+

WO2018131298A1 - 車両制御システム、車両制御方法、および車両制御プログラム - Google Patents

車両制御システム、車両制御方法、および車両制御プログラム Download PDF

Info

Publication number
WO2018131298A1
WO2018131298A1 PCT/JP2017/042193 JP2017042193W WO2018131298A1 WO 2018131298 A1 WO2018131298 A1 WO 2018131298A1 JP 2017042193 W JP2017042193 W JP 2017042193W WO 2018131298 A1 WO2018131298 A1 WO 2018131298A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
braking
lane change
host vehicle
Prior art date
Application number
PCT/JP2017/042193
Other languages
English (en)
French (fr)
Inventor
淳之 石岡
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201780082691.6A priority Critical patent/CN110167811B/zh
Priority to JP2018561838A priority patent/JP6692930B2/ja
Priority to US16/475,694 priority patent/US11414079B2/en
Publication of WO2018131298A1 publication Critical patent/WO2018131298A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/584Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network

Definitions

  • the present invention relates to a vehicle control system, a vehicle control method, and a vehicle control program.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a vehicle control system, a vehicle control method, and a vehicle control program capable of changing lanes in consideration of surrounding vehicles. I will.
  • the speed of the reference vehicle that the determination unit decelerates by braking based on the relative speed between the host vehicle and the reference vehicle is the speed of the host vehicle.
  • the traveling control unit uses the correspondence information for determining the braking distance when the determination unit assumes that braking is performed with a constant braking force.
  • the braking distance at the time when the lane change control is performed is derived.
  • the determination unit includes a plurality of pieces of correspondence information according to an absolute speed of at least one of the host vehicle and the reference vehicle. One piece of the correspondence information is selected.
  • the determination unit changes the threshold according to a situation of the lane to which the lane is changed.
  • the determination unit derives the braking distance based on a situation of the lane to which the lane is changed. is there.
  • the determination unit is configured according to an absolute speed of at least one of the host vehicle and the reference vehicle.
  • the threshold value is changed.
  • the determination unit derives the braking distance based on an absolute speed of at least one of the host vehicle and the reference vehicle. .
  • the determination unit changes the threshold value according to the type of the reference vehicle.
  • the determination unit derives the braking distance based on a type of the reference vehicle.
  • the determination unit decelerates by braking based on a relative speed between the host vehicle and the reference vehicle.
  • a braking distance that is predicted to be traveled by the reference vehicle until the speed of the reference vehicle becomes approximately equal to the speed of the host vehicle is derived, and the travel control unit determines the braking distance predicted to travel by the reference vehicle.
  • a margin based on a time obtained by dividing the distance from the position of the reference vehicle to the position of the host vehicle by the speed of the reference vehicle at the time is added, and the braking distance and the margin Is determined to be greater than or equal to a threshold value when the sum of the vehicle and vehicle is equal to or greater than the relative distance between the host vehicle and the reference vehicle.
  • the determination unit changes the threshold according to the necessity of the lane change.
  • a determination unit that determines whether or not the vehicle speed is less than the vehicle control system, and the travel control unit determines that the determination unit determines that the speed of the reference vehicle is equal to or higher than the speed of the host vehicle.
  • Lane change It is intended to stop the control.
  • the in-vehicle computer recognizes one or more other vehicles existing around the host vehicle, controls at least steering of the host vehicle, performs lane change control for changing the host vehicle, and performs the lane change control.
  • the change control it is because the own vehicle changes the lane based on the relative relationship between the reference vehicle existing in the lane to which the lane is changed and the own vehicle among the one or more other recognized vehicles.
  • Vehicle control that determines whether or not the degree of braking predicted to occur in the reference vehicle is greater than or equal to a threshold, and stops the lane change control when it is determined that the degree of braking is greater than or equal to the threshold. Is the method.
  • the own vehicle changes the lane based on a relative relationship between the reference vehicle existing in the lane to which the lane is changed and the own vehicle among the one or more other recognized vehicles.
  • a vehicle control program A vehicle control program.
  • FIG. 1 It is a lineblock diagram of vehicle control system 1 in a 1st embodiment. It is a figure which shows a mode that the relative position and attitude
  • FIG. It is a figure which shows an example of the action plan produced
  • 4 is a flowchart showing an example of processing executed by the automatic operation control unit 100. It is a diagram illustrating the relative velocity V re the reference vehicle mref the own vehicle M, the relationship between the braking distance D of the reference vehicle mref as a map.
  • FIG. 1 is a configuration diagram of a vehicle control system 1 in the first embodiment.
  • the vehicle on which the vehicle control system 1 is mounted is, for example, a vehicle such as a two-wheel, three-wheel, or four-wheel vehicle, and a drive source thereof is an internal combustion engine such as a diesel engine or a gasoline engine, an electric motor, or a combination thereof.
  • the electric motor operates using electric power generated by a generator connected to the internal combustion engine or electric discharge power of a secondary battery or a fuel cell.
  • the vehicle control system 1 includes, for example, a camera 10, a radar device 12, a finder 14, an object recognition device 16, a communication device 20, an HMI (Human20Machine Interface) 30, a vehicle sensor 40, and a navigation device 50. , An MPU (Micro-Processing Unit) 60, a driving operator 80, an automatic driving control unit 100, a traveling driving force output device 200, a brake device 210, and a steering device 220. These devices and devices are connected to each other by a multiple communication line such as a CAN (Controller Area Network) communication line, a serial communication line, a wireless communication network, or the like.
  • CAN Controller Area Network
  • serial communication line a wireless communication network
  • the camera 10 is a digital camera using a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • a solid-state imaging device such as a CCD (Charge Coupled Device) or a CMOS (Complementary Metal Oxide Semiconductor).
  • One or a plurality of cameras 10 are attached to any part of a vehicle (hereinafter referred to as the host vehicle M) on which the vehicle control system 1 is mounted.
  • the camera 10 When imaging the front, the camera 10 is attached to the upper part of the front window shield, the rear surface of the rearview mirror, or the like.
  • the camera 10 periodically and repeatedly images the periphery of the host vehicle M.
  • the camera 10 may be a stereo camera.
  • the radar device 12 radiates a radio wave such as a millimeter wave around the host vehicle M and detects a radio wave (reflected wave) reflected by the object to detect at least the position (distance and direction) of the object.
  • a radio wave such as a millimeter wave around the host vehicle M
  • a radio wave reflected wave
  • One or a plurality of radar devices 12 are attached to arbitrary locations of the host vehicle M.
  • the radar apparatus 12 may detect the position and speed of an object by FMCW (Frequency Modulated Continuous Wave) method.
  • FMCW Frequency Modulated Continuous Wave
  • the finder 14 is a LIDAR (Light Detection and Ranging or Laser Imaging Detection and Ranging) that measures the scattered light with respect to the irradiated light and detects the distance to the target.
  • LIDAR Light Detection and Ranging or Laser Imaging Detection and Ranging
  • One or a plurality of the finders 14 are attached to arbitrary locations of the host vehicle M.
  • the object recognition device 16 performs sensor fusion processing on the detection results of some or all of the camera 10, the radar device 12, and the finder 14 to recognize the position, type, speed, and the like of the object.
  • the object recognition device 16 outputs the recognition result to the automatic driving control unit 100.
  • the communication device 20 uses, for example, a cellular network, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), etc., to another vehicle (an example of a surrounding vehicle) existing around the host vehicle M Or communicate with various server devices via a wireless base station.
  • a cellular network for example, a Wi-Fi network, Bluetooth (registered trademark), DSRC (Dedicated Short Range Communication), etc.
  • Bluetooth registered trademark
  • DSRC Dedicated Short Range Communication
  • the HMI 30 presents various information to the passenger of the host vehicle M and accepts an input operation by the passenger.
  • the HMI 30 includes various display devices, speakers, buzzers, touch panels, switches, input keys, and the like.
  • the vehicle sensor 40 includes a vehicle speed sensor that detects the speed of the host vehicle M, an acceleration sensor that detects acceleration, a yaw rate sensor that detects angular velocity around the vertical axis, a direction sensor that detects the direction of the host vehicle M, and the like.
  • the vehicle sensor 40 outputs the detected information (speed, acceleration, angular velocity, direction, etc.) to the automatic driving control unit 100.
  • the navigation device 50 includes, for example, a GNSS (Global Navigation Satellite System) receiver 51, a navigation HMI 52, and a route determination unit 53.
  • the first map information 54 is stored in a storage device such as an HDD (Hard Disk Drive) or a flash memory. Holding.
  • the GNSS receiver 51 specifies the position of the host vehicle M based on the signal received from the GNSS satellite. The position of the host vehicle M may be specified or supplemented by INS (Inertial Navigation System) using the output of the vehicle sensor 40.
  • the navigation HMI 52 includes a display device, a speaker, a touch panel, input keys, and the like. The navigation HMI 52 may be partly or wholly shared with the HMI 30 described above.
  • the route determination unit 53 uses, for example, the navigation HMI 52 to determine the route from the position of the host vehicle M specified by the GNSS receiver 51 (or any input position) to the destination input by the occupant. The determination is made with reference to the first map information 54.
  • the first map information 54 is information in which a road shape is expressed by, for example, a link indicating a road and nodes connected by the link.
  • the first map information 54 may include road curvature and POI (PointOf Interest) information.
  • the route determined by the route determination unit 53 is output to the MPU 60. Further, the navigation device 50 may perform route guidance using the navigation HMI 52 based on the route determined by the route determination unit 53.
  • the navigation apparatus 50 may be implement
  • the MPU 60 functions as, for example, the recommended lane determining unit 61 and holds the second map information 62 in a storage device such as an HDD or a flash memory.
  • the recommended lane determining unit 61 divides the route provided from the navigation device 50 into a plurality of blocks (for example, every 100 [m] with respect to the vehicle traveling direction), and refers to the second map information 62 for each block. Determine the recommended lane. For example, when there are a plurality of lanes in the route provided from the navigation device 50, the recommended lane determination unit 61 determines one recommended lane from the plurality of lanes.
  • the recommended lane determining unit 61 determines a recommended lane so that the host vehicle M can travel on a reasonable driving route for proceeding to the branch destination when there is a branching point or a joining point in the provided route. To do.
  • the second map information 62 is map information with higher accuracy than the first map information 54.
  • the second map information 62 includes, for example, information on the center of the lane or information on the boundary of the lane.
  • the second map information 62 may include road information, traffic regulation information, address information (address / postal code), facility information, telephone number information, and the like.
  • Road information includes information indicating the type of road such as expressway, toll road, national road, prefectural road, road lane number, width of each lane, road gradient, road position (longitude, latitude, height). Information including three-dimensional coordinates including), curvature of lane curve, merging and branching positions of lanes, signs provided on roads, and the like.
  • the second map information 62 may be updated at any time by accessing another device using the communication device 20.
  • the driving operator 80 includes, for example, an accelerator pedal, a brake pedal, a shift lever, a steering wheel, and the like.
  • a sensor that detects the amount of operation or the presence or absence of an operation is attached to the driving operator 80, and the detection result is the automatic driving control unit 100, or the traveling driving force output device 200, the brake device 210, and the steering device. 220 is output to one or both of 220.
  • the automatic operation control unit 100 includes a first control unit 120 and a second control unit 140, for example.
  • Each of the first control unit 120 and the second control unit 140 is realized by a processor (CPU) such as a CPU (Central Processing Unit) executing a program (software).
  • CPU Central Processing Unit
  • some or all of the components of the first control unit 120 and the second control unit 140 are LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), GPU ( It may be realized by hardware (circuit part; including circuit) such as Graphics Processing Unit) or may be realized by cooperation of software and hardware.
