+

WO2018128291A1 - Polymère diène conjugué modifié et composition de caoutchouc le comprenant - Google Patents

Polymère diène conjugué modifié et composition de caoutchouc le comprenant Download PDF

Info

Publication number
WO2018128291A1
WO2018128291A1 PCT/KR2017/014429 KR2017014429W WO2018128291A1 WO 2018128291 A1 WO2018128291 A1 WO 2018128291A1 KR 2017014429 W KR2017014429 W KR 2017014429W WO 2018128291 A1 WO2018128291 A1 WO 2018128291A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
polymer
reactor
modified conjugated
bis
Prior art date
Application number
PCT/KR2017/014429
Other languages
English (en)
Korean (ko)
Inventor
이호영
손기석
채다원
김노마
김선근
나육열
이형우
최흥열
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170097190A external-priority patent/KR20180084603A/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019536279A priority Critical patent/JP7227136B2/ja
Priority to US16/475,525 priority patent/US11339238B2/en
Priority to EP17890491.8A priority patent/EP3553095B1/fr
Priority to CN201780083727.2A priority patent/CN110382566B/zh
Publication of WO2018128291A1 publication Critical patent/WO2018128291A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a modified conjugated diene-based polymer, and more particularly, to a modified conjugated diene-based polymer prepared by continuous polymerization, having excellent processability, and having a narrow molecular weight distribution and excellent physical properties, and a rubber composition comprising the same.
  • a method of reducing the hysteresis loss of the vulcanized rubber In order to reduce the rolling resistance of the tire, there is a method of reducing the hysteresis loss of the vulcanized rubber.
  • As an evaluation index of the vulcanized rubber a repulsive elasticity of 50 ° C. to 80 ° C., tan ⁇ , Goodrich heat generation and the like are used. That is, a rubber material having a high resilience at the above temperature, or a small tan ⁇ and good rich heat generation is preferable.
  • the greatest advantage of solution polymerization over emulsion polymerization is that the vinyl structure content and styrene content that define rubber properties can be arbitrarily controlled, and molecular weight and physical properties can be controlled by coupling or modification. Can be. Therefore, it is easy to change the structure of the final manufactured SBR or BR, and can reduce the movement of the chain end by the binding or modification of the chain end and increase the bonding strength with the filler such as silica or carbon black. It is widely used as a rubber material.
  • solution polymerization SBR When such a solution polymerization SBR is used as a rubber material for tires, by increasing the vinyl content in the SBR, the glass transition temperature of the rubber can be increased to not only control tire demand properties such as running resistance and braking force, but also increase the glass transition temperature. Proper adjustment can reduce fuel consumption.
  • the solution polymerization SBR is prepared using an anionic polymerization initiator, and is used by binding or modifying the chain ends of the formed polymer using various modifiers. For example, US Pat. No.
  • 4,397,994 discloses a technique in which the active anion at the chain end of a polymer obtained by polymerizing styrene-butadiene in a nonpolar solvent using alkyllithium, which is a monofunctional initiator, is bound using a binder such as a tin compound. It was.
  • the polymerization of the SBR or BR may be carried out by batch (batch) or continuous polymerization, by the batch polymerization, the molecular weight distribution of the polymer produced is advantageous in terms of improving the physical properties, but the productivity is low and There is a problem of poor workability, and in case of the continuous polymerization, the polymerization is continuously made, thus the productivity is excellent, and there is an advantage in terms of processability improvement.
  • the productivity is excellent, and there is an advantage in terms of processability improvement.
  • there is a problem of poor physical properties due to wide molecular weight distribution Thus, in the production of SBR or BR, the situation is constantly being researched to improve both productivity, processability and physical properties at the same time.
  • the present invention has been made in order to solve the problems of the prior art, a modified conjugated diene-based polymer prepared by continuous polymerization and excellent in processability, excellent physical properties such as tensile properties, excellent viscoelastic properties, and the like It is an object to provide a rubber composition.
  • the present invention has a molecular weight distribution curve by gel permeation chromatography (GPC) has a unimodal form, molecular weight distribution (PDI; MWD) is less than 1.7 to provide a modified conjugated diene-based polymer having a Si content of 100 ppm or more by weight.
  • GPC gel permeation chromatography
  • MWD molecular weight distribution
  • the present invention also provides a rubber composition comprising the modified conjugated diene-based polymer and a filler.
  • the modified conjugated diene-based polymer according to the present invention is produced for continuous polymerization, it has excellent processability and has a narrow molecular weight distribution that is equivalent to or higher than that of the modified conjugated diene-based polymer produced by batch polymerization. It is excellent in physical properties and excellent in viscoelastic properties.
  • Figure 1 shows the molecular weight distribution curve by gel permeation chromatography (GPC) of the modified conjugated diene-based polymer of Example 3 according to an embodiment of the present invention.
  • Figure 2 shows the molecular weight distribution curve by gel permeation chromatography (GPC) of the modified conjugated diene-based polymer of Example 6 according to an embodiment of the present invention.
  • Figure 3 shows the molecular weight distribution curve by gel permeation chromatography (GPC) of the modified conjugated diene-based polymer of Comparative Example 3 according to an embodiment of the present invention.
  • the modified conjugated diene-based polymer according to the present invention has a molecular weight distribution curve by gel permeation chromatography (GPC) has a unimodal form, a molecular weight distribution (PDI; MWD) is less than 1.7, Si content It may be at least 100 ppm based on this weight.
  • GPC gel permeation chromatography
  • the modified conjugated diene-based polymer may include a repeating unit derived from a conjugated diene monomer and a functional group derived from a modifier.
  • the conjugated diene-based monomer-derived repeating unit may mean a repeating unit formed when the conjugated diene-based monomer is polymerized, and the modifier-derived functional group is present at one end of the active polymer through a reaction or coupling between the active polymer and the modifying agent. It can mean a functional group derived from.
  • the modified conjugated diene-based polymer may be a homopolymer including a conjugated diene-based monomer-derived repeating unit that does not include an aromatic vinyl monomer-derived repeating unit.
  • the conjugated diene monomer is 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene, 2 It may be at least one selected from the group consisting of -phenyl-1,3-butadiene and 2-halo-1,3-butadiene (halo means halogen atom).
  • the modified conjugated diene-based polymer may be a copolymer comprising a conjugated diene-based repeating unit and an aromatic vinyl monomer-derived repeating unit, in which case the modified conjugated diene-based polymer is a repeating unit derived from an aromatic vinyl monomer More than 0 wt% and less than 10 wt%.
