WO2018131196A1 - 排気ガス浄化用組成物 - Google Patents
排気ガス浄化用組成物 Download PDFInfo
- Publication number
- WO2018131196A1 WO2018131196A1 PCT/JP2017/027124 JP2017027124W WO2018131196A1 WO 2018131196 A1 WO2018131196 A1 WO 2018131196A1 JP 2017027124 W JP2017027124 W JP 2017027124W WO 2018131196 A1 WO2018131196 A1 WO 2018131196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- zeolite
- composition
- gas purification
- surface area
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 119
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 106
- 239000010457 zeolite Substances 0.000 claims abstract description 101
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 100
- 238000000746 purification Methods 0.000 claims abstract description 85
- 238000002485 combustion reaction Methods 0.000 claims abstract description 11
- 229910052698 phosphorus Inorganic materials 0.000 claims description 62
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 60
- 239000011574 phosphorus Substances 0.000 claims description 60
- 229930195733 hydrocarbon Natural products 0.000 claims description 38
- 150000002430 hydrocarbons Chemical class 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 27
- 229910052726 zirconium Inorganic materials 0.000 claims description 23
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 19
- 238000012423 maintenance Methods 0.000 claims description 19
- 230000014759 maintenance of location Effects 0.000 claims description 16
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 abstract 4
- 239000007789 gas Substances 0.000 description 104
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 48
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 44
- 238000001179 sorption measurement Methods 0.000 description 33
- 230000000052 comparative effect Effects 0.000 description 23
- 239000003054 catalyst Substances 0.000 description 22
- 235000011007 phosphoric acid Nutrition 0.000 description 22
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 21
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 16
- 229910004298 SiO 2 Inorganic materials 0.000 description 15
- 239000006185 dispersion Substances 0.000 description 14
- 239000011148 porous material Substances 0.000 description 14
- 239000000243 solution Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 229910008337 ZrO(NO3)2.2H2O Inorganic materials 0.000 description 8
- 238000005481 NMR spectroscopy Methods 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- -1 alkali metal salts Chemical class 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 5
- 239000000725 suspension Substances 0.000 description 5
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- DJHGAFSJWGLOIV-UHFFFAOYSA-K Arsenate3- Chemical class [O-][As]([O-])([O-])=O DJHGAFSJWGLOIV-UHFFFAOYSA-K 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229940000489 arsenate Drugs 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- XPPKVPWEQAFLFU-UHFFFAOYSA-N diphosphoric acid Chemical compound OP(O)(=O)OP(O)(O)=O XPPKVPWEQAFLFU-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002290 germanium Chemical class 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005464 sample preparation method Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 2
- 150000003754 zirconium Chemical class 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- BDDLHHRCDSJVKV-UHFFFAOYSA-N 7028-40-2 Chemical compound CC(O)=O.CC(O)=O.CC(O)=O.CC(O)=O BDDLHHRCDSJVKV-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- WRAGBEWQGHCDDU-UHFFFAOYSA-M C([O-])([O-])=O.[NH4+].[Zr+] Chemical compound C([O-])([O-])=O.[NH4+].[Zr+] WRAGBEWQGHCDDU-UHFFFAOYSA-M 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 238000004523 catalytic cracking Methods 0.000 description 1
- 238000010531 catalytic reduction reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052878 cordierite Inorganic materials 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 125000005341 metaphosphate group Chemical group 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- CMOAHYOGLLEOGO-UHFFFAOYSA-N oxozirconium;dihydrochloride Chemical compound Cl.Cl.[Zr]=O CMOAHYOGLLEOGO-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- LYTNHSCLZRMKON-UHFFFAOYSA-L oxygen(2-);zirconium(4+);diacetate Chemical compound [O-2].[Zr+4].CC([O-])=O.CC([O-])=O LYTNHSCLZRMKON-UHFFFAOYSA-L 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229920000137 polyphosphoric acid Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229940048084 pyrophosphate Drugs 0.000 description 1
- 229940005657 pyrophosphoric acid Drugs 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000013558 reference substance Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- CENHPXAQKISCGD-UHFFFAOYSA-N trioxathietane 4,4-dioxide Chemical compound O=S1(=O)OOO1 CENHPXAQKISCGD-UHFFFAOYSA-N 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 229940048102 triphosphoric acid Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
- JINJMFAIGCWUDW-UHFFFAOYSA-L zirconium(2+);diacetate Chemical compound [Zr+2].CC([O-])=O.CC([O-])=O JINJMFAIGCWUDW-UHFFFAOYSA-L 0.000 description 1
- ZXAUZSQITFJWPS-UHFFFAOYSA-J zirconium(4+);disulfate Chemical compound [Zr+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZXAUZSQITFJWPS-UHFFFAOYSA-J 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/80—Mixtures of different zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/64—Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/648—Vanadium, niobium or tantalum or polonium
- B01J23/6482—Vanadium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G11/00—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
- C10G11/02—Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
- C10G11/04—Oxides
- C10G11/05—Crystalline alumino-silicates, e.g. molecular sieves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2370/00—Selection of materials for exhaust purification
- F01N2370/02—Selection of materials for exhaust purification used in catalytic reactors
- F01N2370/04—Zeolitic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/063—Surface coverings for exhaust purification, e.g. catalytic reaction zeolites
Definitions
- the present invention relates to an exhaust gas purification composition containing zeolite.
- Hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) are contained in exhaust gases emitted from internal combustion engines such as automobiles and motorcycles (also called saddle type vehicles) such as gasoline engines and diesel engines. Contains harmful ingredients such as.
- purification by HC catalyst is strongly influenced by exhaust gas temperature, and generally requires a high temperature of 300 ° C. or higher. Therefore, immediately after the start of the internal combustion engine, when the exhaust gas temperature is low, HC is not easily purified by the catalyst. Moreover, a large amount of HC is easily discharged immediately after the internal combustion engine is started, and the ratio of HC in the entire emission when the exhaust gas temperature is low is large. For this reason, removal of HC from the internal combustion engine immediately after the start of the internal combustion engine has been a conventional problem.
- Patent Document 1 describes that proton type zeolite such as mordenite is used as the HC adsorbent.
- Patent Document 2 describes the use of Cu 2+ -substituted CHA-type zeolite as a selective catalytic reduction catalyst for exhaust gas purification.
- Patent Document 3 describes that a zeolite carrying phosphorus is used as a catalyst for catalytic cracking reaction of hydrocarbons.
- Patent Document 1 since the proton type zeolite described in Patent Document 1 lacks hydrothermal durability, it is difficult to obtain sufficient HC adsorption performance when used for exhaust gas purification of internal combustion engines such as gasoline engines. It was.
- CHA-type zeolite when used as in Patent Document 2, it is not possible to adsorb particularly high emission toluene among HC molecular species, so that excellent HC purification performance cannot be obtained.
- the technique described in Patent Document 3 is merely a technique using phosphorus-containing zeolite for decomposition of hexane or the like at about 550 ° C.
- An object of the present invention is to provide a composition for purifying exhaust gas that can eliminate various drawbacks of the above-described conventional technology.
- the present invention is a composition comprising a BEA-containing zeolite containing phosphorus, the phosphorus content is 0.5 times equivalent or more in molar ratio with Al in the zeolite, (A1) When the specific surface area in the state heat-treated at 980 ° C. for 25 hours is A, and (a2) the specific surface area in the state before the heat treatment is B,
- the present invention provides an exhaust gas purification composition having a specific surface area retention ratio R S expressed by A / B ⁇ 100 (%) of 35% or more.
