+

WO2018131670A1 - Copolymer and resin composition - Google Patents

Copolymer and resin composition Download PDF

Info

Publication number
WO2018131670A1
WO2018131670A1 PCT/JP2018/000558 JP2018000558W WO2018131670A1 WO 2018131670 A1 WO2018131670 A1 WO 2018131670A1 JP 2018000558 W JP2018000558 W JP 2018000558W WO 2018131670 A1 WO2018131670 A1 WO 2018131670A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
copolymer
resin composition
polymer
group
Prior art date
Application number
PCT/JP2018/000558
Other languages
French (fr)
Japanese (ja)
Inventor
中西 秀高
慎也 井本
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2018561423A priority Critical patent/JP6732952B2/en
Priority to KR1020197012679A priority patent/KR102190057B1/en
Priority to CN201880006664.5A priority patent/CN110167981B/en
Priority to JP2018131703A priority patent/JP2019123854A/en
Publication of WO2018131670A1 publication Critical patent/WO2018131670A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/12Polymers provided for in subclasses C08C or C08F
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/48Isomerisation; Cyclisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • Transparent resins are widely used in optical materials such as optical lenses, prisms, mirrors, optical disks, optical fibers, liquid crystal display sheets, films, and light guide plates.
  • (meth) acrylic resins have been widely used as such transparent resins, but (meth) acrylic resins sometimes have difficulty in achieving both heat resistance and mechanical strength.
  • (meth) acrylic resins can improve heat resistance while maintaining transparency by introducing a ring structure into the main chain (Patent Document 1, etc.), but introducing a ring structure into the main chain As a result, the resin itself becomes hard and brittle and easily breaks, and mechanical strength such as folding strength is reduced during film processing.
  • Patent Document 2 discloses a method of imparting strength by biaxial stretching
  • Patent Document 3 discloses a flexibility having a low glass transition temperature.
  • a method of blending a resin is disclosed.
  • Patent Document 4 discloses a copolymer obtained by grafting a (meth) acrylic polymer to a polyolefin, but such a graft copolymer has a low glass transition temperature and insufficient heat resistance. There was room for improvement.
  • a transparent resin is applied to an optical material, if a gelled product is contained in the resin, it will cause foreign matter and appearance defects and lead to a decrease in production efficiency. It is desirable not to.
  • a process for producing a copolymer comprising the step of: [14] A method for producing a copolymer according to any one of [1] to [4], Polymerizing a monomer component containing a (meth) acrylic monomer in the presence of the polymer (P1) having a unit derived from a diene and / or an olefin; And a step of forming a ring structure in the main chain of the polymer chain having a unit derived from the (meth) acrylic monomer formed in the polymerization step. [15] The method for producing a copolymer according to [13], further comprising a step of filtering the resin solution obtained in the polymerization step. [16] The method for producing a copolymer according to [14], further comprising a step of filtering the resin solution obtained in the ring structure forming step.
  • the copolymer (P) has a structure in which a diene or olefin polymer chain (A) and a (meth) acrylic polymer chain (B) having a ring structure are copolymerized.
  • the form of copolymerization is not limited, it is preferably a graft copolymer obtained by grafting a (meth) acrylic polymer chain (B) having a ring structure to a diene or olefin polymer chain (A).
  • the diene or olefin polymer chain (A) may be simply referred to as “polymer chain (A)”, and the (meth) acrylic polymer chain (B) having a ring structure may be simply referred to as “polymer chain (B)”. .
  • the (meth) acrylic polymer chain (B) having a ring structure usually gives a hard and brittle resin, but this is copolymerized with a diene or olefinic polymer chain (A) so that the composition of the polymer chain (B) is appropriate.
  • a copolymer (P) having both heat resistance and mechanical strength can be obtained.
  • the copolymer (P) thus obtained has high transparency despite having a diene or olefin component. Further, even when the copolymer (P) is blended with a (meth) acrylic polymer, these properties are not impaired, and since the dispersibility is excellent, transparency is not impaired.
  • a film having high strength and high heat resistance can be obtained without performing an orientation treatment such as a stretching treatment. Therefore, a film having desired optical characteristics can be easily obtained. For example, since it has high strength, high heat resistance, and high transparency, an isotropic film or a low retardation film can be formed efficiently. On the other hand, due to the ring structure, anisotropy can be easily expressed, and therefore a retardation film can be formed by an orientation treatment such as a stretching treatment. Moreover, when it is set as an optical film, it can be set as a thing with few foreign materials and external appearance defect.
  • the polymer chain (A) contained in the copolymer (P) will be described.
  • the polymer chain (A) has at least units derived from diene and / or olefin.
  • the unit derived from diene and / or olefin functions as a soft component in the copolymer (P).
  • the mechanical strength (for example, impact strength) of the copolymer is enhanced and the brittleness is reduced while ensuring the transparency of the copolymer (P). be able to.
  • olefin monoolefins such as ethylene, propylene, 1-butene, isobutene, 2-methyl-1-butene, 3-methyl-1-butene, 1-tetradecene, 1-octadecene and the like are preferably used. More preferred are ⁇ -olefins which are alkenes with a carbon double bond in the ⁇ -position. These dienes and olefins preferably have 2 or more carbon atoms, more preferably 3 or more, more preferably 20 or less, even more preferably 10 or less, and even more preferably 6 or less.
  • the polymer chain (A) is, for example, an olefin (co) polymer such as polyethylene, polypropylene, polybutene-1, ethylene-propylene copolymer, ethylene-butene copolymer; polyisoprene, polybutadiene, isoprene-butadiene copolymer Diene (co) polymers such as: ethylene-propylene-diene copolymer, isobutene-isoprene copolymer and other olefin and diene copolymers are included in the structure of the main chain.
  • an olefin (co) polymer such as polyethylene, polypropylene, polybutene-1, ethylene-propylene copolymer, ethylene-butene copolymer
  • polyisoprene polybutadiene
  • isoprene-butadiene copolymer Diene (co) polymers
  • the olefin (co) polymer is preferably an ⁇ -olefin (co) polymer
  • the diene (co) polymer is preferably a conjugated diene (co) polymer
  • the olefin-diene copolymer is an ⁇ -olefin.
  • Copolymers of conjugated dienes are preferred.
  • ⁇ -olefin and conjugated diene copolymers such as polyisoprene and isobutene-isoprene copolymers, polyethylene, and polypropylene are more preferable.
  • the content ratio of the units derived from diene and / or olefin in the polymer chain (A) is, for example, preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, and 55% by mass. % Or more is still more preferable, 90 mass% or less is preferable, 86 mass% or less is more preferable, and 83 mass% or less is further more preferable.
  • the polymer chain (A) may be a random copolymer of a diene and / or olefin and another unsaturated monomer. It may be a block copolymer or a graft copolymer. Among these, a block copolymer is preferable because the function as a soft component of the unit derived from diene and / or olefin is suitably expressed.
  • the polymer chain (A) has a polymer block (a1) having units derived from diene and / or olefin and a polymer block (a2) having units derived from other unsaturated monomers. Become.
  • the polymer chain (A) has a polymer block (a2) having units derived from other unsaturated monomers, the transparency of the copolymer (P) is improved while ensuring the mechanical strength. It is preferable that the polymer block (a2) is composed of units derived from an aromatic vinyl monomer. In this case, in the polymer chain (A), the polymer block (a1) functions as a soft component, and the polymer block (a2) functions as a hard component.
  • the aromatic vinyl monomer that gives the polymer block (a2) is not particularly limited as long as it is a compound in which a vinyl group is bonded to an aromatic ring.
  • styrene vinyl toluene, methoxystyrene, ⁇ -methylstyrene, ⁇ - Styrene monomers such as hydroxymethylstyrene and ⁇ -hydroxyethylstyrene; polycyclic aromatic hydrocarbon ring vinyl monomers such as 2-vinylnaphthalene; N-vinylcarbazole, 2-vinylpyridine, vinylimidazole, vinylthiophene And aromatic heterocyclic vinyl monomers.
  • a styrene monomer is preferable.
  • Examples of the polymer chain (A) having a polymer block (a1) having a unit derived from a diene and / or an olefin and a polymer block (a2) having a unit derived from an aromatic vinyl monomer include styrene- Butadiene block copolymer, styrene-butadiene-styrene block copolymer, hydrogenated product of styrene-butadiene-styrene block copolymer (for example, styrene-ethylene / butylene-styrene block copolymer, styrene-butadiene / butylene- Styrene block copolymer), styrene-isoprene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated product of styrene-isoprene-styrene block copolymer (
  • the polymer chain (A) has a polymer block (a1) having a unit derived from a diene and / or an olefin, and a polymer block (a2) having a unit derived from an aromatic vinyl monomer
  • the polymer chain ( In A) is preferably bonded to both sides of the polymer block (a1).
  • the polymer chain (A) functions as an elastomer, and the mechanical strength of the copolymer can be further increased.
  • the polymer chain (A) may be a triblock copolymer, a multiblock copolymer, or a radial block copolymer.
  • a triblock copolymer is preferable from the viewpoint of easy property control and easy introduction of the polymer chain (B) into the copolymer (P).
  • the polymer block (A1) may further have units derived from other unsaturated monomers in addition to the units derived from dienes and / or olefins.
  • unsaturated monomers include vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylic acid, maleic anhydride, methyl (meth) acrylate, ethyl (meth) acrylate, and the like.
  • the polymer block (A2) may further have a unit derived from another unsaturated monomer in addition to the unit derived from the aromatic vinyl monomer.
  • unsaturated monomers include vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylic acid, maleic anhydride, methyl (meth) acrylate, ethyl (meth) acrylate, and the like.
  • the polymer block (a2) may be a copolymer of these other unsaturated monomers and aromatic vinyl monomers.
  • a polymer block (a2) contains the unit derived from an aromatic vinyl monomer as a main component, and the content rate of the unit derived from an aromatic vinyl monomer in 100 mass% of polymer blocks (a2).
  • the polymer block (a2) may be substantially composed only of units derived from an aromatic vinyl monomer.
  • the unit derived from an aromatic vinyl monomer may be 99% by mass or more.
  • the content of the polymer block (a2) is preferably 10% by mass or more, more preferably 14% by mass or more, further preferably 17% by mass or more, and preferably 55% by mass or less. 50 mass% or less is more preferable, and 45 mass% or less is further more preferable.
  • the polymer chain (A) has a soft component and a hard component in a well-balanced manner, and it becomes easy to increase transparency while ensuring the mechanical strength of the copolymer (P).
  • the content of the polymer block (a1) in the polymer chain (A) is preferably 45% by mass or more, more preferably 50% by mass or more, further preferably 55% by mass or more, and 90% % By mass or less is preferable, 86% by mass or less is more preferable, and 83% by mass or less is more preferable.
  • the polymer chain (B) contained in the copolymer (P) will be described.
  • the polymer chain (B) has at least a unit derived from a (meth) acrylic monomer and has a ring structure.
  • the polymer chain (B) is preferably grafted to the polymer chain (A). Therefore, the copolymer (P) is a graft copolymer, and the polymer chain (B) is used as a graft chain of the graft copolymer. It is preferable to have.
  • the transparency of the copolymer (P) can be enhanced by the polymer chain (B).
  • the unit derived from the (meth) acrylic monomer of the polymer chain (B) (hereinafter sometimes referred to as “(meth) acrylic unit”) is obtained by polymerizing the (meth) acrylic monomer.
  • (B) can be introduced.
  • the (meth) acrylic monomer includes (meth) acrylic acid and derivatives thereof, and the (meth) acrylic monomer has an alkyl group (preferably having 1 to 4 carbon atoms) at the ⁇ -position or ⁇ -position. Alkyl group) may be bonded, and in the alkyl group, at least a part of the hydrogen atoms may be substituted with a hydroxyl group or a halogen group.
  • the form of the carboxylic acid contained in the unit derived from the (meth) acrylic monomer is not particularly limited, and examples thereof include free acid, ester, salt, acid amide and the like.
  • Examples of the (meth) acrylic acid ester having a linear or branched aliphatic hydrocarbon group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and (meth) acrylic.
  • the alkyl group of the alkyl (meth) acrylate is preferably a C1-18 alkyl group, and more preferably a C1-12 alkyl group.
  • C1-18 and “C1-12” mean “1 to 18 carbon atoms” and “1 to 12 carbon atoms”, respectively.
  • Examples of the (meth) acrylic acid ester having a cyclic aliphatic hydrocarbon group include cyclopropyl (meth) acrylate, cyclobutyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, ) Acrylic acid cycloalkyl; Cross-linked cyclic (meth) acrylates such as isobornyl (meth) acrylate.
  • the cycloalkyl group of the cycloalkyl (meth) acrylate is preferably a C3-20 cycloalkyl group, and more preferably a C3-12 cycloalkyl group.
  • Examples of (meth) acrylic acid ester having an aromatic hydrocarbon group include phenyl (meth) acrylate, tolyl (meth) acrylate, xylyl (meth) acrylate, naphthyl (meth) acrylate, and binaphthyl (meth) acrylate.
  • (Meth) acrylates such as anthryl (meth) acrylate; aryl (meth) acrylates such as benzyl (meth) acrylate; aryloxyalkyl (meth) acrylates such as phenoxyethyl (meth) acrylate; Can be mentioned.
  • the aryl group of aryl (meth) acrylate is preferably a C6-20 aryl group, more preferably a C6-14 aryl group.
  • the aralkyl group of (meth) acrylic acid aralkyl is preferably a C6-10 aryl C1-4 alkyl group.
  • the aryloxyalkyl group of aryloxyalkyl (meth) acrylate is preferably a C6-10 aryloxy C1-4 alkyl group, more preferably a phenoxy C1-4 alkyl group.
  • (Meth) acrylic acid ester may have a substituent such as a hydroxyl group, a halogen group, an alkoxy group or an epoxy group.
  • examples of such (meth) acrylic acid esters include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate; chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate and the like ( (Meth) acrylic acid alkyl halides; (meth) alkoxyalkyl (meth) acrylates such as 2-methoxyethyl acrylate; and (meth) acrylic acid epoxyalkyls such as glycidyl (meth) acrylate.
  • the alkyl group of hydroxyalkyl (meth) acrylate and epoxyalkyl (meth) acrylate is preferably a C1-12 alkyl group.
  • the alkoxyalkyl group of the alkoxyalkyl (meth) acrylate is preferably a C1-12 alkoxy C1-12 alkyl group.
  • the ring structure of the main chain of the polymer chain (B) may contain a part or all of the (meth) acrylic monomer in the ring structure, and is introduced separately from the (meth) acrylic monomer. It may be a ring structure.
  • the two carboxylic acid groups of the units derived from the adjacent (meth) acrylic monomer are converted to acid anhydrides. Or by imidization.
  • one of the units derived from the adjacent (meth) acrylic monomer has a protonic hydrogen atom-containing group such as a hydroxyl group or an amino group, it is derived from this one (meth) acrylic monomer.
  • a ring structure can also be formed by condensing the protonic hydrogen atom-containing group of the unit and the carboxylic acid group of the unit derived from the other (meth) acrylic monomer.
  • the ring structure is introduced separately from the unit derived from the (meth) acrylic monomer, for example, a (meth) acrylic monomer and a monomer having a polymerizable double bond in the ring structure are included. What is necessary is just to copolymerize.
  • a lactone ring structure As the ring structure, from the viewpoint of the heat resistance of the copolymer (P), a lactone ring structure, a cyclic imide structure (for example, a maleimide structure, a glutarimide structure, etc.), a cyclic anhydride structure (for example, a maleic anhydride structure, an anhydrous structure) Glutaric acid structure etc.) are preferred.
  • One type of these ring structures may be contained in the main chain of the polymer chain (B), or two or more types may be contained. Among these, at least one selected from a lactone ring structure, a maleimide structure, a maleic anhydride structure, a glutarimide structure, and a glutaric anhydride structure is preferable.
  • the number of ring members of the lactone ring structure is not particularly limited, and may be any one of 4 to 8 membered rings, for example.
  • the lactone ring structure is preferably a 5-membered ring or a 6-membered ring, and more preferably a 6-membered ring, from the viewpoint of excellent stability of the ring structure.
  • Examples of the lactone ring structure include the structure disclosed in Japanese Patent Application Laid-Open No. 2004-168882.
  • the lactone ring structure is easy to introduce, and more specifically, the precursor (the lactone ring structure prior to lactone cyclization). From the reasons that the polymerization yield of the polymer) is high, the lactone ring content in the cyclization condensation reaction of the precursor can be increased, and the polymer having a unit derived from (meth) acrylate can be used as the precursor.
  • a structure represented by the formula (1) is preferably shown. In the following formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituent.
  • Examples of the substituent of R 1 , R 2 and R 3 in the formula (1) include organic residues such as a hydrocarbon group, such as a C1-20 hydrocarbon group which may contain an oxygen atom. Can be mentioned.
  • Examples of the hydrocarbon group include saturated or unsaturated linear, branched or cyclic aliphatic hydrocarbon groups and aromatic hydrocarbon groups.
  • aromatic hydrocarbon group examples include C6-20 aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group; C7-20 aralkyl groups such as benzyl group and phenylethyl group. These hydrocarbon groups may contain an oxygen atom. Specifically, at least one hydrogen atom of the hydrocarbon group is selected from a hydroxyl group, a carboxyl group, an ether group and an ester group. It may be substituted with a group.
  • the lactone ring structure includes, for example, an ester group of a unit derived from an adjacent (meth) acrylic acid ester and a unit derived from a (meth) acrylic monomer having a protonic hydrogen atom-containing group such as a hydroxyl group or an amino group. Cyclocondensation with a protic hydrogen atom-containing group can be introduced into the polymer chain (B).
  • R 1 and R 2 are each independently a hydrogen atom or C1 ⁇ from the viewpoint that it is easy to obtain a copolymer (P) having excellent heat resistance and low birefringence.
  • an 20 alkyl group R 3 is preferably a hydrogen atom or a methyl group
  • R 1 and R 2 are each independently a hydrogen atom or a methyl group
  • that R 3 is a hydrogen atom or a methyl group More preferred.
  • the lactone ring structure is obtained by polymerizing (preferably copolymerizing) a (meth) acrylic monomer A having a hydroxy group and a (meth) acrylic monomer B to form a hydroxy group and an ester group in the molecular chain. Or after introducing a carboxyl group, it can form by making dealcoholization or dehydration cyclocondensation occur between these hydroxy groups and ester groups or carboxyl groups.
  • the (meth) acrylic monomer A having a hydroxy group is essential as a polymerization component, and the (meth) acrylic monomer B includes the monomer A.
  • Monomer B may or may not coincide with monomer A. When the monomer B coincides with the monomer A, the monomer A is homopolymerized.
  • (meth) acrylic monomer B a monomer having a vinyl group and an ester group or a carboxyl group is preferable.
  • the polymer chain (B) may have only one type of lactone ring structure represented by the formula (1), or may have two or more types.
  • the maleic anhydride structure or the maleimide structure is preferably a structure represented by the following formula (2).
  • R 4 and R 5 each independently represent a hydrogen atom or a methyl group
  • R 6 represents a hydrogen atom or a substituent
  • X 1 represents an oxygen atom or a nitrogen atom
  • Examples of the substituent of R 6 in the formula (2) include a hydrocarbon group, and examples thereof include a C1-20 hydrocarbon group which may have a substituent such as halogen.
  • Examples of the hydrocarbon group include saturated or unsaturated linear, branched or cyclic aliphatic hydrocarbon groups and aromatic hydrocarbon groups.
  • Examples of the aliphatic hydrocarbon group include a C1-6 alkyl group such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group; a C2-6 alkenyl group such as an ethenyl group and a propenyl group; a cyclopentyl group, a cyclohexyl group, and the like.
  • C3-20 cycloalkyl group examples include C6-20 aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group; C7-20 aralkyl groups such as benzyl group and phenylethyl group. These hydrocarbon groups may have a substituent such as halogen.
  • the ring structure represented by the formula (2) is a maleic anhydride structure.
  • the maleic anhydride structure can be introduced into the polymer chain (B), for example, by copolymerizing maleic anhydride and a (meth) acrylic monomer (for example, (meth) acrylic acid ester). .
  • the ring structure represented by the formula (2) is a maleimide structure.
  • the maleimide structure can be introduced into the polymer chain (B) by, for example, copolymerizing maleimide and a (meth) acrylic monomer (for example, (meth) acrylic acid ester).
  • a (meth) acrylic monomer for example, (meth) acrylic acid ester.
  • the maleimide structure for example, an N-substituted unsubstituted maleimide structure, N-methylmaleimide structure, N-ethylmaleimide structure, N-cyclohexylmaleimide structure, N-phenylmaleimide structure, N-naphthylmaleimide structure, N-benzylmaleimide Examples include the structure.
  • maleimide giving the maleimide structure
  • maleimide, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-naphthylmaleimide, N-benzylmaleimide, etc. are used. be able to.
  • the polymer chain (B) may have only one type of ring structure represented by the formula (2), or may have two or more types.
  • the structure represented by the following formula (3) is preferably shown as the glutarimide structure or the glutaric anhydride structure.
  • R 7 and R 8 each independently represent a hydrogen atom or an alkyl group
  • R 9 represents a hydrogen atom or a substituent
  • X 2 represents an oxygen atom or a nitrogen atom
  • the alkyl group of R 7 and R 8 is preferably a linear or branched alkyl group, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • An alkyl group etc. are mentioned.
  • R 7 and R 8 are each independently preferably a hydrogen atom or a C1-4 alkyl group from the viewpoint that it is easy to obtain a copolymer (P) having excellent heat resistance and a low birefringence index.
  • An atom or a methyl group is more preferable.
  • Examples of the substituent for R 9 in the formula (3) include a hydrocarbon group, and examples thereof include a C1-20 hydrocarbon group which may have a substituent such as halogen.
  • Examples of the hydrocarbon group include saturated or unsaturated linear, branched or cyclic aliphatic hydrocarbon groups and aromatic hydrocarbon groups.
  • Examples of the aliphatic hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, an n-hexyl group, C1-10 alkyl groups such as isohexyl group, n-heptyl group, isoheptyl group, n-octyl group and 2-ethylhexyl; C2-10 alkenyl groups such as ethenyl group and propenyl group; cyclopropyl group, cyclobutyl group and cyclopentyl Group, a C3-12 cycloalkyl group such as a cyclohexyl group, and the like.
  • aromatic hydrocarbon group examples include C6-20 aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group, biphenyl group, binaphthyl group and anthryl group; C7-20 aralkyl groups such as benzyl group and phenylethyl group Groups and the like. These hydrocarbon groups may have a substituent such as halogen.
  • R 9 is a C1-4 alkyl group, a C3-7 cycloalkyl group, a C6-20 aryl, because it is easy to obtain a copolymer (P) having excellent heat resistance and a small birefringence.
  • a C7-20 aralkyl group more preferably a methyl group, a cyclohexyl group, a phenyl group, or a tolyl group.
  • the ring structure represented by the formula (3) is a glutaric anhydride structure.
  • the glutaric anhydride structure can be introduced into the polymer chain (B) by acidifying two carboxylic acid groups of units derived from adjacent (meth) acrylic monomers, for example.
  • the ring structure represented by the formula (3) is a glutarimide structure.
  • the glutarimide structure is, for example, imidization of two carboxylic acid groups of a unit derived from an adjacent (meth) acrylic monomer, or an amide group of a unit derived from an adjacent (meth) acrylic acid amide and (meth) It can introduce
  • R 7 and R 8 are each independently a hydrogen atom or a methyl group from the viewpoint that it is easy to obtain a copolymer (P) having excellent heat resistance and low birefringence.
  • R 9 is preferably a C 1-10 alkyl group, a C 3-12 cycloalkyl group, or a C 6-20 aromatic group, and R 7 and R 8 are each independently a hydrogen atom or a methyl group, 9 is more preferably a C1-4 alkyl group, a C3-7 cycloalkyl group, a C6-20 aryl group, or a C7-20 aralkyl group, and R 7 and R 8 are each independently a hydrogen atom or a methyl group.
  • R 9 is a methyl group, a cyclohexyl group, a phenyl group, or more preferably tolyl group
  • R 7 and R 8 are each independently hydrogen atom or a methyl group
  • R 9 is consequent And particularly preferably a hexyl group or a phenyl group.
  • the polymer chain (B) may have only one type of ring structure represented by the formula (3), or may have two or more types.
  • the ring structural unit of the polymer chain (B) preferably contains a lactone ring structure and / or a maleimide structure.
  • the optical film is a retardation film
  • the ring structural unit of the polymer chain (B) contains a lactone ring structure from the viewpoint of imparting a positive retardation and excellent stability of the retardation characteristics.
  • the polymer chain (B) may further have units derived from other unsaturated monomers.
  • the other unsaturated monomer is not particularly limited as long as it is a compound having a polymerizable double bond.
  • vinyl esters such as vinyl acetate and vinyl propionate
  • styrene vinyl toluene, methoxy styrene, ⁇ -methyl styrene
  • Aromatic vinyl compounds such as 2-vinylpyridine
  • vinylsilanes such as vinyltrimethoxysilane and ⁇ - (meth) acryloyloxypropylmethoxysilane.
  • the polymer chain (B) has a unit derived from an aromatic vinyl monomer, it becomes easy to adjust the refractive index and retardation characteristics of the copolymer (P).
  • the aromatic vinyl monomer refer to the description of the aromatic vinyl monomer of the polymer block (a2).
  • a polymer chain (B) is formed from 2 or more types of monomer components, it is preferable that a polymer chain (B) is a random copolymer.
  • the copolymer (P) has a content ratio of units derived from (meth) acrylic acid ester in the polymer chain (B) of 45% by mass or more and 98% by mass or less. If the content ratio of the unit derived from (meth) acrylic acid ester in the polymer chain (B) is 45% by mass or more, generation of gelled product can be suppressed when the polymer chain (B) is formed by polymerization. It becomes easy to use a polymer (P) suitably for an optical use. In addition, the mechanical strength of the copolymer (P) can be easily increased.
  • the content rate of the unit derived from the (meth) acrylic acid ester in a polymer chain (B) is 98 mass% or less, the copolymer (P) excellent in heat resistance can be obtained.
  • the content ratio of the unit derived from the (meth) acrylic acid ester in the polymer chain (B) is preferably 50% by mass or more, more preferably 55% by mass or more, further preferably 60% by mass or more, and 97% by mass or less. preferable.
  • the content of the ring structural unit in the polymer chain (B) is preferably 2% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, and preferably 50% by mass or less, and 45% by mass or less. Is more preferable, and 40 mass% or less is still more preferable.
  • the content ratio of the ring structural unit described here means the content of the unit having a ring structure contained in the main chain of the polymer chain (B), and is represented by, for example, the above formulas (1) to (3). It means the content ratio of the structure.
  • the total content of the (meth) acrylic unit and the ring structural unit is preferably 90% by mass or more, more preferably 93% by mass or more, and further preferably 95% by mass or more. Thereby, it becomes easy to improve the transparency and heat resistance of the copolymer (P). Moreover, it is preferable that the total content rate of the unit derived from (meth) acrylic acid ester and a ring structure unit exists in such a range.
  • the polymer chain (B) is preferably grafted to the polymer chain (A).
  • the polymer chain (B) may be bonded to a diene and / or olefin-derived unit of the polymer chain (A), and may be bonded to a unit other than the diene and / or olefin-derived unit of the polymer chain (A). It may be.
  • the polymer chain (B) may be directly bonded to the diene and / or olefin-derived unit of the polymer chain (A), or may be bonded via a linking group.
  • the polymer chain (B) When the polymer chain (B) is directly bonded to a diene and / or olefin-derived unit of the polymer chain (A), the polymer chain (B) has a (meth) acryl unit or a ring structural unit of the polymer chain (A). It is preferably directly bonded to the unit derived from diene and / or olefin.
  • the polymer chain (B) may be bonded to the carbon atom of the main chain of the unit derived from diene and / or olefin, and bonded to the carbon atom of the hydrocarbon group bonded as a substituent (side chain) to the main chain. You may do it.
  • the polymer chain (B) is bonded to the polymer chain (A)
  • the linking group includes an ester bond (—CO—O—), a urethane bond (—NH -CO-O-) and an ether bond (-O-) are preferable, and the linking group may further have a divalent organic group such as a methylene group or a hydroxymethylene group. Good.
  • the polymer chain (B) When the polymer chain (B) is bonded to units other than the diene and / or olefin-derived units of the polymer chain (A), for example, the polymer chain (A) has a polymerizable functional group (polymerizable double bond).
  • the polymer chain (B) is bonded to the polymerizable functional group of the unit, or the polymer chain (A) is other than a unit derived from a diene and / or olefin, and is an ester bond (—CO—O—)
  • the polymer chain (B) may be bonded via a linking group such as a urethane bond (—NH—CO—O—) or an ether bond (—O—).
  • the linking group may further have a divalent organic group such as a methylene group or a hydroxymethylene group.
  • the content ratio of the ring structural unit in the copolymer (P) is not particularly limited, but the content ratio of the ring structural unit in the copolymer (P) is, for example, preferably 1% by mass or more, and 3% by mass or more. More preferably, 5% by mass or more is more preferable, 60% by mass or less is preferable, 50% by mass or less is more preferable, and 40% by mass or less is more preferable.
  • the content ratio of the ring structural unit in the copolymer (P) it is easy to improve the heat resistance, transparency, moldability, mechanical strength, etc. of the copolymer (P) in a balanced manner. become.
  • the lactone in the copolymer (P) is used from the viewpoint of enhancing the heat resistance and transparency of the copolymer (P).
  • the content of the ring structure is, for example, preferably 1% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, more preferably 60% by mass or less, more preferably 50% by mass or less, and 40% by mass.
  • the content ratio of these ring structures in the copolymer (P) Is, for example, preferably 1% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, more preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less.
  • the content ratio of these ring structures in the copolymer (P) is, for example, 1 % By mass or more is preferable, 3% by mass or more is more preferable, 5% by mass or more is more preferable, 60% by mass or less is preferable, 50% by mass or less is more preferable, and 40% by mass or less is more preferable.
  • the weight average molecular weight of the copolymer (P) is preferably 20,000 or more, more preferably 50,000 or more, further preferably 30,000 or more, still more preferably 50,000 or more, and particularly preferably 70,000 or more. Moreover, 1 million or less is preferable, 500,000 or less is more preferable, 300,000 or less is more preferable, 200,000 or less is still more preferable. By setting the weight average molecular weight of the copolymer (P) in such a range, the moldability of the copolymer (P) is improved and the strength of the obtained molded product is easily increased.
  • the weight average molecular weight of the copolymer (P) is preferably 1.1 times or more, more preferably 1.2 times or more, more preferably 1.3 times or more, more preferably 20 times the weight average molecular weight of the polymer chain (A). Is preferably 12 times or less, more preferably 10 times or less, still more preferably 7 times or less, and particularly preferably 5 times or less. Thereby, it becomes easy to give each characteristic of transparency, mechanical strength, and heat resistance with good balance to the copolymer (P).
  • the refractive index of the copolymer (P) is preferably a value close to the refractive index of the polymer chain (A), which makes it easy to ensure the transparency of the copolymer (P).
  • the difference between the refractive index of the copolymer (P) and the refractive index of the polymer chain (A) is preferably less than 0.1, more preferably 0.05 or less, and 0.02 or less. Further preferred. From the same viewpoint, the refractive index of the polymer chain (A) in the copolymer (P) and the refractive index of the polymer chain (B) are preferably close to each other.
  • the difference between the refractive index and the refractive index of the polymer chain (B) is preferably less than 0.1, more preferably 0.05 or less, and even more preferably 0.02 or less.
  • the copolymer (P) preferably has a glass transition temperature of 100 ° C. or more and less than 100 ° C., respectively.
  • a glass transition temperature of 100 ° C. or higher is referred to as “high temperature side glass transition temperature”, and a glass transition temperature of less than 100 ° C. is referred to as “low temperature side glass transition temperature”.
  • the copolymer (P) may have a plurality of glass transition temperatures on the high temperature side, or may have a plurality of glass transition temperatures on the low temperature side.
  • the copolymer (P) Since the copolymer (P) has a glass transition temperature on the high temperature side, the heat resistance of the copolymer (P) is increased, and when the copolymer (P) is molded into a film or the like, it is softened even at a high temperature. Without increasing the molding processability. When the copolymer (P) has a glass transition temperature on the low temperature side, the impact resistance of the copolymer (P) can be enhanced.
  • the glass transition temperature on the high temperature side of the copolymer (P) is preferably 113 ° C or higher, more preferably 116 ° C or higher, and further preferably 120 ° C or higher.
  • the glass transition temperature on the low temperature side of the copolymer (P) is preferably less than 50 ° C, more preferably less than 20 ° C, still more preferably less than 0 ° C, and even more preferably less than -20 ° C. .
  • the copolymer (P) can be produced by addition polymerization of the monomer component forming the polymer chain (B) to the polymer chain (A). Therefore, the method for producing the copolymer (P) is carried out in the presence of a polymer having units derived from diene and / or olefin (hereinafter referred to as “raw polymer (P1)”). It is preferable to have a step (polymerization step) for polymerizing the monomer component containing the monomer, and by this, the monomer component containing the (meth) acrylic monomer is added to the raw material polymer (P1). be able to.
  • the monomer component containing the (meth) acrylic monomer is, for example, (1) a method of directly bonding to a diene and / or olefin-derived unit of the raw material polymer (P1), and (2) a raw material weight.
  • a method in which the diene and / or olefin-derived unit of the polymer (P1) is bonded to the polymerizable functional group of the linking group in the side chain, or (3) other than the diene and / or olefin-derived unit of the starting polymer (P1) Can be addition-polymerized to the raw material polymer (P1) by any one of the methods of bonding to the polymerizable functional group of the unit in the side chain.
  • the obtained copolymer is a graft copolymer.
  • the “raw polymer (P1)” may be simply referred to as “polymer (P1)”.
  • the raw material polymer (P1) may have at least a unit derived from a diene and / or an olefin, and may further have a unit derived from another unsaturated monomer. Details of the units derived from the diene and / or olefin of the starting polymer (P1) and the units derived from other unsaturated monomers are described in detail for the units derived from the diene and / or olefin of the polymer chain (A) and other units. Reference is made to the description of units derived from saturated monomers. In the unit derived from diene and / or olefin, a part of hydrogen atoms may be chlorinated.
  • the raw material polymer (P1) is a block copolymer having a polymer block (a1) having units derived from diene and / or olefin and a polymer block (a2) having units derived from other unsaturated monomers.
  • the polymer block (a2) may be composed of units derived from an aromatic vinyl monomer.
  • the description of the polymer chain (A) is referred to.
  • the raw material polymer (P1) has a linking group having a polymerizable functional group in the side chain of the unit derived from diene and / or olefin.
  • the method (3) Have a polymerizable functional group in the side chain of a unit other than the unit derived from diene and / or olefin.
  • the raw material polymer (P1) preferably has a weight average molecular weight of 10,000 or more, more preferably 50,000 or more, further preferably 10,000 or more, still more preferably 30,000 or more, and 500,000.
  • the following is preferable, 300,000 or less is more preferable, 200,000 or less is more preferable, and 100,000 or less is even more preferable.
  • the raw material polymer (P1) may be used alone or in combination of two or more. In the latter case, it becomes easy to adjust the average molecular weight and the double bond amount as the resin composition.
  • the monomer component used for forming the polymer chain (B) is a monomer that provides a cyclic structural unit.
  • a polymer or the like can also be used.
  • the monomer which can form a ring structure at the said process can also be used as a monomer component.
  • other unsaturated monomers can be used. Details of these monomer components are the (meth) acrylic monomer that forms the polymer chain (B), the monomer that gives the ring structure of the polymer chain (B), and the polymer chain (B). Reference is made to the description of other unsaturated monomers.
  • the (meth) acrylic monomer in which the monomer component containing the (meth) acrylic monomer is directly bonded to the diene and / or olefin-derived unit of the raw material polymer (P1), the (meth) acrylic monomer
  • the monomer component containing the body is bonded to the diene and / or olefin-derived unit of the raw material polymer (P1).
  • the diene and / or olefin-derived unit of the raw material polymer (P1) has a double bond derived from the diene.
  • the monomer component containing the (meth) acrylic monomer may be bonded to the diene-derived double bond of the main chain of the raw material polymer (P1), and bonded to the adjacent carbon atom of the double bond. May be.
  • the polymer chain (B) is bonded to a diene-derived double bond bonded as a substituent (side chain) to the main chain of the starting polymer (P1), or bonded to an adjacent carbon atom of the double bond. It may be.
  • the copolymer (P) obtained is such that the polymer chain (B) is directly bonded to the diene and / or olefin-derived units of the polymer chain (A).
  • hydrogen having a high activity such as a vinyl position or an allylic position of a double bond (olefinic double bond) contained in a diene and / or olefin-derived unit of the raw material polymer (P1) is extracted.
  • this generates a radical at the site, and the monomer component forming the polymer chain (B) can be subjected to addition polymerization.
  • the monomer component containing the (meth) acrylic monomer of (2) above is used as a polymerizable functional group of a linking group that a diene and / or olefin-derived unit of the raw polymer (P1) has in the side chain.
  • the linking group has a polymerizable functional group (polymerizable double bond) and is bonded to a side chain of a unit derived from a diene and / or an olefin.
  • the polymer chain (B) is bonded to the diene and / or olefin-derived unit of the polymer chain (A) via a linking group.
  • the linking group preferably has at least one selected from an ester bond, a urethane bond, and an ether bond in addition to a polymerizable functional group (polymerizable double bond), and is further divalent organic such as a methylene group or a hydroxymethylene group. It may have a group.
  • the raw material polymer (P1) having such a linking group has a unit derived from a diene and / or olefin, and has a functional group that gives an ester bond, a urethane bond, or an ether bond (hereinafter referred to as “raw material weight”).
  • a compound (P2) ”) and a compound having a functional group having reactivity with the functional group and having a polymerizable functional group hereinafter referred to as“ radical polymerizable compound ”).
  • the functional group that provides an ester bond, a urethane bond, or an ether bond means a functional group that forms any one of these bonds by reaction with a radical polymerizable compound, and specifically includes a carboxyl group or an anhydride group thereof. , Epoxy group, hydroxyl group, isocyanate group and the like are preferable.
  • a polymer having units derived from diene and / or olefin for example, the raw material polymer (P1) used in the production method of (1) above.
  • an unsaturated compound having these functional groups may be reacted with each other, and the reaction is usually performed using a radical initiator.
  • unsaturated compounds having a carboxyl group or its anhydride group include (meth) acrylic acid, fumaric acid, maleic acid and its anhydride, itaconic acid and its anhydride, crotonic acid and its anhydride, citraconic acid and its anhydride And unsaturated carboxylic acids such as products and anhydrides thereof.
  • Examples of unsaturated compounds having an epoxy group include glycidyl (meth) acrylate, mono and diglycidyl esters of maleic acid, mono and diglycidyl esters of itaconic acid, mono and diglycidyl esters of allyl succinic acid, glycidyl of p-styrene carboxylic acid Unsaturated carboxylic acid glycidyl esters such as esters; glycidyl ethers such as allyl glycidyl ether, 2-methylallyl glycidyl ether, styrene-p-glycidyl ether; p-glycidyl styrene; 3,4-epoxy-1-butene, 3,4 -Epoxy olefins such as epoxy-3-methyl-1-butene; vinylcyclohexene monoxide and the like.
  • glycidyl (meth) acrylate mono and diglycidyl
  • Examples of unsaturated compounds having a hydroxyl group include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 2-hydroxybutyl (meth) acrylate; N-methylol (meta ) Acrylamide; 2-hydroxyethyl acrylate-6-hexanolide addition polymer; alkenyl alcohol such as 2-propen-1-ol; alkynyl alcohol such as 2-propyn-1-ol; hydroxy vinyl ether and the like.
  • Examples of the unsaturated compound having an isocyanate group include 2-isocyanatoethyl (meth) acrylate and methacryloyl isocyanate.
  • the radical polymerizable compound has a polymerizable functional group (polymerizable double bond) and a functional group having reactivity with a carboxyl group or an anhydride group thereof, an epoxy group, a hydroxyl group, or an isocyanate group.
  • the reactive functional group include a hydroxyl group, an epoxy group, an isocyanate group, and a carboxyl group.
  • radical polymerizable compound having a hydroxyl group as a reactive functional group examples include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate.
  • hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate.
  • radical polymerizable compound having an epoxy group as a reactive functional group examples include glycidyl (meth) acrylate, mono- and diglycidyl esters of maleic acid, mono- and diglycidyl esters of itaconic acid, mono- and diglycidyl esters of allyl succinic acid, p Glycidyl esters of unsaturated carboxylic acids such as glycidyl esters of styrene carboxylic acids; glycidyl ethers such as allyl glycidyl ether, 2-methylallyl glycidyl ether, styrene-p-glycidyl ether; p-glycidyl styrene; 3,4-epoxy- Examples thereof include epoxy olefins such as 1-butene and 3,4-epoxy-3-methyl-1-butene; vinylcyclohexene monooxide and the like.
  • radical polymerizable compound having an isocyanate group as a reactive functional group examples include 2-isocyanatoethyl (meth) acrylate and methacryloyl isocyanate.
  • radical polymerizable compound having a carboxyl group as a reactive functional group examples include unsaturated acids such as (meth) acrylic acid; carboxyalkyl vinyl ethers such as carboxyethyl vinyl ether and carboxypropyl vinyl ether.
  • the functional group of the raw material polymer (P2) is a carboxyl group or an anhydride thereof
  • a hydroxyl group, an epoxy group, and an isocyanate group are preferably shown as the reactive functional group of the radical polymerizable compound.
  • a radically polymerizable compound having a hydroxyl group is particularly preferable.
  • the raw material polymer (P1) obtained by the reaction between the raw material polymer (P2) and the radical polymerizable compound has a linking group having a polymerizable functional group and an ester bond in the side chain.
  • the functional group of the raw material polymer (P2) is an epoxy group
  • a carboxyl group and a hydroxyl group are preferably shown as the reactive functional group of the radical polymerizable compound.
  • radically polymerizable compounds having a carboxyl group are particularly preferred.
  • the raw material polymer (P1) obtained by the reaction between the raw material polymer (P2) and the radical polymerizable compound has a polymerizable functional group and an ester bond (specifically, —CH (OH) —CH 2 —OCO).
  • the functional group of the raw material polymer (P2) is a hydroxyl group, an isocyanate group, a carboxyl group and an epoxy group are preferably shown as the reactive functional group of the radical polymerizable compound.
  • a radically polymerizable monomer having an isocyanate group is particularly preferable.
  • the raw material polymer (P1) obtained by the reaction of the raw material polymer (P2) and the radical polymerizable compound has a linking group having a polymerizable functional group and a urethane bond in the side chain.
  • the functional group of the raw material polymer (P2) is an isocyanate group
  • a hydroxyl group and a carboxyl group are preferably shown as the reactive functional group of the radical polymerizable compound.
  • a radical polymerizable monomer having a hydroxyl group is particularly preferable.
  • the raw material polymer (P1) obtained by the reaction of the raw material polymer (P2) and the radical polymerizable compound has a linking group having a polymerizable functional group and a urethane bond in the side chain.
  • Examples of the raw material polymer (P1) that can be used in the production method (2) include LIR UC-102M and UC-203, which are polyisoprenes having a methacryloyl group and an ester bond in the side chain (both manufactured by Kuraray Co., Ltd.) Etc.
  • the production method of the above (3) of the copolymer (P) will be described.
  • the monomer component containing the (meth) acrylic monomer of (3) above is used as a polymerizable functional group having units other than the diene and / or olefin-derived unit in the raw polymer (P1) in the side chain.
  • a diene and / or olefin and an unsaturated monomer having a polymerizable functional group (polymerizable double bond) are copolymerized, or the diene and / or olefin and a carboxyl group or an anhydride thereof.
  • the raw material is copolymerized with an unsaturated monomer having a functional group having a group, epoxy group, hydroxyl group, or isocyanate group, and further reacted with the radical polymerizable compound having the reactive functional group described above.
  • a polymer (P1) can be obtained.
  • a (co) polymer having a diene and / or olefin-derived unit is polymerized with an unsaturated monomer having a polymerizable functional group (polymerizable double bond), or a diene and / or olefin-derived unit.
  • a radical having a reactive functional group as described above by polymerizing a (co) polymer having a carboxyl group or an anhydride group thereof, an epoxy group, a hydroxyl group, or an isocyanate group with an isocyanate group You may obtain a raw material polymer (P1) by making it react with a polymeric compound.
  • the copolymer (P) is obtained by polymerizing the monomer component containing the (meth) acrylic monomer in the presence of the raw material polymer (P1) thus obtained.
  • the resulting copolymer (P) has the polymer chain (B) bonded to a unit other than the diene and / or olefin-derived unit of the polymer chain (A).
  • the unsaturated monomer having a polymerizable functional group is , Polyfunctional (meth) acrylates, polyfunctional (meth) acrylic compounds such as vinyl ether group-containing (meth) acrylates, allyl group-containing (meth) acrylates, polyfunctional vinyl ethers, polyfunctional allyl compounds, polyfunctional aromatic vinyls, etc. Is mentioned.
  • Examples of the polyfunctional (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, and bisphenol A alkylene oxide di (meth).
  • Examples include acrylate, trimethylolpropane tri (meth) acrylate, 2,2 ′-[oxybis (methylene)] bisacrylic acid, dialkyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate, and the like.
  • Examples of the vinyl ether group-containing (meth) acrylate include 2-vinyloxyethyl (meth) acrylate, 4-vinyloxybutyl (meth) acrylate, 2- (vinyloxyethoxy) ethyl (meth) acrylate, and the like.
  • Examples of allyl group-containing (meth) acrylates include allyl (meth) acrylate, methyl ⁇ -allyloxymethyl acrylate, stearyl ⁇ -allyloxymethyl acrylate, ⁇ -allyloxymethyl acrylate 2-decyltetradecyl acrylate, etc. Is mentioned.
  • polyfunctional vinyl ether examples include ethylene glycol divinyl ether, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, hexanediol divinyl ether, bisphenol A alkylene oxide divinyl ether, trimethylolpropane trivinyl ether, and the like.
  • polyfunctional allyl compounds include ethylene glycol diallyl ether, diethylene glycol diallyl ether, polyethylene glycol diallyl ether, hexanediol diallyl ether, bisphenol A alkylene oxide diallyl ether, trimethylolpropane triallyl ether, ditrimethylolpropane tetraallyl ether, and the like.
  • Polyfunctional allyl ethers include polyfunctional allyl group-containing isocyanurates such as triallyl isocyanurate; polyfunctional allyl esters such as diallyl phthalate and diallyl diphenate; bisallyl nadiimide compounds; bisallyl nadiimide compounds and the like .
  • polyfunctional aromatic vinyl include divinylbenzene.
  • the resulting polymer (hereinafter referred to as “raw polymer (P3)”) has units derived from diene and / or olefin, and units other than units derived from diene and / or olefin.
  • a functional group having a carboxyl group or an anhydride group thereof, an epoxy group, a hydroxyl group, or an isocyanate group is bonded to the side chain of the other unit.
  • the raw material polymer (P3) include an ethylene- (meth) acrylic acid copolymer, an ethylene-2-hydroxyethyl (meth) acrylate copolymer, an ethylene-glycidyl (meth) acrylate copolymer, and an ethylene-polyethylene.
  • Glycol mono (meth) acrylate copolymer ethylene-vinyl acetate- (meth) acrylic acid copolymer, ethylene-ethyl (meth) acrylate- (anhydrous) maleic acid copolymer, ethylene-vinyl acetate- (anhydrous) maleic Acid copolymer, ethylene-vinyl acetate-2-hydroxyethyl (meth) acrylate copolymer, ethylene-vinyl acetate-glycidyl (meth) acrylate copolymer, ethylene-vinyl acetate-polyethylene glycol mono (meth) acrylate copolymer Polymer, ethylene-vinyl acetate copolymer partial ken Thing, and the like.
  • an ethylene- (meth) acrylic acid copolymer, an ethylene-ethyl (meth) acrylate- (anhydrous) maleic acid copolymer, and an ethylene-vinyl acetate-glycidyl (meth) acrylate copolymer are preferable.
  • the raw material polymer (P1) is obtained by reacting the raw material polymer (P3) with the radical polymerizable compound having the reactive functional group described above.
  • the radical polymerizable compound having the reactive functional group described above For the details of the functional group of the raw material polymer (P3) and the reactive functional group of the radical polymerizable compound, these explanations in the method (2) are referred to.
  • the raw material polymer (P2) and the radical polymerizable compound in the method (2) or the reaction between the raw material polymer (P3) and the radical polymerizable compound in the method (3), the raw material polymer ( The reactive functional group of the radical polymerizable compound is preferably blended so as to be 0.1 to 10 equivalents per 1 equivalent of the functional group in P2) or the raw material polymer (P3) and reacted. Thereby, the yield of the finally obtained copolymer (P) can be increased.
  • the above reaction is preferably performed in a suitable organic solvent, and examples of the organic solvent include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, cellosolve acetate and the like.
  • the reaction temperature is usually 20 ° C. to 150 ° C., preferably 50 ° C. to 120 ° C.
  • the reaction between the raw material polymer (P2) or the raw material polymer (P3) and the radical polymerizable compound is preferably performed in the presence of a catalyst.
  • a catalyst acid or basic compounds such as sulfuric acid, paratoluenesulfonic acid, zinc chloride, pyridine, triethylamine, dimethylbenzylamine and the like can be used in the esterification reaction, and dibutyltin laurate and the like in the urethanization reaction. Can be used.
  • reaction in order to prevent the formation of a homopolymer of a vinyl monomer, it is also preferable to react in an oxygen or air atmosphere and to add a suitable amount of a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, phenothiazine or the like to the reaction system. .
  • a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, phenothiazine or the like
  • a (meth) acrylic monomer is contained in the presence of the raw material polymer (P1) obtained as described above (polymerization is carried out in the ring structure as necessary).
  • the copolymer (P) can be obtained by polymerizing the monomer component (which further includes a monomer having an ionic double bond).
  • the copolymer (P) is obtained by graft polymerization of a monomer component containing a (meth) acrylic monomer to the raw material polymer (P1).
  • the amount of each monomer component containing the (meth) acrylic monomer is such that the content ratio of units derived from the (meth) acrylic acid ester in the finally obtained polymer chain (B) is within a desired range. Adjust as appropriate.
  • the monomer component containing the (meth) acrylic monomer in the presence of the raw material polymer (P1) is prepared by the method (1).
  • Polymerization is preferred.
  • the generation of gelled products can be suppressed by controlling the polymerization reaction such as setting the polymerization reaction time short.
  • the polymerization of the monomer component can be performed using a known polymerization method such as a bulk polymerization method, a solution polymerization method, an emulsion polymerization method, a suspension polymerization method, etc., but a solution polymerization method is preferably used. If the solution polymerization method is used, it is possible to suppress the entry of minute foreign matters into the copolymer (P), and the copolymer (P) can be suitably applied to optical materials and the like.
  • a known polymerization method such as a bulk polymerization method, a solution polymerization method, an emulsion polymerization method, a suspension polymerization method, etc.
  • a solution polymerization method is preferably used. If the solution polymerization method is used, it is possible to suppress the entry of minute foreign matters into the copolymer (P), and the copolymer (P) can be suitably applied to optical materials and the like.
  • the polymerization method for example, either a batch polymerization method or a continuous polymerization method can be used. During the polymerization, the monomer components may be charged all at once or added in portions.
  • the polymerization solvent can be appropriately selected according to the composition of the monomer component, and an organic solvent used in a normal radical polymerization reaction can be used.
  • aromatic hydrocarbons such as toluene, xylene, and ethylbenzene
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and anisole
  • acetic acid Esters such as ethyl, butyl acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate
  • cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve
  • alcohols such as methanol, ethanol, isopropanol, n-butanol
  • the polymerization reaction between the raw material polymer (P1) and the monomer component is preferably performed in the presence of a polymerization catalyst (polymerization initiator).
  • a polymerization catalyst include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-amidinopropane) dihydrochloride, dimethyl-2,2′-azobis (2-methylpropio).
  • persulfates such as potassium persulfate
  • cumene hydroperoxide diisopropylbenzene hydroperoxide, di-t-butyl peroxide, lauroyl Peroxide, benzoyl peroxide, t-butylperoxyisopropyl carbonate, t-amylperoxy-2-ethylhexanoate, t-amylperoxyoctoate, t-amylperoxyisononanoate, t-amylperoxy Isopropyl carbonate, t-amyl peroxy 2-ethyl f
  • Organic peroxides such as sill carbonate can be used.
  • the method (1) it is preferable to use a polymerization catalyst having a strong hydrogen abstraction force, and it is preferable to use an organic peroxide as such a polymerization catalyst.
  • the amount of the polymerization catalyst used is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the monomer component, for example.
  • a raw material polymer (P1) is 0.5 mass with respect to a total of 100 mass parts of a raw material polymer (P1) and a monomer component. Part or more, preferably 1 part by weight or more, more preferably 3 parts by weight or more, more preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and still more preferably 20 parts by weight or less.
  • the monomer component is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, still more preferably 80 parts by mass or more, based on 100 parts by mass of the total of the raw material polymer (P1) and the monomer component. 99 parts by mass or less is preferable, 98 parts by mass or less is more preferable, and 97 parts by mass or less is more preferable.
  • the concentration of the raw material polymer (P1) in the reaction solution is preferably 1% by mass or more, more preferably 3% by mass or more, more preferably 5% by mass or more, more preferably 50% by mass or less, and preferably 30% by mass or less. More preferred is 20% by mass or less.
  • the concentration of the monomer component in the reaction solution is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 80% by mass or less, more preferably 70% by mass or less.
  • the solvent concentration in the reaction solution is preferably 10% by mass or more, more preferably 20% by mass or more, more preferably 97% by mass or less, more preferably 95% by mass or less, further preferably 90% by mass or less, and 80% by mass. The following are even more preferred: During the polymerization reaction, a raw material polymer (P1), a monomer component, a polymerization catalyst, a reaction solvent, and the like can be appropriately added.
  • the polymerization reaction is preferably performed in an atmosphere of an inert gas such as nitrogen gas or in an air stream.
  • an azobis compound and a peroxide may be used in combination as a polymerization initiator.
  • the reaction temperature is preferably 50 ° C to 200 ° C.
  • the reaction time may be appropriately adjusted while observing the degree of progress of the copolymerization reaction and the degree of formation of the gelled product. For example, the reaction time is preferably 1 to 20 hours.
  • a copolymer in which a polymer chain containing a unit derived from a (meth) acrylic monomer is bonded to the polymer chain (A) is obtained.
  • a (meth) acrylic monomer and a monomer having a polymerizable double bond in the ring structure for example, maleic anhydride or maleimide
  • a copolymer (P) in which a polymer chain (B) having an acrylic unit and a ring structural unit (maleic anhydride structure, maleimide structure) is bonded to the polymer chain (A) is obtained.
  • a ring structure forming step is performed following the polymerization step. It is preferable.
  • a ring structure is formed in the main chain of the polymer chain having the (meth) acryl unit formed in the polymerization step.
  • a substituent of the adjacent (meth) acryl unit of the polymer chain having a (meth) acryl unit formed in the polymerization step is subjected to a condensation reaction to form a ring structure in the main chain of the polymer chain.
  • the condensation reaction includes an esterification reaction, an acid anhydride reaction, an amidation reaction, an imidation reaction, and the like.
  • a glutaric anhydride structure can be formed by acid anhydrideizing two carboxylic acid groups of adjacent (meth) acryl units, and a glutarimide structure can be formed by imidization.
  • one of adjacent (meth) acrylic units has a protic hydrogen atom-containing group such as a hydroxyl group or an amino group
  • the protic hydrogen atom-containing group of the one (meth) acrylic unit and the other A lactone ring structure can be formed by condensing with a carboxylic acid group of a (meth) acryl unit.
  • the condensation reaction of adjacent (meth) acryl units is preferably performed in the presence of a catalyst (cyclization catalyst).
  • a catalyst cyclization catalyst
  • the cyclization catalyst at least one selected from the group consisting of acids, bases and salts thereof can be used.
  • the acid, base and salts thereof may be organic or inorganic and are not particularly limited. Among them, it is preferable to use an organic phosphorus compound as a catalyst for the cyclization reaction.
  • an organophosphorus compound as a cyclization catalyst, the condensation reaction can be efficiently performed, and coloring of the resulting copolymer (P) can be reduced.
  • the amount of the cyclization catalyst used is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the copolymer obtained in the polymerization step, for example.
  • the reaction temperature in the ring structure formation step is preferably 50 ° C to 300 ° C.
  • the reaction time may be appropriately adjusted while observing the degree of progress of the condensation reaction.
  • the reaction time is preferably 5 minutes to 6 hours.
  • a resin solution containing the copolymer (P) can be obtained.
  • the resin solution thus obtained is preferably filtered to remove foreign matters. Therefore, it is preferable that the manufacturing method of a copolymer (P) further has the process (filtration process) of filtering the resin solution obtained at the superposition
  • the process filtration process
  • the amount of gelled product generated can be kept low in the polymerization step of the copolymer (P), the load on the filter in the filtration step is suppressed, and continuous filtration for a long time is possible. Therefore, a copolymer (P) with a high productivity and a small amount of foreign matter can be obtained.
  • the filtration step can be carried out continuously following the polymerization step or the ring structure formation step.
  • a filter used for filtration a conventionally known filter can be used, and is not particularly limited.
  • a leaf disk filter, a candle filter, a pack disk filter, a cylindrical filter, and the like can be used.
  • a leaf disk filter or a candle filter having a large effective filtration area is preferable.
  • the filtration accuracy (pore diameter) of the filter is usually, for example, 15 ⁇ m or less.
  • the filtration accuracy is preferably 10 ⁇ m or less and more preferably 5 ⁇ m or less from the viewpoint of reducing optical defects.
  • the lower limit of the filtration accuracy is not particularly limited, and is, for example, 0.2 ⁇ m or more.
  • the resin solution containing the copolymer (P) obtained in the polymerization step or the ring structure formation step may be filtered as it is, or may be diluted with a solvent or dispersed in a solvent and filtered. Good. If the copolymer (P) is solid, it may be melted and filtered with a sintered filter or the like, or dissolved or dispersed in a solvent and filtered. Filtration may be performed by heating or under pressure.
  • the solution temperature when the resin solution is subjected to filter filtration may be appropriately set according to the boiling point of the polymerization solvent and the like, for example, preferably not more than the boiling point of the polymerization solvent, more preferably not more than the boiling point of the polymerization solvent ⁇ 10 ° C.
  • the temperature of the resin solution subjected to filter filtration is 50 ° C. The above is preferable, and 80 ° C or higher is more preferable.
  • the viscosity of the resin solution subjected to filter filtration is preferably 100 Pa ⁇ s or less, more preferably 80 Pa ⁇ s or less at 85 ° C. If the viscosity of the resin solution used for filter filtration is too high, the pressure loss during filter filtration may increase, and the filter unit may be damaged, or the filter filtration processing capacity may decrease due to increased viscosity.
  • the pressure loss in filter filtration is preferably 2.5 MPa or less, more preferably in the range of 0.5 MPa to 2.0 MPa, and still more preferably in the range of 0.5 MPa to 1.5 MPa.
  • the present invention also provides a resin composition containing the copolymer (P) having the polymer chain (A) and the polymer chain (B) described above.
  • the resin composition of the present invention is excellent in transparency, mechanical strength (for example, impact strength, etc.) and heat resistance, and has a good balance between them, and generates less gelled product during production.
  • the resin composition of the present invention is referred to as “resin composition (Q)”.
  • the (meth) acrylic polymer only needs to have a unit derived from the (meth) acrylic monomer described in the polymer chain (B), and preferably described in the polymer chain (B). It has a unit derived from (meth) acrylic acid ester.
  • the (meth) acrylic polymer may have units derived from other unsaturated monomers described in the polymer chain (B).
  • the (meth) acrylic polymer is contained in the polymer chain (B) of the copolymer (P) from the viewpoint of increasing the compatibility with the copolymer (P) in the resin composition (Q) (meta) It is more preferable to have a unit derived from an acrylic monomer.
  • the (meth) acrylic polymer preferably has a ring structure, and more preferably has a ring structure in the main chain.
  • the resin composition (Q) contains a (meth) acrylic polymer having a ring structure in the main chain, the heat resistance of the resin composition (Q) can be increased.
  • the ring structure of the main chain of the (meth) acrylic polymer includes a lactone ring structure, a cyclic imide structure (eg, a maleimide structure, a glutarimide structure, etc.), and a cyclic anhydride structure (eg, a maleic anhydride structure, a glutaric anhydride).
  • a (meth) acrylic-type polymer has the same ring structure as the ring structure which the polymer chain (B) of a copolymer (P) has in a principal chain.
  • the (meth) acrylic polymer preferably has a (meth) acryl unit contained in the polymer chain (B) of the copolymer (P) and a ring structural unit contained in the polymer chain (B). If the resin composition (Q) contains such a (meth) acrylic polymer, the compatibility with the copolymer (P) increases, and the transparency and heat resistance of the resin composition (Q) are increased. The resin composition (Q) can be easily prepared.
  • the content of the copolymer (P) is preferably 1% by mass or more, more preferably 2% by mass or more, further preferably 3% by mass or more, and 5% by mass. % Or more is even more preferable, which makes it easier to increase the mechanical strength of the resin composition (Q).
  • the upper limit of the content ratio of the copolymer (P) in the resin composition (Q) is not particularly limited, and the resin composition (Q) may be composed only of the copolymer (P).
  • the content of the copolymer (P) may be 90% by mass or less, 70% by mass or less, 50% by mass or less, 40% by mass or less, or 30% by mass or less.
  • the solid content of the resin composition (Q) means the amount of the resin composition (Q) excluding the solvent.
  • the content of the polymer chain (A) of the copolymer (P) is preferably 0.5 mass% or more, more preferably 1 mass% or more, and 3 mass%. % Or more is more preferable, 50 mass% or less is preferable, 30 mass% or less is more preferable, and 20 mass% or less is further more preferable. If the content rate of the polymer chain (A) in a resin composition (Q) is 0.5 mass% or more, it will become easy to raise the mechanical strength of a resin composition (Q). If the content rate of the polymer chain (A) in a resin composition (Q) is 50 mass% or less, it will become easy to improve transparency and heat resistance of a resin composition (Q).
  • the content ratio of the polymer chain (A) can be determined, for example, by 1 H-NMR.
  • the content of the (meth) acrylic polymer in the solid content of 100% by mass of the resin composition (Q) is 1% by mass or more.
  • 20 mass% or more is more preferable, 30 mass% or more is further preferable, 99 mass% or less is preferable, 95 mass% or less is more preferable, and 90 mass% or less is further preferable.
  • the total content of the copolymer (P) and the (meth) acrylic polymer is preferably 50% by mass or more, more preferably 70% by mass or more, and 80 More preferably, it is more preferably 90% by weight or more.
  • the upper limit of the content ratio of the copolymer (P) and the (meth) acrylic polymer in the resin composition (Q) is not particularly limited, and the resin composition (Q) is substantially composed of the copolymer (P).
  • the total content of the copolymer (P) and the (meth) acrylic polymer is 100% by mass in the solid content of the resin composition (Q). 99 mass% or more may be sufficient.
  • the resin composition (Q) may contain a polymer other than the (meth) acrylic polymer.
  • a polymer include polyethylene, polypropylene, ethylene-propylene polymer, poly (4 -Methyl-1-pentene) and other olefin polymers; halogen-containing polymers such as vinyl chloride and chlorinated vinyl resins; polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene -Styrene polymer such as styrene copolymer; Polyester such as polymer polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; Polyamide such as nylon 6, nylon 66, nylon 610; Polyacetal; Polycarbonate; Polyphenylene oxide; Polypheny Polysulfide; Polyetheretherketone; Polysulfone; Polyethersulfone; Polyoxypent
  • the resin composition (Q) may contain various additives as long as the effects of the present invention are not impaired.
  • additives include hindered phenol-based, phosphorus-based and sulfur-based antioxidants; light-resistant stabilizers, weather-resistant stabilizers, heat stabilizers and other stabilizers; reinforcing materials such as glass fibers and carbon fibers; ultraviolet rays Absorbers; near infrared absorbers; flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; phase difference adjusting agents such as phase difference increasing agents, phase difference reducing agents, phase difference stabilizers; anionic, Antistatic agents including cationic and nonionic surfactants; Colorants such as inorganic pigments, organic pigments, dyes; organic fillers and inorganic fillers; resin modifiers; organic fillers and inorganic fillers; .
  • the content of each additive in the resin composition (Q) is preferably in the range of 0 to 5% by mass, more preferably
  • ultraviolet absorbers examples include benzophenone compounds, salicylate compounds, benzoate compounds, triazole compounds, and triazine compounds, and known ultraviolet absorbers can be used.
  • examples of the benzophenone compounds include 2,4-dihydroxybenzophenone, 4-n-octyloxy-2-hydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone and the like.
  • Examples of the silicate compound include pt-butylphenyl silicate.
  • benzoate compound examples include 2,4-di-t-butylphenyl-3 ', 5'-di-t-butyl-4'-hydroxybenzoate.
  • triazole compounds examples include 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (3,5 -Di-tert-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -p-cresol, 2- (2H-benzotriazol-2-yl) -4 , 6-Bis (1-methyl-1-phenylethyl) phenol, 2-benzotriazol-2-yl-4,6-di-tert-butylphenol, 2- [5-chloro (2H) -benzotriazole-2- Yl] -4-methyl-6-tert-butylphenol, 2- (2H-benzotriazol-2-yl) -4,6-di-tert-butylphenol, 2- (2H Benzotriazol-2-yl) -4- (1,1,3,3
  • triazine compounds examples include 2-mono (hydroxyphenyl) -1,3,5-triazine compounds, 2,4-bis (hydroxyphenyl) -1,3,5-triazine compounds, 2,4,6-tris ( Hydroxyphenyl) -1,3,5-triazine compound and the like.
  • ultraviolet absorbers for example, “Tinuvin (registered trademark) 1577”, “Tinuvin (registered trademark) 460”, “Tinuvin (registered trademark) 477” (manufactured by BASF Japan), which are triazine-based ultraviolet absorbers, “Adekastab (registered trademark) LA-F70” (manufactured by ADEKA), “Adekastab (registered trademark) LA-31” (manufactured by ADEKA), which is a triazole-based ultraviolet absorber, and the like can be mentioned. Only one type of ultraviolet absorber may be used, or two or more types may be used in combination.
  • antioxidant a compound having a radical scavenging function or a peroxide decomposition function can be used, and a known antioxidant can be used.
  • antioxidants include hindered phenol antioxidants, hindered amine antioxidants, phosphorus antioxidants, sulfur antioxidants, benzotriazole antioxidants, benzophenone antioxidants, and hydroxylamines.
  • Antioxidants, salicylic acid ester antioxidants, triazine antioxidants and the like can be mentioned.
  • hindered phenol antioxidants, hindered amine antioxidants, phosphorus antioxidants, and sulfur antioxidants are preferable. More preferably, a hindered phenolic antioxidant, a hindered amine antioxidant, and a phosphorus antioxidant are mentioned. Only one type of antioxidant may be used, or two or more types may be used in combination.
  • hindered phenol antioxidants examples include 2,4-bis [(laurylthio) methyl] -o-cresol, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl), 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) and the like.
  • hindered amine antioxidants include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-methyl-2,2,6,6-tetramethyl-4-piperidyl) sebacate, N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) -1,6-hexamethylenediamine, 2-methyl-2- (2,2,6,6-tetramethyl-4 -Piperidyl) amino-N- (2,2,6,6-tetramethyl-4-piperidyl) propionamide, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) (1,2,3,3) 4-butanetetracarboxylate, poly [(6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl) ((2,2,6,6 -Tetramethyl-4-piperi Le) imino) hexamethyl ((2,2,6,6,
  • Phosphorous antioxidants include tris (isodecyl) phosphite, tris (tridecyl) phosphite, phenyl isooctyl phosphite, phenyl isodecyl phosphite, phenyl di (tridecyl) phosphite, diphenyl isooctyl phosphite, diphenyl isodecyl Phosphite, diphenyltridecyl phosphite, triphenyl phosphite, tris (nonylphenyl) phosphite, 4,4 'isopropylidenediphenol alkyl phosphite, trisnonylphenyl phosphite, trisdinonylphenyl phosphite, other phosphites Oligomer type and polymer type compounds having a structure can also be used.
  • sulfur-based antioxidants examples include 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis [(octylthio) methyl]- o-cresol, 2,4-bis [(laurylthio) methyl] -o-cresol, and the like.
  • oligomer type or polymer type compounds having a thioether structure can also be used.
  • the weight average molecular weight of the resin composition (Q) is preferably 20,000 or more, more preferably 50,000 or more, further preferably 30,000 or more, still more preferably 50,000 or more, and particularly preferably 70,000 or more. Moreover, 1 million or less is preferable, 500,000 or less is more preferable, 300,000 or less is more preferable, 200,000 or less is still more preferable.
  • the weight average molecular weight of the resin composition (Q) means a value in terms of polystyrene obtained by measuring the resin composition (Q) by gel permeation chromatography, and the resin composition (Q) is composed of the copolymer (P) and ( When it contains a (meth) acrylic polymer, the weight average molecular weight of the resin composition (Q) is the total weight average molecular weight of these plural types of polymers.
  • the weight average molecular weight of the resin composition (Q) is preferably 1.1 times or more, more preferably 1.2 times or more, and 1.3 times the weight average molecular weight of the polymer chain (A) of the copolymer (P). More preferably, 20 times or less is preferable, 12 times or less is more preferable, 10 times or less is more preferable, 7 times or less is further more preferable, and 5 times or less is particularly preferable. Thereby, it becomes easy to give each characteristic of transparency, mechanical strength, and heat resistance to the resin composition (Q) in a balanced manner.
  • the refractive index of the resin composition (Q) is preferably close to the refractive index of the polymer chain (A) of the copolymer (P), which makes it easy to ensure the transparency of the resin composition (Q). .
  • the difference between the refractive index of the resin composition (Q) and the refractive index of the polymer chain (A) of the copolymer (P) is preferably less than 0.1, more preferably 0.05 or less. Preferably, 0.02 or less is more preferable.
  • the refractive index of the resin composition (Q) is preferably a value close to the refractive index of the copolymer (P).
  • the refractive index and the refractive index of the resin composition (Q) The difference from the refractive index of the combined (P) is preferably less than 0.1, more preferably 0.05 or less, and further preferably 0.02 or less.
  • the resin composition (Q) preferably has a total light transmittance of 70% or more, more preferably 80% or more, and still more preferably 90% or more when an unstretched film having a thickness of 160 ⁇ m is formed. Moreover, it is preferable that haze is 5.0% or less, 3.0% or less is more preferable, and 1.0% or less is further more preferable. Regarding the internal haze, the internal haze per 100 ⁇ m thickness when it is an unstretched film is preferably 5.0% or less, more preferably 3.0% or less, and further 2.0% or less. Preferably, 1.0% or less is even more preferable.
  • the resin composition (Q) exhibits a sea-island structure when formed into an unstretched film having a thickness of 160 ⁇ m, and the island size in the structure is preferably 500 nm or less, more preferably 400 nm or less, and even more preferably 350 nm or less. Thereby, when a film is formed from the resin composition (Q), it becomes easy to obtain a highly transparent film.
  • the lower limit of the island size of the sea-island structure is not particularly limited, and may be, for example, 10 nm or more, or 50 nm or more. Observation of the sea-island structure of the unstretched film formed from the resin composition (Q) is performed by a scanning electron microscope (STEM), and the specific measurement method is referred to the method described in the examples.
  • the resin composition (Q) preferably has a glass transition temperature of 100 ° C. or more and less than 100 ° C., respectively.
  • a glass transition temperature of 100 ° C. or higher is referred to as “high temperature side glass transition temperature”, and a glass transition temperature of less than 100 ° C. is referred to as “low temperature side glass transition temperature”.
  • the resin composition (Q) may have a plurality of glass transition temperatures on the high temperature side, or may have a plurality of glass transition temperatures on the low temperature side. Since the resin composition (Q) has a glass transition temperature on the high temperature side, the heat resistance of the resin composition (Q) is increased, and when the resin composition (Q) is molded into a film or the like, it is softened even at a high temperature.
  • the glass transition temperature on the high temperature side of the resin composition (Q) is preferably 113 ° C. or higher, more preferably 116 ° C. or higher, further preferably 120 ° C. or higher, and the processing of the resin composition (Q). From the viewpoint of enhancing the properties, it is preferably less than 300 ° C, more preferably less than 200 ° C, and even more preferably less than 180 ° C.
  • the glass transition temperature on the low temperature side of the resin composition (Q) is preferably ⁇ 100 ° C. or higher, more preferably ⁇ 90 ° C. or higher, further preferably ⁇ 80 ° C. or higher, preferably lower than 50 ° C., more preferably lower than 30 ° C. Preferably, it is less than 10 ° C.
  • the resin composition (Q) preferably has an insoluble content in chloroform of 10% by mass or less, more preferably 8% by mass or less, and still more preferably 5% by mass or less.
  • the copolymer (P) contained in the resin composition (Q) does not substantially contain a crosslinked structure or can be suppressed to a small amount even if it contains it, so that the insoluble content of the resin composition (Q) in chloroform The ratio of can be reduced. For this reason, the resin composition (Q) has a small amount of foreign matter contained therein. For example, when an optical film is formed from the resin composition (Q), there is little surface irregularities and defects, and a highly transparent film can be easily obtained. Obtainable. Moreover, when removing a foreign material from the resin composition, the load applied to the filter for removing a foreign material is reduced, and the production efficiency is improved.
  • the organic fine particles are graft copolymers having a cross-linked structure, so that they are insoluble in chloroform. It will be a thing. Therefore, if a copolymer having such a crosslinked structure is used as a raw material for an optical film that requires high quality, it may cause foreign matters or defects of the film, or may become surface irregularities when the film is stretched, such as haze. This is not preferable because an appearance defect occurs. Further, the organic fine particles give a high load to the filter for removing foreign substances when removing foreign substances from the resin composition prior to film forming, and there is a concern that productivity may be reduced.
  • the insoluble content of the resin composition in chloroform is determined by the method described in the examples. Specifically, 1 g of the resin composition was added to 20 g of chloroform, and this was filtered through a Teflon (registered trademark) membrane filter having a pore diameter of 0.5 ⁇ m, and the amount of insoluble matter collected in the membrane filter was measured. The ratio of the insoluble content of the resin composition to chloroform is determined.
  • the foaming amount generated when heated at 290 ° C. for 20 minutes is preferably 20 pieces / g or less, more preferably 10 pieces / g or less, and further preferably 5 pieces / g or less. .
  • the amount of foaming is measured using a melt indexer specified in JIS K 7210.
  • the dried resin composition is filled in a melt indexer cylinder, held at 290 ° C. for 20 minutes, and then extruded into a strand. Then, the number of bubbles generated between the upper standard line and the lower standard line of the obtained strand is counted and expressed by the number of bubbles per 1 g of the resin composition.
  • the melt viscosity of the resin composition (Q) at 270 ° C. and 100 (/ second) measured based on JIS K 7199 (1999) is preferably 50 Pa ⁇ s or more, more preferably 100 Pa ⁇ s or more, and 5000 Pa ⁇ s. The following is preferable, and 1000 Pa ⁇ s or less is more preferable. If the melt viscosity of the resin composition (Q) is in such a range, the moldability of the resin composition (Q) is improved, and fish eyes and die lines are less likely to occur in the molded body. Appearance is improved.
  • the resin composition (Q) preferably has a breaking energy of 20 mJ or more, more preferably 24 mJ or more, and even more preferably 28 mJ or more when it is an unstretched film having a thickness of 160 ⁇ m. Thereby, when a film is formed from the resin composition (Q), it becomes easy to obtain a film having high mechanical strength.
  • the breaking energy is determined by the method described in the examples.
  • the resin composition (Q) preferably has a trouser tear strength of 15 mJ or more, more preferably 18 mJ or more, and even more preferably 22 mJ or more when a stretched film having a thickness of 40 ⁇ m is used. Thereby, when a film is formed from the resin composition (Q), it becomes easy to obtain a film having high tear strength.
  • Trouser tear strength is determined by the method described in the examples.
  • the number of folding resistance tests by the MIT folding resistance test when it is a stretched film having a thickness of 40 ⁇ m is preferably 1000 times or more, more preferably 1200 times or more, and more than 1350 times. Further preferred. Thereby, when forming a film from resin composition (Q), it becomes easy to obtain the high film which is hard to fracture
  • the MIT folding resistance test is performed by the method described in the examples.
  • the production method of the resin composition (Q) is not particularly limited, but when the copolymer (P) is polymerized, it is easy to polymerize the (meth) acrylic polymer together.
  • the (meth) acrylic polymer corresponding to the polymer chain (B) of the copolymer (P) is simultaneously generated together with the copolymer (P).
  • a resin composition (Q) containing the copolymer (P) and the (meth) acrylic polymer can be obtained. it can.
  • the production method of the resin composition (Q) includes the polymerization step described in the production method of the copolymer (P), or the copolymer (P) and the main chain by the polymerization step and the ring structure formation step.
  • a (meth) acrylic polymer having a ring structure is obtained.
  • the method for producing the resin composition (Q) is not limited to the above method, and the copolymer (P) may be isolated and mixed with another polymer to obtain the resin composition (Q). Further, in the above method for producing the copolymer (P), after completion of the graft copolymerization reaction to the copolymer (P1), another monomer is added to conduct a polymerization reaction to obtain a resin composition (Q). You may get Alternatively, with respect to the mixture of the copolymer (P) and the (meth) acrylic polymer obtained by the method for producing the copolymer (P), another polymer (for example, another (meth) (Acrylic polymer) may be added to obtain the resin composition (Q). When other polymers are added and mixed, they may be melt-kneaded. In this case, for example, a general apparatus such as a kneader or a multi-screw extruder can be used.
  • the filtration step described above can be performed subsequent to the polymerization step or the ring structure formation step.
  • the amount of foreign matter in the resin composition (Q) can be reduced, and the resin composition (Q) is suitably applied to applications such as optical films that require high quality. Can do.
  • the filtration step refer to the description of the filtration step in the production method of the copolymer (P).
  • the copolymer (P) and the resin composition (Q) can be used in a liquid state, or can be used as a cured product. In the latter case, the copolymer (P) and the resin composition (Q) can be heated and melted and molded into an arbitrary shape to form a molded body.
  • a forming object for example, plate shape, sheet shape, granular, powdery, lump shape, particle aggregate shape, spherical shape, elliptical spherical shape, lens shape, cubic shape, columnar shape, rod shape, Examples include a cone shape, a cylindrical shape, a needle shape, a fiber shape, a hollow fiber shape, and a porous shape.
  • the molded body of the copolymer (P) and the resin composition (Q) can be used for injection molding, extrusion molding, vacuum molding, compression molding, blow molding and the like. Is preferably a powder of 1 ⁇ m to 1000 ⁇ m, a cylindrical or spherical pellet having a major axis of about 1 mm to 10 mm, or a mixture thereof.
  • the copolymer (P) and the resin composition (Q) can be formed into a film.
  • a film forming method a known method such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, a compression molding method, or the like can be used. Among these, the solution cast method and the melt extrusion method are preferable.
  • Examples of the solvent used in the solution casting method include chlorinated aliphatic hydrocarbons such as chloroform and dichloromethane; aromatic hydrocarbons such as toluene, xylene and benzene; methanol, ethanol, isopropanol, n-butanol, 2- Alcohols such as butanol; cellosolves such as methyl cellosolve, ethyl cellosolve and butyl cellosolve; ethers such as diethyl ether, dioxane and tetrahydrofuran; ketones such as acetone and cyclohexanone: esters such as ethyl acetate, propyl acetate and butyl acetate; Examples include dimethylformamide; dimethyl sulfoxide and the like. These may be used alone or in combination of two or more.
  • Examples of the apparatus for performing the solution casting method include a drum-type casting machine, a band-type casting machine, and a spin coater.
  • melt extrusion method examples include a T-die method and an inflation method.
  • the temperature (molding temperature) for melt extrusion molding of the film is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, 350 ° C. or lower, and more preferably 300 ° C. or lower.
  • a film wound around a roll is obtained by winding the film extruded from an extruder having a T-die attached to the tip onto a roll.
  • stretching uniaxial stretching
  • the extruder preferably has a cylinder and a screw provided in the cylinder, and is provided with heating means.
  • the L / D value of the extruder (L is the length of the cylinder of the extruder, D is the inner diameter of the cylinder) is preferably 10 or more in order to sufficiently plasticize the resin composition and obtain a good kneaded state.
  • the above is more preferable, 20 or more is more preferable, 100 or less is preferable, 80 or less is more preferable, and 60 or less is more preferable.
  • the L / D value is less than 10
  • the resin composition cannot be sufficiently plasticized and a good kneaded state may not be obtained.
  • the L / D value exceeds 100, excessive heat generation is applied to the resin composition, so that the components contained in the resin composition are easily decomposed.
  • the set temperature (heating temperature) of the cylinder of the extruder is preferably 200 ° C. or higher, more preferably 250 ° C. or higher, 350 ° C. or lower, more preferably 320 ° C. or lower.
  • setting temperature is less than 200 degreeC, there exists a possibility that the melt viscosity of a resin composition may become high too much and productivity of a film may fall.
  • setting temperature exceeds 350 degreeC, the component contained in a resin composition becomes easy to thermally decompose.
  • the extruder preferably has one or more open vent parts.
  • the decomposition gas can be sucked from the open vent portion, and the amount of residual volatile components in the obtained film can be reduced.
  • the open vent part may be in a reduced pressure state, and the degree of pressure reduction at this time is preferably the pressure (absolute pressure) of the open vent part, preferably 1.3 hPa. As mentioned above, More preferably, it is 13.3 hPa or more, 931 hPa or less is preferable and 798 hPa or less is more preferable.
  • the melt extrusion molding it is preferable to filter the copolymer (P) or the resin composition (Q) in a molten state using a polymer filter, whereby the copolymer (P) or the resin composition ( Q) Foreign matter contained in the product can be removed.
  • a polymer filter it is preferable to filter the copolymer (P) or the resin composition (Q) in a molten state using a polymer filter, whereby the copolymer (P) or the resin composition ( Q) Foreign matter contained in the product can be removed.
  • the temperature of the melt extrusion molding is preferably, for example, 200 ° C. or higher, more preferably 250 ° C. or higher, 350 ° C. or lower, more preferably 320 ° C. or lower. If the temperature of melt extrusion molding is 200 ° C. or higher, the viscosity of the copolymer (P) or the resin composition (Q) is lowered, and the residence time in the polymer filter can be shortened. If the temperature of the melt extrusion molding is 350 ° C. or lower, for example, when the film is continuously formed, defects such as holes in the film, a flow pattern, and flow lines are hardly formed, and a film having a good appearance can be easily obtained.
  • the configuration of the polymer filter is not particularly limited.
  • a polymer filter in which a large number of leaf disk filters are arranged in a housing is preferably used.
  • the filter medium of the leaf disk type filter should use any type of filter medium, such as a filter medium obtained by sintering a metal fiber non-woven fabric, a filter medium obtained by sintering metal powder, a filter medium obtained by laminating several metal meshes, or a hybrid type filter medium combining these. Can do.
  • the filter medium which sintered the metal fiber nonwoven fabric is used preferably.
  • the filtration accuracy (pore diameter) of the polymer filter is not particularly limited.
  • the filtration accuracy is usually 15 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, taking into account the size of the foreign matter to be removed.
  • the lower limit of the filtration accuracy is not particularly limited, but the copolymer (P) and the resin composition (Q) are heated by increasing the residence time of the copolymer (P) and the resin composition (Q) in the polymer filter. In consideration of deterioration or a decrease in film productivity, 1 ⁇ m or more is preferable.
  • the shape of the polymer filter is not particularly limited.
  • a type of polymer filter for example, it has a plurality of resin flow ports, an internal flow type having a resin flow path in the center pole, a cross section is in contact with the inner peripheral surface of the leaf disk filter at a plurality of vertices or faces, An outer flow type having a resin flow path on the outer surface of the center pole is exemplified.
  • an external flow type polymer filter is used preferably.
  • the residence time of the copolymer (P) or the resin composition (Q) in the polymer filter is preferably 20 minutes or less, more preferably 10 minutes or less, and even more preferably 5 minutes or less.
  • the inlet pressure of the polymer filter and the outlet pressure of the filter are, for example, 3 MPa to 15 MPa and 0.3 MPa to 10 MPa, respectively.
  • the pressure loss in melt filtration is preferably 1 MPa or more and 15 MPa or less. When the pressure loss is 1 MPa or less, the flow path through which the copolymer (P) and the resin composition (Q) pass through the polymer filter is likely to occur. The unevenness of the flow path causes the quality of the obtained film to deteriorate. When the pressure loss exceeds 15 MPa, the polymer filter tends to be damaged.
  • melt-filtering the copolymer (P) or the resin composition (Q) it is preferable to stabilize the pressure in the polymer filter by installing a gear pump between the extruder and the polymer filter. Melt filtration using a polymer filter can be performed at any timing other than during melt extrusion molding.
  • a film by the melt extrusion method When forming a film by the melt extrusion method, it may be a stretched film by stretching. By stretching, the mechanical strength of the film can be further improved.
  • a stretching method for obtaining a stretched film a conventionally known stretching method can be applied. For example, uniaxial stretching such as free-width uniaxial stretching, constant-width uniaxial stretching; biaxial stretching such as sequential biaxial stretching and simultaneous biaxial stretching; A birefringent film in which molecular groups oriented in the stretching direction and the thickness direction are mixed by forming and heat-stretching the laminate and applying a shrinkage force in a direction perpendicular to the stretching direction to the film. Stretching to obtain. From the viewpoint of improving mechanical strength such as folding resistance of the film, biaxial stretching is preferably used.
  • simultaneous biaxial stretching is preferably used from the viewpoint of improving mechanical strength such as folding resistance in two orthogonal directions in the film plane.
  • the two orthogonal directions in the plane include a direction parallel to the slow axis in the film plane and a direction perpendicular to the slow axis in the film plane.
  • the stretching conditions such as the stretching ratio, the stretching temperature, and the stretching speed may be appropriately set according to the desired mechanical strength and retardation value, and are not particularly limited.
  • Examples of the stretching apparatus include a roll stretching machine, a tenter-type stretching machine, and a small experimental stretching apparatus such as a tensile tester, a uniaxial stretching machine, a sequential biaxial stretching machine, and a simultaneous biaxial stretching machine.
  • An apparatus can be used.
  • the stretching temperature is preferably around the highest glass transition temperature of the copolymer (P) or the resin composition (Q). Specifically, it is preferably performed within the range of the highest glass transition temperature ⁇ 30 ° C. to the highest glass transition temperature + 50 ° C., more preferably the highest glass transition temperature ⁇ 20 ° C. to the highest glass transition temperature + 45 ° C. Within the range, more preferably within the range of the highest glass transition temperature ⁇ 10 ° C. to the highest glass transition temperature + 40 ° C. If the glass transition temperature is lower than ⁇ 30 ° C., a sufficient draw ratio may not be obtained. If it is higher than the highest glass transition temperature + 50 ° C., resin flow occurs and it becomes difficult to perform stable stretching.
  • the draw ratio defined by the area ratio is preferably in the range of 1.1 to 30 times, more preferably in the range of 1.2 to 20 times, and still more preferably in the range of 1.3 to 10 times.
  • the stretching ratio in one direction is preferably within a range of 1.05 to 10 times, more preferably within a range of 1.1 to 7 times, and even more preferably 1.2 to 5 times. Within range.
  • the stretching speed (one direction) is preferably in the range of 10 to 20,000% / min, more preferably in the range of 100 to 10,000% / min. When it is slower than 10% / min, it takes time to obtain a sufficient draw ratio, and the production cost tends to increase. If it is faster than 20,000% / min, the stretched film may be broken.
  • optical film Since the film formed from the copolymer (P) or the resin composition (Q) is excellent in transparency, it can be suitably used as an optical film.
  • the optical film thus obtained is excellent in mechanical strength and heat resistance.
  • the optical film may be a stretched film or an unstretched film.
  • an optical protective film for example, an optical protective film (specifically, a protective film for substrates of various optical disks (VD, CD, DVD, MD, LD, etc.)
  • a polarizing plate provided in an image display device such as a liquid crystal display
  • examples include a polarizer protective film, a viewing angle compensation film, a light diffusion film, a reflection film, an antireflection film, an antiglare film, a brightness enhancement film, a conductive film for a touch panel, and a retardation film.
  • the thickness of the optical film is preferably 5 ⁇ m or more, more preferably 15 ⁇ m or more, and further preferably 20 ⁇ m or more from the viewpoint of increasing the strength of the optical film.
  • the thickness of the optical film is preferably 350 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 150 ⁇ m or less.
  • the thickness of the optical film can be measured using, for example, a Digimatic micrometer manufactured by Mitutoyo Corporation.
  • the optical film preferably has a high light transmittance.
  • the total light transmittance is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
  • the optical film preferably has a haze of 5.0% or less, more preferably 3.0% or less, and even more preferably 1.0% or less from the viewpoint of enhancing transparency.
  • the internal haze is preferably 5.0% or less, more preferably 3.0% or less, still more preferably 2.0% or less, and even more preferably 1.0% or less.
  • the optical film preferably has an in-plane retardation Re of 0 nm to 1000 nm with respect to light having a wavelength of 589 nm, and a thickness direction retardation Rth of ⁇ 1000 nm to 1000 nm with respect to the light. More preferably, Re is 0 nm to 100 nm, Rth is ⁇ 100 nm to 100 nm, more preferably Re is 0 nm to 50 nm, Rth is ⁇ 30 nm to 30 nm, particularly preferably Re is 0 nm to 10 nm, Rth is from ⁇ 10 nm to 10 nm.
  • An optical film exhibiting such an in-plane retardation Re and a thickness direction retardation Rth has good viewing angle characteristics and contrast characteristics, and can be suitably applied to image display devices such as liquid crystal displays. It becomes.
  • nx is The refractive index in the slow axis direction in the film plane (the direction in which the refractive index is maximum in the film plane)
  • ny is the refractive index in the direction perpendicular to nx in the film plane
  • nz is the refractive index in the film thickness direction
  • d Represents the thickness (nm) of the film.
  • the optical film may be composed only of a film formed from the copolymer (P) or the resin composition (Q), or may be composed of another optical material laminated on the film.
  • optical materials include a polarizing plate, a stretched oriented film made of polycarbonate, a stretched oriented film made of cyclic polyolefin, and the like.
  • Various functional coating layers may be provided on the surface of the optical film as necessary.
  • the functional coating layer include an antistatic layer, an adhesive layer, an adhesive layer, an easy adhesion layer, an antiglare (non-glare) layer, an antifouling layer such as a photocatalyst layer, an antireflection layer, a hard coat layer, and an ultraviolet ray.
  • the optical adjustment layer for adjusting suitably the transmittance
  • the optical film of the present invention can be suitably used particularly for a polarizer protective film.
  • the polarizer protective film is not particularly limited except that it contains a copolymer (P).
  • an optical film (polarizer protective film) may be provided on one or both sides of the polarizer to constitute a polarizing plate.
  • the optical film (polarizer protective film) is preferably fixed to the polarizer directly or indirectly via another layer with an adhesive or a pressure-sensitive adhesive.
  • the type of the polarizer is not particularly limited.
  • a polarizer obtained by dyeing and stretching a polyvinyl alcohol film a polyene polarizer such as dehydrated polyvinyl alcohol or dehydrochlorinated polyvinyl chloride; a multilayer laminate or a cholesteric liquid crystal is used.
  • polyvinyl alcohol is dyed with a dichroic substance such as iodine or a dichroic dye and then uniaxially stretched to obtain a polarizer, and a polarizer protective film is provided on one or both sides of the polarizer.
  • the structure provided with (optical film) is mentioned.
  • the optical film can also be used as a transparent conductive film by forming a transparent conductive layer on the surface.
  • any material conventionally used as a conductive material in the field can be used.
  • the optical film of the present invention (for example, a polarizer protective film or a transparent conductive film) can be suitably used for an image display device.
  • the image display device include a liquid crystal display device.
  • the image display unit can be configured to have the optical film of the present invention together with members such as a liquid crystal cell, a polarizing plate, and a backlight.
  • the image display device other than the liquid crystal display device include an electroluminescence (EL) display panel, a plasma display panel (PDP), a field emission display (FED), a QLED, and a micro LED.
  • Tg Glass transition temperature
  • the glass transition temperature of less than 40 ° C was measured using a differential scanning calorimeter (DSC-3500, manufactured by Netch Co., Ltd.), and the sample was heated from -100 ° C to 60 ° C (temperature increase rate: 10 ° C / min) in a nitrogen gas atmosphere. From the DSC curve obtained in this way, the starting point method was used for evaluation. An empty container was used as a reference.
  • DSC-3500 differential scanning calorimeter
  • the monomer reaction rate (conversion rate) is determined by measuring the amount of residual monomer in the polymerization reaction solution using gas chromatography (Shimadzu Corporation, GC-2014). It was.
  • Breaking energy (falling ball test) The breaking energy was obtained as follows. First, the resin composition was formed into a film (unstretched film) having a thickness of 160 ⁇ m by hot pressing. Next, a test of dropping a ball having a mass of 0.0054 kg from a certain height was carried out 10 times on this film, and the average value of the height (breaking height) when the film was broken was obtained. Specifically, when the height was set in several steps and the balls were dropped in order from the lowest height, the height at which the film was broken was obtained, and this was repeated 10 times to break the film. The height was obtained 10 times, and the average value was obtained as the breaking height.
  • the resin composition was formed into a film by hot pressing to obtain a 160 ⁇ m-thick film (unstretched film), which was a haze meter (NDH-5000, manufactured by Nippon Denshoku Industries Co., Ltd.). ) To measure the total light transmittance.
  • the obtained stretched film was cut into a size of 90 mm ⁇ 15 mm to obtain a test piece, and was used in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% using a MIT folding resistance tester (BE-201, manufactured by Tester Sangyo Co., Ltd.). A load of 200 g was applied and the number of MIT folding resistance tests was measured according to JIS P 8115 (2001).
  • Trouser tear strength The trouser tear strength was determined in accordance with JIS K 7128-1 (1998). Specifically, the stretched film obtained in accordance with the description in (1-10) above is cut into a size of 120 mm ⁇ 30 mm and allowed to stand for 1 hour or longer in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50%. The test piece was tested using an autograph (manufactured by Shimadzu Corp., AGS-X) at a test speed of 200 mm / min. The average of the tearing force of 35 mm excluding 20 mm at the start of tearing and 5 mm before the end of tearing The value was calculated, and the average value of the five samples was taken as the measurement result.
  • In-plane retardation Re (nx ⁇ ny) ⁇ d
  • Thickness direction retardation Rth [(nx + ny) / 2 ⁇ nz] ⁇ d
  • Example 1 Preparation of Resin Composition (A-1) Polyisoprene anhydrous in a reactor equipped with a stirrer, temperature sensor, cooling pipe and nitrogen introduction pipe 3 parts of esterified product of maleic acid adduct and 2-hydroxyethyl methacrylate (Kuraray, UC-102M), 26 parts of methyl methacrylate (MMA), 1 part of methyl 2- (hydroxymethyl) acrylate (MHMA), 50 parts of toluene was charged as a polymerization solvent, and the temperature was raised to 105 ° C. through nitrogen.
  • A-1 Polyisoprene anhydrous in a reactor equipped with a stirrer, temperature sensor, cooling pipe and nitrogen introduction pipe 3 parts of esterified product of maleic acid adduct and 2-hydroxyethyl methacrylate (Kuraray, UC-102M), 26 parts of methyl methacrylate (MMA), 1 part of methyl 2- (hydroxymethyl) acrylate (MHMA), 50 parts of toluene was charged as
  • t-amylperoxyisononanoate manufactured by Arkema Yoshitomi Co., Ltd., Luperox (registered trademark) 570
  • solution polymerization was carried out at 105 to 110 ° C. for 30 minutes.
  • 0.01 parts of stearyl phosphate was added here as a cyclization catalyst and reacted for 10 minutes.
  • a resin composition containing a lactone ring-containing (meth) acrylic polymer and a graft copolymer obtained by grafting the polymer chain onto a polyisoprene chain was obtained.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 16%, and the reaction rate of MHMA was 10%.
  • the content ratio of units derived from (meth) acrylic acid ester was 96.2% by mass, and the content ratio of ring structural units was 3.5% by mass.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • methyl ethyl ketone (MEK) is added to the obtained reaction solution for dilution, and this is filtered through a PTFE (polytetrafluoroethylene) filter having a pore size of 10 ⁇ m, and then stirred in a large amount of methanol. Slowly added. At this time, the precipitated white solid was taken out and dried at 2.6 kPa and 80 ° C. for about 1 hour to remove the solvent, whereby the lactone ring-containing (meth) acrylic polymer and the polymer chain were grafted to the polyisoprene chain.
  • a resin composition (A-1) containing a graft copolymer was obtained.
  • the weight average molecular weight of the resin composition (A-1) was 138,000, the number average molecular weight was 38,000, and the chloroform-insoluble content was 2%.
  • t-amylperoxyisononanoate manufactured by Arkema Yoshitomi Co., Ltd., Luperox (registered trademark) 570
  • solution polymerization was carried out at 105 to 110 ° C. for 30 minutes.
  • a resin composition containing a maleimide ring-containing (meth) acrylic polymer and a graft copolymer in which the polymer chain was grafted to a polyisoprene chain was obtained.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 14%, and the reaction rate of PMI was 21%.
  • the content ratio of units derived from (meth) acrylic acid ester was 83.6% by mass, and the content ratio of ring structural units was 16.4% by mass.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • a resin composition (A-2) containing a graft copolymer was obtained.
  • the resin composition (A-2) had a weight average molecular weight of 111,000, a number average molecular weight of 31,000, and a chloroform-insoluble content of 3%.
  • t-amylperoxyisononanoate manufactured by Arkema Yoshitomi Co., Ltd., Luperox (registered trademark) 570
  • solution polymerization was carried out at 105 to 110 ° C. for 30 minutes.
  • a resin composition containing a methyl methacrylate polymer (PMMA) and a graft copolymer in which the polymer chain was grafted to a polyisoprene chain was obtained.
  • the reaction rate of MMA calculated from the amount of residual monomer in the polymerization reaction solution was 16%.
  • a resin composition (A-3) containing a polymer was obtained.
  • the weight average molecular weight of the resin composition (A-3) was 124,000, and the number average molecular weight was 31,000.
  • stearyl phosphate 0.01 part was added as a cyclization catalyst and reacted for 1 hour, followed by heating at 240 ° C. for 1 hour in an autoclave. Thereby, a resin composition containing a lactone ring-containing (meth) acrylic polymer was obtained.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 82%, and the reaction rate of MHMA was 88%.
  • 50 parts of methyl ethyl ketone (MEK) was added to the obtained reaction solution for dilution, and then slowly added to a large amount of methanol with stirring. At this time, the precipitated white solid was taken out and dried at 2.6 kPa and 200 ° C.
  • the weight average molecular weight of the resin composition (B-1) was 138,000 and the number average molecular weight was 57,000.
  • a resin composition containing a maleimide ring-containing (meth) acrylic polymer was obtained.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 85%, and the reaction rate of PMI was 82%.
  • Example 3 Preparation of Resin Composition (C-1) 1 part of the resin composition (A-1) obtained in Example 1 and the resin composition (B-1) obtained in Comparative Example 2 9 parts was dissolved in 40 parts of MEK and mixed, and then dried at 2.6 kPa and 150 ° C. for about 1 hour to remove the solvent, thereby obtaining a resin composition (C-1).
  • the weight average molecular weight of the resin composition (C-1) was 133,000, and the number average molecular weight was 59,000.
  • Example 4 Preparation of Resin Composition (C-2) 1 part of the resin composition (A-2) obtained in Example 2 and the resin composition (B-2) obtained in Comparative Example 3 ) 9 parts, UV absorber (ADEKA, LA-31) 0.01 part, antioxidant (BASF, Irganox (registered trademark) 1010) 0.001 part, antioxidant (ADEKA) PEP-36) manufactured by Kogyo Co., Ltd. was dissolved in 40 parts of MEK, mixed and then dried at 2.6 kPa and 150 ° C. for about 1 hour to remove the solvent, whereby the resin composition (C-2 ) The weight average molecular weight of the resin composition (C-2) was 132,000, and the number average molecular weight was 51,000.
  • the content ratio of units derived from (meth) acrylic acid ester was 98.9% by mass, and the content ratio of ring structural units was 1.0% by mass.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the obtained reaction solution was filtered, reprecipitated, and dried, so that the lactone ring-containing (meth) acrylic polymer and the graft copolymer in which the polymer chain was grafted to the polyisoprene chain.
  • a resin composition (A-4) containing was obtained.
  • the resin composition (A-4) had a weight average molecular weight of 122,000, a number average molecular weight of 31,000, and a chloroform-insoluble content of 2%.
  • the resin composition (B-3) had a weight average molecular weight of 145,000 and a number average molecular weight of 63,000.
  • Comparative Example 6 Preparation of Resin Composition (C-3) 1 part of the resin composition (A-4) obtained in Comparative Example 4 and the resin composition (B-3) obtained in Comparative Example 5 9 parts was dissolved in 40 parts of MEK and mixed, and then dried at 2.6 kPa and 150 ° C. for about 1 hour to remove the solvent, thereby obtaining a resin composition (C-3).
  • the weight average molecular weight of the resin composition (C-3) was 144,000, and the number average molecular weight was 60,000.
  • the content ratio of units derived from (meth) acrylic acid ester was 27.4% by mass, and the content ratio of ring structural units was 67.1% by mass.
  • the resin composition (A-5) had a weight average molecular weight of 181,000, a number average molecular weight of 32,000, and a chloroform-insoluble content of 11%.
  • the obtained reaction solution was filtered, re-precipitated, and dried to obtain a resin composition (B-4) containing a lactone ring-containing (meth) acrylic polymer.
  • the weight average molecular weight of the resin composition (B-4) was 189,000, and the number average molecular weight was 52,000.
  • Comparative Example 9 Preparation of Resin Composition (C-4) 1 part of the resin composition (A-5) obtained in Comparative Example 7 and the resin composition (B-4) obtained in Comparative Example 8 9 parts was dissolved in 40 parts of MEK and mixed, and then dried at 2.6 kPa and 150 ° C. for about 1 hour to remove the solvent, thereby obtaining a resin composition (C-4).
  • the weight average molecular weight of the resin composition (C-4) was 178,000 and the number average molecular weight was 50,000.
  • t-butyl peroxyisopropyl carbonate (Kayakaku Akzo Co., Ltd., Kaya-Carbon (registered trademark) Bic75) was added as an initiator, and diluted with 5 parts of styrene (St) and 1 part of toluene.
  • Solution polymerization was carried out at 105 to 110 ° C. while adding 018 parts of t-butylperoxyisopropyl carbonate dropwise at a constant rate over 3 hours, and further aging was carried out for 4 hours.
  • a resin composition containing a maleimide ring-containing (meth) acrylic polymer formed by polymerization from MMA, PMI, and St and a graft copolymer in which the polymer chain was bonded to a SEBS triblock polymer chain was obtained.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 95%
  • the reaction rate of PMI was 98%
  • the reaction rate of St was 100%.
  • the content ratio of units derived from (meth) acrylic acid ester was 75.9% by mass, and the content ratio of ring structural units was 18.9% by mass.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the obtained polymerization reaction solution was 600 g / h in terms of resin in a vent type screw twin screw extruder (hole diameter: 15 mm, L / D: 45) having one rear vent and two forevents.
  • a transparent pellet of the composition (D-1) was obtained.
  • the operating conditions of the twin screw extruder were a barrel temperature of 260 ° C., a rotation speed of 300 rpm, and a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg).
  • the weight average molecular weight of the resin composition (D-1) is 15 million, the number average molecular weight is 60000, the glass transition temperature on the high temperature side is 138 ° C., the glass transition temperature on the low temperature side is ⁇ 68 ° C., and chloroform is insoluble.
  • the minute was 0.3% and the refractive index was 1.517.
  • the in-plane retardation Re and the thickness direction retardation Rth of the stretched film of the resin composition (D-1) were 0.9 nm and 2.9 nm, respectively.
  • Example 6 Preparation of Resin Composition (D-2)
  • SEBS triblock copolymer manufactured by Kraton, A1566
  • the polymerization reaction was carried out in the same manner as in Example 5 except that 10 parts, 69 parts of MMA, and 17 parts of PMI were used.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 96%, the reaction rate of PMI was 99%, and the reaction rate of St was 100%.
  • the content ratio of units derived from (meth) acrylic acid ester was 75.2% by mass, and the content ratio of ring structural units was 19.1% by mass.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the resulting polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 6 to obtain transparent resin composition (D-2) pellets.
  • the weight average molecular weight of the resin composition (D-2) is 148,000, the number average molecular weight is 59,000, the glass transition temperature on the high temperature side is 138 ° C., the glass transition temperature on the low temperature side is ⁇ 68 ° C., and chloroform is insoluble.
  • the minute was 0.3% and the refractive index was 1.517.
  • the island size of the sea-island structure of the unstretched film of the resin composition (D-2) was 200 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.2 nm and 3.5 nm, respectively.
  • Example 7 Preparation of Resin Composition (D-3)
  • SEBS triblock copolymer manufactured by Kraton, A1566
  • a polymerization reaction was carried out in the same manner as in Example 5 except that 15 parts, 65 parts of MMA and 16 parts of PMI were used and 4 parts of St was used as a monomer component to be added dropwise.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 96%, the reaction rate of PMI was 99%, and the reaction rate of St was 100%.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the resulting polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain a transparent resin composition (D-3) pellet.
  • the resin composition (D-3) has a weight average molecular weight of 14,000,000, a number average molecular weight of 53,000, a glass transition temperature on the high temperature side of 137 ° C., a glass transition temperature on the low temperature side of ⁇ 68 ° C., and chloroform insoluble. The minute was 0.3% and the refractive index was 1.517.
  • the island size of the sea-island structure of the unstretched film of the resin composition (D-3) was 200 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.8 nm and 4.5 nm, respectively.
  • Example 8 Preparation of resin composition (D-4)
  • SEBS triblock copolymer manufactured by Kraton, A1566
  • a polymerization reaction was carried out in the same manner as in Example 5 except that 20 parts, 61 parts of MMA and 15 parts of PMI were used, and 4 parts of St was used as a monomer component to be added dropwise.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 97%, the reaction rate of PMI was 99%, and the reaction rate of St was 100%.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the resulting polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-4) pellets.
  • the resin composition (D-4) has a weight average molecular weight of 145,000, a number average molecular weight of 60,000, a glass transition temperature on the high temperature side of 136 ° C., a glass transition temperature on the low temperature side of ⁇ 68 ° C., and chloroform insoluble.
  • the minute was 0.4% and the refractive index was 1.517.
  • the island size of the sea-island structure of the unstretched film of the resin composition (D-4) was 250 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.5 nm and 6.2 nm, respectively.
  • Example 9 Preparation of Resin Composition (D-5)
  • SEBS triblock copolymer manufactured by Aldrich, product number 200557
  • 72 parts MMA 16 parts PMI
  • the polymerization reaction was performed in the same manner as in Example 5 except that 2 parts of St was used.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 96%
  • the reaction rate of PMI was 99%
  • the reaction rate of St was 100%.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the obtained polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-5) pellets.
  • the resin composition (D-5) has a weight average molecular weight of 172,000, a number average molecular weight of 71,000, a glass transition temperature of 138 ° C., a chloroform insoluble content of 0.4%, and a refractive index of 1.515. there were.
  • the island size of the sea-island structure of the unstretched film of the resin composition (D-5) was 250 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.5 nm and 4.9 nm, respectively.
  • Example 10 Preparation of Resin Composition (D-6)
  • SEBS triblock copolymer manufactured by Asahi Kasei Co., Ltd., Tuftec (registered trademark)
  • Tuftec registered trademark
  • olefinic double bond content 0.44 mmol / g
  • styrene unit content 30% by mass 0.44 mmol / g
  • refractive index 1.515 10 parts
  • MMA 70 parts MMA 70 parts
  • PMI 16 parts A polymerization reaction was performed in the same manner as in Example 5 except that 4 parts of St was used as the body component.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 97%, the reaction rate of PMI was 99%, and the reaction rate of St was 100%.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the obtained polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-6) pellets.
  • the resin composition (D-6) has a weight average molecular weight of 135,000, a number average molecular weight of 56,000, a glass transition temperature of 138 ° C., a chloroform insoluble content of 0.5%, and a refractive index of 1.516. there were.
  • the island size of the sea-island structure of the unstretched film of the resin composition (D-6) was 300 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.3 nm and 2.3 nm, respectively.
  • Example 11 Preparation of Resin Composition (D-7)
  • SEBS triblock copolymer manufactured by Asahi Kasei Co., Ltd., Tuftec (registered trademark)
  • Tuftec registered trademark
  • P1083 olefinic double bond amount 2.40 mmol / g, styrene unit content 20% by mass, refractive index 1.500
  • 10 parts MMA 83 parts
  • PMI 6 parts A polymerization reaction was performed in the same manner as in Example 5 except that 1 part of St was used as the body component.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 96%, the reaction rate of PMI was 99%, and the reaction rate of St was 100%.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the obtained polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-7) pellets.
  • the resin composition (D-7) has a weight average molecular weight of 163,000, a number average molecular weight of 62,000, a glass transition temperature of 123 ° C., a chloroform insoluble content of 0.9%, and a refractive index of 1.500. there were.
  • the in-plane retardation Re and the thickness direction retardation Rth of the stretched film of the resin composition (D-7) were 0.3 nm and 4.5 nm, respectively.
  • Example 12 Preparation of Resin Composition (D-8)
  • SEBS triblock copolymer manufactured by Asahi Kasei Co., Ltd., Tuftec (registered trademark)
  • Tuftec registered trademark
  • H1517 Olefinic double bond content 0.11 mmol / g
  • Styrene unit content 43 mass% Refractive index 1.525
  • Refractive index 1.525 10 parts
  • MMA 63 parts PMI 24 parts
  • a polymerization reaction was performed in the same manner as in Example 5 except that 3 parts of St was used as the body component.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 95%, the reaction rate of PMI was 98%, and the reaction rate of St was 100%.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the resulting polymerization reaction solution was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-8) pellets.
  • the resin composition (D-8) has a weight average molecular weight of 166,000, a number average molecular weight of 63,000, a glass transition temperature of 151 ° C., a chloroform insoluble content of 0.5%, and a refractive index of 1.525. there were.
  • the in-plane retardation Re and the thickness direction retardation Rth of the stretched film of the resin composition (D-8) were 0.5 nm and 5.9 nm, respectively.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the obtained polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-9) pellets.
  • the resin composition (D-9) has a weight average molecular weight of 149,000, a number average molecular weight of 59,000, a glass transition temperature of 201 ° C., a chloroform insoluble content of 2.1%, and a refractive index of 1.560. there were. Note that. Although an attempt was made to stretch an unstretched film of the resin composition (D-9), the strength was insufficient and stretching was not possible.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 98%, and the reaction rate of PMI was 98%.
  • the content ratio of the unit derived from (meth) acrylic acid ester was 98.3% by mass, and the content ratio of the ring structural unit was 1.7% by mass.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the resulting polymerization reaction solution was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-10) pellets.
  • the resin composition (D-10) has a weight average molecular weight of 145,000, a number average molecular weight of 60,000, a glass transition temperature of 112 ° C., a chloroform insoluble content of 0.4%, and a refractive index of 1.500. there were.
  • Example 13 Preparation of resin composition (D-11) A reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introduction pipe was charged with a SEBS triblock copolymer (manufactured by Asahi Kasei Corporation, H1052).
  • Olefinic double bond content 0.27 mmol / g, styrene unit content 20% by mass, refractive index 1.500) 10 parts, methyl methacrylate (MMA) 75 parts, 2- (hydroxymethyl) methyl acrylate (MHMA) ) 13.5 parts, 0.05 part of n-dodecyl mercaptan (nDM), and 100 parts of toluene as a polymerization solvent were charged, and the temperature was raised to 105 ° C. while introducing nitrogen.
  • MMA methyl methacrylate
  • MHMA 2- (hydroxymethyl) methyl acrylate
  • nDM n-dodecyl mercaptan
  • t-butylperoxyisopropyl carbonate (Kayakaku (registered trademark) Bic75, manufactured by Kayaku Akzo Co., Ltd.) was added as an initiator, and the mixture was diluted with 2 parts of styrene (St) and 1 part of toluene. While 015 parts of t-butylperoxyisopropyl carbonate was added dropwise at a constant rate over 2 hours, solution polymerization was carried out at 105 to 110 ° C., followed by further aging for 4 hours. To this was added 0.07 part of stearyl phosphate as a cyclization catalyst, and a cyclization reaction was carried out at 90 to 110 ° C.
  • stearyl phosphate as a cyclization catalyst
  • the content ratio of units derived from (meth) acrylic acid ester is 72.9 mass%
  • the content ratio of ring structural units is 22.8 mass%
  • the content ratio of units derived from styrene was 2.4% by mass.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the obtained polymerization reaction liquid was put into an autoclave and subjected to heat treatment at 240 ° C. for 1 hour, and then a vent type screw twin screw extruder (hole diameter: 15 mm, with a rear vent number of 1 and a forevent number of 2).
  • L / D 45
  • L / D 45
  • a processing rate of 600 g / h devolatilized in this extruder, and extruded to make the lactone ring-containing (meth) acrylic polymer and the polymer chain SEBS.
  • Transparent pellets of a resin composition (D-11) containing a graft copolymer bonded to a triblock polymer chain were obtained.
  • the operating conditions of the twin screw extruder were a barrel temperature of 260 ° C., a rotation speed of 300 rpm, and a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg).
  • the resin composition (D-11) has a weight average molecular weight of 155,000, a number average molecular weight of 59,000, a glass transition temperature on the high temperature side of 127 ° C., a glass transition temperature on the low temperature side of ⁇ 54 ° C., and chloroform insoluble.
  • the minute was 0.4% and the refractive index was 1.500.
  • the island size of the sea-island structure of the unstretched film of the resin composition (D-11) was 250 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.3 nm and 4.9 nm, respectively.
  • Example 14 Preparation of resin composition (D-12)
  • SEBS triblock copolymer manufactured by Kuraray Co., Ltd., Hibler (registered trademark)
  • Hibler registered trademark
  • MMA 75 parts MMA 75 parts
  • MHMA 13.5 parts Polymerization reaction and cyclization reaction were performed.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 94%
  • the reaction rate of MHMA was 94%
  • the reaction rate of St was 100%.
  • the resulting polymerization reaction solution was autoclaved in the same manner as in Example 13, and then devolatilized in an extruder to obtain a transparent resin composition (D-12) pellet.
  • the resin composition (D-12) has a weight average molecular weight of 162,000, a number average molecular weight of 61,000, a glass transition temperature of 127 ° C., a chloroform insoluble content of 0.4%, and a refractive index of 1.500. there were.
  • the island size of the sea-island structure of the unstretched film of the resin composition (D-12) was 250 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.2 nm and 4.5 nm, respectively.
  • Example 15 Preparation of Resin Composition (D-13)
  • SEBS triblock copolymer manufactured by Asahi Kasei Co., Ltd. Trademark
  • SEBS triblock copolymer 2 (Asahi Kasei Co., Ltd., Tuftec (registered trademark) H1052, olefinic two 4 parts of styrene unit content 20% by mass, refractive index 1.500)
  • 75 parts of MMA, 13.5 parts of MHMA, St is added as a monomer component to be added dropwise.
  • a polymerization reaction and a cyclization reaction were carried out in the same manner as in Example 13 except that 4 parts were used.
  • the reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 94%
  • the reaction rate of MHMA was 94%
  • the reaction rate of St was 100%.
  • the content ratio of units derived from (meth) acrylic acid ester is 72.6 mass%
  • the content ratio of ring structural units is 23.0 mass%
  • the content ratio of units derived from styrene is 2 It was 4% by mass.
  • a part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
  • the resulting polymerization reaction liquid was autoclaved in the same manner as in Example 13, and then devolatilized in an extruder to obtain transparent resin composition (D-13) pellets.
  • the resin composition (D-13) has a weight average molecular weight of 151,000, a number average molecular weight of 57,000, a glass transition temperature on the high temperature side of 127 ° C., a glass transition temperature on the low temperature side of ⁇ 61 ° C., and chloroform insoluble. The minute was 0.4% and the refractive index was 1.500.
  • the island size of the sea-island structure of the unstretched film of the resin composition (D-13) was 150 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.3 nm and 3.5 nm, respectively.
  • Tables 1 to 3 summarize the results of each example and comparative example.
  • the resin composition A-3 of Comparative Example 1 in which no ring structure was introduced into the graft chain had a low glass transition temperature and low heat resistance. Further, even if a ring structure is introduced, the resin composition B-1 of Comparative Example 2, the resin composition B-2 of Comparative Example 3, and the resin composition B-3 of Comparative Example 5 that do not contain a graft copolymer
  • the resin composition B-4 of Comparative Example 8 had a low impact strength (breaking energy) and was inferior in mechanical strength.
  • Resin Composition A-4 of Comparative Example 4 Resin Composition C-3 of Comparative Example 6, Resin Composition A-5 of Comparative Example 7, Resin Composition C-4 of Comparative Example 9, Resin Composition of Comparative Example 10
  • Product D-9, Resin Composition D-10 of Comparative Example 11 and Resin Composition D-14 of Comparative Example 12 have a (meth) acrylate unit in the graft chain, although the graft chain has a cyclic structural unit. Since the content ratio was less than 45% by mass or more than 98% by mass, the glass transition temperature was low and the heat resistance was poor, the impact strength (fracture energy) was low, the mechanical strength was poor, or a gelled product was generated during production. However, it contains a lot of foreign matter. On the other hand, each of the resin compositions of Examples 1 to 15 was excellent in transparency, mechanical strength, and heat resistance, was provided with a good balance, and generated less gelled products.
  • a copolymer and a resin composition excellent in transparency, mechanical strength, and heat resistance can be obtained, by applying these to an optical film or the like, an excellent polarizer protective film, A polarizing plate, an image display apparatus, etc. can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polarising Elements (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

A copolymer which has a polymer chain (A) that has a unit derived from a diene and/or an olefin and a polymer chain (B) that has a unit derived from a (meth)acrylic monomer and a unit having a ring structure in the main chain. This copolymer is characterized in that the content ratio of the unit derived from a (meth)acrylic acid ester in the polymer chain (B) is from 45% by mass to 98% by mass (inclusive).