  • the first control unit 120 includes, for example, an external environment recognition unit 121, a vehicle position recognition unit 122, an action plan generation unit 123, an event availability determination unit 124, and a track generation unit 125.
  • the external environment recognition unit 121 determines the position of the surrounding vehicle and the state such as speed and acceleration based on information input directly from the camera 10, the radar device 12, and the finder 14 or via the object recognition device 16. recognize.
  • the position of the surrounding vehicle may be represented by a representative point such as the center of gravity or corner of the surrounding vehicle, or may be represented by an area expressed by the outline of the surrounding vehicle.
  • the “state” of the surrounding vehicle may include acceleration and jerk of the surrounding vehicle, or “behavioral state” (for example, whether or not the lane is changed or is about to be changed).
  • the external environment recognition unit 142 may recognize the positions of guardrails, utility poles, parked vehicles, pedestrians, road road markings, signs, and other objects.
  • the own vehicle position recognition unit 122 recognizes, for example, the lane (traveling lane) in which the host vehicle M is traveling, and the relative position and posture of the host vehicle M with respect to the traveling lane.
  • the own vehicle position recognition unit 122 for example, includes a road marking line pattern (for example, an arrangement of solid lines and broken lines) obtained from the second map information 62 and an area around the own vehicle M recognized from an image captured by the camera 10.
  • the traveling lane is recognized by comparing the road marking line pattern. In this recognition, the position of the host vehicle M acquired from the navigation device 50 and the processing result by INS may be taken into account.
  • FIG. 2 is a diagram illustrating a state in which the vehicle position recognition unit 122 recognizes the relative position and posture of the vehicle M with respect to the travel lane L1.
  • the own vehicle position recognizing unit 122 makes, for example, a line connecting the deviation OS of the reference point (for example, the center of gravity) of the own vehicle M from the travel lane center CL and the travel lane center CL in the traveling direction of the own vehicle M.
  • the angle ⁇ is recognized as the relative position and posture of the host vehicle M with respect to the traveling lane L1.
  • the host vehicle position recognition unit 122 recognizes the position of the reference point of the host vehicle M with respect to any side end of the host lane L1 as the relative position of the host vehicle M with respect to the traveling lane. Also good.
  • the relative position of the host vehicle M recognized by the host vehicle position recognition unit 122 is provided to the recommended lane determination unit 61 and the action plan generation unit 123.
  • the action plan generation unit 123 generates an action plan so as to travel in the recommended lane determined by the recommended lane determination unit 61 and to cope with the surrounding situation of the host vehicle M.
  • the action plan is composed of events that are sequentially executed in automatic driving.
  • the automatic driving means that the automatic driving control unit 100 controls at least one of acceleration / deceleration or steering of the host vehicle M.
  • the events include, for example, a constant speed traveling event that travels in the same traveling lane at a constant speed, a following traveling event that follows the preceding vehicle, a lane change event that changes the traveling lane, and an overtaking that causes the host vehicle M to pass the preceding vehicle.
  • the own vehicle M so as not to deviate from the current driving lane or to change to a desired lane at a merging event or branch point for accelerating / decelerating the own vehicle M in a merging lane for merging with an event or main line
  • an emergency stop event for emergency stop of the host vehicle M according to the behavior of surrounding vehicles
  • a handover event for terminating automatic driving and switching to manual driving.
  • the manual driving means that the driving force output device 200, the brake device 210, and the steering device 220 are controlled by the operation of the occupant with respect to the driving operator 80.
  • an event for avoidance may be planned based on the surrounding situation of the host vehicle M (the presence of surrounding vehicles and pedestrians, lane narrowing due to road construction, etc.).
  • FIG. 3 is a diagram showing an example of an action plan generated for a certain section.
  • the recommended lane is set so as to be convenient for traveling along the route to the destination.
  • the action plan generation unit 123 generates an action plan necessary for the host vehicle M to travel on the recommended lane determined by the recommended lane determination unit 61.
  • the action plan generation unit 123 plans a lane change event or the like in order to change the host vehicle M to the lane to which the recommended lane is switched at a predetermined distance or a predetermined time at the point where the recommended lane is switched.
  • the predetermined distance or the predetermined time may be determined according to the type of event.
  • the action plan generation unit 123 plans a branch event at the branch point.
  • the event availability determination unit 124 determines whether or not an event planned in advance in the action plan generated by the action plan generation unit 123 can be executed in a predetermined cycle. For example, when the host vehicle M arrives at a point where a lane change event is planned, the event availability determination unit 124 sets the lane change event every time the host vehicle M travels a certain distance from the point or every time a certain time elapses. Judge whether execution is possible. For example, when it is not possible to secure a space enough to drive the host vehicle M in the lane to which the lane is changed (adjacent lane), or when the surrounding vehicle is forced to suddenly brake by changing the lane of the host vehicle M, it is determined whether or not the event is possible. The unit 124 determines that the lane change event cannot be executed. A detailed description of the condition for determining whether or not to execute the lane change event will be described later with reference to the drawings.
  • the event determination unit 124 may change the planned event to another event. For example, if the event availability determination unit 124 determines that the lane change event cannot be executed, the event change determination unit 124 changes the lane change event to a constant speed travel event or a follow-up travel event and maintains the current vehicle lane in the current lane. Let Further, the event availability determination unit 124 may change the lane by manual driving instead of changing the lane changing event to a handover event and changing the lane by automatic driving.
  • the track generation unit 125 When the event possibility determination unit 124 determines that the scheduled event is executable, the track generation unit 125 generates a target track on which the host vehicle M will travel in the future according to the scheduled event.
  • the target trajectory includes, for example, an acceleration / deceleration element and a steering element.
  • FIG. 4 is a diagram illustrating an example of a target track generated at the time of a lane change event.
  • the target trajectory sets a plurality of future reference times for each predetermined sampling time (for example, about 0 comma [sec]) (from t 1 to t 9 in the figure), and at these reference times, It is generated as a set of target points (orbit points K) to be reached.
  • interval of the track points K when the space
  • the angle formed by the track points K increases with respect to the traveling direction of the vehicle, it indicates that the vehicle is steered greatly in the section between the track points K.
  • the trajectory generation unit 125 generates, for example, a plurality of target trajectory candidates, and selects an optimal target trajectory at that time based on the viewpoints of safety and efficiency.
  • the traveling driving force output device 200 the brake device 210, and the steering device 220 will be described.
  • the driving force output device 200 outputs a driving force (torque) for driving the vehicle to driving wheels.
  • the travel driving force output device 200 includes, for example, a combination of an internal combustion engine, an electric motor, a transmission, and the like, and an ECU that controls these.
  • the ECU controls the above-described configuration in accordance with information input from the travel control unit 141 or information input from the driving operator 80.
  • the brake device 210 includes, for example, a brake caliper, a cylinder that transmits hydraulic pressure to the brake caliper, an electric motor that generates hydraulic pressure in the cylinder, and a brake ECU.
  • the brake ECU controls the electric motor in accordance with the information input from the travel control unit 141 or the information input from the driving operation element 80 so that the brake torque corresponding to the braking operation is output to each wheel.
  • the brake device 210 may include, as a backup, a mechanism that transmits the hydraulic pressure generated by operating the brake pedal included in the driving operation element 80 to the cylinder via the master cylinder.
  • the brake device 210 is not limited to the configuration described above, and may be an electronically controlled hydraulic brake device that controls the actuator according to information input from the travel control unit 141 and transmits the hydraulic pressure of the master cylinder to the cylinder. Good.
  • the steering device 220 includes, for example, a steering ECU and an electric motor.
  • the electric motor changes the direction of the steered wheels by applying a force to a rack and pinion mechanism.
  • the steering ECU drives the electric motor according to the information input from the travel control unit 141 or the information input from the driving operator 80, and changes the direction of the steered wheels.
  • the second control unit 140 includes a travel control unit 141.
  • the traveling control unit 141 is one of the traveling driving force output device 200, the brake device 210, and the steering device 220 so that the host vehicle M passes the target track generated by the track generating unit 125 at a scheduled time. Or control both.
  • the travel control unit 141 determines the ECU control amount (for example, engine throttle opening, shift stage, etc.) in the travel driving force output device 200 according to the interval between the track points K defined as the target track, and the brake device.
  • the control amount of the brake ECU 210 (for example, the drive amount of an electric motor or other actuator) is determined.
  • the traveling control unit 141 responds to the angle formed by the traveling direction of the host vehicle M at the track point K at a certain reference time t i and the direction of the track point K at the reference time t i + 1 next to the reference time ti.
  • the control amount of the electric motor in the steering device 92 is determined.
  • FIG. 5 is a flowchart illustrating an example of processing executed by the automatic operation control unit 100. The processing of this flowchart is repeatedly performed at a predetermined cycle during automatic operation, for example.
  • the event availability determination unit 124 identifies an event to be executed at the present time from a plurality of events planned as an action plan, and determines whether or not the identified event is a lane change event (step S1). S100). When it is not a lane change event, the process of this flowchart is complete
  • the event availability determination unit 124 is located behind the host vehicle M on the lane change destination lane designated by the lane change event among the surrounding vehicles recognized by the external world recognition unit 121. It is determined whether or not there is a surrounding vehicle (hereinafter referred to as reference vehicle mref) (step S102).
  • the reference vehicle mref is a vehicle assumed to be located behind the host vehicle M after the lane change. When viewed from the reference vehicle mref side, the vehicle that hits immediately before itself is the host vehicle M.
  • the event availability determination unit 124 determines that the lane change event can be executed (step S104).
  • the track generation unit 125 generates a target track for moving the host vehicle M from the host lane to the lane designated by the lane change event as illustrated in FIG. 4 (step S106).
  • step S108 determines whether or not the event availability determination unit 124 determines that the reference vehicle mref exists. If the event availability determination unit 124 determines that the reference vehicle mref exists, whether the degree of braking predicted to occur in the reference vehicle mref due to the own vehicle M changing lanes is greater than or equal to the threshold value. It is determined whether or not (step S108).
  • the event availability determination unit 124 derives the braking distance D of the reference vehicle mref based on the relative speed V re between the host vehicle M and the reference vehicle mref, and refers to the braking distance D and the current host vehicle M. by comparing the relative distance D re between the vehicle mref, it determines whether the degree of braking in the reference vehicle mref is greater than or equal to the threshold.
  • the braking distance D is, for example, that the speed of the reference vehicle mref is approximately the same as the speed of the host vehicle M when the reference vehicle mref starts braking (deceleration) in response to the lane change by the host vehicle M. This is the distance that is expected to be traveled by the reference vehicle mref.
  • the same degree means that, for example, two numerical values to be compared match within a range of an error of several [%].
  • the same degree means that two numerical values to be compared are the same or the difference between the two numerical values is equal to or less than an allowable value.
  • the same degree means that the speed of the reference vehicle mref and the speed of the host vehicle M coincide with each other within an error range of several [%].
