WO2018126587A1 - 摄远镜头以及摄像装置 - Google Patents
摄远镜头以及摄像装置 Download PDFInfo
- Publication number
- WO2018126587A1 WO2018126587A1 PCT/CN2017/084659 CN2017084659W WO2018126587A1 WO 2018126587 A1 WO2018126587 A1 WO 2018126587A1 CN 2017084659 W CN2017084659 W CN 2017084659W WO 2018126587 A1 WO2018126587 A1 WO 2018126587A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lens
- focal length
- effective focal
- telephoto
- satisfy
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 claims abstract description 53
- 230000003287 optical effect Effects 0.000 claims abstract description 21
- 230000004075 alteration Effects 0.000 description 70
- 201000009310 astigmatism Diseases 0.000 description 24
- 239000000463 material Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 12
- 102220029634 rs199798127 Human genes 0.000 description 12
- 238000010586 diagram Methods 0.000 description 6
- 230000014509 gene expression Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B9/00—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
- G02B9/60—Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/02—Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/0045—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/18—Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/0025—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/55—Optical parts specially adapted for electronic image sensors; Mounting thereof
Definitions
- the present application relates to a telephoto lens and an image pickup apparatus equipped with such a telephoto lens.
- CCD charge-coupled device
- CMOS complementary metal-oxide semiconductor
- the mainstream telephoto lens adopts a wide-angle optical system in order to obtain a wide-angle image, but this is not conducive to shooting distant objects and obtaining a clear image.
- the present invention aims to provide a telephoto lens having high resolution and miniaturization.
- a telephoto lens includes, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, a fourth lens, and at least one subsequent lens, wherein the first lens has a positive power and the object
- the side surface is convex, and the axial distance TTL of the object side of the first lens to the imaging surface and the total effective focal length f of the telephoto lens can satisfy: TTL / f ⁇ 1.0, such as TTL / f ⁇ 0.99, and the fourth lens With positive power, the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens and the total effective focal length f of the telephoto lens can satisfy: 1 ⁇
- the effective focal length f1 of the first lens and the total effective focal length f satisfy: 0.45 ⁇ f1/f ⁇ 1.0, for example, 0.46 ⁇ f1/f ⁇ 1.0.
- the second lens has a negative power and its image side is concave.
- the effective focal length f2 of the second lens and the total effective focal length f may satisfy: -1.5 ⁇ f2 / f ⁇ -0.7, for example -1.48 ⁇ f2 / f ⁇ -0.77.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f may satisfy:
- the radius of curvature R7 of the object side of the fourth lens and the radius of curvature R8 of the image side of the fourth lens may satisfy:
- the on-axis air space T23 between the second lens and the third lens and the on-axis air space T34 between the third lens and the fourth lens may satisfy: T34/T23 ⁇ 2.5, for example T34/T23 ⁇ 2.3.
- the radius of curvature R3 of the object side surface of the second lens and the radius of curvature R4 of the image side surface of the second lens may satisfy:
- the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface of the third lens may satisfy:
- the at least one subsequent lens may comprise a fifth lens having a negative power with a concave side.
- the object side of the fifth lens may satisfy between: the vector height SAG51 at the maximum effective path and the center thickness CT5 of the fifth lens:
- the effective focal length f5 of the fifth lens and the total effective focal length f may satisfy: -1.5 ⁇ f5 / f ⁇ -0.5, for example - 1.26 ⁇ f5 / f ⁇ -0.52.
- the center thickness CT1 of the first lens, the center thickness CT2 of the second lens, the center thickness CT3 of the third lens, the center thickness CT4 of the fourth lens, and the center thickness CT5 of the fifth lens are satisfied. : 0.5 ⁇ (CT2+CT3 + CT5) / (CT1 + CT4) ⁇ 1.0, for example, 0.56 ⁇ (CT2 + CT3 + CT5) / (CT1 + CT4) ⁇ 0.95.
- a telephoto lens may include, in order from the object side to the image side along the optical axis, a first lens, a second lens, a third lens, and a plurality of subsequent lenses, wherein an axial distance of the object side of the first lens to the imaging surface
- TTL and the total effective focal length f of the telephoto lens can satisfy: TTL / f ⁇ 1.0, for example, TTL / f ⁇ 0.99; and the curvature radius R5 of the object side of the third lens and the curvature of the image side of the third lens
- the radius R6 can satisfy:
- the first lens may have a positive power
- the object side may be a convex surface
- the effective focal length f1 of the first lens and the total effective focal length f may satisfy: 0.45 ⁇ f1/f ⁇ 1.0, for example, 0.46 ⁇ f1/f ⁇ 1.0.
- the second lens may have a negative power and its image side is a concave surface.
- the effective focal length f2 of the second lens and the total effective focal length f may satisfy: -1.5 ⁇ f2 / f ⁇ -0.7, for example, -1.48 ⁇ f2 / f ⁇ -0.77.
- the radius of curvature R3 of the object side of the second lens and the radius of curvature R4 of the image side thereof may satisfy:
- the on-axis air space T23 between the second lens and the third lens and the on-axis air space T34 between the third lens and the fourth lens may satisfy: T34/T23 ⁇ 2.5, for example T34/T23 ⁇ 2.3.
- the plurality of subsequent lenses may include a fourth lens having positive power, wherein an effective focal length f3 of the third lens, an effective focal length f4 of the fourth lens, and a total effective focal length f may satisfy: f/f3
- the radius of curvature R7 of the object side of the fourth lens and the radius of curvature R8 of the image side thereof may satisfy:
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy: 1 ⁇
- the plurality of subsequent lenses may further include a fifth lens, the fifth lens may have a negative power, and the object side may be a concave surface.
- the object side of the fifth lens can satisfy between the vector height SAG51 at the maximum effective path and its center thickness CT5:
- the effective focal length f5 of the fifth lens and the total effective focal length f may satisfy: -1.5 ⁇ f5 / f ⁇ -0.5, for example - 1.26 ⁇ f5 / f ⁇ -0.52.
- the center thicknesses CT1, CT2, CT3, CT4, and CT5 of the first, second, third, fourth, and fifth lenses may satisfy: 0.5 ⁇ (CT2+CT3+CT5)/ (CT1 + CT4) ⁇ 1.0, for example, 0.56 ⁇ (CT2+CT3 + CT5) / (CT1 + CT4) ⁇ 0.95.
- an image pickup apparatus which can be equipped with the above-described telephoto lens.
- FIG. 1 is a schematic structural view showing a telephoto lens of Embodiment 1 of the present application
- FIG. 2A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 1;
- 2D shows a magnification chromatic aberration curve of the telephoto lens of Embodiment 1;
- FIG. 3 is a schematic structural view showing a telephoto lens of Embodiment 2 of the present application.
- 4D shows a magnification chromatic aberration curve of the telephoto lens of Embodiment 2;
- FIG. 5 is a schematic structural view showing a telephoto lens of Embodiment 3 of the present application.
- 6A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 3.
- 6C shows a distortion curve of the telephoto lens of Embodiment 3.
- 6D shows a magnification chromatic aberration curve of the telephoto lens of Embodiment 3.
- FIG. 7 is a schematic structural view showing a telephoto lens of Embodiment 4 of the present application.
- FIG. 9 is a schematic structural view showing a telephoto lens of Embodiment 5 of the present application.
- FIG. 10A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 5;
- FIG. 10B shows an astigmatism curve of the telephoto lens of Embodiment 5;
- FIG. 10C shows a distortion curve of the telephoto lens of Embodiment 5.
- FIG. 10D shows a magnification chromatic aberration curve of the telephoto lens of Embodiment 5;
- FIG. 11 is a schematic structural view showing a telephoto lens of Embodiment 6 of the present application.
- FIG. 13 is a schematic structural view showing a telephoto lens of Embodiment 7 of the present application.
- FIG. 15 is a schematic structural view showing a telephoto lens of Embodiment 8 of the present application.
- 16A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 8.
- 16C shows a distortion curve of the telephoto lens of Embodiment 8.
- 16D shows a magnification chromatic aberration curve of the telephoto lens of Embodiment 8.
- FIG. 17 is a schematic structural view showing a telephoto lens of Embodiment 9 of the present application.
- FIG. 19 is a schematic structural view showing a telephoto lens of Embodiment 10 of the present application.
- FIG. 21 is a schematic structural view showing a telephoto lens of Embodiment 11 of the present application.
- FIG. 23 is a schematic structural view showing a telephoto lens of Embodiment 12 of the present application.
- 24A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 12;
- Fig. 24D shows a magnification chromatic aberration curve of the telephoto lens of Embodiment 12.
- first, second, third, etc. are used to distinguish one feature from another, and do not represent any limitation of the feature.
- first lens discussed below may also be referred to as a second lens or a third lens without departing from the teachings of the present application.
- the thickness, size, and shape of the lens have been slightly exaggerated for convenience of explanation, but it should be understood that the dimensions of the respective components are not limited by the drawings, but may be appropriately adjusted within a certain range.
- the spherical or aspherical shape shown in the drawings is shown by way of example. That is, the shape of the spherical surface or the aspherical surface is not limited to the spherical or aspherical shape shown in the drawings.
- the drawings are only examples and are not to scale.
- the paraxial region refers to a region near the optical axis.
- the first lens is the lens closest to the object and the sixth lens is the lens closest to the photosensitive element.
- the surface closest to the object in each lens is referred to as the object side, and the surface of each lens closest to the image plane is referred to as the image side.
- the application provides a telephoto lens.
- the telephoto lens according to an exemplary embodiment of the present application may be sequentially provided with a first lens, a second lens, a third lens, a fourth lens, at least one subsequent lens, and a photosensitive element from the object side to the image side along the optical axis, And the telephoto lens can have a total effective focal length f.
- the first lens may have a positive power and the object side may be a convex surface.
- the on-axis distance TTL of the object side of the first lens to the imaging surface and the total effective focal length f of the telephoto lens can satisfy TTL/f ⁇ 1.0, and more specifically, TTL / f ⁇ 0.99.
- the fourth lens can have positive power.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f may satisfy: 1 ⁇
- the lens By properly setting the distance between the object side of the first lens and the imaging surface of the telephoto lens, the lens can be made as thin as possible. In addition, by reasonably selecting the focal length of each lens and appropriately adjusting the total effective focal length of the telephoto lens, it is possible to obtain a better flat field condition for the telephoto lens.
- the first lens may be disposed such that its effective focal length f1 and the total effective focal length f of the telephoto lens satisfy: 0.45 ⁇ f1/f ⁇ 1.0, and more specifically, 0.46 ⁇ f1/f ⁇ 1.0 is satisfied. To ensure that the first lens assumes the proper positive power, thus facilitating the design of the subsequent lens.
- the second lens may have a negative power, and the image side may be set to be a concave surface.
- the effective focal length f2 of the second lens and the total effective focal length f of the telephoto lens may satisfy: -1.5 ⁇ f2 / f ⁇ -0.7, and more specifically, -1.48 ⁇ f2 / f ⁇ -0.77.
- the effective focal length of the second lens By properly setting the effective focal length of the second lens to ensure that the second lens can generate a certain positive spherical aberration to balance the negative spherical aberration of the positive power lens; if the effective focal length f2 of the second lens and the total effective focal length of the telephoto lens f If the ratio between them is less than the lower limit value, the corrective ability is insufficient, and if it is greater than the upper limit value, excessive positive spherical aberration is generated.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f may satisfy:
- the radius of curvature R7 of the object side of the fourth lens and the radius of curvature R8 of the image side thereof may satisfy:
- an on-axis air space T23 between the second lens and the third lens and an on-axis air space T34 between the third lens and the fourth lens may satisfy: T34/T23 ⁇ 2.5, for example T34/T23 ⁇ 2.3.
- the radius of curvature R3 of the object side of the second lens and the radius of curvature R4 of the image side thereof may satisfy:
- the second lens can be made to have a suitable Saeside aberration coefficient, so that the primary aberration can be well balanced.
- the radius of curvature R5 of the object side of the third lens and the radius of curvature R6 of the image side thereof may satisfy:
- the spherical aberration can be effectively corrected by appropriately setting the curvature of the third lens.
- At least one of the subsequent lenses in the telephoto lens may include a fifth lens having a negative power with a concave side.
- the object side of the fifth lens at the maximum effective path between the vector height SAG51 and its center thickness CT5 can satisfy:
- the effective focal length f5 of the fifth lens and the total effective focal length f of the telephoto lens may satisfy: -1.5 ⁇ f5 / f ⁇ -0.5, more specifically, -1.26 ⁇ f5 / f ⁇ -0.52 so that the fifth lens assumes the proper negative power.
- the center thicknesses CT1, CT2, CT3, CT4, and CT5 of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens may satisfy: 0.5 ⁇ (CT2+CT3+ CT5) / (CT1 + CT4) ⁇ 1.0, more specifically, can satisfy: 0.56 ⁇ (CT2 + CT3 + CT5) / (CT1 + CT4) ⁇ 0.95.
- CT2+CT3+CT5/(CT1+CT4) is less than the lower limit value, the fifth-order spherical aberration increases significantly, and if (CT2+CT3+CT5)/(CT1+CT4) is greater than the upper limit value, the chromosphere The difference has increased significantly.
- the present application also provides another telephoto lens.
- the telephoto lens may include a first lens, a second lens, a third lens, and a plurality of subsequent lenses in order from the object side to the image side along the optical axis.
- the axial distance TTL of the object side of the first lens to the imaging surface and the total effective focal length f of the telephoto lens may satisfy: TTL / f ⁇ 1.0, for example, TTL / f ⁇ 0.99, and the object side of the third lens
- the radius of curvature R5 and the radius of curvature R6 of the image side thereof may satisfy:
- the telephoto lens designed in this way can effectively correct the spherical aberration while ensuring that the lens is as thin as possible.
- the first lens may be disposed such that its effective focal length f1 and the total effective focal length f of the telephoto lens satisfy: 0.45 ⁇ f1/f ⁇ 1.0, and more specifically, 0.46 ⁇ f1/f ⁇ 1.0 to ensure that the first lens assumes proper positive power, thereby facilitating the design of subsequent lenses.
- the second lens may have a negative power, and the image side may be set to be a concave surface.
- the effective focal length f2 of the second lens and the total effective focal length f of the telephoto lens may satisfy: -1.5 ⁇ f2 / f ⁇ -0.7, and more specifically, -1.48 ⁇ f2 / f ⁇ -0.77.
- the effective focal length of the second lens By properly setting the effective focal length of the second lens to ensure that the second lens can generate a certain positive spherical aberration to balance the negative spherical aberration of the positive power lens; if the effective focal length f2 of the second lens and the total effective focal length of the telephoto lens f If the ratio between them is less than the lower limit value, the corrective ability is insufficient, and if it is greater than the upper limit value, excessive positive spherical aberration is generated.
- the radius of curvature R3 of the object side of the second lens and the radius of curvature R4 of the image side thereof may satisfy:
- the on-axis air space T23 between the second lens and the third lens and the on-axis air space T34 between the third lens and the fourth lens may satisfy: T34/T23 ⁇ 2.5 For example, T34/T23 ⁇ 2.3.
- the plurality of subsequent lenses in the telephoto lens may further include a fourth lens having positive power.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f of the telephoto lens may satisfy:
- the radius of curvature R7 of the object side of the fourth lens and the radius of curvature R8 of the image side thereof may satisfy:
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f may satisfy: 1 ⁇
- the plurality of subsequent lenses in the telephoto lens may further include a fifth lens.
- the fifth lens may have a negative power and the object side may be a concave surface.
- the object side of the fifth lens at the maximum effective path between the vector height SAG51 and its center thickness CT5 can satisfy:
- the effective focal length f5 of the fifth lens and the total effective focal length f of the telephoto lens may satisfy: -1.5 ⁇ f5 / f ⁇ -0.5, and more specifically, -1.26 ⁇ f5 / f ⁇ -0.52 so that the fifth lens assumes an appropriate negative power.
- the center thicknesses CT1, CT2, CT3, CT4, and CT5 of the first lens, the second lens, the third lens, the fourth lens, and the fifth lens may satisfy: 0.5 ⁇ (CT2+ CT3+CT5)/(CT1+CT4) ⁇ 1.0, more specifically, can satisfy: 0.56 ⁇ (CT2+CT3+CT5)/(CT1+CT4) ⁇ 0.95.
