when a rubbing operation in the clockwise direction of the arrow shown in FIG. 10B, that is, the first direction is accepted in the seventh embodiment, as shown in FIG. The detected potential fluctuation has a wave shape with a predetermined interval, and a large potential is detected in the positive direction. Further, when a rubbing operation in the counterclockwise direction of the arrow shown in FIG. 10B, that is, the second direction is accepted, the potential detected by the rubbing detection sensor 100 is changed as shown in FIG. The fluctuation has a wave shape with a predetermined interval, and a large potential is detected in the negative direction. Therefore, the pair of regions including the first region R1 and the second region R2 are provided at a predetermined interval, so that the direction in which the rubbing operation is accepted can be determined.
 図11(A)は、第八実施形態に係るこすれ検知センサを備えた電子機器の斜視図、図11(B)はその発生電位を説明するための図である。 FIG. 11A is a perspective view of an electronic device provided with a rubbing detection sensor according to the eighth embodiment, and FIG. 11B is a diagram for explaining the generated potential.
 図11(A)に示すように、電子機器80は、半球状の形状である。電子機器80は、前述のこすれ検知センサを備える。電子機器80は、内部に第一圧電フィルム111及び第二圧電フィルム112の対を備える。例えば、半球状の表面部に第一圧電フィルム111及び第二圧電フィルム112が放射状に所定の間隔を隔てて設けられている。ユーザが電子機器80の表面に触れると、第一圧電フィルム111及び第二圧電フィルム112に押圧操作が付与される。このため図11(A)の矢印に示すように、電子機器80がこすり操作を受け付けることにより、操作に応じて異なった電位が検出されるため、上記実施形態と同様にこすり操作を受け付けた方向やこすり操作の速度を検知することができる。これにより、家電製品などに温度や音量等の調節部を付与することができる。また、こすれ検知センサ100は、スイッチとしても使用することができるため、第一領域R1又は第二領域R2にON/OFFを対応させたスイッチとしても使用することができる。さらに、電子機器80はこの形状に限られず、球状、直方体形状、円柱状など使用状態に応じた立体形状に設定できる。 As shown in FIG. 11A, the electronic device 80 has a hemispherical shape. The electronic device 80 includes the above-described rubbing detection sensor. The electronic device 80 includes a pair of the first piezoelectric film 111 and the second piezoelectric film 112 inside. For example, the first piezoelectric film 111 and the second piezoelectric film 112 are radially provided at predetermined intervals on the hemispherical surface portion. When the user touches the surface of the electronic device 80, a pressing operation is applied to the first piezoelectric film 111 and the second piezoelectric film 112. For this reason, as shown by the arrow in FIG. 11A, when the electronic device 80 accepts the rubbing operation, a different potential is detected depending on the operation. Therefore, the direction in which the rubbing operation is accepted as in the above embodiment. The speed of the rubbing operation can be detected. Thereby, adjustment parts, such as temperature and a volume, can be provided to household appliances. In addition, since the rubbing detection sensor 100 can also be used as a switch, it can also be used as a switch in which ON / OFF is associated with the first region R1 or the second region R2. Furthermore, the electronic device 80 is not limited to this shape, and can be set to a three-dimensional shape corresponding to the use state, such as a spherical shape, a rectangular parallelepiped shape, or a cylindrical shape.
 次に、こすれ検知センサの変形例1について説明する。図12(A)は、変形例1に係るこすれ検知センサを備えた電子機器の斜視図、図12(B)は図12(A)のこすれ検知センサの平面図、図12(C)は図12(B)のこすれ検知センサをI-Iで切断したときの断面図である。 Next, Modification 1 of the rubbing detection sensor will be described. FIG. 12A is a perspective view of an electronic apparatus provided with the rubbing detection sensor according to the first modification, FIG. 12B is a plan view of the rubbing detection sensor in FIG. 12A, and FIG. FIG. 12B is a cross-sectional view of the rubbing detection sensor of FIG.