  • the event availability determination unit 124 refers to information (for example, a map or a mathematical expression) in which the relationship between the relative speed V re between the host vehicle M and the reference vehicle mref and the braking distance D of the reference vehicle mref is determined.
  • the braking distance D of the reference vehicle mref is derived from the relative speed V re between the host vehicle M and the reference vehicle mref.
  • FIG. 6 is a diagram showing a relationship between the relative speed V re between the host vehicle M and the reference vehicle mref and the braking distance D of the reference vehicle mref as a map.
  • the braking distance D tends to increase as the relative speed V re increases and decrease as the relative speed V re decreases.
  • Such a braking distance D may be predicted in advance based on a motion model in which braking is performed with a constant braking force.
  • the illustrated example generally represents the braking distance D when deceleration is started with a braking force of about 0.3 [G] which is a boundary between sudden deceleration and not.
  • the reference vehicle when it is assumed that the vehicle decelerates with a braking force of 0.3 [G] from the relative speed V re between the host vehicle M and the reference vehicle mref when determining whether or not to execute the lane change event.
  • the braking distance D of mref can be obtained.
  • the relationship between the relative speed V re and the braking distance D shown in the map may be expressed by a function of the braking distance D with the relative speed V re as a variable, or may be expressed by a table corresponding to this function. Good.
  • the above map, function, and table are examples of “correspondence information”.
  • the host vehicle M has changed lanes.
  • the reference vehicle mref can continue traveling without approaching the host vehicle M at a future time. That is, the reference vehicle mref can continue to travel without requiring a braking force of 0.3 [G] or more that causes rapid deceleration.
  • the event availability determination unit 124 determines that the degree of braking in the reference vehicle mref is less than the threshold (0.3 [G]).
  • the event availability determination unit 124 determines that the degree of braking in the reference vehicle mref is equal to or greater than a threshold value (0.3 [G]).
  • FIG. 7 is a diagram illustrating an example of a relative relationship between the host vehicle M and the reference vehicle mref at the time of a lane change event.
  • the speed VM of the host vehicle M is 60 [km / h]
  • the speed V mref of the reference vehicle mref is 120 [km / h]
  • the relative distance between these vehicles It shows that Dre is 100 [m].
  • the braking distance D is determined to be about 50 [m] from the map of FIG. Since the braking distance D obtained from the map is less than the relative distance D re (D re > D), the event availability determination unit 124 determines that the lane change event can be executed.
  • the speed V M of the vehicle M is 60 [km / h]
  • the speed V mref reference vehicle mref is 120 [km / h]
  • the relative distance D re is 40 [m].
  • the relative speed V re between the host vehicle M and the reference vehicle mref is 60 [km / h] as described above, and therefore the braking distance D is determined to be about 50 [m] from the map of FIG. . Since the braking distance D obtained from the map is equal to or greater than the relative distance Dre ( Dre ⁇ D), the event availability determination unit 124 determines that the lane change event cannot be executed.
  • FIG. 8 is a diagram illustrating another example of the relative relationship between the host vehicle M and the reference vehicle mref at the time of a lane change event.
  • the speed VM of the host vehicle M is 60 [km / h]
  • the speed V mref of the reference vehicle mref is 90 [km / h]
  • the relative distance between these vehicles It shows that Dre is 50 [m].
  • the braking distance D is determined to be about 20 [m] from the map of FIG. Since the braking distance D obtained from the map is less than the relative distance D re (D re > D), the event availability determination unit 124 determines that the lane change event can be executed.
  • the speed V M of the vehicle M is is 60 [km / h]
  • the speed V mref reference vehicle mref is 130 [km / h] between these vehicles It shows that the relative distance Dre is 50 [m].
  • the braking distance D is determined to be about 70 [m] from the map of FIG. Since the braking distance D obtained from the map is equal to or greater than the relative distance Dre ( Dre ⁇ D), the event availability determination unit 124 determines that the lane change event cannot be executed.
  • the description returns to the flowchart of FIG. If the degree of braking in the reference vehicle mref is less than the threshold value due to the lane change of the vehicle M, the event availability determination unit 124 proceeds to the process of S104.
  • the event availability determination unit 124 determines that the lane change event is not executable. Then, the event availability determination unit 124 changes the lane change event to another event such as a constant speed traveling event or a following traveling event (step S112). Thereby, the process of this flowchart is complete
  • the event availability determination unit 124 may add a margin ⁇ to the braking distance D when comparing the braking distance D and the relative distance Dre .
  • the margin ⁇ is a distance dimension based on a time obtained by dividing the distance from the position of the reference vehicle mref to the position of the host vehicle M at the time of lane change by the speed V mref of the reference vehicle mref at that time (that is, the vehicle head time). Is the value of
  • FIG. 9 is a diagram showing a relationship between the relative speed V re between the host vehicle M and the reference vehicle mref and the braking distance D of the reference vehicle mref to which a margin ⁇ is added as a map.
  • the margin ⁇ the braking distance D of the reference vehicle mref predicted in the future increases.
  • the condition for determining whether or not a lane change event is possible is strengthened. Therefore, when the braking distance D and the relative distance Dre are approximately equal, it is easy to cancel the event for safety. As a result, it is possible to change the lane in consideration of surrounding vehicles.
  • the margin ⁇ is constant regardless of the relative speed V re, but is not limited to this.
  • the margin ⁇ may be increased or decreased according to the relative speed V re and the road surface condition of the lane change destination. Good.
  • the margin ⁇ may be increased as the relative speed V re increases, or the margin ⁇ may be increased when the road surface is wet in rainy weather.
  • the above-described margin ⁇ may be expressed by a constant term or the like.
  • the braking distance D is derived based on the motion model when a braking force of about 0.3 [G] is applied, but the present invention is not limited to this.
  • the braking distance D may be derived according to a plurality of motion models that are assumed to provide a plurality of types of braking forces such as 0.1 [G], 0.2 [G], and 0.3 [G]. .
  • FIG. 10 is a diagram representing a relationship between the relative speed V re between the host vehicle M and the reference vehicle mref and the braking distance D of the plurality of reference vehicles mref as a map.
  • Figure D 1 represents a braking distance at the start of deceleration braking force of 0.1 [G]
  • D 2 is the braking distance at the start of deceleration braking force of 0.2 [G] represents
  • D 3 represents the braking distance at the start of deceleration braking force of 0.3 [G]
  • D 4 is the braking distance at the start of deceleration braking force of 0.4 [G] Represents.
  • the event availability determination unit 124 may change the braking distance D to be referred to according to the type of the surrounding vehicle whose state is recognized by the external recognition unit 121. Accordingly, the event availability determination unit 124 follows a motion model that assumes a low braking force such as 0.1 or 0.2 [G] for a vehicle that does not want to apply a large braking force, such as a motorcycle or a truck.
  • the braking distance D may be derived.
  • the event availability determination unit 124 may select one motion model from a plurality of motion models with different assumed braking forces according to the necessity of lane change. For example, when a lane change corresponding to an event is not performed, such as a branch event or a merge event, the necessity of lane change is higher for an event where the vehicle M is more likely to deviate from the route to the destination. Get higher. On the other hand, for an event that does not necessarily need to be implemented, such as an overtaking event, the necessity of changing lanes is reduced.
  • the event availability determination unit 124 applies an exercise model with a large assumed braking force, such as 0.3 [G] or 0.4 [G], to apply the braking distance D. If it is highly necessary to change lanes, the braking distance D is derived by applying a motion model with a small expected braking force such as 0.1 [G] or 0.2 [G]. It's okay.
  • the external vehicle recognition unit 121 that recognizes one or more other vehicles existing around the host vehicle M, and at least the steering of the host vehicle M is controlled to make the host vehicle M a lane.
  • the travel control unit 141 to be changed and the lane change are performed, the relative relationship between the reference vehicle mref present in the lane to which the lane is changed and the host vehicle M among the one or more other vehicles recognized by the external recognition unit 121
  • an event availability determination unit 124 that determines whether or not the degree of braking that is expected to occur in the reference vehicle mref due to the vehicle M changing lanes is greater than or equal to a threshold value based on
  • the travel control unit 141 determines that the degree of braking is equal to or greater than the threshold by the event availability determination unit 124, the lane change can be performed in consideration of surrounding vehicles by stopping the lane change. That.
  • Second Embodiment Hereinafter, a second embodiment will be described.
  • the second embodiment when it is determined that the lane change event is executable and the lane change is started, in the process of changing the lane, a new other vehicle is in the lane to which the lane is changed. Every time it is recognized, it is different from the first embodiment described above in that it repeatedly determines whether or not the degree of braking is equal to or greater than a threshold for the recognized other vehicle.
  • the following description will focus on differences from the first embodiment, and descriptions of functions and the like common to the first embodiment will be omitted.
  • the event availability determination unit 124 when a new reference vehicle mref is recognized by the external recognition unit 121, from the relative relationship with the recognized new reference vehicle mref. It may be determined whether the lane change event can be continued. For example, when the event availability determination unit 124 determines that the lane change event is executable, the track generation unit 125 generates a target track. Accordingly, the host vehicle M receives the control of the travel control unit 141 and the target vehicle M Start lane change to the adjacent lane along the track.
  • the event availability determination unit 124 newly recognizes it. It is determined whether the lane change event can be continued from the relative relationship with the reference vehicle mref.
  • FIG. 11 is a diagram illustrating an example of a scene in which it is determined whether or not the lane change event can be continued.
  • the host vehicle M starts lane change.
  • the event availability determination unit 124 determines the newly recognized reference vehicle. For mref2, it is determined whether the degree of braking is equal to or greater than a threshold value.
  • the event availability determination unit 124 determines that the lane change event cannot be continued and changes to another event. Accordingly, the track generation unit 125 generates a target track that moves the host vehicle M to the original lane before the lane change. As described above, it is possible to perform lane change in consideration of surrounding vehicles by determining whether or not the event can continue even after the lane change event is once permitted.
  • FIG. 12 is a diagram illustrating an example of a hardware configuration of the automatic operation control unit 100 according to the embodiment.
  • the automatic operation control unit 100 includes, for example, a communication controller 100-1, a CPU 100-2, a RAM 100-3, a ROM 100-4, a secondary storage device 100-5 such as a flash memory and an HDD, and a drive device 100-6. They are connected to each other by a bus or a dedicated communication line.
  • the drive device 100-6 is loaded with a portable storage medium such as an optical disk.
  • the program 100-5a stored in the secondary storage device 100-5 is expanded in the RAM 100-3 by a DMA controller (not shown) or the like and executed by the CPU 100-2, whereby each functional unit of the automatic operation control unit 100 (The 1st control part 120 and the 2nd control part 140) are realized.
  • the program referred to by the CPU 100-2 may be stored in a portable storage medium attached to the drive device 100-6, or may be downloaded from another device via the network NW.
  • Storage to store information;
  • a processor that executes a program stored in the storage, The processor executes the program, Recognize one or more other vehicles around the vehicle, Controlling at least steering of the host vehicle, performing lane change control for changing the lane of the host vehicle,
  • the host vehicle changes the lane based on a relative relationship between the reference vehicle existing in the lane to which the lane is changed and the host vehicle among the one or more other recognized vehicles. Determining whether or not the degree of braking that is expected to occur in the reference vehicle is greater than or equal to a threshold, When it is determined that the degree of braking is equal to or greater than a threshold, the lane change control is configured to be stopped. Vehicle control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Navigation (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