- the fifth-order spherical aberration and chromatic aberration can be reasonably corrected.
- CT2+CT3+CT5/(CT1+CT4) is less than the lower limit value, the fifth-order spherical aberration increases significantly, and if (CT2+CT3+CT5)/(CT1+CT4) is greater than the upper limit value, the chromosphere The difference has increased significantly.
- the application also provides an imaging device.
- the camera device may include a telephoto lens as described above.
- the telephoto lens according to the above-described embodiment of the present application may employ a plurality of lenses, for example, 5 sheets are used in the present application, but it should be understood that this is merely an example and not a limitation.
- a telephoto lens with high resolution and miniaturization.
- at least one of the mirror faces of each lens is an aspherical mirror.
- Aspherical lenses are characterized by a continuous change in curvature from the center of the lens to the periphery.
- the aspherical lens Unlike a spherical lens having a certain curvature from the center of the lens to the periphery, the aspherical lens has a better curvature radius characteristic, has the advantages of improving distortion and improving astigmatic aberration, and can make the field of view larger and more realistic. With an aspherical lens, the aberrations that occur during imaging can be eliminated as much as possible, improving image quality.
- the technical solution claimed in the present application is not deviated.
- the number of components of the lens can be changed to obtain the respective results and advantages described below.
- the description has been made by taking five lenses as an example in the description in the first embodiment the telephoto lens is not limited to including five lenses.
- the telephoto lens can also include other numbers of lenses if desired.
- a specific embodiment of a telephoto lens applicable to the above embodiment will be further described below with reference to FIGS. 1 through 24D.
- Embodiment 1 of the telephoto lens of the above-described embodiment of the present application will be described below with reference to FIGS. 1 to 2D.
- the embodiment 1 of the telephoto lens includes a first lens E1 having an object side surface S1 and an image side surface S2, a second lens E2 having an object side surface S3 and an image side surface S4, and an object side surface S5 and an image side surface S6.
- the first lens may have a positive power and the object side may be a convex surface; the second lens may have a negative power, and the image side may be a concave surface; and the third lens may have a positive power or Negative power; the fourth lens may have a positive power; and the fifth lens may have a negative power, and the object side may be a concave surface.
- the telephoto lens may further include a stop (not shown) and a filter E6 having an object side S11 and an image side S12 for filtering out the infrared light.
- an aperture STO may also be provided to mediate the amount of light entering. Light from the object sequentially passes through the respective surfaces S1 to S12 and is finally imaged on the imaging surface S13.
- the effective focal lengths f1 to f5 of the respective lenses in Embodiment 1 are shown in Table 1 below.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 2.7.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 1.44.
- Table 2 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this embodiment.
- Table 3 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
- the radius of curvature R3 of the object side surface of the second lens and the radius of curvature R4 of the image side surface thereof satisfy:
- 0.28.
- the radius of curvature R5 of the object side of the third lens and its image The radius of curvature R6 of the side satisfies:
- 0.61.
- 1.47.
- the object side of the fifth lens satisfies between the vector height SAG51 at the maximum effective path and the center thickness CT5 of the fifth lens:
- 2.72.
- 2A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 1, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
- 2B shows an astigmatism curve of the telephoto lens of Embodiment 1, which shows a meridional field curvature and a sagittal image plane curvature.
- 2C shows a distortion curve of the telephoto lens of Embodiment 1, which shows distortion magnitude values in the case of different viewing angles.
- 2D shows a magnification chromatic aberration curve of the telephoto lens of Embodiment 1, which indicates a deviation of different image heights on the imaging plane after the light passes through the telephoto lens.
- the telephoto lens according to Embodiment 1 can obtain a better imaging effect while ensuring miniaturization.
- Embodiment 2 of the above-described telephoto lens of the present application will be described below with reference to FIGS. 3 to 4D.
- the parameters of each lens of the telephoto lens for example, in addition to the radius of curvature, thickness, material, conic coefficient, effective focal length, on-axis spacing, high-order coefficient of each mirror surface, etc. of each lens, in the second embodiment
- the telephoto lens described in the following embodiments is the same as the arrangement of the telephoto lens described in Embodiment 1. For the sake of brevity, a description similar to that of Embodiment 1 will be omitted.
- FIG. 3 is a schematic structural view of a telephoto lens according to Embodiment 2 of the present application.
- the telephoto lens according to Embodiment 2 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
- the effective focal lengths f1 to f5 of the respective lenses in Embodiment 2 are shown in Table 4 below.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 2.68.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 1.12.
- Table 5 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this embodiment.
- Table 6 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspheric surfaces S1 to S10 which can be used for the respective aspherical lenses in this embodiment.
- 1.47.
- the on-axis air space T23 between the second lens and the third lens and the on-axis air space T34 between the third lens and the fourth lens satisfy: T34/T23 1.01.
- the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface thereof satisfy:
- 0.78.
- the radius of curvature R7 of the object side surface of the fourth lens and the radius of curvature R8 of the image side thereof satisfy:
- 1.92.
- the object side of the fifth lens satisfies between the vector height SAG51 at the maximum effective path and the center thickness CT5 of the fifth lens:
- 1.55.
- 4A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 2, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
- 4B shows an astigmatism curve of the telephoto lens of Embodiment 2, which shows meridional field curvature and sagittal image plane curvature.
- 4C shows a distortion curve of the telephoto lens of Embodiment 2, which shows distortion magnitude values in the case of different viewing angles.
- 4D shows a magnification chromatic aberration curve of the telephoto lens of Embodiment 2, which shows deviations of different image heights on the imaging plane after the light rays pass through the telephoto lens.
- the telephoto lens according to Embodiment 2 can obtain a better imaging effect while ensuring miniaturization.
- FIG. 5 is a schematic structural view of a telephoto lens according to Embodiment 3 of the present application.
- the telephoto lens according to Embodiment 3 includes first to fifth lenses E1-E5 having an object side and an image side, respectively.
- the effective focal lengths f1 to f5 of the lenses in Embodiment 3 the total effective focal length f of the telephoto lens, the total length TTL of the imaging lens, and half of the maximum angle of view of the telephoto lens are shown in Table 7 below.
- TTL / f 0.94.
- 2.48.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 0.63.
- Table 8 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this embodiment.
- Table 9 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
- the curvature of the object side of the second lens is half
- 1.65.
- the on-axis air space T23 between the second lens and the third lens and the on-axis air space T34 between the third lens and the fourth lens satisfy: T34/T23 1.15.
- the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side thereof satisfy:
- 0.20.
- 1.06.
- the object side of the fifth lens satisfies between the vector height SAG51 at the maximum effective path and the center thickness CT5 of the fifth lens:
- 3.56.
- Fig. 6A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 3, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
- Fig. 6B shows an astigmatism curve of the telephoto lens of Embodiment 3, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 6C shows a distortion curve of the telephoto lens of Embodiment 3, which shows distortion magnitude values in the case of different viewing angles.
- 6D shows a magnification chromatic aberration curve of the telephoto lens of Embodiment 3, which shows deviations of different image heights on the imaging plane after the light rays pass through the telephoto lens.
- the telephoto lens according to Embodiment 3 can obtain a better imaging effect while ensuring miniaturization.
- FIG. 7 is a schematic structural view of a telephoto lens according to Embodiment 4 of the present application.
- the telephoto lens according to Embodiment 4 includes first to fifth lenses E1-E5 having an object side and an image side, respectively.
- the effective focal lengths f1 to f5 of the respective lenses in Embodiment 4 are shown in Table 10 below.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 2.49.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total The effective focal length f satisfies:
- 0.63.
- Table 11 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this embodiment.
- Table 12 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
- 1.58.
- Second lens The on-axis air space T23 between the third lens and the on-axis air space T34 between the third lens and the fourth lens satisfies: T34/T23 1.26.
- the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface thereof satisfy:
- 0.21.
- the radius of curvature R7 of the object side surface of the fourth lens and the radius of curvature R8 of the image side thereof satisfy:
- 1.32.
- the object side of the fifth lens satisfies between the vector height SAG51 at the maximum effective path and the center thickness CT5 of the fifth lens:
- 2.84.
- Fig. 8A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 4, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
- Fig. 8B shows an astigmatism curve of the telephoto lens of Embodiment 4, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 8C shows a distortion curve of the telephoto lens of Embodiment 4, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 8D shows a magnification chromatic aberration curve of the telephoto lens of Embodiment 4, which shows deviations of different image heights on the imaging plane after the light rays pass through the telephoto lens.
- the telephoto lens according to Embodiment 4 can obtain a better imaging effect while ensuring miniaturization.
- FIG. 9 is a schematic structural view of a telephoto lens according to Embodiment 5 of the present application.
- the telephoto lens according to Embodiment 5 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
- the effective focal lengths f1 to f5 of the respective lenses in Embodiment 5 are shown in Table 13 below.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 2.65.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 1.04.
- Effective focal length f5 of the fifth lens and total effective focal length Satisfy between f: f5/f -0.52.
- Table 14 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this embodiment.
- Table 15 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
- the radius of curvature R3 of the object side surface of the second lens and the radius of curvature R4 of the image side surface thereof satisfy:
- 0.04.
- the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface thereof satisfy:
- 0.36.
- the radius of curvature R7 of the object side surface of the fourth lens and the radius of curvature R8 of the image side thereof satisfy:
- 0.41.
- the object side of the fifth lens satisfies between the vector height SAG51 at the maximum effective path and the center thickness CT5 of the fifth lens:
- 1.41.
- Fig. 10A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 5, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
- Fig. 10B shows an astigmatism curve of the telephoto lens of Embodiment 5, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 10C shows a distortion curve of the telephoto lens of Embodiment 5, which shows the distortion magnitude value in the case of different viewing angles.
- FIG. 10D shows a magnification chromatic aberration curve of the telephoto lens of Embodiment 5, which shows deviations of different image heights on the imaging plane after the light rays pass through the telephoto lens.
- the telephoto lens according to Embodiment 5 can obtain a better imaging effect while ensuring miniaturization.
- FIG. 11 is a block diagram showing the structure of a telephoto lens according to Embodiment 6 of the present application.
- the telephoto lens according to Embodiment 6 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
- the effective focal lengths f1 to f5 of the lenses in Embodiment 6 the total effective focal length f of the telephoto lens, the total length TTL of the image pickup lens, and half of the maximum angle of view of the telephoto lens HFOV are shown in Table 16 below.
- TTL / f 0.94.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 2.68.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 1.06.
- Table 17 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this embodiment.
- Table 18 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
- the radius of curvature R3 of the object side surface of the second lens and the radius of curvature R4 of the image side surface thereof satisfy:
- 0.20.
- the radius of curvature R5 of the object side of the third lens and its image The radius of curvature R6 of the side satisfies:
- 0.26.
- 0.55.
- the object side of the fifth lens satisfies between the vector height SAG51 at the maximum effective path and the center thickness CT5 of the fifth lens:
- 1.40.
- Fig. 12A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 6, which shows that the light of different wavelengths is deviated from the focus point after passing through the optical system.
- Fig. 12B shows an astigmatism curve of the telephoto lens of Embodiment 6, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 12C shows a distortion curve of the telephoto lens of Embodiment 6, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 12D is a magnification chromatic aberration curve of the telephoto lens of Embodiment 6, which shows the deviation of the different image heights on the imaging plane after the light passes through the telephoto lens.
- the telephoto lens according to Embodiment 6 can obtain a better imaging effect while ensuring miniaturization.
- FIG. 13 is a block diagram showing the structure of a telephoto lens according to Embodiment 7 of the present application.
- the telephoto lens according to Embodiment 7 includes first to fifth lenses E1-E5 having an object side and an image side, respectively.
- the effective focal lengths f1 to f5 of the respective lenses in Embodiment 7 the total effective focal length f of the telephoto lens, the total length TTL of the imaging lens, and half of the maximum angle of view of the telephoto lens HFOV are shown in Table 19 below.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 2.25.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 0.64.
- Table 20 shows the surface type, radius of curvature, thickness, material and surface of each lens in this embodiment. Cone coefficient.
- Table 21 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspherical surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
- the radius of curvature R3 of the object side surface of the second lens and the radius of curvature R4 of the image side surface thereof satisfy:
- 0.94.
- the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface thereof satisfy:
- 0.31.
- 1.30.
- the object side of the fifth lens satisfies between the vector height SAG51 at the maximum effective path and the center thickness CT5 of the fifth lens:
- 2.36.
- Fig. 14A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 7, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
- Fig. 14B shows an astigmatism curve of the telephoto lens of Embodiment 7, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 14C shows a distortion curve of the telephoto lens of Embodiment 7, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 14D is a magnification chromatic aberration curve of the telephoto lens of Embodiment 7, which shows the deviation of the different image heights on the imaging plane after the light passes through the telephoto lens.
- the telephoto lens according to Embodiment 7 can obtain a better imaging effect while ensuring miniaturization.
- FIG. 15 is a block diagram showing the structure of a telephoto lens according to Embodiment 8 of the present application.
- the telephoto lens according to Embodiment 8 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
- the effective focal lengths f1 to f5 of the respective lenses in Embodiment 8 are shown in Table 22 below.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 2.53.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 0.95.
- Table 23 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this embodiment.
- Table 24 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspheric surfaces S1 to S10 which can be used for the respective aspherical lenses in this embodiment.
- 1.80.
- the on-axis air space T23 between the second lens and the third lens and the on-axis air space T34 between the third lens and the fourth lens satisfy: T34/T23 0.75.
- the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface thereof satisfy:
- 0.97.
- the radius of curvature R7 of the object side surface of the fourth lens and the radius of curvature R8 of the image side thereof satisfy:
- 1.22.
- the object side of the fifth lens satisfies between the vector height SAG51 at the maximum effective path and the center thickness CT5 of the fifth lens:
- 2.18.
- Fig. 16A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 8, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
- Fig. 16B shows an astigmatism curve of the telephoto lens of Embodiment 8, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 16C shows a distortion curve of the image lens of Embodiment 8, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 16D is a magnification chromatic aberration curve of the telephoto lens of Embodiment 8, which shows the deviation of the different image heights on the imaging plane after the light passes through the telephoto lens.
- the telephoto lens according to Embodiment 8 can obtain a better imaging effect while ensuring miniaturization.
- FIG. 17 is a block diagram showing the structure of a telephoto lens according to Embodiment 9 of the present application.
- the telephoto lens according to Embodiment 9 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
- the effective focal lengths f1 to f5 of the lenses in Embodiment 9 the total effective focal length f of the telephoto lens, the total length TTL of the image pickup lens, and half of the maximum angle of view of the telephoto lens HFOV are shown in Table 25 below.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 2.40.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 0.87.
- Table 26 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this embodiment.
- Table 27 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspheric surfaces S1 to S10 which can be used for the respective aspherical lenses in this embodiment.
- the radius of curvature R3 of the object side surface of the second lens and the radius of curvature R4 of the image side surface thereof satisfy:
- 1.11.
- the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface thereof satisfy:
- 0.59.
- the radius of curvature R7 of the object side surface of the fourth lens and the radius of curvature R8 of the image side thereof satisfy:
- 1.18.
- the object side of the fifth lens has a vector height SAG51 and a fifth at the maximum effective path.
- the center thickness CT5 of the lens satisfies:
- 1.95.
- Fig. 18A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 9, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
- Fig. 18B shows an astigmatism curve of the telephoto lens of Embodiment 9, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 18C shows a distortion curve of the lens of Embodiment 9, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 18D is a magnification chromatic aberration curve of the telephoto lens of Embodiment 9, which shows the deviation of the different image heights on the imaging plane after the light passes through the telephoto lens.
- the telephoto lens according to Embodiment 9 can obtain a better imaging effect while ensuring miniaturization.
- FIG. 19 is a block diagram showing the structure of a telephoto lens according to Embodiment 10 of the present application.
- the telephoto lens according to Embodiment 10 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
- the effective focal lengths f1 to f5 of the respective lenses in Embodiment 10 are shown in Table 28 below.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 2.25.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 0.68.
- Table 29 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this embodiment.
- Table 30 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
- the radius of curvature R3 of the object side surface of the second lens and the radius of curvature R4 of the image side surface thereof satisfy:
- 1.45.
- the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface thereof satisfy:
- 0.30.