Description

共重合体および樹脂組成物Copolymer and resin composition
 本発明は、ジエンおよび/またはオレフィン由来の単位を有するポリマー鎖と、(メタ)アクリル系単量体由来の単位と主鎖に環構造を有する単位を有するポリマー鎖とを有する共重合体、前記共重合体を含む樹脂組成物、これらから形成された光学フィルム、偏光板、画像表示装置、および前記共重合体の製造方法に関する。 The present invention provides a copolymer having a polymer chain having a unit derived from a diene and / or an olefin, a unit derived from a (meth) acrylic monomer, and a polymer chain having a unit having a ring structure in the main chain, It is related with the resin composition containing a copolymer, the optical film formed from these, a polarizing plate, an image display apparatus, and the manufacturing method of the said copolymer.
 透明樹脂は、光学レンズ、プリズム、ミラー、光ディスク、光ファイバー、液晶ディスプレイ用シート、フィルム、導光板などの光学材料に幅広く使用されている。このような透明樹脂としては、従来、(メタ)アクリル系樹脂が広く用いられているが、(メタ)アクリル系樹脂は耐熱性と機械的強度との両立が難しい場合があった。例えば、(メタ)アクリル系樹脂は、主鎖に環構造を導入することで透明性を維持したまま耐熱性を高めることができるが(特許文献1など)、主鎖に環構造を導入することにより、樹脂自体が硬脆くなって割れやすくなったり、フィルム加工時に耐折強度などの機械的強度が低下する傾向を示す。そこで、(メタ)アクリル系樹脂との強度を高める方法として、特許文献2には、二軸延伸することによって強度を付与する方法が開示され、特許文献3には、ガラス転移温度が低い柔軟性樹脂を配合する方法が開示されている。しかし、二軸延伸で強度を付与する場合、延伸倍率等により強度の異方性が生じる問題があった。また、柔軟性樹脂を配合する場合、透明性との両立が困難であり、改善の余地があった。特許文献4には、ポリオレフィンに(メタ)アクリル系重合体をグラフトした共重合体が開示されているが、このようなグラフト共重合体はガラス転移温度が低く、耐熱性が不十分であるため改善の余地があった。さらに、透明樹脂を光学材料に適用する場合には、樹脂中にゲル化物が含まれていると、異物や外観不良の原因となるとともに製造効率の低下に繋がるため、そのようなゲル化物が含まれないことが望ましい。 Transparent resins are widely used in optical materials such as optical lenses, prisms, mirrors, optical disks, optical fibers, liquid crystal display sheets, films, and light guide plates. Conventionally, (meth) acrylic resins have been widely used as such transparent resins, but (meth) acrylic resins sometimes have difficulty in achieving both heat resistance and mechanical strength. For example, (meth) acrylic resins can improve heat resistance while maintaining transparency by introducing a ring structure into the main chain (Patent Document 1, etc.), but introducing a ring structure into the main chain As a result, the resin itself becomes hard and brittle and easily breaks, and mechanical strength such as folding strength is reduced during film processing. Therefore, as a method for increasing the strength with a (meth) acrylic resin, Patent Document 2 discloses a method of imparting strength by biaxial stretching, and Patent Document 3 discloses a flexibility having a low glass transition temperature. A method of blending a resin is disclosed. However, when strength is imparted by biaxial stretching, there is a problem that strength anisotropy occurs due to the stretching ratio or the like. Moreover, when mix | blending a flexible resin, coexistence with transparency was difficult and there was room for improvement. Patent Document 4 discloses a copolymer obtained by grafting a (meth) acrylic polymer to a polyolefin, but such a graft copolymer has a low glass transition temperature and insufficient heat resistance. There was room for improvement. Furthermore, when a transparent resin is applied to an optical material, if a gelled product is contained in the resin, it will cause foreign matter and appearance defects and lead to a decrease in production efficiency. It is desirable not to.
特開2006-171464号公報JP 2006-171464 A 特開2005-162835号公報JP 2005-162835 A 特開2007-100044号公報JP 2007-100044 A 特開平5-295183号公報JP-A-5-295183
 本発明は前記事情に鑑みてなされたものであり、その目的は、透明性、機械的強度、耐熱性に優れ、これらをバランス良く備えるとともに、ゲル化物の発生が少ない共重合体と、これを含む樹脂組成物、およびこのような共重合体を製造する方法を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to provide a copolymer having excellent transparency, mechanical strength, and heat resistance, providing them in a well-balanced manner and generating less gelled product, and It is in providing the resin composition containing and the method of manufacturing such a copolymer.
 本発明は、以下の発明を含む。
[1] ジエンおよび/またはオレフィン由来の単位を有するポリマー鎖(A)と、(メタ)アクリル系単量体由来の単位と主鎖に環構造を有する単位を有するポリマー鎖(B)とを有する共重合体であって、
 前記ポリマー鎖(B)中、前記(メタ)アクリル酸エステル由来の単位の含有割合が45質量%以上98質量%以下であることを特徴とする共重合体。
[2] ポリマー鎖(B)がポリマー鎖(A)にグラフトしたものである[1]に記載の共重合体。
[3] 前記環構造がラクトン環構造および/またはマレイミド構造である[1]または[2]に記載の共重合体。
[4] 前記ポリマー鎖(B)中、前記(メタ)アクリル系単量体由来の単位と前記主鎖に環構造を有する単位の合計含有割合が90質量%以上である[1]~[3]のいずれかに記載の共重合体。
[5] [1]~[4]のいずれかに記載の共重合体と(メタ)アクリル系重合体とを含有することを特徴とする樹脂組成物。
[6] 前記(メタ)アクリル系重合体が、前記(メタ)アクリル系単量体由来の単位を有する[5]に記載の樹脂組成物。
[7] 前記(メタ)アクリル系重合体が、前記主鎖に環構造を有する単位を有する[5]または[6]に記載の樹脂組成物。
[8] 100℃以上および100℃未満にそれぞれガラス転移温度を有する[5]~[7]のいずれかに記載の樹脂組成物。
[9] クロロホルムに対する不溶分が10質量%以下である[5]~[8]のいずれかに記載の樹脂組成物。
[10] [1]~[4]のいずれかに記載の共重合体または[5]~[9]のいずれかに記載の樹脂組成物を含む光学フィルム。
[11] [10]に記載の光学フィルムを含む偏光板。
[12] [10]に記載の光学フィルムを含む画像表示装置。
[13] [1]~[4]のいずれかに記載の共重合体の製造方法であって、
 ジエンおよび/またはオレフィン由来の単位を有する重合体(P1)の存在下、(メタ)アクリル系単量体と環構造内に重合性二重結合を有する単量体を含む単量体成分を重合する工程を有することを特徴とする共重合体の製造方法。
[14] [1]~[4]のいずれかに記載の共重合体の製造方法であって、
 ジエンおよび/またはオレフィン由来の単位を有する重合体(P1)の存在下、(メタ)アクリル系単量体を含む単量体成分を重合する工程と、
 前記重合工程で形成された(メタ)アクリル系単量体由来の単位を有するポリマー鎖の主鎖に環構造を形成する工程とを有することを特徴とする共重合体の製造方法。
[15] 前記重合工程で得られた樹脂溶液を濾過する工程をさらに有する[13]に記載の共重合体の製造方法。
[16] 前記環構造形成工程で得られた樹脂溶液を濾過する工程をさらに有する[14]に記載の共重合体の製造方法。
The present invention includes the following inventions.
[1] having a polymer chain (A) having a unit derived from a diene and / or an olefin, a unit derived from a (meth) acrylic monomer, and a polymer chain (B) having a unit having a ring structure in the main chain A copolymer comprising:
In the polymer chain (B), a content ratio of the unit derived from the (meth) acrylic acid ester is 45% by mass or more and 98% by mass or less.
[2] The copolymer according to [1], wherein the polymer chain (B) is grafted to the polymer chain (A).
[3] The copolymer according to [1] or [2], wherein the ring structure is a lactone ring structure and / or a maleimide structure.
[4] The total content of the unit derived from the (meth) acrylic monomer and the unit having a ring structure in the main chain in the polymer chain (B) is 90% by mass or more [1] to [3 ] The copolymer in any one of.
[5] A resin composition comprising the copolymer according to any one of [1] to [4] and a (meth) acrylic polymer.
[6] The resin composition according to [5], wherein the (meth) acrylic polymer has units derived from the (meth) acrylic monomer.
[7] The resin composition according to [5] or [6], wherein the (meth) acrylic polymer has a unit having a ring structure in the main chain.
[8] The resin composition according to any one of [5] to [7], which has a glass transition temperature at 100 ° C. or higher and lower than 100 ° C., respectively.
[9] The resin composition according to any one of [5] to [8], wherein an insoluble content in chloroform is 10% by mass or less.
[10] An optical film comprising the copolymer according to any one of [1] to [4] or the resin composition according to any one of [5] to [9].
[11] A polarizing plate comprising the optical film according to [10].
[12] An image display device comprising the optical film according to [10].
[13] A method for producing a copolymer according to any one of [1] to [4],
In the presence of the polymer (P1) having units derived from diene and / or olefin, a monomer component containing a (meth) acrylic monomer and a monomer having a polymerizable double bond in the ring structure is polymerized. A process for producing a copolymer, comprising the step of:
[14] A method for producing a copolymer according to any one of [1] to [4],
Polymerizing a monomer component containing a (meth) acrylic monomer in the presence of the polymer (P1) having a unit derived from a diene and / or an olefin;
And a step of forming a ring structure in the main chain of the polymer chain having a unit derived from the (meth) acrylic monomer formed in the polymerization step.
[15] The method for producing a copolymer according to [13], further comprising a step of filtering the resin solution obtained in the polymerization step.
[16] The method for producing a copolymer according to [14], further comprising a step of filtering the resin solution obtained in the ring structure forming step.
 本発明の共重合体およびこれを含む樹脂組成物は、透明性、機械的強度、耐熱性に優れ、これらをバランス良く備えるとともに、ゲル化物の発生が少ないものとなる。また、本発明の製造方法によれば、ゲル化物の発生が少なく、透明性、機械的強度、耐熱性に優れ、これらをバランス良く備えた共重合体を得ることができる。 The copolymer of the present invention and the resin composition containing the copolymer are excellent in transparency, mechanical strength, and heat resistance, are provided with a good balance, and generate less gelled product. In addition, according to the production method of the present invention, it is possible to obtain a copolymer with little generation of gelled products, excellent transparency, mechanical strength, and heat resistance and having these in a well-balanced manner.
 〔1.共重合体〕
 本発明の共重合体は、ジエンまたはオレフィン系ポリマー鎖(A)と、環構造を有する(メタ)アクリルポリマー鎖(B)とを有するものである。本発明の共重合体は、透明性、機械的強度(例えば、衝撃強度等)、耐熱性に優れ、これらをバランス良く備えるとともに、製造の際にゲル化物の発生が少ないものとなる。以下、本発明の共重合体を、「共重合体(P)」と称する。
[1. Copolymer)
The copolymer of the present invention has a diene or olefin polymer chain (A) and a (meth) acrylic polymer chain (B) having a ring structure. The copolymer of the present invention is excellent in transparency, mechanical strength (for example, impact strength, etc.), and heat resistance, and is provided with a good balance between them, and is less likely to generate gelated products during production. Hereinafter, the copolymer of the present invention is referred to as “copolymer (P)”.
 共重合体(P)は、ジエンまたはオレフィン系ポリマー鎖(A)と環構造を有する(メタ)アクリルポリマー鎖(B)とが共重合した構造を有する。共重合の形式は限定されないが、ジエンまたはオレフィン系ポリマー鎖(A)に、環構造を有する(メタ)アクリルポリマー鎖(B)がグラフトしたグラフト共重合体であることが好ましい。以下、ジエンまたはオレフィン系ポリマー鎖(A)を単に「ポリマー鎖(A)」と称し、環構造を有する(メタ)アクリルポリマー鎖(B)を単に「ポリマー鎖(B)」と称する場合がある。 The copolymer (P) has a structure in which a diene or olefin polymer chain (A) and a (meth) acrylic polymer chain (B) having a ring structure are copolymerized. Although the form of copolymerization is not limited, it is preferably a graft copolymer obtained by grafting a (meth) acrylic polymer chain (B) having a ring structure to a diene or olefin polymer chain (A). Hereinafter, the diene or olefin polymer chain (A) may be simply referred to as “polymer chain (A)”, and the (meth) acrylic polymer chain (B) having a ring structure may be simply referred to as “polymer chain (B)”. .
 環構造を有する(メタ)アクリルポリマー鎖(B)は、通常、硬くて脆い樹脂を与えるが、これをジエンまたはオレフィン系ポリマー鎖(A)と共重合させ、ポリマー鎖(B)の組成を適切に制御することで、耐熱性と機械的強度を兼ね備えた共重合体(P)を得ることができる。また、製造の際に、ゲル化物の発生の少ないものとすることができる。このようにして得られた共重合体(P)は、ジエンまたはオレフィン成分を有しているにもかかわらず、高い透明性を有するものとなる。また、共重合体(P)は、(メタ)アクリル系重合体にブレンドしてもこれらの特性を損なうことはなく、分散性が優れるために透明性を損なうこともない。 The (meth) acrylic polymer chain (B) having a ring structure usually gives a hard and brittle resin, but this is copolymerized with a diene or olefinic polymer chain (A) so that the composition of the polymer chain (B) is appropriate. By controlling to, a copolymer (P) having both heat resistance and mechanical strength can be obtained. In addition, it is possible to reduce the generation of gelled products during production. The copolymer (P) thus obtained has high transparency despite having a diene or olefin component. Further, even when the copolymer (P) is blended with a (meth) acrylic polymer, these properties are not impaired, and since the dispersibility is excellent, transparency is not impaired.
 共重合体(P)からフィルムを形成する際には、延伸処理などの配向処理を施さなくても、高強度かつ高耐熱性のフィルムを得ることができる。そのため、所望の光学特性を有するフィルムを容易に得ることができる。例えば、高強度、高耐熱性、高透明性を備えているため、等方性フィルムや低位相差フィルムを効率よく形成できる。一方、環構造に起因して、容易に異方性を発現させることができるため、延伸処理などの配向処理により、位相差フィルムを形成することもできる。また、光学フィルムとした際に異物や外観不良の少ないものとすることができる。 When forming a film from the copolymer (P), a film having high strength and high heat resistance can be obtained without performing an orientation treatment such as a stretching treatment. Therefore, a film having desired optical characteristics can be easily obtained. For example, since it has high strength, high heat resistance, and high transparency, an isotropic film or a low retardation film can be formed efficiently. On the other hand, due to the ring structure, anisotropy can be easily expressed, and therefore a retardation film can be formed by an orientation treatment such as a stretching treatment. Moreover, when it is set as an optical film, it can be set as a thing with few foreign materials and external appearance defect.
 共重合体(P)に含まれるポリマー鎖(A)について説明する。ポリマー鎖(A)は、ジエンおよび/またはオレフィン由来の単位を少なくとも有する。ジエンおよび/またはオレフィン由来の単位は共重合体(P)中でソフト成分として機能する。ジエンおよび/またはオレフィン由来の単位が含まれることにより、共重合体(P)の透明性を確保しつつ、共重合体の機械的強度(例えば衝撃強度等)を高め、硬脆さを低減することができる。 The polymer chain (A) contained in the copolymer (P) will be described. The polymer chain (A) has at least units derived from diene and / or olefin. The unit derived from diene and / or olefin functions as a soft component in the copolymer (P). By including the unit derived from diene and / or olefin, the mechanical strength (for example, impact strength) of the copolymer is enhanced and the brittleness is reduced while ensuring the transparency of the copolymer (P). be able to.
 ジエンとしては、1,3-ブタジエン(別名:ブタジエン)、2-メチル-1,3-ブタジエン(別名:イソプレン)、1,3-ペンタジエン、1,4-ペンタジエン、1,5-ヘキサジエン、2,5-ジメチル-1,5-ヘキサジエン(別名:ジイソブテン)等のアルカジエンが好ましく用いられ、なかでも1,3-ブタジエン、2-メチル-1,3-ブタジエン、1,3-ペンタジエン等の共役ジエンがより好ましい。オレフィンとしては、エチレン、プロピレン、1-ブテン、イソブテン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-テトラデセン、1-オクタデセン等のモノオレフィンが好ましく用いられ、なかでも炭素-炭素二重結合がα位にあるアルケンであるα-オレフィンがより好ましい。これらジエンおよびオレフィンの炭素数は、2以上が好ましく、3以上がより好ましく、また20以下が好ましく、10以下がより好ましく、6以下がさらに好ましい。ジエンおよび/またはオレフィン由来の単位は、これらジエンおよび/またはオレフィンが重合することにより形成される単位として規定される。オレフィン由来の単位は、オレフィンの(共)重合によって実際に形成されるものに限らず、ジエン由来の単位が水素化されることによって形成されてもよい。 The dienes include 1,3-butadiene (also known as butadiene), 2-methyl-1,3-butadiene (also known as isoprene), 1,3-pentadiene, 1,4-pentadiene, 1,5-hexadiene, 2, Alkadienes such as 5-dimethyl-1,5-hexadiene (also known as diisobutene) are preferably used, and conjugated dienes such as 1,3-butadiene, 2-methyl-1,3-butadiene, and 1,3-pentadiene are particularly preferable. More preferred. As the olefin, monoolefins such as ethylene, propylene, 1-butene, isobutene, 2-methyl-1-butene, 3-methyl-1-butene, 1-tetradecene, 1-octadecene and the like are preferably used. More preferred are α-olefins which are alkenes with a carbon double bond in the α-position. These dienes and olefins preferably have 2 or more carbon atoms, more preferably 3 or more, more preferably 20 or less, even more preferably 10 or less, and even more preferably 6 or less. Units derived from dienes and / or olefins are defined as units formed by polymerizing these dienes and / or olefins. Olefin-derived units are not limited to those actually formed by (co) polymerization of olefins, but may be formed by hydrogenating diene-derived units.
 ポリマー鎖(A)は、例えば、ポリエチレン、ポリプロピレン、ポリブテン-1、エチレン-プロピレン共重合体、エチレン-ブテン共重合体等のオレフィン(共)重合体;ポリイソプレン、ポリブタジエン、イソプレン-ブタジエン共重合体等のジエン(共)重合体;エチレン-プロピレン-ジエン共重合体、イソブテン-イソプレン共重合体等のオレフィンとジエンの共重合体を主鎖の構造中に含む。オレフィン(共)重合体としてはα-オレフィン(共)重合体が好ましく、ジエン(共)重合体としては共役ジエン(共)重合体が好ましく、オレフィンとジエンの共重合体としてはα-オレフィンと共役ジエンの共重合体が好ましい。これらの中でもポリイソプレン、イソブテン-イソプレン共重合体等のα-オレフィンと共役ジエンの共重合体や、ポリエチレン、ポリプロピレンがより好ましい。 The polymer chain (A) is, for example, an olefin (co) polymer such as polyethylene, polypropylene, polybutene-1, ethylene-propylene copolymer, ethylene-butene copolymer; polyisoprene, polybutadiene, isoprene-butadiene copolymer Diene (co) polymers such as: ethylene-propylene-diene copolymer, isobutene-isoprene copolymer and other olefin and diene copolymers are included in the structure of the main chain. The olefin (co) polymer is preferably an α-olefin (co) polymer, the diene (co) polymer is preferably a conjugated diene (co) polymer, and the olefin-diene copolymer is an α-olefin. Copolymers of conjugated dienes are preferred. Among these, α-olefin and conjugated diene copolymers such as polyisoprene and isobutene-isoprene copolymers, polyethylene, and polypropylene are more preferable.
 ポリマー鎖(A)は、ジエンおよび/またはオレフィン由来の単位に加え、さらに他の不飽和単量体由来の単位を有していてもよい。他の不飽和単量体は、重合性二重結合を有する化合物であれば特に限定されず、例えば、酢酸ビニル、プロピオン酸ビニル等のビニルエステル;(メタ)アクリル酸、無水マレイン酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の不飽和カルボン酸およびそのエステル;スチレン、ビニルトルエン、メトキシスチレン、α-メチルスチレン、2-ビニルピリジン等の芳香族ビニル化合物;ビニルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルメトキシシラン等のビニルシラン等が挙げられる。ポリマー鎖(A)は、これら他の不飽和単量体とジエンおよび/またはオレフィンとの共重合体であってもよい。ポリマー鎖(A)中のジエンおよび/またはオレフィン由来の単位の含有割合は、例えば、30質量%以上であることが好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましく、55質量%以上がさらにより好ましく、また90質量%以下が好ましく、86質量%以下がより好ましく、83質量%以下がさらに好ましい。 The polymer chain (A) may further have units derived from other unsaturated monomers in addition to the units derived from diene and / or olefin. The other unsaturated monomer is not particularly limited as long as it is a compound having a polymerizable double bond. For example, vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylic acid, maleic anhydride, (meta ) Unsaturated carboxylic acids such as methyl acrylate and ethyl (meth) acrylate and esters thereof; aromatic vinyl compounds such as styrene, vinyl toluene, methoxy styrene, α-methyl styrene, 2-vinyl pyridine; vinyl trimethoxy silane; and vinyl silanes such as γ- (meth) acryloyloxypropylmethoxysilane. The polymer chain (A) may be a copolymer of these other unsaturated monomers and diene and / or olefin. The content ratio of the units derived from diene and / or olefin in the polymer chain (A) is, for example, preferably 30% by mass or more, more preferably 40% by mass or more, further preferably 50% by mass or more, and 55% by mass. % Or more is still more preferable, 90 mass% or less is preferable, 86 mass% or less is more preferable, and 83 mass% or less is further more preferable.
 ポリマー鎖(A)が他の不飽和単量体由来の単位を有する場合、ポリマー鎖(A)は、ジエンおよび/またはオレフィンと他の不飽和単量体とのランダム共重合体であってもよく、ブロック共重合体であってもよく、グラフト共重合体であってもよい。これらの中でも、ジエンおよび/またはオレフィン由来の単位のソフト成分としての機能が好適に発現する点から、ブロック共重合体であることが好ましい。この場合、ポリマー鎖(A)は、ジエンおよび/またはオレフィン由来の単位を有する重合体ブロック(a1)と他の不飽和単量体由来の単位を有する重合体ブロック(a2)とを有するものとなる。 When the polymer chain (A) has units derived from other unsaturated monomers, the polymer chain (A) may be a random copolymer of a diene and / or olefin and another unsaturated monomer. It may be a block copolymer or a graft copolymer. Among these, a block copolymer is preferable because the function as a soft component of the unit derived from diene and / or olefin is suitably expressed. In this case, the polymer chain (A) has a polymer block (a1) having units derived from diene and / or olefin and a polymer block (a2) having units derived from other unsaturated monomers. Become.
 ポリマー鎖(A)が他の不飽和単量体由来の単位を有する重合体ブロック(a2)を有するものである場合、共重合体(P)の機械的強度を確保しつつ透明性を高めることが容易な点から、重合体ブロック(a2)は芳香族ビニル単量体由来の単位から構成されることが好ましい。この場合、ポリマー鎖(A)において、重合体ブロック(a1)がソフト成分として機能し、重合体ブロック(a2)がハード成分として機能するものとなる。 When the polymer chain (A) has a polymer block (a2) having units derived from other unsaturated monomers, the transparency of the copolymer (P) is improved while ensuring the mechanical strength. It is preferable that the polymer block (a2) is composed of units derived from an aromatic vinyl monomer. In this case, in the polymer chain (A), the polymer block (a1) functions as a soft component, and the polymer block (a2) functions as a hard component.
 重合体ブロック(a2)を与える芳香族ビニル単量体は、芳香環にビニル基が結合した化合物であれば特に限定されず、例えば、スチレン、ビニルトルエン、メトキシスチレン、α-メチルスチレン、α-ヒドロキシメチルスチレン、α-ヒドロキシエチルスチレン等のスチレン系単量体;2-ビニルナフタレン等の多環芳香族炭化水素環ビニル単量体;N-ビニルカルバゾール、2-ビニルピリジン、ビニルイミダゾール、ビニルチオフェン等の芳香族複素環ビニル単量体等が挙げられる。これらの中でも、スチレン系単量体が好ましい。スチレン系単量体には、スチレンのみならず、スチレンの重合性二重結合炭素またはベンゼン環に任意の置換基が結合したスチレン誘導体も含まれ、当該置換基としては、アルキル基、アルコキシ基、ヒドロキシル基、ハロゲン基、アミノ基、ニトロ基、スルホ基等が挙げられる。スチレンに結合したアルキル基とアルコキシ基は、炭素数1~4が好ましく、炭素数1~2がより好ましく、スチレンに結合したアルキル基とアルコキシ基は、水素原子の少なくとも一部がヒドロキシル基またはハロゲン基で置換されていてもよい。 The aromatic vinyl monomer that gives the polymer block (a2) is not particularly limited as long as it is a compound in which a vinyl group is bonded to an aromatic ring. For example, styrene, vinyl toluene, methoxystyrene, α-methylstyrene, α- Styrene monomers such as hydroxymethylstyrene and α-hydroxyethylstyrene; polycyclic aromatic hydrocarbon ring vinyl monomers such as 2-vinylnaphthalene; N-vinylcarbazole, 2-vinylpyridine, vinylimidazole, vinylthiophene And aromatic heterocyclic vinyl monomers. Among these, a styrene monomer is preferable. Styrene monomers include not only styrene, but also styrene derivatives in which an arbitrary substituent is bonded to the polymerizable double bond carbon or benzene ring of styrene. Examples of the substituent include an alkyl group, an alkoxy group, Examples include a hydroxyl group, a halogen group, an amino group, a nitro group, and a sulfo group. The alkyl group and alkoxy group bonded to styrene preferably have 1 to 4 carbon atoms, more preferably 1 to 2 carbon atoms. The alkyl group and alkoxy group bonded to styrene have at least a part of hydrogen atoms as hydroxyl groups or halogen atoms. It may be substituted with a group.
 ジエンおよび/またはオレフィン由来の単位を有する重合体ブロック(a1)と、芳香族ビニル単量体由来の単位を有する重合体ブロック(a2)とを有するポリマー鎖(A)としては、例えば、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体、スチレン-ブタジエン-スチレンブロック共重合体の水添物(例えば、スチレン-エチレン/ブチレン-スチレンブロック共重合体、スチレン-ブタジエン/ブチレン-スチレンブロック共重合体)、スチレン-イソプレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体、スチレン-イソプレン-スチレンブロック共重合体の水添物(例えば、スチレン-エチレン/プロピレン-スチレンブロック共重合体)等が挙げられる。 Examples of the polymer chain (A) having a polymer block (a1) having a unit derived from a diene and / or an olefin and a polymer block (a2) having a unit derived from an aromatic vinyl monomer include styrene- Butadiene block copolymer, styrene-butadiene-styrene block copolymer, hydrogenated product of styrene-butadiene-styrene block copolymer (for example, styrene-ethylene / butylene-styrene block copolymer, styrene-butadiene / butylene- Styrene block copolymer), styrene-isoprene block copolymer, styrene-isoprene-styrene block copolymer, hydrogenated product of styrene-isoprene-styrene block copolymer (for example, styrene-ethylene / propylene-styrene block copolymer) Polymer) etc.
 ポリマー鎖(A)が、ジエンおよび/またはオレフィン由来の単位を有する重合体ブロック(a1)と、芳香族ビニル単量体由来の単位を有する重合体ブロック(a2)とを有する場合、ポリマー鎖(A)は、重合体ブロック(a1)の両側に重合体ブロック(a2)が結合していることが好ましい。このようにポリマー鎖(A)を構成することにより、ポリマー鎖(A)がエラストマーとして機能し、共重合体の機械的強度をより高めることができる。この場合、ポリマー鎖(A)は、トリブロック共重合体であってもよく、マルチブロック共重合体であってもよく、ラジアルブロック共重合体であってもよいが、ポリマー鎖(A)の特性制御が容易であり、また共重合体(P)中へのポリマー鎖(B)の導入が容易な点から、トリブロック共重合体であることが好ましい。 When the polymer chain (A) has a polymer block (a1) having a unit derived from a diene and / or an olefin, and a polymer block (a2) having a unit derived from an aromatic vinyl monomer, the polymer chain ( In A), the polymer block (a2) is preferably bonded to both sides of the polymer block (a1). By constituting the polymer chain (A) in this way, the polymer chain (A) functions as an elastomer, and the mechanical strength of the copolymer can be further increased. In this case, the polymer chain (A) may be a triblock copolymer, a multiblock copolymer, or a radial block copolymer. A triblock copolymer is preferable from the viewpoint of easy property control and easy introduction of the polymer chain (B) into the copolymer (P).
 ポリマー鎖(A)が、ジエンおよび/またはオレフィン由来の単位を有する重合体ブロック(a1)と、芳香族ビニル単量体由来の単位を有する重合体ブロック(a2)とを有する場合、重合体ブロック(a1)は、ジエンおよび/またはオレフィン由来の単位に加え、さらに他の不飽和単量体由来の単位を有していてもよい。この場合の他の不飽和単量体としては、例えば、酢酸ビニル、プロピオン酸ビニル等のビニルエステル;(メタ)アクリル酸、無水マレイン酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の不飽和カルボン酸およびそのエステル;スチレン、ビニルトルエン、メトキシスチレン、α-メチルスチレン、2-ビニルピリジン等の芳香族ビニル化合物;ビニルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルメトキシシラン等のビニルシラン等が挙げられる。重合体ブロック(a1)は、これら他の不飽和単量体とジエンおよび/またはオレフィンとの共重合体であってもよい。なお、重合体ブロック(a1)はジエンおよび/またはオレフィン由来の単位を主成分として含むことが好ましく、重合体ブロック(a1)100質量%中、ジエンおよび/またはオレフィン由来の単位の含有割合が50質量%以上であることが好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましい。重合体ブロック(a1)は、実質的にジエンおよび/またはオレフィン由来の単位のみから構成されていてもよく、例えばジエンおよび/またはオレフィン由来の単位が99質量%以上であってもよい。 When the polymer chain (A) has a polymer block (a1) having a unit derived from a diene and / or an olefin, and a polymer block (a2) having a unit derived from an aromatic vinyl monomer, the polymer block (A1) may further have units derived from other unsaturated monomers in addition to the units derived from dienes and / or olefins. Examples of other unsaturated monomers in this case include vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylic acid, maleic anhydride, methyl (meth) acrylate, ethyl (meth) acrylate, and the like. Unsaturated carboxylic acids and esters thereof; aromatic vinyl compounds such as styrene, vinyltoluene, methoxystyrene, α-methylstyrene, 2-vinylpyridine; vinyltrimethoxysilane, γ- (meth) acryloyloxypropylmethoxysilane, etc. Vinyl silane etc. are mentioned. The polymer block (a1) may be a copolymer of these other unsaturated monomers and diene and / or olefin. The polymer block (a1) preferably contains a diene and / or olefin-derived unit as a main component. In 100% by mass of the polymer block (a1), the content ratio of the diene and / or olefin-derived unit is 50. It is preferably at least mass%, more preferably at least 60 mass%, and even more preferably at least 70 mass%. The polymer block (a1) may be substantially composed only of units derived from diene and / or olefin. For example, the unit derived from diene and / or olefin may be 99% by mass or more.
 ポリマー鎖(A)が、ジエンおよび/またはオレフィン由来の単位を有する重合体ブロック(a1)と、芳香族ビニル単量体由来の単位を有する重合体ブロック(a2)とを有する場合、重合体ブロック(a2)は、芳香族ビニル単量体由来の単位に加え、さらに他の不飽和単量体由来の単位を有していてもよい。この場合の他の不飽和単量体としては、例えば、酢酸ビニル、プロピオン酸ビニル等のビニルエステル;(メタ)アクリル酸、無水マレイン酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル等の不飽和カルボン酸およびそのエステル;スチレン、ビニルトルエン、メトキシスチレン、α-メチルスチレン、2-ビニルピリジン等の芳香族ビニル化合物;ビニルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルメトキシシラン等のビニルシラン等が挙げられる。重合体ブロック(a2)は、これら他の不飽和単量体と芳香族ビニル単量体との共重合体であってもよい。なお、重合体ブロック(a2)は芳香族ビニル単量体由来の単位を主成分として含むことが好ましく、重合体ブロック(a2)100質量%中、芳香族ビニル単量体由来の単位の含有割合が70質量%以上であることが好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましい。重合体ブロック(a2)は、実質的に芳香族ビニル単量体由来の単位のみから構成されていてもよく、例えば芳香族ビニル単量体由来の単位が99質量%以上であってもよい。 When the polymer chain (A) has a polymer block (a1) having a unit derived from a diene and / or an olefin, and a polymer block (a2) having a unit derived from an aromatic vinyl monomer, the polymer block (A2) may further have a unit derived from another unsaturated monomer in addition to the unit derived from the aromatic vinyl monomer. Examples of other unsaturated monomers in this case include vinyl esters such as vinyl acetate and vinyl propionate; (meth) acrylic acid, maleic anhydride, methyl (meth) acrylate, ethyl (meth) acrylate, and the like. Unsaturated carboxylic acids and esters thereof; aromatic vinyl compounds such as styrene, vinyltoluene, methoxystyrene, α-methylstyrene, 2-vinylpyridine; vinyltrimethoxysilane, γ- (meth) acryloyloxypropylmethoxysilane, etc. Vinyl silane etc. are mentioned. The polymer block (a2) may be a copolymer of these other unsaturated monomers and aromatic vinyl monomers. In addition, it is preferable that a polymer block (a2) contains the unit derived from an aromatic vinyl monomer as a main component, and the content rate of the unit derived from an aromatic vinyl monomer in 100 mass% of polymer blocks (a2). Is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more. The polymer block (a2) may be substantially composed only of units derived from an aromatic vinyl monomer. For example, the unit derived from an aromatic vinyl monomer may be 99% by mass or more.
 ポリマー鎖(A)中、重合体ブロック(a2)の含有割合は10質量%以上であることが好ましく、14質量%以上がより好ましく、17質量%以上がさらに好ましく、また55質量%以下が好ましく、50質量%以下がより好ましく、45質量%以下がさらに好ましい。これにより、ポリマー鎖(A)がソフト成分とハード成分をバランス良く有するものとなり、共重合体(P)の機械的強度を確保しつつ、透明性を高めることが容易になる。同様の観点から、ポリマー鎖(A)中、重合体ブロック(a1)の含有割合は45質量%以上であることが好ましく、50質量%以上がより好ましく、55質量%以上がさらに好ましく、また90質量%以下が好ましく、86質量%以下がより好ましく、83質量%以下がさらに好ましい。 In the polymer chain (A), the content of the polymer block (a2) is preferably 10% by mass or more, more preferably 14% by mass or more, further preferably 17% by mass or more, and preferably 55% by mass or less. 50 mass% or less is more preferable, and 45 mass% or less is further more preferable. As a result, the polymer chain (A) has a soft component and a hard component in a well-balanced manner, and it becomes easy to increase transparency while ensuring the mechanical strength of the copolymer (P). From the same viewpoint, the content of the polymer block (a1) in the polymer chain (A) is preferably 45% by mass or more, more preferably 50% by mass or more, further preferably 55% by mass or more, and 90% % By mass or less is preferable, 86% by mass or less is more preferable, and 83% by mass or less is more preferable.
 ポリマー鎖(A)の重量平均分子量は、0.1万以上が好ましく、0.5万以上がより好ましく、1万以上がさらに好ましく、3万以上がさらにより好ましく、また50万以下が好ましく、30万以下がより好ましく、20万以下がさらに好ましく、10万以下がさらにより好ましい。ポリマー鎖(A)の重量平均分子量をこのような範囲とすることで、共重合体(P)の強度と透明性を確保しやすくなる。 The weight average molecular weight of the polymer chain (A) is preferably 10000 or more, more preferably 50,000 or more, further preferably 10,000 or more, still more preferably 30,000 or more, and preferably 500,000 or less, 300,000 or less is more preferable, 200,000 or less is more preferable, and 100,000 or less is even more preferable. By making the weight average molecular weight of a polymer chain (A) into such a range, it becomes easy to ensure the intensity | strength and transparency of a copolymer (P).
 共重合体(P)に含まれるポリマー鎖(B)について説明する。ポリマー鎖(B)は、(メタ)アクリル系単量体由来の単位を少なくとも有し、環構造を有するものである。ポリマー鎖(B)はポリマー鎖(A)にグラフトしていることが好ましく、従って、共重合体(P)はグラフト共重合体であり、当該グラフト共重合体のグラフト鎖としてポリマー鎖(B)を有することが好ましい。ポリマー鎖(B)によって、共重合体(P)の透明性を高めることができる。 The polymer chain (B) contained in the copolymer (P) will be described. The polymer chain (B) has at least a unit derived from a (meth) acrylic monomer and has a ring structure. The polymer chain (B) is preferably grafted to the polymer chain (A). Therefore, the copolymer (P) is a graft copolymer, and the polymer chain (B) is used as a graft chain of the graft copolymer. It is preferable to have. The transparency of the copolymer (P) can be enhanced by the polymer chain (B).
 ポリマー鎖(B)の(メタ)アクリル系単量体由来の単位(以下、「(メタ)アクリル単位」と称する場合がある)は、(メタ)アクリル系単量体を重合することによりポリマー鎖(B)に導入することができる。(メタ)アクリル系単量体には(メタ)アクリル酸およびその誘導体が含まれ、(メタ)アクリル系単量体のα位またはβ位にはアルキル基(好ましくは、炭素数1~4のアルキル基)が結合していてもよく、当該アルキル基は、水素原子の少なくとも一部が、ヒドロキシル基またはハロゲン基で置換されていてもよい。(メタ)アクリル系単量体由来の単位に含まれるカルボン酸の形態は特に限定されず、遊離酸、エステル、塩、酸アミド等の形態が挙げられる。 The unit derived from the (meth) acrylic monomer of the polymer chain (B) (hereinafter sometimes referred to as “(meth) acrylic unit”) is obtained by polymerizing the (meth) acrylic monomer. (B) can be introduced. The (meth) acrylic monomer includes (meth) acrylic acid and derivatives thereof, and the (meth) acrylic monomer has an alkyl group (preferably having 1 to 4 carbon atoms) at the α-position or β-position. Alkyl group) may be bonded, and in the alkyl group, at least a part of the hydrogen atoms may be substituted with a hydroxyl group or a halogen group. The form of the carboxylic acid contained in the unit derived from the (meth) acrylic monomer is not particularly limited, and examples thereof include free acid, ester, salt, acid amide and the like.
 ポリマー鎖(B)は、(メタ)アクリル単位として、少なくとも(メタ)アクリル酸エステル由来の単位を有している。(メタ)アクリル酸エステル由来の単位を与える(メタ)アクリル酸エステルとしては、(メタ)アクリル酸のエステル結合の酸素原子に直鎖状、分岐状または環状の脂肪族炭化水素基や芳香族炭化水素基が結合した(メタ)アクリル酸エステルが挙げられる。 The polymer chain (B) has at least a unit derived from a (meth) acrylic acid ester as a (meth) acrylic unit. (Meth) acrylic acid ester units that give units derived from (meth) acrylic acid esters include linear, branched or cyclic aliphatic hydrocarbon groups and aromatic carbon atoms on the oxygen atom of the ester bond of (meth) acrylic acid. (Meth) acrylic acid ester to which a hydrogen group is bonded is exemplified.
 直鎖状または分岐状の脂肪族炭化水素基を有する(メタ)アクリル酸エステルとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸アミル、(メタ)アクリル酸イソアミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸へプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸アルキルが挙げられる。(メタ)アクリル酸アルキルのアルキル基は、C1-18アルキル基が好ましく、C1-12アルキル基がより好ましい。なお本明細書において、「C1-18」や「C1-12」との記載は、それぞれ「炭素数1~18」、「炭素数1~12」を意味する。 Examples of the (meth) acrylic acid ester having a linear or branched aliphatic hydrocarbon group include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and (meth) acrylic. Isopropyl acid, n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, pentyl (meth) acrylate, amyl (meth) acrylate , Isoamyl (meth) acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, decyl (meth) acrylate, (meth ) Dodecyl acrylate, pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, (meth) a Acrylic acid heptadecyl, (meth) of octadecyl acrylate (meth) acrylic acid alkyl. The alkyl group of the alkyl (meth) acrylate is preferably a C1-18 alkyl group, and more preferably a C1-12 alkyl group. In this specification, “C1-18” and “C1-12” mean “1 to 18 carbon atoms” and “1 to 12 carbon atoms”, respectively.
 環状の脂肪族炭化水素基を有する(メタ)アクリル酸エステルとしては、(メタ)アクリル酸シクロプロピル、(メタ)アクリル酸シクロブチル、(メタ)アクリル酸シクロペンチル、(メタ)アクリル酸シクロヘキシル等の(メタ)アクリル酸シクロアルキル;(メタ)アクリル酸イソボルニル等の架橋環式(メタ)アクリレート等が挙げられる。(メタ)アクリル酸シクロアルキルのシクロアルキル基は、C3-20シクロアルキル基が好ましく、C3-12シクロアルキル基がより好ましい。 Examples of the (meth) acrylic acid ester having a cyclic aliphatic hydrocarbon group include cyclopropyl (meth) acrylate, cyclobutyl (meth) acrylate, cyclopentyl (meth) acrylate, cyclohexyl (meth) acrylate, ) Acrylic acid cycloalkyl; Cross-linked cyclic (meth) acrylates such as isobornyl (meth) acrylate. The cycloalkyl group of the cycloalkyl (meth) acrylate is preferably a C3-20 cycloalkyl group, and more preferably a C3-12 cycloalkyl group.
 芳香族炭化水素基を有する(メタ)アクリル酸エステルとしては、(メタ)アクリル酸フェニル、(メタ)アクリル酸トリル、(メタ)アクリル酸キシリル、(メタ)アクリル酸ナフチル、(メタ)アクリル酸ビナフチル、(メタ)アクリル酸アントリル等の(メタ)アクリル酸アリール;(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アラルキル;(メタ)アクリル酸フェノキシエチル等の(メタ)アクリル酸アリールオキシアルキル等が挙げられる。(メタ)アクリル酸アリールのアリール基は、C6-20アリール基が好ましく、C6-14アリール基がより好ましい。(メタ)アクリル酸アラルキルのアラルキル基は、C6-10アリールC1-4アルキル基が好ましい。(メタ)アクリル酸アリールオキシアルキルのアリールオキシアルキル基は、C6-10アリールオキシC1-4アルキル基が好ましく、フェノキシC1-4アルキル基がより好ましい。 Examples of (meth) acrylic acid ester having an aromatic hydrocarbon group include phenyl (meth) acrylate, tolyl (meth) acrylate, xylyl (meth) acrylate, naphthyl (meth) acrylate, and binaphthyl (meth) acrylate. (Meth) acrylates such as anthryl (meth) acrylate; aryl (meth) acrylates such as benzyl (meth) acrylate; aryloxyalkyl (meth) acrylates such as phenoxyethyl (meth) acrylate; Can be mentioned. The aryl group of aryl (meth) acrylate is preferably a C6-20 aryl group, more preferably a C6-14 aryl group. The aralkyl group of (meth) acrylic acid aralkyl is preferably a C6-10 aryl C1-4 alkyl group. The aryloxyalkyl group of aryloxyalkyl (meth) acrylate is preferably a C6-10 aryloxy C1-4 alkyl group, more preferably a phenoxy C1-4 alkyl group.
 (メタ)アクリル酸エステルは、ヒドロキシル基、ハロゲン基、アルコキシ基、エポキシ基等の置換基を有していてもよい。このような(メタ)アクリル酸エステルとしては、(メタ)アクリル酸2-ヒドロキシエチル等の(メタ)アクリル酸ヒドロキシアルキル;(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル等の(メタ)アクリル酸ハロゲン化アルキル;(メタ)アクリル酸2-メトキシエチル等の(メタ)アクリル酸アルコキシアルキル;(メタ)アクリル酸グリシジル等の(メタ)アクリル酸エポキシアルキル等が挙げられる。(メタ)アクリル酸ヒドロキシアルキルと(メタ)アクリル酸エポキシアルキルのアルキル基は、C1-12アルキル基が好ましい。(メタ)アクリル酸アルコキシアルキルのアルコキシアルキル基は、C1-12アルコキシC1-12アルキル基が好ましい。 (Meth) acrylic acid ester may have a substituent such as a hydroxyl group, a halogen group, an alkoxy group or an epoxy group. Examples of such (meth) acrylic acid esters include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate; chloromethyl (meth) acrylate, 2-chloroethyl (meth) acrylate and the like ( (Meth) acrylic acid alkyl halides; (meth) alkoxyalkyl (meth) acrylates such as 2-methoxyethyl acrylate; and (meth) acrylic acid epoxyalkyls such as glycidyl (meth) acrylate. The alkyl group of hydroxyalkyl (meth) acrylate and epoxyalkyl (meth) acrylate is preferably a C1-12 alkyl group. The alkoxyalkyl group of the alkoxyalkyl (meth) acrylate is preferably a C1-12 alkoxy C1-12 alkyl group.
 ポリマー鎖(B)は、(メタ)アクリル単位に加えて、主鎖に環構造を有する単位(以下、「環構造単位」と称する場合がある)を有している。ポリマー鎖(B)が主鎖に環構造を有することで、共重合体(P)の耐熱性を高めることができる。また、耐溶剤性、表面硬度、接着性、酸素や水蒸気のバリヤ性、各種の光学特性の向上も期待できる。さらに、共重合体(P)やこれを含む樹脂組成物をフィルムやシートにした場合に、高温高湿度条件下での寸法安定性や形状安定性を高めることができる。このように形成したフィルムは、延伸することによって、ポリマー鎖(B)の環構造に由来して大きな位相差を発現させることができ、位相差フィルムとしての適用が可能となる。この特徴は、共重合体(P)やこれを含む樹脂組成物を、位相差フィルムまたは位相差フィルムの機能を有する偏光子保護フィルムなどの光学フィルムへの適用を可能とする。 The polymer chain (B) has a unit having a ring structure in the main chain (hereinafter sometimes referred to as “ring structure unit”) in addition to the (meth) acryl unit. When the polymer chain (B) has a ring structure in the main chain, the heat resistance of the copolymer (P) can be increased. In addition, improvements in solvent resistance, surface hardness, adhesion, oxygen and water vapor barrier properties, and various optical properties can be expected. Furthermore, when the copolymer (P) or a resin composition containing the copolymer is used as a film or sheet, the dimensional stability and shape stability under high temperature and high humidity conditions can be enhanced. By stretching the film formed in this manner, a large retardation can be expressed due to the ring structure of the polymer chain (B), and application as a retardation film becomes possible. This feature enables application of the copolymer (P) and a resin composition containing the copolymer to an optical film such as a retardation film or a polarizer protective film having a function of a retardation film.
 ポリマー鎖(B)の主鎖の環構造は、(メタ)アクリル系単量体の一部または全部を環構造内に含んでいてもよく、(メタ)アクリル系単量体とは別に導入された環構造であってもよい。(メタ)アクリル系単量体の一部または全部を環構造内に含ませる場合には、例えば、隣接する(メタ)アクリル系単量体由来の単位の2個のカルボン酸基を酸無水物化、イミド化などによって連結すればよい。また隣接する(メタ)アクリル系単量体由来の単位のうち一方がヒドロキシル基やアミノ基などのプロトン性水素原子含有基を有する場合には、この一方の(メタ)アクリル系単量体由来の単位のプロトン性水素原子含有基と他方の(メタ)アクリル系単量体由来の単位のカルボン酸基とが縮合することでも、環構造を形成できる。環構造を(メタ)アクリル系単量体由来の単位とは別に導入する場合は、例えば、(メタ)アクリル系単量体と、環構造内に重合性二重結合を有する単量体とを共重合すればよい。 The ring structure of the main chain of the polymer chain (B) may contain a part or all of the (meth) acrylic monomer in the ring structure, and is introduced separately from the (meth) acrylic monomer. It may be a ring structure. When part or all of the (meth) acrylic monomer is included in the ring structure, for example, the two carboxylic acid groups of the units derived from the adjacent (meth) acrylic monomer are converted to acid anhydrides. Or by imidization. In addition, when one of the units derived from the adjacent (meth) acrylic monomer has a protonic hydrogen atom-containing group such as a hydroxyl group or an amino group, it is derived from this one (meth) acrylic monomer. A ring structure can also be formed by condensing the protonic hydrogen atom-containing group of the unit and the carboxylic acid group of the unit derived from the other (meth) acrylic monomer. When the ring structure is introduced separately from the unit derived from the (meth) acrylic monomer, for example, a (meth) acrylic monomer and a monomer having a polymerizable double bond in the ring structure are included. What is necessary is just to copolymerize.
 環構造は、4員環構造、5員環構造、6員環構造、7員環構造、8員環構造等のいずれでもよく、好ましくは5員環構造または6員環構造である。 The ring structure may be any of a 4-membered ring structure, a 5-membered ring structure, a 6-membered ring structure, a 7-membered ring structure, an 8-membered ring structure, and the like, and preferably a 5-membered ring structure or a 6-membered ring structure.
 環構造としては、共重合体(P)の耐熱性の観点から、ラクトン環構造、環状イミド構造(例えば、マレイミド構造、グルタルイミド構造等)、環状無水物構造(例えば、無水マレイン酸構造、無水グルタル酸構造等)等が好ましく挙げられる。これらの環構造は、ポリマー鎖(B)の主鎖に1種のみ含まれていてもよく、2種以上含まれていてもよい。これらの中でも、ラクトン環構造、マレイミド構造、無水マレイン酸構造、グルタルイミド構造、および無水グルタル酸構造から選ばれる少なくとも1種が好ましい。 As the ring structure, from the viewpoint of the heat resistance of the copolymer (P), a lactone ring structure, a cyclic imide structure (for example, a maleimide structure, a glutarimide structure, etc.), a cyclic anhydride structure (for example, a maleic anhydride structure, an anhydrous structure) Glutaric acid structure etc.) are preferred. One type of these ring structures may be contained in the main chain of the polymer chain (B), or two or more types may be contained. Among these, at least one selected from a lactone ring structure, a maleimide structure, a maleic anhydride structure, a glutarimide structure, and a glutaric anhydride structure is preferable.
 ポリマー鎖(B)が主鎖の環構造としてラクトン環構造を有する場合、ラクトン環構造の環員数は特に限定されず、例えば4員環から8員環のいずれかであればよい。なお、環構造の安定性に優れる点から、ラクトン環構造は5員環または6員環であることが好ましく、6員環であることがより好ましい。 When the polymer chain (B) has a lactone ring structure as the ring structure of the main chain, the number of ring members of the lactone ring structure is not particularly limited, and may be any one of 4 to 8 membered rings, for example. The lactone ring structure is preferably a 5-membered ring or a 6-membered ring, and more preferably a 6-membered ring, from the viewpoint of excellent stability of the ring structure.
 ラクトン環構造としては、例えば特開2004-168882号公報に開示される構造等が挙げられるが、ラクトン環構造の導入が容易であること、具体的には、前駆体(ラクトン環化前の重合体)の重合収率が高いこと、前駆体の環化縮合反応におけるラクトン環含有率を高めることができること、(メタ)アクリレート由来の単位を有する重合体を前駆体にできることなどの理由から、下記式(1)で表される構造が好ましく示される。下記式(1)において、R1、R2およびR3は、それぞれ独立して水素原子または置換基を表す。 Examples of the lactone ring structure include the structure disclosed in Japanese Patent Application Laid-Open No. 2004-168882. The lactone ring structure is easy to introduce, and more specifically, the precursor (the lactone ring structure prior to lactone cyclization). From the reasons that the polymerization yield of the polymer) is high, the lactone ring content in the cyclization condensation reaction of the precursor can be increased, and the polymer having a unit derived from (meth) acrylate can be used as the precursor. A structure represented by the formula (1) is preferably shown. In the following formula (1), R 1 , R 2 and R 3 each independently represent a hydrogen atom or a substituent.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)のR1、R2およびR3の置換基としては、炭化水素基等の有機残基が挙げられ、例えば、酸素原子を含んでいてもよいC1-20の炭化水素基等が挙げられる。当該炭化水素基としては、飽和または不飽和の直鎖状、分岐状または環状の脂肪族炭化水素基や芳香族炭化水素基が挙げられる。脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等のC1-20アルキル基;エテニル基、プロペニル基等のC2-20アルケニル基;シクロペンチル基、シクロヘキシル基等のC3-20シクロアルキル基等が挙げられる。芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等のC6-20アリール基;ベンジル基、フェニルエチル基等のC7-20アラルキル基等が挙げられる。これらの炭化水素基は酸素原子を含んでいてもよく、具体的には、炭化水素基の有する水素原子の一つ以上が、ヒドロキシル基、カルボキシル基、エーテル基およびエステル基から選ばれる少なくとも1種類の基により置換されていてもよい。 Examples of the substituent of R 1 , R 2 and R 3 in the formula (1) include organic residues such as a hydrocarbon group, such as a C1-20 hydrocarbon group which may contain an oxygen atom. Can be mentioned. Examples of the hydrocarbon group include saturated or unsaturated linear, branched or cyclic aliphatic hydrocarbon groups and aromatic hydrocarbon groups. Examples of the aliphatic hydrocarbon group include a C1-20 alkyl group such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group; a C2-20 alkenyl group such as an ethenyl group and a propenyl group; a cyclopentyl group, a cyclohexyl group, and the like. And a C3-20 cycloalkyl group. Examples of the aromatic hydrocarbon group include C6-20 aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group; C7-20 aralkyl groups such as benzyl group and phenylethyl group. These hydrocarbon groups may contain an oxygen atom. Specifically, at least one hydrogen atom of the hydrocarbon group is selected from a hydroxyl group, a carboxyl group, an ether group and an ester group. It may be substituted with a group.
 ラクトン環構造は、例えば、隣接する(メタ)アクリル酸エステル由来の単位のエステル基と、ヒドロキシル基やアミノ基などのプロトン性水素原子含有基を有する(メタ)アクリル系単量体由来の単位のプロトン性水素原子含有基とを環化縮合することにより、ポリマー鎖(B)に導入することができる。 The lactone ring structure includes, for example, an ester group of a unit derived from an adjacent (meth) acrylic acid ester and a unit derived from a (meth) acrylic monomer having a protonic hydrogen atom-containing group such as a hydroxyl group or an amino group. Cyclocondensation with a protic hydrogen atom-containing group can be introduced into the polymer chain (B).
 式(1)のラクトン環構造において、耐熱性に優れ、複屈折率が小さい共重合体(P)を得ることが容易な点から、R1およびR2はそれぞれ独立して水素原子またはC1-20アルキル基であり、R3は水素原子またはメチル基であることが好ましく、R1およびR2はそれぞれ独立して水素原子またはメチル基であり、R3は水素原子またはメチル基であることがより好ましい。 In the lactone ring structure of the formula (1), R 1 and R 2 are each independently a hydrogen atom or C1− from the viewpoint that it is easy to obtain a copolymer (P) having excellent heat resistance and low birefringence. an 20 alkyl group, R 3 is preferably a hydrogen atom or a methyl group, R 1 and R 2 are each independently a hydrogen atom or a methyl group, that R 3 is a hydrogen atom or a methyl group More preferred.
 ラクトン環構造は、例えば、ヒドロキシ基を有する(メタ)アクリル系単量体Aと、(メタ)アクリル系単量体Bとを重合(好ましくは共重合)して分子鎖にヒドロキシ基とエステル基またはカルボキシル基とを導入した後、これらヒドロキシ基とエステル基またはカルボキシル基との間で脱アルコールまたは脱水環化縮合を生じさせることにより形成できる。重合成分として、ヒドロキシ基を有する(メタ)アクリル系単量体Aは必須であり、(メタ)アクリル系単量体Bは前記単量体Aを包含する。単量体Bは単量体Aと一致していてもよいし、一致しなくてもよい。単量体Bが単量体Aと一致するときには、単量体Aの単独重合となる。 For example, the lactone ring structure is obtained by polymerizing (preferably copolymerizing) a (meth) acrylic monomer A having a hydroxy group and a (meth) acrylic monomer B to form a hydroxy group and an ester group in the molecular chain. Or after introducing a carboxyl group, it can form by making dealcoholization or dehydration cyclocondensation occur between these hydroxy groups and ester groups or carboxyl groups. The (meth) acrylic monomer A having a hydroxy group is essential as a polymerization component, and the (meth) acrylic monomer B includes the monomer A. Monomer B may or may not coincide with monomer A. When the monomer B coincides with the monomer A, the monomer A is homopolymerized.
 ヒドロキシ基を有する(メタ)アクリル系単量体Aとしては、2-(ヒドロキシメチル)アクリル酸、2-(ヒドロキシエチル)アクリル酸、2-(ヒドロキシメチル)アクリル酸アルキル(例えば、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシメチル)アクリル酸イソプロピル、2-(ヒドロキシメチル)アクリル酸n-ブチル、2-(ヒドロキシメチル)アクリル酸t-ブチル)、2-(ヒドロキシエチル)アクリル酸アルキル(例えば、2-(ヒドロキシエチル)アクリル酸メチル、2-(ヒドロキシエチル)アクリル酸エチル)等が挙げられ、好ましくは、ヒドロキシアリル部位を有する単量体である2-(ヒドロキシメチル)アクリル酸や2-(ヒドロキシメチル)アクリル酸アルキルが挙げられる。特に好ましくは2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチルが示される。 Examples of the (meth) acrylic monomer A having a hydroxy group include 2- (hydroxymethyl) acrylic acid, 2- (hydroxyethyl) acrylic acid, and alkyl 2- (hydroxymethyl) acrylate (for example, 2- (hydroxy Methyl) methyl acrylate, 2- (hydroxymethyl) ethyl acrylate, 2- (hydroxymethyl) isopropyl acrylate, 2- (hydroxymethyl) acrylate n-butyl, 2- (hydroxymethyl) acrylate t-butyl) , Alkyl 2- (hydroxyethyl) acrylate (for example, methyl 2- (hydroxyethyl) acrylate, ethyl 2- (hydroxyethyl) acrylate) and the like, preferably a monomer having a hydroxyallyl moiety. Some 2- (hydroxymethyl) acrylic acid and 2- (hydroxymethyl) ), And alkyl acrylate. Particularly preferred are methyl 2- (hydroxymethyl) acrylate and ethyl 2- (hydroxymethyl) acrylate.
 (メタ)アクリル系単量体Bとしては、ビニル基とエステル基またはカルボキシル基とを有する単量体が好ましく、例えば、(メタ)アクリル酸、(メタ)アクリル酸アルキル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸シクロヘキシル等)、(メタ)アクリル酸アリール(例えば、(メタ)アクリル酸フェニル、(メタ)アクリル酸ベンジル等)、2-(ヒドロキシアルキル)アクリル酸アルキル(例えば、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル等の2-(ヒドロキシメチル)アクリル酸アルキル、2-(ヒドロキシエチル)アクリル酸メチル等の2-(ヒドロキシエチル)アクリル酸アルキル)等が挙げられる。 As the (meth) acrylic monomer B, a monomer having a vinyl group and an ester group or a carboxyl group is preferable. For example, (meth) acrylic acid, alkyl (meth) acrylate (for example, (meth) acrylic) Methyl methacrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate), aryl (meth) acrylate (Eg, phenyl (meth) acrylate, benzyl (meth) acrylate), 2- (hydroxyalkyl) alkyl acrylate (eg, 2- (hydroxymethyl) methyl acrylate, 2- (hydroxymethyl) ethyl acrylate Such as alkyl 2- (hydroxymethyl) acrylate and 2- (hydroxyethyl) acrylate 2- (hydroxyethyl) alkyl acrylate) such as Le like.
 ポリマー鎖(B)は、式(1)で表されるラクトン環構造を1種のみ有していてもよく、2種以上有していてよい。 The polymer chain (B) may have only one type of lactone ring structure represented by the formula (1), or may have two or more types.
 ポリマー鎖(B)が主鎖の環構造として無水マレイン酸構造またはマレイミド構造を有する場合、無水マレイン酸構造またはマレイミド構造としては、下記式(2)で表される構造が好ましく示される。下記式(2)において、R4およびR5は、それぞれ独立して水素原子またはメチル基を表し、R6は水素原子または置換基を表し、X1は酸素原子または窒素原子を表し、X1が酸素原子のときn1=0であり、X1が窒素原子のときn1=1である。 When the polymer chain (B) has a maleic anhydride structure or a maleimide structure as the ring structure of the main chain, the maleic anhydride structure or the maleimide structure is preferably a structure represented by the following formula (2). In the following formula (2), R 4 and R 5 each independently represent a hydrogen atom or a methyl group, R 6 represents a hydrogen atom or a substituent, X 1 represents an oxygen atom or a nitrogen atom, and X 1 When n is an oxygen atom, n1 = 0, and when X 1 is a nitrogen atom, n1 = 1.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)のR6の置換基としては、炭化水素基等が挙げられ、例えばハロゲン等の置換基を有していてもよいC1-20の炭化水素基が挙げられる。当該炭化水素基としては、飽和または不飽和の直鎖状、分岐状または環状の脂肪族炭化水素基や芳香族炭化水素基が挙げられる。脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基等のC1-6アルキル基;エテニル基、プロペニル基等のC2-6アルケニル基;シクロペンチル基、シクロヘキシル基等のC3-20シクロアルキル基等が挙げられる。芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基等のC6-20アリール基;ベンジル基、フェニルエチル基等のC7-20アラルキル基等が挙げられる。これらの炭化水素基は、ハロゲン等の置換基を有していてもよい。 Examples of the substituent of R 6 in the formula (2) include a hydrocarbon group, and examples thereof include a C1-20 hydrocarbon group which may have a substituent such as halogen. Examples of the hydrocarbon group include saturated or unsaturated linear, branched or cyclic aliphatic hydrocarbon groups and aromatic hydrocarbon groups. Examples of the aliphatic hydrocarbon group include a C1-6 alkyl group such as a methyl group, an ethyl group, an n-propyl group, and an isopropyl group; a C2-6 alkenyl group such as an ethenyl group and a propenyl group; a cyclopentyl group, a cyclohexyl group, and the like. And a C3-20 cycloalkyl group. Examples of the aromatic hydrocarbon group include C6-20 aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group and biphenyl group; C7-20 aralkyl groups such as benzyl group and phenylethyl group. These hydrocarbon groups may have a substituent such as halogen.
 X1が酸素原子のとき、式(2)により示される環構造は無水マレイン酸構造となる。無水マレイン酸構造は、例えば、無水マレイン酸と(メタ)アクリル系単量体(例えば、(メタ)アクリル酸エステル等)とを共重合することによって、ポリマー鎖(B)に導入することができる。 When X 1 is an oxygen atom, the ring structure represented by the formula (2) is a maleic anhydride structure. The maleic anhydride structure can be introduced into the polymer chain (B), for example, by copolymerizing maleic anhydride and a (meth) acrylic monomer (for example, (meth) acrylic acid ester). .
 X1が窒素原子のとき、式(2)により示される環構造はマレイミド構造となる。マレイミド構造は、例えば、マレイミドと(メタ)アクリル系単量体(例えば、(メタ)アクリル酸エステル)とを共重合することによって、ポリマー鎖(B)に導入することができる。マレイミド構造としては、例えば、N位が無置換のマレイミド構造、N-メチルマレイミド構造、N-エチルマレイミド構造、N-シクロヘキシルマレイミド構造、N-フェニルマレイミド構造、N-ナフチルマレイミド構造、N-ベンジルマレイミド構造等が挙げられる。また、マレイミド構造を与えるマレイミドとしては、N位が無置換のマレイミド、N-メチルマレイミド、N-エチルマレイミド、N-シクロヘキシルマレイミド、N-フェニルマレイミド、N-ナフチルマレイミド、N-ベンジルマレイミド等を用いることができる。 When X 1 is a nitrogen atom, the ring structure represented by the formula (2) is a maleimide structure. The maleimide structure can be introduced into the polymer chain (B) by, for example, copolymerizing maleimide and a (meth) acrylic monomer (for example, (meth) acrylic acid ester). As the maleimide structure, for example, an N-substituted unsubstituted maleimide structure, N-methylmaleimide structure, N-ethylmaleimide structure, N-cyclohexylmaleimide structure, N-phenylmaleimide structure, N-naphthylmaleimide structure, N-benzylmaleimide Examples include the structure. Further, as the maleimide giving the maleimide structure, maleimide, N-methylmaleimide, N-ethylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-naphthylmaleimide, N-benzylmaleimide, etc. are used. be able to.
 ポリマー鎖(B)がX1が窒素原子であるマレイミド構造を有する場合、耐熱性に優れ、複屈折率が小さい共重合体(P)を得ることが容易な点から、R4およびR5は水素原子であり、R6はC3-20シクロアルキル基またはC6-20芳香族基(アリール基、アラルキル基等)であることが好ましく、R4およびR5は水素原子であり、R6はシクロヘキシル基またはフェニル基であることがより好ましい。 When the polymer chain (B) has a maleimide structure in which X 1 is a nitrogen atom, R 4 and R 5 are excellent in heat resistance and easy to obtain a copolymer (P) having a low birefringence. R 6 is preferably a C 3-20 cycloalkyl group or a C 6-20 aromatic group (aryl group, aralkyl group, etc.), R 4 and R 5 are hydrogen atoms, and R 6 is cyclohexyl. More preferably, it is a group or a phenyl group.
 ポリマー鎖(B)は、式(2)で表される環構造を1種のみ有していてもよく、2種以上有していてよい。 The polymer chain (B) may have only one type of ring structure represented by the formula (2), or may have two or more types.