車両制御システムは、自車両の周辺に存在する一以上の他車両を認識する認識部と、自車両の少なくとも操舵を制御して、自車両を車線変更させる車線変更制御を行う走行制御部と、走行制御部により車線変更制御が行われる場合、認識部により認識された一以上の他車両のうち、車線変更先の車線に存在する参照車両と自車両との相対関係に基づいて、自車両が車線変更することに起因して参照車両において生じることが予測される制動の度合が閾値以上となるか否かを判定する判定部と、を備え、走行制御部は、判定部により前記制動の度合が閾値以上となると判定された場合に、車線変更制御を中止する。

Description

車両制御システム、車両制御方法、および車両制御プログラム
 本発明は、車両制御システム、車両制御方法、および車両制御プログラムに関する。
 本願は、2017年1月13日に、日本に出願された特願2017‐004180号に基づき優先権を主張し、その内容をここに援用する。
 従来、自車両が車線変更する場合に、車線変更先に存在する周辺車両との相対速度や相対距離に基づいて、車線変更が可能な否かを判断する技術が知られている(例えば、特許文献1参照)。
特開2000-20898号公報
 しかしながら、従来の技術では、自車両を主体とした車線変更の可否を判断しているため、車線変更によって周辺車両に及ぼす影響については十分に考慮されていなかった。
 本発明は、このような事情を考慮してなされたものであり、周辺車両に配慮した車線変更を行うことができる車両制御システム、車両制御方法、および車両制御プログラムを提供することを目的の一つとする。
 (1):自車両の周辺に存在する一以上の他車両を認識する認識部と、前記自車両の少なくとも操舵を制御して、前記自車両を車線変更させる車線変更制御を行う走行制御部と、前記走行制御部により前記車線変更制御が行われる場合、前記認識部により認識された一以上の他車両のうち、車線変更先の車線に存在する参照車両と前記自車両との相対関係に基づいて、前記自車両が車線変更することに起因して前記参照車両において生じることが予測される制動の度合が閾値以上となるか否かを判定する判定部と、を備える車両制御システムであり、前記走行制御部が、前記判定部により前記制動の度合が閾値以上となると判定された場合に、前記車線変更制御を中止するものである。
 (2):(1)に記載の車両制御システムは、前記判定部が、前記自車両と前記参照車両との相対速度に基づいて、制動により減速する前記参照車両の速度が前記自車両の速度と同程度となるまでの間に前記参照車両によって走行されることが予測される制動距離を導出し、前記導出した制動距離と、前記自車両と前記参照車両との間の相対距離とを比較して、前記制動距離が前記相対距離以上となる場合に、前記制動の度合が閾値以上となると判定するものである。
 (3):(2)に記載の車両制御システムは、前記判定部が、一定の制動力で制動が行われると仮定した場合の前記制動距離を求める対応情報を用いて、前記走行制御部により前記車線変更制御が行われる時点での前記制動距離を導出するものである。
 (4):(3)に記載の車両制御システムは、前記判定部が、前記自車両および前記参照車両のうち、少なくとも一方の車両の絶対速度に応じて、複数の前記対応情報の中から、一つの前記対応情報を選択するものである。
 (5):(1)から(4)のうちいずれか1つに記載の車両制御システムは、前記判定部が、前記車線変更先の車線の状況に応じて前記閾値を変更するものである。
 (6):(2)から(4)のうちいずれか1つに記載の車両制御システムは、前記判定部が、前記車線変更先の車線の状況に基づいて、前記制動距離を導出するものである。
 (7):(1)から(6)のうちいずれか1つに記載の車両制御システムは、前記判定部が、前記自車両および前記参照車両のうち、少なくとも一方の車両の絶対速度に応じて、前記閾値を変更するものである。
 (8):(2)に記載の車両制御システムは、前記判定部が、前記自車両および前記参照車両のうち、少なくとも一方の車両の絶対速度に基づいて、前記制動距離を導出するものである。
 (9):(1)から(8)のうちいずれか1つに記載の車両制御システムは、前記判定部が、前記参照車両の種類に応じて、前記閾値を変更するものである。
 (10):(2)から(4)のうちいずれか1つに記載の車両制御システムは、前記判定部が、前記参照車両の種類に基づいて、前記制動距離を導出するものである。
 (11):(1)から(10)のうちいずれか1つに記載の車両制御システムは、前記判定部が、前記自車両と前記参照車両との相対速度に基づいて、制動により減速する前記参照車両の速度が前記自車両の速度と同程度となるまでの間に前記参照車両によって走行されることが予測される制動距離を導出し、前記導出した制動距離に、前記走行制御部により前記車線変更制御が行われる時点における、前記参照車両の位置から前記自車両の位置までの距離を、前記時点での前記参照車両の速度で除算した時間に基づくマージンを加え、前記制動距離と前記マージンとの和が前記自車両と前記参照車両との相対距離以上となる場合に、前記制動の度合が閾値以上となると判定するものである。
 (12):(1)から(11)のうちいずれか1つに記載の車両制御システムは、前記判定部が、前記車線変更の必要性に応じて、前記閾値を変更するものである。
 (13):(1)から(12)のうちいずれか1つに記載の車両制御システムは、前記判定部が、車線変更が完了するまでの間、前記認識部により、車線変更先の車線において新たな車両が認識される度に、前記新たに認識された車両を前記参照車両として前記制動の度合が閾値以上となるか否かの判定を繰り返すものである。
 (14):自車両の周辺に存在する一以上の他車両を認識する認識部と、前記自車両の少なくとも操舵を制御して、前記自車両を車線変更させる車線変更制御を行う走行制御部と、前記走行制御部により前記車線変更制御が行われる場合、前記認識部により認識された一以上の他車両のうち、車線変更先の車線に存在する参照車両と前記自車両との相対関係に基づいて、所定の制動の度合で前記参照車両が制動したと仮定した場合に、前記自車両と前記参照車両との相対距離が所定距離になるまでに、前記参照車両の速度が前記自車両の速度未満となるか否かを判定する判定部と、を備える車両制御システムであり、前記走行制御部が、前記判定部により前記参照車両の速度が前記自車両の速度以上となると判定された場合に、前記車線変更制御を中止するものである。
 (15):車載コンピュータが、自車両の周辺に存在する一以上の他車両を認識し、前記自車両の少なくとも操舵を制御して、前記自車両を車線変更させる車線変更制御を行い、前記車線変更制御を行う場合、前記認識した一以上の他車両のうち、車線変更先の車線に存在する参照車両と前記自車両との相対関係に基づいて、前記自車両が車線変更することに起因して前記参照車両において生じることが予測される制動の度合が閾値以上となるか否かを判定し、前記制動の度合が閾値以上となると判定した場合に、前記車線変更制御を中止する、車両制御方法である。
 (16):車載コンピュータに、自車両の周辺に存在する一以上の他車両を認識させ、前記自車両の少なくとも操舵を制御させて、前記自車両を車線変更させる車線変更制御を行わせ、前記車線変更制御を行わせる場合、前記認識させた一以上の他車両のうち、車線変更先の車線に存在する参照車両と前記自車両との相対関係に基づいて、前記自車両が車線変更することに起因して前記参照車両において生じることが予測される制動の度合が閾値以上となるか否かを判定させ、前記制動の度合が閾値以上となると判定した場合に、前記車線変更制御を中止させる、車両制御プログラムである。
 (1)から(16)によれば、周辺車両に配慮した車線変更を行うことができる。
第1実施形態における車両制御システム1の構成図である。 自車位置認識部122により走行車線L1に対する自車両Mの相対位置および姿勢が認識される様子を示す図である。 ある区間について生成された行動計画の一例を示す図である。 車線変更イベント時に生成される目標軌道の一例を示す図である。 自動運転制御ユニット100によって実行される処理の一例を示すフローチャートである。 自車両Mと参照車両mrefとの相対速度Vreと、参照車両mrefの制動距離Dとの関係をマップとして表す図である。 車線変更イベント時における自車両Mと参照車両mrefとの相対関係の一例を示す図である。 車線変更イベント時における自車両Mと参照車両mrefとの相対関係の他の例を示す図である。 自車両Mと参照車両mrefとの相対速度Vreと、マージンαを付加した参照車両mrefの制動距離Dとの関係をマップとして表す図である。 自車両Mと参照車両mrefとの相対速度Vreと、複数の参照車両mrefの制動距離Dとの関係をマップとして表す図である。 車線変更イベントが継続可能であるか否か判定される場面の一例を示す図である。 実施形態の自動運転制御ユニット100のハードウェア構成の一例を示す図である。
 以下、図面を参照し、本発明の車両制御システム、車両制御方法、および車両制御プログラムの実施形態について説明する。
 <第1実施形態>
 図1は、第1実施形態における車両制御システム1の構成図である。車両制御システム1が搭載される車両は、例えば、二輪や三輪、四輪等の車両であり、その駆動源は、ディーゼルエンジンやガソリンエンジンなどの内燃機関、電動機、或いはこれらの組み合わせである。電動機は、内燃機関に連結された発電機による発電電力、或いは二次電池や燃料電池の放電電力を使用して動作する。
 車両制御システム1は、例えば、カメラ10と、レーダ装置12と、ファインダ14と、物体認識装置16と、通信装置20と、HMI(Human Machine Interface)30と、車両センサ40と、ナビゲーション装置50と、MPU(Micro-Processing Unit)60と、運転操作子80と、自動運転制御ユニット100と、走行駆動力出力装置200と、ブレーキ装置210と、ステアリング装置220とを備える。これらの装置や機器は、CAN(Controller Area Network)通信線等の多重通信線やシリアル通信線、無線通信網等によって互いに接続される。なお、図1に示す構成はあくまで一例であり、構成の一部が省略されてもよいし、更に別の構成が追加されてもよい。
 カメラ10は、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)等の固体撮像素子を利用したデジタルカメラである。カメラ10は、車両制御システム1が搭載される車両(以下、自車両Mと称する)の任意の箇所に一つまたは複数が取り付けられる。前方を撮像する場合、カメラ10は、フロントウィンドウシールド上部やルームミラー裏面等に取り付けられる。カメラ10は、例えば、周期的に繰り返し自車両Mの周辺を撮像する。カメラ10は、ステレオカメラであってもよい。
 レーダ装置12は、自車両Mの周辺にミリ波などの電波を放射すると共に、物体によって反射された電波(反射波)を検出して少なくとも物体の位置(距離および方位)を検出する。レーダ装置12は、自車両Mの任意の箇所に一つまたは複数が取り付けられる。レーダ装置12は、FMCW(Frequency Modulated Continuous Wave)方式によって物体の位置および速度を検出してもよい。
 ファインダ14は、照射光に対する散乱光を測定し、対象までの距離を検出するLIDAR(Light Detection and Ranging、或いはLaser Imaging Detection and Ranging)である。ファインダ14は、自車両Mの任意の箇所に一つまたは複数が取り付けられる。
 物体認識装置16は、カメラ10、レーダ装置12、およびファインダ14のうち一部または全部による検出結果に対してセンサフュージョン処理を行って、物体の位置、種類、速度などを認識する。物体認識装置16は、認識結果を自動運転制御ユニット100に出力する。
 通信装置20は、例えば、セルラー網やWi-Fi網、Bluetooth(登録商標)、DSRC(Dedicated Short Range Communication)などを利用して、自車両Mの周辺に存在する他車両(周辺車両の一例)と通信し、或いは無線基地局を介して各種サーバ装置と通信する。
 HMI30は、自車両Mの乗員に対して各種情報を提示すると共に、乗員による入力操作を受け付ける。HMI30は、各種表示装置、スピーカ、ブザー、タッチパネル、スイッチ、入力キーなどを含む。
 車両センサ40は、自車両Mの速度を検出する車速センサ、加速度を検出する加速度センサ、鉛直軸回りの角速度を検出するヨーレートセンサ、自車両Mの向きを検出する方位センサ等を含む。車両センサ40は、検出した情報(速度、加速度、角速度、方位等)を自動運転制御ユニット100に出力する。
 ナビゲーション装置50は、例えば、GNSS(Global Navigation Satellite System)受信機51と、ナビHMI52と、経路決定部53とを備え、HDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に第1地図情報54を保持している。GNSS受信機51は、GNSS衛星から受信した信号に基づいて、自車両Mの位置を特定する。自車両Mの位置は、車両センサ40の出力を利用したINS(Inertial Navigation System)によって特定または補完されてもよい。ナビHMI52は、表示装置、スピーカ、タッチパネル、入力キーなどを含む。ナビHMI52は、前述したHMI30と一部または全部が共通化されてもよい。経路決定部53は、例えば、ナビHMI52を用いて、GNSS受信機51により特定された自車両Mの位置(或いは入力された任意の位置)から、乗員により入力された目的地までの経路を、第1地図情報54を参照して決定する。第1地図情報54は、例えば、道路を示すリンクと、リンクによって接続されたノードとによって道路形状が表現された情報である。第1地図情報54は、道路の曲率やPOI(PointOf Interest)情報などを含んでもよい。経路決定部53により決定された経路は、MPU60に出力される。また、ナビゲーション装置50は、経路決定部53により決定された経路に基づいて、ナビHMI52を用いた経路案内を行ってもよい。なお、ナビゲーション装置50は、例えば、ユーザの保有するスマートフォンやタブレット端末等の端末装置の機能によって実現されてもよい。また、ナビゲーション装置50は、通信装置20を介してナビゲーションサーバに現在位置と目的地を送信し、ナビゲーションサーバから返信された経路を取得してもよい。