- the radius of curvature R7 of the object side surface of the fourth lens and the radius of curvature R8 of the image side thereof satisfy:
- 0.15.
- the object side of the fifth lens has a vector height SAG51 and a fifth at the maximum effective path.
- the center thickness CT5 of the lens satisfies:
- 2.29.
- Fig. 20A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 10, which shows that light rays of different wavelengths are deviated from a focus point after passing through the optical system.
- Fig. 20B shows an astigmatism curve of the telephoto lens of Embodiment 10, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 20C shows a distortion curve of the lens of Embodiment 10, which shows distortion magnitude values in the case of different viewing angles.
- 20D is a magnification chromatic aberration curve of the telephoto lens of Embodiment 10, which shows deviations of different image heights on the imaging plane after the light passes through the telephoto lens.
- the telephoto lens according to Embodiment 10 can obtain a better imaging effect while ensuring miniaturization.
- FIG. 21 is a schematic structural view of a telephoto lens according to Embodiment 11 of the present application.
- the telephoto lens according to Embodiment 11 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
- the effective focal lengths f1 to f5 of the respective lenses in Embodiment 11 are shown in Table 31 below.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 2.70.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 1.01.
- Table 32 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this embodiment.
- Table 33 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
- the radius of curvature R3 of the object side surface of the second lens and the radius of curvature R4 of the image side surface thereof satisfy:
- 1.13.
- the radius of curvature R5 of the object side surface of the third lens and the radius of curvature R6 of the image side surface thereof satisfy:
- 0.96.
- the radius of curvature R7 of the object side surface of the fourth lens and the radius of curvature R8 of the image side surface thereof satisfy:
- 0.01.
- the object side of the fifth lens has a vector height SAG51 and a fifth at the maximum effective path.
- the center thickness CT5 of the lens satisfies:
- 2.61.
- Fig. 22A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 11, which indicates that light of different wavelengths is deviated from a focus point after passing through the optical system.
- Fig. 22B shows an astigmatism curve of the telephoto lens of Embodiment 11, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 22C shows a distortion curve of the lens of Embodiment 11, which shows the distortion magnitude value in the case of different viewing angles.
- Fig. 22D is a magnification chromatic aberration curve of the telephoto lens of Embodiment 11, which shows the deviation of the different image heights on the imaging plane after the light passes through the telephoto lens.
- the telephoto lens according to Embodiment 11 can obtain a better imaging effect while ensuring miniaturization.
- FIG. 23 is a block diagram showing the structure of a telephoto lens according to Embodiment 12 of the present application.
- the telephoto lens according to Embodiment 12 includes first to fifth lenses E1 to E5 having an object side and an image side, respectively.
- the effective focal lengths f1 to f5 of the respective lenses in Embodiment 12 are shown in Table 34 below.
- the effective focal length f1 of the first lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 1.16.
- the effective focal length f3 of the third lens, the effective focal length f4 of the fourth lens, and the total effective focal length f satisfy:
- 0.55.
- Table 35 shows the surface type, radius of curvature, thickness, material, and conical coefficient of each lens in this embodiment.
- Table 36 shows the high order term coefficients A 4 , A 6 , A 8 , A 10 , A 12 and A 14 of the respective aspheric surfaces S1 - S10 which can be used for the respective aspherical lenses in this embodiment.
- 0.01.
- the object side of the fifth lens satisfies between the vector height SAG51 at the maximum effective path and the center thickness CT5 of the fifth lens:
- 0.97.
- FIG. 24A shows an axial chromatic aberration curve of the telephoto lens of Embodiment 12, which indicates different wavelengths. Light will deviate from the focus point after passing through the optical system.
- Fig. 24B shows an astigmatism curve of the telephoto lens of Embodiment 12, which shows meridional field curvature and sagittal image plane curvature.
- Fig. 24C shows a distortion curve of the lens of Embodiment 12, which shows distortion magnitude values in the case of different viewing angles.
- Fig. 24D is a magnification chromatic aberration curve of the telephoto lens of Embodiment 12, which shows the deviation of the different image heights on the imaging plane after the light passes through the telephoto lens.
- the telephoto lens according to Embodiment 12 can obtain a better imaging effect while ensuring miniaturization.
- the present application also proposes an image pickup device whose photosensitive element may be a photosensitive coupling element (CCD) or a complementary metal oxide semiconductor element (CMOS).
- the camera device may be an independent camera device such as a digital camera, or may be a camera module integrated on a mobile electronic device such as a mobile phone.
- the image pickup apparatus is equipped with the telephoto lens described in the above embodiments.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Lenses (AREA)
Abstract
一种摄远镜头,摄远镜头沿着光轴从物侧至像侧依次设置有第一透镜(E1)、第二透镜(E2)、第三透镜(E3)、第四透镜(E4)和至少一个后续透镜,第一透镜(E1)具有正光焦度,其物侧面(S1)为凸面,并且第一透镜(E1)的物侧面(S1)至成像面(S13)的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f≤1.0,以及第四透镜(E4)具有正光焦度,第一透镜(E1)的有效焦距f1、第四透镜(E4)的有效焦距f4与总有效焦距f之间满足:1<|f/f1|+|f/f4|≤2.7。
Description
本申请涉及摄远镜头以及装配有这种摄远镜头的摄像装置。
随着CCD(charge-coupled device,电耦合器件)及CMOS(complementary metal-oxide semiconductor,互补式金属氧化物半导体)图像传感器的性能提高及尺寸减小,对应的摄远镜头也需满足高成像品质及小型化的要求。
此外,随着人们对便携式电子产品的成像质量的要求越来越高,手机、平板电脑等电子产品将变得更薄、体积更小。为了满足小型化,需要尽可能地减少成像镜头的镜片数量,但是由此造成的设计自由度的缺乏会难以满足市场对高成像性能的需求。目前主流摄远镜头为了获得宽视角的图像,采用广角光学系统,但是这不利于拍摄较远物体,无法获得清晰的图像。
发明内容
本发明旨在提供一种具有高分辨率且小型化的摄远镜头。
根据本发明的一个方面,提供了一种摄远镜头。该摄远镜头沿着光轴从物侧至像侧依次包括:第一透镜、第二透镜、第三透镜、第四透镜以及至少一个后续透镜,其中,第一透镜具有正光焦度且其物侧面为凸面,第一透镜的物侧面至成像面的轴上距离TTL与该摄远镜头的总有效焦距f之间可满足:TTL/f≤1.0,例如TTL/f≤0.99,以及第四透镜具有正光焦度,第一透镜的有效焦距f1、第四透镜的有效焦距f4与该摄远镜头的总有效焦距f之间可满足:1<|f/f1|+|f/f4|≤2.7,例如1.16≤|f/f1|+|f/f4|≤2.7。
根据本发明的实施方式,第一透镜的有效焦距f1与所述总有效焦距f之间满足:0.45<f1/f≤1.0,例如0.46≤f1/f≤1.0。
根据本发明的实施方式,第二透镜具有负光焦度且其像侧面为凹面。第二透镜的有效焦距f2与总有效焦距f之间可满足:-1.5<f2/f<-0.7,例如-1.48≤f2/f≤-0.77。
根据本发明的实施方式,第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间可满足:|f/f3|+|f/f4|<1.5,例如|f/f3|+|f/f4|≤1.44。
根据本发明的实施方式,第四透镜的物侧面的曲率半径R7与第四透镜的像侧面的曲率半径R8之间可满足:|(R7+R8)/(R7-R8)|≤2,例如|(R7+R8)/(R7-R8)|≤1.92。
根据本发明的实施方式,第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间可满足:T34/T23<2.5,例如T34/T23≤2.3。
根据本发明的实施方式,第二透镜的物侧面的曲率半径R3与第二透镜的像侧面的曲率半径R4之间可满足:|(R3+R4)/(R3-R4)|≤2,例如|(R3+R4)/(R3-R4)|≤1.8。
根据本发明的实施方式,第三透镜的物侧面的曲率半径R5与第三透镜的像侧面的曲率半径R6之间可满足:|(R5-R6)/(R5+R6)|≤1,例如|(R5-R6)/(R5+R6)|≤0.97。
根据本发明的实施方式,所述至少一个后续透镜可包括具有负光焦度的第五透镜,其物侧面为凹面。第五透镜的物侧面在最大有效径处的矢高SAG51与第五透镜的中心厚度CT5之间可满足:|SAG51/CT5|<4.0,例如|SAG51/CT5|≤3.56。
根据本发明的实施方式,第五透镜的有效焦距f5与总有效焦距f之间可满足:-1.5<f5/f<-0.5,例如-1.26≤f5/f≤-0.52。
根据本发明的实施方式,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间可满足:0.5<(CT2+CT3+CT5)/(CT1+CT4)<1.0,例如0.56≤(CT2+CT3+CT5)/(CT1+CT4)≤0.95。
根据本发明的另一方面,提供了一种摄远镜头。该摄远镜头沿着光轴从物侧至像侧可依次包括:第一透镜、第二透镜、第三透镜以及多个后续透镜,其中,第一透镜的物侧面至成像面的轴上距离TTL与该摄远镜头的总有效焦距f之间可满足:TTL/f≤1.0,例如,TTL/f≤0.99;以及第三透镜的物侧面的曲率半径R5与第三透镜的像侧面的曲率半径R6之间可满足:|(R5-R6)/(R5+R6)|≤1,例如,|(R5-R6)/(R5+R6)|≤0.97。
根据本发明的实施方式,第一透镜可具有正光焦度,其物侧面可为凸面,第一透镜的有效焦距f1与总有效焦距f之间可满足:0.45<f1/f≤1.0,例如0.46≤f1/f≤1.0。
根据本发明的实施方式,第二透镜可具有负光焦度,并且其像侧面为凹面。第二透镜的有效焦距f2与总有效焦距f之间可满足:-1.5<f2/f<-0.7,例如,-1.48≤f2/f≤-0.77。
根据本发明的实施方式,第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间可满足:|(R3+R4)/(R3-R4)|≤2,例如|(R3+R4)/(R3-R4)|≤1.8。
根据本发明的实施方式,第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间可满足:T34/T23<2.5,例如T34/T23≤2.3。
根据本发明的实施方式,多个后续透镜可包括具有正光焦度的第四透镜,其中,第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间可满足:|f/f3|+|f/f4|<1.5,|f/f3|+|f/f4|≤1.44。
根据本发明的实施方式,第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间可满足:|(R7+R8)/(R7-R8)|≤2,例如|(R7+R8)/(R7-R8)|≤1.92。
根据本发明的实施方式,第一透镜的有效焦距f1、第四透镜的有效焦距f4与总有效焦距f之间满足:1<|f/f1|+|f/f4|≤2.7,1.16≤|f/f1|+|f/f4|≤2.7。
根据本发明的实施方式,其中,多个后续透镜还可包括第五透镜,该第五透镜可具有负光焦度,且其物侧面可为凹面。第五透镜的物侧面在最大有效径处的矢高SAG51与其中心厚度CT5之间可满足:|SAG51/CT5|<4.0,例如|SAG51/CT5|≤3.56。
根据本发明的实施方式,第五透镜的有效焦距f5与总有效焦距f之间可满足:-1.5<f5/f<-0.5,例如-1.26≤f5/f≤-0.52。
根据本发明的实施方式,第一、第二、第三、第四、和第五透镜的中心厚度CT1、CT2、CT3、CT4、CT5之间可满足:0.5<(CT2+CT3+CT5)/(CT1+CT4)<1.0,例如0.56≤(CT2+CT3+CT5)/(CT1+CT4)≤0.95。
根据本发明的另一方面,还提供了一种可配备有上述摄远镜头的摄像装置。
通过参照以下附图进行的详细描述,本申请的实施方式的以上及其它优点将变得显而易见,附图旨在示出本申请的示例性实施方式而非对其进行限制。在附图中:
图1示出了本申请的实施例1的摄远镜头的示意性结构图;
图2A示出了实施例1的摄远镜头的轴上色差曲线;
图2B示出了实施例1的摄远镜头的象散曲线;
图2C示出了实施例1的摄远镜头的畸变曲线;
图2D示出了实施例1的摄远镜头的倍率色差曲线;
图3示出了本申请的实施例2的摄远镜头的示意性结构图;
图4A示出了实施例2的摄远镜头的轴上色差曲线;
图4B示出了实施例2的摄远镜头的象散曲线;
图4C示出了实施例2的摄远镜头的畸变曲线;
图4D示出了实施例2的摄远镜头的倍率色差曲线;
图5示出了本申请的实施例3的摄远镜头的示意性结构图;
图6A示出了实施例3的摄远镜头的轴上色差曲线;
图6B示出了实施例3的摄远镜头的象散曲线;
图6C示出了实施例3的摄远镜头的畸变曲线;
图6D示出了实施例3的摄远镜头的倍率色差曲线;
图7示出了本申请的实施例4的摄远镜头的示意性结构图;
图8A示出了实施例4的摄远镜头的轴上色差曲线;
图8B示出了实施例4的摄远镜头的象散曲线;
图8C示出了实施例4的摄远镜头的畸变曲线;
图8D示出了实施例4的摄远镜头的倍率色差曲线;
图9示出了本申请的实施例5的摄远镜头的示意性结构图;
图10A示出了实施例5的摄远镜头的轴上色差曲线;
图10B示出了实施例5的摄远镜头的象散曲线;
图10C示出了实施例5的摄远镜头的畸变曲线;
图10D示出了实施例5的摄远镜头的倍率色差曲线;
图11示出了本申请的实施例6的摄远镜头的示意性结构图;
图12A示出了实施例6的摄远镜头的轴上色差曲线;
图12B示出了实施例6的摄远镜头的象散曲线;
图12C示出了实施例6的摄远镜头的畸变曲线;
图12D示出了实施例6的摄远镜头的倍率色差曲线;
图13示出了本申请的实施例7的摄远镜头的示意性结构图;
图14A示出了实施例7的摄远镜头的轴上色差曲线;
图14B示出了实施例7的摄远镜头的象散曲线;
图14C示出了实施例7的摄远镜头的畸变曲线;
图14D示出了实施例7的摄远镜头的倍率色差曲线;
图15示出了本申请的实施例8的摄远镜头的示意性结构图;
图16A示出了实施例8的摄远镜头的轴上色差曲线;
图16B示出了实施例8的摄远镜头的象散曲线;
图16C示出了实施例8的摄远镜头的畸变曲线;
图16D示出了实施例8的摄远镜头的倍率色差曲线;
图17示出了本申请的实施例9的摄远镜头的示意性结构图;
图18A示出了实施例9的摄远镜头的轴上色差曲线;
图18B示出了实施例9的摄远镜头的象散曲线;
图18C示出了实施例9的摄远镜头的畸变曲线;
图18D示出了实施例9的摄远镜头的倍率色差曲线;
图19示出了本申请的实施例10的摄远镜头的示意性结构图;
图20A示出了实施例10的摄远镜头的轴上色差曲线;
图20B示出了实施例10的摄远镜头的象散曲线;
图20C示出了实施例10的摄远镜头的畸变曲线;
图20D示出了实施例10的摄远镜头的倍率色差曲线;
图21示出了本申请的实施例11的摄远镜头的示意性结构图;
图22A示出了实施例11的摄远镜头的轴上色差曲线;
图22B示出了实施例11的摄远镜头的象散曲线;
图22C示出了实施例11的摄远镜头的畸变曲线;
图22D示出了实施例11的摄远镜头的倍率色差曲线;
图23示出了本申请的实施例12的摄远镜头的示意性结构图;
图24A示出了实施例12的摄远镜头的轴上色差曲线;
图24B示出了实施例12的摄远镜头的象散曲线;
图24C示出了实施例12的摄远镜头的畸变曲线;
图24D示出了实施例12的摄远镜头的倍率色差曲线。