 ポリマー鎖(B)が主鎖の環構造としてグルタルイミド構造または無水グルタル酸構造を有する場合、グルタルイミド構造または無水グルタル酸構造としては、下記式(3)で表される構造が好ましく示される。下記式(3)において、R7およびR8は、それぞれ独立して水素原子またはアルキル基を表し、R9は水素原子または置換基を表し、X2は酸素原子または窒素原子を表し、X2が酸素原子のときn2=0であり、X2が窒素原子のときn2=1である。 When the polymer chain (B) has a glutarimide structure or a glutaric anhydride structure as the ring structure of the main chain, the structure represented by the following formula (3) is preferably shown as the glutarimide structure or the glutaric anhydride structure. In the following formula (3), R 7 and R 8 each independently represent a hydrogen atom or an alkyl group, R 9 represents a hydrogen atom or a substituent, X 2 represents an oxygen atom or a nitrogen atom, and X 2 There are n2 = 0 when the oxygen atom, a n2 = 1 when X 2 is a nitrogen atom.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(3)中、R7およびR8のアルキル基としては、直鎖状または分岐状のアルキル基が好ましく挙げられ、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソへキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、2-エチルヘキシル基等のC1-8アルキル基等が挙げられる。なお、耐熱性に優れ、複屈折率が小さい共重合体(P)を得ることが容易な点から、R7およびR8は、それぞれ独立して水素原子またはC1-4アルキル基が好ましく、水素原子またはメチル基がより好ましい。 In the formula (3), the alkyl group of R 7 and R 8 is preferably a linear or branched alkyl group, and examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. Group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, isohexyl group, n-heptyl group, isoheptyl group, n-octyl group, 2-ethylhexyl group, etc. An alkyl group etc. are mentioned. R 7 and R 8 are each independently preferably a hydrogen atom or a C1-4 alkyl group from the viewpoint that it is easy to obtain a copolymer (P) having excellent heat resistance and a low birefringence index. An atom or a methyl group is more preferable.
 式(3)のR9の置換基としては、炭化水素基等が挙げられ、例えばハロゲン等の置換基を有していてもよいC1-20の炭化水素基が挙げられる。当該炭化水素基としては、飽和または不飽和の直鎖状、分岐状または環状の脂肪族炭化水素基や芳香族炭化水素基が挙げられる。脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、イソへキシル基、n-ヘプチル基、イソヘプチル基、n-オクチル基、2-エチルヘキシル等のC1-10アルキル基;エテニル基、プロペニル基等のC2-10アルケニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等のC3-12シクロアルキル基等が挙げられる。芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、ビフェニル基、ビナフチル基、アントリル基等のC6-20アリール基;ベンジル基、フェニルエチル基等のC7-20アラルキル基等が挙げられる。これらの炭化水素基は、ハロゲン等の置換基を有していてもよい。これらの中でも、耐熱性に優れ、複屈折率が小さい共重合体(P)を得ることが容易な点から、R9は、C1-4アルキル基、C3-7シクロアルキル基、C6-20アリール基、またはC7-20アラルキル基であることが好ましく、メチル基、シクロヘキシル基、フェニル基、またはトリル基がより好ましい。 Examples of the substituent for R 9 in the formula (3) include a hydrocarbon group, and examples thereof include a C1-20 hydrocarbon group which may have a substituent such as halogen. Examples of the hydrocarbon group include saturated or unsaturated linear, branched or cyclic aliphatic hydrocarbon groups and aromatic hydrocarbon groups. Examples of the aliphatic hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, an n-hexyl group, C1-10 alkyl groups such as isohexyl group, n-heptyl group, isoheptyl group, n-octyl group and 2-ethylhexyl; C2-10 alkenyl groups such as ethenyl group and propenyl group; cyclopropyl group, cyclobutyl group and cyclopentyl Group, a C3-12 cycloalkyl group such as a cyclohexyl group, and the like. Examples of the aromatic hydrocarbon group include C6-20 aryl groups such as phenyl group, tolyl group, xylyl group, naphthyl group, biphenyl group, binaphthyl group and anthryl group; C7-20 aralkyl groups such as benzyl group and phenylethyl group Groups and the like. These hydrocarbon groups may have a substituent such as halogen. Among these, R 9 is a C1-4 alkyl group, a C3-7 cycloalkyl group, a C6-20 aryl, because it is easy to obtain a copolymer (P) having excellent heat resistance and a small birefringence. Or a C7-20 aralkyl group, more preferably a methyl group, a cyclohexyl group, a phenyl group, or a tolyl group.
 X2が酸素原子のとき、式(3)により示される環構造は無水グルタル酸構造となる。無水グルタル酸構造は、例えば、隣接する(メタ)アクリル系単量体由来の単位の2個のカルボン酸基を酸無水物化することにより、ポリマー鎖(B)に導入することができる。 When X 2 is an oxygen atom, the ring structure represented by the formula (3) is a glutaric anhydride structure. The glutaric anhydride structure can be introduced into the polymer chain (B) by acidifying two carboxylic acid groups of units derived from adjacent (meth) acrylic monomers, for example.
 X2が窒素原子のとき、式(3)により示される環構造はグルタルイミド構造となる。グルタルイミド構造は、例えば、隣接する(メタ)アクリル系単量体由来の単位の2個のカルボン酸基をイミド化したり、隣接する(メタ)アクリル酸アミド由来の単位のアミド基と(メタ)アクリル酸エステル由来の単位のエステル基とを環化縮合することにより、ポリマー鎖(B)に導入することができる。 When X 2 is a nitrogen atom, the ring structure represented by the formula (3) is a glutarimide structure. The glutarimide structure is, for example, imidization of two carboxylic acid groups of a unit derived from an adjacent (meth) acrylic monomer, or an amide group of a unit derived from an adjacent (meth) acrylic acid amide and (meth) It can introduce | transduce into a polymer chain (B) by carrying out cyclization condensation with the ester group of the unit derived from an acrylate ester.
 式(3)の環構造において、耐熱性に優れ、複屈折率が小さい共重合体(P)を得ることが容易な点から、R7およびR8はそれぞれ独立して水素原子またはメチル基であり、R9はC1-10アルキル基、C3-12シクロアルキル基、またはC6-20芳香族基であることが好ましく、R7およびR8はそれぞれ独立して水素原子またはメチル基であり、R9はC1-4アルキル基、C3-7シクロアルキル基、C6-20アリール基、またはC7-20アラルキル基であることがより好ましく、R7およびR8はそれぞれ独立して水素原子またはメチル基であり、R9は、メチル基、シクロヘキシル基、フェニル基、またはトリル基であることがさらに好ましく、R7およびR8はそれぞれ独立して水素原子またはメチル基であり、R9はシクロヘキシル基またはフェニル基であることが特に好ましい。 In the ring structure of formula (3), R 7 and R 8 are each independently a hydrogen atom or a methyl group from the viewpoint that it is easy to obtain a copolymer (P) having excellent heat resistance and low birefringence. R 9 is preferably a C 1-10 alkyl group, a C 3-12 cycloalkyl group, or a C 6-20 aromatic group, and R 7 and R 8 are each independently a hydrogen atom or a methyl group, 9 is more preferably a C1-4 alkyl group, a C3-7 cycloalkyl group, a C6-20 aryl group, or a C7-20 aralkyl group, and R 7 and R 8 are each independently a hydrogen atom or a methyl group. There, R 9 is a methyl group, a cyclohexyl group, a phenyl group, or more preferably tolyl group, R 7 and R 8 are each independently hydrogen atom or a methyl group,, R 9 is consequent And particularly preferably a hexyl group or a phenyl group.
 ポリマー鎖(B)は、式(3)で表される環構造を1種のみ有していてもよく、2種以上有していてよい。 The polymer chain (B) may have only one type of ring structure represented by the formula (3), or may have two or more types.
 上記に説明した環構造のうち、共重合体(P)やこれを含む樹脂組成物を光学フィルムに適用したときに、良好な表面硬度、耐溶剤性、接着性、バリヤ特性、光学特性が付与される観点から、ポリマー鎖(B)の環構造単位は、ラクトン環構造および/またはマレイミド構造を含むことが好ましい。光学フィルムが位相差フィルムである場合は、正の位相差を付与でき、位相差特性の安定性が優れる観点から、ポリマー鎖(B)の環構造単位はラクトン環構造を含むことがより好ましい。 Among the ring structures described above, when a copolymer (P) or a resin composition containing the same is applied to an optical film, good surface hardness, solvent resistance, adhesion, barrier properties, and optical properties are imparted. In view of the above, the ring structural unit of the polymer chain (B) preferably contains a lactone ring structure and / or a maleimide structure. When the optical film is a retardation film, it is more preferable that the ring structural unit of the polymer chain (B) contains a lactone ring structure from the viewpoint of imparting a positive retardation and excellent stability of the retardation characteristics.
 ポリマー鎖(B)は、さらに他の不飽和単量体由来の単位を有していてもよい。他の不飽和単量体は、重合性二重結合を有する化合物であれば特に限定されず、例えば、酢酸ビニル、プロピオン酸ビニル等のビニルエステル;スチレン、ビニルトルエン、メトキシスチレン、α-メチルスチレン、2-ビニルピリジン等の芳香族ビニル化合物;ビニルトリメトキシシラン、γ-(メタ)アクリロイルオキシプロピルメトキシシラン等のビニルシラン等が挙げられる。例えば、ポリマー鎖(B)が芳香族ビニル単量体由来の単位を有していれば、共重合体(P)の屈折率や位相差特性を調整することが容易になる。芳香族ビニル単量体の詳細は、重合体ブロック(a2)の芳香族ビニル単量体の説明が参照される。なお、ポリマー鎖(B)が2種以上の単量体成分から形成されるものである場合、ポリマー鎖(B)はランダム共重合体であることが好ましい。 The polymer chain (B) may further have units derived from other unsaturated monomers. The other unsaturated monomer is not particularly limited as long as it is a compound having a polymerizable double bond. For example, vinyl esters such as vinyl acetate and vinyl propionate; styrene, vinyl toluene, methoxy styrene, α-methyl styrene Aromatic vinyl compounds such as 2-vinylpyridine; vinylsilanes such as vinyltrimethoxysilane and γ- (meth) acryloyloxypropylmethoxysilane. For example, if the polymer chain (B) has a unit derived from an aromatic vinyl monomer, it becomes easy to adjust the refractive index and retardation characteristics of the copolymer (P). For details of the aromatic vinyl monomer, refer to the description of the aromatic vinyl monomer of the polymer block (a2). In addition, when a polymer chain (B) is formed from 2 or more types of monomer components, it is preferable that a polymer chain (B) is a random copolymer.
 共重合体(P)は、ポリマー鎖(B)中、(メタ)アクリル酸エステル由来の単位の含有割合が45質量%以上98質量%以下である。ポリマー鎖(B)中の(メタ)アクリル酸エステル由来の単位の含有割合が45質量%以上であれば、ポリマー鎖(B)を重合形成する際にゲル化物の発生を抑えることができ、共重合体(P)を光学用途に好適に用いやすくなる。また、共重合体(P)の機械的強度も高めやすくなる。ポリマー鎖(B)中の(メタ)アクリル酸エステル由来の単位の含有割合が98質量%以下であれば、耐熱性に優れた共重合体(P)を得ることができる。ポリマー鎖(B)中の(メタ)アクリル酸エステル由来の単位の含有割合は、50質量%以上が好ましく、55質量%以上がより好ましく、60質量%以上がさらに好ましく、また97質量%以下が好ましい。 The copolymer (P) has a content ratio of units derived from (meth) acrylic acid ester in the polymer chain (B) of 45% by mass or more and 98% by mass or less. If the content ratio of the unit derived from (meth) acrylic acid ester in the polymer chain (B) is 45% by mass or more, generation of gelled product can be suppressed when the polymer chain (B) is formed by polymerization. It becomes easy to use a polymer (P) suitably for an optical use. In addition, the mechanical strength of the copolymer (P) can be easily increased. If the content rate of the unit derived from the (meth) acrylic acid ester in a polymer chain (B) is 98 mass% or less, the copolymer (P) excellent in heat resistance can be obtained. The content ratio of the unit derived from the (meth) acrylic acid ester in the polymer chain (B) is preferably 50% by mass or more, more preferably 55% by mass or more, further preferably 60% by mass or more, and 97% by mass or less. preferable.
 ポリマー鎖(B)中の環構造単位の含有割合は、2質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましく、また50質量%以下が好ましく、45質量%以下がより好ましく、40質量%以下がさらに好ましい。このように環構造単位の含有割合を調整することにより、共重合体(P)の耐熱性と機械的強度の両方をバランス良く高めることが容易になる。なお、ここで説明した環構造単位の含有割合は、ポリマー鎖(B)の主鎖に含まれる環構造を有する単位の含有率を意味し、例えば、上記式(1)~(3)で表される構造の含有割合を意味する。 The content of the ring structural unit in the polymer chain (B) is preferably 2% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, and preferably 50% by mass or less, and 45% by mass or less. Is more preferable, and 40 mass% or less is still more preferable. Thus, by adjusting the content ratio of the ring structural unit, it becomes easy to improve both the heat resistance and the mechanical strength of the copolymer (P) in a balanced manner. The content ratio of the ring structural unit described here means the content of the unit having a ring structure contained in the main chain of the polymer chain (B), and is represented by, for example, the above formulas (1) to (3). It means the content ratio of the structure.
 ポリマー鎖(B)は、(メタ)アクリル単位と環構造単位の合計含有割合が、90質量%以上が好ましく、93質量%以上がより好ましく、95質量%以上がさらに好ましい。これにより、共重合体(P)の透明性や耐熱性を高めることが容易になる。また、(メタ)アクリル酸エステル由来の単位と環構造単位の合計含有割合がこのような範囲にあることが好ましい。 In the polymer chain (B), the total content of the (meth) acrylic unit and the ring structural unit is preferably 90% by mass or more, more preferably 93% by mass or more, and further preferably 95% by mass or more. Thereby, it becomes easy to improve the transparency and heat resistance of the copolymer (P). Moreover, it is preferable that the total content rate of the unit derived from (meth) acrylic acid ester and a ring structure unit exists in such a range.
 ポリマー鎖(B)はポリマー鎖(A)にグラフトしていることが好ましい。ポリマー鎖(B)は、ポリマー鎖(A)のジエンおよび/またはオレフィン由来の単位に結合していてもよく、またポリマー鎖(A)のジエンおよび/またはオレフィン由来の単位以外の単位に結合していてもよい。前者の場合、ポリマー鎖(B)は、ポリマー鎖(A)のジエンおよび/またはオレフィン由来の単位に直接結合していてもよく、連結基を介して結合していてもよい。 The polymer chain (B) is preferably grafted to the polymer chain (A). The polymer chain (B) may be bonded to a diene and / or olefin-derived unit of the polymer chain (A), and may be bonded to a unit other than the diene and / or olefin-derived unit of the polymer chain (A). It may be. In the former case, the polymer chain (B) may be directly bonded to the diene and / or olefin-derived unit of the polymer chain (A), or may be bonded via a linking group.
 ポリマー鎖(B)がポリマー鎖(A)のジエンおよび/またはオレフィン由来の単位に直接結合する場合、ポリマー鎖(B)は、(メタ)アクリル単位または環構造単位が、ポリマー鎖(A)のジエンおよび/またはオレフィン由来の単位に直接結合していることが好ましい。ポリマー鎖(B)は、ジエンおよび/またはオレフィン由来の単位の主鎖の炭素原子に結合していてもよく、当該主鎖に置換基(側鎖)として結合した炭化水素基の炭素原子に結合していてもよい。このようにポリマー鎖(B)がポリマー鎖(A)に結合していれば、ゲル化物の少ない共重合体(P)を得やすくなる。 When the polymer chain (B) is directly bonded to a diene and / or olefin-derived unit of the polymer chain (A), the polymer chain (B) has a (meth) acryl unit or a ring structural unit of the polymer chain (A). It is preferably directly bonded to the unit derived from diene and / or olefin. The polymer chain (B) may be bonded to the carbon atom of the main chain of the unit derived from diene and / or olefin, and bonded to the carbon atom of the hydrocarbon group bonded as a substituent (side chain) to the main chain. You may do it. Thus, if the polymer chain (B) is bonded to the polymer chain (A), it becomes easy to obtain a copolymer (P) with less gelled product.
 ポリマー鎖(B)がポリマー鎖(A)のジエンおよび/またはオレフィン由来の単位に連結基を介して結合する場合は、連結基は、エステル結合(-CO-O-)、ウレタン結合(-NH-CO-O-)、およびエーテル結合(-O-)から選ばれる少なくとも一種を有することが好ましく、当該連結基はさらにメチレン基やヒドロキシメチレン基などの2価の有機基を有していてもよい。 When the polymer chain (B) is bonded to the diene and / or olefin-derived unit of the polymer chain (A) via a linking group, the linking group includes an ester bond (—CO—O—), a urethane bond (—NH -CO-O-) and an ether bond (-O-) are preferable, and the linking group may further have a divalent organic group such as a methylene group or a hydroxymethylene group. Good.
 ポリマー鎖(B)がポリマー鎖(A)のジエンおよび/またはオレフィン由来の単位以外の単位に結合する場合は、例えば、ポリマー鎖(A)が重合性官能基(重合性二重結合)を有する単位を有し、当該単位の重合性官能基にポリマー鎖(B)が結合したり、ポリマー鎖(A)が、ジエンおよび/またはオレフィン由来の単位以外で、エステル結合(-CO-O-)、ウレタン結合(-NH-CO-O-)エーテル結合(-O-)等の連結基を介してポリマー鎖(B)が結合していてもよい。当該連結基は、さらにメチレン基やヒドロキシメチレン基などの2価の有機基を有していてもよい。 When the polymer chain (B) is bonded to units other than the diene and / or olefin-derived units of the polymer chain (A), for example, the polymer chain (A) has a polymerizable functional group (polymerizable double bond). The polymer chain (B) is bonded to the polymerizable functional group of the unit, or the polymer chain (A) is other than a unit derived from a diene and / or olefin, and is an ester bond (—CO—O—) The polymer chain (B) may be bonded via a linking group such as a urethane bond (—NH—CO—O—) or an ether bond (—O—). The linking group may further have a divalent organic group such as a methylene group or a hydroxymethylene group.
 上記に説明したポリマー鎖(B)がポリマー鎖(A)にグラフトする各態様については、下記の共重合体(P)の製造方法の説明で詳しく説明する。 Each aspect in which the polymer chain (B) described above is grafted to the polymer chain (A) will be described in detail in the description of the method for producing the copolymer (P) below.
 共重合体(P)中の環構造単位の含有割合は特に限定されないが、共重合体(P)中、環構造単位の含有割合は、例えば、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましく、また60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。このように共重合体(P)中の環構造単位の含有割合を調整することにより、共重合体(P)の耐熱性や透明性、成形性、機械的強度等をバランス良く高めることが容易になる。 The content ratio of the ring structural unit in the copolymer (P) is not particularly limited, but the content ratio of the ring structural unit in the copolymer (P) is, for example, preferably 1% by mass or more, and 3% by mass or more. More preferably, 5% by mass or more is more preferable, 60% by mass or less is preferable, 50% by mass or less is more preferable, and 40% by mass or less is more preferable. Thus, by adjusting the content ratio of the ring structural unit in the copolymer (P), it is easy to improve the heat resistance, transparency, moldability, mechanical strength, etc. of the copolymer (P) in a balanced manner. become.
 共重合体(P)がポリマー鎖(B)の環構造単位としてラクトン環構造を有する場合、共重合体(P)の耐熱性や透明性を高める観点から、共重合体(P)中のラクトン環構造の含有割合は、例えば1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましく、また60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。同様の観点から、共重合体(P)がポリマー鎖(B)の環構造単位として無水マレイン酸構造および/またはマレイミド構造を有する場合、共重合体(P)中のこれらの環構造の含有割合は、例えば1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましく、また60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。共重合体(P)がポリマー鎖(B)の環構造単位としてグルタルイミド構造および/または無水グルタル酸構造を有する場合、共重合体(P)中のこれらの環構造の含有割合は、例えば1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がさらに好ましく、また60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。 When the copolymer (P) has a lactone ring structure as a ring structural unit of the polymer chain (B), the lactone in the copolymer (P) is used from the viewpoint of enhancing the heat resistance and transparency of the copolymer (P). The content of the ring structure is, for example, preferably 1% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, more preferably 60% by mass or less, more preferably 50% by mass or less, and 40% by mass. More preferred are: From the same viewpoint, when the copolymer (P) has a maleic anhydride structure and / or a maleimide structure as a ring structural unit of the polymer chain (B), the content ratio of these ring structures in the copolymer (P) Is, for example, preferably 1% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, more preferably 60% by mass or less, more preferably 50% by mass or less, and further preferably 40% by mass or less. When the copolymer (P) has a glutarimide structure and / or a glutaric anhydride structure as a ring structural unit of the polymer chain (B), the content ratio of these ring structures in the copolymer (P) is, for example, 1 % By mass or more is preferable, 3% by mass or more is more preferable, 5% by mass or more is more preferable, 60% by mass or less is preferable, 50% by mass or less is more preferable, and 40% by mass or less is more preferable.
 共重合体(P)の重量平均分子量は、0.2万以上が好ましく、0.5万以上がより好ましく、3万以上がさらに好ましく、5万以上がさらにより好ましく、7万以上が特に好ましく、また100万以下が好ましく、50万以下がより好ましく、30万以下がさらに好ましく、20万以下がさらにより好ましい。共重合体(P)の重量平均分子量をこのような範囲とすることで、共重合体(P)の成形加工性が向上するとともに、得られる成形品の強度を高めやすくなる。 The weight average molecular weight of the copolymer (P) is preferably 20,000 or more, more preferably 50,000 or more, further preferably 30,000 or more, still more preferably 50,000 or more, and particularly preferably 70,000 or more. Moreover, 1 million or less is preferable, 500,000 or less is more preferable, 300,000 or less is more preferable, 200,000 or less is still more preferable. By setting the weight average molecular weight of the copolymer (P) in such a range, the moldability of the copolymer (P) is improved and the strength of the obtained molded product is easily increased.
 共重合体(P)の重量平均分子量は、ポリマー鎖(A)の重量平均分子量の1.1倍以上が好ましく、1.2倍以上がより好ましく、1.3倍以上がより好ましく、また20倍以下が好ましく、12倍以下がより好ましく、10倍以下がさらに好ましく、7倍以下がさらにより好ましく、5倍以下が特に好ましい。これにより、共重合体(P)に、透明性、機械的強度、耐熱性の各特性をバランス良く付与することが容易になる。 The weight average molecular weight of the copolymer (P) is preferably 1.1 times or more, more preferably 1.2 times or more, more preferably 1.3 times or more, more preferably 20 times the weight average molecular weight of the polymer chain (A). Is preferably 12 times or less, more preferably 10 times or less, still more preferably 7 times or less, and particularly preferably 5 times or less. Thereby, it becomes easy to give each characteristic of transparency, mechanical strength, and heat resistance with good balance to the copolymer (P).
 共重合体(P)の屈折率はポリマー鎖(A)の屈折率と近い値であることが好ましく、これにより共重合体(P)の透明性を確保しやすくなる。具体的には、共重合体(P)の屈折率とポリマー鎖(A)の屈折率との差が0.1未満であることが好ましく、0.05以下がより好ましく、0.02以下がさらに好ましい。同様の観点から、共重合体(P)中のポリマー鎖(A)の屈折率とポリマー鎖(B)の屈折率は近い値であることが好ましく、具体的には、ポリマー鎖(A)の屈折率とポリマー鎖(B)の屈折率との差が0.1未満であることが好ましく、0.05以下がより好ましく、0.02以下がさらに好ましい。 The refractive index of the copolymer (P) is preferably a value close to the refractive index of the polymer chain (A), which makes it easy to ensure the transparency of the copolymer (P). Specifically, the difference between the refractive index of the copolymer (P) and the refractive index of the polymer chain (A) is preferably less than 0.1, more preferably 0.05 or less, and 0.02 or less. Further preferred. From the same viewpoint, the refractive index of the polymer chain (A) in the copolymer (P) and the refractive index of the polymer chain (B) are preferably close to each other. The difference between the refractive index and the refractive index of the polymer chain (B) is preferably less than 0.1, more preferably 0.05 or less, and even more preferably 0.02 or less.
 共重合体(P)は、100℃以上および100℃未満にそれぞれガラス転移温度を有することが好ましい。なお、100℃以上のガラス転移温度を「高温側のガラス転移温度」と称し、100℃未満のガラス転移温度を「低温側のガラス転移温度」と称する。共重合体(P)は、高温側のガラス転移温度を複数有するものであってもよく、低温側のガラス転移温度を複数有するものであってもよい。共重合体(P)が高温側のガラス転移温度を有することにより、共重合体(P)の耐熱性が高まり、また共重合体(P)をフィルムなどに成形する際に、高温下でも軟化せず、成形加工性を高めることができる。共重合体(P)が低温側のガラス転移温度を有することにより、共重合体(P)の耐衝撃性を高めることができる。共重合体(P)高温側のガラス転移温度は、好ましくは113℃以上であり、より好ましくは116℃以上であり、さらに好ましくは120℃以上である。共重合体(P)低温側のガラス転移温度は、好ましくは50℃未満であり、より好ましくは20℃未満であり、さらに好ましくは0℃未満であり、さらにより好ましくは-20℃未満である。 The copolymer (P) preferably has a glass transition temperature of 100 ° C. or more and less than 100 ° C., respectively. A glass transition temperature of 100 ° C. or higher is referred to as “high temperature side glass transition temperature”, and a glass transition temperature of less than 100 ° C. is referred to as “low temperature side glass transition temperature”. The copolymer (P) may have a plurality of glass transition temperatures on the high temperature side, or may have a plurality of glass transition temperatures on the low temperature side. Since the copolymer (P) has a glass transition temperature on the high temperature side, the heat resistance of the copolymer (P) is increased, and when the copolymer (P) is molded into a film or the like, it is softened even at a high temperature. Without increasing the molding processability. When the copolymer (P) has a glass transition temperature on the low temperature side, the impact resistance of the copolymer (P) can be enhanced. The glass transition temperature on the high temperature side of the copolymer (P) is preferably 113 ° C or higher, more preferably 116 ° C or higher, and further preferably 120 ° C or higher. The glass transition temperature on the low temperature side of the copolymer (P) is preferably less than 50 ° C, more preferably less than 20 ° C, still more preferably less than 0 ° C, and even more preferably less than -20 ° C. .
 共重合体(P)は、ポリマー鎖(A)に、ポリマー鎖(B)を形成する単量体成分を付加重合することにより製造することができる。従って、共重合体(P)の製造方法は、ジエンおよび/またはオレフィン由来の単位を有する重合体(以下、「原料重合体(P1)」と称する)の存在下で、(メタ)アクリル系単量体を含む単量体成分を重合する工程(重合工程)を有することが好ましく、これにより、(メタ)アクリル系単量体を含む単量体成分を原料重合体(P1)に付加重合することができる。この場合、(メタ)アクリル系単量体を含む単量体成分は、例えば、(1)原料重合体(P1)のジエンおよび/またはオレフィン由来の単位に直接結合する方法、(2)原料重合体(P1)のジエンおよび/またはオレフィン由来の単位が側鎖に有する連結基の重合性官能基に結合する方法、あるいは(3)原料重合体(P1)のジエンおよび/またはオレフィン由来の単位以外の単位が側鎖に有する重合性官能基に結合する方法、のいずれかの方法により原料重合体(P1)に付加重合することができる。この場合、得られる共重合体はグラフト共重合体となる。なお本明細書において、「原料重合体(P1)」を単に「重合体(P1)」と称する場合もある。 The copolymer (P) can be produced by addition polymerization of the monomer component forming the polymer chain (B) to the polymer chain (A). Therefore, the method for producing the copolymer (P) is carried out in the presence of a polymer having units derived from diene and / or olefin (hereinafter referred to as “raw polymer (P1)”). It is preferable to have a step (polymerization step) for polymerizing the monomer component containing the monomer, and by this, the monomer component containing the (meth) acrylic monomer is added to the raw material polymer (P1). be able to. In this case, the monomer component containing the (meth) acrylic monomer is, for example, (1) a method of directly bonding to a diene and / or olefin-derived unit of the raw material polymer (P1), and (2) a raw material weight. A method in which the diene and / or olefin-derived unit of the polymer (P1) is bonded to the polymerizable functional group of the linking group in the side chain, or (3) other than the diene and / or olefin-derived unit of the starting polymer (P1) Can be addition-polymerized to the raw material polymer (P1) by any one of the methods of bonding to the polymerizable functional group of the unit in the side chain. In this case, the obtained copolymer is a graft copolymer. In the present specification, the “raw polymer (P1)” may be simply referred to as “polymer (P1)”.
 原料重合体(P1)は、少なくともジエンおよび/またはオレフィン由来の単位を有していればよく、さらに他の不飽和単量体由来の単位を有していてもよい。原料重合体(P1)のジエンおよび/またはオレフィン由来の単位と他の不飽和単量体由来の単位の詳細は、上記のポリマー鎖(A)のジエンおよび/またはオレフィン由来の単位と他の不飽和単量体由来の単位の説明が参照される。ジエンおよび/またはオレフィン由来の単位は、水素原子の一部が塩素化されていてもよい。原料重合体(P1)は、ジエンおよび/またはオレフィン由来の単位を有する重合体ブロック(a1)と他の不飽和単量体由来の単位を有する重合体ブロック(a2)とを有するブロック共重合体であってもよく、重合体ブロック(a2)が芳香族ビニル単量体由来の単位から構成されていてもよい。これらの詳細も上記のポリマー鎖(A)の説明が参照される。なお上記(2)の方法では、原料重合体(P1)は、ジエンおよび/またはオレフィン由来の単位の側鎖に重合性官能基を有する連結基を有しており、上記(3)の方法では、ジエンおよび/またはオレフィン由来の単位以外の単位の側鎖に重合性官能基を有している。 The raw material polymer (P1) may have at least a unit derived from a diene and / or an olefin, and may further have a unit derived from another unsaturated monomer. Details of the units derived from the diene and / or olefin of the starting polymer (P1) and the units derived from other unsaturated monomers are described in detail for the units derived from the diene and / or olefin of the polymer chain (A) and other units. Reference is made to the description of units derived from saturated monomers. In the unit derived from diene and / or olefin, a part of hydrogen atoms may be chlorinated. The raw material polymer (P1) is a block copolymer having a polymer block (a1) having units derived from diene and / or olefin and a polymer block (a2) having units derived from other unsaturated monomers. The polymer block (a2) may be composed of units derived from an aromatic vinyl monomer. For these details, the description of the polymer chain (A) is referred to. In the method (2), the raw material polymer (P1) has a linking group having a polymerizable functional group in the side chain of the unit derived from diene and / or olefin. In the method (3), , Have a polymerizable functional group in the side chain of a unit other than the unit derived from diene and / or olefin.
 原料重合体(P1)は、重量平均分子量が0.1万以上であることが好ましく、0.5万以上がより好ましく、1万以上がさらに好ましく、3万以上がさらにより好ましく、また50万以下が好ましく、30万以下がより好ましく、20万以下がさらに好ましく、10万以下がさらにより好ましい。原料重合体(P1)の重量平均分子量をこのような範囲とすることで、共重合体(P)の成形性が向上し、共重合体(P)の強度と透明性を確保しやすくなる。また(メタ)アクリル系単量体を含む単量体成分との重合反応の際に、架橋体やゲル化物の発生を抑えることができる。 The raw material polymer (P1) preferably has a weight average molecular weight of 10,000 or more, more preferably 50,000 or more, further preferably 10,000 or more, still more preferably 30,000 or more, and 500,000. The following is preferable, 300,000 or less is more preferable, 200,000 or less is more preferable, and 100,000 or less is even more preferable. By making the weight average molecular weight of raw material polymer (P1) into such a range, the moldability of copolymer (P) improves and it becomes easy to ensure the intensity | strength and transparency of copolymer (P). Moreover, generation | occurrence | production of a crosslinked body and a gel can be suppressed in the case of the polymerization reaction with the monomer component containing a (meth) acrylic-type monomer.
 重合工程において、原料重合体(P1)は、1種のみを用いてもよく、2種以上を併用してもよい。後者の場合、樹脂組成物としての平均分子量や二重結合量を調整することが容易となる。 In the polymerization step, the raw material polymer (P1) may be used alone or in combination of two or more. In the latter case, it becomes easy to adjust the average molecular weight and the double bond amount as the resin composition.
 ポリマー鎖(B)の形成に用いられる単量体成分には、(メタ)アクリル系単量体に加え、環構造単位を与える単量体として、環構造内に重合性二重結合を有する単量体等を使用することもできる。例えば、主鎖にマレイミド構造を有するポリマー鎖(B)を形成する場合は、環構造内に重合性二重結合を有する単量体を用いることが好ましい。あるいは、重合工程の後に環構造形成工程を行う場合は、当該工程で環構造を形成可能な単量体を単量体成分として用いることもできる。また、それ以外の他の不飽和単量体を用いることもできる。これらの単量体成分の詳細は、上記のポリマー鎖(B)を形成する(メタ)アクリル系単量体、ポリマー鎖(B)の環構造を与える単量体、ポリマー鎖(B)を形成する他の不飽和単量体の説明が参照される。 In addition to the (meth) acrylic monomer, the monomer component used for forming the polymer chain (B) is a monomer that provides a cyclic structural unit. A polymer or the like can also be used. For example, when forming the polymer chain (B) having a maleimide structure in the main chain, it is preferable to use a monomer having a polymerizable double bond in the ring structure. Or when performing a ring structure formation process after a superposition | polymerization process, the monomer which can form a ring structure at the said process can also be used as a monomer component. In addition, other unsaturated monomers can be used. Details of these monomer components are the (meth) acrylic monomer that forms the polymer chain (B), the monomer that gives the ring structure of the polymer chain (B), and the polymer chain (B). Reference is made to the description of other unsaturated monomers.
 以下、(メタ)アクリル系単量体を含む単量体成分を原料重合体(P1)に付加重合する方法について、上記(1)~(3)の方法を詳しく説明する。 Hereinafter, the above-mentioned methods (1) to (3) will be described in detail as to the method of addition polymerization of a monomer component containing a (meth) acrylic monomer to the raw material polymer (P1).
 上記(1)の、(メタ)アクリル系単量体を含む単量体成分を原料重合体(P1)のジエンおよび/またはオレフィン由来の単位に直接結合する方法では、(メタ)アクリル系単量体を含む単量体成分を、原料重合体(P1)のジエンおよび/またはオレフィン由来の単位に結合する。この場合、原料重合体(P1)のジエンおよび/またはオレフィン由来の単位は、ジエンに由来する二重結合を有することが好ましい。(メタ)アクリル系単量体を含む単量体成分は、原料重合体(P1)の主鎖のジエン由来の二重結合に結合してもよく、当該二重結合の隣接炭素原子に結合してもよい。あるいは、ポリマー鎖(B)は、原料重合体(P1)の主鎖に置換基(側鎖)として結合したジエン由来の二重結合に結合したり、当該二重結合の隣接炭素原子に結合していてもよい。いずれの場合も、得られる共重合体(P)は、ポリマー鎖(B)がポリマー鎖(A)のジエンおよび/またはオレフィン由来の単位に直接結合したものとなる。当該方法では、原料重合体(P1)のジエンおよび/またはオレフィン由来の単位が有する二重結合(オレフィン性二重結合)のビニル位、アリル位等活性が高い水素が引き抜かれるようにすることが好ましく、これにより当該箇所でラジカルが生成し、ポリマー鎖(B)を形成する単量体成分を付加重合させることができる。 In the above method (1), in which the monomer component containing the (meth) acrylic monomer is directly bonded to the diene and / or olefin-derived unit of the raw material polymer (P1), the (meth) acrylic monomer The monomer component containing the body is bonded to the diene and / or olefin-derived unit of the raw material polymer (P1). In this case, it is preferable that the diene and / or olefin-derived unit of the raw material polymer (P1) has a double bond derived from the diene. The monomer component containing the (meth) acrylic monomer may be bonded to the diene-derived double bond of the main chain of the raw material polymer (P1), and bonded to the adjacent carbon atom of the double bond. May be. Alternatively, the polymer chain (B) is bonded to a diene-derived double bond bonded as a substituent (side chain) to the main chain of the starting polymer (P1), or bonded to an adjacent carbon atom of the double bond. It may be. In any case, the copolymer (P) obtained is such that the polymer chain (B) is directly bonded to the diene and / or olefin-derived units of the polymer chain (A). In this method, hydrogen having a high activity such as a vinyl position or an allylic position of a double bond (olefinic double bond) contained in a diene and / or olefin-derived unit of the raw material polymer (P1) is extracted. Preferably, this generates a radical at the site, and the monomer component forming the polymer chain (B) can be subjected to addition polymerization.
 上記(2)の、(メタ)アクリル系単量体を含む単量体成分を、原料重合体(P1)のジエンおよび/またはオレフィン由来の単位が側鎖に有する連結基の重合性官能基に結合する方法では、当該連結基は、重合性官能基(重合性二重結合)を有し、ジエンおよび/またはオレフィン由来の単位の側鎖に結合するものとなる。得られる共重合体(P)は、ポリマー鎖(B)がポリマー鎖(A)のジエンおよび/またはオレフィン由来の単位に連結基を介して結合したものとなる。 The monomer component containing the (meth) acrylic monomer of (2) above is used as a polymerizable functional group of a linking group that a diene and / or olefin-derived unit of the raw polymer (P1) has in the side chain. In the bonding method, the linking group has a polymerizable functional group (polymerizable double bond) and is bonded to a side chain of a unit derived from a diene and / or an olefin. In the obtained copolymer (P), the polymer chain (B) is bonded to the diene and / or olefin-derived unit of the polymer chain (A) via a linking group.
 連結基は、重合性官能基(重合性二重結合)に加え、エステル結合、ウレタン結合、エーテル結合から選ばれる少なくとも一種を有することが好ましく、さらにメチレン基やヒドロキシメチレン基などの2価の有機基を有していてもよい。このような連結基を有する原料重合体(P1)は、ジエンおよび/またはオレフィン由来の単位を有し、エステル結合、ウレタン結合、またはエーテル結合を与える官能基を有する重合体(以下、「原料重合体(P2)」と称する)と、当該官能基との反応性を有する官能基を有し、重合性官能基を有する化合物(以下、「ラジカル重合性化合物」と称する)とを反応させることにより得ることができる。 The linking group preferably has at least one selected from an ester bond, a urethane bond, and an ether bond in addition to a polymerizable functional group (polymerizable double bond), and is further divalent organic such as a methylene group or a hydroxymethylene group. It may have a group. The raw material polymer (P1) having such a linking group has a unit derived from a diene and / or olefin, and has a functional group that gives an ester bond, a urethane bond, or an ether bond (hereinafter referred to as “raw material weight”). A compound (P2) ”) and a compound having a functional group having reactivity with the functional group and having a polymerizable functional group (hereinafter referred to as“ radical polymerizable compound ”). Obtainable.
 エステル結合、ウレタン結合、またはエーテル結合を与える官能基は、ラジカル重合性化合物との反応によってこれらのいずれかの結合を形成する官能基を意味し、具体的には、カルボキシル基またはその無水物基、エポキシ基、ヒドロキシル基、イソシアネート基等が好ましく挙げられる。原料重合体(P2)にこれらの官能基を導入するためには、ジエンおよび/またはオレフィン由来の単位を有する重合体(例えば、上記(1)の製造方法で用いられる原料重合体(P1))にこれらの官能基を有する不飽和化合物を反応させればよく、当該反応は通常ラジカル開始剤を用いて行われる。 The functional group that provides an ester bond, a urethane bond, or an ether bond means a functional group that forms any one of these bonds by reaction with a radical polymerizable compound, and specifically includes a carboxyl group or an anhydride group thereof. , Epoxy group, hydroxyl group, isocyanate group and the like are preferable. In order to introduce these functional groups into the raw material polymer (P2), a polymer having units derived from diene and / or olefin (for example, the raw material polymer (P1) used in the production method of (1) above). And an unsaturated compound having these functional groups may be reacted with each other, and the reaction is usually performed using a radical initiator.
 カルボキシル基またはその無水物基を有する不飽和化合物としては、(メタ)アクリル酸、フマル酸、マレイン酸およびその無水物、イタコン酸およびその無水物、クロトン酸およびその無水物、シトラコン酸およびその無水物等の不飽和カルボン酸およびその無水物等が挙げられる。
 エポキシ基を有する不飽和化合物としては、グリシジル(メタ)アクリレート、マレイン酸のモノおよびジグリシジルエステル、イタコン酸のモノおよびジグリシジルエステル、アリルコハク酸のモノおよびジグリシジルエステル、p-スチレンカルボン酸のグリシジルエステル等の不飽和カルボン酸グリシジルエステル;アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、スチレン-p-グリシジルエーテル等のグリシジルエーテル;p-グリシジルスチレン;3,4-エポキシ-1-ブテン、3,4-エポキシ-3-メチル-1-ブテン等のエポキシオレフィン;ビニルシクロヘキセンモノオキシド等が挙げられる。
 ヒドロキシル基を有する不飽和化合物としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;N-メチロール(メタ)アクリルアミド;2-ヒドロキシエチルアクリレート-6-ヘキサノリド付加重合物;2-プロペン-1-オール等のアルケニルアルコール;2-プロピン-1-オール等のアルキニルアルコール;ヒドロキシビニルエーテル等が挙げられる。
 イソシアネート基を有する不飽和化合物としては、2-イソシアネートエチル(メタ)アクリレート、メタクリロイルイソシアネート等が挙げられる。
Examples of unsaturated compounds having a carboxyl group or its anhydride group include (meth) acrylic acid, fumaric acid, maleic acid and its anhydride, itaconic acid and its anhydride, crotonic acid and its anhydride, citraconic acid and its anhydride And unsaturated carboxylic acids such as products and anhydrides thereof.
Examples of unsaturated compounds having an epoxy group include glycidyl (meth) acrylate, mono and diglycidyl esters of maleic acid, mono and diglycidyl esters of itaconic acid, mono and diglycidyl esters of allyl succinic acid, glycidyl of p-styrene carboxylic acid Unsaturated carboxylic acid glycidyl esters such as esters; glycidyl ethers such as allyl glycidyl ether, 2-methylallyl glycidyl ether, styrene-p-glycidyl ether; p-glycidyl styrene; 3,4-epoxy-1-butene, 3,4 -Epoxy olefins such as epoxy-3-methyl-1-butene; vinylcyclohexene monoxide and the like.
Examples of unsaturated compounds having a hydroxyl group include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and 2-hydroxybutyl (meth) acrylate; N-methylol (meta ) Acrylamide; 2-hydroxyethyl acrylate-6-hexanolide addition polymer; alkenyl alcohol such as 2-propen-1-ol; alkynyl alcohol such as 2-propyn-1-ol; hydroxy vinyl ether and the like.
Examples of the unsaturated compound having an isocyanate group include 2-isocyanatoethyl (meth) acrylate and methacryloyl isocyanate.
 ラジカル重合性化合物は、重合性官能基(重合性二重結合)を有するとともに、カルボキシル基またはその無水物基、エポキシ基、ヒドロキシル基、またはイソシアネート基との反応性を有する官能基を有する。反応性官能基としては、例えば、ヒドロキシル基、エポキシ基、イソシアネート基、カルボキシル基が挙げられる。 The radical polymerizable compound has a polymerizable functional group (polymerizable double bond) and a functional group having reactivity with a carboxyl group or an anhydride group thereof, an epoxy group, a hydroxyl group, or an isocyanate group. Examples of the reactive functional group include a hydroxyl group, an epoxy group, an isocyanate group, and a carboxyl group.
 反応性官能基としてヒドロキシル基を有するラジカル重合性化合物としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート;N-メチロール(メタ)アクリルアミド;2-ヒドロキシエチルアクリレート-6-ヘキサノリド付加重合物;2-プロペン-1-オール等のアルケニルアルコール;2-プロピン-1-オール等のアルキニルアルコール;ヒドロキシビニルエーテル等が挙げられる。
 反応性官能基としてエポキシ基を有するラジカル重合性化合物としては、グリシジル(メタ)アクリレート、マレイン酸のモノおよびジグリシジルエステル、イタコン酸のモノおよびジグリシジルエステル、アリルコハク酸のモノおよびジグリシジルエステル、p-スチレンカルボン酸のグリシジルエステル等の不飽和カルボン酸のグリシジルエステル;アリルグリシジルエーテル、2-メチルアリルグリシジルエーテル、スチレン-p-グリシジルエーテル等のグリシジルエーテル;p-グリシジルスチレン;3,4-エポキシ-1-ブテン、3,4-エポキシ-3-メチル-1-ブテン等のエポキシオレフィン;ビニルシクロヘキセンモノオキシド等が挙げられる。
 反応性官能基としてイソシアネート基を有するラジカル重合性化合物としては、2-イソシアネートエチル(メタ)アクリレート、メタクリロイルイソシアネート等が挙げられる。
 反応性官能基としてカルボキシル基を有するラジカル重合性化合物としては、(メタ)アクリル酸等の不飽和酸;カルボキシエチルビニルエーテル、カルボキシプロピルビニルエーテル等のカルボキシアルキルビニルエーテル等が挙げられる。
Examples of the radical polymerizable compound having a hydroxyl group as a reactive functional group include hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate. N-methylol (meth) acrylamide; 2-hydroxyethyl acrylate-6-hexanolide addition polymer; alkenyl alcohol such as 2-propen-1-ol; alkynyl alcohol such as 2-propyn-1-ol; Can be mentioned.
Examples of the radical polymerizable compound having an epoxy group as a reactive functional group include glycidyl (meth) acrylate, mono- and diglycidyl esters of maleic acid, mono- and diglycidyl esters of itaconic acid, mono- and diglycidyl esters of allyl succinic acid, p Glycidyl esters of unsaturated carboxylic acids such as glycidyl esters of styrene carboxylic acids; glycidyl ethers such as allyl glycidyl ether, 2-methylallyl glycidyl ether, styrene-p-glycidyl ether; p-glycidyl styrene; 3,4-epoxy- Examples thereof include epoxy olefins such as 1-butene and 3,4-epoxy-3-methyl-1-butene; vinylcyclohexene monooxide and the like.
Examples of the radical polymerizable compound having an isocyanate group as a reactive functional group include 2-isocyanatoethyl (meth) acrylate and methacryloyl isocyanate.
Examples of the radical polymerizable compound having a carboxyl group as a reactive functional group include unsaturated acids such as (meth) acrylic acid; carboxyalkyl vinyl ethers such as carboxyethyl vinyl ether and carboxypropyl vinyl ether.
 原料重合体(P2)の有する官能基がカルボキシル基またはその無水物である場合、ラジカル重合性化合物の反応性官能基としてはヒドロキシル基、エポキシ基、およびイソシアネート基が好ましく示される。これらの中でも、ヒドロキシル基を有するラジカル重合性化合物が特に好ましい。この場合、原料重合体(P2)とラジカル重合性化合物との反応によって得られる原料重合体(P1)は、重合性官能基とエステル結合を有する連結基を側鎖に有するものとなる。 When the functional group of the raw material polymer (P2) is a carboxyl group or an anhydride thereof, a hydroxyl group, an epoxy group, and an isocyanate group are preferably shown as the reactive functional group of the radical polymerizable compound. Among these, a radically polymerizable compound having a hydroxyl group is particularly preferable. In this case, the raw material polymer (P1) obtained by the reaction between the raw material polymer (P2) and the radical polymerizable compound has a linking group having a polymerizable functional group and an ester bond in the side chain.
 原料重合体(P2)の有する官能基がエポキシ基である場合、ラジカル重合性化合物の反応性官能基としてはカルボキシル基およびヒドロキシル基が好ましく示される。これらの中でカルボキシル基を有するラジカル重合性化合物が特に好ましい。この場合、原料重合体(P2)とラジカル重合性化合物との反応によって得られる原料重合体(P1)は、重合性官能基とエステル結合(詳細には、-CH(OH)-CH2-OCO-で表される2価の有機基)を有する連結基を側鎖に有するものとなる。 When the functional group of the raw material polymer (P2) is an epoxy group, a carboxyl group and a hydroxyl group are preferably shown as the reactive functional group of the radical polymerizable compound. Of these, radically polymerizable compounds having a carboxyl group are particularly preferred. In this case, the raw material polymer (P1) obtained by the reaction between the raw material polymer (P2) and the radical polymerizable compound has a polymerizable functional group and an ester bond (specifically, —CH (OH) —CH 2 —OCO). A linking group having a divalent organic group represented by-in the side chain.
 原料重合体(P2)の有する官能基がヒドロキシル基である場合、ラジカル重合性化合物の反応性官能基としてイソシアネート基、カルボキシル基およびエポキシ基が好ましく示される。これらの中でイソシアネート基を有するラジカル重合性単量体が特に好ましい。この場合、原料重合体(P2)とラジカル重合性化合物との反応によって得られる原料重合体(P1)は、重合性官能基とウレタン結合を有する連結基を側鎖に有するものとなる。 When the functional group of the raw material polymer (P2) is a hydroxyl group, an isocyanate group, a carboxyl group and an epoxy group are preferably shown as the reactive functional group of the radical polymerizable compound. Among these, a radically polymerizable monomer having an isocyanate group is particularly preferable. In this case, the raw material polymer (P1) obtained by the reaction of the raw material polymer (P2) and the radical polymerizable compound has a linking group having a polymerizable functional group and a urethane bond in the side chain.
 原料重合体(P2)の有する官能基がイソシアネート基である場合、ラジカル重合性化合物の反応性官能基としてヒドロキシル基およびカルボキシル基が好ましく示される。これらの中でヒドロキシル基を有するラジカル重合性単量体が特に好ましい。この場合、原料重合体(P2)とラジカル重合性化合物との反応によって得られる原料重合体(P1)は、重合性官能基とウレタン結合を有する連結基を側鎖に有するものとなる。 When the functional group of the raw material polymer (P2) is an isocyanate group, a hydroxyl group and a carboxyl group are preferably shown as the reactive functional group of the radical polymerizable compound. Among these, a radical polymerizable monomer having a hydroxyl group is particularly preferable. In this case, the raw material polymer (P1) obtained by the reaction of the raw material polymer (P2) and the radical polymerizable compound has a linking group having a polymerizable functional group and a urethane bond in the side chain.
 (2)の製造方法に使用可能な原料重合体(P1)としては、例えば、側鎖にメタクリロイル基とエステル結合を有するポリイソプレンであるLIR UC-102MやUC-203(いずれもクラレ社製)等が挙げられる。 Examples of the raw material polymer (P1) that can be used in the production method (2) include LIR UC-102M and UC-203, which are polyisoprenes having a methacryloyl group and an ester bond in the side chain (both manufactured by Kuraray Co., Ltd.) Etc.
 共重合体(P)の上記(3)の製造方法について説明する。上記(3)の、(メタ)アクリル系単量体を含む単量体成分を、原料重合体(P1)のジエンおよび/またはオレフィン由来の単位以外の単位が側鎖に有する重合性官能基に結合する方法では、ジエンおよび/またはオレフィンと、重合性官能基(重合性二重結合)を有する不飽和単量体とを共重合したり、ジエンおよび/またはオレフィンと、カルボキシル基またはその無水物基、エポキシ基、ヒドロキシル基、またはイソシアネート基を有する官能基を有する不飽和単量体とを共重合し、さらに上記で説明した反応性官能基を有するラジカル重合性化合物と反応させることにより、原料重合体(P1)を得ることができる。あるいは、ジエンおよび/またはオレフィン由来の単位を有する(共)重合体を、重合性官能基(重合性二重結合)を有する不飽和単量体と重合したり、ジエンおよび/またはオレフィン由来の単位を有する(共)重合体を、カルボキシル基またはその無水物基、エポキシ基、ヒドロキシル基、またはイソシアネート基を有する不飽和単量体と重合して、さらに上記で説明した反応性官能基を有するラジカル重合性化合物と反応させることにより、原料重合体(P1)を得てもよい。このようにして得られた原料重合体(P1)の存在下で、(メタ)アクリル系単量体を含む単量体成分を重合させることにより、共重合体(P)が得られる。得られる共重合体(P)は、ポリマー鎖(B)がポリマー鎖(A)のジエンおよび/またはオレフィン由来の単位以外の単位に結合したものとなる。 The production method of the above (3) of the copolymer (P) will be described. The monomer component containing the (meth) acrylic monomer of (3) above is used as a polymerizable functional group having units other than the diene and / or olefin-derived unit in the raw polymer (P1) in the side chain. In the bonding method, a diene and / or olefin and an unsaturated monomer having a polymerizable functional group (polymerizable double bond) are copolymerized, or the diene and / or olefin and a carboxyl group or an anhydride thereof. The raw material is copolymerized with an unsaturated monomer having a functional group having a group, epoxy group, hydroxyl group, or isocyanate group, and further reacted with the radical polymerizable compound having the reactive functional group described above. A polymer (P1) can be obtained. Alternatively, a (co) polymer having a diene and / or olefin-derived unit is polymerized with an unsaturated monomer having a polymerizable functional group (polymerizable double bond), or a diene and / or olefin-derived unit. A radical having a reactive functional group as described above by polymerizing a (co) polymer having a carboxyl group or an anhydride group thereof, an epoxy group, a hydroxyl group, or an isocyanate group with an isocyanate group You may obtain a raw material polymer (P1) by making it react with a polymeric compound. The copolymer (P) is obtained by polymerizing the monomer component containing the (meth) acrylic monomer in the presence of the raw material polymer (P1) thus obtained. The resulting copolymer (P) has the polymer chain (B) bonded to a unit other than the diene and / or olefin-derived unit of the polymer chain (A).
 ジエンおよび/またはオレフィン、またはこれらに由来する単位を有する(共)重合体を、重合性官能基を有する不飽和単量体と重合させる場合、重合性官能基を有する不飽和単量体としては、多官能(メタ)アクリレート、ビニルエーテル基含有(メタ)アクリレート、アリル基含有(メタ)アクリレート等の多官能(メタ)アクリル系化合物、多官能ビニルエーテル、多官能アリル系化合物、多官能芳香族ビニルなどが挙げられる。 When the (co) polymer having a diene and / or olefin or a unit derived therefrom is polymerized with an unsaturated monomer having a polymerizable functional group, the unsaturated monomer having a polymerizable functional group is , Polyfunctional (meth) acrylates, polyfunctional (meth) acrylic compounds such as vinyl ether group-containing (meth) acrylates, allyl group-containing (meth) acrylates, polyfunctional vinyl ethers, polyfunctional allyl compounds, polyfunctional aromatic vinyls, etc. Is mentioned.
 多官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ビスフェノールAアルキレンオキシドジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、2,2’-[オキシビス(メチレン)]ビスアクリル酸、ジアルキル-2,2’-[オキシビス(メチレン)]ビス-2-プロペノエート等が挙げられる。
 ビニルエーテル基含有(メタ)アクリレートとしては、例えば、(メタ)アクリル酸2-ビニロキシエチル、(メタ)アクリル酸4-ビニロキシブチル、(メタ)アクリル酸2-(ビニロキシエトキシ)エチル等が挙げられる。
 アリル基含有(メタ)アクリレートとしては、例えば、(メタ)アクリル酸アリル、α-アリルオキシメチルアクリル酸メチル、α-アリルオキシメチルアクリル酸ステアリル、α-アリルオキシメチルアクリル酸2-デシルテトラデシル等が挙げられる。
 多官能ビニルエーテルとしては、例えば、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、ポリエチレングリコールジビニルエーテル、ヘキサンジオールジビニルエーテル、ビスフェノールAアルキレンオキシドジビニルエーテル、トリメチロールプロパントリビニルエーテル等が挙げられる。
 多官能アリル系化合物としては、例えば、エチレングリコールジアリルエーテル、ジエチレングリコールジアリルエーテル、ポリエチレングリコールジアリルエーテル、ヘキサンジオールジアリルエーテル、ビスフェノールAアルキレンオキシドジアリルエーテル、トリメチロールプロパントリアリルエーテル、ジトリメチロールプロパンテトラアリルエーテル等の多官能アリルエーテル;トリアリルイソシアヌレート等の多官能アリル基含有イソシアヌレート;フタル酸ジアリル、ジフェン酸ジアリル等の多官能アリルエステル;ビスアリルナジイミド化合物等;ビスアリルナジイミド化合物等が挙げられる。
 多官能芳香族ビニルとしては、例えば、ジビニルベンゼン等が挙げられる。
Examples of the polyfunctional (meth) acrylate include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, hexanediol di (meth) acrylate, and bisphenol A alkylene oxide di (meth). Examples include acrylate, trimethylolpropane tri (meth) acrylate, 2,2 ′-[oxybis (methylene)] bisacrylic acid, dialkyl-2,2 ′-[oxybis (methylene)] bis-2-propenoate, and the like.
Examples of the vinyl ether group-containing (meth) acrylate include 2-vinyloxyethyl (meth) acrylate, 4-vinyloxybutyl (meth) acrylate, 2- (vinyloxyethoxy) ethyl (meth) acrylate, and the like.
Examples of allyl group-containing (meth) acrylates include allyl (meth) acrylate, methyl α-allyloxymethyl acrylate, stearyl α-allyloxymethyl acrylate, α-allyloxymethyl acrylate 2-decyltetradecyl acrylate, etc. Is mentioned.
Examples of the polyfunctional vinyl ether include ethylene glycol divinyl ether, diethylene glycol divinyl ether, polyethylene glycol divinyl ether, hexanediol divinyl ether, bisphenol A alkylene oxide divinyl ether, trimethylolpropane trivinyl ether, and the like.
Examples of polyfunctional allyl compounds include ethylene glycol diallyl ether, diethylene glycol diallyl ether, polyethylene glycol diallyl ether, hexanediol diallyl ether, bisphenol A alkylene oxide diallyl ether, trimethylolpropane triallyl ether, ditrimethylolpropane tetraallyl ether, and the like. Polyfunctional allyl ethers; polyfunctional allyl group-containing isocyanurates such as triallyl isocyanurate; polyfunctional allyl esters such as diallyl phthalate and diallyl diphenate; bisallyl nadiimide compounds; bisallyl nadiimide compounds and the like .
Examples of the polyfunctional aromatic vinyl include divinylbenzene.
 ジエンおよび/またはオレフィン、またはこれらに由来する単位を有する(共)重合体を、カルボキシル基またはその無水物基、エポキシ基、ヒドロキシル基、またはイソシアネート基を有する官能基を有する不飽和単量体と重合させる場合、得られる重合体(以下、「原料重合体(P3)」と称する)は、ジエンおよび/またはオレフィン由来の単位を有するとともに、ジエンおよび/またはオレフィン由来の単位以外の単位を有し、当該他の単位の側鎖にカルボキシル基またはその無水物基、エポキシ基、ヒドロキシル基、またはイソシアネート基を有する官能基が結合したものとなる。原料重合体(P3)としては、例えば、エチレン-(メタ)アクリル酸共重合体、エチレン-2-ヒドロキシエチル(メタ)アクリレート共重合体、エチレン-グリシジル(メタ)アクリレート共重合体、エチレン-ポリエチレングリコールモノ(メタ)アクリレート共重合体、エチレン-酢酸ビニル-(メタ)アクリル酸共重合体、エチレン-エチル(メタ)アクリレート-(無水)マレイン酸共重合体、エチレン-酢酸ビニル-(無水)マレイン酸共重合体、エチレン-酢酸ビニル-2-ヒドロキシエチル(メタ)アクリレート共重合体、エチレン-酢酸ビニル-グリシジル(メタ)アクリレート共重合体、エチレン-酢酸ビニル-ポリエチレングリコールモノ(メタ)アクリレート共重合体、エチレン-酢酸ビニル共重合体の部分ケン化物等が挙げられる。これらの中でも、エチレン-(メタ)アクリル酸共重合体、エチレン-エチル(メタ)アクリレート-(無水)マレイン酸共重合体、エチレン-酢酸ビニル-グリシジル(メタ)アクリレート共重合体が好ましい。 An unsaturated monomer having a functional group having a carboxyl group or an anhydride group thereof, an epoxy group, a hydroxyl group, or an isocyanate group, and a (co) polymer having a diene and / or olefin, or a unit derived therefrom; In the case of polymerization, the resulting polymer (hereinafter referred to as “raw polymer (P3)”) has units derived from diene and / or olefin, and units other than units derived from diene and / or olefin. , A functional group having a carboxyl group or an anhydride group thereof, an epoxy group, a hydroxyl group, or an isocyanate group is bonded to the side chain of the other unit. Examples of the raw material polymer (P3) include an ethylene- (meth) acrylic acid copolymer, an ethylene-2-hydroxyethyl (meth) acrylate copolymer, an ethylene-glycidyl (meth) acrylate copolymer, and an ethylene-polyethylene. Glycol mono (meth) acrylate copolymer, ethylene-vinyl acetate- (meth) acrylic acid copolymer, ethylene-ethyl (meth) acrylate- (anhydrous) maleic acid copolymer, ethylene-vinyl acetate- (anhydrous) maleic Acid copolymer, ethylene-vinyl acetate-2-hydroxyethyl (meth) acrylate copolymer, ethylene-vinyl acetate-glycidyl (meth) acrylate copolymer, ethylene-vinyl acetate-polyethylene glycol mono (meth) acrylate copolymer Polymer, ethylene-vinyl acetate copolymer partial ken Thing, and the like. Among these, an ethylene- (meth) acrylic acid copolymer, an ethylene-ethyl (meth) acrylate- (anhydrous) maleic acid copolymer, and an ethylene-vinyl acetate-glycidyl (meth) acrylate copolymer are preferable.
 原料重合体(P3)と上記で説明した反応性官能基を有するラジカル重合性化合物と反応させることにより、原料重合体(P1)が得られる。原料重合体(P3)の有する官能基とラジカル重合性化合物の反応性官能基の詳細は、上記の(2)の方法におけるこれらの説明が参照される。 The raw material polymer (P1) is obtained by reacting the raw material polymer (P3) with the radical polymerizable compound having the reactive functional group described above. For the details of the functional group of the raw material polymer (P3) and the reactive functional group of the radical polymerizable compound, these explanations in the method (2) are referred to.
 上記(2)の方法における原料重合体(P2)とラジカル重合性化合物との反応、あるいは上記(3)の方法における原料重合体(P3)とラジカル重合性化合物との反応では、原料重合体(P2)または原料重合体(P3)中の前記官能基1当量に対し、ラジカル重合性化合物の反応性官能基を0.1~10当量になるように配合し反応させることが好ましい。これにより、最終的に得られる共重合体(P)の収率を高めることができる。 In the reaction between the raw material polymer (P2) and the radical polymerizable compound in the method (2), or the reaction between the raw material polymer (P3) and the radical polymerizable compound in the method (3), the raw material polymer ( The reactive functional group of the radical polymerizable compound is preferably blended so as to be 0.1 to 10 equivalents per 1 equivalent of the functional group in P2) or the raw material polymer (P3) and reacted. Thereby, the yield of the finally obtained copolymer (P) can be increased.
 上記の反応は、適当な有機溶媒中で行うことが好ましく、有機溶媒としては、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、酢酸ブチル、セロソルブアセテート等が挙げられる。反応温度は、通常20℃~150℃、好ましくは50℃~120℃である。 The above reaction is preferably performed in a suitable organic solvent, and examples of the organic solvent include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, butyl acetate, cellosolve acetate and the like. The reaction temperature is usually 20 ° C. to 150 ° C., preferably 50 ° C. to 120 ° C.
 原料重合体(P2)または原料重合体(P3)とラジカル重合性化合物との反応は触媒存在下で行うことが好ましい。触媒としては、エステル化反応では、酸あるいは塩基性化合物、例えば硫酸、パラトルエンスルホン酸、塩化亜鉛、ピリジン、トリエチルアミン、ジメチルベンジルアミン等を用いることができ、ウレタン化反応では、例えばジブチル錫ラウレート等を用いることができる。 The reaction between the raw material polymer (P2) or the raw material polymer (P3) and the radical polymerizable compound is preferably performed in the presence of a catalyst. As the catalyst, acid or basic compounds such as sulfuric acid, paratoluenesulfonic acid, zinc chloride, pyridine, triethylamine, dimethylbenzylamine and the like can be used in the esterification reaction, and dibutyltin laurate and the like in the urethanization reaction. Can be used.