 MPU60は、例えば、推奨車線決定部61として機能し、HDDやフラッシュメモリなどの記憶装置に第2地図情報62を保持している。推奨車線決定部61は、ナビゲーション装置50から提供された経路を複数のブロックに分割し(例えば、車両進行方向に関して100[m]毎に分割し)、第2地図情報62を参照してブロックごとに推奨車線を決定する。例えば、推奨車線決定部61は、ナビゲーション装置50から提供された経路において複数の車線が存在する場合、複数の車線の中から一つの推奨車線を決定する。推奨車線決定部61は、提供された経路において分岐箇所や合流箇所などが存在する場合、自車両Mが、分岐先に進行するための合理的な走行経路を走行できるように、推奨車線を決定する。
 第2地図情報62は、第1地図情報54よりも高精度な地図情報である。第2地図情報62は、例えば、車線の中央の情報あるいは車線の境界の情報等を含んでいる。また、第2地図情報62には、道路情報、交通規制情報、住所情報(住所・郵便番号)、施設情報、電話番号情報などが含まれてよい。道路情報には、高速道路、有料道路、国道、都道府県道といった道路の種別を表す情報や、道路の車線数、各車線の幅員、道路の勾配、道路の位置(経度、緯度、高さを含む3次元座標)、車線のカーブの曲率、車線の合流および分岐箇所の位置、道路に設けられた標識等の情報が含まれる。第2地図情報62は、通信装置20を用いて他装置にアクセスすることにより、随時、アップデートされてよい。
 運転操作子80は、例えば、アクセルペダルや、ブレーキペダル、シフトレバー、ステアリングホイール等を含む。運転操作子80には、操作量あるいは操作の有無を検出するセンサが取り付けられており、その検出結果は、自動運転制御ユニット100、もしくは、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220のうち一方または双方に出力される。
 自動運転制御ユニット100は、例えば、第1制御部120と、第2制御部140とを備える。第1制御部120および第2制御部140は、それぞれ、CPU(Central Processing Unit)などのプロセッサがプログラム(ソフトウェア)を実行することで実現される。また、第1制御部120および第2制御部140の構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。
 第1制御部120は、例えば、外界認識部121と、自車位置認識部122と、行動計画生成部123と、イベント可否判定部124と、軌道生成部125とを備える。
 外界認識部121は、カメラ10、レーダ装置12、およびファインダ14から直接的に、或いは物体認識装置16を介して入力される情報に基づいて、周辺車両の位置、および速度、加速度等の状態を認識する。周辺車両の位置は、その周辺車両の重心やコーナー等の代表点で表されてもよいし、周辺車両の輪郭で表現された領域で表されてもよい。周辺車両の「状態」とは、周辺車両の加速度やジャーク、あるいは「行動状態」(例えば車線変更をしている、またはしようとしているか否か等)を含んでもよい。また、外界認識部142は、周辺車両に加えて、ガードレールや電柱、駐車車両、歩行者、道路路面の標示、標識、その他の物体の位置を認識してもよい。
 自車位置認識部122は、例えば、自車両Mが走行している車線(走行車線)、並びに走行車線に対する自車両Mの相対位置および姿勢を認識する。自車位置認識部122は、例えば、第2地図情報62から得られる道路区画線のパターン(例えば実線と破線の配列)と、カメラ10によって撮像された画像から認識される自車両Mの周辺の道路区画線のパターンとを比較することで、走行車線を認識する。この認識において、ナビゲーション装置50から取得される自車両Mの位置やINSによる処理結果が加味されてもよい。
 そして、自車位置認識部122は、例えば、走行車線に対する自車両Mの位置や姿勢を認識する。図2は、自車位置認識部122により走行車線L1に対する自車両Mの相対位置および姿勢が認識される様子を示す図である。自車位置認識部122は、例えば、自車両Mの基準点(例えば重心)の走行車線中央CLからの乖離OS、および自車両Mの進行方向の走行車線中央CLを連ねた線に対してなす角度θを、走行車線L1に対する自車両Mの相対位置および姿勢として認識する。なお、これに代えて、自車位置認識部122は、自車線L1のいずれかの側端部に対する自車両Mの基準点の位置などを、走行車線に対する自車両Mの相対位置として認識してもよい。自車位置認識部122により認識される自車両Mの相対位置は、推奨車線決定部61および行動計画生成部123に提供される。
 行動計画生成部123は、推奨車線決定部61により決定された推奨車線を走行するように、且つ、自車両Mの周辺状況に対応できるように、行動計画を生成する。行動計画とは、自動運転において順次実行されるイベントで構成される。自動運転とは、自車両Mの加減速または操舵の少なくとも一方を、自動運転制御ユニット100が制御することをいう。
 イベントには、例えば、一定速度で同じ走行車線を走行する定速走行イベント、前走車両に追従する追従走行イベント、走行車線を変更させる車線変更イベント、自車両Mに前走車両を追い越させる追い越しイベント、本線に合流するための合流車線において自車両Mを加減速させ、走行車線を変更させる合流イベント、分岐ポイントにおいて所望の車線に変更させたり、現在の走行車線を逸脱しないように自車両Mを走行させたりする分岐イベント、周辺車両などの挙動に合わせて自車両Mを緊急停止させる緊急停止イベント、自動運転を終了して手動運転に切り替えるためのハンドオーバイベントなどがある。手動運転とは、運転操作子80に対する乗員の操作によって、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220が制御されることをいう。また、これらのイベントの実行中に、自車両Mの周辺状況(周辺車両や歩行者の存在、道路工事による車線狭窄など)に基づいて、回避のためのイベントが計画される場合もある。
 図3は、ある区間について生成された行動計画の一例を示す図である。図示するように、推奨車線は、目的地までの経路に沿って走行するのに都合が良いように設定される。行動計画生成部123は、推奨車線決定部61により決定された推奨車線上を自車両Mが走行するために必要な行動計画を生成する。例えば、行動計画生成部123は、推奨車線が切り替わる地点の所定距離または所定時間手間において、推奨車線が切り替わった先の車線に自車両Mを車線変更させるために、車線変更イベントなどを計画する。所定距離または所定時間は、イベントの種類に応じて決定されてよい。また、図示のように、本線から分岐した車線が推奨車線として決定されている場合、行動計画生成部123は、分岐地点で分岐イベントを計画する。
 イベント可否判定部124は、所定の周期で、行動計画生成部123により生成された行動計画において予め計画されたイベントを実行可能か否か判定する。例えば、車線変更イベントが計画された地点に自車両Mが到達すると、イベント可否判定部124は、その地点から自車両Mが一定距離走行する度に、或いは一定時間経過する度に車線変更イベントの実行可否を判定する。例えば、車線変更先の車線(隣接車線)に自車両Mを走行させるだけのスペースを確保できない場合や、自車両Mを車線変更させることによって周辺車両に急ブレーキを強いるような場合、イベント可否判定部124は、当該車線変更イベントを実行できないと判定する。車線変更イベントの実行可否の判定条件の詳細な説明については、図を参照しながら後述する。
 イベント可否判定部124は、行動計画において予め計画されたイベントを実行可能でないと判定した場合、計画されたイベントを他のイベントに変更してよい。例えば、イベント可否判定部124は、車線変更イベントを実行できないと判定した場合、当該車線変更イベントを定速走行イベントや追従走行イベントに変更し、自車両Mに現在の車線を走行するように維持させる。また、イベント可否判定部124は、車線変更イベントをハンドオーバイベントに変更して、自動運転による車線変更を行う代わりに、手動運転によって車線変更させてもよい。
 軌道生成部125は、イベント可否判定部124によって予定されたイベントが実行可能であると判定された場合、予定されたイベントに応じて、自車両Mが将来走行する目標軌道を生成する。目標軌道は、例えば、加減速要素および操舵要素を含んでいる。
 図4は、車線変更イベント時に生成される目標軌道の一例を示す図である。図示のように、例えば、目標軌道は、所定のサンプリング時間(例えば0コンマ数[sec]程度)ごとに将来の基準時刻を複数設定し(図中tからt)、それらの基準時刻に到達すべき目標地点(軌道点K)の集合として生成される。このため、軌道点K同士の間隔が広い場合、ある時間内により長い距離を走破させることを意味している。言い換えれば、軌道点K同士の間隔が広い場合、その軌道点Kの間の区間を高速(ある基準速度よりも速い速度)に走行させることを表している。また、車両の進行方向に関して、軌道点K同士のなす角が大きくなる場合、軌道点Kの間の区間では大きく操舵させることを表している。
 軌道生成部125は、例えば、目標軌道の候補を複数生成し、安全性と効率性の観点に基づいて、その時点での最適な目標軌道を選択する。
 第2制御部140の説明に先立って、走行駆動力出力装置200、ブレーキ装置210、およびステアリング装置220について説明する。
 走行駆動力出力装置200は、車両が走行するための走行駆動力(トルク)を駆動輪に出力する。走行駆動力出力装置200は、例えば、内燃機関、電動機、および変速機などの組み合わせと、これらを制御するECUとを備える。ECUは、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って、上記の構成を制御する。
 ブレーキ装置210は、例えば、ブレーキキャリパーと、ブレーキキャリパーに油圧を伝達するシリンダと、シリンダに油圧を発生させる電動モータと、ブレーキECUとを備える。ブレーキECUは、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って電動モータを制御し、制動操作に応じたブレーキトルクが各車輪に出力されるようにする。ブレーキ装置210は、運転操作子80に含まれるブレーキペダルの操作によって発生させた油圧を、マスターシリンダを介してシリンダに伝達する機構をバックアップとして備えてよい。なお、ブレーキ装置210は、上記説明した構成に限らず、走行制御部141から入力される情報に従ってアクチュエータを制御して、マスターシリンダの油圧をシリンダに伝達する電子制御式油圧ブレーキ装置であってもよい。
 ステアリング装置220は、例えば、ステアリングECUと、電動モータとを備える。
電動モータは、例えば、ラックアンドピニオン機構に力を作用させて転舵輪の向きを変更する。ステアリングECUは、走行制御部141から入力される情報、或いは運転操作子80から入力される情報に従って、電動モータを駆動し、転舵輪の向きを変更させる。
 第2制御部140は、走行制御部141を備える。走行制御部141は、軌道生成部125によって生成された目標軌道を、予定の時刻通りに自車両Mが通過するように、走行駆動力出力装置200並びにブレーキ装置210と、ステアリング装置220との一方または双方を制御する。
 例えば、走行制御部141は、目標軌道として規定された軌道点Kの間隔に応じて、走行駆動力出力装置200におけるECUの制御量(例えばエンジンのスロットル開度やシフト段等)と、ブレーキ装置210におけるブレーキECUの制御量(例えば、電動モータや他のアクチュエータの駆動量等)を決定する。また、走行制御部141は、ある基準時刻tにおける軌道点Kでの自車両Mの進行方向と、この基準時刻tiの次の基準時刻ti+1における軌道点Kの方向とのなす角度に応じて、ステアリング装置92における電動モータの制御量を決定する。
 以下、自動運転制御ユニット100による一連の処理についてフローチャートを用いて説明する。図5は、自動運転制御ユニット100によって実行される処理の一例を示すフローチャートである。本フローチャートの処理は、例えば、自動運転中に所定の周期で繰り返し行われる。
 まず、イベント可否判定部124は、行動計画として計画された複数のイベントの中から、現時点において実行されるイベントを特定し、その特定したイベントが車線変更イベントであるか否かを判定する(ステップS100)。車線変更イベントでない場合、本フローチャートの処理は終了する。
 車線変更イベントである場合、イベント可否判定部124は、外界認識部121により認識された周辺車両のうち、車線変更イベントによって指定された車線変更先の車線上において、自車両Mよりも後方に位置する周辺車両(以下、参照車両mrefと称する)が存在するか否かを判定する(ステップS102)。参照車両mrefは、車線変更後の自車両Mよりも後方に位置することが想定される車両である。参照車両mref側から見れば、自身の直前に割り込んでくる車両が自車両Mとなる。
 参照車両mrefが存在しない場合、イベント可否判定部124は、車線変更イベントを実行可能であると判定する(ステップS104)。次に、軌道生成部125は、図4に例示するような、自車両Mを自車線から車線変更イベントにより指定された車線に移動させる目標軌道を生成する(ステップS106)。
 一方、イベント可否判定部124は、参照車両mrefが存在すると判定した場合、自車両Mが車線変更することに起因して参照車両mrefにおいて生じることが予測される制動の度合が閾値以上となるか否かを判定する(ステップS108)。
 例えば、イベント可否判定部124は、自車両Mと参照車両mrefとの相対速度Vreに基づいて、参照車両mrefの制動距離Dを導出し、この制動距離Dと、現在の自車両Mと参照車両mrefとの間の相対距離Dreとを比較することで、参照車両mrefにおける制動の度合が閾値以上となるか否かを判定する。制動距離Dとは、例えば、自車両Mによって車線変更がなされたことを受けて参照車両mrefが制動(減速)を開始した場合に、参照車両mrefの速度が自車両Mの速度と同程度となるまでの間に、参照車両mrefによって走行されることが予測される距離である。同程度とは、例えば、比較対象とする2つの数値が数[%]の誤差の範囲内で一致することである。言い換えれば、同程度とは、比較対象とする2つの数値が同じか、または2つの数値の差分が許容値以下であることである。上述した例の場合、同程度とは、参照車両mrefの速度と自車両Mの速度とが、数[%]の誤差の範囲内で一致することである。
 例えば、イベント可否判定部124は、自車両Mと参照車両mrefとの相対速度Vreと、参照車両mrefの制動距離Dとの関係が定められた情報(例えばマップや数式等)を参照することで、自車両Mと参照車両mrefとの相対速度Vreから参照車両mrefの制動距離Dを導出する。