  • the aromatic vinyl monomer is, for example, styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- (p-methylphenyl) styrene, 1 -Vinyl-5-hexylnaphthalene, 3- (2-pyrrolidino ethyl) styrene, 3- (2-pyrrolidino ethyl) styrene, 4- (2-pyrrolidino ethyl) styrene ) styrene) and 3- (2-pyrrolidino-1-methyl ethyl) - ⁇ -methylstyrene (3- (2-pyrrolidino-1-methyl ethyl) styrene).
  • the modified conjugated diene-based polymer may be a copolymer further comprising a diene-based monomer derived from C 1 to 10 together with the repeating unit derived from the conjugated diene monomer.
  • the diene monomer-derived repeating unit may be a repeating unit derived from a diene monomer different from the conjugated diene monomer, and the diene monomer different from the conjugated diene monomer may be, for example, 1,2-butadiene. .
  • the modified conjugated diene-based polymer is a copolymer further comprising a diene monomer
  • the modified conjugated diene-based polymer is more than 0% to 1% by weight, greater than 0% to 0.1% by weight of the repeating unit derived from the diene monomer, It may be included in more than 0% by weight to 0.01% by weight, or more than 0% by weight to 0.001% by weight, there is an effect of preventing the gel production within this range.
  • the copolymer may be a random copolymer, in this case there is an excellent balance between the physical properties.
  • the random copolymer may mean that the repeating units constituting the copolymer are randomly arranged.
  • the modified conjugated diene-based polymer according to an embodiment of the present invention has a number average molecular weight (Mn) of 1,000 g / mol to 2,000,000 g / mol, 10,000 g / mol to 1,000,000 g / mol, or 100,000 g / mol to 800,000 g / mol, the weight average molecular weight (Mw) may be 1,000 g / mol to 3,000,000 g / mol, 10,000 g / mol to 2,000,000 g / mol, or 100,000 g / mol to 2,000,000 g / mol, within this range Cloud resistance and wet road resistance is excellent effect.
  • Mn number average molecular weight
  • the modified conjugated diene-based polymer may have a molecular weight distribution (PDI; MWD; Mw / Mn) of less than 1.7, 1.0 or more and less than 1.7, or 1.1 or more and less than 1.7, and tensile and viscoelastic properties within this range. It is excellent in this and there exists an effect which is excellent in the balance between each physical property.
  • PDI molecular weight distribution
  • the modified conjugated diene-based polymer has a molecular weight distribution curve by gel permeation chromatography (GPC) has a unimodal form, which is a molecular weight distribution appearing in the polymer polymerized by continuous polymerization
  • GPC gel permeation chromatography
  • the modified conjugated diene-based polymer has a uniform characteristic. That is, the modified conjugated diene-based polymer according to an embodiment of the present invention may be prepared by continuous polymerization, and may have a molecular weight distribution curve of less than 1.7 while having a unimodal molecular weight distribution curve.
  • the modified conjugated diene-based polymer may have a Si content of 100 ppm or more, 100 ppm to 10,000 ppm, or 100 ppm to 5,000 ppm by weight, and includes a modified conjugated diene-based polymer within this range.
  • the Si content may refer to the content of Si atoms present in the modified conjugated diene-based polymer.
  • the Si atom may be derived from a modifier-derived functional group.
  • the Si content may be measured by an ICP analysis method
  • the ICP analysis method may be measured by an acid decomposition pretreatment method using an inductively coupled plasma luminescence analyzer (ICP-OES; Optima 7300DV).
  • ICP-OES inductively coupled plasma luminescence analyzer
  • about 0.7 g of the sample was placed in a platinum crucible (Pt crucible), about 1 mL of concentrated sulfuric acid (98 wt%, Electronic grade) was heated at 300 ° C. for 3 hours, and the sample was After the conversation in the electric furnace (Thermo Scientific, Lindberg Blue M) in the program of steps 1 to 3,
  • step 1 initial temp 0 °C, rate (temp / hr) 180 °C / hr, temp (holdtime) 180 °C (1hr)
  • step 2 initial temp 180 °C, rate (temp / hr) 85 °C / hr, temp (holdtime) 370 °C (2hr)
  • step 3 initial temp 370 °C, rate (temp / hr) 47 °C / hr, temp (holdtime) 510 °C (3hr).
  • the modified conjugated diene-based polymer has a polymer component of at least 100,000 g / mol of molecular weight in terms of standard polystyrene converted by gel permeation chromatography, unimodal, a molecular weight distribution (PDI; MWD) of 2.0 or less, and a number average molecular weight.
  • PDI molecular weight distribution
  • the modified conjugated diene-based polymer may have a Mooney viscosity at 100 ° C., 30 or more, 40 to 150, or 40 to 140, and excellent workability and productivity within this range.
  • the modified conjugated diene-based polymer may have a vinyl content of 5% by weight or more, 10% by weight or more, or 10% by weight to 60% by weight.
  • the vinyl content may refer to the content of 1,2-added conjugated diene-based monomers, not 1,4-addition, based on 100% by weight of the conjugated diene-based copolymer composed of a monomer having a vinyl group and an aromatic vinyl monomer. Can be.
  • the modifier according to the present invention may be a modifier for modifying the terminal of the conjugated diene-based polymer, may be an alkoxy silane-based modifier, and more specifically an alkoxy silane-based modifier containing a nitrogen atom.
  • modification may be performed in a form in which one end of the active polymer is bonded to the silyl group through a substitution reaction between an anion active site located at one end of the active polymer and an alkoxy group of the alkoxy silane-based modifier.
  • the denaturant may be to include a compound represented by the following formula (1).
  • R 1 may be a single bond, or an alkylene group having 1 to 10 carbon atoms
  • R 2 and R 3 may each independently be an alkyl group having 1 to 10 carbon atoms
  • R 4 may be hydrogen or 1 to carbon atoms.
  • R 21 is a single bond, an alkylene group having 1 to 10 carbon atoms , Or- [R 42 O] j- , R 42 may be an alkylene group having 1 to 10 carbon atoms, a and m may be each independently an integer selected from 1 to 3, n is 0, 1, Or an integer of 2, j may be an integer selected from 1 to 30.
  • R 1 may be a single bond or an alkylene group having 1 to 5 carbon atoms
  • R 2 and R 3 may be each independently hydrogen, an alkyl group having 1 to 5 carbon atoms
  • R 4 is Hydrogen, a tetravalent alkylsilyl group substituted with an alkyl group having 1 to 5 carbon atoms, an alkyl group having 1 to 5 carbon atoms, or a heterocyclic group having 2 to 5 carbon atoms
  • R 21 is a single bond or an alkylene group having 1 to 5 carbon atoms
  • R 42 may be an alkylene group having 1 to 5 carbon atoms
  • a may be an integer of 2 or 3
  • m may be an integer selected from 1 to 3
  • the heterocyclic group when R 4 is a heterocyclic group, the heterocyclic group may be unsubstituted or substituted with a trisubstituted alkoxy silyl group, when the heterocyclic group is substituted with a trisubstituted alkoxy silyl group, the trisubstituted alkoxy silyl group
  • the heterocyclic group may be substituted by an alkylene group having 1 to 10 carbon atoms
  • the trisubstituted alkoxy silyl group may mean an alkoxy silyl group substituted with an alkoxy group having 1 to 10 carbon atoms.
  • the compound represented by 1 is N, N-bis (3- (dimethoxy (methyl) silyl) propyl) -methyl-1-amine (N, N-bis (3- (dimethoxy (methyl) silyl) propyl) -methyl -1-amine), N, N-bis (3- (diethoxy (methyl) silyl) propyl) -methyl-1-amine (N, N-bis (3- (diethoxy (methyl) silyl) propyl) -methyl -1-amine), N, N-bis (3- (trimethoxysilyl) propyl) -methyl-1-amine (N, N-bis (3- (trimethoxysilyl) propyl) -methyl-1-amine), N, N-bis (3- (triethoxysilyl) propyl) -methyl-1-amine (N, N-bis (3- (triethoxysilyl) propyl) -methyl-1-amine), N, N-diethyl-3- (tri Methoxysilyl) prop