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状,但应理解各部件的尺寸不由附图限制,而是可在一定的范围内适当调整。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
此外,近轴区域是指光轴附近的区域。第一透镜是最靠近物体的透镜而第六透镜是最靠近感光元件的透镜。在本文中,每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以/可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本发明所属领域普通技术人员的通常理解相同的含义。还应理解的
是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
以下对本申请的特征、原理和其他方面进行详细描述。
本申请提供了一种摄远镜头。根据本申请的示例性实施方式的摄远镜头沿着光轴从物侧至像侧可依次设置有第一透镜、第二透镜、第三透镜、第四透镜、至少一个后续透镜以及感光元件,并且该摄远镜头可具有总有效焦距f。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面。第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间可满足TTL/f≤1.0,更具体地,满足TTL/f≤0.99。第四透镜可具有正光焦度。第一透镜的有效焦距f1、第四透镜的有效焦距f4与总有效焦距f之间可满足:1<|f/f1|+|f/f4|≤2.7,更具体地,满足1.16≤|f/f1|+|f/f4|≤2.7。通过合理设置第一透镜的物侧面至摄远镜头的成像面之间的距离,可使得镜头尽可能地薄。此外,通过合理地选择各透镜的焦距并适当地调整摄远镜头的总有效焦距,能够使摄远镜头获得较好的平场条件。
在示例性实施方式中,第一透镜可设置成其有效焦距f1与摄远镜头的总有效焦距f之间满足:0.45<f1/f≤1.0,更具体地,满足0.46≤f1/f≤1.0,以保证第一透镜承担适当的正光焦度,从而便于后续透镜的设计。
在示例性实施方式中,第二透镜可具有负光焦度,其像侧面可设置为凹面。第二透镜的有效焦距f2与摄远镜头的总有效焦距f之间可满足:-1.5<f2/f<-0.7,更具体地,满足-1.48≤f2/f≤-0.77。通过合理设置第二透镜的有效焦距来确保第二透镜能够产生一定的正球差,以平衡正光焦度透镜的负球差;如果第二透镜的有效焦距f2与摄远镜头的总有效焦距f之间的比值小于下限值,则矫正能力不足,若大于上限值,则产生过多的正球差。
在示例性实施方式中,第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间可满足:|f/f3|+|f/f4|<1.5,更具体地,满足|f/f3|+|f/f4|≤1.44。通过合理配置第三透镜的有效焦距f3和第四透镜的有效焦距f4之间的关系可确保系统获得适当的相对亮度。
在示例性实施方式中,第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间可满足:|(R7+R8)/(R7-R8)|≤2,例如,满足|(R7+R8)/(R7-R8)|
≤1.92。通过使第四透镜的曲率半径差异尽可能大,从而确保其具有较强的平衡像差的能力。
在示例性实施方式中,第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间可满足:T34/T23<2.5,例如T34/T23≤2.3。通过合理地选择第二透镜和第三透镜的轴向位置,能够很好的矫正匹兹伐场曲。
在示例性实施方式中,第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间可满足:|(R3+R4)/(R3-R4)|≤2,例如|(R3+R4)/(R3-R4)|≤1.8。通过合理地分配第二透镜的曲率,可使得第二透镜具有合适的赛德像差系数,从而能够较好地平衡初级像差。
在示例性实施方式中,第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间可满足:|(R5-R6)/(R5+R6)|≤1,更具体地,例如满足|(R5-R6)/(R5+R6)|≤0.97。通过合理地设置第三透镜的曲率,可有效地矫正球差。
在示例性实施方式中,摄远镜头中的至少一个后续透镜可包括具有负光焦度的第五透镜,其物侧面为凹面。第五透镜的物侧面在最大有效径处的矢高SAG51与其中心厚度CT5之间可满足:|SAG51/CT5|<4.0,更具体地,可满足|SAG51/CT5|≤3.56。
在示例性实施方式中,第五透镜的有效焦距f5与摄远镜头的总有效焦距f之间可满足:-1.5<f5/f<-0.5,更具体地,满足-1.26≤f5/f≤-0.52,以使第五透镜承担适当的负光焦度。
在示例性实施方式中,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜的中心厚度CT1、CT2、CT3、CT4和CT5之间可满足:0.5<(CT2+CT3+CT5)/(CT1+CT4)<1.0,更具体地,可满足:0.56≤(CT2+CT3+CT5)/(CT1+CT4)≤0.95。通过合理地选择各透镜的厚度,能够合理地矫正五阶球差和色球差。如果(CT2+CT3+CT5)/(CT1+CT4)小于下限值,则五阶球差显著增加,而如果(CT2+CT3+CT5)/(CT1+CT4)大于上限值,则色球差显著增加。
本申请还提供了另一种摄远镜头。该摄远镜头沿着光轴从物侧至像侧可依次包括第一透镜、第二透镜、第三透镜以及多个后续透镜。在该摄远镜头中,
第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间可满足:TTL/f≤1.0,例如,TTL/f≤0.99,并且第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间可满足:|(R5-R6)/(R5+R6)|≤1,例如|(R5-R6)/(R5+R6)|≤0.97。这样设计的摄远镜头在确保镜头尽可能地薄的情况下可有效地矫正球差。
在另一示例性实施方式中,第一透镜可设置成其有效焦距f1与摄远镜头的总有效焦距f之间满足:0.45<f1/f≤1.0,更具体地,满足0.46≤f1/f≤1.0,以保证第一透镜承担适当的正光焦度,从而便于后续透镜的设计。
在另一示例性实施方式中,第二透镜可具有负光焦度,其像侧面可设置为凹面。第二透镜的有效焦距f2与摄远镜头的总有效焦距f之间可满足:-1.5<f2/f<-0.7,更具体地,满足-1.48≤f2/f≤-0.77。通过合理设置第二透镜的有效焦距来确保第二透镜能够产生一定的正球差,以平衡正光焦度透镜的负球差;如果第二透镜的有效焦距f2与摄远镜头的总有效焦距f之间的比值小于下限值,则矫正能力不足,若大于上限值,则产生过多的正球差。
在另一示例性实施方式中,第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间可满足:|(R3+R4)/(R3-R4)|≤2,例如|(R3+R4)/(R3-R4)|≤1.8。通过合理地分配第二透镜的曲率,可使得第二透镜具有合适的赛德像差系数,从而能够较好地平衡初级像差。
在另一示例性实施方式中,第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间可满足:T34/T23<2.5,例如T34/T23≤2.3。通过合理地选择第二透镜和第三透镜的轴向位置,能够很好的矫正匹兹伐场曲。
在另一示例性实施方式中,摄远镜头中的多个后续透镜还可包括具有正光焦度的第四透镜。第三透镜的有效焦距f3、第四透镜的有效焦距f4与该摄远镜头的总有效焦距f之间可满足:|f/f3|+|f/f4|<1.5,更具体地,可满足|f/f3|+|f/f4|≤1.44。通过合理配置第三透镜的有效焦距f3和第四透镜的有效焦距f4之间的关系可确保系统获得适当的相对亮度。
在另一示例性实施方式中,第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间可满足:|(R7+R8)/(R7-R8)|≤2,例如,满足|(R7+R8)/(R7-R8)|≤1.92。通过使第四透镜的曲率半径差异尽可能大,从而确保其具有较强的平
衡像差的能力。
在另一示例性实施方式中,第一透镜的有效焦距f1、第四透镜的有效焦距f4与总有效焦距f之间可满足:1<|f/f1|+|f/f4|≤2.7,更具体地,满足1.16≤|f/f1|+|f/f4|≤2.7。通过合理地选择各透镜的焦距并适当地调整摄远镜头的总有效焦距,能够使摄远镜头获得较好的平场条件。
在另一示例性实施方式中,摄远镜头中的多个后续透镜还可包括第五透镜。第五透镜可具有负光焦度,且其物侧面可为凹面。第五透镜的物侧面在最大有效径处的矢高SAG51与其中心厚度CT5之间可满足:|SAG51/CT5|<4.0,更具体地,可满足|SAG51/CT5|≤3.56。
在另一示例性实施方式中,第五透镜的有效焦距f5与摄远镜头的总有效焦距f之间可满足:-1.5<f5/f<-0.5,更具体地,满足-1.26≤f5/f≤-0.52,以使第五透镜承担适当的负光焦度。
在另一示例性实施方式中,第一透镜、第二透镜、第三透镜、第四透镜和第五透镜的中心厚度CT1、CT2、CT3、CT4和CT5之间可满足:0.5<(CT2+CT3+CT5)/(CT1+CT4)<1.0,更具体地,可满足:0.56≤(CT2+CT3+CT5)/(CT1+CT4)≤0.95。通过合理地选择各透镜的厚度,能够合理地矫正五阶球差和色球差。如果(CT2+CT3+CT5)/(CT1+CT4)小于下限值,则五阶球差显著增加,而如果(CT2+CT3+CT5)/(CT1+CT4)大于上限值,则色球差显著增加。
本申请还提供了一种摄像装置。该摄像装置可包括如上所述的摄远镜头。
根据本申请的上述实施方式的摄远镜头可采用多片镜片,例如在本申请中采用5片,但应理解这只是示例而非限制。通过合理分配各透镜的光焦度、中心厚度、面型、各透镜之间的轴上间距等,可提供一种具有高分辨率且小型化的摄远镜头。在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有一定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点,能够使得视野变得更大而真实。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在未背离本申请要求保护的技术方案
的情况下,可改变镜头的构成数量,来获得下面描述的各个结果和优点。例如,虽然在第一实施方式中的描述中采用由五个透镜为例进行了描述,但是该摄远镜头不限于包括五个透镜。如果需要,该摄远镜头还可包括其它数量的透镜。
下面参照图1至图24D进一步描述可适用于上述实施方式的摄远镜头的具体实施例。
实施例1
以下参照图1至图2D描述本申请上述实施方式的摄远镜头的实施例1。
如图1所示,摄远镜头的实施例1包括具有物侧面S1和像侧面S2的第一透镜E1、具有物侧面S3和像侧面S4的第二透镜E2、具有物侧面S5和像侧面S6的第三透镜E3、具有物侧面S7和像侧面S8的第四透镜E4以及具有物侧面S9和像侧面S10的第五透镜E5。在该实施例中,第一透镜可具有正光焦度,且其物侧面可为凸面;第二透镜可具有负光焦度,且其像侧面可为凹面;第三透镜可具有正光焦度或负光焦度;第四透镜可具有正光焦度;以及第五透镜可具有负光焦度,其物侧面可为凹面。该摄远镜头还可包括光阑(未示出)以及用于滤除红外光的具有物侧面S11和像侧面S12的滤光片E6。在本实施例的摄远镜头中,还可设置有光圈STO以调解进光量。来自物体的光依次穿过各表面S1至S12并最终成像在成像表面S13上。
下表1中示出了实施例1中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 3.32 | f(mm) | 6.41 |
f2(mm) | -9.47 | TTL(mm) | 5.90 |
f3(mm) | -9.68 | HFOV(deg) | 25.5 |
f4(mm) | 8.27 | ||
f5(mm) | -4.59 |
表1
参照表1,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.92。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=0.52。第二透镜的有效焦距f2与总有效焦距f之间满足f2/f=-1.48。第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f1|+|f/f4|=2.7。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间满足:|f/f3|+|f/f4|=1.44。第五透镜的有效焦距f5与总有效焦距f之间满足:f5/f=-0.72。
表2示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 | 表面类型 | 曲率半径 | 厚度 | 材料 | 圆锥系数 |
OBJ | 球面 | 无穷 | 无穷 | ||
STO | 球面 | 无穷 | -0.3858 | ||
S1 | 非球面 | 1.8104 | 0.6977 | 1.53,55.8 | 0.7841 |
S2 | 非球面 | -77.1829 | 0.1488 | -99.0000 | |
S3 | 非球面 | -9.4854 | 0.2300 | 1.64,23.5 | 66.3362 |
S4 | 非球面 | 16.9293 | 1.3781 | -99.0000 | |
S5 | 非球面 | -4.6533 | 0.2300 | 1.64,23.5 | 14.3804 |
S6 | 非球面 | -19.0757 | 0.5366 | 6.2204 | |
S7 | 非球面 | -23.7893 | 0 6513 | 1.66,20.4 | 99.0000 |
S8 | 非球面 | -4.4938 | 0.5905 | 1.5747 | |
S9 | 非球面 | -1.9857 | 0.3000 | 1.53,55.8 | -1.5709 |
S10 | 非球面 | -10.8799 | 0.2666 | -0.8600 | |
S11 | 球面 | 无穷 | 0.2100 | 1.52,64.2 | |
S12 | 球面 | 无穷 | 0.6604 | ||
S13 | 球面 | 无穷 |
表2
表3示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 |
S1 | -1.9341E-02 | 2.420E-03 | -2.4298E-02 | 3.3539E-02 | -2.5486E-0 | 7.8660E-03 |
S2 | -3.7680E-02 | 4.2305E-02 | -5.9015E-03 | -2.2809E-0 | 2.7934E-02 | -9.7003E-03 |
S3 | -7.3914E-02 | 1.2778E-01 | -1.0026E-01 | 4.5244E-02 | -7.4047E-03 | -2.2859E-03 |
S4 | -4.9649E-02 | 9.1512E-02 | -9.7260E-02 | 6.1266E-02 | -2.5624E-02 | 3.9480E-03 |
S5 | -7.5395E-02 | -1.6644E-01 | 5.2182E-01 | -5.4835E-01 | 2.7217E-01 | -6.0317E-02 |
S6 | -7.7281E-02 | -1.0366E-01 | 3.1184E-01 | -2.3485E-01 | 7.4673E-02 | -8.8626E-03 |
S7 | -9.6674E-03 | -1.0126E-01 | 7.1105E-02 | -2.2090E-02 | 3.8613E-03 | -3.2075E-04 |
S8 | 2.9258E-02 | -7.1590E-02 | 3.4812E-02 | -8.9265E-03 | 8.5341E-04 | 5.4549E-05 |
S9 | -6.5675E-02 | 7.8139E-02 | -3.7326E-02 | 9.0424E-03 | -1.0574E-03 | 4.7852E-05 |
S10 | -1.1273E-01 | 8.2612E-02 | -3.0676E-02 | 6.2815E-03 | -7.0086E-04 | 3.3228E-05 |
表3
参照表2和表3,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.56。第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|=0.28。第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间满足:T34/T23=0.39。第三透镜的物侧面的曲率半径R5与其像
侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|=0.61。第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=1.47。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五透镜的中心厚度CT5之间满足:|SAG51/CT5|=2.72。
图2A示出了实施例1的摄远镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图2B示出了实施例1的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的摄远镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图2A至图2D可以看出,根据实施例1的摄远镜头在保证小型化的情况下可获得较好的成像效果。
实施例2
以下参照图3至图4D描述本申请的上述摄远镜头的实施例2。除了摄远镜头的各镜片的参数之外,例如除了各镜片的曲率半径、厚度、材料、圆锥系数、有效焦距、轴上间距、各镜面的高次项系数等之外,在本实施例2及以下各实施例中描述的摄远镜头与实施例1中描述的摄远镜头的布置结构相同。为了简洁起见,将省略部分与实施例1相似的描述。
图3示出了根据本申请实施例2的摄远镜头的结构示意图。如图3所示,根据实施例2的摄远镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
下表4中示出了实施例2中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 3.06 | f(mm) | 6.51 |
f2(mm) | -7.31 | TTL(mm) | 5.85 |
f3(mm) | -11.41 | HFOV(deg) | 22.6 |
f4(mm) | 11.77 | ||
f5(mm) | -5.33 |
表4
参照表4,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.90。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=0.47。第二透镜的有效焦距f2与总有效焦距f之间满足f2/f=-1.12。
第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f1|+|f/f4|=2.68。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间满足:|f/f3|+|f/f4|=1.12。第五透镜的有效焦距f5与总有效焦距f之间满足:f5/f=-0.82。
表5示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 | 表面类型 | 曲率半径 | 厚度 | 材料 | 圆锥系数 |
OBJ | 球面 | 无穷 | 无穷 | ||
STO | 球面 | 无穷 | -0.4254 | ||
S1 | 非球面 | 1.7226 | 0.7466 | 1.54,56.1 | -0.6443 |
S2 | 非球面 | -42.7739 | 0.0500 | 99.0000 | |
S3 | 非球面 | 20.4577 | 0.2500 | 1.66,20.4 | 98.3361 |
S4 | 非球面 | 3.8901 | 1.0166 | 7.0669 | |
S5 | 非球面 | -5.4086 | 0.3140 | 1.54,56.1 | -99.0000 |
S6 | 非球面 | -42.8279 | 1.0307 | 99.0000 | |
S7 | 非球面 | -17.1098 | 0.4557 | 1.66,20.4 | 99.0000 |
S8 | 非球面 | -5.4042 | 0.2784 | 4.7305 | |
S9 | 非球面 | -5.3007 | 0.3500 | 1.53,55.8 | 3.8949 |
S10 | 非球面 | 6.3052 | 0.5412 | -40.5088 | |
S11 | 球面 | 无穷 | 0.2100 | 1.52,64.2 | |
S12 | 球面 | 无穷 | 0.6077 | ||
S13 | 球面 | 无穷 |
表5
表6示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.5123E-02 | 1.0671E-02 | -6.0862E-02 | 2.2823E-01 | -4.8494E-01 | 6.0456E-01 | -4.4196E-01 | 1.7560E-01 | -2.9546E-02 |
S2 | -8.0524E-02 | 3.9748E-01 | -1.1716E+00 | 2.2787E+00 | -2.9338E+00 | 2.5035E+00 | -1.3877E+00 | 4.5688E-01 | -6.8254E-02 |
S3 | -1.0074E-01 | 4.7025E-01 | -1.3118E+00 | 2.4867E+00 | -3.0011E+00 | 2.2657E+00 | -1.0359E+00 | 2.6145E-01 | -2.8122E-02 |
S4 | -4.2868E-02 | 2.0845E-01 | -5.4534E-01 | 9.3043E-01 | -6.1725E-01 | -4.9881E-01 | 1.1979E+00 | -8.1073E-01 | 1.9494E-01 |
S5 | -6.1119E-02 | 1.2634E-01 | -1.1985E-01 | 2.6612E-01 | -7.1432E-01 | 1.1770E+00 | -1.1398E+00 | 5.9265E-01 | -1.2886E-01 |
S6 | 3.3176E-02 | 6.0064E-02 | -4.0818E-02 | 1.2912E-01 | -2.6861E-01 | 3.3945E-01 | -2.6519E-01 | 1.1228E-01 | -1.9437E-02 |
S7 | 1.4892E-02 | -1.5488E-01 | 2.0966E-01 | -1.7271E-01 | 7.9839E-02 | -1.8356E-02 | 1.6472E-03 | 0 | 0 |
S8 | 1.2805E-01 | -3.3749E-01 | 3.5972E-01 | -2.1460E-01 | 7.6222E-02 | -2.0248E-02 | 5.4937E-03 | -1.1392E-03 | 1.0061E-04 |