- the present invention is a composition comprising a BEA-containing zeolite containing phosphorus, wherein the phosphorus content is 0.5 to 8 equivalents in terms of a molar ratio with Al in the zeolite, (B1) When the crystallite diameter in the state of heat treatment at 980 ° C. for 25 hours is X, and (b2) the crystallite diameter in the state before the heat treatment is Y, The present invention provides an exhaust gas purifying composition in which X is 25 nm or less, and the maintenance ratio R d of the crystallite diameter represented by X / Y ⁇ 100 (%) is 50% or more.
- FIGS. 1A and 1B are 31 P-NMR charts before and after the thermal durability test of the exhaust gas purification composition of Example 2, respectively.
- the exhaust gas purification composition of the present embodiment contains zeolite.
- Zeolite is a crystalline substance in which TO 4 units with a tetrahedral structure (T is the central atom) share O atoms three-dimensionally to form open regular micropores. Point to. Specifically, silicates, germanium salts, arsenates, and the like described in the structure committee data collection of the International Zeolite Association (hereinafter sometimes referred to as “IZA”) are included.
- the silicate is, for example, aluminosilicate, gallosilicate, ferrisilicate, titanosilicate, borosilicate, and the like
- the germanium salt is, for example, an aluminogermanium salt
- the arsenate is, for example, alumino arsenate is included.
- These include, for example, those obtained by substituting Si or Al in the skeleton with divalent or trivalent cations such as Ti, Ga, Mg, Mn, Fe, Co, and Zn.
- the exhaust gas purifying composition contains BEA type zeolite.
- the BEA-type zeolite may be a synthetic product or a natural product, and the method for producing the zeolite when it is a synthetic product is not particularly limited.
- the composition for purifying exhaust gas of this embodiment has excellent adsorption ability for toluene, which is abundant as HC molecular species in exhaust gas, by containing BEA type zeolite.
- a BEA type zeolite generally has a pore size of about 0.65 nm.
- the pore diameter indicates a crystallographic channel diameter (Crystallographic free diameter of the channels) determined by IZA.
- the pore diameter means an average diameter when the shape of the pore (channel) is a perfect circle, but means a short diameter when the shape of the pore is long in one direction such as an ellipse.
- the phosphorus-containing BEA zeolite contained in the exhaust gas purification composition preferably has a SiO 2 / Al 2 O 3 molar ratio of preferably 25 or more and 600 or less, more preferably 28 or more and 400 or less, particularly 30 or more and 200 or less, especially 30 or more and 100.
- the following is further preferable because it leads to the maintenance of the BEA structure of zeolite and the HC adsorption performance is easily obtained.
- the SiO 2 / Al 2 O 3 molar ratio of the phosphorus-containing BEA zeolite can be measured by the method described in the examples described later.
- the BEA type zeolite in the exhaust gas purification composition of the present invention contains phosphorus, but this effectively maintains the BEA type structure of the zeolite even in a severe thermal environment, and high HC adsorption performance is obtained. It will be.
- phosphorus is preferably supported on BEA zeolite.
- the phrase “phosphorus is supported on the zeolite” means that it is physically or chemically adsorbed or held on the outer surface of the zeolite or the inner surface of the pores.
- chemical adsorption includes ionic bonds.
- the phosphorus content in the exhaust gas purification composition is preferably 0.5 times the molar ratio (P / Al) to Al in the zeolite.
- the exhaust gas purification composition preferably has a phosphorus content of 8 times equivalent or less in terms of a molar ratio (P / Al) with Al in the zeolite.
- the amount of phosphorus in the exhaust gas purification composition is more preferably 0.5 times equivalent to 5 times equivalent in terms of molar ratio (P / Al) to Al in the zeolite, more preferably 1 time. It is particularly preferable that the amount is not less than the equivalent and not more than 3 times equivalent.
- the molar ratio (P / Al) can be measured by the method described in Examples described later.
- the BEA-type zeolite in the exhaust gas purification composition contains zirconium, which, when exposed to high temperatures, further maintains the zeolite's BEA-type structure, and is used for exhaust gas purification of gasoline engines, etc. HC adsorbing performance can be further improved.
- the zirconium content in the exhaust gas purification composition is at least 0.25 times the molar ratio (Zr / Al) to Al in the zeolite. It is preferable because it is easy to obtain. Further, the amount of zirconium is preferably 8 times or less in terms of molar ratio (Zr / Al) to Al in the zeolite.
- the amount of zirconium is more preferably 0.25 times equivalent to 4 times equivalent in terms of molar ratio (Zr / Al) to Al in the zeolite, particularly preferably 0.25 times equivalent to 2 times equivalent. In the following, it is more preferably 0.25 equivalents or more and 1 or less equivalents, and significantly more preferably 0.5 or more equivalents and 1 or less equivalents.
- the molar ratio (Zr / Al) can be measured by the method described in Examples described later.
- Zirconium is preferably supported on zeolite.
- the phrase “zirconium is supported on zeolite” means that it is physically or chemically adsorbed or held on the outer surface of the zeolite or the inner surface of the pores. Here, chemical adsorption includes ionic bonds.
- the exhaust gas purifying composition of the present embodiment has a temperature of ⁇ 35 ppm to ⁇ 20 ppm, more preferably when 85% by mass H 3 PO 4 aqueous solution is subjected to 31 P-NMR measurement after heat treatment at 980 ° C. for 25 hours.
- a peak may be observed in the range of ⁇ 34 ppm to ⁇ 21 ppm. This peak is derived from the Al—OP bond of phosphorus-containing BEA type zeolite.
- the exhaust gas-purifying composition of the present embodiment contains zirconium, when it is subjected to the 31 P-NMR measurement after being heat-treated at 980 ° C.
- a peak may also be observed in the range of 35 ppm, more preferably in the range of ⁇ 49 ppm to ⁇ 36 ppm.
- This peak is derived from the Zr—OP bond of phosphorus-containing BEA type zeolite. However, these peaks do not define the state of P or Zr in the exhaust gas purification composition before the heat treatment.
- the heat treatment is a hydrothermal durability test performed under ⁇ thermal durability test conditions> described in the examples described later. As indicated by the conditions of the test, heat resistance in this specification includes heat and moisture resistance.
- the 31 P-NMR measurement is performed by the method described in the examples described later.
- BEA type zeolite may contain other elements in addition to P and Zr.
- elements rare earth elements, transition metal elements other than rare earth elements, alkaline earth metal elements, alkali metal elements, other metal elements, semiconductor elements, and the like can be used without particular limitation.
- the exhaust gas purification composition has the following constitutions (1) and / or (2) in addition to containing the phosphorus-containing BEA zeolite, and HC adsorption as the exhaust gas purification composition It is preferable because the performance can be greatly improved as compared with the conventional one.
- (1) Phosphorus content is 0.5 times equivalent or more in molar ratio with Al in zeolite
- (A1) When the specific surface area after heat treatment at 980 ° C. for 25 hours is A, and (a2) B is the specific surface area before the heat treatment,
- the maintenance ratio R S of the specific surface area represented by A / B ⁇ 100 (%) is 35% or more.
- the phosphorus content is 0.5 times equivalent to 8 times equivalent in terms of molar ratio with Al in the zeolite, (B1) When the crystallite diameter after heat treatment at 980 ° C. for 25 hours is X, and (b2) the crystallite diameter before the heat treatment is Y, X is 25 nm or less, and the maintenance factor R d of the crystallite diameter represented by X / Y ⁇ 100 (%) is 50% or more.
- exhaust gas purification compositions generally used for gasoline engines are required to have a high temperature durability of 900 ° C. to 1000 ° C.