 反応に際し、ビニル単量体のホモポリマーの生成を防止するために、酸素または空気雰囲気下で反応させ、ハイドロキノン、ハイドロキノンモノメチルエーテル、フェノチアジン等の重合禁止剤を適量反応系中に添加することも好ましい。 In the reaction, in order to prevent the formation of a homopolymer of a vinyl monomer, it is also preferable to react in an oxygen or air atmosphere and to add a suitable amount of a polymerization inhibitor such as hydroquinone, hydroquinone monomethyl ether, phenothiazine or the like to the reaction system. .
 上記(1)~(3)の方法では、上記のようにして得られた原料重合体(P1)の存在下、(メタ)アクリル系単量体を含む(必要に応じて環構造内に重合性二重結合を有する単量体をさらに含む)単量体成分を重合することにより、共重合体(P)を得ることができる。好ましくは、(メタ)アクリル系単量体を含む単量体成分を原料重合体(P1)にグラフト重合することにより、共重合体(P)が得られる。(メタ)アクリル系単量体を含む各単量体成分の使用量は、最終的に得られるポリマー鎖(B)中の(メタ)アクリル酸エステル由来の単位の含有割合が所望の範囲内となるように適宜調整する。重合工程においてゲル化物の生成を抑えることが容易な点からは、上記(1)の方法により、原料重合体(P1)の存在下、(メタ)アクリル系単量体を含む単量体成分を重合することが好ましい。なお、上記(2)、(3)の方法でも、重合反応時間を短く設定するなど重合反応を制御することにより、ゲル化物の発生を抑えることができる。 In the above methods (1) to (3), a (meth) acrylic monomer is contained in the presence of the raw material polymer (P1) obtained as described above (polymerization is carried out in the ring structure as necessary). The copolymer (P) can be obtained by polymerizing the monomer component (which further includes a monomer having an ionic double bond). Preferably, the copolymer (P) is obtained by graft polymerization of a monomer component containing a (meth) acrylic monomer to the raw material polymer (P1). The amount of each monomer component containing the (meth) acrylic monomer is such that the content ratio of units derived from the (meth) acrylic acid ester in the finally obtained polymer chain (B) is within a desired range. Adjust as appropriate. From the point that it is easy to suppress the formation of the gelled product in the polymerization step, the monomer component containing the (meth) acrylic monomer in the presence of the raw material polymer (P1) is prepared by the method (1). Polymerization is preferred. In the methods (2) and (3), the generation of gelled products can be suppressed by controlling the polymerization reaction such as setting the polymerization reaction time short.
 単量体成分の重合は、塊状重合法、溶液重合法、乳化重合法、懸濁重合法等の公知の重合法を用いて行うことができるが、溶液重合法を用いることが好ましい。溶液重合法を用いれば、共重合体(P)への微小な異物の混入を抑えることができ、共重合体(P)を光学材料用途等に好適に適用しやすくなる。 The polymerization of the monomer component can be performed using a known polymerization method such as a bulk polymerization method, a solution polymerization method, an emulsion polymerization method, a suspension polymerization method, etc., but a solution polymerization method is preferably used. If the solution polymerization method is used, it is possible to suppress the entry of minute foreign matters into the copolymer (P), and the copolymer (P) can be suitably applied to optical materials and the like.
 重合形式としては、例えば、バッチ重合法、連続重合法のいずれも用いることができる。重合の際、単量体成分は一括で仕込んでもよく、分割添加してもよい。 As the polymerization method, for example, either a batch polymerization method or a continuous polymerization method can be used. During the polymerization, the monomer components may be charged all at once or added in portions.
 重合溶媒は、単量体成分の組成に応じて適宜選択でき、通常のラジカル重合反応で使用される有機溶媒を用いることができる。具体的には、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、アニソール等のエーテル類;酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート等のエステル類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;メタノール、エタノール、イソプロパノール、n-ブタノール等のアルコール類;アセトニトリル、プロピオニトリル、ブチロニトリル、ベンゾニトリル等のニトリル類;クロロホルム;ジメチルスルホキシド等が挙げられる。これらの溶媒は、1種のみを用いてもよく、2種以上を併用してもよい。 The polymerization solvent can be appropriately selected according to the composition of the monomer component, and an organic solvent used in a normal radical polymerization reaction can be used. Specifically, aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, and anisole; acetic acid Esters such as ethyl, butyl acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate; cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve; alcohols such as methanol, ethanol, isopropanol, n-butanol; acetonitrile, pro Nitriles such as pionitrile, butyronitrile, benzonitrile; chloroform; dimethyl sulfoxide, etc. It is. These solvents may use only 1 type and may use 2 or more types together.
 原料重合体(P1)と単量体成分との重合反応は、重合触媒(重合開始剤)の存在下で行うことが好ましい。重合触媒としては、例えば、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-アミジノプロパン)・二塩酸塩、ジメチル-2,2’-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノペンタン酸)等のアゾ化合物;過硫酸カリウム等の過硫酸塩類;クメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、t-ブチルパーオキシイソプロピルカーボネート、t-アミルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシオクトエート、t-アミルパーオキシイソノナノエート、t-アミルパーオキシイソプロピルカーボネート、t-アミルパーオキシ2-エチルヘキシルカーボネート等の有機過酸化物等を用いることができる。これらは1種のみを用いてもよく、2種以上を併用してもよい。なお、上記(1)の方法では、水素引き抜き力が強い重合触媒を用いることが好ましく、そのような重合触媒として有機過酸化物を用いることが好ましい。重合触媒の使用量は、例えば、単量体成分100質量部に対して0.01~1質量部とすることが好ましい。 The polymerization reaction between the raw material polymer (P1) and the monomer component is preferably performed in the presence of a polymerization catalyst (polymerization initiator). Examples of the polymerization catalyst include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-amidinopropane) dihydrochloride, dimethyl-2,2′-azobis (2-methylpropio). Nate), 4,4′-azobis (4-cyanopentanoic acid) and the like; persulfates such as potassium persulfate; cumene hydroperoxide, diisopropylbenzene hydroperoxide, di-t-butyl peroxide, lauroyl Peroxide, benzoyl peroxide, t-butylperoxyisopropyl carbonate, t-amylperoxy-2-ethylhexanoate, t-amylperoxyoctoate, t-amylperoxyisononanoate, t-amylperoxy Isopropyl carbonate, t-amyl peroxy 2-ethyl f Organic peroxides such as sill carbonate can be used. These may use only 1 type and may use 2 or more types together. In the method (1), it is preferable to use a polymerization catalyst having a strong hydrogen abstraction force, and it is preferable to use an organic peroxide as such a polymerization catalyst. The amount of the polymerization catalyst used is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the monomer component, for example.
 原料重合体(P1)と単量体成分の各使用量については、原料重合体(P1)は、原料重合体(P1)と単量体成分の合計100質量部に対して、0.5質量部以上が好ましく、1質量部以上がより好ましく、3質量部以上がさらに好ましく、また50質量部以下が好ましく、30質量部以下がより好ましく、20質量部以下がさらに好ましい。単量体成分は、原料重合体(P1)と単量体成分の合計100質量部に対して、50質量部以上が好ましく、70質量部以上がより好ましく、80質量部以上がさらに好ましく、また99質量部以下が好ましく、98質量部以下がより好ましく、97質量部以下がさらに好ましい。 About each usage-amount of a raw material polymer (P1) and a monomer component, a raw material polymer (P1) is 0.5 mass with respect to a total of 100 mass parts of a raw material polymer (P1) and a monomer component. Part or more, preferably 1 part by weight or more, more preferably 3 parts by weight or more, more preferably 50 parts by weight or less, more preferably 30 parts by weight or less, and still more preferably 20 parts by weight or less. The monomer component is preferably 50 parts by mass or more, more preferably 70 parts by mass or more, still more preferably 80 parts by mass or more, based on 100 parts by mass of the total of the raw material polymer (P1) and the monomer component. 99 parts by mass or less is preferable, 98 parts by mass or less is more preferable, and 97 parts by mass or less is more preferable.
 反応液中の原料重合体(P1)の濃度は、1質量%以上が好ましく、3質量%以上がより好ましく、5質量%以上がより好ましく、また50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましい。反応液中の単量体成分の濃度は、5質量%以上が好ましく、10質量%以上がより好ましく、また80質量%以下が好ましく、70質量%以下がより好ましい。反応液中の溶媒濃度は、10質量%以上が好ましく、20質量%以上がより好ましく、また97質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がさらに好ましく、80質量%以下がさらにより好ましい。重合反応中に、原料重合体(P1)、単量体成分、重合触媒、反応溶媒等を適宜追加することも可能である。 The concentration of the raw material polymer (P1) in the reaction solution is preferably 1% by mass or more, more preferably 3% by mass or more, more preferably 5% by mass or more, more preferably 50% by mass or less, and preferably 30% by mass or less. More preferred is 20% by mass or less. The concentration of the monomer component in the reaction solution is preferably 5% by mass or more, more preferably 10% by mass or more, and preferably 80% by mass or less, more preferably 70% by mass or less. The solvent concentration in the reaction solution is preferably 10% by mass or more, more preferably 20% by mass or more, more preferably 97% by mass or less, more preferably 95% by mass or less, further preferably 90% by mass or less, and 80% by mass. The following are even more preferred: During the polymerization reaction, a raw material polymer (P1), a monomer component, a polymerization catalyst, a reaction solvent, and the like can be appropriately added.
 重合反応は、窒素ガス等の不活性ガスの雰囲気または気流下で行うのが好ましい。残存単量体を少なくするために、重合開始剤としてアゾビス系化合物と過酸化物を併用してもよい。反応温度は、50℃~200℃が好ましい。反応時間は、共重合反応の進行度合や、ゲル化物の生成の程度を見ながら適宜調整すればよく、例えば1時間~20時間行うことが好ましい。 The polymerization reaction is preferably performed in an atmosphere of an inert gas such as nitrogen gas or in an air stream. In order to reduce the residual monomer, an azobis compound and a peroxide may be used in combination as a polymerization initiator. The reaction temperature is preferably 50 ° C to 200 ° C. The reaction time may be appropriately adjusted while observing the degree of progress of the copolymerization reaction and the degree of formation of the gelled product. For example, the reaction time is preferably 1 to 20 hours.
 上記の重合工程により、(メタ)アクリル系単量体由来の単位を含むポリマー鎖がポリマー鎖(A)に結合した共重合体が得られる。重合工程において、単量体成分として、(メタ)アクリル系単量体と環構造内に重合性二重結合を有する単量体(例えば、無水マレイン酸やマレイミド)を用いる場合は、(メタ)アクリル単位と環構造単位(無水マレイン酸構造、マレイミド構造)を有するポリマー鎖(B)がポリマー鎖(A)に結合した共重合体(P)が得られる。 By the above polymerization step, a copolymer in which a polymer chain containing a unit derived from a (meth) acrylic monomer is bonded to the polymer chain (A) is obtained. In the polymerization step, when a (meth) acrylic monomer and a monomer having a polymerizable double bond in the ring structure (for example, maleic anhydride or maleimide) are used as the monomer component, A copolymer (P) in which a polymer chain (B) having an acrylic unit and a ring structural unit (maleic anhydride structure, maleimide structure) is bonded to the polymer chain (A) is obtained.
 一方、ポリマー鎖(B)の環構造単位として、ラクトン環構造、無水グルタル酸構造、またはグルタルイミド構造を有する共重合体(P)を得る場合は、重合工程に続いて環構造形成工程を行うことが好ましい。環構造形成工程では、重合工程で形成された(メタ)アクリル単位を有するポリマー鎖の主鎖に環構造を形成する。具体的には、重合工程で形成された(メタ)アクリル単位を有するポリマー鎖の隣接(メタ)アクリル単位の置換基どうしを縮合反応させて、ポリマー鎖の主鎖に環構造を形成する。縮合反応には、エステル化反応、酸無水物化反応、アミド化反応、イミド化反応等が含まれる。例えば、隣接する(メタ)アクリル単位の2個のカルボン酸基を酸無水物化することによって、無水グルタル酸構造を形成することができ、イミド化することによってグルタルイミド構造を形成することができる。また隣接する(メタ)アクリル単位のうち一方がヒドロキシル基やアミノ基などのプロトン性水素原子含有基を有する場合には、この一方の(メタ)アクリル単位のプロトン性水素原子含有基と他方の(メタ)アクリル単位のカルボン酸基とを縮合することによって、ラクトン環構造を形成することができる。 On the other hand, when obtaining a copolymer (P) having a lactone ring structure, a glutaric anhydride structure, or a glutarimide structure as a ring structural unit of the polymer chain (B), a ring structure forming step is performed following the polymerization step. It is preferable. In the ring structure forming step, a ring structure is formed in the main chain of the polymer chain having the (meth) acryl unit formed in the polymerization step. Specifically, a substituent of the adjacent (meth) acryl unit of the polymer chain having a (meth) acryl unit formed in the polymerization step is subjected to a condensation reaction to form a ring structure in the main chain of the polymer chain. The condensation reaction includes an esterification reaction, an acid anhydride reaction, an amidation reaction, an imidation reaction, and the like. For example, a glutaric anhydride structure can be formed by acid anhydrideizing two carboxylic acid groups of adjacent (meth) acryl units, and a glutarimide structure can be formed by imidization. When one of adjacent (meth) acrylic units has a protic hydrogen atom-containing group such as a hydroxyl group or an amino group, the protic hydrogen atom-containing group of the one (meth) acrylic unit and the other ( A lactone ring structure can be formed by condensing with a carboxylic acid group of a (meth) acryl unit.
 環構造形成工程において、隣接する(メタ)アクリル単位の縮合反応は、触媒(環化触媒)の存在下で行うことが好ましい。環化触媒としては、酸、塩基およびそれらの塩からなる群より選ばれる少なくとも1種を用いることができる。酸、塩基およびそれらの塩は有機物であっても無機物であってもよく、特に限定されない。なかでも、環化反応の触媒としては、有機リン化合物を用いることが好ましい。有機リン化合物を環化触媒として用いることにより、縮合反応を効率的に行うことができるとともに、得られる共重合体(P)の着色を低減することができる。 In the ring structure forming step, the condensation reaction of adjacent (meth) acryl units is preferably performed in the presence of a catalyst (cyclization catalyst). As the cyclization catalyst, at least one selected from the group consisting of acids, bases and salts thereof can be used. The acid, base and salts thereof may be organic or inorganic and are not particularly limited. Among them, it is preferable to use an organic phosphorus compound as a catalyst for the cyclization reaction. By using an organophosphorus compound as a cyclization catalyst, the condensation reaction can be efficiently performed, and coloring of the resulting copolymer (P) can be reduced.
 環化触媒として用いることができる有機リン化合物としては、例えば、アルキル(アリール)亜ホスホン酸およびこれらのモノエステルまたはジエステル;ジアルキル(アリール)ホスフィン酸およびこれらのエステル;アルキル(アリール)ホスホン酸およびこれらのモノエステルまたはジエステル;アルキル(アリール)亜ホスフィン酸およびこれらのエステル;亜リン酸モノエステル、ジエステルまたはトリエステル;リン酸メチル、リン酸エチル、リン酸2-エチルヘキシル、リン酸オクチル、リン酸イソデシル、リン酸ラウリル、リン酸ステアリル、リン酸イソステアリル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジ-2-エチルヘキシル、リン酸ジイソデシル、リン酸ジラウリル、リン酸ジステアリル、リン酸ジイソステアリル、リン酸ジフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリイソデシル、リン酸トリラウリル、リン酸トリステアリル、リン酸トリイソステアリル、リン酸トリフェニル等のリン酸モノエステル、ジエステルまたはトリエステル;モノ-、ジ-またはトリ-アルキル(アリール)ホスフィン;アルキル(アリール)ハロゲンホスフィン;酸化モノ-、ジ-またはトリ-アルキル(アリール)ホスフィン;ハロゲン化テトラアルキル(アリール)ホスホニウム等が挙げられる。これらは1種のみを用いてもよく、2種以上を併用してもよい。これらの中でも、触媒活性が高く、着色性が低いことから、リン酸モノエステルまたはジエステルが特に好ましい。環化触媒の使用量は、例えば、重合工程で得られた共重合体100質量部に対して0.001~1質量部とすることが好ましい。 Examples of organophosphorus compounds that can be used as a cyclization catalyst include alkyl (aryl) phosphonous acids and monoesters or diesters thereof; dialkyl (aryl) phosphinic acids and esters thereof; alkyl (aryl) phosphonic acids and these. Monoesters or diesters; alkyl (aryl) phosphinic acids and their esters; phosphorous acid monoesters, diesters or triesters; methyl phosphate, ethyl phosphate, 2-ethylhexyl phosphate, octyl phosphate, isodecyl phosphate Lauryl phosphate, stearyl phosphate, isostearyl phosphate, phenyl phosphate, dimethyl phosphate, diethyl phosphate, di-2-ethylhexyl phosphate, diisodecyl phosphate, dilauryl phosphate, distearyl phosphate, Phosphoric monoesters, diesters or triesters such as diisostearyl phosphate, diphenyl phosphate, trimethyl phosphate, triethyl phosphate, triisodecyl phosphate, trilauryl phosphate, tristearyl phosphate, triisostearyl phosphate, triphenyl phosphate Examples include esters; mono-, di- or tri-alkyl (aryl) phosphines; alkyl (aryl) halogen phosphines; mono-, di- or tri-alkyl (aryl) phosphines; tetraalkyl (aryl) phosphonium halides. . These may use only 1 type and may use 2 or more types together. Among these, phosphoric acid monoesters or diesters are particularly preferable because of their high catalytic activity and low colorability. The amount of the cyclization catalyst used is preferably 0.001 to 1 part by mass with respect to 100 parts by mass of the copolymer obtained in the polymerization step, for example.
 環構造形成工程における反応温度は、50℃~300℃が好ましい。反応時間は、縮合反応の進行度合を見ながら適宜調整すればよく、例えば5分~6時間行うことが好ましい。 The reaction temperature in the ring structure formation step is preferably 50 ° C to 300 ° C. The reaction time may be appropriately adjusted while observing the degree of progress of the condensation reaction. For example, the reaction time is preferably 5 minutes to 6 hours.
 上記のように重合工程、あるいは重合工程と環構造形成工程を行うことにより、共重合体(P)を含有する樹脂溶液が得られる。このようにして得られた樹脂溶液は、フィルタで濾過することで、異物を取り除くことが好ましい。従って、共重合体(P)の製造方法は、重合工程または環構造形成工程で得られた樹脂溶液を濾過する工程(濾過工程)をさらに有することが好ましい。濾過工程を行うことにより、共重合体(P)中の異物量を低減することができる。そのため、共重合体(P)を光学フィルムの原料として用いる場合など、表面凹凸や欠点が少なく、透明性の高い光学フィルムを得やすくなる。なお本発明では、共重合体(P)の重合工程でゲル化物の発生量を低く抑えることができるため、濾過工程においてフィルタにかかる負荷が抑えられ、長時間の連続濾過が可能となる。そのため、高い生産性で異物量の少ない共重合体(P)を得ることができる。濾過工程は、重合工程または環構造形成工程に引き続いて連続的に実施することができる。 By performing the polymerization step or the polymerization step and the ring structure formation step as described above, a resin solution containing the copolymer (P) can be obtained. The resin solution thus obtained is preferably filtered to remove foreign matters. Therefore, it is preferable that the manufacturing method of a copolymer (P) further has the process (filtration process) of filtering the resin solution obtained at the superposition | polymerization process or the ring structure formation process. By performing the filtration step, the amount of foreign matter in the copolymer (P) can be reduced. Therefore, when using the copolymer (P) as a raw material for the optical film, it is easy to obtain a highly transparent optical film with few surface irregularities and defects. In the present invention, since the amount of gelled product generated can be kept low in the polymerization step of the copolymer (P), the load on the filter in the filtration step is suppressed, and continuous filtration for a long time is possible. Therefore, a copolymer (P) with a high productivity and a small amount of foreign matter can be obtained. The filtration step can be carried out continuously following the polymerization step or the ring structure formation step.
 濾過に用いるフィルタとしては、従来公知のフィルタを使用することができ、特に制限されないが、例えば、リーフディスクフィルタ、キャンドルフィルタ、パックディスクフィルタ、円筒型フィルタ等を用いることができる。なかでも、有効濾過面積が大きいリーフディスクフィルタまたはキャンドルフィルタが好ましい。 As a filter used for filtration, a conventionally known filter can be used, and is not particularly limited. For example, a leaf disk filter, a candle filter, a pack disk filter, a cylindrical filter, and the like can be used. Among these, a leaf disk filter or a candle filter having a large effective filtration area is preferable.
 フィルタの濾過精度(孔径)は、通常は、例えば15μm以下であればよい。なお、共重合体(P)を光学フィルムなどの光学材料に使用する場合は、その光学的欠点低減の点から、濾過精度は10μm以下が好ましく、5μm以下がより好ましい。濾過精度の下限は特に限定されず、例えば0.2μm以上である。 The filtration accuracy (pore diameter) of the filter is usually, for example, 15 μm or less. When the copolymer (P) is used for an optical material such as an optical film, the filtration accuracy is preferably 10 μm or less and more preferably 5 μm or less from the viewpoint of reducing optical defects. The lower limit of the filtration accuracy is not particularly limited, and is, for example, 0.2 μm or more.
 濾過工程では、重合工程あるいは環構造形成工程で得られた共重合体(P)を含有する樹脂溶液をそのままの姿で濾過してもよく、溶媒で希釈または溶媒に分散させて濾過してもよい。共重合体(P)が固体であれば、溶融して焼結フィルタなどで濾過してもよく、溶媒に溶解または分散して濾過してもよい。濾過は、加温して行ってもよく、また加圧下で行ってもよい。 In the filtration step, the resin solution containing the copolymer (P) obtained in the polymerization step or the ring structure formation step may be filtered as it is, or may be diluted with a solvent or dispersed in a solvent and filtered. Good. If the copolymer (P) is solid, it may be melted and filtered with a sintered filter or the like, or dissolved or dispersed in a solvent and filtered. Filtration may be performed by heating or under pressure.
 樹脂溶液をフィルタ濾過に供する際の溶液温度は、重合溶媒の沸点等に応じて適宜設定すればよいが、例えば、重合溶媒の沸点以下が好ましく、重合溶媒の沸点-10℃以下がより好ましい。一方、フィルタ濾過に供する樹脂溶液の温度が低すぎると、樹脂溶液の粘度が増大し、ギアポンプ等の装置への負荷が増加するおそれがあるので、フィルタ濾過に供する樹脂溶液の温度は、50℃以上が好ましく、80℃以上がより好ましい。 The solution temperature when the resin solution is subjected to filter filtration may be appropriately set according to the boiling point of the polymerization solvent and the like, for example, preferably not more than the boiling point of the polymerization solvent, more preferably not more than the boiling point of the polymerization solvent −10 ° C. On the other hand, if the temperature of the resin solution subjected to filter filtration is too low, the viscosity of the resin solution increases and the load on the device such as a gear pump may increase. Therefore, the temperature of the resin solution subjected to filter filtration is 50 ° C. The above is preferable, and 80 ° C or higher is more preferable.
 フィルタ濾過に供する樹脂溶液の粘度は、85℃において、100Pa・s以下であることが好ましく、より好ましくは80Pa・s以下である。フィルタ濾過に供する樹脂溶液の粘度が高すぎると、フィルタ濾過時の圧損が増大し、フィルタユニットが破損したり、粘度上昇によるフィルタ濾過の処理能力が低下したりするおそれがある。フィルタ濾過における圧力損失は、2.5MPa以下であることが好ましく、より好ましくは0.5MPa~2.0MPaの範囲、さらに好ましくは0.5MPa~1.5MPaの範囲である。 The viscosity of the resin solution subjected to filter filtration is preferably 100 Pa · s or less, more preferably 80 Pa · s or less at 85 ° C. If the viscosity of the resin solution used for filter filtration is too high, the pressure loss during filter filtration may increase, and the filter unit may be damaged, or the filter filtration processing capacity may decrease due to increased viscosity. The pressure loss in filter filtration is preferably 2.5 MPa or less, more preferably in the range of 0.5 MPa to 2.0 MPa, and still more preferably in the range of 0.5 MPa to 1.5 MPa.
 〔2.樹脂組成物〕
 本発明は、上記に説明したポリマー鎖(A)とポリマー鎖(B)とを有する共重合体(P)を含有する樹脂組成物も提供する。本発明の樹脂組成物は、透明性、機械的強度(例えば、衝撃強度等)、耐熱性に優れ、これらをバランス良く備えるとともに、製造の際にゲル化物の発生が少ないものとなる。以下、本発明の樹脂組成物を、「樹脂組成物(Q)」と称する。
[2. Resin composition]
The present invention also provides a resin composition containing the copolymer (P) having the polymer chain (A) and the polymer chain (B) described above. The resin composition of the present invention is excellent in transparency, mechanical strength (for example, impact strength, etc.) and heat resistance, and has a good balance between them, and generates less gelled product during production. Hereinafter, the resin composition of the present invention is referred to as “resin composition (Q)”.
 樹脂組成物(Q)は、共重合体(P)を樹脂成分として含んでいてもよく、他の重合体を樹脂成分として含むものでもよい。樹脂組成物(Q)が他の重合体を含む場合、他の重合体としては(メタ)アクリル系重合体が好ましく用いられ、これにより樹脂組成物(Q)の均質性が高まり、樹脂組成物(Q)の透明性や耐熱性を高めることが容易になる。 Resin composition (Q) may contain copolymer (P) as a resin component, or may contain another polymer as a resin component. When the resin composition (Q) contains another polymer, a (meth) acrylic polymer is preferably used as the other polymer, thereby increasing the homogeneity of the resin composition (Q), and the resin composition It becomes easy to improve the transparency and heat resistance of (Q).
 (メタ)アクリル系重合体は、上記のポリマー鎖(B)で説明した(メタ)アクリル系単量体由来の単位を有するものであればよく、好ましくは、上記のポリマー鎖(B)で説明した(メタ)アクリル酸エステル由来の単位を有する。(メタ)アクリル系重合体は、上記のポリマー鎖(B)で説明した他の不飽和単量体由来の単位を有していてもよい。(メタ)アクリル系重合体は、樹脂組成物(Q)中での共重合体(P)との相溶性を高める観点から、共重合体(P)のポリマー鎖(B)に含まれる(メタ)アクリル系単量体由来の単位を有することがより好ましい。 The (meth) acrylic polymer only needs to have a unit derived from the (meth) acrylic monomer described in the polymer chain (B), and preferably described in the polymer chain (B). It has a unit derived from (meth) acrylic acid ester. The (meth) acrylic polymer may have units derived from other unsaturated monomers described in the polymer chain (B). The (meth) acrylic polymer is contained in the polymer chain (B) of the copolymer (P) from the viewpoint of increasing the compatibility with the copolymer (P) in the resin composition (Q) (meta) It is more preferable to have a unit derived from an acrylic monomer.
 (メタ)アクリル系重合体は環構造を有するものであることが好ましく、主鎖に環構造を有するものであることがより好ましい。樹脂組成物(Q)が、主鎖に環構造を有する(メタ)アクリル系重合体を含有することにより、樹脂組成物(Q)の耐熱性を高めることができる。(メタ)アクリル系重合体の主鎖の環構造としては、ラクトン環構造、環状イミド構造(例えば、マレイミド構造、グルタルイミド構造等)、環状無水物構造(例えば、無水マレイン酸構造、無水グルタル酸構造等)等が好ましく挙げられ、これらの環構造の詳細は、上記のポリマー鎖(B)の環構造に関する説明が参照される。なかでも、(メタ)アクリル系重合体は、共重合体(P)のポリマー鎖(B)が有する環構造と同じ環構造を主鎖に有することが好ましい。 The (meth) acrylic polymer preferably has a ring structure, and more preferably has a ring structure in the main chain. When the resin composition (Q) contains a (meth) acrylic polymer having a ring structure in the main chain, the heat resistance of the resin composition (Q) can be increased. The ring structure of the main chain of the (meth) acrylic polymer includes a lactone ring structure, a cyclic imide structure (eg, a maleimide structure, a glutarimide structure, etc.), and a cyclic anhydride structure (eg, a maleic anhydride structure, a glutaric anhydride). And the like, and the details of these ring structures are referred to the description of the ring structure of the polymer chain (B). Especially, it is preferable that a (meth) acrylic-type polymer has the same ring structure as the ring structure which the polymer chain (B) of a copolymer (P) has in a principal chain.
 (メタ)アクリル系重合体は、共重合体(P)のポリマー鎖(B)が有する(メタ)アクリル単位を有するとともに、ポリマー鎖(B)が有する環構造単位を有することが好ましい。樹脂組成物(Q)がこのような(メタ)アクリル系重合体を含有していれば、共重合体(P)との相溶性が高まり、樹脂組成物(Q)の透明性や耐熱性を高めることが容易になり、また樹脂組成物(Q)の調製も容易になる。 The (meth) acrylic polymer preferably has a (meth) acryl unit contained in the polymer chain (B) of the copolymer (P) and a ring structural unit contained in the polymer chain (B). If the resin composition (Q) contains such a (meth) acrylic polymer, the compatibility with the copolymer (P) increases, and the transparency and heat resistance of the resin composition (Q) are increased. The resin composition (Q) can be easily prepared.
 樹脂組成物(Q)の固形分100質量%中、共重合体(P)の含有割合は、1質量%以上が好ましく、2質量%以上がより好ましく、3質量%以上がさらに好ましく、5質量%以上がさらにより好ましく、これにより樹脂組成物(Q)の機械的強度を高めやすくなる。樹脂組成物(Q)中の共重合体(P)の含有割合の上限は特に限定されず、樹脂組成物(Q)は共重合体(P)のみから構成されていてもよく、樹脂組成物(Q)中、共重合体(P)の含有割合が90質量%以下であってもよく、70質量%以下、50質量%以下、40質量%以下、または30質量%以下であってもよい。樹脂組成物(Q)の固形分量は、樹脂組成物(Q)が溶媒を含む場合は、溶媒を除く樹脂組成物(Q)の量を意味する。 In 100% by mass of the solid content of the resin composition (Q), the content of the copolymer (P) is preferably 1% by mass or more, more preferably 2% by mass or more, further preferably 3% by mass or more, and 5% by mass. % Or more is even more preferable, which makes it easier to increase the mechanical strength of the resin composition (Q). The upper limit of the content ratio of the copolymer (P) in the resin composition (Q) is not particularly limited, and the resin composition (Q) may be composed only of the copolymer (P). In (Q), the content of the copolymer (P) may be 90% by mass or less, 70% by mass or less, 50% by mass or less, 40% by mass or less, or 30% by mass or less. . When the resin composition (Q) contains a solvent, the solid content of the resin composition (Q) means the amount of the resin composition (Q) excluding the solvent.
 樹脂組成物(Q)の固形分100質量%中、共重合体(P)のポリマー鎖(A)の含有割合は、0.5質量%以上が好ましく、1質量%以上がより好ましく、3質量%以上がさらに好ましく、また50質量%以下が好ましく、30質量%以下がより好ましく、20質量%以下がさらに好ましい。樹脂組成物(Q)中のポリマー鎖(A)の含有割合が0.5質量%以上であれば、樹脂組成物(Q)の機械的強度を高めやすくなる。樹脂組成物(Q)中のポリマー鎖(A)の含有割合が50質量%以下であれば、樹脂組成物(Q)の透明性や耐熱性を高めやすくなる。ポリマー鎖(A)の含有割合は、例えば1H-NMRで求めることができる。 In 100 mass% of the solid content of the resin composition (Q), the content of the polymer chain (A) of the copolymer (P) is preferably 0.5 mass% or more, more preferably 1 mass% or more, and 3 mass%. % Or more is more preferable, 50 mass% or less is preferable, 30 mass% or less is more preferable, and 20 mass% or less is further more preferable. If the content rate of the polymer chain (A) in a resin composition (Q) is 0.5 mass% or more, it will become easy to raise the mechanical strength of a resin composition (Q). If the content rate of the polymer chain (A) in a resin composition (Q) is 50 mass% or less, it will become easy to improve transparency and heat resistance of a resin composition (Q). The content ratio of the polymer chain (A) can be determined, for example, by 1 H-NMR.
 樹脂組成物(Q)が(メタ)アクリル系重合体を含有する場合、樹脂組成物(Q)の固形分100質量%中、(メタ)アクリル系重合体の含有量は、1質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましく、また99質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がさらに好ましい。 When the resin composition (Q) contains a (meth) acrylic polymer, the content of the (meth) acrylic polymer in the solid content of 100% by mass of the resin composition (Q) is 1% by mass or more. Preferably, 20 mass% or more is more preferable, 30 mass% or more is further preferable, 99 mass% or less is preferable, 95 mass% or less is more preferable, and 90 mass% or less is further preferable.
 樹脂組成物(Q)の固形分100質量%中、共重合体(P)と(メタ)アクリル系重合体の合計含有割合は、50質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上がさらに好ましく、90質量%以上がさらにより好ましい。樹脂組成物(Q)中の共重合体(P)と(メタ)アクリル系重合体の含有割合の上限は特に限定されず、樹脂組成物(Q)は実質的に共重合体(P)と(メタ)アクリル系重合体のみから構成されていてもよく、例えば樹脂組成物(Q)の固形分100質量%中、共重合体(P)と(メタ)アクリル系重合体の合計含有割合が99質量%以上であってもよい。 In the solid content of 100% by mass of the resin composition (Q), the total content of the copolymer (P) and the (meth) acrylic polymer is preferably 50% by mass or more, more preferably 70% by mass or more, and 80 More preferably, it is more preferably 90% by weight or more. The upper limit of the content ratio of the copolymer (P) and the (meth) acrylic polymer in the resin composition (Q) is not particularly limited, and the resin composition (Q) is substantially composed of the copolymer (P). For example, the total content of the copolymer (P) and the (meth) acrylic polymer is 100% by mass in the solid content of the resin composition (Q). 99 mass% or more may be sufficient.
 樹脂組成物(Q)は、(メタ)アクリル系重合体以外の重合体を含有していてもよく、そのような重合体としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン重合体、ポリ(4-メチル-1-ペンテン)等のオレフィン系重合体;塩化ビニル、塩素化ビニル樹脂等の含ハロゲン系重合体;ポリスチレン、スチレン-メタクリル酸メチル共重合体、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体等のスチレン系重合体;ポリマーポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ナイロン6、ナイロン66、ナイロン610等のポリアミド;ポリアセタール;ポリカーボネート;ポリフェニレンオキシド;ポリフェニレンスルフィド;ポリエーテルエーテルケトン;ポリサルホン;ポリエーテルサルホン;ポリオキシペンジレン;ポリアミドイミド;ポリブタジエン系ゴム、(メタ)アクリル系ゴムを配合したABS樹脂やASA樹脂等のゴム質重合体;等が挙げられる。 The resin composition (Q) may contain a polymer other than the (meth) acrylic polymer. Examples of such a polymer include polyethylene, polypropylene, ethylene-propylene polymer, poly (4 -Methyl-1-pentene) and other olefin polymers; halogen-containing polymers such as vinyl chloride and chlorinated vinyl resins; polystyrene, styrene-methyl methacrylate copolymer, styrene-acrylonitrile copolymer, acrylonitrile-butadiene -Styrene polymer such as styrene copolymer; Polyester such as polymer polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate; Polyamide such as nylon 6, nylon 66, nylon 610; Polyacetal; Polycarbonate; Polyphenylene oxide; Polypheny Polysulfide; Polyetheretherketone; Polysulfone; Polyethersulfone; Polyoxypentylene; Polyamideimide; Rubber polymer such as ABS resin and ASA resin blended with polybutadiene rubber and (meth) acrylic rubber; Can be mentioned.
 樹脂組成物(Q)は、本発明の効果を損なわない範囲であれば、種々の添加剤を含んでいてもよい。添加剤としては、例えば、ヒンダードフェノール系、リン系、イオウ系等の酸化防止剤;耐光安定剤、耐候安定剤、熱安定剤等の安定剤;ガラス繊維、炭素繊維等の補強材;紫外線吸収剤;近赤外線吸収剤;トリス(ジブロモプロピル)ホスフェート、トリアリルホスフェート、酸化アンチモン等の難燃剤;位相差上昇剤、位相差低減剤、位相差安定剤等の位相差調整剤;アニオン系、カチオン系、ノニオン系の界面活性剤を含む帯電防止剤;無機顔料、有機顔料、染料等の着色剤;有機フィラーや無機フィラー;樹脂改質剤;有機充填剤や無機充填剤;等が挙げられる。樹脂組成物(Q)における各添加剤の含有割合は、好ましくは0~5質量%、より好ましくは0~2質量%の範囲内である。 The resin composition (Q) may contain various additives as long as the effects of the present invention are not impaired. Examples of additives include hindered phenol-based, phosphorus-based and sulfur-based antioxidants; light-resistant stabilizers, weather-resistant stabilizers, heat stabilizers and other stabilizers; reinforcing materials such as glass fibers and carbon fibers; ultraviolet rays Absorbers; near infrared absorbers; flame retardants such as tris (dibromopropyl) phosphate, triallyl phosphate, antimony oxide; phase difference adjusting agents such as phase difference increasing agents, phase difference reducing agents, phase difference stabilizers; anionic, Antistatic agents including cationic and nonionic surfactants; Colorants such as inorganic pigments, organic pigments, dyes; organic fillers and inorganic fillers; resin modifiers; organic fillers and inorganic fillers; . The content of each additive in the resin composition (Q) is preferably in the range of 0 to 5% by mass, more preferably 0 to 2% by mass.
 紫外線吸収剤としては、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾエート系化合物、トリアゾール系化合物、およびトリアジン系化合物等が挙げられ、公知の紫外線吸収剤を用いることができる。ベンゾフェノン系化合物としては、2,4-ジヒドロキシベンゾフェノン、4-n-オクチルオキシ-2-ヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン等が挙げられる。サリシケート系化合物としては、p-t-ブチルフェニルサリシケート等が挙げられる。ベンゾエート系化合物としては、2,4-ジ-t-ブチルフェニル-3’,5’-ジ-t-ブチル-4’-ヒドロキシベンゾエート等が挙げられる。トリアゾール系化合物としては、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール]、2-(3,5-ジ-tert-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-p-クレゾール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-ベンゾトリアゾール-2-イル-4,6-ジ-tert-ブチルフェノール、2-[5-クロロ(2H)-ベンゾトリアゾール-2-イル]-4-メチル-6-t-ブチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-t-ブチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール等が挙げられる。トリアジン系化合物としては、2-モノ(ヒドロキシフェニル)-1,3,5-トリアジン化合物や2,4-ビス(ヒドロキシフェニル)-1,3,5-トリアジン化合物、2,4,6-トリス(ヒドロキシフェニル)-1,3,5-トリアジン化合物等が挙げられる。市販の紫外線吸収剤としては、例えば、トリアジン系紫外線吸収剤である「チヌビン(登録商標)1577」、「チヌビン(登録商標)460」、「チヌビン(登録商標)477」(BASFジャパン社製)、「アデカスタブ(登録商標)LA-F70」(ADEKA社製)、トリアゾール系紫外線吸収剤である「アデカスタブ(登録商標)LA-31」(ADEKA社製)等が挙げられる。紫外線吸収剤は、1種のみを用いてもよく、2種類以上を併用してもよい。 Examples of ultraviolet absorbers include benzophenone compounds, salicylate compounds, benzoate compounds, triazole compounds, and triazine compounds, and known ultraviolet absorbers can be used. Examples of the benzophenone compounds include 2,4-dihydroxybenzophenone, 4-n-octyloxy-2-hydroxybenzophenone, 2,2'-dihydroxy-4,4'-dimethoxybenzophenone and the like. Examples of the silicate compound include pt-butylphenyl silicate. Examples of the benzoate compound include 2,4-di-t-butylphenyl-3 ', 5'-di-t-butyl-4'-hydroxybenzoate. Examples of triazole compounds include 2,2′-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H-benzotriazol-2-yl) phenol], 2- (3,5 -Di-tert-butyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (2H-benzotriazol-2-yl) -p-cresol, 2- (2H-benzotriazol-2-yl) -4 , 6-Bis (1-methyl-1-phenylethyl) phenol, 2-benzotriazol-2-yl-4,6-di-tert-butylphenol, 2- [5-chloro (2H) -benzotriazole-2- Yl] -4-methyl-6-tert-butylphenol, 2- (2H-benzotriazol-2-yl) -4,6-di-tert-butylphenol, 2- (2H Benzotriazol-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol, and the like. Examples of triazine compounds include 2-mono (hydroxyphenyl) -1,3,5-triazine compounds, 2,4-bis (hydroxyphenyl) -1,3,5-triazine compounds, 2,4,6-tris ( Hydroxyphenyl) -1,3,5-triazine compound and the like. As commercially available ultraviolet absorbers, for example, “Tinuvin (registered trademark) 1577”, “Tinuvin (registered trademark) 460”, “Tinuvin (registered trademark) 477” (manufactured by BASF Japan), which are triazine-based ultraviolet absorbers, “Adekastab (registered trademark) LA-F70” (manufactured by ADEKA), “Adekastab (registered trademark) LA-31” (manufactured by ADEKA), which is a triazole-based ultraviolet absorber, and the like can be mentioned. Only one type of ultraviolet absorber may be used, or two or more types may be used in combination.
 酸化防止剤としては、ラジカル捕捉機能または過酸化物分解機能を有する化合物を使用することができ、公知の酸化防止剤を用いることができる。酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、ベンゾトリアゾール系酸化防止剤、ベンゾフェノン系酸化防止剤、ヒドロキシルアミン系酸化防止剤、サルチル酸エステル系酸化防止剤、およびトリアジン系酸化防止剤等が挙げられる。これらの酸化防止剤の中でも、好ましいものとして、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤が挙げられる。より好ましくは、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤が挙げられる。酸化防止剤は、1種のみを用いてもよく、2種類以上を併用してもよい。 As the antioxidant, a compound having a radical scavenging function or a peroxide decomposition function can be used, and a known antioxidant can be used. Examples of antioxidants include hindered phenol antioxidants, hindered amine antioxidants, phosphorus antioxidants, sulfur antioxidants, benzotriazole antioxidants, benzophenone antioxidants, and hydroxylamines. Antioxidants, salicylic acid ester antioxidants, triazine antioxidants and the like can be mentioned. Among these antioxidants, hindered phenol antioxidants, hindered amine antioxidants, phosphorus antioxidants, and sulfur antioxidants are preferable. More preferably, a hindered phenolic antioxidant, a hindered amine antioxidant, and a phosphorus antioxidant are mentioned. Only one type of antioxidant may be used, or two or more types may be used in combination.
 ヒンダードフェノール系酸化防止剤としては、2,4-ビス[(ラウリルチオ)メチル]-o-クレゾール、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)等が挙げられる。 Examples of hindered phenol antioxidants include 2,4-bis [(laurylthio) methyl] -o-cresol, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl), 1,3,5-tris (4-t-butyl-3-hydroxy-2,6-dimethylbenzyl) and the like.
 ヒンダードアミン系酸化防止剤としては、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(N-メチル-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、N,N’-ビス(2,2,6,6-テトラメチル-4-ピペリジル)-1,6-ヘキサメチレンジアミン、2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)アミノ-N-(2,2,6,6-テトラメチル-4-ピペリジル)プロピオンアミド、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)(1,2,3,4-ブタンテトラカルボキシレート、ポリ[(6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル)((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)ヘキサメチル((2,2,6,6-テトラメチル-4-ピペリジル)イミノ)]等を使用することができる。 Examples of hindered amine antioxidants include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (N-methyl-2,2,6,6-tetramethyl-4-piperidyl) sebacate, N, N′-bis (2,2,6,6-tetramethyl-4-piperidyl) -1,6-hexamethylenediamine, 2-methyl-2- (2,2,6,6-tetramethyl-4 -Piperidyl) amino-N- (2,2,6,6-tetramethyl-4-piperidyl) propionamide, tetrakis (2,2,6,6-tetramethyl-4-piperidyl) (1,2,3,3) 4-butanetetracarboxylate, poly [(6- (1,1,3,3-tetramethylbutyl) imino-1,3,5-triazine-2,4-diyl) ((2,2,6,6 -Tetramethyl-4-piperi Le) imino) hexamethyl ((2,2,6,6-tetramethyl-4-piperidyl) imino)], etc. can be used.
 リン系酸化防止剤としては、トリス(イソデシル)フォスファイト、トリス(トリデシル)フォスファイト、フェニルイソオクチルフォスファイト、フェニルイソデシルフォスファイト、フェニルジ(トリデシル)フォスファイト、ジフェニルイソオクチルフォスファイト、ジフェニルイソデシルフォスファイト、ジフェニルトリデシルフォスファイト、トリフェニルフォスファイト、トリス(ノニルフェニル)フォスファイト、4,4’イソプロピリデンジフェノールアルキルフォスファイト、トリスノニルフェニルフォスファイト、トリスジノニルフェニルフォスファイト、その他フォスファイト構造を有するオリゴマータイプ及びポリマータイプの化合物等も使用することができる。 Phosphorous antioxidants include tris (isodecyl) phosphite, tris (tridecyl) phosphite, phenyl isooctyl phosphite, phenyl isodecyl phosphite, phenyl di (tridecyl) phosphite, diphenyl isooctyl phosphite, diphenyl isodecyl Phosphite, diphenyltridecyl phosphite, triphenyl phosphite, tris (nonylphenyl) phosphite, 4,4 'isopropylidenediphenol alkyl phosphite, trisnonylphenyl phosphite, trisdinonylphenyl phosphite, other phosphites Oligomer type and polymer type compounds having a structure can also be used.
 イオウ系酸化防止剤としては、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、2,4-ビス[(ラウリルチオ)メチル]-o-クレゾール等が挙げられる。その他チオエーテル構造を有するオリゴマータイプやポリマータイプの化合物等も使用することができる。 Examples of sulfur-based antioxidants include 2,2-thio-diethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,4-bis [(octylthio) methyl]- o-cresol, 2,4-bis [(laurylthio) methyl] -o-cresol, and the like. In addition, oligomer type or polymer type compounds having a thioether structure can also be used.
 樹脂組成物(Q)の重量平均分子量は、0.2万以上が好ましく、0.5万以上がより好ましく、3万以上がさらに好ましく、5万以上がさらにより好ましく、7万以上が特に好ましく、また100万以下が好ましく、50万以下がより好ましく、30万以下がさらに好ましく、20万以下がさらにより好ましい。樹脂組成物(Q)の重量平均分子量をこのような範囲とすることで、樹脂組成物(Q)の成形加工性が向上するとともに、得られる成形品の強度を高めやすくなる。樹脂組成物(Q)の重量平均分子量は、樹脂組成物(Q)をゲルパーミエーションクロマトグラフィーにより測定したポリスチレン換算の値を意味し、樹脂組成物(Q)が共重合体(P)と(メタ)アクリル系重合体を含有する場合は、樹脂組成物(Q)の重量平均分子量は、これら複数種類の重合体の全体の重量平均分子量となる。 The weight average molecular weight of the resin composition (Q) is preferably 20,000 or more, more preferably 50,000 or more, further preferably 30,000 or more, still more preferably 50,000 or more, and particularly preferably 70,000 or more. Moreover, 1 million or less is preferable, 500,000 or less is more preferable, 300,000 or less is more preferable, 200,000 or less is still more preferable. By setting the weight average molecular weight of the resin composition (Q) in such a range, the moldability of the resin composition (Q) is improved and the strength of the obtained molded product is easily increased. The weight average molecular weight of the resin composition (Q) means a value in terms of polystyrene obtained by measuring the resin composition (Q) by gel permeation chromatography, and the resin composition (Q) is composed of the copolymer (P) and ( When it contains a (meth) acrylic polymer, the weight average molecular weight of the resin composition (Q) is the total weight average molecular weight of these plural types of polymers.
 樹脂組成物(Q)の重量平均分子量は、共重合体(P)のポリマー鎖(A)の重量平均分子量の1.1倍以上が好ましく、1.2倍以上がより好ましく、1.3倍以上がさらに好ましく、また20倍以下が好ましく、12倍以下がより好ましく、10倍以下がさらに好ましく、7倍以下がさらにより好ましく、5倍以下が特に好ましい。これにより、樹脂組成物(Q)に、透明性、機械的強度、耐熱性の各特性をバランス良く付与することが容易になる。 The weight average molecular weight of the resin composition (Q) is preferably 1.1 times or more, more preferably 1.2 times or more, and 1.3 times the weight average molecular weight of the polymer chain (A) of the copolymer (P). More preferably, 20 times or less is preferable, 12 times or less is more preferable, 10 times or less is more preferable, 7 times or less is further more preferable, and 5 times or less is particularly preferable. Thereby, it becomes easy to give each characteristic of transparency, mechanical strength, and heat resistance to the resin composition (Q) in a balanced manner.
 樹脂組成物(Q)の屈折率は共重合体(P)のポリマー鎖(A)の屈折率と近い値であることが好ましく、これにより樹脂組成物(Q)の透明性を確保しやすくなる。具体的には、樹脂組成物(Q)の屈折率と共重合体(P)のポリマー鎖(A)の屈折率との差が0.1未満であることが好ましく、0.05以下がより好ましく、0.02以下がさらに好ましい。同様の観点から、樹脂組成物(Q)の屈折率は共重合体(P)の屈折率と近い値であることが好ましく、具体的には、樹脂組成物(Q)の屈折率と共重合体(P)の屈折率との差が0.1未満であることが好ましく、0.05以下がより好ましく、0.02以下がさらに好ましい。 The refractive index of the resin composition (Q) is preferably close to the refractive index of the polymer chain (A) of the copolymer (P), which makes it easy to ensure the transparency of the resin composition (Q). . Specifically, the difference between the refractive index of the resin composition (Q) and the refractive index of the polymer chain (A) of the copolymer (P) is preferably less than 0.1, more preferably 0.05 or less. Preferably, 0.02 or less is more preferable. From the same viewpoint, the refractive index of the resin composition (Q) is preferably a value close to the refractive index of the copolymer (P). Specifically, the refractive index and the refractive index of the resin composition (Q) The difference from the refractive index of the combined (P) is preferably less than 0.1, more preferably 0.05 or less, and further preferably 0.02 or less.
 樹脂組成物(Q)は、厚さ160μmの未延伸フィルムとしたときの全光線透過率が70%以上であることが好ましく、80%以上がより好ましく、90%以上がさらに好ましい。また、ヘイズが5.0%以下であることが好ましく、3.0%以下がより好ましく、1.0%以下がさらに好ましい。内部ヘイズについては、未延伸フィルムとしたときの厚さ100μmあたりの内部ヘイズが5.0%以下であることが好ましく、3.0%以下であることがより好ましく、2.0%以下がさらに好ましく、1.0%以下がさらにより好ましい。 The resin composition (Q) preferably has a total light transmittance of 70% or more, more preferably 80% or more, and still more preferably 90% or more when an unstretched film having a thickness of 160 μm is formed. Moreover, it is preferable that haze is 5.0% or less, 3.0% or less is more preferable, and 1.0% or less is further more preferable. Regarding the internal haze, the internal haze per 100 μm thickness when it is an unstretched film is preferably 5.0% or less, more preferably 3.0% or less, and further 2.0% or less. Preferably, 1.0% or less is even more preferable.
 樹脂組成物(Q)は、厚さ160μmの未延伸フィルムとしたときに海島構造を示し、当該構造中の島サイズが500nm以下であることが好ましく、400nm以下がより好ましく、350nm以下がさらに好ましい。これにより、樹脂組成物(Q)からフィルムを形成した際に、透明性の高いフィルムを得やすくなる。海島構造の島サイズの下限値は特に限定されず、例えば10nm以上であってもよく、50nm以上であってもよい。樹脂組成物(Q)から形成した未延伸フィルムの海島構造の観察は走査電子顕微鏡(STEM)により行い、具体的な測定方法は実施例に記載の方法が参照される。 The resin composition (Q) exhibits a sea-island structure when formed into an unstretched film having a thickness of 160 μm, and the island size in the structure is preferably 500 nm or less, more preferably 400 nm or less, and even more preferably 350 nm or less. Thereby, when a film is formed from the resin composition (Q), it becomes easy to obtain a highly transparent film. The lower limit of the island size of the sea-island structure is not particularly limited, and may be, for example, 10 nm or more, or 50 nm or more. Observation of the sea-island structure of the unstretched film formed from the resin composition (Q) is performed by a scanning electron microscope (STEM), and the specific measurement method is referred to the method described in the examples.
 樹脂組成物(Q)は、100℃以上および100℃未満にそれぞれガラス転移温度を有することが好ましい。なお、100℃以上のガラス転移温度を「高温側のガラス転移温度」と称し、100℃未満のガラス転移温度を「低温側のガラス転移温度」と称する。樹脂組成物(Q)は、高温側のガラス転移温度を複数有するものであってもよく、低温側のガラス転移温度を複数有するものであってもよい。樹脂組成物(Q)が高温側のガラス転移温度を有することにより、樹脂組成物(Q)の耐熱性が高まり、また樹脂組成物(Q)をフィルムなどに成形する際に、高温下でも軟化せず、成形加工性を高めることができる。樹脂組成物(Q)が低温側のガラス転移温度を有することにより、樹脂組成物(Q)の機械的強度や耐衝撃性を高めることができる。樹脂組成物(Q)の高温側のガラス転移温度は、好ましくは113℃以上であり、より好ましくは116℃以上であり、さらに好ましくは120℃以上であり、また樹脂組成物(Q)の加工性を高める点から、300℃未満が好ましく、200℃未満がより好ましく、180℃未満がさらに好ましい。樹脂組成物(Q)の低温側のガラス転移温度は、-100℃以上が好ましく、-90℃以上がより好ましく、-80℃以上がさらに好ましく、また50℃未満が好ましく、30℃未満がより好ましく、10℃未満がさらに好ましい。 The resin composition (Q) preferably has a glass transition temperature of 100 ° C. or more and less than 100 ° C., respectively. A glass transition temperature of 100 ° C. or higher is referred to as “high temperature side glass transition temperature”, and a glass transition temperature of less than 100 ° C. is referred to as “low temperature side glass transition temperature”. The resin composition (Q) may have a plurality of glass transition temperatures on the high temperature side, or may have a plurality of glass transition temperatures on the low temperature side. Since the resin composition (Q) has a glass transition temperature on the high temperature side, the heat resistance of the resin composition (Q) is increased, and when the resin composition (Q) is molded into a film or the like, it is softened even at a high temperature. Without increasing the molding processability. When the resin composition (Q) has a glass transition temperature on the low temperature side, the mechanical strength and impact resistance of the resin composition (Q) can be increased. The glass transition temperature on the high temperature side of the resin composition (Q) is preferably 113 ° C. or higher, more preferably 116 ° C. or higher, further preferably 120 ° C. or higher, and the processing of the resin composition (Q). From the viewpoint of enhancing the properties, it is preferably less than 300 ° C, more preferably less than 200 ° C, and even more preferably less than 180 ° C. The glass transition temperature on the low temperature side of the resin composition (Q) is preferably −100 ° C. or higher, more preferably −90 ° C. or higher, further preferably −80 ° C. or higher, preferably lower than 50 ° C., more preferably lower than 30 ° C. Preferably, it is less than 10 ° C.
 樹脂組成物(Q)はクロロホルムに対する不溶分が10質量%以下であることが好ましく、8質量%以下がより好ましく、5質量%以下がさらに好ましい。樹脂組成物(Q)に含まれる共重合体(P)は、架橋構造を実質的に含まないか、含んでいても少量に抑えることができるため、樹脂組成物(Q)のクロロホルムに対する不溶分の割合を少ないものとすることができる。そのため樹脂組成物(Q)は、含まれる異物の量が少ないものとなり、例えば樹脂組成物(Q)から光学フィルムを形成した際に、表面凹凸や欠点が少なく、透明性の高いフィルムを容易に得ることができる。また、樹脂組成物から異物を取り除く際、異物除去用フィルタにかかる負荷が低減し、製造効率が向上する。 The resin composition (Q) preferably has an insoluble content in chloroform of 10% by mass or less, more preferably 8% by mass or less, and still more preferably 5% by mass or less. The copolymer (P) contained in the resin composition (Q) does not substantially contain a crosslinked structure or can be suppressed to a small amount even if it contains it, so that the insoluble content of the resin composition (Q) in chloroform The ratio of can be reduced. For this reason, the resin composition (Q) has a small amount of foreign matter contained therein. For example, when an optical film is formed from the resin composition (Q), there is little surface irregularities and defects, and a highly transparent film can be easily obtained. Obtainable. Moreover, when removing a foreign material from the resin composition, the load applied to the filter for removing a foreign material is reduced, and the production efficiency is improved.
 これに対して、例えば、特開2008-242421号公報に開示されるコア-シェル構造を有する弾性有機微粒子などでは、当該有機微粒子が架橋構造を有するグラフト共重合体であるため、クロロホルムに不溶なものとなる。そのため、このような架橋構造を有する共重合体を高い品質が求められる光学フィルム用原料に使用すると、フィルムの異物や欠点の原因となったり、フィルムを延伸した際に表面凹凸となり、ヘイズ等の外観不良が発生するため、好ましくない。また有機微粒子は、フィルム成形に先立って樹脂組成物から異物を取り除く際に、異物除去用フィルタに高い負荷を与え、生産性の低下を招くおそれがある。 On the other hand, for example, in the elastic organic fine particles having a core-shell structure disclosed in Japanese Patent Application Laid-Open No. 2008-242421, the organic fine particles are graft copolymers having a cross-linked structure, so that they are insoluble in chloroform. It will be a thing. Therefore, if a copolymer having such a crosslinked structure is used as a raw material for an optical film that requires high quality, it may cause foreign matters or defects of the film, or may become surface irregularities when the film is stretched, such as haze. This is not preferable because an appearance defect occurs. Further, the organic fine particles give a high load to the filter for removing foreign substances when removing foreign substances from the resin composition prior to film forming, and there is a concern that productivity may be reduced.
 樹脂組成物のクロロホルムに対する不溶分は、実施例に記載の方法により求める。具体的には、樹脂組成物1gをクロロホルム20gに加え、これを孔径0.5μmのテフロン(登録商標)製メンブレンフィルタで濾過し、メンブレンフィルタに捕集された不溶分の量を測定することにより、樹脂組成物のクロロホルムに対する不溶分の割合を求める。 The insoluble content of the resin composition in chloroform is determined by the method described in the examples. Specifically, 1 g of the resin composition was added to 20 g of chloroform, and this was filtered through a Teflon (registered trademark) membrane filter having a pore diameter of 0.5 μm, and the amount of insoluble matter collected in the membrane filter was measured. The ratio of the insoluble content of the resin composition to chloroform is determined.
 樹脂組成物(Q)は、290℃で20分間加熱したときに発生する発泡量が20個/g以下であることが好ましく、10個/g以下がより好ましく、5個/g以下がさらに好ましい。これにより、樹脂組成物(Q)を加熱成形した際の成形体(例えばフィルム等)の外観が良好となる。発泡量の測定は、JIS K 7210に規定されるメルトインデクサーを用いて行い、乾燥処理した樹脂組成物をメルトインデクサーのシリンダー内に充填し、290℃で20分間保持した後ストランド状に押出し、得られたストランドの上部標線と下部標線との間に存在する泡の発生個数を計数し、樹脂組成物1g当たりの泡の個数で表すことにより行う。 In the resin composition (Q), the foaming amount generated when heated at 290 ° C. for 20 minutes is preferably 20 pieces / g or less, more preferably 10 pieces / g or less, and further preferably 5 pieces / g or less. . Thereby, the external appearance of the molded object (for example, film etc.) at the time of heat-molding resin composition (Q) becomes favorable. The amount of foaming is measured using a melt indexer specified in JIS K 7210. The dried resin composition is filled in a melt indexer cylinder, held at 290 ° C. for 20 minutes, and then extruded into a strand. Then, the number of bubbles generated between the upper standard line and the lower standard line of the obtained strand is counted and expressed by the number of bubbles per 1 g of the resin composition.
 樹脂組成物(Q)の、JIS K 7199(1999)に基づき測定した270℃、100(/秒)における溶融粘度は、50Pa・s以上が好ましく、100Pa・s以上がより好ましく、また5000Pa・s以下が好ましく、1000Pa・s以下がより好ましい。樹脂組成物(Q)の溶融粘度がこのような範囲であれば、樹脂組成物(Q)の成形加工性が向上するとともに、成形体にフィッシュアイやダイラインなどが発生しにくくなり、成形体の外観が良好となる。 The melt viscosity of the resin composition (Q) at 270 ° C. and 100 (/ second) measured based on JIS K 7199 (1999) is preferably 50 Pa · s or more, more preferably 100 Pa · s or more, and 5000 Pa · s. The following is preferable, and 1000 Pa · s or less is more preferable. If the melt viscosity of the resin composition (Q) is in such a range, the moldability of the resin composition (Q) is improved, and fish eyes and die lines are less likely to occur in the molded body. Appearance is improved.
 樹脂組成物(Q)は、厚さ160μmの未延伸フィルムとしたときの破壊エネルギーが20mJ以上であることが好ましく、24mJ以上がより好ましく、28mJ以上がさらに好ましい。これにより、樹脂組成物(Q)からフィルムを形成した際に、機械的強度の高いフィルムを得やすくなる。破壊エネルギーは実施例に記載の方法により求める。 The resin composition (Q) preferably has a breaking energy of 20 mJ or more, more preferably 24 mJ or more, and even more preferably 28 mJ or more when it is an unstretched film having a thickness of 160 μm. Thereby, when a film is formed from the resin composition (Q), it becomes easy to obtain a film having high mechanical strength. The breaking energy is determined by the method described in the examples.
 樹脂組成物(Q)は、厚さ40μmの延伸フィルムとしたときのトラウザー引裂き強度が15mJ以上であることが好ましく、18mJ以上がより好ましく、22mJ以上がさらに好ましい。これにより、樹脂組成物(Q)からフィルムを形成した際に、引裂き強度の高いフィルムを得やすくなる。トラウザー引裂き強度は実施例に記載の方法により求める。 The resin composition (Q) preferably has a trouser tear strength of 15 mJ or more, more preferably 18 mJ or more, and even more preferably 22 mJ or more when a stretched film having a thickness of 40 μm is used. Thereby, when a film is formed from the resin composition (Q), it becomes easy to obtain a film having high tear strength. Trouser tear strength is determined by the method described in the examples.