 図12(A)~図12(C)に示すように、変形例1に係るこすれ検知センサ120は、センサ部127と、引き出し部128とを備える。センサ部127及び引き出し部128は、電子機器1の筐体2の内壁に貼り付けられている。センサ部127及び引き出し部128は、筐体2側に基材94を有する。基材94は、筐体2側から第一粘着層91、SUS板92、第二粘着層93が積層されて筐体2に接着された上に配置されている。SUS板92は、筐体2又は基材94より変形しにくい弾性率の低い素材で形成されている。 As shown in FIGS. 12A to 12C, the rubbing detection sensor 120 according to the first modification includes a sensor unit 127 and a drawer unit 128. The sensor unit 127 and the drawer unit 128 are attached to the inner wall of the housing 2 of the electronic device 1. The sensor unit 127 and the drawer unit 128 have a base 94 on the housing 2 side. The base 94 is disposed on the first adhesive layer 91, the SUS plate 92, and the second adhesive layer 93 that are laminated from the housing 2 side and bonded to the housing 2. The SUS plate 92 is formed of a material having a low elastic modulus that is less likely to be deformed than the housing 2 or the base 94.
 基材94は、筐体2の反対側に信号電極95とグランド電極96とを有する。信号電極95及びグランド電極96は、基材94の上に位置するように配置されてもよく、基材94の内側に少なくとも一部が入り込む形で形成されていてもよい。 The base 94 has a signal electrode 95 and a ground electrode 96 on the opposite side of the housing 2. The signal electrode 95 and the ground electrode 96 may be disposed so as to be positioned on the base material 94, or may be formed so that at least a part thereof enters the base material 94.
 センサ部127及び引き出し部128は、さらに第三粘着層97、シールド層98、圧電フィルム11を有する。信号電極95の上には、第三粘着層97を介して圧電フィルム11が配置されている。シールド層98は、引き出し部128に配置されているグランド電極96に重なるように配置されている。シールド層98は、グランド電極96と電気的に接続されている。このため、圧電フィルム11から発生した電荷は、信号電極95とグランド電極96とにより検出することができる。 The sensor unit 127 and the lead-out unit 128 further include a third adhesive layer 97, a shield layer 98, and the piezoelectric film 11. On the signal electrode 95, the piezoelectric film 11 is disposed via a third adhesive layer 97. The shield layer 98 is disposed so as to overlap the ground electrode 96 disposed in the lead portion 128. The shield layer 98 is electrically connected to the ground electrode 96. For this reason, the charge generated from the piezoelectric film 11 can be detected by the signal electrode 95 and the ground electrode 96.
 次に、こすれ検知センサの変形例1において押圧操作を受け付けた正常時、又は筐体2にねじれ等の力が加わったために筐体2が変形した異常時について説明する。図13(A)は、変形例1において押圧操作を受け付けた正常時を説明するための図であり、図13(B)及び図13(C)は、筐体2が変形した異常時について説明するための図である。なお、図13(A)~図13(C)において、説明に必要な部分のみ示し、後は省略する。 Next, a description will be given of a normal time when a pressing operation is received in Modification Example 1 of the rubbing detection sensor, or an abnormal time when the housing 2 is deformed due to a force such as twisting applied to the housing 2. FIG. 13A is a diagram for explaining a normal time when a pressing operation is received in the first modification, and FIGS. 13B and 13C explain an abnormal time when the housing 2 is deformed. It is a figure for doing. Note that in FIGS. 13A to 13C, only portions necessary for the description are shown, and the rest are omitted.
 図13(A)に示すように、筐体2のうち圧電フィルム11に対応する部分が押圧操作を受け付けると、筐体2の変形に伴いSUS板92、基材94及び圧電フィルム11が変形する。これにより圧電フィルム11から発生した電荷が検出される。 As shown in FIG. 13A, when the portion corresponding to the piezoelectric film 11 in the housing 2 receives a pressing operation, the SUS plate 92, the base material 94, and the piezoelectric film 11 are deformed along with the deformation of the housing 2. . Thereby, the electric charge generated from the piezoelectric film 11 is detected.