- the retention ratio R S of the specific surface area by the heat treatment indicates the high temperature durability of the zeolite structure.
- the retention ratio R S of the specific surface area is 35% or more, so that the zeolite structure has high-temperature durability, which makes it easy to obtain the high HC adsorption activity of the zeolite.
- An exhaust gas purification composition having a specific surface area retention ratio R S of 35% or more is preferable because it has high thermal durability and can maintain HC adsorption performance.
- the maintenance ratio R S of the specific surface area is preferably 40% or more.
- the heat treatment can be performed under the conditions described in Examples described later.
- the specific surface area can be measured by the method described in the examples described later.
- the maintenance ratio R S of the specific surface area can be obtained by adjusting the amount of phosphorus to be used and the amount of metal to be supported as required when the exhaust gas purification composition is produced by a suitable production method described later. .
- the exhaust gas purifying composition preferably has a specific surface area B before the heat treatment of 150 m 2 / g or more, particularly 200 m 2 / g or more, from the viewpoint of more easily obtaining good HC adsorption performance.
- the specific surface area of the exhaust gas purifying composition can be measured by the method described in Examples described later.
- the specific surface area A after the heat treatment is preferably 100 m 2 / g or more, particularly 150 m 2 / g or more, from the viewpoint that it is easier to obtain good HC adsorption performance.
- exhaust gas purifying compositions retention rate R d is 50% or more of the crystallite diameter in the preferable since it is possible to maintain the HC adsorbing performance by the endurance is high.
- the maintenance ratio R d of the crystallite diameter is more preferably 60% or more, and further preferably 70% or more.
- the heat treatment can be performed under the conditions described in Examples described later.
- the crystallite diameter can be measured by the method described in Examples described later.
- the crystallite diameter maintenance rate R d can be set to a suitable value by adjusting the amount of phosphorus or supported element to be used and the zeolite species when producing by the preferred production method described later.
- the exhaust gas purifying composition can have high adsorption performance for HC, particularly toluene, when the crystallite diameter X of the zeolite after heat treatment at 980 ° C. for 25 hours is 25 nm or less.
- the crystallite diameter X is preferably 2 nm or more from the viewpoint that the zeolite structure is easily maintained even under a severe thermal environment, and a certain HC adsorption performance is easily obtained. From these viewpoints, the crystallite diameter X is more preferably 3 nm or more and 20 nm or less, and particularly preferably 5 nm or more and 15 nm or less.
- the crystallite diameter Y before the heat treatment is more preferably 5 nm or more and 50 nm or less, and particularly preferably 10 nm or more and 30 nm or less, from the viewpoint of easily obtaining a suitable toluene adsorption performance.
- a preferred method for producing the exhaust gas purifying composition of the present embodiment includes a first step of preparing a dispersion or solution in which phosphorus is dispersed or dissolved in a liquid medium, the dispersion or solution, and a BEA zeolite. And a second step for subjecting the obtained processed product to a contact treatment, and a third step for firing the obtained processed product.
- the exhaust gas purification composition contains zirconium and other elements in addition to phosphorus, it is preferable to disperse or dissolve zirconium and other elements in the liquid medium in addition to phosphorus in the first step.
- Examples of phosphorus dispersed or dissolved in the liquid medium include phosphoric acid or a salt thereof.
- phosphoric acid include orthophosphoric acid (H 3 PO 4 ), pyrophosphoric acid (H 4 P 2 O 7 ), triphosphoric acid (H 5 P 3 O 10 ), polyphosphoric acid, metaphosphoric acid (HPO 3 ), and ultraphosphoric acid.
- examples of the phosphate include orthophosphate, pyrophosphate, triphosphate, polyphosphate, metaphosphate, and ultraphosphate.
- Examples of these salts include alkali metal salts, other metal salts, and ammonium salts.
- liquid medium water is preferable.
- zirconium When zirconium is used in the first step, it is preferable to disperse or dissolve a water-soluble zirconium salt in a liquid medium.
- the water-soluble zirconium salt include zirconium chloride (ZrCl 4 ), zirconium oxychloride (ZrOCl 2 ⁇ nH 2 O), zirconium sulfate (Zr (SO 4 ) 2 ⁇ nH 2 O), zirconium oxysulfate (ZrOSO 4 ⁇ nH).
- zirconium nitrate Zr (NO 3 ) 4 .nH 2 O
- zirconium oxynitrate ZrO (NO 3 ) 2 .nH 2 O
- zirconium diacetate Zr (CH 3 COO) 2
- tetraacetic acid Zirconium (Zr (CH 3 COO) 4
- zirconium oxyacetate ZrO (CH 3 COO) 2
- ammonium zirconium carbonate ((NH 4 ) 2 ZrO (CO 3 ) 2 )
- zirconium alkoxide are preferred.
- the amount of phosphorus in the dispersion or solution for example, in the case of orthophosphate ions, the number of moles of orthophosphate ions is preferably 0.005 mol / L or more and 3 mol / L or less, and 0.01 mol / L or more and 2 mol / L or less. L or less is more preferable. Further, when zirconium is contained in the dispersion or solution, the amount of zirconium in the dispersion or solution is preferably 0.005 mol / L or more and 1.5 mol / L or less as the number of moles of zirconium ions, 0.01 mol / L or more and 1 mol / L or less is more preferable.
- examples of the BEA type zeolite to be brought into contact with the dispersion or solution include those mentioned above.
- the BEA type zeolite to be brought into contact with the dispersion or solution those having a SiO 2 / Al 2 O 3 molar ratio similar to the phosphorus-containing BEA type zeolite may be used, and the specific surface area is the above-mentioned phosphorus-containing material. You may use what is the same as the preferable specific surface area of a BEA type
- Examples of the zeolite to be brought into contact with the dispersion or solution include proton type, sodium type, and ammonium type, and the proton type is preferable.
- the contact treatment may be performed by spraying a dispersion or solution on the BEA type zeolite, or may be performed by immersing the BEA type zeolite in the dispersion or solution. At the time of immersion, the BEA zeolite may or may not be stirred in the dispersion or solution.
- the ratio of the BEA type zeolite is preferably 1 part by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the dispersion or solution. More preferably, it is at least 30 parts by mass.
- the contact treatment between the BEA zeolite and the dispersion or solution may be performed at room temperature or under heating conditions. Moreover, as a preferable temperature of a contact process, it is 5 to 200 degreeC, More preferably, it is 10 to 100 degreeC.
- the processed material obtained by the contact process of the 2nd process is baked. Calcination is usually preferably performed on a dried product obtained by drying the solid obtained by filtering the slurry obtained in the second step. It is sufficient that the drying is performed to such an extent that no moisture is present.
- Calcination is preferably performed, for example, in an atmospheric pressure atmosphere from the viewpoint of process and cost.
- the firing temperature is preferably 400 ° C. or higher from the viewpoint of stably containing phosphorus in the BEA type zeolite and removing unnecessary raw materials. Further, the firing temperature is preferably 1100 ° C. or lower, particularly 1000 ° C. or lower from the viewpoint of maintaining the BEA structure. From these points, the firing temperature is more preferably 500 ° C. or more and 700 ° C. or less. Further, on the condition that the firing temperature is in the above range, the firing time is preferably 1 hour or more and 5 hours or less, and more preferably 2 hours or more and 4 hours or less.
- the exhaust gas purification composition obtained as described above maintains the BEA structure of zeolite even when exposed to high temperatures of about 900 ° C. or higher and 1100 ° C. or lower (particularly 1000 ° C. or lower), and exhibits stable HC adsorption ability. Show.