 樹脂組成物(Q)は、厚さ40μmの延伸フィルムとしたときのMIT耐折度試験による耐折度試験回数が1000回以上となることが好ましく、1200回以上がより好ましく、1350回以上がさらに好ましい。これにより、樹脂組成物(Q)からフィルムを形成した際に、破断しにくい高いフィルムを得やすくなる。MIT耐折度試験は実施例に記載の方法により行う。 In the resin composition (Q), the number of folding resistance tests by the MIT folding resistance test when it is a stretched film having a thickness of 40 μm is preferably 1000 times or more, more preferably 1200 times or more, and more than 1350 times. Further preferred. Thereby, when forming a film from resin composition (Q), it becomes easy to obtain the high film which is hard to fracture | rupture. The MIT folding resistance test is performed by the method described in the examples.
 樹脂組成物(Q)の製造方法は特に限定されないが、共重合体(P)を重合生成する際に、(メタ)アクリル系重合体も一緒に重合生成することが簡便である。上記に説明した共重合体(P)の製造方法では、共重合体(P)とともに、共重合体(P)のポリマー鎖(B)に対応した(メタ)アクリル系重合体も同時に生成するが、この際、共重合体(P)と(メタ)アクリル系重合体を分離しないことにより、共重合体(P)と(メタ)アクリル系重合体を含む樹脂組成物(Q)を得ることができる。この場合の樹脂組成物(Q)の製造方法は、共重合体(P)の製造方法で説明した重合工程、または重合工程と環構造形成工程により、共重合体(P)と、主鎖に環構造を有する(メタ)アクリル系重合体が得られるものとなる。 The production method of the resin composition (Q) is not particularly limited, but when the copolymer (P) is polymerized, it is easy to polymerize the (meth) acrylic polymer together. In the production method of the copolymer (P) described above, the (meth) acrylic polymer corresponding to the polymer chain (B) of the copolymer (P) is simultaneously generated together with the copolymer (P). In this case, by not separating the copolymer (P) and the (meth) acrylic polymer, a resin composition (Q) containing the copolymer (P) and the (meth) acrylic polymer can be obtained. it can. In this case, the production method of the resin composition (Q) includes the polymerization step described in the production method of the copolymer (P), or the copolymer (P) and the main chain by the polymerization step and the ring structure formation step. A (meth) acrylic polymer having a ring structure is obtained.
 樹脂組成物(Q)の製造方法は、上記の方法に限定されず、共重合体(P)を単離して、別の重合体と混合して樹脂組成物(Q)としてもよい。また、上記の共重合体(P)の製造方法において、共重合体(P1)へのグラフト共重合反応終了後に、さらに別の単量体を追加して重合反応を行い樹脂組成物(Q)を得てもよい。あるいは、上記の共重合体(P)の製造方法で得られた共重合体(P)と(メタ)アクリル系重合体の混合物に対して、さらに別の重合体(例えば、別の(メタ)アクリル系重合体)を加えて樹脂組成物(Q)としてもよい。他の重合体を加えて混合する場合は、溶融混練してもよく、この場合、例えばニーダーや多軸押出機などの一般的な装置を使用することができる。 The method for producing the resin composition (Q) is not limited to the above method, and the copolymer (P) may be isolated and mixed with another polymer to obtain the resin composition (Q). Further, in the above method for producing the copolymer (P), after completion of the graft copolymerization reaction to the copolymer (P1), another monomer is added to conduct a polymerization reaction to obtain a resin composition (Q). You may get Alternatively, with respect to the mixture of the copolymer (P) and the (meth) acrylic polymer obtained by the method for producing the copolymer (P), another polymer (for example, another (meth) (Acrylic polymer) may be added to obtain the resin composition (Q). When other polymers are added and mixed, they may be melt-kneaded. In this case, for example, a general apparatus such as a kneader or a multi-screw extruder can be used.
 樹脂組成物(Q)の製造方法では、重合工程または環構造形成工程に続いて上記に説明した濾過工程を行うこともできる。濾過工程を行うことにより、樹脂組成物(Q)中の異物量を低減することができ、樹脂組成物(Q)を、高度な品質が求められる光学フィルム等への用途に好適に適用することができる。濾過工程の詳細は、上記の共重合体(P)の製造方法における濾過工程の説明が参照される。 In the method for producing the resin composition (Q), the filtration step described above can be performed subsequent to the polymerization step or the ring structure formation step. By performing the filtration step, the amount of foreign matter in the resin composition (Q) can be reduced, and the resin composition (Q) is suitably applied to applications such as optical films that require high quality. Can do. For details of the filtration step, refer to the description of the filtration step in the production method of the copolymer (P).
 〔3.共重合体および樹脂組成物の成形加工〕
 共重合体(P)および樹脂組成物(Q)は、液状にして用いることもでき、硬化物として用いることもできる。後者の場合、共重合体(P)および樹脂組成物(Q)を加熱溶融して、任意の形状に成形することにより、成形体とすることができる。成形体の形状は用途に応じて適宜設定すればよく、例えば、板状、シート状、粒状、粉状、塊状、粒子凝集体状、球状、楕円球状、レンズ状、立方体状、柱状、棒状、錐形状、筒状、針状、繊維状、中空糸状、多孔質状等が挙げられる。共重合体(P)および樹脂組成物(Q)の成形体は、射出成形、押出成形、真空成形、圧縮成形、ブロー成形等に用いることができ、その場合の形状としては、例えば、粒子径が1μm~1000μmの粉体、長径が1mm~10mm程度の円柱状または球状等のペレット、またはそれらの混合物であることが好ましい。
[3. Molding of copolymer and resin composition]
The copolymer (P) and the resin composition (Q) can be used in a liquid state, or can be used as a cured product. In the latter case, the copolymer (P) and the resin composition (Q) can be heated and melted and molded into an arbitrary shape to form a molded body. What is necessary is just to set suitably the shape of a forming object according to a use, for example, plate shape, sheet shape, granular, powdery, lump shape, particle aggregate shape, spherical shape, elliptical spherical shape, lens shape, cubic shape, columnar shape, rod shape, Examples include a cone shape, a cylindrical shape, a needle shape, a fiber shape, a hollow fiber shape, and a porous shape. The molded body of the copolymer (P) and the resin composition (Q) can be used for injection molding, extrusion molding, vacuum molding, compression molding, blow molding and the like. Is preferably a powder of 1 μm to 1000 μm, a cylindrical or spherical pellet having a major axis of about 1 mm to 10 mm, or a mixture thereof.
 共重合体(P)および樹脂組成物(Q)はフィルムに成形することもできる。フィルム成形の方法としては、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法等、公知の方法を使用することができる。これらの中でも、溶液キャスト法、溶融押出法が好ましい。 The copolymer (P) and the resin composition (Q) can be formed into a film. As a film forming method, a known method such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, a compression molding method, or the like can be used. Among these, the solution cast method and the melt extrusion method are preferable.
 溶液キャスト法に用いられる溶媒としては、例えば、クロロホルム、ジクロロメタン等の塩素系脂肪族炭化水素類;トルエン、キシレン、ベンゼン等の芳香族炭化水素類;メタノール、エタノール、イソプロパノール、n-ブタノール、2-ブタノール等のアルコール類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ等のセロソルブ類;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類;アセトン、シクロヘキサノン等のケトン類:酢酸エチル、酢酸プロピル、酢酸ブチル等のエステル類;ジメチルホルムアミド;ジメチルスルフォキシド等が挙げられる。これらは1種のみ用いてもよいし、2種以上を併用してもよい。 Examples of the solvent used in the solution casting method include chlorinated aliphatic hydrocarbons such as chloroform and dichloromethane; aromatic hydrocarbons such as toluene, xylene and benzene; methanol, ethanol, isopropanol, n-butanol, 2- Alcohols such as butanol; cellosolves such as methyl cellosolve, ethyl cellosolve and butyl cellosolve; ethers such as diethyl ether, dioxane and tetrahydrofuran; ketones such as acetone and cyclohexanone: esters such as ethyl acetate, propyl acetate and butyl acetate; Examples include dimethylformamide; dimethyl sulfoxide and the like. These may be used alone or in combination of two or more.
 溶液キャスト法を行うための装置としては、例えば、ドラム式キャスティングマシン、バンド式キャスティングマシン、スピンコーター等が挙げられる。 Examples of the apparatus for performing the solution casting method include a drum-type casting machine, a band-type casting machine, and a spin coater.
 溶融押出法としては、Tダイ法、インフレーション法等が挙げられる。フィルムを溶融押出成形する際の温度(成形温度)は、150℃以上が好ましく、200℃以上がより好ましく、また350℃以下が好ましく、300℃以下がより好ましい。 Examples of the melt extrusion method include a T-die method and an inflation method. The temperature (molding temperature) for melt extrusion molding of the film is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, 350 ° C. or lower, and more preferably 300 ° C. or lower.
 Tダイ法では、先端部にTダイを取り付けた押出機から押し出したフィルムをロール上に巻き取ることによって、ロールに巻回したフィルムが得られる。このとき、巻き取りの温度および速度を制御することにより、フィルムの押し出し方向に延伸(一軸延伸)を加えることができる。 In the T-die method, a film wound around a roll is obtained by winding the film extruded from an extruder having a T-die attached to the tip onto a roll. At this time, stretching (uniaxial stretching) can be applied in the extrusion direction of the film by controlling the temperature and speed of winding.
 溶融押出成形では、押出機を用いることが好ましい。押出機は、シリンダーと、シリンダー内に設けられたスクリューとを有し、加熱手段を備えていることが好ましい。押出機は、スクリューの本数に応じて、単軸押出機、二軸押出機、多軸押出機等の種類が存在し、いずれの押出機を使用してもよい。押出機のL/D値は(Lは押出機のシリンダーの長さ、Dはシリンダーの内径)、樹脂組成物を十分に可塑化して良好な混練状態を得るために、10以上が好ましく、15以上がより好ましく、20以上がさらに好ましく、また100以下が好ましく、80以下がより好ましく、60以下がさらに好ましい。L/D値が10未満の場合、樹脂組成物を十分に可塑化できず、良好な混練状態が得られないことがある。L/D値が100を超える場合、樹脂組成物に対して過度に剪断発熱が加わることによって、樹脂組成物に含まれる成分が熱分解しやすくなる。 In melt extrusion molding, it is preferable to use an extruder. The extruder preferably has a cylinder and a screw provided in the cylinder, and is provided with heating means. Depending on the number of screws, there are various types of extruders such as a single screw extruder, a twin screw extruder, and a multi-screw extruder, and any extruder may be used. The L / D value of the extruder (L is the length of the cylinder of the extruder, D is the inner diameter of the cylinder) is preferably 10 or more in order to sufficiently plasticize the resin composition and obtain a good kneaded state. The above is more preferable, 20 or more is more preferable, 100 or less is preferable, 80 or less is more preferable, and 60 or less is more preferable. When the L / D value is less than 10, the resin composition cannot be sufficiently plasticized and a good kneaded state may not be obtained. When the L / D value exceeds 100, excessive heat generation is applied to the resin composition, so that the components contained in the resin composition are easily decomposed.
 押出機のシリンダーの設定温度(加熱温度)は、200℃以上が好ましく、250℃以上がより好ましく、また350℃以下が好ましく、320℃以下がより好ましい。設定温度が200℃未満の場合、樹脂組成物の溶融粘度が過度に高くなって、フィルムの生産性が低下するおそれがある。設定温度が350℃を超える場合、樹脂組成物に含まれる成分が熱分解しやすくなる。 The set temperature (heating temperature) of the cylinder of the extruder is preferably 200 ° C. or higher, more preferably 250 ° C. or higher, 350 ° C. or lower, more preferably 320 ° C. or lower. When setting temperature is less than 200 degreeC, there exists a possibility that the melt viscosity of a resin composition may become high too much and productivity of a film may fall. When setting temperature exceeds 350 degreeC, the component contained in a resin composition becomes easy to thermally decompose.
 押出機は、1個以上の開放ベント部を有することが好ましい。このような押出機を用いることによって、開放ベント部から分解ガスを吸引でき、得られたフィルムの残存揮発成分の量を低減することができる。開放ベント部から分解ガスを吸引するためには、例えば、開放ベント部を減圧状態にすればよく、このときの減圧度は、開放ベント部の圧力(絶対圧)にして、好ましくは1.3hPa以上、より好ましくは13.3hPa以上であり、また931hPa以下が好ましく、798hPa以下がより好ましい。開放ベント部の圧力が931hPaより高い場合、揮発成分や、樹脂組成物に含まれる重合体の分解により発生する単量体成分が、得られたフィルムに残存しやすい。一方、開放ベント部の圧力を1.3hPaより低く保つことは、工業的に困難である。 The extruder preferably has one or more open vent parts. By using such an extruder, the decomposition gas can be sucked from the open vent portion, and the amount of residual volatile components in the obtained film can be reduced. In order to suck the cracked gas from the open vent part, for example, the open vent part may be in a reduced pressure state, and the degree of pressure reduction at this time is preferably the pressure (absolute pressure) of the open vent part, preferably 1.3 hPa. As mentioned above, More preferably, it is 13.3 hPa or more, 931 hPa or less is preferable and 798 hPa or less is more preferable. When the pressure of an open vent part is higher than 931 hPa, a volatile component and the monomer component which generate | occur | produces by decomposition | disassembly of the polymer contained in a resin composition are easy to remain | survive in the obtained film. On the other hand, it is industrially difficult to keep the pressure of the open vent part lower than 1.3 hPa.
 溶融押出成形の際には、溶融状態にある共重合体(P)または樹脂組成物(Q)をポリマーフィルタを用いて濾過することが好ましく、これにより共重合体(P)や樹脂組成物(Q)中に含まれる異物を除去することができる。これにより、共重合体(P)や樹脂組成物(Q)から光学フィルムを形成する際など、最終的に得られた光学フィルムにおける光学欠点や外観上の欠点の量を低減することができる。 In the melt extrusion molding, it is preferable to filter the copolymer (P) or the resin composition (Q) in a molten state using a polymer filter, whereby the copolymer (P) or the resin composition ( Q) Foreign matter contained in the product can be removed. Thereby, when forming an optical film from a copolymer (P) or a resin composition (Q), the quantity of the optical defect in an optical film finally obtained, and the defect on an external appearance can be reduced.
 溶融押出成形の温度は、例えば200℃以上が好ましく、250℃以上がより好ましく、また350℃以下が好ましく、320℃以下がより好ましい。溶融押出成形の温度が200℃以上であれば、共重合体(P)や樹脂組成物(Q)の粘度が低下して、ポリマーフィルタにおける滞留時間を短くすることができる。溶融押出成形の温度が350℃以下であれば、例えばフィルムの連続成形時に、フィルムに穴あき、流れ模様、流れ筋といった欠点が形成されにくくなり、良好な外観のフィルムを得やすくなる。 The temperature of the melt extrusion molding is preferably, for example, 200 ° C. or higher, more preferably 250 ° C. or higher, 350 ° C. or lower, more preferably 320 ° C. or lower. If the temperature of melt extrusion molding is 200 ° C. or higher, the viscosity of the copolymer (P) or the resin composition (Q) is lowered, and the residence time in the polymer filter can be shortened. If the temperature of the melt extrusion molding is 350 ° C. or lower, for example, when the film is continuously formed, defects such as holes in the film, a flow pattern, and flow lines are hardly formed, and a film having a good appearance can be easily obtained.
 ポリマーフィルタの構成は特に限定されない。例えば、ハウジング内に多数枚のリーフディスク型フィルタを配したポリマーフィルタが、好適に使用される。リーフディスク型フィルタの濾材は、金属繊維不織布を焼結した濾材、金属粉末を焼結した濾材、金網を数枚積層した濾材、これらを組み合わせたハイブリッドタイプの濾材等、いずれタイプの濾材を用いることができる。なかでも、金属繊維不織布を焼結した濾材が好ましく用いられる。 The configuration of the polymer filter is not particularly limited. For example, a polymer filter in which a large number of leaf disk filters are arranged in a housing is preferably used. The filter medium of the leaf disk type filter should use any type of filter medium, such as a filter medium obtained by sintering a metal fiber non-woven fabric, a filter medium obtained by sintering metal powder, a filter medium obtained by laminating several metal meshes, or a hybrid type filter medium combining these. Can do. Especially, the filter medium which sintered the metal fiber nonwoven fabric is used preferably.
 ポリマーフィルタの濾過精度(孔径)は特に限定されない。濾過精度は、除去対象となる異物の大きさを勘案して、通常15μm以下、好ましくは10μm以下、より好ましくは5μm以下である。濾過精度の下限は特に限定されないが、ポリマーフィルタにおける共重合体(P)や樹脂組成物(Q)の滞留時間が長くなることにより、共重合体(P)や樹脂組成物(Q)が熱劣化したり、またフィルムの生産性が低下することを考慮すると、1μm以上が好ましい。 The filtration accuracy (pore diameter) of the polymer filter is not particularly limited. The filtration accuracy is usually 15 μm or less, preferably 10 μm or less, more preferably 5 μm or less, taking into account the size of the foreign matter to be removed. The lower limit of the filtration accuracy is not particularly limited, but the copolymer (P) and the resin composition (Q) are heated by increasing the residence time of the copolymer (P) and the resin composition (Q) in the polymer filter. In consideration of deterioration or a decrease in film productivity, 1 μm or more is preferable.
 ポリマーフィルタの形状は特に限定されない。ポリマーフィルタのタイプとしては、例えば、複数の樹脂流通口を有し、センターポール内に樹脂の流路を有する内流型、断面が複数の頂点もしくは面においてリーフディスクフィルタの内周面に接し、センターポールの外面に樹脂の流路がある外流型等が挙げられる。なかでも、樹脂の滞留箇所が少ないことから、外流型のポリマーフィルタが好ましく用いられる。 The shape of the polymer filter is not particularly limited. As a type of polymer filter, for example, it has a plurality of resin flow ports, an internal flow type having a resin flow path in the center pole, a cross section is in contact with the inner peripheral surface of the leaf disk filter at a plurality of vertices or faces, An outer flow type having a resin flow path on the outer surface of the center pole is exemplified. Especially, since there are few residence places of resin, an external flow type polymer filter is used preferably.
 ポリマーフィルタにおける共重合体(P)または樹脂組成物(Q)の滞留時間は、好ましくは20分以下であり、より好ましくは10分以下であり、さらに好ましくは5分以下である。溶融濾過における、ポリマーフィルタの入口圧および当該フィルタの出口圧は、例えば、それぞれ、3MPa以上15MPa以下および0.3MPa以上10MPaである。溶融濾過における圧力損失(ポリマーフィルタの入口圧と出口圧との圧力差)は、好ましくは1MPa以上15MPa以下である。圧力損失が1MPa以下の場合、共重合体(P)や樹脂組成物(Q)がポリマーフィルタを通過する流路に偏りが生じやすくなる。流路の偏りは、得られたフィルムの品質が低下する原因となる。圧力損失が15MPaを超える場合、ポリマーフィルタが破損しやすくなる。 The residence time of the copolymer (P) or the resin composition (Q) in the polymer filter is preferably 20 minutes or less, more preferably 10 minutes or less, and even more preferably 5 minutes or less. In the melt filtration, the inlet pressure of the polymer filter and the outlet pressure of the filter are, for example, 3 MPa to 15 MPa and 0.3 MPa to 10 MPa, respectively. The pressure loss in melt filtration (pressure difference between the inlet pressure and the outlet pressure of the polymer filter) is preferably 1 MPa or more and 15 MPa or less. When the pressure loss is 1 MPa or less, the flow path through which the copolymer (P) and the resin composition (Q) pass through the polymer filter is likely to occur. The unevenness of the flow path causes the quality of the obtained film to deteriorate. When the pressure loss exceeds 15 MPa, the polymer filter tends to be damaged.
 共重合体(P)または樹脂組成物(Q)を溶融濾過する際には、押出機とポリマーフィルタとの間にギアポンプを設置することにより、ポリマーフィルタ内における圧力を安定化することが好ましい。ポリマーフィルタによる溶融濾過は、溶融押出成形時以外にも、任意のタイミングで実施しうる。 When melt-filtering the copolymer (P) or the resin composition (Q), it is preferable to stabilize the pressure in the polymer filter by installing a gear pump between the extruder and the polymer filter. Melt filtration using a polymer filter can be performed at any timing other than during melt extrusion molding.
 溶融押出法によりフィルムを成形する場合、延伸することで延伸フィルムとしてもよい。延伸することで、フィルムの機械的強度をさらに向上させることができる。延伸フィルムを得るための延伸方法としては、従来公知の延伸方法が適用できる。例えば、自由幅一軸延伸、定幅一軸延伸等の一軸延伸;逐次二軸延伸、同時二軸延伸等の二軸延伸;フィルムの延伸時にその片面または両面に収縮性フィルムを接着して積層体を形成し、その積層体を加熱延伸処理してフィルムに延伸方向と直交する方向の収縮力を付与することにより、延伸方向と厚さ方向とにそれぞれ配向した分子群が混在する複屈折性フィルムを得る延伸等が挙げられる。フィルムの耐折性等の機械的強度が向上する観点からは、二軸延伸が好ましく用いられる。さらに、フィルム面内の任意の直交する二方向に対する耐折性等の機械的強度が向上するという観点から、同時二軸延伸が好ましく用いられる。面内の任意の直交する二方向としては、例えば、フィルム面内の遅相軸と平行方向およびフィルム面内の遅相軸と垂直な方向が挙げられる。なお、延伸倍率、延伸温度、延伸速度等の延伸条件は、所望の機械的強度や位相差値に応じて適宜設定すればよく、特に限定されない。 When forming a film by the melt extrusion method, it may be a stretched film by stretching. By stretching, the mechanical strength of the film can be further improved. As a stretching method for obtaining a stretched film, a conventionally known stretching method can be applied. For example, uniaxial stretching such as free-width uniaxial stretching, constant-width uniaxial stretching; biaxial stretching such as sequential biaxial stretching and simultaneous biaxial stretching; A birefringent film in which molecular groups oriented in the stretching direction and the thickness direction are mixed by forming and heat-stretching the laminate and applying a shrinkage force in a direction perpendicular to the stretching direction to the film. Stretching to obtain. From the viewpoint of improving mechanical strength such as folding resistance of the film, biaxial stretching is preferably used. Furthermore, simultaneous biaxial stretching is preferably used from the viewpoint of improving mechanical strength such as folding resistance in two orthogonal directions in the film plane. Examples of the two orthogonal directions in the plane include a direction parallel to the slow axis in the film plane and a direction perpendicular to the slow axis in the film plane. The stretching conditions such as the stretching ratio, the stretching temperature, and the stretching speed may be appropriately set according to the desired mechanical strength and retardation value, and are not particularly limited.
 延伸装置としては、例えば、ロール延伸機、テンター型延伸機、小型の実験用延伸装置として引張試験機、一軸延伸機、逐次二軸延伸機、同時二軸延伸機等が挙げられ、これらいずれの装置を用いることができる。 Examples of the stretching apparatus include a roll stretching machine, a tenter-type stretching machine, and a small experimental stretching apparatus such as a tensile tester, a uniaxial stretching machine, a sequential biaxial stretching machine, and a simultaneous biaxial stretching machine. An apparatus can be used.
 延伸温度としては、共重合体(P)または樹脂組成物(Q)の最も高いガラス転移温度近辺で行うことが好ましい。具体的には、最も高いガラス転移温度-30℃~最も高いガラス転移温度+50℃の範囲内で行うことが好ましく、より好ましくは最も高いガラス転移温度-20℃~最も高いガラス転移温度+45℃の範囲内、さらに好ましくは最も高いガラス転移温度-10℃~最も高いガラス転移温度+40℃の範囲内である。最も高いガラス転移温度-30℃よりも低いと、十分な延伸倍率が得られない場合がある。最も高いガラス転移温度+50℃よりも高いと、樹脂の流動(フロー)が起こり安定な延伸が行いにくくなる。 The stretching temperature is preferably around the highest glass transition temperature of the copolymer (P) or the resin composition (Q). Specifically, it is preferably performed within the range of the highest glass transition temperature−30 ° C. to the highest glass transition temperature + 50 ° C., more preferably the highest glass transition temperature−20 ° C. to the highest glass transition temperature + 45 ° C. Within the range, more preferably within the range of the highest glass transition temperature −10 ° C. to the highest glass transition temperature + 40 ° C. If the glass transition temperature is lower than −30 ° C., a sufficient draw ratio may not be obtained. If it is higher than the highest glass transition temperature + 50 ° C., resin flow occurs and it becomes difficult to perform stable stretching.
 面積比で定義した延伸倍率は、好ましくは1.1~30倍の範囲内、より好ましくは1.2~20倍の範囲内、さらに好ましくは1.3~10倍の範囲内である。ある方向に延伸する場合、その一方向に対する延伸倍率は、好ましくは1.05~10倍の範囲内、より好ましくは1.1~7倍の範囲内、さらに好ましくは1.2~5倍の範囲内である。延伸倍率をこのような範囲内に設定することで、延伸に伴うフィルムの機械的強度の向上等の効果が好適に得られやすくなる。 The draw ratio defined by the area ratio is preferably in the range of 1.1 to 30 times, more preferably in the range of 1.2 to 20 times, and still more preferably in the range of 1.3 to 10 times. In the case of stretching in a certain direction, the stretching ratio in one direction is preferably within a range of 1.05 to 10 times, more preferably within a range of 1.1 to 7 times, and even more preferably 1.2 to 5 times. Within range. By setting the draw ratio within such a range, effects such as improvement of the mechanical strength of the film accompanying drawing can be suitably obtained.
 延伸速度(一方向)としては、好ましくは10~20,000%/分の範囲内、より好ましくは100~10,000%/分の範囲内である。10%/分よりも遅いと、十分な延伸倍率を得るために時間がかかり、製造コストが高くなる傾向となる。20,000%/分よりも速いと、延伸フィルムの破断等が起こるおそれがある。 The stretching speed (one direction) is preferably in the range of 10 to 20,000% / min, more preferably in the range of 100 to 10,000% / min. When it is slower than 10% / min, it takes time to obtain a sufficient draw ratio, and the production cost tends to increase. If it is faster than 20,000% / min, the stretched film may be broken.
 延伸フィルムを光学フィルムに適用する場合は、光学フィルムの光学特性および機械的特性を安定させるために、延伸後、必要に応じて熱処理(アニーリング)を実施することが好ましい。 When applying a stretched film to an optical film, it is preferable to carry out a heat treatment (annealing) as necessary after stretching in order to stabilize the optical properties and mechanical properties of the optical film.
 〔4.光学フィルム〕
 共重合体(P)または樹脂組成物(Q)から形成されたフィルムは、透明性に優れることから、光学フィルムとして好適に用いることができる。このようにして得られた光学フィルムは、機械的強度と耐熱性にも優れたものとなる。光学フィルムは、延伸フィルムであってもよく、未延伸フィルムであってもよい。光学フィルムとしては、例えば、光学用保護フィルム(具体的には、各種の光ディスク(VD、CD、DVD、MD、LDなど)の基板の保護フィルム)、液晶ディスプレイなどの画像表示装置が備える偏光板に用いる偏光子保護フィルム、視野角補償フィルム、光拡散フィルム、反射フィルム、反射防止フィルム、防眩フィルム、輝度向上フィルム、タッチパネル用導電フィルム、位相差フィルム等が挙げられる。
[4. Optical film)
Since the film formed from the copolymer (P) or the resin composition (Q) is excellent in transparency, it can be suitably used as an optical film. The optical film thus obtained is excellent in mechanical strength and heat resistance. The optical film may be a stretched film or an unstretched film. As an optical film, for example, an optical protective film (specifically, a protective film for substrates of various optical disks (VD, CD, DVD, MD, LD, etc.)), a polarizing plate provided in an image display device such as a liquid crystal display Examples include a polarizer protective film, a viewing angle compensation film, a light diffusion film, a reflection film, an antireflection film, an antiglare film, a brightness enhancement film, a conductive film for a touch panel, and a retardation film.
 光学フィルムの厚さは、光学フィルムの強度を高める点から、5μm以上が好ましく、15μm以上がより好ましく、20μm以上がさらに好ましい。一方、光学フィルムの薄型化の観点から、光学フィルムの厚さは350μm以下が好ましく、200μm以下がより好ましく、150μm以下がさらに好ましい。光学フィルムの厚さは、例えば、ミツトヨ社製のデジマチックマイクロメーターを用いて測定することができる。 The thickness of the optical film is preferably 5 μm or more, more preferably 15 μm or more, and further preferably 20 μm or more from the viewpoint of increasing the strength of the optical film. On the other hand, from the viewpoint of reducing the thickness of the optical film, the thickness of the optical film is preferably 350 μm or less, more preferably 200 μm or less, and even more preferably 150 μm or less. The thickness of the optical film can be measured using, for example, a Digimatic micrometer manufactured by Mitutoyo Corporation.
 光学フィルムは高い光線透過率を有することが好ましく、例えば全光線透過率が70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。 The optical film preferably has a high light transmittance. For example, the total light transmittance is preferably 70% or more, more preferably 80% or more, and further preferably 90% or more.
 光学フィルムは、透明性を高める点から、ヘイズが5.0%以下であることが好ましく、3.0%以下がより好ましく、1.0%以下がさらに好ましい。また内部ヘイズが5.0%以下であることが好ましく、3.0%以下であることがより好ましく、2.0%以下がさらに好ましく、1.0%以下がさらにより好ましい。 The optical film preferably has a haze of 5.0% or less, more preferably 3.0% or less, and even more preferably 1.0% or less from the viewpoint of enhancing transparency. The internal haze is preferably 5.0% or less, more preferably 3.0% or less, still more preferably 2.0% or less, and even more preferably 1.0% or less.
 光学フィルムは、波長589nmの光に対する面内位相差Reが0nm以上1000nm以下、前記光に対する厚さ方向の位相差Rthが-1000nm以上1000nm以下であることが好ましい。より好ましくはReが0nm以上100nm以下、Rthが-100nm以上100nm以下であり、さらに好ましくはReが0nm以上50nm以下、Rthが-30nm以上30nm以下であり、特に好ましくはReが0nm以上10nm以下、Rthが-10nm以上10nm以下である。このような面内位相差Reおよび厚さ方向の位相差Rthを示す光学フィルムは、良好な視野角特性やコントラスト特性を有するものとなり、液晶ディスプレイをはじめとする画像表示装置へ好適に適用できるものとなる。なお、面内位相差Reは、Re=(nx-ny)×dで定義され、厚さ方向の位相差Rthは、Rth=d×{(nx+ny)/2-nz}で定義され、nxはフィルム面内の遅相軸方向(フィルム面内で屈折率が最大となる方向)の屈折率、nyはフィルム面内でnxと垂直方向の屈折率、nzはフィルム厚み方向の屈折率、dはフィルムの厚さ(nm)を表す。 The optical film preferably has an in-plane retardation Re of 0 nm to 1000 nm with respect to light having a wavelength of 589 nm, and a thickness direction retardation Rth of −1000 nm to 1000 nm with respect to the light. More preferably, Re is 0 nm to 100 nm, Rth is −100 nm to 100 nm, more preferably Re is 0 nm to 50 nm, Rth is −30 nm to 30 nm, particularly preferably Re is 0 nm to 10 nm, Rth is from −10 nm to 10 nm. An optical film exhibiting such an in-plane retardation Re and a thickness direction retardation Rth has good viewing angle characteristics and contrast characteristics, and can be suitably applied to image display devices such as liquid crystal displays. It becomes. The in-plane retardation Re is defined by Re = (nx−ny) × d, the thickness direction retardation Rth is defined by Rth = d × {(nx + ny) / 2−nz}, and nx is The refractive index in the slow axis direction in the film plane (the direction in which the refractive index is maximum in the film plane), ny is the refractive index in the direction perpendicular to nx in the film plane, nz is the refractive index in the film thickness direction, and d is Represents the thickness (nm) of the film.
 光学フィルムは、共重合体(P)または樹脂組成物(Q)から形成されたフィルムのみから構成されていてもよく、当該フィルムに他の光学材料が積層されて構成されていてもよい。他の光学材料が積層されることにより、光学フィルムにさらに光学特性を付与することができる。他の光学材料としては、例えば、偏光板、ポリカーボネート製延伸配向フィルム、環状ポリオレフィン製延伸配向フィルム等が挙げられる。 The optical film may be composed only of a film formed from the copolymer (P) or the resin composition (Q), or may be composed of another optical material laminated on the film. By laminating other optical materials, optical properties can be further imparted to the optical film. Examples of other optical materials include a polarizing plate, a stretched oriented film made of polycarbonate, a stretched oriented film made of cyclic polyolefin, and the like.
 光学フィルムの表面には、必要に応じて、各種機能性コーティング層が設けられてもよい。機能性コーティング層としては、例えば、帯電防止層、粘接着剤層、接着層、易接着層、防眩(ノングレア)層、光触媒層等の防汚層、反射防止層、ハードコート層、紫外線遮蔽層、熱線遮蔽層、電磁波遮蔽層、ガスバリヤー層等が挙げられる。また、光学フィルムの表面に、入射する光線の透過率または反射率を適宜調整するための光学調整層が設けられていてもよい。 Various functional coating layers may be provided on the surface of the optical film as necessary. Examples of the functional coating layer include an antistatic layer, an adhesive layer, an adhesive layer, an easy adhesion layer, an antiglare (non-glare) layer, an antifouling layer such as a photocatalyst layer, an antireflection layer, a hard coat layer, and an ultraviolet ray. Examples thereof include a shielding layer, a heat ray shielding layer, an electromagnetic wave shielding layer, and a gas barrier layer. Moreover, the optical adjustment layer for adjusting suitably the transmittance | permeability or reflectance of the incident light beam may be provided on the surface of the optical film.
 本発明の光学フィルムは、特に偏光子保護フィルムに好適に用いることができる。偏光子保護フィルムは、共重合体(P)を含む以外は特に制限はされない。光学フィルムを偏光子保護フィルムに適用する場合は、偏光子の片面または両面に光学フィルム(偏光子保護フィルム)を設けて、偏光板を構成すればよい。光学フィルム(偏光子保護フィルム)は、偏光子に直接または別の層を介して間接的に接着剤や粘着剤で固定されることが好ましい。 The optical film of the present invention can be suitably used particularly for a polarizer protective film. The polarizer protective film is not particularly limited except that it contains a copolymer (P). When applying an optical film to a polarizer protective film, an optical film (polarizer protective film) may be provided on one or both sides of the polarizer to constitute a polarizing plate. The optical film (polarizer protective film) is preferably fixed to the polarizer directly or indirectly via another layer with an adhesive or a pressure-sensitive adhesive.
 偏光子の種類は特に限定されず、例えば、ポリビニルアルコールフィルムを染色および延伸した偏光子;脱水処理したポリビニルアルコールまたは脱塩酸処理したポリ塩化ビニルなどのポリエン偏光子;多層積層体あるいはコレステリック液晶を用いた反射型偏光子;薄膜結晶フィルムからなる偏光子等が挙げられる。偏光板の構造の一例としては、ポリビニルアルコールをヨウ素または二色性染料などの二色性物質により染色した後に一軸延伸して偏光子を得て、この偏光子の片面または両面に偏光子保護フィルム(光学フィルム)を設けた構造が挙げられる。 The type of the polarizer is not particularly limited. For example, a polarizer obtained by dyeing and stretching a polyvinyl alcohol film; a polyene polarizer such as dehydrated polyvinyl alcohol or dehydrochlorinated polyvinyl chloride; a multilayer laminate or a cholesteric liquid crystal is used. Reflective polarizers; polarizers made of thin-film crystal films, and the like. As an example of the structure of the polarizing plate, polyvinyl alcohol is dyed with a dichroic substance such as iodine or a dichroic dye and then uniaxially stretched to obtain a polarizer, and a polarizer protective film is provided on one or both sides of the polarizer. The structure provided with (optical film) is mentioned.
 光学フィルムは、表面に透明導電層を形成することにより、透明導電フィルムとして用いることもできる。透明導電層を構成する材料としては、従来、当該分野で導電性材料として用いられているものがいずれも使用可能であり、具体的には、有機導電性化合物;有機導電性ポリマー;酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ酸化物(ITO)、アンチモン-スズ酸化物(ATO)、亜鉛-アルミニウム酸化物、インジウム-亜鉛酸化物(IZO)等の金属酸化物;金、銀、銅、パラジウム、アルミニウム等の金属が挙げられる。 The optical film can also be used as a transparent conductive film by forming a transparent conductive layer on the surface. As the material constituting the transparent conductive layer, any material conventionally used as a conductive material in the field can be used. Specifically, an organic conductive compound; an organic conductive polymer; indium oxide; Metal oxides such as tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-tin oxide (ATO), zinc-aluminum oxide, indium-zinc oxide (IZO); gold, silver, copper, Examples include metals such as palladium and aluminum.
 本発明の光学フィルム(例えば、偏光子保護フィルム、透明導電フィルム)は、画像表示装置に好適に用いることができる。画像表示装置としては、例えば、液晶表示装置等が挙げられる。例えば液晶表示装置の場合、画像表示部が、液晶セル、偏光板、バックライト等の部材とともに、本発明の光学フィルムを有するように構成することができる。液晶表示装置以外の画像表示装置としては、例えば、エレクトロルミネッセンス(EL)ディスプレイパネル、プラズマディスプレイパネル(PDP)、電界放出ディスプレイ(FED)、QLED、マイクロLED等が挙げられる。 The optical film of the present invention (for example, a polarizer protective film or a transparent conductive film) can be suitably used for an image display device. Examples of the image display device include a liquid crystal display device. For example, in the case of a liquid crystal display device, the image display unit can be configured to have the optical film of the present invention together with members such as a liquid crystal cell, a polarizing plate, and a backlight. Examples of the image display device other than the liquid crystal display device include an electroluminescence (EL) display panel, a plasma display panel (PDP), a field emission display (FED), a QLED, and a micro LED.
 本願は、2017年1月13日に出願された日本国特許出願第2017-004468号に基づく優先権の利益を主張するものである。2017年1月13日に出願された日本国特許出願第2017-004468号の明細書の全内容が、本願に参考のため援用される。 This application claims the benefit of priority based on Japanese Patent Application No. 2017-004468 filed on Jan. 13, 2017. The entire content of the specification of Japanese Patent Application No. 2017-004468 filed on January 13, 2017 is incorporated herein by reference.
 以下、本発明を実施例および比較例を示すにより具体的に説明するが、本発明はこれらによって限定されるものではない。なお、以下の説明では特に断らない限り、「部」は「質量部」を、「%」は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the following description, “part” represents “part by mass” and “%” represents “% by mass” unless otherwise specified.
 (1)分析方法
 (1-1)重量平均分子量(Mw)および数平均分子量(Mn)
 重量平均分子量および数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用い、ポリスチレン換算により求めた。測定に用いた装置および測定条件は以下の通りである。
-測定システム:東ソー社製、GPCシステムHLC-8220
-測定側カラム構成
  ガードカラム:東ソー社製、TSKguardcolumn SuperHZ-L
  分離カラム:東ソー社製、TSKgel SuperHZM-M 2本直列接続
-リファレンス側カラム構成
  リファレンスカラム:東ソー製、TSKgel SuperH-RC
-展開溶媒:クロロホルム(和光純薬工業製、特級)
-溶媒流量:0.6mL/分
-標準試料:TSK標準ポリスチレン(東ソー社製、PS-オリゴマーキット)
(1) Analysis method (1-1) Weight average molecular weight (Mw) and number average molecular weight (Mn)
The weight average molecular weight and the number average molecular weight were determined by gel conversion using gel permeation chromatography (GPC). The apparatus and measurement conditions used for the measurement are as follows.
-Measurement system: GPC system HLC-8220, manufactured by Tosoh Corporation
-Measurement side column configuration Guard column: TSK guard column Super HZ-L manufactured by Tosoh Corporation
Separation column: Tosoh Corporation, TSKgel SuperHZM-M 2 in series connection-Reference side column configuration Reference column: Tosoh, TSKgel SuperH-RC
-Developing solvent: chloroform (made by Wako Pure Chemical Industries, special grade)
-Solvent flow rate: 0.6 mL / min-Standard sample: TSK standard polystyrene (PS-oligomer kit, manufactured by Tosoh Corporation)
 (1-2)ガラス転移温度(Tg)
 ガラス転移温度は、JIS K 7121(2012)に準拠して求めた。具体的には、示差走査熱量計(リガク製、Thermo plus EVO DSC-8230)を用い、窒素ガス雰囲気下、約10mgのサンプルを常温から300℃まで昇温(昇温速度20℃/分)して得られたDSC曲線から、始点法により評価した。リファレンスにはα-アルミナを用いた。40℃未満のガラス転移温度は示差走査熱量計(ネッチ社製、DSC-3500)を用い、窒素ガス雰囲気下、サンプルを-100℃から60℃まで昇温(昇温速度10℃/分)して得られたDSC曲線から、始点法により評価した。リファレンスには空の容器を用いた。
(1-2) Glass transition temperature (Tg)
The glass transition temperature was calculated | required based on JISK7121 (2012). Specifically, using a differential scanning calorimeter (Rigaku, Thermo plus EVO DSC-8230), a sample of about 10 mg was heated from room temperature to 300 ° C. (temperature increase rate 20 ° C./min) in a nitrogen gas atmosphere. From the DSC curve obtained in this way, the starting point method was used for evaluation. Α-alumina was used as a reference. The glass transition temperature of less than 40 ° C was measured using a differential scanning calorimeter (DSC-3500, manufactured by Netch Co., Ltd.), and the sample was heated from -100 ° C to 60 ° C (temperature increase rate: 10 ° C / min) in a nitrogen gas atmosphere. From the DSC curve obtained in this way, the starting point method was used for evaluation. An empty container was used as a reference.
 (1-3)モノマー反応率
 モノマー反応率(転化率)は、ガスクロマトグラフィー(島津製作所社製、GC-2014)を用いて、重合反応液中の残存単量体量を測定することにより求めた。
(1-3) Monomer Reaction Rate The monomer reaction rate (conversion rate) is determined by measuring the amount of residual monomer in the polymerization reaction solution using gas chromatography (Shimadzu Corporation, GC-2014). It was.
 (1-4)ゲル化評価(濾過試験)
 フィルタ濾過試験により樹脂組成物のゲル化評価を行った。先端にフィルタ(GLサイエンス社製、クロマトディスク13N、孔径0.45μm)を取り付けたプラスチックシリンジを用いて樹脂組成物の0.1質量%クロロホルム溶液を濾過し、2mL全量濾過できれば○、途中でフィルタが詰まり、溶液が2mL濾過できなければ×と評価した。
(1-4) Gelation evaluation (filtration test)
The gelation of the resin composition was evaluated by a filter filtration test. If a 0.1 mass% chloroform solution of the resin composition is filtered using a plastic syringe with a filter attached to the tip (GL Science Co., Ltd., Chromatodisc 13N, pore size 0.45 μm), 2 mL of the total amount can be filtered. If the solution was clogged and 2 mL of the solution could not be filtered, it was evaluated as x.
 (1-5)クロロホルム不溶分
 樹脂組成物1gをクロロホルム20gに加え、これを孔径0.5μmのメンブレンフィルタ(ADVANTEC社製、T050A047A)で濾過し、濾過後のメンブレンフィルタを乾燥させた。濾過前のメンブレンフィルタの質量M0(g)、濾過後の乾燥後のメンブレンフィルタの質量M1(g)から、次式に従って樹脂組成物のクロロホルム不溶分を求めた:クロロホルム不溶分(質量%)=(M1-M0)/1×100。
(1-5) Chloroform-insoluble component 1 g of the resin composition was added to 20 g of chloroform, and this was filtered through a membrane filter (ADVANTEC, T050A047A) having a pore size of 0.5 μm, and the filtered membrane filter was dried. From the mass M 0 (g) of the membrane filter before filtration and the mass M 1 (g) of the membrane filter after filtration after filtration, the chloroform insoluble content of the resin composition was determined according to the following formula: chloroform insoluble content (mass%) ) = (M 1 −M 0 ) / 1 × 100.
 (1-6)破壊エネルギー(落球試験)
 破壊エネルギーは、次のようにして求めた。最初に、樹脂組成物を熱プレスにより製膜して、厚さ160μmのフィルム(未延伸フィルム)とした。次に、このフィルムの上に、ある高さから質量0.0054kgの球を落とす試験を10回実施し、フィルムが破壊されたときの高さ(破壊高さ)の平均値を求めた。具体的には、高さを何段階かに設定して、低い高さから順に球を落としていったときに、フィルムが割れた高さを求めて、これを10回繰り返してフィルムが割れた高さを10回分求めて、これを平均した値を破壊高さとして求めた。フィルムが破壊されたか否かは、フィルムへの落球後、当該フィルムに変形が見られたか否かを目視により確認して判断した。変形が見られた場合、フィルムが破壊されたとした。次式に従って破壊エネルギー(E)を求めた:破壊エネルギーE(mJ)=球の質量(kg)×破壊高さ平均値(mm)×9.8(m/s2)。
(1-6) Breaking energy (falling ball test)
The breaking energy was obtained as follows. First, the resin composition was formed into a film (unstretched film) having a thickness of 160 μm by hot pressing. Next, a test of dropping a ball having a mass of 0.0054 kg from a certain height was carried out 10 times on this film, and the average value of the height (breaking height) when the film was broken was obtained. Specifically, when the height was set in several steps and the balls were dropped in order from the lowest height, the height at which the film was broken was obtained, and this was repeated 10 times to break the film. The height was obtained 10 times, and the average value was obtained as the breaking height. Whether or not the film was destroyed was judged by visually confirming whether or not the film was deformed after falling on the film. If deformation was seen, the film was considered broken. The breaking energy (E) was determined according to the following formula: breaking energy E (mJ) = mass of sphere (kg) × average breaking height (mm) × 9.8 (m / s 2 ).
 (1-7)全光線透過率
 樹脂組成物を熱プレスにより製膜して、厚さ160μmのフィルム(未延伸フィルム)を得て、これをヘイズメーター(日本電色工業社製、NDH-5000)を用いて全光線透過率を測定した。
(1-7) Total Light Transmittance The resin composition was formed into a film by hot pressing to obtain a 160 μm-thick film (unstretched film), which was a haze meter (NDH-5000, manufactured by Nippon Denshoku Industries Co., Ltd.). ) To measure the total light transmittance.
 (1-8)内部ヘイズ
 樹脂組成物を250℃で熱プレス成形して、厚さ約160μmのフィルム(未延伸フィルム)を作製した。石英セルに1,2,3,4-テトラヒドロナフタリン(テトラリン)を満たし、その中に作製したフィルムを浸漬し、ヘイズメーター(日本電色工業社製、NDH-5000)を用いてヘイズを測定し、次式に従って厚さ100μmあたりの内部ヘイズを算出した:厚さ100μmあたりの内部ヘイズ(%)=得られた測定値(%)×(100μm/フィルムの厚さ(μm))。なお、測定は3枚のフィルムを用いて行い、その平均値から厚さ100μmあたりの内部ヘイズを算出した。
(1-8) Internal haze The resin composition was hot press molded at 250 ° C. to produce a film (unstretched film) having a thickness of about 160 μm. Fill a quartz cell with 1,2,3,4-tetrahydronaphthalene (tetralin), immerse the produced film in it, and measure the haze using a haze meter (NDH-5000, manufactured by Nippon Denshoku Industries Co., Ltd.). The internal haze per 100 μm thickness was calculated according to the following formula: Internal haze per 100 μm thickness (%) = measured value obtained (%) × (100 μm / film thickness (μm)). The measurement was performed using three films, and the internal haze per 100 μm thickness was calculated from the average value.
 (1-9)分散状態(STEMによる海島構造サイズの観察)
 樹脂組成物を250℃で熱プレス成形することにより作製した厚さ160μmのフィルム(未延伸フィルム)を、走査電子顕微鏡(日立ハイテクノロジーズ社製、FE-SEM S-4800)により、フィルムの相分離による分散状態(海島構造)を観察した。測定条件は、加速電圧20kV、エミッション電流5μAまたは10μA、W.D.=8mmで行った。島サイズは任意の10点の島部の最大長を測定し、その平均値として算出した。
(1-9) Dispersion state (observation of sea-island structure size by STEM)
A 160 μm-thick film (unstretched film) produced by hot press molding the resin composition at 250 ° C. was subjected to phase separation of the film using a scanning electron microscope (FE-SEM S-4800, manufactured by Hitachi High-Technologies Corporation). The dispersion state (sea-island structure) was observed. The measurement conditions were as follows: acceleration voltage 20 kV, emission current 5 μA or 10 μA, W.V. D. = 8 mm. The island size was calculated as an average value by measuring the maximum length of any 10 islands.
 (1-10)MIT耐折度試験(耐折強さ)
 樹脂組成物を250℃で熱プレス成形して、厚さ160μmの未延伸フィルムを得た。得られた未延伸フィルムを96mm×96mmの大きさに切り出し、逐次二軸延伸機(東洋精機製作所社製、X-6S)を用いて、樹脂組成物のTg+24℃の温度にて240mm/分の延伸速度で縦方向(MD方向)および横方向(TD方向)の順にそれぞれ延伸倍率が2倍となるように逐次二軸延伸を行い、冷却することにより、厚さ40μmの延伸フィルムを得た。得られた延伸フィルムを90mm×15mmの大きさに切り出して試験片とし、MIT耐折度試験機(テスター産業社製、BE-201)を用いて、温度23℃、相対湿度50%の雰囲気中で荷重200gを加え、JIS P 8115(2001)に準じてMIT耐折度試験回数を測定した。
(1-10) MIT fold resistance test (fold strength)
The resin composition was hot press molded at 250 ° C. to obtain an unstretched film having a thickness of 160 μm. The obtained unstretched film was cut into a size of 96 mm × 96 mm, and using a sequential biaxial stretching machine (X-6S, manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a temperature of Tg + 24 ° C. of the resin composition, 240 mm / min. A stretched film having a thickness of 40 μm was obtained by sequentially biaxially stretching the film at a stretching speed in the order of the machine direction (MD direction) and the transverse direction (TD direction) so that the draw ratio was doubled and cooling. The obtained stretched film was cut into a size of 90 mm × 15 mm to obtain a test piece, and was used in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50% using a MIT folding resistance tester (BE-201, manufactured by Tester Sangyo Co., Ltd.). A load of 200 g was applied and the number of MIT folding resistance tests was measured according to JIS P 8115 (2001).
 (1-11)トラウザー引裂き強度(引裂強さ)
 JIS K 7128-1(1998)に準拠して、トラウザー引裂き強度を求めた。具体的には、上記(1-10)項の記載に従って得られた延伸フィルムを120mm×30mmの大きさに切り出して、温度23℃、相対湿度50%の雰囲気下に1時間以上静置させてから試験片とし、オートグラフ(島津製作所社製、AGS-X)を用いて200mm/分の試験速度で試験を行い、引裂き開始の20mmと引き裂き終了前の5mmを除外した35mmの引裂力の平均値を算出し、5枚のサンプルの平均値を測定結果とした。
(1-11) Trouser tear strength (Tear strength)
The trouser tear strength was determined in accordance with JIS K 7128-1 (1998). Specifically, the stretched film obtained in accordance with the description in (1-10) above is cut into a size of 120 mm × 30 mm and allowed to stand for 1 hour or longer in an atmosphere at a temperature of 23 ° C. and a relative humidity of 50%. The test piece was tested using an autograph (manufactured by Shimadzu Corp., AGS-X) at a test speed of 200 mm / min. The average of the tearing force of 35 mm excluding 20 mm at the start of tearing and 5 mm before the end of tearing The value was calculated, and the average value of the five samples was taken as the measurement result.
 (1-12)位相差
 上記(1-10)項の記載に従って得られた延伸フィルムを、全自動複屈折計(王子計測機器社製、KOBRA-WR)を用いて、入射角40°の条件で、波長590nmの光に対する面内位相差Reと厚さ方向の位相差Rthを測定した。フィルムの面内における遅相軸方向の屈折率をnx、フィルムの面内における進相軸方向の屈折率をny、フィルムの厚さ方向の屈折率をnz、フィルムの厚さをdとして、下記式から面内位相差Reと厚さ方向の位相差Rthをそれぞれ求めた。
  面内位相差Re=(nx-ny)×d
  厚み方向位相差Rth=[(nx+ny)/2-nz]×d
(1-12) Retardation A stretched film obtained according to the description in (1-10) above was subjected to a condition with an incident angle of 40 ° using a fully automatic birefringence meter (KOBRA-WR, manufactured by Oji Scientific Instruments). Then, an in-plane retardation Re and a thickness direction retardation Rth for light having a wavelength of 590 nm were measured. The refractive index in the slow axis direction in the plane of the film is nx, the refractive index in the fast axis direction in the plane of the film is ny, the refractive index in the thickness direction of the film is nz, and the thickness of the film is d. The in-plane retardation Re and the thickness direction retardation Rth were determined from the equations.
In-plane retardation Re = (nx−ny) × d
Thickness direction retardation Rth = [(nx + ny) / 2−nz] × d
 (2)樹脂組成物の製造
 (2-1)実施例1:樹脂組成物(A-1)の調製
 撹拌装置、温度センサー、冷却管、窒素導入管を備えた反応器に、ポリイソプレンの無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物(クラレ社製、UC-102M)3部、メタクリル酸メチル(MMA)26部、2-(ヒドロキシメチル)アクリル酸メチル(MHMA)1部、重合溶媒としてトルエン50部を仕込み、これに窒素を通じつつ105℃まで昇温させた。その後開始剤としてt-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)を0.09部加え、105~110℃で溶液重合を30分間行った。ここに環化触媒としてリン酸ステアリルを0.01部加えて、10分間反応を行った。これにより、ラクトン環含有(メタ)アクリル系ポリマーと、当該ポリマー鎖がポリイソプレン鎖にグラフトしたグラフト共重合体とを含有する樹脂組成物が得られた。重合反応液中の残存単量体量より算出したMMAの反応率は16%、MHMAの反応率は10%であった。反応率から計算したポリイソプレン鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:MHMA=97.7:2.3であり、(メタ)アクリル酸エステル由来の単位の含有割合は96.2質量%、環構造単位の含有割合は3.5質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。
 次に、得られた反応溶液にメチルエチルケトン(MEK)50部を加えて希釈し、これを孔径10μmのPTFE(ポリテトラフルオロエチレン)製フィルタで濾過を行った後、大量のメタノール中に撹拌しながらゆっくり添加した。その際沈殿した白色の固体を取り出し、2.6kPa、80℃で約1時間乾燥し溶媒を除去することで、ラクトン環含有(メタ)アクリル系ポリマーと、当該ポリマー鎖がポリイソプレン鎖にグラフトしたグラフト共重合体とを含有する樹脂組成物(A-1)を得た。樹脂組成物(A-1)の重量平均分子量は13.8万、数平均分子量は3.8万、クロロホルム不溶分は2%であった。
(2) Production of Resin Composition (2-1) Example 1: Preparation of Resin Composition (A-1) Polyisoprene anhydrous in a reactor equipped with a stirrer, temperature sensor, cooling pipe and nitrogen introduction pipe 3 parts of esterified product of maleic acid adduct and 2-hydroxyethyl methacrylate (Kuraray, UC-102M), 26 parts of methyl methacrylate (MMA), 1 part of methyl 2- (hydroxymethyl) acrylate (MHMA), 50 parts of toluene was charged as a polymerization solvent, and the temperature was raised to 105 ° C. through nitrogen. Thereafter, 0.09 part of t-amylperoxyisononanoate (manufactured by Arkema Yoshitomi Co., Ltd., Luperox (registered trademark) 570) was added as an initiator, and solution polymerization was carried out at 105 to 110 ° C. for 30 minutes. 0.01 parts of stearyl phosphate was added here as a cyclization catalyst and reacted for 10 minutes. As a result, a resin composition containing a lactone ring-containing (meth) acrylic polymer and a graft copolymer obtained by grafting the polymer chain onto a polyisoprene chain was obtained. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 16%, and the reaction rate of MHMA was 10%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the polyisoprene chain calculated from the reaction rate is MMA: MHMA = 97.7: 2.3. The content ratio of units derived from (meth) acrylic acid ester was 96.2% by mass, and the content ratio of ring structural units was 3.5% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
Next, 50 parts of methyl ethyl ketone (MEK) is added to the obtained reaction solution for dilution, and this is filtered through a PTFE (polytetrafluoroethylene) filter having a pore size of 10 μm, and then stirred in a large amount of methanol. Slowly added. At this time, the precipitated white solid was taken out and dried at 2.6 kPa and 80 ° C. for about 1 hour to remove the solvent, whereby the lactone ring-containing (meth) acrylic polymer and the polymer chain were grafted to the polyisoprene chain. A resin composition (A-1) containing a graft copolymer was obtained. The weight average molecular weight of the resin composition (A-1) was 138,000, the number average molecular weight was 38,000, and the chloroform-insoluble content was 2%.
 (2-2)実施例2:樹脂組成物(A-2)の調製
 撹拌装置、温度センサー、冷却管、窒素導入管を備えた反応器に、ポリイソプレンの無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物(クラレ社製、UC-102M)3部、メタクリル酸メチル(MMA)23部、フェニルマレイミド(PMI)3部、重合溶媒としてトルエン50部を仕込み、これに窒素を通じつつ105℃まで昇温させた。その後開始剤としてt-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)を0.09部加え、105~110℃で溶液重合を30分間行った。これにより、マレイミド環含有(メタ)アクリル系ポリマーと、当該ポリマー鎖がポリイソプレン鎖にグラフトしたグラフト共重合体とを含有する樹脂組成物を得た。重合反応液中の残存単量体量より算出したMMAの反応率は14%、PMIの反応率は21%であった。反応率から計算したポリイソプレン鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI=83.6:16.4であり、(メタ)アクリル酸エステル由来の単位の含有割合は83.6質量%、環構造単位の含有割合は16.4質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。
 次に、得られた反応溶液にメチルエチルケトン(MEK)50部を加えて希釈し、これを孔径10μmのPTFE製フィルタで濾過を行った後、大量のメタノール中に撹拌しながらゆっくり添加した。その際沈殿した白色の固体を取り出し、2.6kPa、80℃で約1時間乾燥し溶媒を除去することで、マレイミド環含有(メタ)アクリル系ポリマーと、当該ポリマー鎖がポリイソプレン鎖にグラフトしたグラフト共重合体とを含有する樹脂組成物(A-2)を得た。樹脂組成物(A-2)の重量平均分子量は11.1万、数平均分子量は3.1万、クロロホルム不溶分は3%であった。
(2-2) Example 2: Preparation of Resin Composition (A-2) In a reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introduction pipe, a maleic anhydride adduct of polyisoprene and 2-hydroxy 3 parts of esterified product with ethyl methacrylate (Kuraray Co., Ltd., UC-102M), 23 parts of methyl methacrylate (MMA), 3 parts of phenylmaleimide (PMI), and 50 parts of toluene as a polymerization solvent were charged with nitrogen through 105 parts. The temperature was raised to ° C. Thereafter, 0.09 part of t-amylperoxyisononanoate (manufactured by Arkema Yoshitomi Co., Ltd., Luperox (registered trademark) 570) was added as an initiator, and solution polymerization was carried out at 105 to 110 ° C. for 30 minutes. Thus, a resin composition containing a maleimide ring-containing (meth) acrylic polymer and a graft copolymer in which the polymer chain was grafted to a polyisoprene chain was obtained. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 14%, and the reaction rate of PMI was 21%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the polyisoprene chain calculated from the reaction rate is MMA: PMI = 83.6: 16.4. The content ratio of units derived from (meth) acrylic acid ester was 83.6% by mass, and the content ratio of ring structural units was 16.4% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
Next, 50 parts of methyl ethyl ketone (MEK) was added to the obtained reaction solution to dilute it, and after filtering through a PTFE filter having a pore size of 10 μm, it was slowly added to a large amount of methanol with stirring. At that time, the precipitated white solid was taken out, dried at 2.6 kPa and 80 ° C. for about 1 hour, and the solvent was removed, so that the maleimide ring-containing (meth) acrylic polymer and the polymer chain grafted to the polyisoprene chain. A resin composition (A-2) containing a graft copolymer was obtained. The resin composition (A-2) had a weight average molecular weight of 111,000, a number average molecular weight of 31,000, and a chloroform-insoluble content of 3%.
  (2-3)比較例1:樹脂組成物(A-3)の調製
 撹拌装置、温度センサー、冷却管、窒素導入管を備えた反応器に、ポリイソプレンの無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物(クラレ社製、UC-102M)3部、メタクリル酸メチル(MMA)27部、重合溶媒としてトルエン50部を仕込み、これに窒素を通じつつ105℃まで昇温させた。その後開始剤としてt-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)を0.09部加え、105~110℃で溶液重合を30分間行った。これにより、メタクリル酸メチルポリマー(PMMA)と、当該ポリマー鎖がポリイソプレン鎖にグラフトしたグラフト共重合体とを含有する樹脂組成物を得た。重合反応液中の残存単量体量より算出したMMAの反応率は16%であった。
 次に、得られた反応溶液にメチルエチルケトン(MEK)50部を加えて希釈した後、大量のメタノール中に撹拌しながらゆっくり添加した。その際沈殿した白色の固体を取り出し、2.6kPa、80℃で約1時間乾燥し溶媒を除去することで、メタクリル酸メチルポリマー(PMMA)と、当該ポリマー鎖がポリイソプレン鎖にグラフトしたグラフト共重合体とを含有する樹脂組成物(A-3)を得た。樹脂組成物(A-3)の重量平均分子量は12.4万、数平均分子量は3.1万であった。
(2-3) Comparative Example 1: Preparation of Resin Composition (A-3) In a reactor equipped with a stirrer, a temperature sensor, a cooling pipe and a nitrogen introduction pipe, a maleic anhydride adduct of polyisoprene and 2-hydroxy 3 parts of an esterified product with ethyl methacrylate (Kuraray Co., Ltd., UC-102M), 27 parts of methyl methacrylate (MMA) and 50 parts of toluene as a polymerization solvent were charged, and the temperature was raised to 105 ° C. through nitrogen. Thereafter, 0.09 part of t-amylperoxyisononanoate (manufactured by Arkema Yoshitomi Co., Ltd., Luperox (registered trademark) 570) was added as an initiator, and solution polymerization was carried out at 105 to 110 ° C. for 30 minutes. As a result, a resin composition containing a methyl methacrylate polymer (PMMA) and a graft copolymer in which the polymer chain was grafted to a polyisoprene chain was obtained. The reaction rate of MMA calculated from the amount of residual monomer in the polymerization reaction solution was 16%.
Next, 50 parts of methyl ethyl ketone (MEK) was added to the obtained reaction solution for dilution, and then slowly added to a large amount of methanol with stirring. At this time, the precipitated white solid was taken out, dried at 2.6 kPa and 80 ° C. for about 1 hour, and the solvent was removed to remove methyl methacrylate polymer (PMMA) and the graft copolymer in which the polymer chain was grafted to the polyisoprene chain. A resin composition (A-3) containing a polymer was obtained. The weight average molecular weight of the resin composition (A-3) was 124,000, and the number average molecular weight was 31,000.