 これに対して、図13(B)に示すように筐体2のうち圧電フィルム11に対応しない部分が押圧操作を受け付けると、筐体2が変形する。この場合、SUS板92が筐体2より変形しにくいため、筐体2の変形がSUS板92に伝わり難い。また、基材94が筐体2の変形に伴って変形した場合でも、SUS板92の存在により、基材94の変形も圧電フィルム11に伝わり難い。従って、圧電フィルム11が変形し難いため、電荷が検出されずに誤検知を防止することができる。 On the other hand, as shown in FIG. 13B, when the portion of the housing 2 that does not correspond to the piezoelectric film 11 receives a pressing operation, the housing 2 is deformed. In this case, since the SUS plate 92 is more difficult to deform than the housing 2, the deformation of the housing 2 is not easily transmitted to the SUS plate 92. Even when the base 94 is deformed along with the deformation of the housing 2, the deformation of the base 94 is hardly transmitted to the piezoelectric film 11 due to the presence of the SUS plate 92. Therefore, since the piezoelectric film 11 is not easily deformed, it is possible to prevent erroneous detection without detecting charges.
 同様に、図13(C)に示すように、筐体が捻りなどを受け付けることにより筐体2のうち圧電フィルム11に対応しない部分が外側へ変形した場合を挙げる。この場合においても、図13(B)の場合と同様にSUS板92の存在により、圧電フィルム11が変形し難いため、電荷が検出されずに誤検知を防止することができる。 Similarly, as shown in FIG. 13C, a case where a portion of the housing 2 that does not correspond to the piezoelectric film 11 is deformed to the outside due to the housing receiving a twist or the like. In this case as well, as in the case of FIG. 13B, the presence of the SUS plate 92 makes it difficult for the piezoelectric film 11 to be deformed, so that false detection can be prevented without detecting charges.
 なお、引き出し部128にSUS板92が配置されている方がよい。引き出し部128にSUS板92が配置されていない場合、センサ部127付近で筐体2が変形すると、基材94の変形が圧電フィルム11に伝わり易くなる。このように、SUS板92の大きさや配置により、不要な筐体2の変形による誤検知を防止することができる。次に別の変形例2、及び変形例3について説明する。なお、変形例1と同様の説明については省略する。 In addition, it is better that the SUS plate 92 is disposed in the drawer portion 128. When the SUS plate 92 is not disposed in the drawer portion 128, the deformation of the base material 94 is easily transmitted to the piezoelectric film 11 when the housing 2 is deformed near the sensor portion 127. Thus, the erroneous detection due to unnecessary deformation of the housing 2 can be prevented by the size and arrangement of the SUS plate 92. Next, another modified example 2 and modified example 3 will be described. The description similar to that of the first modification is omitted.
 図14(A)は、変形例2に係るこすれ検知センサを備えた電子機器の斜視図、図14(B)は図14(A)のこすれ検知センサの平面図、図14(C)は図14(B)のこすれ検知センサをII-IIで切断したときの断面図である。 FIG. 14A is a perspective view of an electronic apparatus provided with the rubbing detection sensor according to the second modification, FIG. 14B is a plan view of the rubbing detection sensor in FIG. 14A, and FIG. FIG. 14B is a cross-sectional view of the rubbing detection sensor 14 (B) taken along II-II.
 図14(A)~図14(C)に示すように、変形例2に係るこすれ検知センサ1201においては、変形例1とセンサ部127及び引き出し部128の配置が異なる。引き出し部128は、センサ部127の長手方向の辺から垂直に引き出されている。このため、引き出し部128は一部にSUS板92が配置されているため変形し難い。従って、引き出し部128において基材94の変形の影響を受け難いため、不要な筐体2の変形による誤検知を防止することができる。 As shown in FIGS. 14A to 14C, in the rubbing detection sensor 1201 according to the second modification, the arrangement of the sensor unit 127 and the drawer unit 128 is different from that of the first modification. The lead portion 128 is drawn vertically from the longitudinal side of the sensor portion 127. For this reason, the drawer portion 128 is not easily deformed because the SUS plate 92 is partially disposed. Accordingly, since the drawer portion 128 is hardly affected by the deformation of the base material 94, it is possible to prevent erroneous detection due to unnecessary deformation of the housing 2.
 図15は、変形例3に係るこすれ検知センサを説明するための断面図である。 FIG. 15 is a cross-sectional view for explaining a rubbing detection sensor according to Modification 3.