- Such an exhaust gas purification composition can exhibit stable and high exhaust gas purification performance as an exhaust gas purification composition of an internal combustion engine that uses fossil fuel as a power source such as a gasoline engine or a diesel engine.
- the exhaust gas purification composition of the present embodiment is preferably used for purifying exhaust gas discharged from gasoline engines such as automobiles and motorcycles because of its high heat resistance.
- the exhaust gas purification composition of the present embodiment is effectively used particularly for removing hydrocarbons (HC) in the exhaust gas. Therefore, the present invention also provides an exhaust gas purification method using the exhaust gas purification composition of the present invention, and more preferably, carbonization contained in the exhaust gas discharged to the exhaust passage of the internal combustion engine.
- An exhaust gas purification method for removing hydrogen is
- the exhaust gas purifying composition of the present embodiment may be in any form such as powder, paste, granule and the like.
- the exhaust gas purifying composition of the present embodiment can be used as a catalyst layer supported on a catalyst support.
- the catalyst support is made of, for example, ceramics or a metal material.
- the shape of the catalyst support is not particularly limited, but is generally a honeycomb shape, a plate, a pellet, a DPF, a GPF, or the like, and preferably a honeycomb, DPF, or GPF.
- Examples of the material for such a catalyst support include alumina (Al 2 O 3 ), mullite (3Al 2 O 3 -2SiO 2 ), cordierite (2MgO-2Al 2 O 3 -5SiO 2 ), and titanic acid.
- Examples thereof include ceramics such as aluminum (Al 2 TiO 5 ) and silicon carbide (SiC), and metal materials such as stainless steel.
- the exhaust gas purification composition of the present embodiment may be used as a catalyst layer formed on a catalyst support as described above, and a catalyst layer made of a conventionally known catalyst material may be laminated on the catalyst layer.
- a catalyst layer made of a conventionally known catalyst material may be laminated on the catalyst support.
- a catalyst layer containing the exhaust gas purification composition of the present embodiment may be formed thereon.
- a catalyst layer obtained by mixing the exhaust gas purification composition of the present embodiment and a conventionally known catalyst material may be formed on the catalyst support.
- % means “mass%”.
- crystalline aluminosilicate was used as a raw material zeolite.
- Example 1 Phosphoric acid (H 3 PO 4 ) 0.525 g and zirconium oxynitrate (ZrO (NO 3 ) 2 .2H 2 O) 2.45 g were suspended in 50 g of pure water. To the resulting suspension, 10 g of proton type BEA zeolite (SiO 2 / Al 2 O 3 molar ratio 35, specific surface area 660 m 2 / g) was added and stirred at room temperature (20 ° C.) for 4 hours. The obtained slurry was filtered, dried at 120 ° C. for 12 hours, and then calcined at 600 ° C. for 3 hours in an atmospheric pressure atmosphere to obtain a powdery exhaust gas purification composition.
- SiO 2 / Al 2 O 3 molar ratio 35 specific surface area 660 m 2 / g
- Example 2 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that the amount of phosphoric acid was changed to 1.05 g.
- Example 3 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that the amount of phosphoric acid was changed to 2.10 g.
- Example 4 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that the amount of phosphoric acid was changed to 4.20 g.
- Example 5 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that the amount of phosphoric acid was changed to 2.10 g and the amount of zirconium oxynitrate was changed to 4.90 g.
- Example 6 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that the amount of phosphoric acid was changed to 4.20 g and the amount of zirconium oxynitrate was changed to 9.80 g.
- Example 7 A powdery exhaust gas purification composition was obtained in the same manner as in Example 2 except that zirconium oxynitrate was not used.
- Example 1 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that phosphoric acid and zirconium oxynitrate were not used.
- Example 2 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that phosphoric acid was not used.
- Example 3 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that the amount of phosphoric acid was changed to 0.2625 g.
- Example 4 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that the amount of phosphoric acid was changed to 10.50 g.
- Example 5 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that the amount of phosphoric acid was changed to 10.50 g and the amount of zirconium oxynitrate was changed to 24.50 g.
- SiO 2 / Al 2 O 3 molar ratio The amount of Si and the amount of Al in the exhaust gas purification composition were measured using a fluorescent X-ray apparatus (model number: ZSX Primus II) manufactured by Rigaku Corporation as a composition analyzer. The measurement sample was prepared as follows. The SiO 2 / Al 2 O 3 molar ratio was calculated from the obtained Si amount and Al amount. (Measurement sample preparation method) The exhaust gas purification composition was packed in a 30 mm diameter vinyl chloride tube and compression molded to prepare a measurement sample.
- the exhaust gas purification composition before and after the thermal endurance test in Example 2 was subjected to 31 P-NMR measurement.
- the result is shown in FIG. (31 P-NMR measurement conditions)
- the composition for purifying exhaust gas to be measured was set in a zirconium oxide sample tube having a diameter of 6 mm, and measured with a JEOL (ECA400) under the following conditions.
- a JEOL ECA400
- As a reference substance an 85% H 3 PO 4 aqueous solution was used, and this was set to 0 ppm.
- Composition of gas for evaluation of toluene adsorption performance 0.1% by volume of toluene, and the other was He.
- the composition of each example which is a BEA type, uses zeolite containing a specific amount or more of phosphorus, and has a specific surface area retention rate of a specific value or more, has high hydrocarbon adsorption performance. It was.
- the compositions of Comparative Examples 1 to 5 whose specific surface area retention rate is less than a specific value and the compositions of Comparative Examples 6 and 8 that do not contain phosphorus are included in each example.
- suction performance was not obtained compared with each Example even if it was obtained.
- the compositions of Comparative Examples 7 and 9 using zeolite that was not a BEA type could hardly obtain hydrocarbon adsorption performance.
- the composition of the present invention contains a BEA-type zeolite containing phosphorus of a specific value or more, and has a specific surface area maintenance rate of a specific value or more, thereby producing a synergistic HC adsorption performance improvement effect. It is clear that it is useful for exhaust gas purification.
- Example 8 Phosphoric acid (H 3 PO 4 ) 0.97 g and zirconium oxynitrate (ZrO (NO 3 ) 2 .2H 2 O) 2.26 g were suspended in 50 g of pure water. To the obtained suspension, 10 g of proton type BEA zeolite (pore size 0.65 nm, SiO 2 / Al 2 O 3 molar ratio 38, specific surface area 620 m 2 / g) was added, and 4 at room temperature (20 ° C.). Stir for hours. The obtained slurry was filtered, dried at 120 ° C. for 12 hours, and then calcined at 600 ° C. for 3 hours in an atmospheric pressure atmosphere to obtain a powdery exhaust gas purification composition.
- proton type BEA zeolite pore size 0.65 nm, SiO 2 / Al 2 O 3 molar ratio 38, specific surface area 620 m 2 / g
- Example 9 0.92 g of phosphoric acid (H 3 PO 4 ) and 2.16 g of zirconium oxynitrate (ZrO (NO 3 ) 2 .2H 2 O) were suspended in 50 g of pure water. To the obtained suspension, 10 g of proton type BEA zeolite (pore size 0.65 nm, SiO 2 / Al 2 O 3 molar ratio 40, specific surface area 595 m 2 / g) was added, and 4 at room temperature (20 ° C.). Stir for hours. The obtained slurry was filtered, dried at 120 ° C. for 12 hours, and then calcined at 600 ° C. for 3 hours in an atmospheric pressure atmosphere to obtain a powdery exhaust gas purification composition.
- phosphoric acid H 3 PO 4
- ZrO (NO 3 ) 2 .2H 2 O zirconium oxynitrate
- Example 10 A powdery exhaust gas purification composition was obtained in the same manner as in Example 8 except that phosphoric acid and zirconium oxynitrate were not used.