 図6は、自車両Mと参照車両mrefとの相対速度Vreと、参照車両mrefの制動距離Dとの関係をマップとして表す図である。図に例示するように、制動距離Dは、相対速度Vreが増加するのに応じて長くなり、相対速度Vreが減少するのに応じて短くなる傾向を有している。このような制動距離Dは、一定の制動力で制動が行われる運動モデルに基づいて予め予測されてよい。図示の例は、一般的に、急減速かそうでないかの境界となる0.3[G]程度の制動力で減速を開始したときの制動距離Dを表している。これによって、例えば、車線変更イベントの実行可否の判定時における自車両Mと参照車両mrefとの相対速度Vreから、0.3[G]の制動力で減速するものとして想定したときの参照車両mrefの制動距離Dを求めることができる。なお、マップに示す相対速度Vreと制動距離Dとの関係は、相対速度Vreを変数とした制動距離Dの関数によって表されてもよいし、この関数に相当するテーブルによって表されてもよい。上記したマップ、関数、テーブルは、「対応情報」の一例である。
 マップから求めた制動距離Dが、車線変更イベントの実行可否の判定時における、自車両Mと参照車両mrefとの間の相対距離Dre未満であれば、自車両Mが車線変更した場合であっても、将来の時点で参照車両mrefが自車両Mに急接近せずに走行を継続することができる。すなわち、急減速となる0.3[G]以上の制動力を必要とせずに、参照車両mrefが走行を継続することができる。この場合、イベント可否判定部124は、参照車両mrefにおける制動の度合が閾値(0.3[G])未満となると判定する。
 一方、マップから求めた制動距離Dが、車線変更イベントの実行可否の判定時における、自車両Mと参照車両mrefとの間の相対距離Dre以上であれば、自車両Mが車線変更した場合、将来の時点で参照車両mrefが自車両Mを追い越すことになるため、急減速となる0.3[G]以上の制動力が必要となる。この場合、イベント可否判定部124は、参照車両mrefにおける制動の度合が閾値(0.3[G])以上となると判定する。
 図7は、車線変更イベント時における自車両Mと参照車両mrefとの相対関係の一例を示す図である。図中(a)の状況では、自車両Mの速度Vが60[km/h]であり、参照車両mrefの速度Vmrefが120[km/h]であり、これらの車両間の相対距離Dreが100[m]であることを示している。この場合、自車両Mと参照車両mrefとの相対速度Vreは、60[km/h]となるため、図6のマップから制動距離Dが50[m]程度であると求められる。マップから求めた制動距離Dは、相対距離Dre未満であるため(Dre>D)、イベント可否判定部124は、車線変更イベントを実行可能であると判定する。
 また、図中(b)の状況では、自車両Mの速度Vが60[km/h]であり、参照車両mrefの速度Vmrefが120[km/h]であり、これらの車両間の相対距離Dreが40[m]であることを示している。この場合、自車両Mと参照車両mrefとの相対速度Vreは、上記同様に60[km/h]となるため、図6のマップから制動距離Dが50[m]程度であると求められる。マップから求めた制動距離Dは、相対距離Dre以上であるため(Dre≦D)、イベント可否判定部124は、車線変更イベントを実行可能でないと判定する。
 図8は、車線変更イベント時における自車両Mと参照車両mrefとの相対関係の他の例を示す図である。図中(a)の状況では、自車両Mの速度Vが60[km/h]であり、参照車両mrefの速度Vmrefが90[km/h]であり、これらの車両間の相対距離Dreが50[m]であることを示している。この場合、自車両Mと参照車両mrefとの相対速度Vreは、30[km/h]となるため、図6のマップから制動距離Dが20[m]程度であると求められる。マップから求めた制動距離Dは、相対距離Dre未満であるため(Dre>D)、イベント可否判定部124は、車線変更イベントを実行可能であると判定する。
 また、図中(b)の状況では、自車両Mの速度Vが60[km/h]であり、参照車両mrefの速度Vmrefが130[km/h]であり、これらの車両間の相対距離Dreが50[m]であることを示している。この場合、自車両Mと参照車両mrefとの相対速度Vreは、70[km/h]となるため、図6のマップから制動距離Dが70[m]程度であると求められる。マップから求めた制動距離Dは、相対距離Dre以上であるため(Dre≦D)、イベント可否判定部124は、車線変更イベントを実行可能でないと判定する。
 ここで、図5のフローチャートの説明に戻る。車両Mが車線変更することによって参照車両mrefにおける制動の度合が閾値未満となる場合、イベント可否判定部124は、S104の処理に移る。
 一方、車両Mが車線変更することによって参照車両mrefにおける制動の度合が閾値以上となる場合、イベント可否判定部124は、車線変更イベントを実行可能でないと判定する。そして、イベント可否判定部124は、車線変更イベントを、定速走行イベントや追従走行イベントなどの他のイベントに変更する(ステップS112)。これによって、本フローチャートの処理が終了する。
 なお、上述した実施形態において、イベント可否判定部124は、制動距離Dと相対距離Dreとを比較する際に、制動距離Dにマージンαを付加してもよい。マージンαとは、車線変更時点における、参照車両mrefの位置から自車両Mの位置までの距離を、その時点での参照車両mrefの速度Vmrefで除算した時間(すなわち車頭時間)に基づく距離次元の値である。
 図9は、自車両Mと参照車両mrefとの相対速度Vreと、マージンαを付加した参照車両mrefの制動距離Dとの関係をマップとして表す図である。図示のように、マージンαを付加することによって、将来予測される参照車両mrefの制動距離Dが増加することになる。これによって、車線変更イベントの可否の条件が強化されるため、制動距離Dと相対距離Dreとが同程度のときに安全を期して、イベントが中止されやすくなる。この結果、より周辺車両に配慮した車線変更を行うことができる。
 また、図示の例では、マージンαは、相対速度Vreに依らず一定としたがこれに限られず、相対速度Vreや車線変更先の路面の状況に応じて増加或いは減少させるようにしてもよい。例えば、相対速度Vreが大きくなるほどマージンαを大きくしてもよいし、雨天時などにおいて路面が濡れている場合にはマージンαを大きくしてもよい。また、相対速度Vreと制動距離Dとの関係が関数によって表される場合、上述したマージンαは、定数項などによって表されてよい。
 また、図6に示したマップでは、0.3[G]程度の制動力を与えた時の運動モデルに基づいて制動距離Dを導出しているがこれに限られない。例えば、制動距離Dは、0.1[G]、0.2[G]、0.3[G]といったような複数種類の制動力を与えることを想定した複数の運動モデルに従って導出されてよい。
 図10は、自車両Mと参照車両mrefとの相対速度Vreと、複数の参照車両mrefの制動距離Dとの関係をマップとして表す図である。図中Dは、0.1[G]の制動力で減速を開始した時の制動距離を表し、Dは、0.2[G]の制動力で減速を開始した時の制動距離を表し、Dは、0.3[G]の制動力で減速を開始した時の制動距離を表し、Dは、0.4[G]の制動力で減速を開始した時の制動距離を表している。例えば、イベント可否判定部124は、外界認識部121により状態が認識された周辺車両の種類に応じて、参照する制動距離Dを変更してよい。これによって、イベント可否判定部124は、例えば、二輪車やトラックなど、大きな制動力を掛けさせたくない車両については、0.1や0.2[G]といった低めの制動力を想定した運動モデルに従って制動距離Dを導出してよい。
 また、上述した実施形態において、イベント可否判定部124は、想定された制動力が異なる複数の運動モデルから、車線変更の必要性に応じて、一つの運動モデルを選択してもよい。例えば、分岐イベントや合流イベントのように、そのイベントに応じた車線変更を行わない場合、目的地へ向かう経路から自車両Mが逸脱してしまう可能性が高いイベントほど、車線変更の必要性は高くなる。これに対して、追い越しイベントのように、必ずしも実施する必要がないイベントについては、車線変更の必要性が低くなる。例えば、イベント可否判定部124は、車線変更の必要性が低くければ、0.3[G]や0.4[G]といった想定される制動力が大きい運動モデルを適用して、制動距離Dを導出してよいし、車線変更の必要性が高ければ、0.1[G]や0.2[G]といった想定される制動力が小さい運動モデルを適用して、制動距離Dを導出してよい。
 以上、説明した第1実施形態によれば、自車両Mの周辺に存在する一以上の他車両を認識する外界認識部121と、自車両Mの少なくとも操舵を制御して、自車両Mを車線変更させる走行制御部141と、車線変更が行われる場合、外界認識部121により認識された一以上の他車両のうち、車線変更先の車線に存在する参照車両mrefと自車両Mとの相対関係に基づいて、自車両Mが車線変更することに起因して参照車両mrefにおいて生じることが予測される制動の度合が閾値以上となるか否かを判定するイベント可否判定部124と、を備え、走行制御部141が、イベント可否判定部124により制動の度合が閾値以上となると判定された場合に、車線変更を中止することにより、周辺車両に配慮した車線変更を行うことができる。
 <第2実施形態>
 以下、第2実施形態について説明する。第2実施形態では、車線変更イベントが実行可能であると判定されて、車線変更が開始されると、その車線変更が行われている過程において、車線変更先の車線において、新たな他車両が認識される度に、その認識された他車両について、制動の度合が閾値以上となるか否かの判定を繰り返す点で、上述した第1実施形態と異なる。以下、第1実施形態との相違点を中心に説明し、第1実施形態と共通する機能等についての説明は省略する。
 第2実施形態におけるイベント可否判定部124は、車線変更が行われる過程において、外界認識部121により新たな参照車両mrefが認識された場合、その認識された新たな参照車両mrefとの相対関係から車線変更イベントが継続可能であるか否かを判定してよい。例えば、イベント可否判定部124が、車線変更イベントが実行可能であると判定すると、軌道生成部125が目標軌道を生成する、これによって、走行制御部141の制御を受けて、自車両Mが目標軌道に沿って隣接車線に車線変更を開始する。この車線変更の過程において、外界認識部121により、車線変更先の隣接車線の後方から別の参照車両mrefが迫ってくることが新たに認識された場合、イベント可否判定部124は、新たに認識された参照車両mrefとの相対関係から車線変更イベントが継続可能であるか否かを判定する。
 図11は、車線変更イベントが継続可能であるか否か判定される場面の一例を示す図である。図示のように、例えば、参照車両mref1における制動の度合が閾値未満となると判定され、車線変更イベントが実行可能であると判定されると、自車両Mは、車線変更を開始する。このとき、例えば、参照車両mref1が他車線に移動することによって、参照車両mref1の後続に位置する参照車両mref2が新たに認識された場合、イベント可否判定部124は、新たに認識された参照車両mref2について、制動の度合が閾値以上となるか否かを判定する。参照車両mref2における制動の度合が閾値以上となる場合、イベント可否判定部124は、車線変更イベントが継続可能でないと判定し、他のイベントに変更する。これに伴って、軌道生成部125は、自車両Mを車線変更前の元車線に移動させるような目標軌道を生成する。このように、車線変更イベントが一度許可された後にもイベントの継続可否を判定することで、より周辺車両に配慮した車線変更を行うことができる。
 以上説明した第2実施形態によれば、車線変更イベントが一度許可された後にもイベントの継続可否を判定することにより、より周辺車両に配慮した車線変更を行うことができる。
 [ハードウェア構成]
 上述した実施形態の車両制御システム1の自動運転制御ユニット100は、例えば、図12に示すようなハードウェアの構成により実現される。図12は、実施形態の自動運転制御ユニット100のハードウェア構成の一例を示す図である。
 自動運転制御ユニット100は、例えば、通信コントローラ100-1、CPU100-2、RAM100-3、ROM100-4、フラッシュメモリやHDDなどの二次記憶装置100-5、およびドライブ装置100-6が、内部バスあるいは専用通信線によって相互に接続された構成となっている。ドライブ装置100-6には、光ディスクなどの可搬型記憶媒体が装着される。二次記憶装置100-5に格納されたプログラム100-5aがDMAコントローラ(不図示)などによってRAM100-3に展開され、CPU100-2によって実行されることで、自動運転制御ユニット100の各機能部(第1制御部120および第2制御部140)が実現される。また、CPU100-2が参照するプログラムは、ドライブ装置100-6に装着された可搬型記憶媒体に格納されていてもよいし、ネットワークNWを介して他の装置からダウンロードされてもよい。
 上記実施形態は、以下のように表現することができる。
 情報を記憶するストレージと、
 前記ストレージに格納されたプログラムを実行するプロセッサと、を備え、
 前記プロセッサは、前記プログラムを実行することにより、
 自車両の周辺に存在する一以上の他車両を認識し、
 前記自車両の少なくとも操舵を制御して、前記自車両を車線変更させる車線変更制御を行い、
 前記車線変更制御を行う場合、前記認識した一以上の他車両のうち、車線変更先の車線に存在する参照車両と前記自車両との相対関係に基づいて、前記自車両が車線変更することに起因して前記参照車両において生じることが予測される制動の度合が閾値以上となるか否かを判定し、
 前記制動の度合が閾値以上となると判定した場合に、前記車線変更制御を中止するように構成された、
 車両制御システム。
 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。
1‥車両制御システム、10…カメラ、12…レーダ装置、14…ファインダ、16…物体認識装置、20…通信装置、30…HMI、40…車両センサ、50…ナビゲーション装置、51…GNSS受信機、52…ナビHMI、53…経路決定部、54…第1地図情報、60…MPU、61…推奨車線決定部、62…第2地図情報、80…運転操作子、100…自動運転制御ユニット、120…第1制御部、121…外界認識部、122…自車位置認識部、123…行動計画生成部、124…イベント可否判定部、125…軌道生成部、140…第2制御部、141…走行制御部、200…走行駆動力出力装置、210…ブレーキ装置、220…ステアリング装置