 図15に示すように、変形例3に係るこすれ検知センサにおいては、変形例1と基材94及びSUS板92の構成が異なる。SUS板92はセンサ部127の領域のみに配置されている。基材94は、センサ部127及び引き出し部128との境目において筐体2側に曲げられて第一粘着層91に貼り付くように形成されている。 As shown in FIG. 15, in the rubbing detection sensor according to Modification 3, the configurations of Modification 1 and the base 94 and SUS plate 92 are different. The SUS plate 92 is disposed only in the area of the sensor unit 127. The base 94 is formed so as to be bent toward the housing 2 at the boundary between the sensor unit 127 and the lead-out unit 128 and attached to the first adhesive layer 91.
 このため、引き出し部128において基材94が直接筐体2に貼り付けられている。このため、引き出し部128が固定されていないときに比べて、引き出し部128の変形が抑制される。このため、引き出し部128の変形が基材94を介して圧電フィルム11に伝わり難いため、不要な変形による誤検知を防止することができる。 For this reason, the base material 94 is directly attached to the housing 2 in the drawer portion 128. For this reason, the deformation | transformation of the drawer | drawing-out part 128 is suppressed compared with when the drawer | drawing-out part 128 is not being fixed. For this reason, since the deformation | transformation of the drawer | drawing-out part 128 is hard to be transmitted to the piezoelectric film 11 via the base material 94, the misdetection by an unnecessary deformation | transformation can be prevented.
 なお、SUS板92は、平面視で圧電フィルム11もしくは信号電極95のいずれか小さい方の端部を覆うようなサイズであることが好ましく、更にはシールド層98の端部を覆うようなサイズであることが好ましい。仮に、SUS板92がシールド層98の端部を覆わない場合、シールド層98付近に押圧操作が加えられると、シールド層98が伸張される。これにより、圧電フィルム11に負荷がかかり、圧電フィルム11が伸張してしまうおそれがある。 The SUS plate 92 is preferably sized to cover the smaller end of the piezoelectric film 11 or the signal electrode 95 in plan view, and further sized to cover the end of the shield layer 98. Preferably there is. If the SUS plate 92 does not cover the end of the shield layer 98, the shield layer 98 is stretched when a pressing operation is applied in the vicinity of the shield layer 98. Thereby, a load is applied to the piezoelectric film 11 and the piezoelectric film 11 may be stretched.
 また、SUS板92の素材であるSUSは一例であって、筐体2又は基材94より変形しにくい弾性率の低い素材であれば良い。SUS板92は、グランド電極96の代わりにグランド電極として機能させてもよい。またSUS板92は大きく形成でき、こすれ検知センサのうちある程度の範囲を占めるため、筐体2側からのノイズを防ぐことが期待できる。 Further, SUS, which is a material of the SUS plate 92, is an example, and any material may be used as long as it has a low elastic modulus and is less likely to deform than the casing 2 or the base 94. The SUS plate 92 may function as a ground electrode instead of the ground electrode 96. Moreover, since the SUS board 92 can be formed large and occupies a certain range of the rubbing detection sensor, it can be expected to prevent noise from the housing 2 side.
 本実施形態の説明は、すべての点で例示であって、制限的なものではない。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The description of this embodiment is illustrative in all respects and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
1,80…電子機器
10,13,20,30,40,60,…圧電素子
12,14,15,16,32…電極
18…操作検出部
11,31,51,71…圧電フィルム
80…電子機器
100…こすれ検知センサ
111,311…第一圧電フィルム
112,312…第二圧電フィルム
113,114…調整用圧電素子
123…第一検知電極
124…第二検知電極
R1…第一領域
R2…第二領域
V1…第一閾値
V2…第二閾値
DESCRIPTION OF SYMBOLS 1,80 ... Electronic device 10, 13, 20, 30, 40, 60, ... Piezoelectric element 12, 14, 15, 16, 32 ... Electrode 18 ... Operation detection part 11, 31, 51, 71 ... Piezoelectric film 80 ... Electron Device 100 ... rubbing detection sensor 111, 311 ... first piezoelectric film 112, 312 ... second piezoelectric film 113, 114 ... adjusting piezoelectric element 123 ... first detection electrode 124 ... second detection electrode R1 ... first region R2 ... first Two regions V1 ... first threshold V2 ... second threshold