S9 | 5.4904E-02 | -2.3597E-01 | 8.2637E-02 | 2.0621E-01 | -2.5331E-01 | 1.2825E-01 | -3.4033E-02 | 4.6664E-03 | -2.6198E-04 |
S10 | -7.4713E-02 | -2.4089E-02 | 1.5224E-02 | 2.4849E-02 | -2.7818E-02 | 1.2235E-02 | -2.8441E-03 | 3.4761E-04 | -1.7659E-05 |
表6
参照表5和表6,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度
CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.76。第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|=1.47。第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间满足:T34/T23=1.01。第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|=0.78。第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=1.92。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五透镜的中心厚度CT5之间满足:|SAG51/CT5|=1.55。
图4A示出了实施例2的摄远镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图4B示出了实施例2的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的摄远镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图4A至图4D可以看出,根据实施例2的摄远镜头在保证小型化的情况下可获得较好的成像效果。
实施例3
以下参照图5至图6D描述本申请的上述摄远镜头的实施例3。图5示出了根据本申请实施例3的摄远镜头的结构示意图。如图5所示,根据实施例3的摄远镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
下表7中示出了实施例3中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 2.81 | f(mm) | 5.62 |
f2(mm) | -4.48 | TTL(mm) | 5.30 |
f3(mm) | -38.15 | HFOV(deg) | 29.7 |
f4(mm) | 11.74 | ||
f5(mm) | -4.58 |
表7
参照表7,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.94。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=0.50。第二透镜的有效焦距f2与总有效焦距f之间满足f2/f=-0.80。第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间
满足:|f/f1|+|f/f4|=2.48。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间满足:|f/f3|+|f/f4|=0.63。第五透镜的有效焦距f5与总有效焦距f之间满足:f5/f=-0.81。
表8示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 | 表面类型 | 曲率半径 | 厚度 | 材料 | 圆锥系数 |
OBJ | 球面 | 无穷 | 无穷 | ||
STO | 球面 | 无穷 | -0.4208 | ||
S1 | 非球面 | 1.5347 | 0.6054 | 1.53,55.8 | -0.1486 |
S2 | 非球面 | -58.8128 | 0.0501 | -99.0000 | |
S3 | 非球面 | 8.8948 | 0.2800 | 1.66,20.4 | 63.4437 |
S4 | 非球面 | 2.1916 | 0.3508 | 3.8358 | |
S5 | 非球面 | 9.7341 | 0.3252 | 1.54,56.1 | 94.2370 |
S6 | 非球面 | 6.5484 | 0.4047 | -3.6394 | |
S7 | 非球面 | -266.5953 | 0.3582 | 1.66,20.4 | 99.0000 |
S8 | 非球面 | -7.5405 | 1.7256 | -92.9905 | |
S9 | 非球面 | -2.5225 | 0.3000 | 1.53,55.8 | 0.1466 |
S10 | 非球面 | 84.0806 | 0.5141 | -18.8463 | |
S11 | 球面 | 无穷 | 0.3000 | 1.52,64.2 | |
S12 | 球面 | 无穷 | 0.0863 | ||
S13 | 球面 | 无穷 |
表8
表9示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.3190E-02 | -7.5412E-03 | 5.2225E-02 | -1.2456E-01 | 1.6414E-01 | -7.6157E-02 | -5.2646E-02 | 7.8467E-02 | -2.7072E-02 |
S2 | 1.5298E-01 | -3.8214E-01 | 1.0359E+00 | -2.4484E+00 | 4.7340E+00 | -6.5522E+00 | 5.8052E+00 | -2.9326E+00 | 6.4036E-01 |
S3 | 9.4519E-02 | -3.7053E-01 | 1.3756E+00 | -4.1009E+00 | 9.5271E+00 | -1.5297E+01 | 1.5361E+01 | -8.6796E+00 | 2.1061E+00 |
S4 | -5.2094E-02 | -1.3741E-03 | 3.1124E-01 | -6.8458E-01 | 1.5214E+00 | -3.1208E+00 | 4.5441E+00 | -4.1044E+00 | 1.6105E+00 |
S5 | -5.7395E-02 | 5.0858E-02 | 4.9204E-01 | -1.7837E+00 | 4.4706E+00 | -6.9401E+00 | 6.0721E+00 | -2.6556E+00 | 4.0423E-01 |
S6 | -3.2038E-02 | 1.7541E-01 | -4.8132E-01 | 2.0696E+00 | -5.2704E+00 | 8.4209E+00 | -8.3530E+00 | 4.6673E+00 | -1.1105E+00 |
S7 | -1.3561E-03 | 2.7833E-02 | -6.7171E-03 | 8.5930E-03 | 3.4375E-02 | -8.9256E-02 | 7.7599E-02 | -3.1316E-02 | 5.0071E-03 |
S8 | -1.2117E-02 | 4.6604E-02 | -5.2008E-02 | 7.7468E-02 | -6.8457E-02 | 3.8769E-02 | -1.5891E-02 | 3.9570E-03 | -4.0079E-04 |
S9 | -1.6890E-01 | 2.1789E-01 | -2.2365E-01 | 1.5975E-01 | -7.5220E-02 | 2.2578E-02 | -4.0565E-03 | 3.9076E-04 | -1.5290E-05 |
S10 | -1.9268E-01 | 2.1627E-01 | -1.9276E-01 | 1.1669E-01 | -4.7090E-02 | 1.2416E-02 | -2.0513E-03 | 1.9248E-04 | -7.8077E-06 |
表9
参照表8和表9,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.94。第二透镜的物侧面的曲率半
径R3与其像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|=1.65。第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间满足:T34/T23=1.15。第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|=0.20。第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=1.06。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五透镜的中心厚度CT5之间满足:|SAG51/CT5|=3.56。
图6A示出了实施例3的摄远镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图6B示出了实施例3的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的摄远镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图6A至图6D可以看出,根据实施例3的摄远镜头在保证小型化的情况下可获得较好的成像效果。
实施例4
以下参照图7至图8D描述本申请的上述摄远镜头的实施例4。图7示出了根据本申请实施例4的摄远镜头的结构示意图。如图7所示,根据实施例4的摄远镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
下表10中示出了实施例4中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 2.78 | f(mm) | 5.59 |
f2(mm) | -4.31 | TTL(mm) | 5.30 |
f3(mm) | -36.36 | HFOV(deg) | 29.8 |
f4(mm) | 11.79 | ||
f5(mm) | -4.75 |
表10
参照表10,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.95。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=0.50。第二透镜的有效焦距f2与总有效焦距f之间满足f2/f=-0.77。第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f1|+|f/f4|=2.49。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总
有效焦距f之间满足:|f/f3|+|f/f4|=0.63。第五透镜的有效焦距f5与总有效焦距f之间满足:f5/f=-0.85。
表11示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 | 表面类型 | 曲率半径 | 厚度 | 材料 | 圆锥系数 |
OBJ | 球面 | 无穷 | 无穷 | ||
STO | 球面 | 无穷 | -0.4334 | ||
S1 | 非球面 | 1.4981 | 0.6881 | 1.53,55.8 | -0.1915 |
S2 | 非球面 | -139.0004 | 0.0500 | 99.0000 | |
S3 | 非球面 | 9.7066 | 0.2800 | 1.66,20.4 | 68.9205 |
S4 | 非球面 | 2.1780 | 0.3225 | 3.9489 | |
S5 | 非球面 | 10.2771 | 0.3484 | 1.54,56.1 | 52.0915 |
S6 | 非球面 | 6.6826 | 0.4053 | -17.5999 | |
S7 | 非球面 | -49.1664 | 0.3693 | 1.66,20.4 | 84.7464 |
S8 | 非球面 | -6.7436 | 1.5950 | -53.3530 | |
S9 | 非球面 | -3.0846 | 0.3400 | 1.53,55.8 | -0.0010 |
S10 | 非球面 | 14.8079 | 0.0909 | 1.8651 | |
S11 | 球面 | 无穷 | 0.3000 | 1.52,64.2 | |
S12 | 球面 | 无穷 | 0.5105 | ||
S13 | 球面 | 无穷 |
表11
表12示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.4635E-02 | -1.1744E-02 | 8.1307E-02 | -2.4197E-01 | 4.5543E-01 | -5.2270E-01 | 3.5406E-01 | -1.2500E-01 | 1.5782E-02 |
S2 | 1.7911E-01 | -5.6535E-01 | 1.5973E+00 | -3.5918E+00 | 6.2751E+00 | -7.9008E+00 | 6.5136E+00 | -3.1270E+00 | 6.6149E-01 |
S3 | 1.3431E-01 | -5.8751E-01 | 1.9775E+00 | -5.0882E+00 | 1.0285E+01 | -1.5025E+01 | 1.4288E+01 | -7.8523E+00 | 1.8897E+00 |
S4 | -2.6998E-02 | -1.4992E-01 | 8.7793E-01 | -2.5003E+00 | 5.8216E+00 | -9.9119E+00 | 1.1212E+01 | -7.6646E+00 | 2.3979E+00 |
S5 | -4.7594E-02 | -1.1130E-02 | 4.2543E-01 | -9.4501E-01 | 1.1615E+00 | 7.8297E-01 | -4.6625E+00 | 5.5690E+00 | -2.2455E+00 |
S6 | -1.2192E-02 | 1.1403E-01 | -4.7586E-01 | 2.2650E+00 | -5.9632E+00 | 9.7534E+00 | -9.9029E+00 | 5.6649E+00 | -1.3820E+00 |
S7 | 5.4108E-03 | 3.6344E-02 | -1.0320E-01 | 2.3202E-01 | -2.4955E-01 | 1.4184E-01 | -4.2512E-02 | 0.005036752 | 0.000139297 |
S8 | -8.6705E-03 | 5.4391E-02 | -1.1121E-01 | 1.8213E-01 | -1.7434E-01 | 1.0917E-01 | -4.5440E-02 | 1.0974E-02 | -1.1215E-03 |
S9 | -1.8849E-01 | 2.4203E-01 | -2.1890E-01 | 1.2776E-01 | -4.9424E-02 | 1.2839E-02 | -2.1227E-03 | 1.9842E-04 | -7.9275E-06 |
S10 | -2.1231E-01 | 2.3891E-01 | -1.9781E-01 | 1.1025E-01 | -4.1703E-02 | 1.0504E-02 | -1.6789E-03 | 1.5355E-04 | -6.0977E-06 |
表12
参照表11和表12,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.92。第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|=1.58。第二透镜
和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间满足:T34/T23=1.26。第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|=0.21。第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=1.32。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五透镜的中心厚度CT5之间满足:|SAG51/CT5|=2.84。
图8A示出了实施例4的摄远镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8B示出了实施例4的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的摄远镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图8A至图8D可以看出,根据实施例4的摄远镜头在保证小型化的情况下可获得较好的成像效果。
实施例5
以下参照图9至图10D描述本申请的上述摄远镜头的实施例5。图9示出了根据本申请实施例5的摄远镜头的结构示意图。如图9所示,根据实施例5的摄远镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
下表13中示出了实施例5中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 3.44 | f(mm) | 6.41 |
f2(mm) | -8.55 | TTL(mm) | 5.98 |
f3(mm) | -25.19 | HFOV(deg) | 24.3 |
f4(mm) | 8.19 | ||
f5(mm) | -3.35 |
表13
参照表13,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.93。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=0.54。第二透镜的有效焦距f2与总有效焦距f之间满足f2/f=-1.33。第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f1|+|f/f4|=2.65。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间满足:|f/f3|+|f/f4|=1.04。第五透镜的有效焦距f5与总有效焦距
f之间满足:f5/f=-0.52。
表14示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 | 表面类型 | 曲率半径 | 厚度 | 材料 | 圆锥系数 |
OBJ | 球面 | 无穷 | 无穷 | ||
STO | 球面 | 无穷 | -0.3000 | ||
S1 | 非球面 | 2.0756 | 0.6493 | 1.54,56.1 | 0.6639 |
S2 | 非球面 | -16.9769 | 0.0717 | -21.7573 | |
S3 | 非球面 | -11.8571 | 0.2500 | 1.66,20.4 | -99.0000 |
S4 | 非球面 | 10.8882 | 1.9530 | 52.8537 | |
S5 | 非球面 | -7.2168 | 0.3140 | 1.54,56.1 | 6.8744 |
S6 | 非球面 | -15.4796 | 0.4319 | 48.5372 | |
S7 | 非球面 | 7.6022 | 0.4247 | 1.66,20.4 | -56.5712 |
S8 | 非球面 | -18.3672 | 0.5255 | 21.5743 | |
S9 | 非球面 | -1.6129 | 0.3500 | 1.53,55.8 | -3.7088 |
S10 | 非球面 | -17.2863 | 0.2204 | 39.3089 | |
S11 | 球面 | 无穷 | 0.2100 | 1.52,64.2 | |
S12 | 球面 | 无穷 | 0.5797 | ||
S13 | 球面 | 无穷 |
表14
表15示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | -1.4287E-02 | -1.3240E-02 | 2.9704E-02 | -7.4354E-02 | 1.0265E-01 | -9.8879E-02 | 6.3251E-02 | -2.4878E-02 | 4.3250E-03 |
S2 | -3.4586E-02 | 1.6787E-01 | -4.6279E-01 | 6.8592E-01 | -4.8152E-01 | -8.7247E-02 | 4.1491E-01 | -2.7926E-01 | 6.4072E-02 |
S3 | -1.7781E-02 | 2.2527E-01 | -7.4222E-01 | 1.4730E+00 | -1.8359E+00 | 1.3655E+00 | -5.1156E-01 | 3.5431E-02 | 2.2076E-02 |
S4 | 5.9568E-03 | 1.4562E-01 | -6.4369E-01 | 1.7005E+00 | -2.9212E+00 | 3.2668E+00 | -2.2911E+00 | 9.1410E-01 | -1.5810E-01 |
S5 | -5.8915E-02 | -4.8745E-02 | 3.2151E-01 | -7.7081E-01 | 1.1167E+00 | -1.0140E+00 | 5.5503E-01 | -1.6758E-01 | 2.1425E-02 |
S6 | -9.1014E-02 | 9.0709E-02 | -1.0639E-01 | 1.5344E-01 | -1.2191E-01 | 4.8413E-02 | -8.1184E-03 | -9.6358E-05 | 1.3558E-04 |
S7 | 4.4840E-02 | -1.3823E-01 | 8.4290E-02 | -7.0204E-03 | -1.3676E-02 | 7.2489E-03 | -1.7195E-03 | 2.0811E-04 | -1.0486E-05 |
S8 | 1.4195E-01 | -2.5732E-01 | 1.9844E-01 | -9.2144E-02 | 2.8489E-02 | -5.8697E-03 | 7.6623E-04 | -5.6119E-05 | 1.6685E-06 |
S9 | -6.2628E-03 | -4.3319E-02 | 7.9200E-02 | -5.1488E-02 | 1.6731E-02 | -2.6345E-03 | 1.0563E-04 | 2.0193E-05 | -1.9401E-06 |
S10 | -1.0301E-01 | 7.6913E-02 | -1.4736E-02 | -.62377E-03 | 4.2601E-03 | -1.1055E-03 | 1.5453E-04 | -1.1480E-05 | 3.5637E-07 |
表15