- Example 11 A powdery exhaust gas purification composition was obtained in the same manner as in Example 9 except that phosphoric acid and zirconium oxynitrate were not used.
- the crystallite diameter retention ratio R d was measured by the following method. Further, for the exhaust gas purifying compositions of Examples 8 and 9 and Comparative Examples 10 and 11, the SiO 2 / Al 2 O 3 molar ratio was measured by the above method, and the inclusion of phosphorus and zirconium by the above method. The amount was measured, and the toluene adsorption performance was further measured by the above method. These results are shown in Table 2 below. Table 2 also shows the SiO 2 / Al 2 O 3 molar ratio, phosphorus and zirconium contents, and toluene adsorption amount according to Examples 1 to 7 and Comparative Examples 1 to 9 that have already been measured.
- D is a crystallite diameter
- ⁇ is an X-ray wavelength
- ⁇ is a diffraction line width (half-value width)
- ⁇ is a diffraction angle
- ⁇ is a constant.
- K is 0.94.
- Rigaku MicroFlex600 was used for X-ray diffraction.
- a Cu tube was used as the radiation source. The measurement conditions were a tube voltage of 40 kV, a tube current of 15 mA, and a scanning speed of 10 deg / min.
- the composition of each example contains a specific amount of phosphorus, and a high hydrocarbon adsorption performance is obtained by using a BEA type zeolite having a crystallite diameter maintenance rate of a specific value or more.
- the compositions of Comparative Examples 1 to 6 and 8 and 10 and 11 that do not contain or contain phosphorus are outside the scope of the present invention. Can be seen to be significantly inferior.
- the composition of Comparative Example 9 in which the maintenance ratio of the crystallite diameter is outside the scope of the present invention the comparative example in which the crystallite diameter after heat treatment exceeds the upper limit of the present invention It can be seen that the composition of No.
- the composition of the present invention is such that the zeolite to be used contains a specific amount of phosphorus, the maintenance ratio of the crystallite diameter is not less than a specific value, and the crystallite diameter after heat treatment is not more than the specific value. It is clear that it has a synergistic HC adsorption performance improvement effect and is useful for exhaust gas purification.
- Example 10 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that the amount of zirconium oxynitrate (ZrO (NO 3 ) 2 .2H 2 O) was changed to 0.61 g.
- ZrO (NO 3 ) 2 .2H 2 O zirconium oxynitrate
- Example 11 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that the amount of zirconium oxynitrate (ZrO (NO 3 ) 2 .2H 2 O) was changed to 1.22 g.
- ZrO (NO 3 ) 2 .2H 2 O zirconium oxynitrate
- Example 12 A powdery exhaust gas purification composition was obtained in the same manner as in Example 1 except that the amount of zirconium oxynitrate (ZrO (NO 3 ) 2 .2H 2 O) was changed to 4.90 g.
- ZrO (NO 3 ) 2 .2H 2 O zirconium oxynitrate
- an exhaust gas purification composition having excellent HC adsorption performance for exhaust gas purification of an internal combustion engine such as a gasoline engine is provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Analytical Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Toxicology (AREA)
- Biomedical Technology (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
一方、特許文献3に記載の技術はリン含有ゼオライトを550℃程度のヘキサン等の分解に使用するものに過ぎない。同文献には、例えば900℃~1000℃という高温下での耐久性が必要な排気ガス浄化用途にリン含有ゼオライトを用いることは何ら記載も示唆もされておらず、まして、その用途においてゼオライトを含む浄化用触媒に求められる具体的な構成は何ら記載も示唆もされていない。
(a1)980℃で25時間熱処理した状態の比表面積をAとし、(a2)前記の熱処理を行う前の状態の比表面積をBとしたときに、
A/B×100(%)で表される比表面積の維持率RSが35%以上である、排気ガス浄化用組成物を提供するものである。
(b1)980℃で25時間熱処理した状態の結晶子径をXとし、(b2)前記の熱処理を行う前の状態の結晶子径をYとしたときに、
Xが25nm以下であり、且つX/Y×100(%)で表される結晶子径の維持率Rdが50%以上である、排気ガス浄化用組成物を提供するものである。
本実施形態の排気ガス浄化用組成物は、ゼオライトを含有する。ゼオライトとは、四面体構造をもつTO4単位(Tは中心原子)がO原子を共有して三次元的に連結し、開かれた規則的なミクロ細孔を形成している結晶性物質を指す。具体的には国際ゼオライト学会(International Zeolite Association;以下これを「IZA」ということがある。)の構造委員会データ集に記載のあるケイ酸塩、ゲルマニウム塩、ヒ酸塩等が含まれる。
熱処理は後述する実施例に記載の<熱耐久試験条件>にて行われる水熱耐久試験である。同試験の条件が示す通り、本明細書中でいう耐熱性とは耐湿熱性を含む。また31P-NMR測定は後述する実施例に記載の方法にて行われる。
(1)リン含有量がゼオライト中のAlとのモル比で0.5倍当量以上であり、
(a1)980℃で25時間熱処理した後の比表面積をAとし、(a2)前記の熱処理を行う前の状態の比表面積をBとしたときに、
A/B×100(%)で表される比表面積の維持率RSが35%以上である。
(2)リン含有量がゼオライト中のAlとのモル比で0.5倍当量以上8倍当量以下であり、
(b1)980℃で25時間熱処理した後の結晶子径をXとし、(b2)前記の熱処理を行う前の状態の結晶子径をYとしたときに、