  • the denaturant may include a compound represented by Formula 2 below.
  • R 5 , R 6 and R 9 may be each independently an alkylene group having 1 to 10 carbon atoms
  • R 7 , R 8 , R 10 and R 11 are each independently an alkyl group having 1 to 10 carbon atoms.
  • R 12 may be hydrogen or an alkyl group having 1 to 10 carbon atoms
  • b and c may each independently be 0, 1, 2 or 3
  • b + c ⁇ 1 and A may be or
  • R 13 , R 14 , R 15 and R 16 may be each independently hydrogen or an alkyl group having 1 to 10 carbon atoms.
  • the compound represented by Chemical Formula 2 may be N- (3-1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) as a modifier.
  • Propan-1-amine (N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propan-1-amine) and 3- ( 4,5-dihydro-1H-imidazol-1-yl) -N, N-bis (3- (triethoxysilyl) propyl) propan-1-amine (3- (4,5-dihydro-1H- imidazol-1-yl) -N, N-bis (3- (triethoxysilyl) propyl) propan-1-amine) may be one selected from the group consisting of.
  • the denaturant may include a compound represented by Formula 3 below.
  • a 1 and A 2 may each independently be a divalent hydrocarbon group having 1 to 20 carbon atoms, including or without an oxygen atom, and R 17 to R 20 are each independently monovalent having 1 to 20 carbon atoms. It may be a hydrocarbon group, L 1 to L 4 are each independently a divalent, trivalent or tetravalent alkylsilyl group substituted with an alkyl group having 1 to 10 carbon atoms, or a monovalent hydrocarbon group having 1 to 20 carbon atoms, or L 1 and L 2 and L 3 and L 4 may be linked to each other to form a ring having 1 to 5 carbon atoms, and when L 1 and L 2 and L 3 and L 4 are connected to each other to form a ring, the ring formed may be It may include one to three heteroatoms selected from the group consisting of N, O and S.
  • a 1 and A 2 may be each independently an alkylene group of 1 to 10
  • R 17 to R 20 may be each independently an alkyl group having 1 to 10 carbon atoms
  • L 1 to L 4 is independently a tetravalent alkylsilyl group substituted with an alkyl group having 1 to 5 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or L 1 and L 2 and L 3 and L 4 are connected to each other to form a ring having 1 to 3 carbon atoms
  • the ring formed may include one or more heteroatoms selected from the group consisting of N, O, and S; It can contain three.
  • the compound represented by Formula 3 is 3,3 '-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine) (3,3 '-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine), 3,3'-(1,1,3,3- Tetraethoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine) (3,3 '-(1,1,3,3-tetraethoxydisiloxane-1,3-diyl) bis ( N, N-dimethylpropan-1-amine), 3,3 '-(1,1,3,3-tetrapropoxydisiloxane-1,3-diyl) bis (N, N-dimethylpropan-1-amine) (3,3 '-(1,1,3,3-t
  • the denaturant may include a compound represented by the following Formula 4.
  • R 22 and R 23 are each independently an alkylene group having 1 to 20 carbon atoms, or -R 28 [OR 29 ] f-
  • R 24 to R 27 are each independently an alkyl group having 1 to 20 carbon atoms or It may be an aryl group having 6 to 20 carbon atoms
  • R 28 and R 29 may be each independently an alkylene group having 1 to 20 carbon atoms
  • R 47 and R 48 may be each independently a divalent hydrocarbon group having 1 to 6 carbon atoms
  • d and e are each independently 0, or an integer selected from 1 to 3
  • d + e is an integer of 1 or more
  • f may be an integer of 1 to 30.
  • R 22 and R 23 may be each independently an alkylene group having 1 to 10 carbon atoms, or -R 28 [OR 29 ] f- , and R 24 to R 27 are each independently 1 It may be an alkyl group of 10 to 10, R 28 and R 29 may be each independently an alkylene group having 1 to 10 carbon atoms, d and e are each independently 0, or an integer selected from 1 to 3, d + e is It may be an integer of 1 or more, f may be an integer selected from 1 to 30.
  • the compound represented by Chemical Formula 4 may be a compound represented by Chemical Formula 4a, Chemical Formula 4b, or Chemical Formula 4c.
  • R 22 to R 27 , d, and e are as described above.
  • the compound represented by Formula 4 is a more specific example, the compound represented by Formula 4 is 1,4-bis (3- (3- (triethoxysilyl) propoxy) propyl) piperazine (1 , 4-bis (3- (3- (triethoxysilyl) propoxy) propyl) piperazine, 1,4-bis (3- (triethoxysilyl) propyl) piperazine (1,4-bis (3- (triethoxysilyl) propyl ) piperazine), 1,4-bis (3- (trimethoxysilyl) propyl) piperazine (1,4-bis (3- (trimethoxysilyl) propyl) piperazine), 1,4-bis (3- (dimethoxy Methylsilyl) propyl) piperazine (1,4-bis (3- (dimethoxymethylsilyl) propyl) piperazine), 1- (3- (ethoxydimethylsilyl) propyl) -4- (3- (triethoxysilyl) propy
  • the denaturant may include a compound represented by the following Formula 5.
  • R 30 may be a monovalent hydrocarbon group having 1 to 30 carbon atoms
  • R 31 to R 33 may each independently be an alkylene group having 1 to 10 carbon atoms
  • R 34 to R 37 may each independently be carbon atoms. It may be an alkyl group of 1 to 10, g and h are each independently 0, or an integer selected from 1 to 3, g + h may be an integer of 1 or more.
  • the denaturant may include a compound represented by the following Formula 6.
  • a 3 and A 4 may each independently be an alkylene group having 1 to 10
  • R 38 to R 41 may be each independently an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 10 carbon atoms.
  • i may be an integer selected from 1 to 30.
  • the denaturing agent is 3,4-bis (2-methoxydeoxy) -N- (4- (triethoxysilyl) butyl) aniline (3,4-bis (2-methoxyethoxy) -N- ( 4- (trimethylsilyl) butyl) aniline), N, N-diethyl-3- (7-methyl-3,6,8,11-tetraoxa-7-silatridecan-7-yl) propan-1-amine (N, N-diethyl-3- (7-methyl-3,6,8,11-tetraoxa-7-silatridecan-7-yl) propan-1-amine), 2,4-bis (2-methoxyde Methoxy) -6-((trimethylsilyl) methyl) -1,3,5-triazine (2,4-bis (2-methoxyethoxy) -6-((trimethylsilyl) methyl) -1,3,5-triazine) And 3,14-dimethoxy-3,8,8,13
  • the denaturant may include a compound represented by the following Formula 7.
  • R 43 , R 45, and R 46 may be each independently an alkyl group having 1 to 10 carbon atoms, R 44 may be an alkylene group having 1 to 10 carbon atoms, and k may be an integer selected from 1 to 4 have.
  • the compound represented by Chemical Formula 7 is 8,8-dibutyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13- Disila-8-stanpentadecane (8,8-dibutyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane), 8,8-dimethyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stanpentadecane (8,8- dimetyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stanpentadecane (8,8- dimetyl-3,13-dimethoxy-3
  • the term 'monovalent hydrocarbon group' refers to a monovalent atomic group in which carbon and hydrogen are bonded, such as a monovalent alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkyl group and an aryl group including one or more unsaturated bonds.
  • the minimum number of carbon atoms of the substituent represented by the monovalent hydrocarbon may be determined according to the type of each substituent.
  • the term 'bivalent hydrocarbon group' is a two-membered carbon and hydrogen, such as a divalent alkylene group, an alkenylene group, an alkynylene group, a cycloalkylene group, a cycloalkylene group including one or more unsaturated bonds, and an arylene group. It may mean a valence atom group, and the minimum number of carbon atoms of a substituent represented by a divalent hydrocarbon may be determined according to the type of each substituent.
