WO2018125140A1 - Transistors à film mince d'oxyde métallique à hydrogène contrôlé - Google Patents
Transistors à film mince d'oxyde métallique à hydrogène contrôlé Download PDFInfo
- Publication number
- WO2018125140A1 WO2018125140A1 PCT/US2016/069213 US2016069213W WO2018125140A1 WO 2018125140 A1 WO2018125140 A1 WO 2018125140A1 US 2016069213 W US2016069213 W US 2016069213W WO 2018125140 A1 WO2018125140 A1 WO 2018125140A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- hdb
- coupled
- substrate
- forming
- Prior art date
Links
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 24
- 239000001257 hydrogen Substances 0.000 title claims abstract description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title description 9
- 239000010409 thin film Substances 0.000 title description 5
- 229910044991 metal oxide Inorganic materials 0.000 title description 4
- 150000004706 metal oxides Chemical class 0.000 title description 4
- 239000000758 substrate Substances 0.000 claims abstract description 94
- 238000000034 method Methods 0.000 claims abstract description 62
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000004065 semiconductor Substances 0.000 claims abstract description 34
- 238000009792 diffusion process Methods 0.000 claims abstract description 15
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052593 corundum Inorganic materials 0.000 claims abstract description 8
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract description 8
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims abstract 5
- 239000010410 layer Substances 0.000 claims description 344
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 26
- 229910052751 metal Inorganic materials 0.000 claims description 24
- 239000002184 metal Substances 0.000 claims description 24
- 239000004408 titanium dioxide Substances 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 20
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 18
- 239000010936 titanium Substances 0.000 claims description 17
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 16
- 239000010949 copper Substances 0.000 claims description 15
- -1 Al Ni Substances 0.000 claims description 14
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 claims description 14
- 238000004544 sputter deposition Methods 0.000 claims description 14
- 229910052719 titanium Inorganic materials 0.000 claims description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 13
- 238000000231 atomic layer deposition Methods 0.000 claims description 13
- 239000011651 chromium Substances 0.000 claims description 13
- 239000010931 gold Substances 0.000 claims description 13
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 13
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims description 12
- 229910052802 copper Inorganic materials 0.000 claims description 12
- 229910052697 platinum Inorganic materials 0.000 claims description 11
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 10
- 238000005229 chemical vapour deposition Methods 0.000 claims description 10
- 229910052804 chromium Inorganic materials 0.000 claims description 10
- 229910052737 gold Inorganic materials 0.000 claims description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 10
- 239000010703 silicon Substances 0.000 claims description 10
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 9
- 230000004888 barrier function Effects 0.000 claims description 9
- 239000011229 interlayer Substances 0.000 claims description 9
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 238000005240 physical vapour deposition Methods 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 7
- 239000000956 alloy Substances 0.000 claims description 7
- 239000013078 crystal Substances 0.000 claims description 7
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 claims description 7
- 239000011521 glass Substances 0.000 claims description 6
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 239000004033 plastic Substances 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 239000011733 molybdenum Substances 0.000 claims description 3
- 239000000463 material Substances 0.000 abstract description 40
- 229910017083 AlN Inorganic materials 0.000 abstract 1
- 230000008569 process Effects 0.000 description 33
- 238000004891 communication Methods 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 150000002431 hydrogen Chemical class 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000003989 dielectric material Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 239000011593 sulfur Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 239000012535 impurity Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- 229910052715 tantalum Inorganic materials 0.000 description 4
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 4
- 229920001621 AMOLED Polymers 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052735 hafnium Inorganic materials 0.000 description 2