Claims (12)

  1.  ユーザから押圧操作を受け付ける第一領域と、
     前記第一領域と少なくとも一部が隣接し、前記ユーザから前記押圧操作を受け付ける第二領域と、
     前記第一領域で前記押圧操作を受け付けたときと、前記第二領域で前記押圧操作を受け付けたときとで、其々逆の極性の電位を出力する圧電素子と、
     前記第一領域及び前記第二領域における前記圧電素子の検出態様に基づいてこすり操作を検出する操作検出部と、
     を備えるこすれ検知センサ。
    A first region for receiving a pressing operation from a user;
    A second region that is at least partially adjacent to the first region and receives the pressing operation from the user;
    Piezoelectric elements that output potentials of opposite polarities when the pressing operation is received in the first region and when the pressing operation is received in the second region,
    An operation detection unit that detects a rubbing operation based on a detection mode of the piezoelectric element in the first region and the second region;
    A rubbing detection sensor.
  2.  前記圧電素子は、
     前記第一領域に配置される第一圧電フィルムと、
     前記第二領域に配置され、前記押圧操作を受け付けたときに前記第一圧電フィルムが発生する電位と逆の極性の電位を発生する第二圧電フィルムと、
     前記第一圧電フィルム及び前記第二圧電フィルムの両主面に形成された電極と、
    を備える請求項1に記載のこすれ検知センサ。
    The piezoelectric element is
    A first piezoelectric film disposed in the first region;
    A second piezoelectric film that is disposed in the second region and generates a potential having a polarity opposite to a potential generated by the first piezoelectric film when the pressing operation is received;
    Electrodes formed on both main surfaces of the first piezoelectric film and the second piezoelectric film;
    The rubbing detection sensor according to claim 1, further comprising:
  3.  前記圧電素子は、
     圧電フィルムと、
    前記第一領域に配置され、前記圧電フィルムの第一主面又は第二主面に形成される第一検知電極と、
    前記第二領域に配置され、前記圧電フィルムの第一主面又は第二主面に形成され、前記第一検知電極と極性の異なる第二検知電極と、
    グランド電極と、
    を備える請求項1に記載のこすれ検知センサ。
    The piezoelectric element is
    Piezoelectric film,
    A first detection electrode disposed in the first region and formed on the first main surface or the second main surface of the piezoelectric film;
    A second detection electrode disposed in the second region, formed on the first main surface or the second main surface of the piezoelectric film, and having a polarity different from that of the first detection electrode;
    A ground electrode;
    The rubbing detection sensor according to claim 1, further comprising:
  4.  前記操作検出部は、
     前記圧電素子で検出される電位が所定の第一閾値に達したとき、前記第一領域から前記第二領域へ移動するユーザのこすり操作であると判断し、
     前記圧電素子で検出される電位が前記第一閾値と極性の異なる第二閾値に達したとき、前記第二領域から前記第一領域へ移動するユーザのこすり操作であると判断する請求項1乃至請求項3のいずれかに記載のこすれ検知センサ。
    The operation detection unit is
    When the potential detected by the piezoelectric element reaches a predetermined first threshold, it is determined that the user's rubbing operation moves from the first area to the second area,
    When the electric potential detected by the piezoelectric element reaches a second threshold value having a polarity different from that of the first threshold value, it is determined that the user's rubbing operation moves from the second region to the first region. The rubbing detection sensor according to claim 3.
  5.  前記操作検出部は、
     前記圧電素子で検出される電位が所定の第一閾値に達したとき、前記第一領域から前記第二領域へ移動するユーザのこすり操作であると判断し、
     前記圧電素子で検出される電位が前記第一閾値と極性が同一で異なる値の第二閾値に達したとき、前記第二領域から前記第一領域へ移動するユーザのこすり操作であると判断する請求項1乃至請求項3のいずれかに記載のこすれ検知センサ。
    The operation detection unit is
    When the potential detected by the piezoelectric element reaches a predetermined first threshold, it is determined that the user's rubbing operation moves from the first area to the second area,
    When the electric potential detected by the piezoelectric element reaches a second threshold value having the same polarity and different polarity as the first threshold value, it is determined that the user's rubbing operation moves from the second area to the first area. The rubbing detection sensor according to any one of claims 1 to 3.
  6.  前記第一領域及び前記第二領域からなる対の領域の端部に、其々の領域と逆の極性の調整用圧電素子をさらに備える請求項1乃至請求項5のいずれかに記載のこすれ検知センサ。 6. The rubbing detection according to claim 1, further comprising an adjustment piezoelectric element having a polarity opposite to that of each region at an end of a pair of regions including the first region and the second region. Sensor.
  7.  前記第一領域及び前記第二領域は一部が重なって設けられている請求項1乃至請求項6のいずれかに記載のこすれ検知センサ。 The rubbing detection sensor according to any one of claims 1 to 6, wherein the first area and the second area are partially overlapped.
  8.  前記第一領域及び前記第二領域からなる対の領域を複数備える請求項1乃至請求項7のいずれかに記載のこすれ検知センサ。 The rubbing detection sensor according to any one of claims 1 to 7, comprising a plurality of pairs of regions including the first region and the second region.
  9.  前記対の領域のうち少なくとも一つの領域は、所定の間隔を隔てて設けられている請求項8に記載のこすれ検知センサ。 The rubbing detection sensor according to claim 8, wherein at least one region of the pair of regions is provided at a predetermined interval.
  10.  前記第一領域及び前記第二領域は、直線、曲線、又は円に沿って設けられている請求項1乃至請求項9のいずれかに記載のこすれ検知センサ。 The rubbing detection sensor according to any one of claims 1 to 9, wherein the first region and the second region are provided along a straight line, a curve, or a circle.
  11.  前記操作検出部は、前記圧電素子で検出される電位の変動におけるピッチ又は周波数から前記こすり操作の速度を取得する請求項8乃至請求項10のいずれかに記載のこすれ検知センサ。 The rubbing detection sensor according to any one of claims 8 to 10, wherein the operation detection unit acquires a speed of the rubbing operation from a pitch or a frequency in a change in potential detected by the piezoelectric element.
  12.  請求項1乃至請求項11のいずれかに記載のこすれ検知センサを備える電子機器。 An electronic device comprising the rubbing detection sensor according to any one of claims 1 to 11.
PCT/JP2018/000614 2017-01-12 2018-01-12 Rub detecting sensor and electronic instrument WO2018131674A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201890000421.6U CN210571096U (en) 2017-01-12 2018-01-12 Friction detection sensor and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-003103 2017-01-12
JP2017003103 2017-01-12