  • the term 'alkyl group' may mean a monovalent aliphatic saturated hydrocarbon, and may be linear alkyl groups such as methyl, ethyl, propyl and butyl, and isopropyl, sec-butyl, tertiary, It may be meant to include all branched alkyl groups such as tert-butyl and neo-pentyl.
  • alkylene group may refer to a divalent aliphatic saturated hydrocarbon such as methylene, ethylene, propylene and butylene.
  • alkenyl group' may refer to an alkyl group including one or two or more double bonds.
  • alkynyl group' may refer to an alkyl group including one or two or more triple bonds.
  • cycloalkyl group may mean both cyclic saturated hydrocarbons or cyclic unsaturated hydrocarbons containing one or two or more unsaturated bonds.
  • the term 'aryl group' may mean a cyclic aromatic hydrocarbon, and also a monocyclic aromatic hydrocarbon in which one ring is formed, or a polycyclic aromatic hydrocarbon in which two or more rings are combined. hydrocarbons) can be included.
  • the present invention provides a method for producing a modified conjugated diene-based polymer in order to produce the modified conjugated diene-based polymer.
  • the modified conjugated diene-based polymer manufacturing method comprises the steps of polymerizing or copolymerizing a conjugated diene-based monomer, or a conjugated diene-based monomer and an aromatic vinyl monomer in the presence of an organometallic compound in a hydrocarbon solvent to prepare an active metal combined with an organic metal. (S1); And reacting or coupling the active polymer prepared in the step (S1) with the denaturant (S2), wherein the step (S1) is carried out continuously in two or more polymerization reactors, and in the first reactor
  • the polymerization conversion may be 50% or less.
  • the hydrocarbon solvent is not particularly limited, but may be, for example, one or more selected from the group consisting of n-pentane, n-hexane, n-heptane, isooctane, cyclohexane, toluene, benzene and xylene.
  • the organometallic compound is 0.01 mmol to 10 mmol, 0.05 mmol to 5 mmol, 0.1 mmol to 2 mmol, 0.1 mmol to 1 mmol, or 0.15 to 0.8 mmol based on 100 g of the total monomers
  • the organometallic compound include methyllithium, ethyllithium, propyllithium, isopropyllithium, n-butyllithium, s-butyllithium, t-butyllithium, hexyllithium, n-decyllithium, t-octylithium and phenyllithium.
  • the polymerization of the step (S1) may be, for example, anionic polymerization, and specifically, may be living anion polymerization having an anion active site at the end of the polymerization by a growth polymerization reaction by anion.
  • the polymerization of the step (S1) may be a temperature increase polymerization, isothermal polymerization or constant temperature polymerization (thermal insulation polymerization)
  • the constant temperature polymerization may include the step of polymerization by the heat of reaction without the addition of heat after the addition of the organometallic compound optionally
  • the temperature polymerization may mean a polymerization method in which the temperature is increased by optionally adding heat after the organometallic compound is added, and the isothermal polymerization is heat after adding the organometallic compound. By adding to increase the heat or take the heat may mean a polymerization method for maintaining a constant temperature of the polymer.
  • the polymerization of the step (S1) may be carried out by further comprising a diene monomer having 1 to 10 carbon atoms in addition to the conjugated diene monomer, in this case, the reactor wall surface for a long time operation There is an effect of preventing the formation of a gel.
  • the diene monomer may be 1,2-butadiene, for example.
  • the polymerization of the step (S1) may be carried out at a temperature range of 80 ° C or less, -20 ° C to 80 ° C, 0 ° C to 80 ° C, 0 ° C to 70 ° C, or 10 ° C to 70 ° C, for example.
  • a temperature range of 80 ° C or less 80 ° C or less, -20 ° C to 80 ° C, 0 ° C to 80 ° C, 0 ° C to 70 ° C, or 10 ° C to 70 ° C, for example.
  • the active polymer prepared by the step (S1) may refer to a polymer in which a polymer anion and an organic metal cation are combined.
  • the active polymer prepared by the polymerization of the step (S1) may be a random copolymer, in this case, the balance between the physical properties is excellent effect.
  • the random copolymer may mean that the repeating units constituting the copolymer are randomly arranged.
  • the modified conjugated diene-based polymer manufacturing method may be carried out by a continuous polymerization method in a plurality of reactors including two or more polymerization reactors and a modified reactor.
  • the step (S1) may be carried out continuously in two or more polymerization reactors, and the number of the polymerization reactors may be elastically determined according to the reaction conditions and environment.
  • the continuous polymerization method may mean a reaction process of continuously supplying a reactant to the reactor and continuously discharging the generated reaction product. In the case of the continuous polymerization method, it is excellent in productivity and processability and excellent in uniformity of the polymer to be produced.
  • the polymerization conversion rate in the first reactor may be 50% or less, 10% to 50%, or 20% to 50%, After the polymerization reaction is initiated within this range, it is possible to suppress the side reactions generated when the polymer is formed to induce a polymer having a linear structure during the polymerization, thereby narrowing the molecular weight distribution of the polymer, The improvement is excellent.
  • the polymerization conversion may be adjusted according to the reaction temperature, the reactor residence time.
  • the polymerization conversion rate may be determined, for example, by measuring a solid concentration on a polymer solution containing a polymer when polymerizing the polymer.
  • a cylindrical container may be mounted at the outlet of each polymerization reactor. After filling the cylindrical solution with the positive polymer solution, and separating the cylindrical container from the reactor to measure the weight (A) of the cylinder filled with the polymer solution, the polymer solution filled in the cylindrical container was replaced with an aluminum container, As an example, the weight (B) of the cylindrical container which is transferred to an aluminum dish and the polymer solution is removed is measured, the aluminum container containing the polymer solution is dried in an oven at 140 ° C. for 30 minutes, and the weight (C) of the dried polymer is measured. After that, it may be calculated according to the following equation (1).
  • the polymerized in the first reactor is sequentially transferred to the polymerization reactor before the modification reactor, the polymerization may proceed until the polymerization conversion rate is at least 95%, and after the polymerization in the first reactor, the second reactor.
  • the polymerization conversion rate of each reactor from the second reactor to the polymerization reactor before the modified reactor may be carried out by appropriately adjusting the respective reactors to control the molecular weight distribution.
  • the term 'polymer' is carried out in each reactor during the step (S1), before the step (S1) or (S2) is completed to obtain an active polymer or a modified conjugated diene-based polymer. It can mean an intermediate in the form of a polymer being used, and can mean a polymer having a polymerization conversion of less than 99% in which polymerization is being carried out in the reactor.
  • the molecular weight distribution (PDI, polydispersed index; MWD, molecular weight distribution; Mw / Mn) of the active polymer prepared in step (S1) is less than 1.5, 1.0 or more to less than 1.5, or 1.1