Xが25nm以下であり、且つX/Y×100(%)で表される結晶子径の維持率Rdが50%以上である。
上述したように、一般にガソリンエンジンに用いられる排気ガス浄化用組成物は900℃~1000℃という高温耐久性が求められる。上記の熱処理による比表面積の維持率RSは、ゼオライト構造の高温耐久性を示す。排気ガス浄化用組成物は、比表面積の維持率RSが35%以上であることにより、ゼオライト構造が高温耐久性を有し、これによりゼオライトが有する高いHC吸着活性が得やすいものとなる。
また結晶子径Xは、2nm以上であることが、厳しい熱環境下においてもゼオライト構造が維持されやすく、一定のHC吸着性能を得やすい点から好ましい。これらの観点から、結晶子径Xは、3nm以上20nm以下であることがより好ましく、5nm以上15nm以下であることが特に好ましい。
本実施形態の排気ガス浄化用組成物の好適な製造方法は、リンを液媒に分散又は溶解させた分散液又は溶解液を調製する第1工程と、上記分散液又は溶解液とBEA型ゼオライトとを接触処理させる第2工程と、得られた処理物を焼成する第3工程と、を有する。
排気ガス浄化用組成物がリンに加えてジルコニウムやその他の元素を含有する場合は、第1工程において液媒中にリンに加えてジルコニウムやその他の元素を分散又は溶解させることが好ましい。
液媒中に分散又は溶解させるリンとしては、リン酸又はその塩が挙げられる。リン酸としては、オルトリン酸(H3PO4)、ピロリン酸(H4P2O7)、トリリン酸(H5P3O10)、ポリリン酸、メタリン酸(HPO3)、ウルトラリン酸等が挙げられる。また、リン酸塩として、オルトリン酸塩、ピロリン酸塩、トリリン酸塩、ポリリン酸塩、メタリン酸塩、ウルトラリン酸塩等が挙げられる。これらの塩としては、アルカリ金属塩、他の金属塩、アンモニウム塩等が挙げられる。
第2工程において、分散液又は溶解液と接触させるBEA型ゼオライトとしては、上記で挙げたものが挙げられる。分散液又は溶解液と接触させるBEA型ゼオライトとしては、SiO2/Al2O3モル比が上記リン含有BEA型ゼオライトと同様であるものを用いてもよく、また、比表面積が、上記リン含有BEA型ゼオライトの好ましい比表面積と同様であるものを用いてもよい。分散液又は溶解液と接触させるゼオライトとしては、プロトン型やナトリウム型、アンモニウム型が挙げられ、プロトン型が好ましい。
第3工程では、第2工程の接触処理で得られた処理物を焼成する。焼成は、通常、第2工程で得られたスラリーをろ過して得られた固体を乾燥させてなる乾燥物に対して行うことが好ましい。乾燥は水分がなくなる程度行なえば十分であり、例えば100℃以上で数~十数時間程度行なえばよい。
従って、本発明は、本発明の排気ガス浄化用組成物を用いた排気ガス浄化方法をも提供するものであり、より好ましくは、内燃機関の排気通路に排出される排気ガスに含有される炭化水素を除去する、排気ガス浄化方法を提供するものである。
リン酸(H3PO4)0.525g及びオキシ硝酸ジルコニウム(ZrO(NO3)2・2H2O)2.45gを純水50g中に懸濁させた。得られた懸濁液に、プロトン型BEA型ゼオライト(SiO2/Al2O3モル比35、比表面積660m2/g)10gを投入し、室温(20℃)で4時間撹拌した。得られたスラリーをろ過し、120℃で12時間乾燥した後、大気圧雰囲気下、600℃で3時間焼成して、粉末状の排気ガス浄化用組成物を得た。
リン酸の量を1.05gに変更した以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸の量を2.10gに変更した以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸の量を4.20gに変更した以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸の量を2.10gに変更し、オキシ硝酸ジルコニウムの量を4.90gに変更した以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸の量を4.20gに変更し、オキシ硝酸ジルコニウムの量を9.80gに変更した以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
オキシ硝酸ジルコニウムを用いない以外は実施例2と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸及びオキシ硝酸ジルコニウムを用いなかった以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸を用いなかった以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸の量を0.2625gに変更した以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸の量を10.50gに変更した以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸の量を10.50gに変更し、オキシ硝酸ジルコニウムの量を24.50gに変更した以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
BEA型ゼオライトの代わりに、CHA型ゼオライト(細孔径0.4nm、SSZ13、SiO2/Al2O3モル比29、比表面積650m2/g)を用い、リン酸及びオキシ硝酸ジルコニウムを用いなかった。これらの点以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸(H3PO4)1.25g及びオキシ硝酸ジルコニウム(ZrO(NO3)2・2H2O)2.93gを純水50g中に懸濁させた。得られた懸濁液に、CHA型ゼオライト(SSZ13、細孔径0.4nm、SiO2/Al2O3モル比29、比表面積650m2/g)10gを投入し、室温(20℃)で4時間撹拌した。得られたスラリーをろ過し、120℃で12時間乾燥した後、大気圧雰囲気下、600℃で3時間焼成して、粉末状の排気ガス浄化用組成物を得た。
CHA型ゼオライト(細孔径0.4nm、SAPO34、SiO2/Al2O3モル比0.4、比表面積630m2/g)を用い、リン酸及びオキシ硝酸ジルコニウムを用いなかった。これらの点以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸(H3PO4)3.77g及びオキシ硝酸ジルコニウム(ZrO(NO3)2・2H2O)4.41gを純水50g中に懸濁させた。得られた懸濁液に、CHA型ゼオライト(SAPO34、細孔径0.4nm、SiO2/Al2O3モル比0.4、比表面積630m2/g)10gを投入し、室温(20℃)で4時間撹拌した。得られたスラリーをろ過し、120℃で12時間乾燥した後、大気圧雰囲気下、600℃で3時間焼成して、粉末状の排気ガス浄化用組成物を得た。
組成分析装置として、リガク社製の蛍光X線装置(型番:ZSX PrimusII)を用いて排気ガス浄化用組成物中のSi量及びAl量を測定した。測定試料の調製は以下のようにした。得られたSi量及びAl量からSiO2/Al2O3モル比を算出した。
(測定試料の調製方法)
排気ガス浄化用組成物を直径30mmの塩化ビニル管に詰め、圧縮成型して測定試料を調製した。
組成分析装置として、リガク社製の蛍光X線装置(型番:ZSX PrimusII)を用いて排気ガス浄化用組成物中のP量、Zr量及びAl量を測定した。測定試料の調製は以下のようにした。得られた測定値からモル比(P/Al)を算出し、ゼオライト中のAlに対するP含量とした。また得られた測定値からモル比(Zr/Al)を算出し、ゼオライト中のAlに対するZr含量とした。
(測定試料の調製方法)
排気ガス浄化用組成物を直径30mmの塩化ビニル管に詰め、圧縮成型して測定試料を調製した。
排気ガス浄化用組成物について、下記条件で熱耐久試験を行った後の比表面積Am2/gと、試験前の比表面積Bm2/gを測定した。次いで、A/B×100(%)として比表面積の維持率を求めた。比表面積はカンタクローム社製比表面積・細孔分布測定装置(型番:QUADRASORB SI)を用い、BET3点法で求めた。測定用のガスとしてはヘリウムを用いた。
980℃×25時間、10体積%H2O雰囲気にて、下記サイクルを実施した。
サイクル:下記組成のモデルガス3L/min 80sec、Air 3L/min 20secを交互に流した。
モデルガス組成:C3H6 70mL/min、O2 70mL/min、N2 Balanceとした。
10体積%H2Oは水入りタンクより気化させ、水蒸気としてモデルガス又は空気に混入させた。温度により飽和水蒸気圧を調整し、上記体積%の水蒸気量とした。
(31P-NMR測定条件)
測定対象の排気ガス浄化用組成物を直径6mmの酸化ジルコニウム製試料管にセットし、日本電子社製(ECA400)で下記条件にて測定した。
基準物質としては、85% H3PO4水溶液を用い、これを0ppmとした。試料回転速度:7kHz、パルス:90度、繰り返し時間:30秒、積算回数:64回
実施例及び比較例で得られた排気ガス浄化用組成物200mgを、上記条件の熱耐久試験に供した後に、流通反応装置に充填し、下記に示す組成の評価用ガス50℃にて、流量30L/分、30分間流通しトルエンを吸着させた。昇温脱離法によりトルエンを脱離させ、質量分析計によりトルエン脱離量を測定した。実施例2のトルエン吸着量を100%とした任意単位の量を、表1に示す。なお、トルエン昇温脱離はMicromeritics社製の全自動化学吸着分析装置 AutoChem II 2920を用い、脱離量の測定はMicromeritics社製のAutoChem Cirrus 2を用いて行った。
これに対し、BEA型であっても、比表面積の維持率が特定値未満である比較例1~5の組成物、及びリンを含有しない比較例6及び8の組成物は、各実施例に比べてHC吸着性能が得られないか、得られても各実施例に比べて大幅に劣るものであった。また、リン量や維持率が特定値以上であっても、BEA型ではないゼオライトを用いた比較例7及び9の組成物も炭化水素吸着性能がほとんど得られなかった。