参照表14和表15,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.85。第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|=0.04。第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空
气间隔T34之间满足:T34/T23=0.22。第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|=0.36。第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=0.41。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五透镜的中心厚度CT5之间满足:|SAG51/CT5|=1.41。
图10A示出了实施例5的摄远镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图10B示出了实施例5的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的摄远镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图10A至图10D可以看出,根据实施例5的摄远镜头在保证小型化的情况下可获得较好的成像效果。
实施例6
以下参照图11至图12D描述本申请的上述摄远镜头的实施例6。图11示出了根据本申请实施例6的摄远镜头的结构示意图。如图11所示,根据实施例6的摄远镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
下表16中示出了实施例6中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 2.99 | f(mm) | 6.25 |
f2(mm) | -4.80 | TTL(mm) | 5.85 |
f3(mm) | -13.34 | HFOV(deg) | 22.5 |
f4(mm) | 10.60 | ||
f5(mm) | -5.74 |
表16
参照表16,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.94。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=0.48。第二透镜的有效焦距f2与总有效焦距f之间满足f2/f=-0.77。第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f1|+|f/f4|=2.68。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间满足:|f/f3|+|f/f4|=1.06。第五透镜的有效焦距f5与总有效焦距f之间满足:f5/f=-0.92。
表17示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 | 表面类型 | 曲率半径 | 厚度 | 材料 | 圆锥系数 |
OBJ | 球面 | 无穷 | 无穷 | ||
STO | 球面 | 无穷 | -0.3631 | ||
S1 | 非球面 | 1.7931 | 0.6556 | 1.54,56.1 | -1.1740 |
S2 | 非球面 | -15.1351 | 0.3980 | 1.2071 | |
S3 | 非球面 | -5.3479 | 0.2500 | 1.66,20.4 | -25.1690 |
S4 | 非球面 | 7.9543 | 1.3682 | 49.7591 | |
S5 | 非球面 | -2.8995 | 0.2500 | 1.54,56.1 | 1.9793 |
S6 | 非球面 | -4.9749 | 0.2320 | -36.3203 | |
S7 | 非球面 | 8.9721 | 0.4947 | 1.66,20.4 | 12.9660 |
S8 | 非球面 | -31.2288 | 1.1317 | 50.0000 | |
S9 | 非球面 | -2.6142 | 0.4466 | 1.53,55.8 | -1.9610 |
S10 | 非球面 | -18.6384 | 0.3332 | -90.0000 | |
S11 | 球面 | 无穷 | 0.2100 | 1.52,64.2 | |
S12 | 球面 | 无穷 | 0.0800 | ||
S13 | 球面 | 无穷 |
表17
表18示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 2.3514E-02 | 5.7627E-03 | -1.4059E-02 | 3.5504E-02 | -4.8318E-02 | 3.2164E-02 | -6.5424E-03 | -3.2528E-03 | 1.1676E-03 |
S2 | -3.8251E-04 | -1.6315E-04 | 1.3214E-02 | -3.1442E-02 | 2.8708E-02 | -1.0479E-02 | -8.4858E-04 | -2.7094E-04 | 6.8433E-04 |
S3 | -1.3121E-02 | 4.3221E-02 | -1.4804E-02 | -9.8421E-02 | 2.6227E-01 | -3.4333E-01 | 2.6658E-01 | -1.1923E-01 | 2.4728E-02 |
S4 | 6.8308E-03 | 2.9450E-02 | -1.7466E-02 | 2.9591E-02 | -2.1063E-01 | 5.2487E-01 | -6.1595E-01 | 3.5303E-01 | -7.9543E-02 |
S5 | 1.5005E-02 | -1.7186E-02 | -8.0271E-02 | 4.2765E-01 | -7.2747E-01 | 5.6970E-01 | -1.9548E-01 | 5.5837E-03 | 8.8153E-03 |
S6 | 1.8405E-02 | 4.7555E-03 | -1.1668E-01 | 4.4268E-01 | -6.6418E-01 | 5.2683E-01 | -2.3633E-01 | 5.6913E-02 | -5.7277E-03 |
S7 | 1.3558E-02 | -3.1230E-02 | 2.8365E-02 | -1.1653E-02 | 5.5458E-05 | 1.8702E-03 | -7.2643E-04 | 1.1553E-04 | -6.8005E-06 |
S8 | 4.6322E-03 | -1.2526E-02 | 1.9559E-02 | -2.3800E-02 | 1.8476E-02 | -8.6660E-03 | 2.3963E-03 | -3.5825E-04 | 2.2225E-05 |
S9 | -4.6784E-03 | -1.0080E-02 | 2.4290E-02 | -2.0934E-02 | 1.0388E-02 | -3.1280E-03 | 5.5993E-04 | -5.4497E-05 | 2.2124E-06 |
S10 | -3.4661E-02 | -5.7516E-03 | 1.5810E-02 | -1.2372E-02 | 5.2294E-03 | -1.2761E-03 | 1.7687E-04 | -1.2708E-05 | 3.5899E-07 |
表18
参照表17和表18,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.82。第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|=0.20。第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间满足:T34/T23=0.17。第三透镜的物侧面的曲率半径R5与其像
侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|=0.26。第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=0.55。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五透镜的中心厚度CT5之间满足:|SAG51/CT5|=1.40。
图12A示出了实施例6的摄远镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图12B示出了实施例6的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12C示出了实施例6的摄远镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图12D出了实施例6的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图12A至图12D可以看出,根据实施例6的摄远镜头在保证小型化的情况下可获得较好的成像效果。
实施例7
以下参照图13至图14D描述本申请的上述摄远镜头的实施例7。图13示出了根据本申请实施例7的摄远镜头的结构示意图。如图13所示,根据实施例7的摄远镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
下表19中示出了实施例7中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 2.94 | f(mm) | 5.47 |
f2(mm) | -5.80 | TTL(mm) | 5.30 |
f3(mm) | -21.58 | HFOV(deg) | 30.4 |
f4(mm) | 14.04 | ||
f5(mm) | -5.26 |
表19
参照表19,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.97。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=0.54。第二透镜的有效焦距f2与总有效焦距f之间满足f2/f=-1.06。第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f1|+|f/f4|=2.25。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间满足:|f/f3|+|f/f4|=0.64。第五透镜的有效焦距f5与总有效焦距f之间满足:f5/f=-0.96。
表20示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和
圆锥系数。
面号 | 表面类型 | 曲率半径 | 厚度 | 材料 | 圆锥系数 |
OBJ | 球面 | 无穷 | 无穷 | ||
STO | 球面 | 无穷 | -0.4081 | ||
S1 | 非球面 | 1.4419 | 0.6938 | 1.54,56.1 | -0.7910 |
S2 | 非球面 | 12.2102 | 0.0919 | -56.3891 | |
S3 | 非球面 | -118.9937 | 0.4671 | 1.66,20.4 | 99.0000 |
S4 | 非球面 | 3.9645 | 0.3832 | 14.6316 | |
S5 | 非球面 | -5.3778 | 0.3000 | 1.54,56.1 | 30.4184 |
S6 | 非球面 | -10.1188 | 0.8832 | -98.1830 | |
S7 | 非球面 | 8.1052 | 0.4247 | 1.66,20.4 | -99.0000 |
S8 | 非球面 | 62.9589 | 0.7621 | 99.0000 | |
S9 | 非球面 | -4.1598 | 0.3400 | 1.53,55.8 | 1.1238 |
S10 | 非球面 | 8.9023 | 0.0946 | -87.3681 | |
S11 | 球面 | 无穷 | 0.3000 | 1.52,64.2 | |
S12 | 球面 | 无穷 | 0.5594 | ||
S13 | 球面 | 无穷 |
表20
表21示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.5667E-02 | -7.1267E-03 | 1.0421E-01 | -3.4511E-01 | 7.2338E-01 | -9.2824E-01 | 6.9193E-01 | -2.6488E-01 | 3.4269E-02 |
S2 | -3.9772E-02 | 6.6538E-02 | -1.7119E-01 | 6.6295E-01 | -1.8564E+00 | 3.1400E+00 | -3.1869E+00 | 1.7610E+00 | -4.0828E-01 |
S3 | -3.5430E-02 | 3.6815E-02 | 2.9831E-01 | -1.2797E+00 | 2.9474E+00 | -4.2993E+00 | 3.9065E+00 | -2.0440E+00 | 4.7515E-01 |
S4 | -3.5487E-02 | 1.9389E-01 | -8.2921E-01 | 3.2275E+00 | -7.7418E+00 | 1.1194E+01 | -9.2278E+00 | 3.9217E+00 | -6.6290E-01 |
S5 | -1.7290E-01 | 4.8059E-02 | 1.3466E-01 | -3.9242E-01 | 9.8162E-01 | -1.3361E+00 | 8.8481E-01 | -2.7730E-01 | 3.3340E-02 |
S6 | -1.4636E-01 | 3.2602E-02 | 2.5838E-01 | -7.8846E-01 | 1.5223E+00 | -1.7421E+00 | 1.1529E+00 | -4.1262E-01 | 6.1697E-02 |
S7 | 3.6147E-02 | -1.0645E-01 | 3.6121E-02 | 2.7554E-02 | -4.3868E-02 | 2.6375E-02 | -8.1048E-03 | 1.2426E-03 | -7.5190E-05 |
S8 | 7.9114E-02 | -1.1132E-01 | 2.1290E-02 | 2.9184E-02 | -2.6901E-02 | 1.0468E-02 | -2.0533E-03 | 1.8743E-04 | -5.5609E-06 |
S9 | 3.8777E-02 | 1.4323E-02 | -7.1684E-02 | 4.9947E-02 | -1.7242E-02 | 3.4976E-03 | -4.2236E-04 | 2.7954E-05 | -7.7690E-07 |
S10 | -3.1262E-02 | 3.6458E-02 | -4.5704E-02 | 2.2408E-02 | -5.7277E-03 | 8.3467E-04 | -6.9743E-05 | 3.1176E-06 | -5.7920E-08 |
表21
参照表20和表21,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.99。第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|=0.94。第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间满足:T34/T23=2.30。第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|=0.31。第四透镜的物侧面的
曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=1.30。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五透镜的中心厚度CT5之间满足:|SAG51/CT5|=2.36。
图14A示出了实施例7的摄远镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图14B示出了实施例7的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图14C示出了实施例7的摄远镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图14D出了实施例7的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图14A至图14D可以看出,根据实施例7的摄远镜头在保证小型化的情况下可获得较好的成像效果。
实施例8
以下参照图15至图16D描述本申请的上述摄远镜头的实施例8。图15示出了根据本申请实施例8的摄远镜头的结构示意图。如图15所示,根据实施例8的摄远镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
下表22中示出了实施例8中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 2.87 | f(mm) | 5.58 |
f2(mm) | -4.89 | TTL(mm) | 5.30 |
f3(mm) | -15.23 | HFOV(deg) | 30.0 |
f4(mm) | 9.56 | ||
f5(mm) | -5.20 |
表22
参照表22,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.95。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=0.51。第二透镜的有效焦距f2与总有效焦距f之间满足f2/f=-0.88。第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f1|+|f/f4|=2.53。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间满足:|f/f3|+|f/f4|=0.95。第五透镜的有效焦距f5与总有效焦距f之间满足:f5/f=-0.93。
表23示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 | 表面类型 | 曲率半径 | 厚度 | 材料 | 圆锥系数 |
OBJ | 球面 | 无穷 | 无穷 | ||
STO | 球面 | 无穷 | -0.4412 | ||
S1 | 非球面 | 1.4414 | 0.7093 | 1.53,55.8 | -0.0920 |
S2 | 非球面 | 19.5128 | 0.0500 | 99.0000 | |
S3 | 非球面 | 7.9558 | 0.2800 | 1.66,20.4 | 57.4815 |
S4 | 非球面 | 2.2670 | 0.2859 | 2.4224 | |
S5 | 非球面 | -8.1432 | 0.3001 | 1.54,56.1 | 95.2175 |
S6 | 非球面 | -474.0306 | 0.2157 | 99.0000 | |
S7 | 非球面 | -57.4786 | 0.3588 | 1.66,20.4 | -92.1367 |
S8 | 非球面 | -5.7043 | 1.6601 | -42.0904 | |
S9 | 非球面 | -19.1640 | 0.3508 | 1.53,55.8 | -97.6296 |
S10 | 非球面 | 3.2708 | 0.2090 | -80.4796 | |
S11 | 球面 | 无穷 | 0.3000 | 1.52,64.2 | |
S12 | 球面 | 无穷 | 0.5803 | ||
S13 | 球面 | 无穷 |
表23
表24示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.0003E-02 | -5.0704E-02 | 2.7629E-01 | -8.6660E-01 | 1.7124E+00 | -2.1460E+00 | 1.6504E+00 | -7.0994E-01 | 1.3017E-01 |
S2 | -2.9055E-03 | 1.5504E-05 | 4.5049E-08 | -7.5311E-10 | 2.3565E-12 | 1.3325E-12 | -1.3360E-12 | 7.3521E-13 | -1.7156E-13 |
S3 | -4.1279E-16 | 1.1369E-14 | -1.3292E-13 | 8.3192E-13 | -3.0014E-12 | 6.4184E-12 | -8.0252E-12 | 5.4168E-12 | -1.5235E-12 |
S4 | 3.2203E-02 | 2.2079E-02 | 1.4962E-01 | -9.6688E-01 | 4.9536E+00 | -1.5847E+01 | 3.0896E+01 | -3.3089E+01 | 1.5066E+01 |
S5 | -3.0244E-02 | -3.5057E-01 | 4.2681E+00 | -2.5321E+01 | 9.4802E+01 | -2.2691E+02 | 3.3724E+02 | -2.8368E+02 | 1.0360E+02 |
S6 | -9.1115E-02 | 9.6391E-02 | 5.6193E-02 | -1.9102E-01 | 1.5654E-01 | -6.4123E-02 | 1.4466E-02 | -1.7202E-03 | 8.4511E-05 |
S7 | -2.6323E-02 | 6.6878E-02 | 3.6467E-02 | -5.9248E-02 | 1.8145E-02 | 3.4955E-03 | -3.1447E-03 | 6.5242E-04 | -4.5609E-05 |
S8 | -1.7696E-02 | 5.2228E-02 | -1.4807E-03 | -2.8043E-03 | 9.2868E-03 | -1.1022E-02 | 4.0795E-03 | -5.3139E-04 | 1.2636E-05 |
S9 | -2.4835E-01 | 2.5881E-01 | -2.4785E-01 | 1.6061E-01 | -6.6086E-02 | 1.6999E-02 | -2.6135E-03 | 2.1701E-04 | -7.4342E-06 |
S10 | -8.5172E-02 | 4.1801E-02 | -2.5205E-02 | 1.0347E-02 | -2.5809E-03 | 3.7540E-04 | -3.0270E-05 | 1.2469E-06 | -2.0240E-08 |
表24
参照表23和表24,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.87。第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|=1.80。第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间满足:T34/T23=0.75。第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|=0.97。第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=1.22。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五透镜的中心厚度CT5之间满足:|SAG51/CT5|=2.18。