  • the molecular weight distribution of the modified conjugated diene-based polymer prepared through the modification reaction or coupling with the modifier within this range may be less than or equal to 1.5, thereby improving the physical properties.
  • the polymerization of the step (S1) may be carried out including a polar additive
  • the polar additive is added in a ratio of 0.001g to 50g, 0.001g to 10g, or 0.005g to 0.1g based on a total of 100g monomer can do.
  • the polar additive may be added in a ratio of 0.001 g to 10 g, 0.005 g to 5 g, or 0.005 g to 4 g based on 1 mmol of the organometallic compound.
  • polar additives examples include tetrahydrofuran, 2,2-di (2- (tetrahydrofuryl) propane, diethyl ether, cycloamal ether, dipropyl ether, ethylene methyl ether, ethylene dimethyl ether, diethyl glycol, and dimethyl.
  • Ether tert-butoxyethoxyethane, bis (3-dimethylaminoethyl) ether, (dimethylaminoethyl) ethyl ether, trimethylamine, triethylamine, tripropylamine, N, N, N ', N'-tetra It may be at least one selected from the group consisting of methyl ethylene diamine, sodium mentholate and 2-ethyl tetrahydrofurfuryl ether, preferably triethylamine, N, N, N ', N'-tetramethylethylenediamine, sodium mentholate or 2-ethyl tetrahydrofurfuryl ether, and when the polar additive is included conjugated diene-based When copolymerizing a monomer or a conjugated diene monomer and an aromatic vinyl monomer, it is possible to easily form a random copolymer by compensating for the difference in their reaction rates.
  • the reaction or coupling of the step (S2) may be carried out in a modification reactor, wherein the denaturant may be used in an amount of 0.01 mmol to 10 mmol based on a total of 100 g of monomers. have.
  • the denaturant may be used in a molar ratio of 1: 0.1 to 10, 1: 0.1 to 5, or 1: 0.1 to 1: 3, based on 1 mole of the organometallic compound of step (S1).
  • the denaturant may be added to the modification reactor, the step (S2) may be carried out in the modification reactor.
  • the denaturant may be added to the transfer unit for transferring the active polymer prepared in the step (S1) to the modification reactor for performing the step (S2), and the mixture of the active polymer and the modifier in the transfer unit Reaction or coupling may proceed.
  • a rubber composition comprising the modified conjugated diene-based polymer.
  • the rubber composition may include the modified conjugated diene-based polymer in an amount of 10 wt% or more, 10 wt% to 100 wt%, or 20 wt% to 90 wt%, and within this range, tensile strength, wear resistance, and the like. It is excellent in the mechanical properties of and excellent in the balance between each physical property.
  • the rubber composition may further include other rubber components as needed in addition to the modified conjugated diene-based polymer, wherein the rubber components may be included in an amount of 90% by weight or less based on the total weight of the rubber composition.
  • the other rubber component may be included in an amount of 1 part by weight to 900 parts by weight based on 100 parts by weight of the modified conjugated diene-based polymer.
  • the rubber component may be, for example, natural rubber or synthetic rubber, and specific examples include natural rubber (NR) including cis-1,4-polyisoprene; Modified natural rubbers such as epoxidized natural rubber (ENR), deproteinized natural rubber (DPNR), and hydrogenated natural rubber obtained by modifying or refining the general natural rubber; Styrene-butadiene copolymer (SBR), polybutadiene (BR), polyisoprene (IR), butyl rubber (IIR), ethylene-propylene copolymer, polyisobutylene-co-isoprene, neoprene, poly (ethylene-co- Propylene), poly (styrene-co-butadiene), poly (styrene-co-isoprene), poly (styrene-co-isoprene-co-butadiene), poly (isoprene-co-butadiene), poly (ethylene-co-propylene Co-diene),
  • the rubber composition may include, for example, 0.1 part by weight to 200 parts by weight, or 10 parts by weight to 120 parts by weight of a filler based on 100 parts by weight of the modified conjugated diene polymer of the present invention.
  • the filler may be, for example, a silica-based filler, and specific examples may be wet silica (silicate silicate), dry silica (silicate anhydrous), calcium silicate, aluminum silicate, colloidal silica, and the like.
  • the wet silica may be the most compatible of the grip (wet grip).
  • the rubber composition may further include a carbon black filler as needed.
  • silica when silica is used as the filler, a silane coupling agent for improving reinforcement and low heat generation may be used together.
  • the silane coupling agent may include bis (3-triethoxysilylpropyl) tetrasulfide.
  • the compounding amount of the silane coupling agent is conventional.
  • the silane coupling agent may be used in an amount of 1 part by weight to 20 parts by weight, or 5 parts by weight to 15 parts by weight with respect to 100 parts by weight of silica, and the effect as a coupling agent is within this range. While sufficiently exhibiting, there is an effect of preventing gelation of the rubber component.
  • the rubber composition according to an embodiment of the present invention may be sulfur crosslinkable, and may further include a vulcanizing agent.
  • the vulcanizing agent may be specifically sulfur powder, and may be included in an amount of 0.1 parts by weight to 10 parts by weight with respect to 100 parts by weight of the rubber component, while ensuring the required elastic modulus and strength of the vulcanized rubber composition within this range and at the same time low fuel efficiency. Excellent effect.
  • the rubber composition according to an embodiment of the present invention in addition to the above components, various additives commonly used in the rubber industry, specifically, vulcanization accelerators, process oils, plasticizers, antioxidants, anti-aging agents, anti-scoring agents, and zinc (zinc) white), stearic acid, a thermosetting resin, or a thermoplastic resin.
  • the vulcanization accelerator is, for example, a thiazole-based compound such as M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazylsulfenamide), or DPG.
  • a thiazole-based compound such as M (2-mercaptobenzothiazole), DM (dibenzothiazyl disulfide), CZ (N-cyclohexyl-2-benzothiazylsulfenamide), or DPG.
  • Guanidine-based compounds such as (diphenylguanidine) may be used, and may be included in an amount of 0.1 to 5 parts by weight based on 100 parts by weight of the rubber component.
  • the process oil acts as a softener in the rubber composition, and may be, for example, a paraffinic, naphthenic, or aromatic compound, and when considering the tensile strength and abrasion resistance, when the aromatic process oil, hysteresis loss and low temperature characteristics are considered.
  • Naphthenic or paraffinic process oils may be used.
  • the process oil may be included in an amount of 100 parts by weight or less based on 100 parts by weight of the rubber component, and there is an effect of preventing a decrease in tensile strength and low heat generation (low fuel efficiency) of the vulcanized rubber within this range.
  • the antioxidant is, for example, 2,6-di-t-butylparacresol, dibutylhydroxytoluene, 2,6-bis ((dodecylthio) methyl) -4-nonylphenol (2,6-bis (( dodecylthio) methyl) -4-nonylphenol) or 2-methyl-4,6-bis ((octylthio) methyl) phenol (2-methyl-4,6-bis ((octylthio) methyl) phenol) and rubber 0.1 parts by weight to 6 parts by weight based on 100 parts by weight of the component may be used.
  • the anti-aging agent is for example N-isopropyl-N'-phenyl-p-phenylenediamine, N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine, 6-ethoxy-2 , 2,4-trimethyl-1,2-dihydroquinoline, or a high temperature condensate of diphenylamine and acetone, and the like, and may be used in an amount of 0.1 to 6 parts by weight based on 100 parts by weight of the rubber component.