Publications (1)

Publication Number Publication Date
WO2018131674A1 true WO2018131674A1 (en) 2018-07-19

Family

ID=62840600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000614 WO2018131674A1 (en) 2017-01-12 2018-01-12 Rub detecting sensor and electronic instrument

Country Status (2)

Country Link
CN (1) CN210571096U (en)
WO (1) WO2018131674A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206052A (en) * 2017-06-05 2018-12-27 株式会社村田製作所 mouse
JPWO2019244594A1 (en) * 2018-06-20 2020-06-25 株式会社村田製作所 Pressure sensor and pressure detection device
JP2021057299A (en) * 2019-10-01 2021-04-08 Tdk株式会社 Driving method and driving circuit for piezoelectric switch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540304A (en) * 2006-06-14 2009-11-19 キストラー ホールディング アクチエンゲゼルシャフト Measurement of lateral force
WO2013175848A1 (en) * 2012-05-24 2013-11-28 株式会社村田製作所 Sensor device and electronic apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009540304A (en) * 2006-06-14 2009-11-19 キストラー ホールディング アクチエンゲゼルシャフト Measurement of lateral force
WO2013175848A1 (en) * 2012-05-24 2013-11-28 株式会社村田製作所 Sensor device and electronic apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018206052A (en) * 2017-06-05 2018-12-27 株式会社村田製作所 mouse
JPWO2019244594A1 (en) * 2018-06-20 2020-06-25 株式会社村田製作所 Pressure sensor and pressure detection device
JP2021057299A (en) * 2019-10-01 2021-04-08 Tdk株式会社 Driving method and driving circuit for piezoelectric switch
JP7259687B2 (en) 2019-10-01 2023-04-18 Tdk株式会社 Piezoelectric switch drive method and drive circuit

Also Published As

Publication number Publication date
CN210571096U (en) 2020-05-19

Similar Documents

Publication Publication Date Title
JP5954500B2 (en) Touch input device
JP5761465B2 (en) Touch panel
JP6074414B2 (en) Sensor devices and electronics
JP6156587B2 (en) Touch input device, electronic equipment
WO2018131674A1 (en) Rub detecting sensor and electronic instrument
JP6020742B2 (en) Electronic device and operation input program
JP6791456B2 (en) Displacement detection sensor and flexible device
US11243632B2 (en) Piezoelectric device and display device
JP6222397B2 (en) Touch input device
JP6677355B2 (en) Operation detection device and display device
JP2018060308A (en) Pressing force detection sensor and electronic device
US11619555B2 (en) Pressure detection sensor and electronic device
JP5804213B2 (en) Displacement detection sensor and operation input device
JP6620912B2 (en) Push position detection sensor and electronic device
JP6206604B2 (en) Press detection device
WO2018025693A1 (en) Interface for vending machine, and pressing sensor
JP6197962B2 (en) Touch input device and touch input detection method
JP6638560B2 (en) Deformation detection sensor and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18739184

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载