图16A示出了实施例8的摄远镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图16B示出了实施例8的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图16C示出了实施例8的像镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图16D出了实施例8的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图16A至图16D可以看出,根据实施例8的摄远镜头在保证小型化的情况下可获得较好的成像效果。
实施例9
以下参照图17至图18D描述本申请的上述摄远镜头的实施例9。图17示出了根据本申请实施例9的摄远镜头的结构示意图。如图17所示,根据实施例9的摄远镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
下表25中示出了实施例9中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 3.02 | f(mm) | 5.48 |
f2(mm) | -6.00 | TTL(mm) | 5.30 |
f3(mm) | -20.04 | HFOV(deg) | 30.3 |
f4(mm) | 9.26 | ||
f5(mm) | -4.70 |
表25
参照表25,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.97。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=0.55。第二透镜的有效焦距f2与总有效焦距f之间满足f2/f=-1.09。第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f1|+|f/f4|=2.40。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间满足:|f/f3|+|f/f4|=0.87。第五透镜的有效焦距f5与总有效焦距f之间满足:f5/f=-0.86。
表26示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
面号 | 表面类型 | 曲率半径 | 厚度 | 材料 | 圆锥系数 |
OBJ | 球面 | 无穷 | 无穷 | ||
STO | 球面 | 无穷 | -0.4066 | ||
S1 | 非球面 | 1.4425 | 0.6856 | 1.54,56.1 | -0.8383 |
S2 | 非球面 | 9.7319 | 0.1478 | -91.1481 | |
S3 | 非球面 | 74.3832 | 0.3923 | 1.66,20.4 | -99.0000 |
S4 | 非球面 | 3.7537 | 0.3808 | 14.4813 | |
S5 | 非球面 | 31.6813 | 0.3000 | 1.54,56.1 | 99.0000 |
S6 | 非球面 | 8.0855 | 0.7581 | 22.1609 | |
S7 | 非球面 | -66.5794 | 0.5092 | 1.66,20.4 | -83.7435 |
S8 | 非球面 | -5.6190 | 0.7505 | 2.9479 | |
S9 | 非球面 | -2.9707 | 0.3913 | 1.53,55.8 | -1.7406 |
S10 | 非球面 | 16.8960 | 0.6113 | -98.8658 | |
S11 | 球面 | 无穷 | 0.3000 | 1.52,64.2 | |
S12 | 球面 | 无穷 | 0.0732 | ||
S13 | 球面 | 无穷 |
表26
表27示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.7314E-02 | -1.8203E-02 | 1.5212E-01 | -4.7778E-01 | 9.5806E-01 | -1.2037E+00 | 9.0959E-01 | -3.7244E-01 | 5.9904E-02 |
S2 | -4.8623E-02 | 1.2615E-01 | -4.8862E-01 | 1.8898E+00 | -4.8763E+00 | 7.8694E+00 | -7.7513E+00 | 4.2428E+00 | -9.8957E-01 |
S3 | -8.3231E-02 | 1.8491E-01 | -1.3983E-01 | 1.0563E-01 | -1.6399E-01 | 1.5638E-01 | -7.4585E-02 | 1.7455E-02 | -1.6176E-03 |
S4 | -8.8211E-02 | 3.0073E-01 | -8.6038E-01 | 3.2209E+00 | -8.2647E+00 | 1.3002E+01 | -1.1922E+01 | 5.7392E+00 | -1.1098E+00 |
S5 | -2.3516E-01 | 1.0942E-01 | 1.7400E-01 | -4.8054E-01 | 7.2018E-01 | -3.0515E-01 | -7.6645E-01 | 9.6365E-01 | -3.1033E-01 |
S6 | -1.7056E-01 | 7.6214E-03 | 4.9682E-01 | -1.3551E+00 | 2.2644E+00 | -2.3261E+00 | 1.3855E+00 | -4.3753E-01 | 5.6712E-02 |
S7 | 4.4512E-02 | -2.4763E-01 | 3.4808E-01 | -3.4832E-01 | 2.1551E-01 | -7.5485E-02 | 1.3483E-02 | -8.8092E-04 | -1.6593E-05 |
S8 | 1.2254E-01 | -2.2984E-01 | 2.0950E-01 | -1.3498E-01 | 5.6683E-02 | -1.4625E-02 | 2.2257E-03 | -1.8315E-04 | 6.2788E-06 |
S9 | 1.7592E-01 | -2.4216E-01 | 1.5954E-01 | -6.5938E-02 | 1.8207E-02 | -3.3948E-03 | 4.2040E-04 | -3.1876E-05 | 1.1266E-06 |
S10 | 6.4177E-02 | -1.0640E-01 | 5.9649E-02 | -2.1391E-02 | 5.4456E-03 | -9.7364E-04 | 1.1294E-04 | -7.4432E-06 | 2.0866E-07 |
表27
参照表26和表27,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.91。第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|=1.11。第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间满足:T34/T23=1.99。第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|=0.59。第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=1.18。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五
透镜的中心厚度CT5之间满足:|SAG51/CT5|=1.95。
图18A示出了实施例9的摄远镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图18B示出了实施例9的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图18C示出了实施例9的镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图18D出了实施例9的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图18A至图18D可以看出,根据实施例9的摄远镜头在保证小型化的情况下可获得较好的成像效果。
实施例10
以下参照图19至图20D描述本申请的上述摄远镜头的实施例10。图19示出了根据本申请实施例10的摄远镜头的结构示意图。如图19所示,根据实施例10的摄远镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
下表28中示出了实施例10中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 3.10 | f(mm) | 5.48 |
f2(mm) | -6.46 | TTL(mm) | 5.30 |
f3(mm) | -28.05 | HFOV(deg) | 30.5 |
f4(mm) | 11.30 | ||
f5(mm) | -4.78 |
表28
参照表28,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.97。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=0.57。第二透镜的有效焦距f2与总有效焦距f之间满足f2/f=-1.18。第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f1|+|f/f4|=2.25。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间满足:|f/f3|+|f/f4|=0.68。第五透镜的有效焦距f5与总有效焦距f之间满足:f5/f=-0.87。
表29示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
表29
表30示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.4234E-02 | -7.5675E-03 | 7.0352E-02 | -1.8378E-01 | 2.8078E-01 | -2.2909E-01 | 5.8475E-02 | 3.9270E-02 | -2.4833E-02 |
S2 | -6.2595E-02 | 1.4568E-01 | -3.0635E-01 | 9.0612E-01 | -2.1126E+00 | 3.1754E+00 | -2.9842E+00 | 1.5643E+00 | -3.4978E-01 |
S3 | -8.8106E-02 | 1.5201E-01 | 3.3518E-01 | -2.2085E+00 | 6.5782E+00 | -1.2103E+01 | 1.3555E+01 | -8.4823E+00 | 2.2696E+00 |
S4 | -6.4876E-02 | 3.0923E-01 | -1.5039E+00 | 8.0845E+00 | -2.8421E+01 | 6.3165E+01 | -8.5845E+01 | 6.5136E+01 | -2.1149E+01 |
S5 | -1.9985E-01 | 5.8095E-02 | 3.0557E-01 | -1.3161E+00 | 3.4704E+00 | -5.6475E+00 | 5.5799E+00 | -3.0810E+00 | 7.1791E-01 |
S6 | -1.6933E-01 | 1.2908E-01 | -1.4209E-01 | 3.1293E-01 | -3.5151E-01 | 1.6908E-01 | 4.7863E-02 | -9.0517E-02 | 2.7647E-02 |
S7 | 2.9143E-02 | -2.4044E-01 | 3.9894E-01 | -5.0268E-01 | 4.2623E-01 | -2.4656E-01 | 9.4970E-02 | -2.1491E-02 | 2.1083E-03 |
S8 | 1.0728E-01 | -2.6257E-01 | 3.3966E-01 | -3.3784E-01 | 2.3188E-01 | -1.0601E-01 | 3.0600E-02 | -4.9711E-03 | 3.4254E-04 |
S9 | 1.2589E-01 | -1.9171E-01 | 1.4337E-01 | -5.9315E-02 | 1.1250E-02 | 3.4272E-04 | -5.3090E-04 | 8.4338E-05 | -4.4078E-06 |
S10 | 1.6588E-02 | -7.6615E-02 | 5.4990E-02 | -2.4025E-02 | 7.2481E-03 | -1.4823E-03 | 1.8875E-04 | -1.3074E-05 | 3.6655E-07 |
表30
参照表29和表30,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.87。第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|=1.45。第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间满足:T34/T23=1.47。第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|=0.30。第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=0.15。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五
透镜的中心厚度CT5之间满足:|SAG51/CT5|=2.29。
图20A示出了实施例10的摄远镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图20B示出了实施例10的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图20C示出了实施例10的镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图20D出了实施例10的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图20A至图20D可以看出,根据实施例10的摄远镜头在保证小型化的情况下可获得较好的成像效果。
实施例11
以下参照图21至图22D描述本申请的上述摄远镜头的实施例11。图21示出了根据本申请实施例11的摄远镜头的结构示意图。如图21所示,根据实施例11的摄远镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
下表31中示出了实施例11中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 2.55 | f(mm) | 5.48 |
f2(mm) | -4.32 | TTL(mm) | 5.30 |
f3(mm) | -12.24 | HFOV(deg) | 30.5 |
f4(mm) | 9.78 | ||
f5(mm) | -6.89 |
表31
参照表31,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.97。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=0.46。第二透镜的有效焦距f2与总有效焦距f之间满足f2/f=-0.79。第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f1|+|f/f4|=2.70。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间满足:|f/f3|+|f/f4|=1.01。第五透镜的有效焦距f5与总有效焦距f之间满足:f5/f=-1.26。
表32示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
表32
表33示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 1.2911E-01 | -5.9438E-02 | 1.6660E-01 | -4.1760E-01 | 7.1328E-01 | -7.8836E-01 | 5.3547E-01 | -2.0529E-01 | 3.3166E-02 |
S2 | -5.1185E-02 | 1.9358E-01 | -4.4416E-01 | 9.9648E-01 | -1.9684E+00 | 2.6896E+00 | -2.2755E+00 | 1.0628E+00 | -2.0909E-01 |
S3 | -3.0560E-02 | 2.4078E-01 | -4.2070E-01 | 8.1999E-01 | -1.6381E+00 | 2.4819E+00 | -2.2428E+00 | 1.0271E+00 | -1.6712E-01 |
S4 | 5.0441E-02 | 4.2170E-01 | -3.6559E+00 | 2.6731E+01 | -1.2182E+02 | 3.4812E+02 | -6.0449E+02 | 5.8389E+02 | -2.4034E+02 |
S5 | -1.6551E-01 | -1.0512E-01 | 8.9081E-01 | -3.1042E+00 | 6.4687E+00 | -8.3787E+00 | 6.4704E+00 | -2.6131E+00 | 3.8786E-01 |
S6 | -1.7268E-01 | 1.4538E-01 | -3.3707E-01 | 8.2573E-01 | -1.3023E+00 | 1.3146E+00 | -8.2091E-01 | 2.8891E-01 | -4.3804E-02 |
S7 | -6.8557E-02 | -3.7392E-02 | -5.7873E-02 | 2.2563E-01 | -3.5860E-01 | 3.1297E-01 | -1.5125E-01 | 3.7982E-02 | -3.8674E-03 |
S8 | 4.1119E-02 | -1.4345E-01 | 1.0173E-01 | -3.1967E-02 | -1.3923E-02 | 1.8192E-02 | -7.2042E-03 | 1.2989E-03 | -9.0479E-05 |
S9 | 1.0157E-01 | -1.6071E-01 | 1.4222E-01 | -8.6329E-02 | 3.6105E-02 | -9.7374E-03 | 1.5949E-03 | -1.4400E-04 | 5.4986E-06 |
S10 | -2.7264E-02 | -.14647E-02 | 1.4419E-02 | -5.5324E-03 | 1.3371E-03 | -2.9248E-04 | 5.4663E-05 | -5.9764E-06 | 2.5970E-07 |
表33
参照表32和表33,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.95。第二透镜的物侧面的曲率半径R3与其像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|=1.13。第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间满足:T34/T23=0.82。第三透镜的物侧面的曲率半径R5与其像侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|=0.96。第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=0.01。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五
透镜的中心厚度CT5之间满足:|SAG51/CT5|=2.61。
图22A示出了实施例11的摄远镜头的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图22B示出了实施例11的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图22C示出了实施例11的镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图22D出了实施例11的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图22A至图22D可以看出,根据实施例11的摄远镜头在保证小型化的情况下可获得较好的成像效果。
实施例12
以下参照图23至图24D描述本申请的上述摄远镜头的实施例12。图23示出了根据本申请实施例12的摄远镜头的结构示意图。如图23所示,根据实施例12的摄远镜头包括分别具有物侧面和像侧面的第一至第五透镜E1-E5。
下表34中示出了实施例12中的各透镜的有效焦距f1至f5、摄远镜头的总有效焦距f、摄像透镜的总长度TTL以及摄远镜头的最大视场角的一半HFOV。
f1(mm) | 5.49 | f(mm) | 5.50 |
f2(mm) | -25.72 | TTL(mm) | 5.41 |
f3(mm) | 14.07 | HFOV(deg) | 30.6 |
f4(mm) | 33.94 | ||
f5(mm) | -5.53 |
表34
参照表34,第一透镜的物侧面至成像面的轴上距离TTL与摄远镜头的总有效焦距f之间满足:TTL/f=0.99。第一透镜的有效焦距f1与总有效焦距f之间满足:f1/f=1.00。第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f1|+|f/f4|=1.16。第三透镜的有效焦距f3、第四透镜的有效焦距f4与总有效焦距f之间满足:|f/f3|+|f/f4|=0.55。第五透镜的有效焦距f5与总有效焦距f之间满足:f5/f=-1.01。
表35示出了该实施例中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
表35
表36示出了可用于该实施例中的各非球面透镜的各非球面S1-S10的高次项系数A4、A6、A8、A10、A12和A14。
面号 | A4 | A6 | A8 | A10 | A12 | A14 | A16 | A18 | A20 |
S1 | 3.7271E-02 | -4.0603E-02 | 2.5385E-01 | -8.5112E-01 | 1.7080E+00 | -2.1552E+00 | 1.6583E+00 | -7.1863E-01 | 1.3207E-01 |
S2 | -1.6676E-02 | -3.3338E-01 | 1.4465E+00 | -2.8976E+00 | 4.0016E+00 | -4.1972E+00 | 2.7354E+00 | -8.5092E-01 | 7.0874E-02 |