  • the rubber composition according to an embodiment of the present invention may be obtained by kneading using a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc. by the compounding formulation, and has low heat resistance and abrasion resistance by a vulcanization process after molding. This excellent rubber composition can be obtained.
  • a kneading machine such as a Banbury mixer, a roll, an internal mixer, etc.
  • the rubber composition may be used for tire members such as tire treads, under treads, sidewalls, carcass coated rubbers, belt coated rubbers, bead fillers, pancreapers, or bead coated rubbers, dustproof rubbers, belt conveyors, hoses, and the like. It may be useful for the production of various industrial rubber products.
  • the present invention provides a tire manufactured using the rubber composition.
  • the tire may include a tire or a tire tread.
  • the temperature of the second reactor was maintained at 70 ° C., and the polymerization product was transferred from the second reactor to the blend tank through the transfer pipe when the polymerization conversion rate reached 95%.
  • Propan-1-amine) (N- (3- (1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propyl) propan-1-amine) is 20 weight
  • the solution dissolved in% was added at a rate of 111.7 g / h.
  • IR1520 BASF, Inc.
  • 30% by weight of an antioxidant into the polymerization solution discharged from the second reactor was injected and stirred at a rate of 170 g / h.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the temperature of the second reactor was maintained at 70 ° C., and the polymerization product was transferred from the second reactor to the third reactor through a transfer pipe when the polymerization conversion rate reached 95%.
  • the polymer was transferred from the second reactor to the third reactor, and N, N-bis (3- (diethoxy (methyl) silyl) propyl) -methyl-1-amine (N, N-bis (3- (diethoxy) was used as a modifier.
  • N, N-bis (3- (diethoxy) was used as a modifier.
  • a solution in which (methyl) silyl) propyl) -methyl-1-amine) was dissolved at 20% by weight was added to a third reactor at a rate of 170.0 g / h.
  • the temperature of the third reactor was maintained at 70 ° C.
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the temperature of the second reactor was maintained at 65 ° C, and the polymerization product was transferred from the second reactor to the third reactor through the transfer pipe when the polymerization conversion rate was 95%.
  • the polymer was transferred from the second reactor to the third reactor, and a solution containing 1,4-bis (3- (triethoxysilyl) propyl) piperazine dissolved as 20% by weight as a modifier was prepared at a rate of 104.4 g / h. 3 reactors.
  • the temperature of the third reactor was maintained at 65 ° C.
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the temperature of the second reactor was maintained to 70 °C, when the polymerization conversion rate was 95% through the transfer pipe, the polymer was transferred to the blend tank from the second reactor.
  • 8,8-dibutyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3, 13-disila-8-stanpentanecane (8,8-dibutyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stannapentadecane ) was added at a rate of 123.8 g / h.
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the second reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the temperature of the second reactor was maintained at 70 °C, and when the polymerization conversion rate was 95% through the transfer pipe, the polymer was transferred from the second reactor to the third reactor.
  • N- (3,6,9,12-tetraoxahexadecyl) -N- (3- (triethoxysilyl) propyl) -3.6.9.12- as a modifier
  • IR1520 BASF, Inc.
  • BASF, Inc. IR1520 solution dissolved at 30% by weight as an antioxidant in the polymerization solution discharged from the third reactor was injected and stirred at a rate of 170 g / h.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • N-(1,1,3,3, -tetramethoxydisiloxane-1,3-diyl) bis N, N-diethylpropan-1-amine
  • the temperature of the second reactor was maintained at 60 ° C., and the polymerization product was transferred from the second reactor to the third reactor through a transfer pipe when the polymerization conversion rate reached 95%.
  • N, N-diethyl-3- (triethoxysilyl) propan-1-amine (N, N-diethyl-3- (triethoxysilyl) propan-1) as a modifier -amine) was added to the third reactor at a rate of 88.2 g / h.
  • the temperature of the third reactor was maintained at 60 ° C.
  • IR1520 BASF, Inc.
  • BASF, Inc. IR1520 solution dissolved at 30% by weight as an antioxidant in the polymerization solution discharged from the third reactor was injected and stirred at a rate of 170 g / h.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • N, N-bis (3- (diethoxy (methyl) silyl) propyl) -methyl-1-amine is used instead of N, N-diethyl-3- (triethoxysilyl) propan-1-amine as a modifier.
  • a modified conjugated diene-based polymer was prepared in the same manner as in Example 9 except that the solution dissolved in wt% was continuously added to the third reactor at a rate of 120.0 g / h.
  • the temperature of the second reactor was maintained at 65 ° C, and the polymerization product was transferred from the second reactor to the third reactor through the transfer pipe when the polymerization conversion rate was 95%.
  • the polymer was transferred from the second reactor to the third reactor, and a solution in which tetrachlorosilane was dissolved in n-hexane as a modifier at 20 wt% was continuously introduced into the third reactor at a rate of 50.3 g / h.
  • the temperature of the third reactor was maintained at 65 ° C.
  • IR1520 (BASF) solution dissolved at 30% by weight as an antioxidant was injected into the polymerization solution discharged from the third reactor at a rate of 170 g / h and stirred.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the reaction temperature is maintained at 75 ° C. in the first reactor, 85 ° C. in the second reactor, and 85 ° C. in the third reactor, and when the polymerization conversion rate reaches 70%, the polymer is transferred from the first reactor to the second reactor through a transfer pipe.
  • a solution of 1,4-bis (3- (triethoxysilyl) propyl) piperazine dissolved in 20% by weight of n-hexane was added to the third reactor at a rate of 104.4 g / h.
  • a modified conjugated diene-based polymer was prepared in the same manner as in Comparative Example 1 except that the polymerization was carried out.
  • the reaction temperature is maintained at 85 ° C. in the first reactor, 75 ° C. in the second reactor, and 70 ° C. in the third reactor, and when the polymerization conversion rate is 68%, the polymer is transferred from the first reactor to the second reactor through a transfer pipe.
  • a modified conjugated diene-based polymer was prepared in the same manner as in Example 3 except that the polymer was transferred and polymerized.
  • the reaction temperature is maintained at 75 ° C. in the first reactor, 75 ° C. in the second reactor, and 70 ° C. in the third reactor, and when the polymerization conversion rate is 68%, the polymer is transferred from the first reactor to the second reactor through a transfer pipe.
  • a modified conjugated diene-based polymer was prepared in the same manner as in Example 8 except that the polymer was transferred and polymerized.
  • a modified conjugated diene-based polymer was prepared using a continuous reactor in which one polymerization reactor and one modified reactor were connected in series.
  • a 1,3-butadiene solution in which 1,3-butadiene is dissolved in 60 wt% of n-hexane is 15.0 kg / h, n-hexane 48.3 kg / h, n- 36.0 g / h of a 1,2-butadiene solution in which 1,2-butadiene was dissolved in 2.0% by weight of hexane, and 1% by weight of 2,2-di (2-tetrahydrofuryl) propane in n-hexane as a polar additive.