 (2-4)比較例2:樹脂組成物(B-1)の合成
 撹拌装置、温度センサー、冷却管、窒素導入管を備えた反応器に、メタクリル酸メチル(MMA)48部、2-(ヒドロキシメチル)アクリル酸メチル(MHMA)2部、重合溶媒としてトルエン50部を仕込み、これに窒素を通じつつ105℃まで昇温させた。その後開始剤としてt-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)を0.2部加え、105~110℃で溶液重合を180分間行った。ここに環化触媒としてリン酸ステアリルを0.01部加えて、1時間反応を行った後、オートクレーブ中で240℃1時間加熱した。これにより、ラクトン環含有(メタ)アクリル系ポリマーを含有する樹脂組成物を得た。重合反応液中の残存単量体量より算出したMMAの反応率は82%、MHMAの反応率は88%であった。反応率から計算したラクトン環含有(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:MHMA=95.7:4.3であり、(メタ)アクリル酸エステル由来の単位の含有割合は93.1質量%、環構造単位の含有割合は6.4質量%であった。
 次に、得られた反応溶液にメチルエチルケトン(MEK)50部を加えて希釈した後、大量のメタノール中に撹拌しながらゆっくり添加した。その際沈殿した白色の固体を取り出し、2.6kPa、200℃で約1時間乾燥し溶媒を除去することで、ラクトン環含有(メタ)アクリル系ポリマーを含有する樹脂組成物(B-1)を得た。樹脂組成物(B-1)の重量平均分子量は13.8万、数平均分子量は5.7万であった。
(2-4) Comparative Example 2: Synthesis of Resin Composition (B-1) In a reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introduction pipe, 48 parts of methyl methacrylate (MMA), 2- ( Hydroxymethyl) 2 parts of methyl acrylate (MHMA) and 50 parts of toluene as a polymerization solvent were charged, and the temperature was raised to 105 ° C. while passing nitrogen. Thereafter, 0.2 part of t-amyl peroxyisononanoate (manufactured by Arkema Yoshitomi, Luperox (registered trademark) 570) was added as an initiator, and solution polymerization was carried out at 105 to 110 ° C. for 180 minutes. Here, 0.01 part of stearyl phosphate was added as a cyclization catalyst and reacted for 1 hour, followed by heating at 240 ° C. for 1 hour in an autoclave. Thereby, a resin composition containing a lactone ring-containing (meth) acrylic polymer was obtained. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 82%, and the reaction rate of MHMA was 88%. The composition ratio (mass basis) of the lactone ring-containing (meth) acrylic polymer calculated from the reaction rate is MMA: MHMA = 95.7: 4.3, and the content ratio of units derived from (meth) acrylic acid ester is The content ratio of 93.1% by mass and the ring structural unit was 6.4% by mass.
Next, 50 parts of methyl ethyl ketone (MEK) was added to the obtained reaction solution for dilution, and then slowly added to a large amount of methanol with stirring. At this time, the precipitated white solid was taken out and dried at 2.6 kPa and 200 ° C. for about 1 hour to remove the solvent, whereby the resin composition (B-1) containing a lactone ring-containing (meth) acrylic polymer was obtained. Obtained. The weight average molecular weight of the resin composition (B-1) was 138,000 and the number average molecular weight was 57,000.
 (2-5)比較例3:樹脂組成物(B-2)の調製
 撹拌装置、温度センサー、冷却管、窒素導入管を備えた反応器に、メタクリル酸メチル(MMA)47部、PMI3部、重合溶媒としてトルエン50部を仕込み、これに窒素を通じつつ105℃まで昇温させた。その後開始剤としてt-アミルパーオキシイソノナノエート(アルケマ吉富社製、ルペロックス(登録商標)570)を0.2部加え、105~110℃で溶液重合を180分間行った。これにより、マレイミド環含有(メタ)アクリル系ポリマーを含有する樹脂組成物を得た。重合反応液中の残存単量体量より算出したMMAの反応率は85%、PMIの反応率は82%であった。反応率から計算したマレイミド環含有(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI=94.2:5.8であり、(メタ)アクリル酸エステル由来の単位の含有割合は94.2質量%、環構造単位の含有割合は5.8質量%であった。
 次に、得られた反応溶液にメチルエチルケトン(MEK)50部を加えて希釈した後、大量のメタノール中に撹拌しながらゆっくり添加した。その際沈殿した白色の固体を取り出し、2.6kPa、200℃で約1時間乾燥し溶媒を除去することで、マレイミド環含有(メタ)アクリル系ポリマーを含有する樹脂組成物(B-2)を得た。樹脂組成物(B-2)の重量平均分子量は12.9万、数平均分子量は5.9万であった。
(2-5) Comparative Example 3: Preparation of Resin Composition (B-2) In a reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introduction pipe, 47 parts of methyl methacrylate (MMA), 3 parts of PMI, 50 parts of toluene was charged as a polymerization solvent, and the temperature was raised to 105 ° C. through nitrogen. Thereafter, 0.2 part of t-amyl peroxyisononanoate (manufactured by Arkema Yoshitomi, Luperox (registered trademark) 570) was added as an initiator, and solution polymerization was carried out at 105 to 110 ° C. for 180 minutes. Thereby, a resin composition containing a maleimide ring-containing (meth) acrylic polymer was obtained. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 85%, and the reaction rate of PMI was 82%. The composition ratio (mass basis) of the maleimide ring-containing (meth) acrylic polymer calculated from the reaction rate is MMA: PMI = 94.2: 5.8, and the content ratio of units derived from (meth) acrylic acid ester is The content ratio of 94.2% by mass and the ring structural unit was 5.8% by mass.
Next, 50 parts of methyl ethyl ketone (MEK) was added to the obtained reaction solution for dilution, and then slowly added to a large amount of methanol with stirring. At this time, the precipitated white solid was taken out, dried at 2.6 kPa and 200 ° C. for about 1 hour, and the solvent was removed, whereby a resin composition (B-2) containing a maleimide ring-containing (meth) acrylic polymer was obtained. Obtained. The weight average molecular weight of the resin composition (B-2) was 1290,000, and the number average molecular weight was 59,000.
 (2-6)実施例3:樹脂組成物(C-1)の調製
 実施例1で得た樹脂組成物(A-1)1部と比較例2で得た樹脂組成物(B-1)9部とをMEK40部に溶解して混合した後、2.6kPa、150℃で約1時間乾燥し溶媒を除去することで、樹脂組成物(C-1)を得た。樹脂組成物(C-1)の重量平均分子量は13.0万、数平均分子量は5.9万であった。
(2-6) Example 3: Preparation of Resin Composition (C-1) 1 part of the resin composition (A-1) obtained in Example 1 and the resin composition (B-1) obtained in Comparative Example 2 9 parts was dissolved in 40 parts of MEK and mixed, and then dried at 2.6 kPa and 150 ° C. for about 1 hour to remove the solvent, thereby obtaining a resin composition (C-1). The weight average molecular weight of the resin composition (C-1) was 133,000, and the number average molecular weight was 59,000.
 (2-7)実施例4:樹脂組成物(C-2)の調製
 実施例2で得た樹脂組成物(A-2)1部と、比較例3で得た樹脂組成物(B-2)9部と、紫外線吸収剤(ADEKA社製、LA-31)0.01部と、酸化防止剤(BASF社製、イルガノックス(登録商標)1010)0.001部と、酸化防止剤(ADEKA社製、PEP-36)0.001部とを、MEK40部に溶解して混合した後、2.6kPa、150℃で約1時間乾燥し溶媒を除去することで、樹脂組成物(C-2)を得た。樹脂組成物(C-2)の重量平均分子量は13.2万、数平均分子量は5.1万であった。
(2-7) Example 4: Preparation of Resin Composition (C-2) 1 part of the resin composition (A-2) obtained in Example 2 and the resin composition (B-2) obtained in Comparative Example 3 ) 9 parts, UV absorber (ADEKA, LA-31) 0.01 part, antioxidant (BASF, Irganox (registered trademark) 1010) 0.001 part, antioxidant (ADEKA) PEP-36) manufactured by Kogyo Co., Ltd. was dissolved in 40 parts of MEK, mixed and then dried at 2.6 kPa and 150 ° C. for about 1 hour to remove the solvent, whereby the resin composition (C-2 ) The weight average molecular weight of the resin composition (C-2) was 132,000, and the number average molecular weight was 51,000.
 (2-8)比較例4:樹脂組成物(A-4)の調製
 実施例1において、ポリイソプレンの無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物を3部、MMAを26.7部、MMAを0.3部用いた以外は、実施例1と同様にして重合反応および環化反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は18%、MHMAの反応率は12%であった。反応率から計算したポリイソプレン鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:MHMA=99.3:0.7であり、(メタ)アクリル酸エステル由来の単位の含有割合は98.9質量%、環構造単位の含有割合は1.0質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。次いで、実施例1と同様に、得られた反応液を濾過、再沈殿、乾燥することで、ラクトン環含有(メタ)アクリル系ポリマーと、当該ポリマー鎖がポリイソプレン鎖にグラフトしたグラフト共重合体とを含有する樹脂組成物(A-4)を得た。樹脂組成物(A-4)の重量平均分子量は12.2万、数平均分子量は3.1万、クロロホルム不溶分は2%であった。
(2-8) Comparative Example 4: Preparation of Resin Composition (A-4) In Example 1, 3 parts of an esterified product of maleic anhydride adduct of polyisoprene and 2-hydroxyethyl methacrylate, and 26. A polymerization reaction and a cyclization reaction were performed in the same manner as in Example 1 except that 7 parts and 0.3 part of MMA were used. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 18%, and the reaction rate of MHMA was 12%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the polyisoprene chain calculated from the reaction rate is MMA: MHMA = 99.3: 0.7. The content ratio of units derived from (meth) acrylic acid ester was 98.9% by mass, and the content ratio of ring structural units was 1.0% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. Next, in the same manner as in Example 1, the obtained reaction solution was filtered, reprecipitated, and dried, so that the lactone ring-containing (meth) acrylic polymer and the graft copolymer in which the polymer chain was grafted to the polyisoprene chain. A resin composition (A-4) containing was obtained. The resin composition (A-4) had a weight average molecular weight of 122,000, a number average molecular weight of 31,000, and a chloroform-insoluble content of 2%.
 (2-9)比較例5:樹脂組成物(B-3)の調製
 比較例2において、MMAを49部、MHMAを1部用いた以外は、比較例2と同様にして重合反応および環化反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は81%、MHMAの反応率は89%であった。反応率から計算したラクトン環含有(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:MHMA=97.8:2.2であり、(メタ)アクリル酸エステル由来の単位の含有割合は96.5質量%、環構造単位の含有割合は3.2質量%であった。次いで、比較例2と同様に、得られた反応液を濾過、再沈殿、乾燥することで、ラクトン環含有(メタ)アクリル系ポリマーを含有する樹脂組成物(B-3)を得た。樹脂組成物(B-3)の重量平均分子量は14.5万、数平均分子量は6.3万であった。
(2-9) Comparative Example 5: Preparation of Resin Composition (B-3) Polymerization reaction and cyclization were performed in the same manner as in Comparative Example 2, except that 49 parts of MMA and 1 part of MHMA were used. Reaction was performed. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 81%, and the reaction rate of MHMA was 89%. The composition ratio (mass basis) of the lactone ring-containing (meth) acrylic polymer calculated from the reaction rate is MMA: MHMA = 97.8: 2.2, and the content ratio of units derived from (meth) acrylic acid ester is The content of the ring structural unit was 96.5% by mass and 3.2% by mass. Next, in the same manner as in Comparative Example 2, the obtained reaction solution was filtered, re-precipitated, and dried to obtain a resin composition (B-3) containing a lactone ring-containing (meth) acrylic polymer. The resin composition (B-3) had a weight average molecular weight of 145,000 and a number average molecular weight of 63,000.
 (2-10)比較例6:樹脂組成物(C-3)の調製
 比較例4で得た樹脂組成物(A-4)1部と比較例5で得た樹脂組成物(B-3)9部とをMEK40部に溶解して混合した後、2.6kPa、150℃で約1時間乾燥し溶媒を除去することで、樹脂組成物(C-3)を得た。樹脂組成物(C-3)の重量平均分子量は14.4万、数平均分子量は6.0万であった。
(2-10) Comparative Example 6: Preparation of Resin Composition (C-3) 1 part of the resin composition (A-4) obtained in Comparative Example 4 and the resin composition (B-3) obtained in Comparative Example 5 9 parts was dissolved in 40 parts of MEK and mixed, and then dried at 2.6 kPa and 150 ° C. for about 1 hour to remove the solvent, thereby obtaining a resin composition (C-3). The weight average molecular weight of the resin composition (C-3) was 144,000, and the number average molecular weight was 60,000.
 (2-11)比較例7:樹脂組成物(A-5)の調製
 実施例1において、ポリイソプレンの無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物を3部、MMAを13部、MHMAを13部用い、環化触媒としてリン酸ステアリルを0.03部用いた以外は、実施例1と同様にして重合反応および環化反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は19%、MHMAの反応率は13%であった。反応率から計算したポリイソプレンに結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:MHMA=59.4:40.6であり、(メタ)アクリル酸エステル由来の単位の含有割合は27.4質量%、環構造単位の含有割合は67.1質量%であった。反応液を一部取り出して濾過試験を行ったところ、フィルタの昇圧が見られた。次いで、実施例1と同様に、得られた反応液を濾過、再沈殿、乾燥することで、ラクトン環含有(メタ)アクリル系ポリマーと、当該ポリマー鎖がポリイソプレンにグラフトしたグラフト共重合体とを含有する樹脂組成物(A-5)を得た。樹脂組成物(A-5)の重量平均分子量は18.1万、数平均分子量は3.2万、クロロホルム不溶分は11%であった。
(2-11) Comparative Example 7: Preparation of Resin Composition (A-5) In Example 1, 3 parts of esterified product of maleic anhydride adduct of polyisoprene and 2-hydroxyethyl methacrylate and 13 parts of MMA The polymerization reaction and the cyclization reaction were performed in the same manner as in Example 1 except that 13 parts of MHMA was used and 0.03 part of stearyl phosphate was used as the cyclization catalyst. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 19%, and the reaction rate of MHMA was 13%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and (meth) acrylic polymer bonded to polyisoprene calculated from the reaction rate is MMA: MHMA = 59.4: 40.6, The content ratio of units derived from (meth) acrylic acid ester was 27.4% by mass, and the content ratio of ring structural units was 67.1% by mass. When a part of the reaction solution was taken out and a filtration test was conducted, the pressure of the filter was increased. Next, in the same manner as in Example 1, the obtained reaction solution was filtered, reprecipitated, and dried, so that the lactone ring-containing (meth) acrylic polymer and the graft copolymer in which the polymer chain was grafted to polyisoprene, A resin composition (A-5) containing was obtained. The resin composition (A-5) had a weight average molecular weight of 181,000, a number average molecular weight of 32,000, and a chloroform-insoluble content of 11%.
 (2-12)比較例8:樹脂組成物(B-4)の調製
 比較例2において、MMAを25部、MHMAを25部用いた以外は、比較例2と同様にして重合反応および環化反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は87%、MHMAの反応率は85%であった。反応率から計算したラクトン環含有(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:MHMA=50.6:49.4であり、(メタ)アクリル酸エステル由来の単位の含有割合は9.2質量%、環構造単位の含有割合は83.9質量%であった。次いで、比較例2と同様に、得られた反応液を濾過、再沈殿、乾燥することで、ラクトン環含有(メタ)アクリル系ポリマーを含有する樹脂組成物(B-4)を得た。樹脂組成物(B-4)の重量平均分子量は18.9万、数平均分子量は5.2万であった。
(2-12) Comparative Example 8: Preparation of Resin Composition (B-4) Polymerization reaction and cyclization were performed in the same manner as in Comparative Example 2, except that 25 parts of MMA and 25 parts of MHMA were used. Reaction was performed. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 87%, and the reaction rate of MHMA was 85%. The composition ratio (mass basis) of the lactone ring-containing (meth) acrylic polymer calculated from the reaction rate is MMA: MHMA = 50.6: 49.4, and the content ratio of units derived from (meth) acrylic acid ester is The content of 9.2% by mass and the ring structural unit was 83.9% by mass. Subsequently, in the same manner as in Comparative Example 2, the obtained reaction solution was filtered, re-precipitated, and dried to obtain a resin composition (B-4) containing a lactone ring-containing (meth) acrylic polymer. The weight average molecular weight of the resin composition (B-4) was 189,000, and the number average molecular weight was 52,000.
 (2-13)比較例9:樹脂組成物(C-4)の調製
 比較例7で得た樹脂組成物(A-5)1部と比較例8で得た樹脂組成物(B-4)9部とをMEK40部に溶解して混合した後、2.6kPa、150℃で約1時間乾燥し溶媒を除去することで、樹脂組成物(C-4)を得た。樹脂組成物(C-4)の重量平均分子量は17.8万、数平均分子量は5.0万であった。
(2-13) Comparative Example 9: Preparation of Resin Composition (C-4) 1 part of the resin composition (A-5) obtained in Comparative Example 7 and the resin composition (B-4) obtained in Comparative Example 8 9 parts was dissolved in 40 parts of MEK and mixed, and then dried at 2.6 kPa and 150 ° C. for about 1 hour to remove the solvent, thereby obtaining a resin composition (C-4). The weight average molecular weight of the resin composition (C-4) was 178,000 and the number average molecular weight was 50,000.
 (2-14)実施例5:樹脂組成物(D-1)の調製
 撹拌装置、温度センサー、冷却管、窒素導入管を備えた反応器に、SEBSトリブロック共重合体(Kraton社製、A1536、オレフィン性二重結合量0.10mmol/g、スチレン単位含有量39質量%、屈折率1.519)5部、メタクリル酸メチル(MMA)73部、フェニルマレイミド(PMI)18部、n-ドデシルメルカプタン(nDM)0.05部、重合溶媒としてトルエン100部を仕込み、これに窒素を通じつつ105℃まで昇温させた。その後開始剤としてt-ブチルパーオキシイソプロピルカーボネート(化薬アクゾ社製、カヤカルボン(登録商標)Bic75)を0.009部加えるとともに、スチレン(St)5部と、1部のトルエンに希釈した0.018部のt-ブチルパーオキシイソプロピルカーボネートを3時間かけて一定速度で滴下しながら105~110℃で溶液重合を行い、さらに4時間熟成を行った。これにより、MMAとPMIとStから重合形成されたマレイミド環含有(メタ)アクリル系ポリマーと、当該ポリマー鎖がSEBSトリブロックポリマー鎖に結合したグラフト共重合体とを含む樹脂組成物が得られた。重合反応液中の残存単量体量より算出したMMAの反応率は95%、PMIの反応率は98%、Stの反応率は100%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI:St=75.9:18.9:5.2であり、(メタ)アクリル酸エステル由来の単位の含有割合は75.9質量%、環構造単位の含有割合は18.9質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。
 次に得られた重合反応液を、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出機(孔径:15mm、L/D:45)内に樹脂換算で600g/hの処理速度で導入し、この押出機内で脱揮を行い、押し出すことにより、マレイミド環含有(メタ)アクリル系ポリマーと、当該ポリマー鎖がSEBSトリブロックポリマー鎖に結合したグラフト共重合体とを含む樹脂組成物(D-1)の透明なペレットを得た。なお、二軸押出機の運転条件は、バレル温度260℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)であった。樹脂組成物(D-1)の重量平均分子量は15.0万、数平均分子量は6.0万、高温側のガラス転移温度は138℃、低温側のガラス転移温度は-68℃、クロロホルム不溶分は0.3%、屈折率は1.517であった。樹脂組成物(D-1)の延伸フィルムの面内位相差Reと厚さ方向の位相差Rthはそれぞれ0.9nmと2.9nmであった。
(2-14) Example 5: Preparation of resin composition (D-1) A reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introduction pipe was charged with a SEBS triblock copolymer (manufactured by Kraton, A1536). , Olefinic double bond content 0.10 mmol / g, styrene unit content 39% by mass, refractive index 1.519) 5 parts, methyl methacrylate (MMA) 73 parts, phenylmaleimide (PMI) 18 parts, n-dodecyl Mercaptan (nDM) 0.05 part and 100 parts of toluene as a polymerization solvent were charged, and the temperature was raised to 105 ° C. through nitrogen. Thereafter, 0.009 part of t-butyl peroxyisopropyl carbonate (Kayakaku Akzo Co., Ltd., Kaya-Carbon (registered trademark) Bic75) was added as an initiator, and diluted with 5 parts of styrene (St) and 1 part of toluene. Solution polymerization was carried out at 105 to 110 ° C. while adding 018 parts of t-butylperoxyisopropyl carbonate dropwise at a constant rate over 3 hours, and further aging was carried out for 4 hours. As a result, a resin composition containing a maleimide ring-containing (meth) acrylic polymer formed by polymerization from MMA, PMI, and St and a graft copolymer in which the polymer chain was bonded to a SEBS triblock polymer chain was obtained. . The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 95%, the reaction rate of PMI was 98%, and the reaction rate of St was 100%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: PMI: St = 75.9: 18. .9: 5.2, the content ratio of units derived from (meth) acrylic acid ester was 75.9% by mass, and the content ratio of ring structural units was 18.9% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
Next, the obtained polymerization reaction solution was 600 g / h in terms of resin in a vent type screw twin screw extruder (hole diameter: 15 mm, L / D: 45) having one rear vent and two forevents. A resin containing a maleimide ring-containing (meth) acrylic polymer and a graft copolymer in which the polymer chain is bound to a SEBS triblock polymer chain by introducing at a processing speed, performing devolatilization in the extruder, and extruding. A transparent pellet of the composition (D-1) was obtained. The operating conditions of the twin screw extruder were a barrel temperature of 260 ° C., a rotation speed of 300 rpm, and a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg). The weight average molecular weight of the resin composition (D-1) is 15 million, the number average molecular weight is 60000, the glass transition temperature on the high temperature side is 138 ° C., the glass transition temperature on the low temperature side is −68 ° C., and chloroform is insoluble. The minute was 0.3% and the refractive index was 1.517. The in-plane retardation Re and the thickness direction retardation Rth of the stretched film of the resin composition (D-1) were 0.9 nm and 2.9 nm, respectively.
 (2-15)実施例6:樹脂組成物(D-2)の調製
 実施例5において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(Kraton社製、A1536)を10部、MMAを69部、PMIを17部用いた以外は、実施例5と同様にして重合反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は96%、PMIの反応率は99%、Stの反応率は100%であった。反応率から計算したSEBSトリブロック共重合体鎖に結合しているアクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI:St=75.2:19.1:5.7であり、(メタ)アクリル酸エステル由来の単位の含有割合は75.2質量%、環構造単位の含有割合は19.1質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。得られた重合反応液を実施例6と同様にして押出機内で脱揮を行い、透明な樹脂組成物(D-2)のペレットを得た。樹脂組成物(D-2)の重量平均分子量は14.8万、数平均分子量は5.9万、高温側のガラス転移温度は138℃、低温側のガラス転移温度は-68℃、クロロホルム不溶分は0.3%、屈折率は1.517であった。樹脂組成物(D-2)の未延伸フィルムの海島構造の島サイズは200nm、延伸フィルムの面内位相差Reと厚さ方向の位相差Rthはそれぞれ0.2nmと3.5nmであった。
(2-15) Example 6: Preparation of Resin Composition (D-2) In Example 5, SEBS triblock copolymer (manufactured by Kraton, A1536) was used as the monomer component charged into the reactor first. The polymerization reaction was carried out in the same manner as in Example 5 except that 10 parts, 69 parts of MMA, and 17 parts of PMI were used. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 96%, the reaction rate of PMI was 99%, and the reaction rate of St was 100%. The composition ratio (mass basis) of the acrylic polymer chain bonded to the SEBS triblock copolymer chain and the (meth) acrylic polymer calculated from the reaction rate is MMA: PMI: St = 75.2: 19. The content ratio of units derived from (meth) acrylic acid ester was 75.2% by mass, and the content ratio of ring structural units was 19.1% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. The resulting polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 6 to obtain transparent resin composition (D-2) pellets. The weight average molecular weight of the resin composition (D-2) is 148,000, the number average molecular weight is 59,000, the glass transition temperature on the high temperature side is 138 ° C., the glass transition temperature on the low temperature side is −68 ° C., and chloroform is insoluble. The minute was 0.3% and the refractive index was 1.517. The island size of the sea-island structure of the unstretched film of the resin composition (D-2) was 200 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.2 nm and 3.5 nm, respectively.
 (2-16)実施例7:樹脂組成物(D-3)の調製
 実施例5において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(Kraton社製、A1536)を15部、MMAを65部、PMIを16部用い、滴下により加える単量体成分としてStを4部用いた以外は、実施例5と同様にして重合反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は96%、PMIの反応率は99%、Stの反応率は100%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI:St=75.9:19.3:4.9であり、(メタ)アクリル酸エステル由来の単位の含有割合は75.9質量%、環構造単位の含有割合は19.3質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。得られた重合反応液を実施例5と同様にして押出機内で脱揮を行い、透明な樹脂組成物(D-3)のペレットを得た。樹脂組成物(D-3)の重量平均分子量は14.0万、数平均分子量は5.3万、高温側のガラス転移温度は137℃、低温側のガラス転移温度は-68℃、クロロホルム不溶分は0.3%、屈折率は1.517であった。樹脂組成物(D-3)の未延伸フィルムの海島構造の島サイズは200nm、延伸フィルムの面内位相差Reと厚さ方向の位相差Rthはそれぞれ0.8nmと4.5nmであった。
(2-16) Example 7: Preparation of Resin Composition (D-3) In Example 5, SEBS triblock copolymer (manufactured by Kraton, A1536) was used as the monomer component charged into the reactor first. A polymerization reaction was carried out in the same manner as in Example 5 except that 15 parts, 65 parts of MMA and 16 parts of PMI were used and 4 parts of St was used as a monomer component to be added dropwise. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 96%, the reaction rate of PMI was 99%, and the reaction rate of St was 100%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: PMI: St = 75.9: 19. 3: 4.9, the content ratio of units derived from (meth) acrylic acid ester was 75.9% by mass, and the content ratio of ring structural units was 19.3% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. The resulting polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain a transparent resin composition (D-3) pellet. The resin composition (D-3) has a weight average molecular weight of 14,000,000, a number average molecular weight of 53,000, a glass transition temperature on the high temperature side of 137 ° C., a glass transition temperature on the low temperature side of −68 ° C., and chloroform insoluble. The minute was 0.3% and the refractive index was 1.517. The island size of the sea-island structure of the unstretched film of the resin composition (D-3) was 200 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.8 nm and 4.5 nm, respectively.
 (2-17)実施例8:樹脂組成物(D-4)の調製
 実施例5において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(Kraton社製、A1536)を20部、MMAを61部、PMIを15部用い、滴下により加える単量体成分としてStを4部用いた以外は、実施例5と同様にして重合反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は97%、PMIの反応率は99%、Stの反応率は100%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI:St=76.1:18.8:5.1であり、(メタ)アクリル酸エステル由来の単位の含有割合は76.1質量%、環構造単位の含有割合は18.8質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。得られた重合反応液を実施例5と同様にして押出機内で脱揮を行い、透明な樹脂組成物(D-4)のペレットを得た。樹脂組成物(D-4)の重量平均分子量は14.5万、数平均分子量は6.0万、高温側のガラス転移温度は136℃、低温側のガラス転移温度は-68℃、クロロホルム不溶分は0.4%、屈折率は1.517であった。樹脂組成物(D-4)の未延伸フィルムの海島構造の島サイズは250nm、延伸フィルムの面内位相差Reと厚さ方向の位相差Rthはそれぞれ0.5nmと6.2nmであった。
(2-17) Example 8: Preparation of resin composition (D-4) In Example 5, SEBS triblock copolymer (manufactured by Kraton, A1536) was used as the monomer component charged into the reactor first. A polymerization reaction was carried out in the same manner as in Example 5 except that 20 parts, 61 parts of MMA and 15 parts of PMI were used, and 4 parts of St was used as a monomer component to be added dropwise. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 97%, the reaction rate of PMI was 99%, and the reaction rate of St was 100%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: PMI: St = 76.1: 18 .8: 5.1, the content ratio of units derived from (meth) acrylic acid ester was 76.1% by mass, and the content ratio of ring structural units was 18.8% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. The resulting polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-4) pellets. The resin composition (D-4) has a weight average molecular weight of 145,000, a number average molecular weight of 60,000, a glass transition temperature on the high temperature side of 136 ° C., a glass transition temperature on the low temperature side of −68 ° C., and chloroform insoluble. The minute was 0.4% and the refractive index was 1.517. The island size of the sea-island structure of the unstretched film of the resin composition (D-4) was 250 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.5 nm and 6.2 nm, respectively.
 (2-18)実施例9:樹脂組成物(D-5)の調製
 実施例5において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(Aldrich社製、製品番号200557、オレフィン性二重結合量0.10mmol/g、スチレン単位含有量26質量%、屈折率1.513)を10部、MMAを72部、PMIを16部用い、滴下により加える単量体成分としてStを2部用いた以外は、実施例5と同様にして重合反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は96%、PMIの反応率は99%、Stの反応率は100%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI:St=79.4:18.3:2.3であり、(メタ)アクリル酸エステル由来の単位の含有割合は79.4質量%、環構造単位の含有割合は18.3質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。得られた重合反応液を実施例5と同様にして押出機内で脱揮を行い、透明な樹脂組成物(D-5)のペレットを得た。樹脂組成物(D-5)の重量平均分子量は17.2万、数平均分子量は7.1万、ガラス転移温度は138℃、クロロホルム不溶分は0.4%、屈折率は1.515であった。樹脂組成物(D-5)の未延伸フィルムの海島構造の島サイズは250nm、延伸フィルムの面内位相差Reと厚さ方向の位相差Rthはそれぞれ0.5nmと4.9nmであった。
(2-18) Example 9: Preparation of Resin Composition (D-5) In Example 5, SEBS triblock copolymer (manufactured by Aldrich, product number 200557) was used as the monomer component initially charged in the reactor. , 10 parts of olefinic double bond content 0.10 mmol / g, styrene unit content 26 mass%, refractive index 1.513), 72 parts MMA, 16 parts PMI The polymerization reaction was performed in the same manner as in Example 5 except that 2 parts of St was used. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 96%, the reaction rate of PMI was 99%, and the reaction rate of St was 100%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: PMI: St = 79.4: 18. .3: 2.3, the content ratio of units derived from (meth) acrylic acid ester was 79.4 mass%, and the content ratio of ring structural units was 18.3 mass%. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. The obtained polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-5) pellets. The resin composition (D-5) has a weight average molecular weight of 172,000, a number average molecular weight of 71,000, a glass transition temperature of 138 ° C., a chloroform insoluble content of 0.4%, and a refractive index of 1.515. there were. The island size of the sea-island structure of the unstretched film of the resin composition (D-5) was 250 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.5 nm and 4.9 nm, respectively.
 (2-19)実施例10:樹脂組成物(D-6)の調製
 実施例5において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(旭化成社製、タフテック(登録商標)H1041、オレフィン性二重結合量0.44mmol/g、スチレン単位含有量30質量%、屈折率1.515)を10部、MMAを70部、PMIを16部用い、滴下により加える単量体成分としてStを4部用いた以外は、実施例5と同様にして重合反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は97%、PMIの反応率は99%、Stの反応率は100%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI:St=77.4:18.1:4.6であり、(メタ)アクリル酸エステル由来の単位の含有割合は77.4質量%、環構造単位の含有割合は18.1質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。得られた重合反応液を実施例5と同様にして押出機内で脱揮を行い、透明な樹脂組成物(D-6)のペレットを得た。樹脂組成物(D-6)の重量平均分子量は13.5万、数平均分子量は5.6万、ガラス転移温度は138℃、クロロホルム不溶分は0.5%、屈折率は1.516であった。樹脂組成物(D-6)の未延伸フィルムの海島構造の島サイズは300nm、延伸フィルムの面内位相差Reと厚さ方向の位相差Rthはそれぞれ0.3nmと2.3nmであった。
(2-19) Example 10: Preparation of Resin Composition (D-6) In Example 5, SEBS triblock copolymer (manufactured by Asahi Kasei Co., Ltd., Tuftec (registered trademark)) was used as the monomer component initially charged in the reactor. (Trademark) H1041, olefinic double bond content 0.44 mmol / g, styrene unit content 30% by mass, refractive index 1.515) 10 parts, MMA 70 parts, PMI 16 parts A polymerization reaction was performed in the same manner as in Example 5 except that 4 parts of St was used as the body component. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 97%, the reaction rate of PMI was 99%, and the reaction rate of St was 100%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: PMI: St = 77.4: 18. 1: 4.6, the content ratio of units derived from (meth) acrylic acid ester was 77.4% by mass, and the content ratio of ring structural units was 18.1% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. The obtained polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-6) pellets. The resin composition (D-6) has a weight average molecular weight of 135,000, a number average molecular weight of 56,000, a glass transition temperature of 138 ° C., a chloroform insoluble content of 0.5%, and a refractive index of 1.516. there were. The island size of the sea-island structure of the unstretched film of the resin composition (D-6) was 300 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.3 nm and 2.3 nm, respectively.
 (2-20)実施例11:樹脂組成物(D-7)の調製
 実施例5において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(旭化成社製、タフテック(登録商標)P1083、オレフィン性二重結合量2.40mmol/g、スチレン単位含有量20質量%、屈折率1.500)を10部、MMAを83部、PMIを6部用い、滴下により加える単量体成分としてStを1部用いた以外は、実施例5と同様にして重合反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は96%、PMIの反応率は99%、Stの反応率は100%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI:St=92.6:6.3:1.1であり、(メタ)アクリル酸エステル由来の単位の含有割合は92.6質量%、環構造単位の含有割合は6.3質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。得られた重合反応液を実施例5と同様にして押出機内で脱揮を行い、透明な樹脂組成物(D-7)のペレットを得た。樹脂組成物(D-7)の重量平均分子量は16.3万、数平均分子量は6.2万、ガラス転移温度は123℃、クロロホルム不溶分は0.9%、屈折率は1.500であった。樹脂組成物(D-7)の延伸フィルムの面内位相差Reと厚さ方向の位相差Rthはそれぞれ0.3nmと4.5nmであった。
(2-20) Example 11: Preparation of Resin Composition (D-7) In Example 5, SEBS triblock copolymer (manufactured by Asahi Kasei Co., Ltd., Tuftec (registered trademark)) was used as the monomer component initially charged in the reactor. Trademark) P1083, olefinic double bond amount 2.40 mmol / g, styrene unit content 20% by mass, refractive index 1.500) 10 parts, MMA 83 parts, PMI 6 parts A polymerization reaction was performed in the same manner as in Example 5 except that 1 part of St was used as the body component. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 96%, the reaction rate of PMI was 99%, and the reaction rate of St was 100%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: PMI: St = 92.6: 6. .3: 1.1, the content ratio of units derived from (meth) acrylic acid ester was 92.6% by mass, and the content ratio of ring structural units was 6.3% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. The obtained polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-7) pellets. The resin composition (D-7) has a weight average molecular weight of 163,000, a number average molecular weight of 62,000, a glass transition temperature of 123 ° C., a chloroform insoluble content of 0.9%, and a refractive index of 1.500. there were. The in-plane retardation Re and the thickness direction retardation Rth of the stretched film of the resin composition (D-7) were 0.3 nm and 4.5 nm, respectively.
 (2-21)実施例12:樹脂組成物(D-8)の調製
 実施例5において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(旭化成社製、タフテック(登録商標)H1517、オレフィン性二重結合量0.11mmol/g、スチレン単位含有量43質量%、屈折率1.525)を10部、MMAを63部、PMIを24部用い、滴下により加える単量体成分としてStを3部用いた以外は、実施例5と同様にして重合反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は95%、PMIの反応率は98%、Stの反応率は100%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI:St=69.3:27.2:3.5であり、(メタ)アクリル酸エステル由来の単位の含有割合は69.3質量%、環構造単位の含有割合は27.2質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。得られた重合反応液を実施例5と同様にして押出機内で脱揮を行い、透明な樹脂組成物(D-8)のペレットを得た。樹脂組成物(D-8)の重量平均分子量は16.6万、数平均分子量は6.3万、ガラス転移温度は151℃、クロロホルム不溶分は0.5%、屈折率は1.525であった。樹脂組成物(D-8)の延伸フィルムの面内位相差Reと厚さ方向の位相差Rthはそれぞれ0.5nmと5.9nmであった。
(2-21) Example 12: Preparation of Resin Composition (D-8) In Example 5, SEBS triblock copolymer (manufactured by Asahi Kasei Co., Ltd., Tuftec (registered trademark)) was used as the monomer component initially charged in the reactor. Trademark) H1517, Olefinic double bond content 0.11 mmol / g, Styrene unit content 43 mass%, Refractive index 1.525) 10 parts, MMA 63 parts, PMI 24 parts A polymerization reaction was performed in the same manner as in Example 5 except that 3 parts of St was used as the body component. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 95%, the reaction rate of PMI was 98%, and the reaction rate of St was 100%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: PMI: St = 69.3: 27. 2: 3.5, the content ratio of units derived from (meth) acrylic acid ester was 69.3% by mass, and the content ratio of ring structural units was 27.2% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. The resulting polymerization reaction solution was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-8) pellets. The resin composition (D-8) has a weight average molecular weight of 166,000, a number average molecular weight of 63,000, a glass transition temperature of 151 ° C., a chloroform insoluble content of 0.5%, and a refractive index of 1.525. there were. The in-plane retardation Re and the thickness direction retardation Rth of the stretched film of the resin composition (D-8) were 0.5 nm and 5.9 nm, respectively.
 (2-22)比較例10:樹脂組成物(D-9)の調製
 実施例5において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(JSR社製、Dynaron(登録商標)9901P、オレフィン性二重結合量0.06mmol/g、スチレン単位含有量50質量%、屈折率1.530)を10部、MMAを30部、PMIを55部用い、滴下により加える単量体成分としてStを5部用いた以外は、実施例5と同様にして重合反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は98%、PMIの反応率は98%、Stの反応率は100%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI:St=33.3:61.0:5.7であり、(メタ)アクリル酸エステル由来の単位の含有割合は33.3質量%、環構造単位の含有割合は61.0質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。得られた重合反応液を実施例5と同様にして押出機内で脱揮を行い、透明な樹脂組成物(D-9)のペレットを得た。樹脂組成物(D-9)の重量平均分子量は14.9万、数平均分子量は5.9万、ガラス転移温度は201℃、クロロホルム不溶分は2.1%、屈折率は1.560であった。なお。樹脂組成物(D-9)の未延伸フィルムの延伸を試みたが、強度が不足しており延伸できなかった。
(2-22) Comparative Example 10: Preparation of Resin Composition (D-9) In Example 5, SEBS triblock copolymer (manufactured by JSR, Dynanar (registered) was used as the monomer component charged into the reactor first. Trademark) 9901P, olefinic double bond content 0.06 mmol / g, styrene unit content 50 mass%, refractive index 1.530) 10 parts, MMA 30 parts, PMI 55 parts A polymerization reaction was performed in the same manner as in Example 5 except that 5 parts of St was used as the body component. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 98%, the reaction rate of PMI was 98%, and the reaction rate of St was 100%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: PMI: St = 33.3: 61. 0.0: 5.7, the content ratio of units derived from (meth) acrylic acid ester was 33.3 mass%, and the content ratio of ring structural units was 61.0 mass%. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. The obtained polymerization reaction liquid was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-9) pellets. The resin composition (D-9) has a weight average molecular weight of 149,000, a number average molecular weight of 59,000, a glass transition temperature of 201 ° C., a chloroform insoluble content of 2.1%, and a refractive index of 1.560. there were. Note that. Although an attempt was made to stretch an unstretched film of the resin composition (D-9), the strength was insufficient and stretching was not possible.
 (2-23)比較例11:樹脂組成物(D-10)の調製
 実施例5において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(旭化成社製、H1052、オレフィン性二重結合量0.27mmol/g、スチレン単位含有量20質量%、屈折率1.500)10部、MMAを88.5部、PMIを1.5部用い、滴下により加える単量体成分としてStを用いなかった以外は、実施例5と同様にして重合反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は98%、PMIの反応率は98%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:PMI=98.3:1.7であり、(メタ)アクリル酸エステル由来の単位の含有割合は98.3質量%、環構造単位の含有割合は1.7質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。得られた重合反応液を実施例5と同様にして押出機内で脱揮を行い、透明な樹脂組成物(D-10)のペレットを得た。樹脂組成物(D-10)の重量平均分子量は14.5万、数平均分子量は6.0万、ガラス転移温度は112℃、クロロホルム不溶分は0.4%、屈折率は1.500であった。
(2-23) Comparative Example 11: Preparation of Resin Composition (D-10) In Example 5, SEBS triblock copolymer (manufactured by Asahi Kasei Co., Ltd., H1052, olefin was used as the monomer component initially charged in the reactor. Monomer component to be added dropwise using 10 parts of styrene double bond content of 0.27 mmol / g, styrene unit content of 20% by mass, refractive index of 1.500), 88.5 parts of MMA and 1.5 parts of PMI. The polymerization reaction was carried out in the same manner as in Example 5 except that St was not used. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 98%, and the reaction rate of PMI was 98%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: PMI = 98.3: 1.7. The content ratio of the unit derived from (meth) acrylic acid ester was 98.3% by mass, and the content ratio of the ring structural unit was 1.7% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. The resulting polymerization reaction solution was devolatilized in an extruder in the same manner as in Example 5 to obtain transparent resin composition (D-10) pellets. The resin composition (D-10) has a weight average molecular weight of 145,000, a number average molecular weight of 60,000, a glass transition temperature of 112 ° C., a chloroform insoluble content of 0.4%, and a refractive index of 1.500. there were.
 (2-24)実施例13:樹脂組成物(D-11)の調製
 撹拌装置、温度センサー、冷却管、窒素導入管を備えた反応器に、SEBSトリブロック共重合体(旭化成社製、H1052、オレフィン性二重結合量0.27mmol/g、スチレン単位含有量20質量%、屈折率1.500)10部、メタクリル酸メチル(MMA)75部、2-(ヒドロキシメチル)アクリル酸メチル(MHMA)13.5部、n-ドデシルメルカプタン(nDM)0.05部、重合溶媒としてトルエン100部を仕込み、これに窒素を通じつつ105℃まで昇温させた。その後開始剤としてt-ブチルパーオキシイソプロピルカーボネート(化薬アクゾ社製、カヤカルボン(登録商標)Bic75)を0.009部加えるとともに、スチレン(St)2部と、1部のトルエンに希釈した0.015部のt-ブチルパーオキシイソプロピルカーボネートを2時間かけて一定速度で滴下しながら105~110℃で溶液重合を行い、さらに4時間熟成を行った。ここに環化触媒としてリン酸ステアリル0.07部を加え、90~110℃の還流下で2時間環化反応を行った。これにより、MMAとMHMAとStから重合形成されたラクトン環含有(メタ)アクリル系ポリマーと、当該ポリマー鎖がSEBSトリブロックポリマー鎖に結合したグラフト共重合体とを含む樹脂組成物が得られた。重合反応液中の残存単量体量より算出したMMAの反応率は94%、MHMAの反応率は94%、Stの反応率は99%であった。反応率から計算したSEBSトリブロック共重合体鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:MHMA:St=82.6:14.9:2.5であり、(メタ)アクリル酸エステル由来の単位の含有割合は72.9質量%、環構造単位の含有割合は22.8質量%、スチレン由来の単位の含有割合は2.4質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。
 次に得られた重合反応液を、オートクレーブに入れ240℃で1時間加熱処理を行った後、リアベント数が1個、フォアベント数が2個のベントタイプスクリュー二軸押出機(孔径:15mm、L/D:45)内に樹脂換算で600g/hの処理速度で導入し、この押出機内で脱揮を行い、押し出すことにより、ラクトン環含有(メタ)アクリル系ポリマーと、当該ポリマー鎖がSEBSトリブロックポリマー鎖に結合したグラフト共重合体とを含む樹脂組成物(D-11)の透明なペレットを得た。なお、二軸押出機の運転条件は、バレル温度260℃、回転数300rpm、減圧度13.3~400hPa(10~300mmHg)であった。樹脂組成物(D-11)の重量平均分子量は15.5万、数平均分子量は5.9万、高温側のガラス転移温度は127℃、低温側のガラス転移温度は-54℃、クロロホルム不溶分は0.4%、屈折率は1.500であった。樹脂組成物(D-11)の未延伸フィルムの海島構造の島サイズは250nm、延伸フィルムの面内位相差Reと厚さ方向の位相差Rthはそれぞれ0.3nmと4.9nmであった。
(2-24) Example 13: Preparation of resin composition (D-11) A reactor equipped with a stirrer, a temperature sensor, a cooling pipe, and a nitrogen introduction pipe was charged with a SEBS triblock copolymer (manufactured by Asahi Kasei Corporation, H1052). , Olefinic double bond content 0.27 mmol / g, styrene unit content 20% by mass, refractive index 1.500) 10 parts, methyl methacrylate (MMA) 75 parts, 2- (hydroxymethyl) methyl acrylate (MHMA) ) 13.5 parts, 0.05 part of n-dodecyl mercaptan (nDM), and 100 parts of toluene as a polymerization solvent were charged, and the temperature was raised to 105 ° C. while introducing nitrogen. Thereafter, 0.009 parts of t-butylperoxyisopropyl carbonate (Kayakaku (registered trademark) Bic75, manufactured by Kayaku Akzo Co., Ltd.) was added as an initiator, and the mixture was diluted with 2 parts of styrene (St) and 1 part of toluene. While 015 parts of t-butylperoxyisopropyl carbonate was added dropwise at a constant rate over 2 hours, solution polymerization was carried out at 105 to 110 ° C., followed by further aging for 4 hours. To this was added 0.07 part of stearyl phosphate as a cyclization catalyst, and a cyclization reaction was carried out at 90 to 110 ° C. under reflux for 2 hours. As a result, a resin composition containing a lactone ring-containing (meth) acrylic polymer formed by polymerization from MMA, MHMA, and St and a graft copolymer in which the polymer chain was bonded to a SEBS triblock polymer chain was obtained. . The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 94%, the reaction rate of MHMA was 94%, and the reaction rate of St was 99%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock copolymer chain calculated from the reaction rate is MMA: MHMA: St = 82.6. : 14.9: 2.5, the content ratio of units derived from (meth) acrylic acid ester is 72.9 mass%, the content ratio of ring structural units is 22.8 mass%, the content ratio of units derived from styrene Was 2.4% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed.
Next, the obtained polymerization reaction liquid was put into an autoclave and subjected to heat treatment at 240 ° C. for 1 hour, and then a vent type screw twin screw extruder (hole diameter: 15 mm, with a rear vent number of 1 and a forevent number of 2). L / D: 45) is introduced into the resin at a processing rate of 600 g / h, devolatilized in this extruder, and extruded to make the lactone ring-containing (meth) acrylic polymer and the polymer chain SEBS. Transparent pellets of a resin composition (D-11) containing a graft copolymer bonded to a triblock polymer chain were obtained. The operating conditions of the twin screw extruder were a barrel temperature of 260 ° C., a rotation speed of 300 rpm, and a degree of vacuum of 13.3 to 400 hPa (10 to 300 mmHg). The resin composition (D-11) has a weight average molecular weight of 155,000, a number average molecular weight of 59,000, a glass transition temperature on the high temperature side of 127 ° C., a glass transition temperature on the low temperature side of −54 ° C., and chloroform insoluble. The minute was 0.4% and the refractive index was 1.500. The island size of the sea-island structure of the unstretched film of the resin composition (D-11) was 250 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.3 nm and 4.9 nm, respectively.
 (2-25)実施例14:樹脂組成物(D-12)の調製
 実施例13において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(クラレ社製、ハイブラー(登録商標)7125、オレフィン性二重結合量0.44mmol/g、スチレン単位含有量20質量%)を10部、MMAを75部、MHMAを13.5部用いた以外は、実施例13と同様にして重合反応および環化反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は94%、MHMAの反応率は94%、Stの反応率は100%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:MHMA:St=82.7:14.8:2.5であり、(メタ)アクリル酸エステル由来の単位の含有割合は73.0質量%、環構造単位の含有割合は22.7質量%、スチレン由来の単位の含有割合は2.4質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。得られた重合反応液を実施例13と同様にして、オートクレーブ処理後、押出機内で脱揮を行い、透明な樹脂組成物(D-12)のペレットを得た。樹脂組成物(D-12)の重量平均分子量は16.2万、数平均分子量は6.1万、ガラス転移温度は127℃、クロロホルム不溶分は0.4%、屈折率は1.500であった。樹脂組成物(D-12)の未延伸フィルムの海島構造の島サイズは250nm、延伸フィルムの面内位相差Reと厚さ方向の位相差Rthはそれぞれ0.2nmと4.5nmであった。
(2-25) Example 14: Preparation of resin composition (D-12) In Example 13, SEBS triblock copolymer (manufactured by Kuraray Co., Ltd., Hibler (registered trademark)) was used as the monomer component charged into the reactor first. Trademark) 7125, olefinic double bond content 0.44 mmol / g, styrene unit content 20 mass%) 10 parts, MMA 75 parts, MHMA 13.5 parts Polymerization reaction and cyclization reaction were performed. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 94%, the reaction rate of MHMA was 94%, and the reaction rate of St was 100%. The composition ratio (mass basis) between the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: MHMA: St = 82.7: 14. 8: 2.5, the content ratio of units derived from (meth) acrylic acid ester is 73.0 mass%, the content ratio of ring structural units is 22.7 mass%, and the content ratio of units derived from styrene is 2 It was 4% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. The resulting polymerization reaction solution was autoclaved in the same manner as in Example 13, and then devolatilized in an extruder to obtain a transparent resin composition (D-12) pellet. The resin composition (D-12) has a weight average molecular weight of 162,000, a number average molecular weight of 61,000, a glass transition temperature of 127 ° C., a chloroform insoluble content of 0.4%, and a refractive index of 1.500. there were. The island size of the sea-island structure of the unstretched film of the resin composition (D-12) was 250 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.2 nm and 4.5 nm, respectively.
 (2-26)実施例15:樹脂組成物(D-13)の調製
 実施例13において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(旭化成社製、タフテック(登録商標)P1083、オレフィン性二重結合量2.01mmol/g、スチレン単位含有量20質量%)を6部、SEBSトリブロック共重合体2(旭化成社製、タフテック(登録商標)H1052、オレフィン性二重結合量0.27mmol/g、スチレン単位含有量20質量%、屈折率1.500)を4部、MMAを75部、MHMAを13.5部用い、滴下により加える単量体成分としてStを4部用いた以外は、実施例13と同様にして重合反応および環化反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は94%、MHMAの反応率は94%、Stの反応率は100%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:MHMA:St=82.6:14.9:2.5であり、(メタ)アクリル酸エステル由来の単位の含有割合は72.6質量%、環構造単位の含有割合は23.0質量%、スチレン由来の単位の含有割合は2.4質量%であった。反応液を一部取り出して濾過試験を行ったところ、好適に濾過を行うことができた。得られた重合反応液を実施例13と同様にして、オートクレーブ処理後、押出機内で脱揮を行い、透明な樹脂組成物(D-13)のペレットを得た。樹脂組成物(D-13)の重量平均分子量は15.1万、数平均分子量は5.7万、高温側のガラス転移温度は127℃、低温側のガラス転移温度は-61℃、クロロホルム不溶分は0.4%、屈折率は1.500であった。樹脂組成物(D-13)の未延伸フィルムの海島構造の島サイズは150nm、延伸フィルムの面内位相差Reと厚さ方向の位相差Rthはそれぞれ0.3nmと3.5nmであった。
(2-26) Example 15: Preparation of Resin Composition (D-13) In Example 13, SEBS triblock copolymer (manufactured by Asahi Kasei Co., Ltd. Trademark) P1083, olefinic double bond content 2.01 mmol / g, styrene unit content 20 mass%) 6 parts, SEBS triblock copolymer 2 (Asahi Kasei Co., Ltd., Tuftec (registered trademark) H1052, olefinic two 4 parts of styrene unit content 20% by mass, refractive index 1.500), 75 parts of MMA, 13.5 parts of MHMA, St is added as a monomer component to be added dropwise. A polymerization reaction and a cyclization reaction were carried out in the same manner as in Example 13 except that 4 parts were used. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 94%, the reaction rate of MHMA was 94%, and the reaction rate of St was 100%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: MHMA: St = 82.6: 14. .9: 2.5, the content ratio of units derived from (meth) acrylic acid ester is 72.6 mass%, the content ratio of ring structural units is 23.0 mass%, and the content ratio of units derived from styrene is 2 It was 4% by mass. A part of the reaction solution was taken out and subjected to a filtration test. As a result, filtration could be suitably performed. The resulting polymerization reaction liquid was autoclaved in the same manner as in Example 13, and then devolatilized in an extruder to obtain transparent resin composition (D-13) pellets. The resin composition (D-13) has a weight average molecular weight of 151,000, a number average molecular weight of 57,000, a glass transition temperature on the high temperature side of 127 ° C., a glass transition temperature on the low temperature side of −61 ° C., and chloroform insoluble. The minute was 0.4% and the refractive index was 1.500. The island size of the sea-island structure of the unstretched film of the resin composition (D-13) was 150 nm, and the in-plane retardation Re and the thickness direction retardation Rth of the stretched film were 0.3 nm and 3.5 nm, respectively.
 (2-27)比較例12:樹脂組成物(D-14)の調製
 実施例13において、最初に反応器に仕込む単量体成分として、SEBSトリブロック共重合体(旭化成社製、タフテック(登録商標)H1041、オレフィン性二重結合量0.45mmol/g、スチレン単位含有量30質量%)を10部、MMAを40部、MHMAを45部用い、滴下により加える単量体成分としてStを5部用いた以外は、実施例13と同様にして重合反応を行った。重合反応液中の残存単量体量より算出したMMAの反応率は94%、MHMAの反応率は90%、Stの反応率は100%であった。反応率から計算したSEBSトリブロックポリマー鎖に結合している(メタ)アクリル系ポリマー鎖と、(メタ)アクリル系ポリマーの組成比(質量基準)は、MMA:MHMA:St=45.2:48.7:6.0であり、(メタ)アクリル酸エステル由来の単位の含有割合は3.7質量%、環構造単位の含有割合は82.6質量%、スチレン由来の単位の含有割合は6.9質量%であった。反応液を一部取り出して濾過試験を行ったところ、フィルタ昇圧が見られた。得られた樹脂組成物(D-14)のガラス転移温度は158℃、クロロホルム不溶分は10.4%であった。
(2-27) Comparative Example 12: Preparation of Resin Composition (D-14) In Example 13, as a monomer component initially charged in the reactor, SEBS triblock copolymer (Taftec (registered by Asahi Kasei Corporation) was registered. (Trademark) 10 parts of H1041, olefinic double bond amount of 0.45 mmol / g, styrene unit content of 30% by mass), 40 parts of MMA, 45 parts of MHMA. A polymerization reaction was carried out in the same manner as in Example 13 except for using a part. The reaction rate of MMA calculated from the amount of residual monomers in the polymerization reaction solution was 94%, the reaction rate of MHMA was 90%, and the reaction rate of St was 100%. The composition ratio (mass basis) of the (meth) acrylic polymer chain and the (meth) acrylic polymer bonded to the SEBS triblock polymer chain calculated from the reaction rate is MMA: MHMA: St = 45.2: 48. 0.7: 6.0, the content ratio of units derived from (meth) acrylic acid ester is 3.7 mass%, the content ratio of ring structural units is 82.6 mass%, and the content ratio of units derived from styrene is 6 It was 9 mass%. A part of the reaction solution was taken out and subjected to a filtration test. The obtained resin composition (D-14) had a glass transition temperature of 158 ° C. and a chloroform-insoluble content of 10.4%.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1~表3に、各実施例、比較例の結果をまとめた。グラフト鎖に環構造を導入しなかった比較例1の樹脂組成物A-3は、ガラス転移温度が低く、耐熱性が低いものとなった。また、環構造が導入されていても、グラフト共重合体を含まない比較例2の樹脂組成物B-1、比較例3の樹脂組成物B-2、比較例5の樹脂組成物B-3、比較例8の樹脂組成物B-4は、衝撃強度(破壊エネルギー)が低く、機械的強度に劣るものとなった。比較例4の樹脂組成物A-4、比較例6の樹脂組成物C-3、比較例7の樹脂組成物A-5、比較例9の樹脂組成物C-4、比較例10の樹脂組成物D-9、比較例11の樹脂組成物D-10、比較例12の樹脂組成物D-14は、グラフト鎖が環構造単位を有するものの、グラフト鎖中の(メタ)アクリル酸エステル単位の含有割合が45質量%未満ないし98質量%超であったため、ガラス転移温度が低く耐熱性に劣るか、衝撃強度(破壊エネルギー)が低く、機械的強度に劣るか、あるいは製造時にゲル化物が発生し、異物を多く含むものとなった。一方、実施例1~15の各樹脂組成物は、透明性、機械的強度、耐熱性に優れ、これらをバランス良く備えるとともに、ゲル化物の発生が少ないものとなった。 Tables 1 to 3 summarize the results of each example and comparative example. The resin composition A-3 of Comparative Example 1 in which no ring structure was introduced into the graft chain had a low glass transition temperature and low heat resistance. Further, even if a ring structure is introduced, the resin composition B-1 of Comparative Example 2, the resin composition B-2 of Comparative Example 3, and the resin composition B-3 of Comparative Example 5 that do not contain a graft copolymer The resin composition B-4 of Comparative Example 8 had a low impact strength (breaking energy) and was inferior in mechanical strength. Resin Composition A-4 of Comparative Example 4, Resin Composition C-3 of Comparative Example 6, Resin Composition A-5 of Comparative Example 7, Resin Composition C-4 of Comparative Example 9, Resin Composition of Comparative Example 10 Product D-9, Resin Composition D-10 of Comparative Example 11 and Resin Composition D-14 of Comparative Example 12 have a (meth) acrylate unit in the graft chain, although the graft chain has a cyclic structural unit. Since the content ratio was less than 45% by mass or more than 98% by mass, the glass transition temperature was low and the heat resistance was poor, the impact strength (fracture energy) was low, the mechanical strength was poor, or a gelled product was generated during production. However, it contains a lot of foreign matter. On the other hand, each of the resin compositions of Examples 1 to 15 was excellent in transparency, mechanical strength, and heat resistance, was provided with a good balance, and generated less gelled products.
 本発明によれば、透明性、機械的強度、耐熱性に優れた共重合体および樹脂組成物を得ることができるため、これらを光学フィルム等に適用することで、優れた偏光子保護フィルム、偏光板、画像表示装置等を製造することができる。 According to the present invention, since a copolymer and a resin composition excellent in transparency, mechanical strength, and heat resistance can be obtained, by applying these to an optical film or the like, an excellent polarizer protective film, A polarizing plate, an image display apparatus, etc. can be manufactured.