S3 | -2.3466E-01 | 3.2674E-01 | 2.5865E-01 | -2.4376E-01 | -1.6970E+00 | 4.5855E+00 | -5.7182E+00 | 3.6602E+00 | -9.4364E-01 |
S4 | -1.3709E-01 | 1.9443E-01 | 1.2664E-01 | 6.3669E-01 | -7.3491E+00 | 2.3771E+01 | -4.0440E+01 | 3.6358E+01 | -1.3973E+01 |
S5 | -7.4348E-02 | -1.8941E-02 | 3.1843E-01 | -1.1645E+00 | 2.7933E+00 | -4.2603E+00 | 3.9352E+00 | -2.0060E+00 | 4.2471E-01 |
S6 | -4.5474E-02 | -1.7859E-02 | 2.5219E-01 | -8.9476E-01 | 2.0607E+00 | -2.9705E+00 | 2.6088E+00 | -1.2790E+00 | 2.6881E-01 |
S7 | -1.5765E-02 | -1.2026E-01 | 2.4780E-01 | -3.5357E-01 | 3.3231E-01 | -2.0049E-01 | 7.4317E-02 | -1.5314E-02 | 1.3348E-03 |
S8 | 2.9389E-02 | -1.4468E-01 | 1.8006E-01 | -1.5822E-01 | 9.7114E-02 | -3.9658E-02 | 1.0148E-02 | -1.4628E-03 | 9.0259E-05 |
S9 | 1.7048E-01 | -2.6574E-01 | 1.4029E-01 | -1.8838E-03 | -3.2712E-02 | 1.7283E-02 | -4.3416E-03 | 5.5993E-04 | -2.9646E-05 |
S10 | 1.3546E-01 | -2.0114E-01 | 1.2716E-01 | -4.6557E-02 | 1.0716E-02 | -1.5824E-03 | 1.4610E-04 | -7.7577E-06 | 1.8488E-07 |
表36
参照表35和表36,第一透镜的中心厚度CT1、第二透镜的中心厚度CT2、第三透镜的中心厚度CT3、第四透镜的中心厚度CT4以及第五透镜的中心厚度CT5之间满足(CT2+CT3+CT5)/(CT1+CT4)=0.83。第二透镜和第三透镜之间的轴上空气间隔T23与第三透镜和第四透镜之间的轴上空气间隔T34之间满足:T34/T23=2.19。第四透镜的物侧面的曲率半径R7与其像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|=0.01。
在该实施例中,第五透镜的物侧面在最大有效径处的矢高SAG51与第五透镜的中心厚度CT5之间满足:|SAG51/CT5|=0.97。
图24A示出了实施例12的摄远镜头的轴上色差曲线,其表示不同波长的
光线经由光学系统后的会聚焦点偏离。图24B示出了实施例12的摄远镜头的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图24C示出了实施例12的镜头的畸变曲线,其表示不同视角情况下的畸变大小值。图24D出了实施例12的摄远镜头的倍率色差曲线,其表示光线经由摄远镜头后在成像面上的不同的像高的偏差。综上所述并参照图24A至图24D可以看出,根据实施例12的摄远镜头在保证小型化的情况下可获得较好的成像效果。
本申请还提出了一种摄像装置,其感光元件可以是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)。摄像装置可以是诸如数码相机的独立摄像设备,也可以是集成在诸如手机等移动电子设备上的摄像模块。该摄像装置装配有如上各实施例所述的摄远镜头。
以上参照附图对本申请的示例性实施例进行了描述。本领域技术人员应该理解,上述实施例仅是为了说明的目的而所举的示例,而不是用来限制本申请的范围。凡在本申请的教导和权利要求保护范围下所作的任何修改、等同替换等,均应包含在本申请要求保护的范围内。
Claims (19)
- 摄远镜头,所述摄远镜头沿着光轴从物侧至像侧依次设置有第一透镜、第二透镜、第三透镜、第四透镜和至少一个后续透镜,其特征在于,所述第一透镜具有正光焦度,其物侧面为凸面,并且所述第一透镜的物侧面至成像面的轴上距离TTL与所述摄远镜头的总有效焦距f之间满足:TTL/f≤1.0,以及所述第四透镜具有正光焦度,以及所述第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:1<|f/f1|+|f/f4|≤2.7。
- 根据权利要求1所述的摄远镜头,其中,所述第一透镜的有效焦距f1与所述总有效焦距f之间满足:0.45<f1/f≤1.0。
- 根据权利要求1所述的摄远镜头,其中,所述第二透镜具有负光焦度,其像侧面为凹面,所述第二透镜的有效焦距f2与所述总有效焦距f之间满足:-1.5<f2/f<-0.7。
- 根据权利要求1所述的摄远镜头,其中,所述第三透镜的有效焦距f3、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f3|+|f/f4|<1.5。
- 根据权利要求1所述的摄远镜头,其中,所述第三透镜的物侧面的曲率半径R5与所述第三透镜的像侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|≤1。
- 根据权利要求1所述的摄远镜头,其中,所述至少一个后续透镜包括第五透镜,所述第五透镜具有负光焦度,其物侧面为凹面。
- 摄远镜头,所述摄远镜头沿着光轴从物侧至像侧依次包括第一透镜、第 二透镜、第三透镜以及多个后续透镜,其特征在于,所述第一透镜的物侧面至成像面的轴上距离TTL与所述摄远镜头的总有效焦距f之间满足:TTL/f≤1.0,以及所述第三透镜的物侧面的曲率半径R5与所述第三透镜的像侧面的曲率半径R6之间满足:|(R5-R6)/(R5+R6)|≤1。
- 如权利要求7所述的摄远镜头,其中,所述第一透镜具有正光焦度,其物侧面为凸面,所述第一透镜的有效焦距f1与所述总有效焦距f之间满足:0.45<f1/f≤1.0。
- 如权利要求7所述的摄远镜头,其中,所述第二透镜具有负光焦度,以及所述第二透镜的像侧面为凹面,所述第二透镜的有效焦距f2与所述总有效焦距f之间满足:-1.5<f2/f<-0.7。
- 根据权利要求7所述的摄远镜头,其中,所述多个后续透镜包括第四透镜,所述第四透镜具有正光焦度,所述第三透镜的有效焦距f3、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:|f/f3|+|f/f4|<1.5。
- 根据权利要求10所述的摄远镜头,其中,所述第一透镜的有效焦距f1、所述第四透镜的有效焦距f4与所述总有效焦距f之间满足:1<|f/f1|+|f/f4|≤2.7。
- 根据权利要求10所述的摄远镜头,其中,所述多个后续透镜还包括第五透镜,所述第五透镜具有负光焦度,其物侧面为凹面。
- 根据权利要求1或7所述的摄远镜头,其中,所述第二透镜的物侧面的曲率半径R3与所述第二透镜的像侧面的曲率半径R4之间满足:|(R3+R4)/(R3-R4)|≤2。
- 根据权利要求1或10所述的摄远镜头,其中,所述第四透镜的物侧面的曲率半径R7与所述第四透镜的像侧面的曲率半径R8之间满足:|(R7+R8)/(R7-R8)|≤2。
- 根据权利要求1或10所述的摄远镜头,其中,所述第二透镜和所述第三透镜之间的轴上空气间隔T23与所述第三透镜和所述第四透镜之间的轴上空气间隔T34之间满足:T34/T23<2.5。
- 根据权利要求6或12所述的摄远镜头,其中,所述第五透镜的物侧面在最大有效径处的矢高SAG51与所述第五透镜的中心厚度CT5之间满足:|SAG51/CT5|<4.0。
- 根据权利要求6或12所述的摄远镜头,其中,所述第五透镜的有效焦距f5与所述总有效焦距f之间满足:-1.5<f5/f<-0.5。
- 根据权利要求6或12所述的摄远镜头,其中,所述第一透镜的中心厚度CT1、所述第二透镜的中心厚度CT2、所述第三透镜的中心厚度CT3、所述第四透镜的中心厚度CT4以及所述第五透镜的中心厚度CT5之间满足:0.5<(CT2+CT3+CT5)/(CT1+CT4)<1.0。
- 一种摄像装置,包括如权利要求1至18中任一项所述的摄远镜头。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/766,515 US11175482B2 (en) | 2017-01-04 | 2017-05-17 | Telephoto lens assembly and camera device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710004228.1 | 2017-01-04 | ||
CN201710004228.1A CN106646829B (zh) | 2017-01-04 | 2017-01-04 | 摄远镜头以及摄像装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018126587A1 true WO2018126587A1 (zh) | 2018-07-12 |
Family
ID=58844212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/084659 WO2018126587A1 (zh) | 2017-01-04 | 2017-05-17 | 摄远镜头以及摄像装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11175482B2 (zh) |
CN (1) | CN106646829B (zh) |
WO (1) | WO2018126587A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10578838B2 (en) | 2017-08-30 | 2020-03-03 | Largan Precision Co., Ltd. | Imaging lens system, image capturing unit and electronic device |
US10852514B2 (en) | 2018-09-26 | 2020-12-01 | Largan Precision Co., Ltd. | Photographing optical system, image capturing unit and electronic device |
US11487089B2 (en) | 2020-01-16 | 2022-11-01 | Largan Precision Co., Ltd. | Image capturing optical lens assembly including five lenses of +−++− or +−−+− refractive powers, imaging apparatus and electronic device |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106646829B (zh) * | 2017-01-04 | 2018-08-14 | 浙江舜宇光学有限公司 | 摄远镜头以及摄像装置 |
CN114911037B (zh) * | 2017-05-12 | 2024-01-16 | 浙江舜宇光学有限公司 | 成像镜头 |
US11372208B2 (en) | 2017-05-27 | 2022-06-28 | Zhejiang Sunny Optical Co., Ltd | Imaging lens assembly |
US11493734B2 (en) | 2017-06-13 | 2022-11-08 | Zhejiang Sunny Optical Co., Ltd | Camera lens assembly including five lenses of +−++− or +−−+− refractive powers |
WO2019019530A1 (zh) | 2017-07-25 | 2019-01-31 | 浙江舜宇光学有限公司 | 光学成像镜头 |
TWI619984B (zh) | 2017-08-15 | 2018-04-01 | 大立光電股份有限公司 | 影像系統鏡頭組、取像裝置及電子裝置 |
CN107608053B (zh) * | 2017-08-30 | 2020-02-21 | 华为技术有限公司 | 一种透镜系统、图像拍摄装置和设备 |
CN107831630B (zh) * | 2017-12-15 | 2023-12-29 | 浙江舜宇光学有限公司 | 投影镜头 |
TWI644140B (zh) | 2018-05-11 | 2018-12-11 | 大立光電股份有限公司 | 成像光學鏡片組、取像裝置及電子裝置 |
CN111221098B (zh) * | 2018-11-23 | 2023-01-13 | 南昌欧菲光电技术有限公司 | 长焦镜头、相机模组和电子装置 |
CN110596859B (zh) * | 2019-08-19 | 2021-04-23 | 诚瑞光学(常州)股份有限公司 | 摄像光学镜头 |
CN111221111B (zh) * | 2020-03-19 | 2022-03-22 | 惠州市星聚宇光学有限公司 | 一种红外镜头 |
TWI771811B (zh) | 2020-09-18 | 2022-07-21 | 大立光電股份有限公司 | 電子裝置 |
CN112230380B (zh) * | 2020-10-30 | 2021-10-01 | 诚瑞光学(苏州)有限公司 | 摄像光学镜头 |
CN114114636B (zh) * | 2021-12-13 | 2024-08-16 | 浙江舜宇光学有限公司 | 光学镜片组 |
CN114637096B (zh) * | 2022-03-11 | 2024-06-14 | 浙江舜宇光学有限公司 | 摄像透镜组 |
CN118884660A (zh) * | 2024-07-23 | 2024-11-01 | 中国科学院上海技术物理研究所 | 中波红外光谱成像镜头 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7852572B2 (en) * | 2007-06-25 | 2010-12-14 | Ricoh Co., Ltd. | Compact super wide-angle imaging system |
CN106154515A (zh) * | 2016-03-18 | 2016-11-23 | 玉晶光电(厦门)有限公司 | 光学镜片组 |
CN205910403U (zh) * | 2016-07-27 | 2017-01-25 | 今国光学工业股份有限公司 | 微小型望远镜头 |
CN106569314A (zh) * | 2015-10-13 | 2017-04-19 | 三星电机株式会社 | 光学成像系统 |
CN106569322A (zh) * | 2015-10-13 | 2017-04-19 | 三星电机株式会社 | 光学成像系统 |
CN106646829A (zh) * | 2017-01-04 | 2017-05-10 | 浙江舜宇光学有限公司 | 摄远镜头以及摄像装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101964297B1 (ko) | 2012-02-16 | 2019-04-01 | 엘지이노텍 주식회사 | 촬상 렌즈 |
EP4379443A3 (en) * | 2013-07-04 | 2024-09-04 | Corephotonics Ltd. | Miniature telephoto lens assembly |
TWI537631B (zh) | 2014-10-20 | 2016-06-11 | 大立光電股份有限公司 | 成像透鏡系統、取像裝置以及電子裝置 |
TWI548893B (zh) * | 2014-11-12 | 2016-09-11 | 大立光電股份有限公司 | 攝影用光學鏡組、取像裝置及電子裝置 |
TWI522646B (zh) * | 2015-04-29 | 2016-02-21 | 大立光電股份有限公司 | 成像鏡片系統、取像裝置及電子裝置 |
JP5807137B1 (ja) | 2015-07-24 | 2015-11-10 | エーエーシーアコースティックテクノロジーズ(シンセン)カンパニーリミテッドAAC Acoustic Technologies(Shenzhen)Co.,Ltd | 撮像レンズ |
JP6239040B1 (ja) * | 2016-06-01 | 2017-11-29 | キヤノン株式会社 | レンズ装置及びそれを有する撮像装置 |
US10802251B2 (en) * | 2016-08-23 | 2020-10-13 | Largan Precision Co., Ltd. | Photographing optical lens assembly, image capturing apparatus and electronic device |
KR102776263B1 (ko) * | 2016-12-28 | 2025-03-07 | 삼성전기주식회사 | 촬상 광학계 |
KR101901701B1 (ko) * | 2016-12-28 | 2018-09-27 | 삼성전기 주식회사 | 촬상 광학계 |
JP6534162B2 (ja) * | 2017-04-14 | 2019-06-26 | カンタツ株式会社 | 撮像レンズ |
-
2017
- 2017-01-04 CN CN201710004228.1A patent/CN106646829B/zh active Active
- 2017-05-17 US US15/766,515 patent/US11175482B2/en active Active
- 2017-05-17 WO PCT/CN2017/084659 patent/WO2018126587A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7852572B2 (en) * | 2007-06-25 | 2010-12-14 | Ricoh Co., Ltd. | Compact super wide-angle imaging system |
CN106569314A (zh) * | 2015-10-13 | 2017-04-19 | 三星电机株式会社 | 光学成像系统 |
CN106569322A (zh) * | 2015-10-13 | 2017-04-19 | 三星电机株式会社 | 光学成像系统 |
CN106154515A (zh) * | 2016-03-18 | 2016-11-23 | 玉晶光电(厦门)有限公司 | 光学镜片组 |
CN205910403U (zh) * | 2016-07-27 | 2017-01-25 | 今国光学工业股份有限公司 | 微小型望远镜头 |
CN106646829A (zh) * | 2017-01-04 | 2017-05-10 | 浙江舜宇光学有限公司 | 摄远镜头以及摄像装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10578838B2 (en) | 2017-08-30 | 2020-03-03 | Largan Precision Co., Ltd. | Imaging lens system, image capturing unit and electronic device |
US10852514B2 (en) | 2018-09-26 | 2020-12-01 | Largan Precision Co., Ltd. | Photographing optical system, image capturing unit and electronic device |
US11487089B2 (en) | 2020-01-16 | 2022-11-01 | Largan Precision Co., Ltd. | Image capturing optical lens assembly including five lenses of +−++− or +−−+− refractive powers, imaging apparatus and electronic device |
Also Published As
Publication number | Publication date |
---|---|
CN106646829A (zh) | 2017-05-10 |
CN106646829B (zh) | 2018-08-14 |
US20200241247A1 (en) | 2020-07-30 |
US11175482B2 (en) | 2021-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018126587A1 (zh) | 摄远镜头以及摄像装置 | |
CN106338815B (zh) | 摄像镜头及装配有该摄像镜头的摄像装置 | |
WO2019192180A1 (zh) | 光学成像镜头 | |
WO2019134602A1 (zh) | 光学成像镜头 | |
WO2019169853A1 (zh) | 光学成像镜头 | |
WO2019100868A1 (zh) | 光学成像镜头 | |
WO2020082814A1 (zh) | 成像镜头 | |
WO2019210739A1 (zh) | 光学成像镜头 | |
WO2019101052A1 (zh) | 光学成像镜头 | |
WO2018090609A1 (zh) | 光学成像系统及摄像装置 | |
WO2019114366A1 (zh) | 光学成像镜头 | |
WO2019091170A1 (zh) | 摄像透镜组 | |
WO2020010879A1 (zh) | 光学成像系统 | |
WO2019196572A1 (zh) | 光学成像系统 | |
WO2019100768A1 (zh) | 光学成像镜头 | |
WO2019095865A1 (zh) | 光学成像镜头 | |
WO2018153012A1 (zh) | 摄像镜头 | |
WO2019137246A1 (zh) | 光学成像镜头 | |
WO2020134128A1 (zh) | 成像镜头 | |
WO2019080554A1 (zh) | 光学成像镜头 | |
WO2019169856A1 (zh) | 摄像镜头组 | |
WO2019218628A1 (zh) | 光学成像镜头 | |
WO2019052220A1 (zh) | 光学成像镜头 | |
WO2019056758A1 (zh) | 摄像透镜组 | |
WO2019233142A1 (zh) | 光学成像镜头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17889841 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17889841 Country of ref document: EP Kind code of ref document: A1 |