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 2
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000005361 soda-lime glass Substances 0.000 description 2
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 2
- 229910001936 tantalum oxide Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910000673 Indium arsenide Inorganic materials 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910026551 ZrC Inorganic materials 0.000 description 1
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 1
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 1
- XWCMFHPRATWWFO-UHFFFAOYSA-N [O-2].[Ta+5].[Sc+3].[O-2].[O-2].[O-2] Chemical compound [O-2].[Ta+5].[Sc+3].[O-2].[O-2].[O-2] XWCMFHPRATWWFO-UHFFFAOYSA-N 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- ILCYGSITMBHYNK-UHFFFAOYSA-N [Si]=O.[Hf] Chemical compound [Si]=O.[Hf] ILCYGSITMBHYNK-UHFFFAOYSA-N 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- CAVCGVPGBKGDTG-UHFFFAOYSA-N alumanylidynemethyl(alumanylidynemethylalumanylidenemethylidene)alumane Chemical compound [Al]#C[Al]=C=[Al]C#[Al] CAVCGVPGBKGDTG-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229940104869 fluorosilicate Drugs 0.000 description 1
- VTGARNNDLOTBET-UHFFFAOYSA-N gallium antimonide Chemical compound [Sb]#[Ga] VTGARNNDLOTBET-UHFFFAOYSA-N 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- WHJFNYXPKGDKBB-UHFFFAOYSA-N hafnium;methane Chemical compound C.[Hf] WHJFNYXPKGDKBB-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- JQJCSZOEVBFDKO-UHFFFAOYSA-N lead zinc Chemical compound [Zn].[Pb] JQJCSZOEVBFDKO-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 1
- 239000002074 nanoribbon Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- BCCOBQSFUDVTJQ-UHFFFAOYSA-N octafluorocyclobutane Chemical compound FC1(F)C(F)(F)C(F)(F)C1(F)F BCCOBQSFUDVTJQ-UHFFFAOYSA-N 0.000 description 1
- 235000019407 octafluorocyclobutane Nutrition 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- KJXBRHIPHIVJCS-UHFFFAOYSA-N oxo(oxoalumanyloxy)lanthanum Chemical compound O=[Al]O[La]=O KJXBRHIPHIVJCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 1
- CZXRMHUWVGPWRM-UHFFFAOYSA-N strontium;barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[O-2].[Ti+4].[Sr+2].[Ba+2] CZXRMHUWVGPWRM-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910003468 tantalcarbide Inorganic materials 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/6729—Thin-film transistors [TFT] characterised by the electrodes
- H10D30/6737—Thin-film transistors [TFT] characterised by the electrodes characterised by the electrode materials
- H10D30/6739—Conductor-insulator-semiconductor electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
- H10D30/674—Thin-film transistors [TFT] characterised by the active materials
- H10D30/6755—Oxide semiconductors, e.g. zinc oxide, copper aluminium oxide or cadmium stannate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/451—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs characterised by the compositions or shapes of the interlayer dielectrics
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D86/00—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
- H10D86/40—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
- H10D86/60—Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D99/00—Subject matter not provided for in other groups of this subclass
Definitions
- Embodiments of the present disclosure generally relate to the field of integrated circuits, and more particularly, to transistors.
- a thin-film transistor is a kind of field-effect transistor including various layers, e.g., an oxide semiconductor material as a channel layer, a gate dielectric layer, and metallic contacts, over a supporting but non-conducting substrate.
- a TFT differs from a conventional transistor, where a channel of the conventional transistor is typically within a substrate, such as a silicon substrate. Impurities such as hydrogen may diffuse into the channel layer of a TFT. Hydrogen in the channel layer of a TFT may cause large threshold voltages of the TFT.
- FIG. 1 schematically illustrates a diagram of a thin-film transistor (TFT) with a hydrogen diffusion barrier (HDB) layer, in accordance with some embodiments.
- TFT thin-film transistor
- HDB hydrogen diffusion barrier
- FIGS 2(a)-2(j) schematically illustrate a process for forming a TFT with a HDB layer, in accordance with some embodiments.
- FIG. 3 schematically illustrates another process for forming a TFT with a HDB layer, in accordance with some embodiments.
- Figure 4 schematically illustrates an interposer implementing one or more embodiments of the disclosure, in accordance with some embodiments.
- Figure 5 schematically illustrates a computing device built in accordance with an embodiment of the disclosure, in accordance with some embodiments.