  • n-butyllithium in which 51.0 g / h of the solution dissolved in 10% by weight of n-butyllithium was dissolved in n-hexane as a polymerization initiator was injected at a rate of 47.9 g / h.
  • the temperature of the polymerization reactor was maintained at 50 °C, when the polymerization conversion rate was 95%, the polymer was transferred from the polymerization reactor to the modified reactor (second reactor) through the transfer pipe.
  • IR1520 BASF Co., Ltd.
  • IR1520 BASF Co., Ltd.
  • 30 wt% as an antioxidant in the polymerization solution discharged into the blend tank was injected and stirred at a rate of 170 g / h.
  • the resulting polymer was placed in hot water heated with steam and stirred to remove the solvent to prepare a modified conjugated diene polymer.
  • the styrene unit and vinyl content in the conjugated diene polymer were measured, respectively.
  • the results are shown in Tables 1 and 2 below.
  • Styrene units (SM, wt%) and vinyl content (Vinyl, wt%) in the modified conjugated diene-based polymer were measured and analyzed using Varian VNMRS 500 MHz NMR.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatograph (GPC) analysis, and molecular weight distribution (PDI; MWD; Mw / Mn) was calculated from the respective measured molecular weights.
  • GPC gel permeation chromatograph
  • PDI molecular weight distribution
  • the GPC used a combination of two PLgel Olexis (Polymer Laboratories Co.) column and one PLgel mixed-C (Polymer Laboratories Co.) column, all of the newly replaced column was a mixed bed column,
  • the GPC standard material was calculated using polystyrene (PS) when calculating the molecular weight.
  • GPC measurement solvent was prepared by mixing 2 wt% of an amine compound with tetrahydrofuran. At this time, the obtained molecular weight distribution curve is shown in Figs.
  • the Mooney viscosity (MV, (ML1 + 4, @ 100 °C) MU) was measured using a Rotor Speed 2 ⁇ 0.02 rpm, Large Rotorfmf at 100 °C using MV-2000 (ALPHA Technologies, Inc.), the sample used After leaving at room temperature (23 ⁇ 3 °C) for 30 minutes or more, 27 ⁇ 3 g was collected and filled into the die cavity, and the platen was operated for 4 minutes.
  • the Si content was measured using an inductively coupled plasma luminescence analyzer (ICP-OES; Optima 7300DV) for ICP analysis.
  • ICP-OES inductively coupled plasma luminescence analyzer
  • about 0.7 g of the sample was placed in a platinum crucible (Pt crucible), about 1 mL of concentrated sulfuric acid (98 wt%, Electronic grade) was heated at 300 ° C. for 3 hours, and the sample was After the conversation in the electric furnace (Thermo Scientific, Lindberg Blue M) in the program of steps 1 to 3,
  • step 1 initial temp 0 °C, rate (temp / hr) 180 °C / hr, temp (holdtime) 180 °C (1hr)
  • step 2 initial temp 180 °C, rate (temp / hr) 85 °C / hr, temp (holdtime) 370 °C (2hr)
  • step 3 initial temp 370 °C, rate (temp / hr) 47 °C / hr, temp (holdtime) 510 °C (3hr).
  • PA molar ratio of denaturant and polar additive
  • Modifier A N- (3-1H-imidazol-1-yl) propyl) -3- (triethoxysilyl) -N- (3- (triethoxysilyl) propan-1-amine)
  • Modifier B N, N-bis (3- (diethoxy (methyl) silyl) propyl) -methyl-1-amine
  • Modifier C 3,3 '-(1,1,3,3-tetramethoxydisiloxane-1,3-diyl) bis (N, N-diethylpropan-1-amine)
  • Modifier D N- (3,6,9,12-tetraoxahexadecyl) -N- (3- (triethoxysilyl) propyl) -3,6,9,12-tetraoxahexadecane-1- Amine
  • Modifier E 8,8-dibutyl-3,13-dimethoxy-3,13-dimethyl-2,14-dioxa-7,9-dithia-3,13-disila-8-stanpentanedecane
  • Modifier F 1,4-bis (3- (triethoxysilyl) propyl) piperazine
  • Modifier G N, N-diethyl-3- (triethoxysilyl) propan-1-amine
  • the modified conjugated diene-based polymer of Examples 1 to 10 has a unimodal form molecular weight distribution curve by gel permeation chromatography (See FIG. 1 and FIG. 2) Both PDI (molecular weight distribution) was found to be less than 1.7, Si content is more than 100 ppm.
  • the modified conjugated diene-based polymers of Comparative Example 1, Comparative Example 2 and Comparative Examples 4 to 7 all had a PDI of more than 1.7
  • the modified conjugated diene-based polymer of Comparative Example 3 had a molecular weight by gel permeation chromatography.
  • the distribution curve showed trimodal morphology (see Figure 3).
  • Each modified or unmodified conjugated diene-based polymer of Examples and Comparative Examples was blended under the blending conditions shown in Table 3 below as a raw material rubber.
  • the raw materials in Table 3 are each parts by weight based on 100 parts by weight of rubber.
  • the rubber specimen is kneaded through the first stage kneading and the second stage kneading.
  • the raw rubber, silica (filler), organosilane coupling agent, process oil, galvanizing agent, stearic acid, antioxidant, antioxidant and wax were kneaded using a half-variety mixer equipped with a temperature controller.
  • the initial temperature of the kneader was controlled at 70 ° C., and the primary compound was obtained at the discharge temperature of 145 ° C. to 155 ° C. after the completion of the mixing.
  • the primary compound, sulfur, a rubber accelerator, and a vulcanization accelerator were added to the kneader, and it mixed at the temperature of 100 degrees C or less, and obtained the secondary compound. Thereafter, rubber specimens were prepared through a curing process at 160 ° C. for 20 minutes.
  • Tensile properties were prepared in accordance with the tensile test method of ASTM 412 and measured the tensile strength at the cutting of the test piece and the tensile stress (300% modulus) at 300% elongation. Specifically, the tensile properties were measured at a rate of 50 cm / min at room temperature using a Universal Test Machin 4204 (Instron) tensile tester.
  • Viscoelastic properties were determined by measuring the viscoelastic behavior for dynamic deformation at 10 Hz frequency and each measurement temperature (-60 °C ⁇ 60 °C) in the film tension mode using a dynamic mechanical analyzer (GABO).
  • GBO dynamic mechanical analyzer
  • each secondary blend was left at room temperature (23 ⁇ 3 °C) for 30 minutes or more 27 ⁇ 3 g was taken and filled into the die cavity and platen operated for 4 minutes.
  • Examples 1 to 10 according to an embodiment of the present invention was confirmed that the tensile properties, viscoelastic properties and workability properties compared to Comparative Examples 1 to 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention concerne un polymère diène conjugué modifié, plus spécifiquement, l'invention concerne : un polymère diène conjugué modifié dans lequel la courbe de distribution des poids moléculaires obtenue à l'aide de la chromatographie par perméation sur gel (CPG) présente une forme unimodale, la distribution des poids moléculaires (PDI ; MWD) est inférieure à 1,7 et la teneur en Si est de 150 ppm ou plus sur la base du poids ; et une composition de caoutchouc le comprenant.
PCT/KR2017/014429 2017-01-03 2017-12-08 Polymère diène conjugué modifié et composition de caoutchouc le comprenant WO2018128291A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019536279A JP7227136B2 (ja) 2017-01-03 2017-12-08 変性共役ジエン系重合体、およびそれを含むゴム組成物
US16/475,525 US11339238B2 (en) 2017-01-03 2017-12-08 Modified conjugated diene-based polymer and rubber composition including the same
EP17890491.8A EP3553095B1 (fr) 2017-01-03 2017-12-08 Polymère diène conjugué modifié et composition de caoutchouc le comprenant
CN201780083727.2A CN110382566B (zh) 2017-01-03 2017-12-08 改性共轭二烯类聚合物和包含其的橡胶组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0000750 2017-01-03
KR20170000750 2017-01-03
KR1020170097190A KR20180084603A (ko) 2017-01-03 2017-07-31 변성 공액디엔계 중합체 및 이를 포함하는 고무 조성물
KR10-2017-0097190 2017-07-31