Claims (16)

  1.  自車両の周辺に存在する一以上の他車両を認識する認識部と、
     前記自車両の少なくとも操舵を制御して、前記自車両を車線変更させる車線変更制御を行う走行制御部と、
     前記走行制御部により前記車線変更制御が行われる場合、前記認識部により認識された一以上の他車両のうち、車線変更先の車線に存在する参照車両と前記自車両との相対関係に基づいて、前記自車両が車線変更することに起因して前記参照車両において生じることが予測される制動の度合が閾値以上となるか否かを判定する判定部と、
     を備え、
     前記走行制御部は、前記判定部により前記制動の度合が閾値以上となると判定された場合に、前記車線変更制御を中止する、
     車両制御システム。
  2.  前記判定部は、
      前記自車両と前記参照車両との相対速度に基づいて、制動により減速する前記参照車両の速度が前記自車両の速度と同程度となるまでの間に前記参照車両によって走行されることが予測される制動距離を導出し、
      前記導出した制動距離と、前記自車両と前記参照車両との間の相対距離とを比較して、前記制動距離が前記相対距離以上となる場合に、前記制動の度合が閾値以上となると判定する、
     請求項1に記載の車両制御システム。
  3.  前記判定部は、一定の制動力で制動が行われると仮定した場合の前記制動距離を求める対応情報を用いて、前記走行制御部により前記車線変更制御が行われる時点での前記制動距離を導出する、
     請求項2に記載の車両制御システム。
  4.  前記判定部は、前記自車両および前記参照車両のうち、少なくとも一方の車両の絶対速度に応じて、複数の前記対応情報の中から、一つの前記対応情報を選択する、
     請求項3に記載の車両制御システム。
  5.  前記判定部は、前記車線変更先の車線の状況に応じて前記閾値を変更する、
     請求項1から4のうちいずれか1項に記載の車両制御システム。
  6.  前記判定部は、前記車線変更先の車線の状況に基づいて、前記制動距離を導出する、
     請求項2から4のうちいずれか1項に記載の車両制御システム。
  7.  前記判定部は、前記自車両および前記参照車両のうち、少なくとも一方の車両の絶対速度に応じて、前記閾値を変更する、
     請求項1から6のうちいずれか1項に記載の車両制御システム。
  8.  前記判定部は、前記自車両および前記参照車両のうち、少なくとも一方の車両の絶対速度に基づいて、前記制動距離を導出する、
     請求項2に記載の車両制御システム。
  9.  前記判定部は、前記参照車両の種類に応じて、前記閾値を変更する、
     請求項1から8のうちいずれか1項に記載の車両制御システム。
  10.  前記判定部は、前記参照車両の種類に基づいて、前記制動距離を導出する、
     請求項2から4のうちいずれか1項に記載の車両制御システム。
  11.  前記判定部は、
      前記自車両と前記参照車両との相対速度に基づいて、制動により減速する前記参照車両の速度が前記自車両の速度と同程度となるまでの間に前記参照車両によって走行されることが予測される制動距離を導出し、
      前記導出した制動距離に、前記走行制御部により前記車線変更制御が行われる時点における、前記参照車両の位置から前記自車両の位置までの距離を、前記時点での前記参照車両の速度で除算した時間に基づくマージンを加え、前記制動距離と前記マージンとの和が前記自車両と前記参照車両との相対距離以上となる場合に、前記制動の度合が閾値以上となると判定する、
     請求項1から10のうちいずれか1項に記載の車両制御システム。
  12.  前記判定部は、前記車線変更の必要性に応じて、前記閾値を変更する、
     請求項1から11のうちいずれか1項に記載の車両制御システム。
  13.  前記判定部は、車線変更が完了するまでの間、前記認識部により、車線変更先の車線において新たな車両が認識される度に、前記新たに認識された車両を前記参照車両として前記制動の度合が閾値以上となるか否かの判定を繰り返す、
     請求項1から12のうちいずれか1項に記載の車両制御システム。
  14.  自車両の周辺に存在する一以上の他車両を認識する認識部と、
     前記自車両の少なくとも操舵を制御して、前記自車両を車線変更させる車線変更制御を行う走行制御部と、
     前記走行制御部により前記車線変更制御が行われる場合、前記認識部により認識された一以上の他車両のうち、車線変更先の車線に存在する参照車両と前記自車両との相対関係に基づいて、所定の制動の度合で前記参照車両が制動したと仮定した場合に、前記自車両と前記参照車両との相対距離が所定距離になるまでに、前記参照車両の速度が前記自車両の速度未満となるか否かを判定する判定部と、
     を備え、
     前記走行制御部は、前記判定部により前記参照車両の速度が前記自車両の速度以上となると判定された場合に、前記車線変更制御を中止する、
     車両制御システム。
  15.  車載コンピュータが、
     自車両の周辺に存在する一以上の他車両を認識し、
     前記自車両の少なくとも操舵を制御して、前記自車両を車線変更させる車線変更制御を行い、
     前記車線変更制御を行う場合、前記認識した一以上の他車両のうち、車線変更先の車線に存在する参照車両と前記自車両との相対関係に基づいて、前記自車両が車線変更することに起因して前記参照車両において生じることが予測される制動の度合が閾値以上となるか否かを判定し、
     前記制動の度合が閾値以上となると判定した場合に、前記車線変更制御を中止する、
     車両制御方法。
  16.  車載コンピュータに、
     自車両の周辺に存在する一以上の他車両を認識させ、
     前記自車両の少なくとも操舵を制御させて、前記自車両を車線変更させる車線変更制御を行わせ、
     前記車線変更制御を行わせる場合、前記認識させた一以上の他車両のうち、車線変更先の車線に存在する参照車両と前記自車両との相対関係に基づいて、前記自車両が車線変更することに起因して前記参照車両において生じることが予測される制動の度合が閾値以上となるか否かを判定させ、
     前記制動の度合が閾値以上となると判定した場合に、前記車線変更制御を中止させる、
     車両制御プログラム。
PCT/JP2017/042193 2017-01-13 2017-11-24 車両制御システム、車両制御方法、および車両制御プログラム WO2018131298A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780082691.6A CN110167811B (zh) 2017-01-13 2017-11-24 车辆控制系统、车辆控制方法及存储介质
JP2018561838A JP6692930B2 (ja) 2017-01-13 2017-11-24 車両制御システム、車両制御方法、および車両制御プログラム
US16/475,694 US11414079B2 (en) 2017-01-13 2017-11-24 Vehicle control system, vehicle control method, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017004180 2017-01-13
JP2017-004180 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018131298A1 true WO2018131298A1 (ja) 2018-07-19