Claims (16)

  1.  ジエンおよび/またはオレフィン由来の単位を有するポリマー鎖(A)と、(メタ)アクリル系単量体由来の単位と主鎖に環構造を有する単位を有するポリマー鎖(B)とを有する共重合体であって、
     前記ポリマー鎖(B)中、前記(メタ)アクリル酸エステル由来の単位の含有割合が45質量%以上98質量%以下であることを特徴とする共重合体。
    Copolymer having polymer chain (A) having units derived from diene and / or olefin, polymer chain (B) having units derived from (meth) acrylic monomers and units having a ring structure in the main chain Because
    In the polymer chain (B), a content ratio of the unit derived from the (meth) acrylic acid ester is 45% by mass or more and 98% by mass or less.
  2.  ポリマー鎖(B)がポリマー鎖(A)にグラフトしたものである請求項1に記載の共重合体。 The copolymer according to claim 1, wherein the polymer chain (B) is grafted to the polymer chain (A).
  3.  前記環構造がラクトン環構造および/またはマレイミド構造である請求項1または2に記載の共重合体。 The copolymer according to claim 1 or 2, wherein the ring structure is a lactone ring structure and / or a maleimide structure.
  4.  前記ポリマー鎖(B)中、前記(メタ)アクリル系単量体由来の単位と前記主鎖に環構造を有する単位の合計含有割合が90質量%以上である請求項1~3のいずれかに記載の共重合体。 The total content of the unit derived from the (meth) acrylic monomer and the unit having a ring structure in the main chain in the polymer chain (B) is 90% by mass or more. The copolymer described.
  5.  請求項1~4のいずれかに記載の共重合体と(メタ)アクリル系重合体とを含有することを特徴とする樹脂組成物。 A resin composition comprising the copolymer according to any one of claims 1 to 4 and a (meth) acrylic polymer.
  6.  前記(メタ)アクリル系重合体が、前記(メタ)アクリル系単量体由来の単位を有する請求項5に記載の樹脂組成物。 The resin composition according to claim 5, wherein the (meth) acrylic polymer has units derived from the (meth) acrylic monomer.
  7.  前記(メタ)アクリル系重合体が、前記主鎖に環構造を有する単位を有する請求項5または6に記載の樹脂組成物。 The resin composition according to claim 5 or 6, wherein the (meth) acrylic polymer has a unit having a ring structure in the main chain.
  8.  100℃以上および100℃未満にそれぞれガラス転移温度を有する請求項5~7のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 5 to 7, which has a glass transition temperature at 100 ° C or higher and lower than 100 ° C, respectively.
  9.  クロロホルムに対する不溶分が10質量%以下である請求項5~8のいずれかに記載の樹脂組成物。 The resin composition according to any one of claims 5 to 8, wherein an insoluble content in chloroform is 10% by mass or less.
  10.  請求項1~4のいずれかに記載の共重合体または請求項5~9のいずれかに記載の樹脂組成物を含む光学フィルム。 An optical film comprising the copolymer according to any one of claims 1 to 4 or the resin composition according to any one of claims 5 to 9.
  11.  請求項10に記載の光学フィルムを含む偏光板。 A polarizing plate comprising the optical film according to claim 10.
  12.  請求項10に記載の光学フィルムを含む画像表示装置。 An image display device comprising the optical film according to claim 10.
  13.  請求項1~4のいずれかに記載の共重合体の製造方法であって、
     ジエンおよび/またはオレフィン由来の単位を有する重合体(P1)の存在下、(メタ)アクリル系単量体と環構造内に重合性二重結合を有する単量体を含む単量体成分を重合する工程を有することを特徴とする共重合体の製造方法。
    A method for producing the copolymer according to any one of claims 1 to 4,
    In the presence of the polymer (P1) having units derived from diene and / or olefin, a monomer component containing a (meth) acrylic monomer and a monomer having a polymerizable double bond in the ring structure is polymerized. A process for producing a copolymer, comprising the step of:
  14.  請求項1~4のいずれかに記載の共重合体の製造方法であって、
     ジエンおよび/またはオレフィン由来の単位を有する重合体(P1)の存在下、(メタ)アクリル系単量体を含む単量体成分を重合する工程と、
     前記重合工程で形成された(メタ)アクリル系単量体由来の単位を有するポリマー鎖の主鎖に環構造を形成する工程とを有することを特徴とする共重合体の製造方法。
    A method for producing the copolymer according to any one of claims 1 to 4,
    Polymerizing a monomer component containing a (meth) acrylic monomer in the presence of the polymer (P1) having a unit derived from a diene and / or an olefin;
    And a step of forming a ring structure in the main chain of the polymer chain having a unit derived from the (meth) acrylic monomer formed in the polymerization step.
  15.  前記重合工程で得られた樹脂溶液を濾過する工程をさらに有する請求項13に記載の共重合体の製造方法。 The method for producing a copolymer according to claim 13, further comprising a step of filtering the resin solution obtained in the polymerization step.
  16.  前記環構造形成工程で得られた樹脂溶液を濾過する工程をさらに有する請求項14に記載の共重合体の製造方法。 The method for producing a copolymer according to claim 14, further comprising a step of filtering the resin solution obtained in the ring structure forming step.
PCT/JP2018/000558 2017-01-13 2018-01-12 Copolymer and resin composition WO2018131670A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018561423A JP6732952B2 (en) 2017-01-13 2018-01-12 Copolymer and resin composition
KR1020197012679A KR102190057B1 (en) 2017-01-13 2018-01-12 Copolymer and resin composition
CN201880006664.5A CN110167981B (en) 2017-01-13 2018-01-12 Copolymer and resin composition
JP2018131703A JP2019123854A (en) 2017-01-13 2018-07-11 Copolymer and resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-004468 2017-01-13
JP2017004468 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018131670A1 true WO2018131670A1 (en) 2018-07-19