Publications (1)

Publication Number Publication Date
WO2018128291A1 true WO2018128291A1 (fr) 2018-07-12

Family

ID=62791157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014429 WO2018128291A1 (fr) 2017-01-03 2017-12-08 Polymère diène conjugué modifié et composition de caoutchouc le comprenant

Country Status (1)

Country Link
WO (1) WO2018128291A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196899A1 (fr) * 2019-03-27 2020-10-01 Jsr株式会社 Polymère diénique conjugué hydrogéné, composition polymère, corps réticulé, et pneu
US20220348700A1 (en) * 2020-01-20 2022-11-03 Lg Chem, Ltd. Modified Conjugated Diene-Based Polymer, Method for Preparing the Same, and Rubber Composition Including the Same
JP2022553037A (ja) * 2020-02-28 2022-12-21 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物
EP3705502B1 (fr) 2018-07-11 2023-05-17 Lg Chem, Ltd. Polymère à base de diène conjugué modifié et composition de caoutchouc comprenant celui-ci

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397994A (en) 1980-09-20 1983-08-09 Japan Synthetic Rubber Co., Ltd. High vinyl polybutadiene or styrene-butadiene copolymer
KR20090031933A (ko) * 2006-08-16 2009-03-30 아사히 가세이 케미칼즈 가부시키가이샤 블록 공중합체의 제조 방법 및 블록 공중합체 또는 그의 수소 첨가물
WO2009060931A1 (fr) * 2007-11-08 2009-05-14 Jsr Corporation Caoutchouc de (co)polymère de diène conjugué hydrogéné et son procédé de fabrication
KR100932356B1 (ko) * 2001-09-27 2009-12-16 제이에스알 가부시끼가이샤 공액 디올레핀 (공)중합 고무, (공)중합 고무의 제조방법, 고무 조성물, 복합체 및 타이어
KR101600722B1 (ko) * 2011-08-26 2016-03-07 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 변성 공액 디엔계 중합체 조성물, 고무 조성물, 및 타이어
JP2016037543A (ja) * 2014-08-07 2016-03-22 日本ゼオン株式会社 共役ジエン系ゴムの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4397994A (en) 1980-09-20 1983-08-09 Japan Synthetic Rubber Co., Ltd. High vinyl polybutadiene or styrene-butadiene copolymer
KR100932356B1 (ko) * 2001-09-27 2009-12-16 제이에스알 가부시끼가이샤 공액 디올레핀 (공)중합 고무, (공)중합 고무의 제조방법, 고무 조성물, 복합체 및 타이어
KR20090031933A (ko) * 2006-08-16 2009-03-30 아사히 가세이 케미칼즈 가부시키가이샤 블록 공중합체의 제조 방법 및 블록 공중합체 또는 그의 수소 첨가물
WO2009060931A1 (fr) * 2007-11-08 2009-05-14 Jsr Corporation Caoutchouc de (co)polymère de diène conjugué hydrogéné et son procédé de fabrication
KR101600722B1 (ko) * 2011-08-26 2016-03-07 아사히 가세이 케미칼즈 가부시키가이샤 변성 공액 디엔계 중합체의 제조 방법, 변성 공액 디엔계 중합체, 변성 공액 디엔계 중합체 조성물, 고무 조성물, 및 타이어
JP2016037543A (ja) * 2014-08-07 2016-03-22 日本ゼオン株式会社 共役ジエン系ゴムの製造方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3705502B1 (fr) 2018-07-11 2023-05-17 Lg Chem, Ltd. Polymère à base de diène conjugué modifié et composition de caoutchouc comprenant celui-ci
WO2020196899A1 (fr) * 2019-03-27 2020-10-01 Jsr株式会社 Polymère diénique conjugué hydrogéné, composition polymère, corps réticulé, et pneu
JPWO2020196899A1 (fr) * 2019-03-27 2020-10-01
CN113382882A (zh) * 2019-03-27 2021-09-10 Jsr株式会社 氢化共轭二烯系聚合物、聚合物组合物、交联体及轮胎
CN113382882B (zh) * 2019-03-27 2023-04-14 株式会社引能仕材料 氢化共轭二烯系聚合物、聚合物组合物、交联体及轮胎
JP7607553B2 (ja) 2019-03-27 2024-12-27 株式会社Eneosマテリアル 水添共役ジエン系重合体、重合体組成物、架橋体及びタイヤ
US12240962B2 (en) 2019-03-27 2025-03-04 Eneos Materials Corporation Hydrogenated conjugated diene polymer, polymer composition, crosslinked body and tire
US20220348700A1 (en) * 2020-01-20 2022-11-03 Lg Chem, Ltd. Modified Conjugated Diene-Based Polymer, Method for Preparing the Same, and Rubber Composition Including the Same
JP2022553036A (ja) * 2020-01-20 2022-12-21 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物
JP7407280B2 (ja) 2020-01-20 2023-12-28 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物
JP2022553037A (ja) * 2020-02-28 2022-12-21 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物
JP7549654B2 (ja) 2020-02-28 2024-09-11 エルジー・ケム・リミテッド 変性共役ジエン系重合体、その製造方法、およびそれを含むゴム組成物

Similar Documents

Publication Publication Date Title
WO2018128288A1 (fr) Polymère à base de diène conjugué modifié et composition de caoutchouc en contenant
WO2018128285A1 (fr) Procédé de préparation d'un polymère à base de diène conjugué modifié
WO2019112260A1 (fr) Polymère à base de diène conjugué modifié et composition de caoutchouc le comprenant
WO2017217720A1 (fr) Procédé de préparation d'un polymère à base de diène conjugué modifié, et polymère à base de diène conjugué modifié préparé à l'aide du procédé de préparation
WO2018128290A1 (fr) Polymère à base de diène conjugué modifié et composition de caoutchouc le comprenant
WO2019216645A1 (fr) Polymère à base de diène conjugué modifié et composition de caoutchouc le comprenant
WO2020013638A1 (fr) Polymère à base de diène conjugué modifié et composition de caoutchouc comprenant celui-ci
WO2019216636A1 (fr) Polymère de diène conjugué modifié et composition de caoutchouc comprenant celui-ci
WO2017191921A1 (fr) Agent de modification et polymère à base de diène conjugué modifié produit à l'aide de celui-ci
WO2018105845A1 (fr) Modificateur et polymère à base de diène conjugué modifié, et procédés de préparation associés
WO2017078408A1 (fr) Composé d'organolithium, procédé de production d'un polymère à base de diène conjugué modifié l'utilisant, et polymère à base de diène conjugué modifié
WO2019112262A1 (fr) Polymère à base de diène conjugué modifié et composition de caoutchouc le comprenant
WO2018128291A1 (fr) Polymère diène conjugué modifié et composition de caoutchouc le comprenant
WO2020130738A1 (fr) Polymère à base d'un diène conjugué modifié et son procédé de préparation
WO2018128289A1 (fr) Polymère à base de diène conjugué modifié et composition de caoutchouc le comprenant
WO2021107434A1 (fr) Agent de modification, et polymère de diène conjugué modifié produit à l'aide de celui-ci
WO2017188641A2 (fr) Polymère à base de diène conjugué modifié et procédé de préparation associé
WO2022030794A1 (fr) Polymère à base de diène conjugué modifié, son procédé de préparation et composition de caoutchouc le comprenant
WO2017061831A1 (fr) Polymère diénique conjugué modifié, procédé de préparation associé et composition de caoutchouc le contenant
WO2022103060A1 (fr) Polymère modifié à base de diènes conjugués et composition de caoutchouc le comprenant
WO2021085829A1 (fr) Polymère à base de diène conjugué modifié et composition de caoutchouc le comprenant
WO2021066543A1 (fr) Polymère à base de diène conjugué modifié, son procédé de production, et composition de caoutchouc le comprenant
WO2017111463A1 (fr) Polymère de diène conjugué modifié, procédé de production associé et modificateur
WO2017111499A1 (fr) Composé polymère, procédé de préparation d'un polymère à base de diène conjugué modifié l'utilisant, et polymère à base de diène conjugué modifié
WO2024117860A1 (fr) Polymère à base de diène conjugué modifié et son procédé de production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17890491

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536279

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017890491

Country of ref document: EP

Effective date: 20190712

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载