以上の通り、本発明の組成物は、特定値以上のリンを含むBEA型ゼオライトを含有し、更に比表面積の維持率が特定値以上であることで、相乗的なHC吸着性能向上効果を奏し、排気ガス浄化用に有用であることが明らかである。
リン酸(H3PO4)0.97g及びオキシ硝酸ジルコニウム(ZrO(NO3)2・2H2O)2.26gを純水50g中に懸濁させた。得られた懸濁液に、プロトン型BEA型ゼオライト(細孔径0.65nm、SiO2/Al2O3モル比38、比表面積620m2/g)10gを投入し、室温(20℃)で4時間撹拌した。得られたスラリーをろ過し、120℃で12時間乾燥した後、大気圧雰囲気下、600℃で3時間焼成して、粉末状の排気ガス浄化用組成物を得た。
リン酸(H3PO4)0.92g及びオキシ硝酸ジルコニウム(ZrO(NO3)2・2H2O)2.16gを純水50g中に懸濁させた。得られた懸濁液に、プロトン型BEA型ゼオライト(細孔径0.65nm、SiO2/Al2O3モル比40、比表面積595m2/g)10gを投入し、室温(20℃)で4時間撹拌した。得られたスラリーをろ過し、120℃で12時間乾燥した後、大気圧雰囲気下、600℃で3時間焼成して、粉末状の排気ガス浄化用組成物を得た。
リン酸及びオキシ硝酸ジルコニウムを用いなかった点以外は実施例8と同様にして、粉末状の排気ガス浄化用組成物を得た。
リン酸及びオキシ硝酸ジルコニウムを用いなかった点以外は実施例9と同様にして、粉末状の排気ガス浄化用組成物を得た。
上記熱耐久試験前の排気ガス浄化用組成物中のゼオライトの結晶子径をXnm、試験後の結晶子径をYnmとした場合に、X/Y×100(%)として維持率を求めた。結晶子径は、下記の条件のX線回折測定を行い、走査範囲21°~24°の範囲におけるゼオライトのメーンピークの半値幅を用い、シェラーの式(D=Κλ/(βcosθ))を用いて評価した。式中、Dは結晶子径、λはX線の波長、βは回折線幅(半値幅)、θは回折角、Κは定数である。半値幅はKを0.94として求めた。X線回折はリガク社:MicroFlex600を用いた。線源としてCu管球を用いた。測定条件は、管電圧40kV、管電流15mA、走査速度10deg/minとした。
これに対し、リンを非含有であるか含有していてもその量が本発明の範囲外である比較例1~6及び8及び10及び11の組成物は各実施例に比べてHC吸着性能が大幅に劣ることが判る。また、リン量が特定範囲内であっても、結晶子径の維持率が本発明の範囲外である比較例9の組成物、熱処理後の結晶子径が本発明の上限超である比較例7の組成物も、トルエン吸着性能が各実施例に劣ることが判る。
以上の通り、本発明の組成物は、用いるゼオライトが特定量のリンを含有し、更に結晶子径の維持率が特定値以上であり、熱処理後の結晶子径が特定値以下であることで、相乗的なHC吸着性能向上効果を奏し、排気ガス浄化用に有用であることが明らかである。
オキシ硝酸ジルコニウム(ZrO(NO3)2・2H2O)の量を0.61gに変更した以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
オキシ硝酸ジルコニウム(ZrO(NO3)2・2H2O)の量を1.22gに変更した以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
オキシ硝酸ジルコニウム(ZrO(NO3)2・2H2O)の量を4.90gに変更した以外は実施例1と同様にして、粉末状の排気ガス浄化用組成物を得た。
また、表4に示すように、特定量のリンを含有し、結晶子径Xが特定値以下であり、結晶子径の維持率が特定値以上であるBEA型ゼオライトを用いることで、高い炭化水素吸着性能が得られることが判る。
Claims (10)
- リンを含有するBEA型ゼオライトを含む組成物であって、リン含有量がゼオライト中のAlとのモル比で0.5倍当量以上であり、
(a1)980℃で25時間熱処理した後の比表面積をAとし、(a2)前記の熱処理を行う前の状態の比表面積をBとしたときに、
A/B×100(%)で表される比表面積の維持率Rsが35%以上である、排気ガス浄化用組成物。 - リンを含有するBEA型ゼオライトを含む組成物であって、リン含有量がゼオライト中のAlとのモル比で0.5倍当量以上8倍当量以下であり、
(b1)980℃で25時間熱処理した後の結晶子径をXとし、(b2)前記の熱処理を行う前の状態の結晶子径をYとしたときに、
Xが25nm以下であり、且つX/Y×100(%)で表される結晶子径の維持率Rdが50%以上である、排気ガス浄化用組成物。 - ジルコニウムを含有する、請求項1又は2に記載の排気ガス浄化用組成物。
- リン含有量がゼオライト中のAlとのモル比で1倍当量以上3倍当量以下である、請求項1~3の何れか1項に記載の排気ガス浄化用組成物。
- Xが15nm以下である、請求項2に記載の排気ガス浄化用組成物。
- リンを含有するBEA型ゼオライトを含む組成物であって、リン含有量がゼオライト中のAlとのモル比で0.5倍当量以上であり、
(a1)980℃で25時間熱処理した後の比表面積をAとし、(a2)前記の熱処理を行う前の状態の比表面積をBとしたときに、
A/B×100(%)で表される比表面積の維持率Rsが35%以上である組成物の、排気ガス浄化処理への使用。 - リンを含有するBEA型ゼオライトを含む組成物であって、リン含有量がゼオライト中のAlとのモル比で0.5倍当量以上8倍当量以下であり、
(b1)980℃で25時間熱処理した後の結晶子径をXとし、(b2)前記の熱処理を行う前の状態の結晶子径をYとしたときに、
Xが25nm以下であり、且つX/Y×100(%)で表される結晶子径の維持率Rdが50%以上である組成物の、排気ガス浄化処理への使用。 - リンを含有するBEA型ゼオライトを含む組成物を用いた排気ガス浄化方法であって、
前記組成物は、リン含有量がゼオライト中のAlとのモル比で0.5倍当量以上であり、
(a1)980℃で25時間熱処理した後の比表面積をAとし、(a2)前記の熱処理を行う前の状態の比表面積をBとしたときに、
A/B×100(%)で表される比表面積の維持率Rsが35%以上である、排気ガス浄化方法。 - リンを含有するBEA型ゼオライトを含む組成物を用いた排気ガス浄化方法であって、
前記組成物は、リン含有量がゼオライト中のAlとのモル比で0.5倍当量以上8倍当量以下であり、
(b1)980℃で25時間熱処理した後の結晶子径をXとし、(b2)前記の熱処理を行う前の状態の結晶子径をYとしたときに、
Xが25nm以下であり、且つX/Y×100(%)で表される結晶子径の維持率Rdが50%以上である、排気ガス浄化方法。 - 内燃機関の排気通路に排出される排気ガスに含有される炭化水素を除去する、請求項8又は9に記載の排気ガス浄化方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112018076517-1A BR112018076517B1 (pt) | 2017-01-13 | 2017-07-26 | composição de purificação de gases de escape, e, uso da mesma |
CN201780034174.1A CN109219482B (zh) | 2017-01-13 | 2017-07-26 | 废气净化用组合物 |
US16/307,768 US10434502B2 (en) | 2017-01-13 | 2017-07-26 | Exhaust gas-purifying composition |
JP2018506241A JP6339306B1 (ja) | 2017-01-13 | 2017-07-26 | 排気ガス浄化用組成物 |
EP17891651.6A EP3456412B1 (en) | 2017-01-13 | 2017-07-26 | Exhaust gas-purifying composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017003959 | 2017-01-13 | ||
JP2017-003959 | 2017-01-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018131196A1 true WO2018131196A1 (ja) | 2018-07-19 |
Family
ID=62839393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/027124 WO2018131196A1 (ja) | 2017-01-13 | 2017-07-26 | 排気ガス浄化用組成物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10434502B2 (ja) |
EP (1) | EP3456412B1 (ja) |
CN (1) | CN109219482B (ja) |
BR (1) | BR112018076517B1 (ja) |
WO (1) | WO2018131196A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113891762A (zh) | 2019-07-03 | 2022-01-04 | 三井金属矿业株式会社 | β型沸石及含有其的催化剂 |
EP4026612A4 (en) * | 2019-09-05 | 2022-10-12 | Mitsui Mining & Smelting Co., Ltd. | EMISSION PURIFICATION COMPOSITION AND MANUFACTURING METHOD THEREOF |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07256114A (ja) * | 1994-03-17 | 1995-10-09 | Idemitsu Kosan Co Ltd | 排ガス浄化用炭化水素吸着触媒 |