Family

ID=62840158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/000558 WO2018131670A1 (en) 2017-01-13 2018-01-12 Copolymer and resin composition

Country Status (4)

Country Link
JP (2) JP6732952B2 (en)
KR (1) KR102190057B1 (en)
CN (1) CN110167981B (en)
WO (1) WO2018131670A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007451A (en) * 2018-07-06 2020-01-16 株式会社日本触媒 Resin composition and production method thereof
WO2020017269A1 (en) * 2018-07-20 2020-01-23 東洋紡株式会社 Polyolefin adhesive composition
WO2020075577A1 (en) * 2018-10-10 2020-04-16 東洋紡株式会社 Polyolefin adhesive composition
JP2020101581A (en) * 2018-12-19 2020-07-02 株式会社日本触媒 Film with suppressed phase difference in thickness direction
JP2020105373A (en) * 2018-12-27 2020-07-09 株式会社日本触媒 Resin foam and method for producing resin foam
JP7603861B2 (en) 2020-04-14 2024-12-20 日東電工株式会社 Polarizing membranes and films

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961161A (en) * 2020-08-27 2020-11-20 聚纶材料科技(深圳)有限公司 Resin composition and method for producing the same, and optical film and method for producing the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950042A (en) * 1972-09-14 1974-05-15
JPS57185311A (en) * 1981-05-08 1982-11-15 Hitachi Ltd Thermosetting resin composition and cured article thereof
JP2007046044A (en) * 2005-07-15 2007-02-22 Toray Ind Inc Thermoplastic resin composition, molded article and film
JP2007254727A (en) * 2006-02-22 2007-10-04 Nippon Shokubai Co Ltd Organic fine particles, resin composition, optical film and its production method
WO2009096375A1 (en) * 2008-01-30 2009-08-06 Idemitsu Kosan Co., Ltd. Aqueous dispersion containing polyolefin graft copolymer
JP2010180305A (en) * 2009-02-04 2010-08-19 Nippon Shokubai Co Ltd Acrylic resin and method for producing the same
JP2010209344A (en) * 1999-07-23 2010-09-24 Nippon Paper Chemicals Co Ltd Aqueous dispersion and process for producing the same
WO2011148586A1 (en) * 2010-05-26 2011-12-01 出光興産株式会社 Terminally unsaturated polyolefin, and manufacturing method thereof
JP2017119825A (en) * 2015-12-24 2017-07-06 株式会社日本触媒 Method for producing block-copolymer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238464B2 (en) 1992-04-20 2001-12-17 三菱化学株式会社 Resin composition
JP4430922B2 (en) 2003-12-01 2010-03-10 株式会社日本触媒 Method for producing optical thermoplastic resin molding material
JP4315898B2 (en) 2004-12-16 2009-08-19 株式会社日本触媒 Manufacturing method of optical film
JP5019736B2 (en) 2005-10-07 2012-09-05 株式会社日本触媒 Acrylic transparency film or sheet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4950042A (en) * 1972-09-14 1974-05-15
JPS57185311A (en) * 1981-05-08 1982-11-15 Hitachi Ltd Thermosetting resin composition and cured article thereof
JP2010209344A (en) * 1999-07-23 2010-09-24 Nippon Paper Chemicals Co Ltd Aqueous dispersion and process for producing the same
JP2007046044A (en) * 2005-07-15 2007-02-22 Toray Ind Inc Thermoplastic resin composition, molded article and film
JP2007254727A (en) * 2006-02-22 2007-10-04 Nippon Shokubai Co Ltd Organic fine particles, resin composition, optical film and its production method
WO2009096375A1 (en) * 2008-01-30 2009-08-06 Idemitsu Kosan Co., Ltd. Aqueous dispersion containing polyolefin graft copolymer
JP2010180305A (en) * 2009-02-04 2010-08-19 Nippon Shokubai Co Ltd Acrylic resin and method for producing the same
WO2011148586A1 (en) * 2010-05-26 2011-12-01 出光興産株式会社 Terminally unsaturated polyolefin, and manufacturing method thereof
JP2017119825A (en) * 2015-12-24 2017-07-06 株式会社日本触媒 Method for producing block-copolymer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020007451A (en) * 2018-07-06 2020-01-16 株式会社日本触媒 Resin composition and production method thereof
JP7141871B2 (en) 2018-07-06 2022-09-26 株式会社日本触媒 Resin composition and its manufacturing method
WO2020017269A1 (en) * 2018-07-20 2020-01-23 東洋紡株式会社 Polyolefin adhesive composition
WO2020075577A1 (en) * 2018-10-10 2020-04-16 東洋紡株式会社 Polyolefin adhesive composition
JP2020101581A (en) * 2018-12-19 2020-07-02 株式会社日本触媒 Film with suppressed phase difference in thickness direction
JP7301534B2 (en) 2018-12-19 2023-07-03 株式会社日本触媒 Optical film with reduced retardation in the thickness direction
JP2020105373A (en) * 2018-12-27 2020-07-09 株式会社日本触媒 Resin foam and method for producing resin foam
JP7214474B2 (en) 2018-12-27 2023-01-30 株式会社日本触媒 RESIN FOAM AND RESIN FOAM MANUFACTURING METHOD
JP7603861B2 (en) 2020-04-14 2024-12-20 日東電工株式会社 Polarizing membranes and films

Also Published As

Publication number Publication date
JP2019123854A (en) 2019-07-25
CN110167981B (en) 2022-04-08
KR20190055838A (en) 2019-05-23
JP6732952B2 (en) 2020-07-29
CN110167981A (en) 2019-08-23
KR102190057B1 (en) 2020-12-14
JPWO2018131670A1 (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP6732952B2 (en) Copolymer and resin composition
JP5300385B2 (en) Thermoplastic resin composition and film using the same
CN102906130B (en) Acrylic thermoplastic resin and molded object thereof
JP5912277B2 (en) Optical film, polarizer protective film, polarizing plate, and image display device
JP6122327B2 (en) Thermoplastic resin composition, method for producing the same, molded product, and film
KR101623218B1 (en) Stretched optical film and polarizing plate and image display device using the same
JP7211726B2 (en) the film
JP7141873B2 (en) Copolymer and resin composition
JP7187194B2 (en) Copolymer, resin composition, and method for producing copolymer
JP7096720B2 (en) the film
JP5937324B2 (en) Polarizer protective film and use thereof
JP7141870B2 (en) Resin composition and film
JP6110184B2 (en) Biaxially stretched film, polarizing plate, image display device, and method for producing biaxially stretched film
JP2020007451A (en) Resin composition and production method thereof
JP7301534B2 (en) Optical film with reduced retardation in the thickness direction
JP2011209627A (en) Retardation film and image display device including the same
JP7517879B2 (en) Film with reduced retardation in the thickness direction
JP2020189894A (en) Resin composition, and production method thereof
JP7239331B2 (en) Resin composition and its manufacturing method
JP6246607B2 (en) Manufacturing method of optical film
JP2022086501A (en) Film reduced in retardation in thickness direction
JP2010243581A (en) Optical film made of acrylic resin containing phosphate
JP7158929B2 (en) Method for producing (meth)acrylic copolymer and resin composition
JP2016183312A (en) Thermoplastic resin composition and optical film using the same
JP2020132719A (en) Nano cellulose-containing resin composition and production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18739183

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561423

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197012679

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18739183

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载