- TFTs Thin-film transistors hold great potential for large area and flexible electronics, e.g., displays.
- a TFT may have a channel layer formed by one or more of various materials, e.g., metal oxide materials.
- Indium gallium zinc oxide (IGZO) is a semiconducting material, including indium (In), gallium (Ga), zinc (Zn) and oxygen (O), which can be used to form the channel layer of a TFT, i.e.. an IGZO TFT.
- An IGZO TFT may be used in the backplane of flat-panel displays (FPDs), active-matrix organic light- emitting diode (AMOLED) displays, a thin-film-transistor liquid-crystal displays (TFT LCDs), micro light-emitting diode ( ⁇ LED) displays, or others.
- FPDs flat-panel displays
- AMOLED active-matrix organic light- emitting diode
- TFT LCDs thin-film-transistor liquid-crystal displays
- ⁇ LED micro light-emitting diode
- Other material comprising zinc (Zn) and oxygen (O) may be used for the channel layer of a TFT additionally or alternatively.
- Hydrogen may diffuse into the channel layer of a TFT, causing large threshold voltage of the TFT, and other problems. Hydrogen may diffuse to the channel layer from a gate dielectric layer or a passivation layer containing SiO 2 or Si 3 N 4 formed by plasma- enhanced chemical vapor deposition (PECVD).
- PECVD plasma- enhanced chemical vapor deposition
- a hydrogen diffusion barrier (HDB) layer may be formed to protect the channel layer of a TFT from hydrogen diffusion, e.g., from the gate dielectric layer.
- the material for a HDB layer may be selected to reduce hydrogen diffusion into the channel layer.
- a channel layer comprising zinc (Zn) and oxygen (O)
- the HDB layer covers the channel layer of the TFT, but may leave the source area and the drain area not covered by the HDB layer so that hydrogen may still diffuse into the source area and the drain area. Hydrogen diffused into the source area and the drain area may reduce the contact resistance and improve the performance of the TFT.
- Embodiments herein may present a semiconductor device, which includes a substrate, and a gate electrode above the substrate.
- a gate dielectric layer may conformally cover the gate electrode and the substrate.
- a HDB layer may be above the gate dielectric layer, and a channel layer may be above the HDB layer.
- the HDB layer may be between the gate dielectric layer and the channel layer, reducing the hydrogen diffusion from the gate dielectric layer to the channel layer.
- a source area and a drain area may be formed within the channel layer, a source electrode may be coupled to the source area, and a drain electrode may be coupled to the drain area. The source area and the drain area may not be covered by the HDB layer so that hydrogen may still diffuse into the source area and the drain area.
- Embodiments herein may present an electrical system, which includes a processor, a memory device coupled to the processor, and a display coupled to the processor.
- the display may include a transistor having a substrate and a gate electrode above the substrate.
- a gate dielectric layer may conformally cover the gate electrode and the substrate.
- a HDB layer may be above the gate dielectric layer, and a channel layer may be above the HDB layer.
- the channel layer may include a source area and a drain area, a source electrode may be coupled to the source area, and a drain electrode may be coupled to the drain area.
- a method for forming a semiconductor device may include: forming a gate electrode above a substrate, and forming a gate dielectric layer conformally covering the gate electrode and the substrate. The method may also include forming a HDB layer above the gate dielectric layer, and forming a channel layer above the HDB layer. In addition, the method may include forming a source area and a drain area within the channel layer, forming a source electrode coupled to the source area, and a drain electrode coupled to the drain area.
- phrase“A and/or B” means (A), (B), or (A and B).
- phrase“A, B, and/or C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C).
- the terms“over,”“under,”“between,”“above,” and“on” as used herein may refer to a relative position of one material layer or component with respect to other layers or components.
- one layer disposed over or under another layer may be directly in contact with the other layer or may have one or more intervening layers.
- one layer disposed between two layers may be directly in contact with the two layers or may have one or more intervening layers.
- a first layer“on” a second layer is in direct contact with that second layer.