Family

ID=62840328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042193 WO2018131298A1 (ja) 2017-01-13 2017-11-24 車両制御システム、車両制御方法、および車両制御プログラム

Country Status (4)

Country Link
US (1) US11414079B2 (ja)
JP (1) JP6692930B2 (ja)
CN (1) CN110167811B (ja)
WO (1) WO2018131298A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109739246A (zh) * 2019-02-19 2019-05-10 百度在线网络技术(北京)有限公司 一种变换车道过程中的决策方法、装置、设备及存储介质
CN111532271A (zh) * 2019-02-06 2020-08-14 本田技研工业株式会社 车辆控制装置、车辆和车辆控制方法
CN111780987A (zh) * 2020-06-28 2020-10-16 广州文远知行科技有限公司 自动驾驶车辆的测试方法、装置、计算机设备和存储介质
CN113104038A (zh) * 2021-03-31 2021-07-13 江铃汽车股份有限公司 车辆换道控制方法、装置、电子设备及可读存储介质

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10752218B2 (en) * 2018-02-22 2020-08-25 Ford Global Technologies, Llc Camera with cleaning system
JP6913716B2 (ja) * 2019-07-17 2021-08-04 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
KR102668167B1 (ko) * 2019-08-02 2024-05-29 에이치엘만도 주식회사 차량의 제어 장치, 그 제어 방법 및 차량 제어 시스템.
JP7161458B2 (ja) * 2019-09-09 2022-10-26 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US11599117B2 (en) * 2020-02-20 2023-03-07 Steering Solutions Ip Holding Corporation Systems and methods for obstacle proximity detection
WO2022030206A1 (ja) * 2020-08-06 2022-02-10 株式会社デンソー 車両管理装置、車両管理方法、車両管理プログラム
JP2023089623A (ja) * 2021-12-16 2023-06-28 スズキ株式会社 車両の走行制御装置
US20230303090A1 (en) * 2022-03-24 2023-09-28 Toyota Motor North America, Inc. Predicting a driving condition to provide enhanced vehicle management

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186141A (ja) * 2006-01-16 2007-07-26 Mazda Motor Corp 車両の走行制御装置
JP2011186737A (ja) * 2010-03-08 2011-09-22 Toyota Motor Corp 運転支援装置
WO2015052865A1 (ja) * 2013-10-11 2015-04-16 日産自動車株式会社 走行制御装置及び走行制御方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3824784B2 (ja) 1998-06-30 2006-09-20 富士通株式会社 走行支援装置、車線変更可否判断装置、その方法及び記録媒体
DE102004029369B4 (de) 2004-06-17 2016-09-15 Robert Bosch Gmbh Spurwechselassistent für Kraftfahrzeuge
JP4366419B2 (ja) 2007-09-27 2009-11-18 株式会社日立製作所 走行支援装置
JP2012226392A (ja) * 2011-04-14 2012-11-15 Honda Elesys Co Ltd 運転支援システム
US10254764B2 (en) * 2016-05-31 2019-04-09 Peloton Technology, Inc. Platoon controller state machine
JP6147149B2 (ja) 2013-09-06 2017-06-14 三菱電機株式会社 画面入力操作装置
EP2942765B1 (en) * 2014-05-07 2018-12-26 Honda Research Institute Europe GmbH Method and system for predictive lane change assistance, program software product and vehicle
JP6078116B2 (ja) 2015-07-09 2017-02-08 富士重工業株式会社 車両の運転支援装置
JP2017030435A (ja) * 2015-07-30 2017-02-09 クラリオン株式会社 車間距離制御装置
JP6246844B2 (ja) * 2016-02-18 2017-12-13 本田技研工業株式会社 車両制御システム、車両制御方法、および車両制御プログラム
JP6288590B2 (ja) * 2016-03-15 2018-03-07 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
JP6638633B2 (ja) * 2016-12-06 2020-01-29 トヨタ自動車株式会社 自動運転システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186141A (ja) * 2006-01-16 2007-07-26 Mazda Motor Corp 車両の走行制御装置
JP2011186737A (ja) * 2010-03-08 2011-09-22 Toyota Motor Corp 運転支援装置
WO2015052865A1 (ja) * 2013-10-11 2015-04-16 日産自動車株式会社 走行制御装置及び走行制御方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111532271A (zh) * 2019-02-06 2020-08-14 本田技研工业株式会社 车辆控制装置、车辆和车辆控制方法
CN111532271B (zh) * 2019-02-06 2024-02-06 本田技研工业株式会社 车辆控制装置、车辆和车辆控制方法
CN109739246A (zh) * 2019-02-19 2019-05-10 百度在线网络技术(北京)有限公司 一种变换车道过程中的决策方法、装置、设备及存储介质
JP2020135885A (ja) * 2019-02-19 2020-08-31 バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド 車線変更の際の決定方法、装置、デバイス、記憶媒体、及びプログラム
JP7090114B2 (ja) 2019-02-19 2022-06-23 アポロ インテリジェント ドライビング テクノロジー(ペキン)カンパニー リミテッド 車線変更の際の決定方法、装置、デバイス、記憶媒体、及びプログラム
US11440565B2 (en) 2019-02-19 2022-09-13 Apollo Intelligent Driving Technology (Beijing) Co., Ltd. Decision method, device, equipment in a lane changing process and storage medium
CN111780987A (zh) * 2020-06-28 2020-10-16 广州文远知行科技有限公司 自动驾驶车辆的测试方法、装置、计算机设备和存储介质
CN111780987B (zh) * 2020-06-28 2022-07-12 广州文远知行科技有限公司 自动驾驶车辆的测试方法、装置、计算机设备和存储介质
CN113104038A (zh) * 2021-03-31 2021-07-13 江铃汽车股份有限公司 车辆换道控制方法、装置、电子设备及可读存储介质
CN113104038B (zh) * 2021-03-31 2022-12-20 江铃汽车股份有限公司 车辆换道控制方法、装置、电子设备及可读存储介质

Also Published As

Publication number Publication date
CN110167811A (zh) 2019-08-23
CN110167811B (zh) 2022-09-13
JPWO2018131298A1 (ja) 2019-11-07
US11414079B2 (en) 2022-08-16
JP6692930B2 (ja) 2020-05-13
US20190375412A1 (en) 2019-12-12

Similar Documents

Publication Publication Date Title
JP6494121B2 (ja) 車線変更推定装置、車線変更推定方法、およびプログラム
JP6692930B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP6646168B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018158873A1 (ja) 車両制御装置、車両制御方法、およびプログラム
JP6344695B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
US11167753B2 (en) Vehicle control device, vehicle control method, and vehicle control program
JP6303217B2 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6598127B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018138769A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
WO2018216194A1 (ja) 車両制御システムおよび車両制御方法
WO2018122966A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP7043295B2 (ja) 車両制御装置、車両制御方法、およびプログラム
WO2018131290A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JPWO2017138513A1 (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP7085371B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP6638172B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP7112374B2 (ja) 車両制御装置、車両制御方法、およびプログラム
JP2017165156A (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2017159489A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018134941A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018179958A1 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
WO2018123346A1 (ja) 車両制御装置、車両制御方法、及びプログラム
JP6696006B2 (ja) 車両制御システム、車両制御方法、および車両制御プログラム
JP2017081421A (ja) 車両制御装置、車両制御方法、および車両制御プログラム
JP6648384B2 (ja) 車両制御装置、車両制御方法、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561838

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17890979

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载