JPH11300211A (ja) * | 1998-04-24 | 1999-11-02 | Nissan Motor Co Ltd | 排気ガス浄化用触媒及び排気ガス浄化方法 |
JP2000126590A (ja) * | 1998-10-27 | 2000-05-09 | Tosoh Corp | 吸着剤及び吸着除去方法 |
JP2003071250A (ja) * | 2001-06-18 | 2003-03-11 | Nissan Motor Co Ltd | 排気ガス浄化システム |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0615016B2 (ja) | 1988-09-09 | 1994-03-02 | トヨタ自動車株式会社 | 自動車排気ガス浄化装置 |
JPH0956114A (ja) | 1995-08-21 | 1997-02-25 | Fujitsu General Ltd | 電動機の軸受構造 |
JPH1190226A (ja) | 1997-09-18 | 1999-04-06 | Nissan Motor Co Ltd | 排気ガス浄化用触媒 |
JP2001149787A (ja) | 1999-11-25 | 2001-06-05 | Nissan Motor Co Ltd | 排気ガス浄化用触媒及びその製造方法 |
JP3724708B2 (ja) | 1999-11-26 | 2005-12-07 | 日産自動車株式会社 | 排気ガス浄化用触媒 |
JP3904802B2 (ja) | 2000-04-26 | 2007-04-11 | 日産自動車株式会社 | 排気ガス浄化用触媒及びその製造方法 |
US7695703B2 (en) | 2008-02-01 | 2010-04-13 | Siemens Energy, Inc. | High temperature catalyst and process for selective catalytic reduction of NOx in exhaust gases of fossil fuel combustion |
JP5779398B2 (ja) | 2011-05-13 | 2015-09-16 | 出光興産株式会社 | ゼオライト触媒の活性化方法 |
JP6294126B2 (ja) | 2014-03-31 | 2018-03-14 | 株式会社キャタラー | Scr用触媒及び排ガス浄化触媒システム |
CN106140290B (zh) | 2015-04-16 | 2018-11-30 | 中国石油化工股份有限公司 | 一种含改性β沸石的裂化催化剂 |
CN106145136B (zh) * | 2015-04-16 | 2018-07-31 | 中国石油化工股份有限公司 | 一种改性β沸石及其制备方法 |
-
2017
- 2017-07-26 EP EP17891651.6A patent/EP3456412B1/en active Active
- 2017-07-26 US US16/307,768 patent/US10434502B2/en active Active
- 2017-07-26 WO PCT/JP2017/027124 patent/WO2018131196A1/ja unknown
- 2017-07-26 BR BR112018076517-1A patent/BR112018076517B1/pt active IP Right Grant
- 2017-07-26 CN CN201780034174.1A patent/CN109219482B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07256114A (ja) * | 1994-03-17 | 1995-10-09 | Idemitsu Kosan Co Ltd | 排ガス浄化用炭化水素吸着触媒 |
JPH11300211A (ja) * | 1998-04-24 | 1999-11-02 | Nissan Motor Co Ltd | 排気ガス浄化用触媒及び排気ガス浄化方法 |
JP2000126590A (ja) * | 1998-10-27 | 2000-05-09 | Tosoh Corp | 吸着剤及び吸着除去方法 |
JP2003071250A (ja) * | 2001-06-18 | 2003-03-11 | Nissan Motor Co Ltd | 排気ガス浄化システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3456412A4 * |
Also Published As
Publication number | Publication date |
---|---|
US20190262815A1 (en) | 2019-08-29 |
BR112018076517A2 (pt) | 2019-08-20 |
CN109219482A (zh) | 2019-01-15 |
EP3456412A1 (en) | 2019-03-20 |
EP3456412A4 (en) | 2020-01-15 |
BR112018076517B1 (pt) | 2020-12-08 |
EP3456412B1 (en) | 2021-05-12 |
US10434502B2 (en) | 2019-10-08 |
CN109219482B (zh) | 2020-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5622944B2 (ja) | 窒素含有化合物の変換方法 | |
EP3388392B1 (en) | Copper-containing zeolites having a low alkali metal content, method of making thereof, and their use as scr catalysts | |
KR20150132408A (ko) | 지르코늄, 세륨, 니오븀 및 주석의 산화물을 기반으로 하는 조성물, 이의 제조 방법 및 촉매 작용에서의 용도 | |
KR20130062349A (ko) | 세륨 산화물 및 니오븀 산화물을 포함하는 조성물을 촉매로 사용하는, 질소 산화물(NOx)-함유 가스를 처리하는 방법 | |
CN108698841B (zh) | 制备铁(iii)交换的沸石组合物的方法 | |
WO1998023373A1 (fr) | Procede de production d'un catalyseur pour l'epuration des gaz d'echappement | |
JP6339306B1 (ja) | 排気ガス浄化用組成物 | |
WO2018131196A1 (ja) | 排気ガス浄化用組成物 | |
WO2021044687A1 (ja) | 排気ガス浄化用組成物及びその製造方法 | |
WO2018131195A1 (ja) | 排気ガス浄化用組成物 | |
JP6345372B1 (ja) | 排気ガス浄化用組成物 | |
JP2015016396A (ja) | 排気浄化システム、排気浄化方法、並びにそれに用いる選択還元型NOx触媒およびその製造方法 | |
JP2019093363A (ja) | 触媒用スラリー組成物及びその製造方法、これを用いた触媒の製造方法、並びに、Cu含有ゼオライトの製造方法 | |
EP2870996A1 (en) | Exhaust gas control catalyst | |
WO2019172284A1 (ja) | 排ガス浄化触媒及び排ガス浄化システム | |
JP2021523829A (ja) | 耐熱性が改善されたゼオライト及びこれを用いた触媒複合体 | |
JP2014069164A (ja) | 排気ガス浄化用ゼオライト含有触媒組成物 | |
JP7450727B2 (ja) | 炭化水素吸着材、排ガス浄化触媒及び排ガス浄化システム | |
WO2022131070A1 (ja) | Al-P複合酸化物およびこれを用いた排気ガス浄化用触媒 | |
WO2023182344A1 (ja) | ゼオライト、その製造方法、炭化水素吸着材及び排気ガス浄化触媒 | |
JP2022169847A (ja) | 炭化水素吸着剤、炭化水素吸着剤の製造方法及び炭化水素の吸着方法 | |
JP2021146226A (ja) | 排気ガス浄化用触媒組成物及びbea型ゼオライトの製造方法 | |
JP2020505215A (ja) | 酸化マンガン含有アルミナ組成物、同組成物の製造方法及びその使用。 | |
JPH0810622A (ja) | 排ガス浄化用触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018506241 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17891651 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017891651 Country of ref document: EP Effective date: 20181211 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112018076517 Country of ref document: BR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 112018076517 Country of ref document: BR Kind code of ref document: A2 Effective date: 20181219 |