- one feature disposed between two features may be in direct contact with the adjacent features or may have one or more intervening features.
- Coupled may mean one or more of the following.“Coupled” may mean that two or more elements are in direct physical or electrical contact. However,“coupled” may also mean that two or more elements indirectly contact each other, but yet still cooperate or interact with each other, and may mean that one or more other elements are coupled or connected between the elements that are said to be coupled with each other.
- directly coupled may mean that two or more elements are in direct contact.
- the phrase“a first feature formed, deposited, or otherwise disposed on a second feature” may mean that the first feature is formed, deposited, or disposed over the second feature, and at least a part of the first feature may be in direct contact (e.g., direct physical and/or electrical contact) or indirect contact (e.g., having one or more other features between the first feature and the second feature) with at least a part of the second feature.
- circuitry may refer to, be part of, or include an Application Specific Integrated Circuit (ASIC), an electronic circuit, a processor (shared, dedicated, or group), and/or memory (shared, dedicated, or group) that execute one or more software or firmware programs, a combinational logic circuit, and/or other suitable hardware components that provide the described functionality.
- ASIC Application Specific Integrated Circuit
- computer-implemented method may refer to any method executed by one or more processors, a computer system having one or more processors, a mobile device such as a smartphone (which may include one or more processors), a tablet, a laptop computer, a set-top box, a gaming console, and so forth.
- Implementations of the disclosure may be formed or carried out on a substrate, such as a semiconductor substrate.
- the semiconductor substrate may be a crystalline substrate formed using a bulk silicon or a silicon-on-insulator substructure.
- the semiconductor substrate may be formed using alternate materials, which may or may not be combined with silicon, that include but are not limited to germanium, indium antimonide, lead telluride, indium arsenide, indium phosphide, gallium arsenide, indium gallium arsenide, gallium antimonide, or other combinations of group III-V or group IV materials. Although a few examples of materials from which the substrate may be formed are described here, any material that may serve as a foundation upon which a semiconductor device may be built falls within the spirit and scope of the present disclosure.
- MOSFET metal-oxide-semiconductor field-effect transistors
- the MOS transistors may be planar transistors, nonplanar transistors, or a combination of both.
- Nonplanar transistors include FinFET transistors such as double-gate transistors and tri-gate transistors, and wrap-around or all- around gate transistors such as nanoribbon and nanowire transistors.
- Each MOS transistor includes a gate stack formed of at least two layers, a gate dielectric layer and a gate electrode layer.
- the gate dielectric layer may include one layer or a stack of layers.
- the one or more layers may include silicon oxide, silicon dioxide (SiO 2 ) and/or a high-k dielectric material.
- the high-k dielectric material may include elements such as hafnium, silicon, oxygen, titanium, tantalum, lanthanum, aluminum, zirconium, barium, strontium, yttrium, lead, scandium, niobium, and zinc.
- high-k materials that may be used in the gate dielectric layer include, but are not limited to, hafnium oxide, hafnium silicon oxide, lanthanum oxide, lanthanum aluminum oxide, zirconium oxide, zirconium silicon oxide, tantalum oxide, titanium oxide, barium strontium titanium oxide, barium titanium oxide, strontium titanium oxide, yttrium oxide, aluminum oxide, lead scandium tantalum oxide, and lead zinc niobate.
- an annealing process may be carried out on the gate dielectric layer to improve its quality when a high-k material is used.
- the gate electrode layer is formed on the gate dielectric layer and may consist of at least one P-type work function metal or N-type work function metal, depending on whether the transistor is to be a PMOS or an NMOS transistor.
- the gate electrode layer may consist of a stack of two or more metal layers, where one or more metal layers are work function metal layers and at least one metal layer is a fill metal layer. Further metal layers may be included for other purposes, such as a barrier layer.
- metals that may be used for the gate electrode include, but are not limited to, ruthenium, palladium, platinum, cobalt, nickel, and conductive metal oxides, e.g., ruthenium oxide.
- a P-type metal layer will enable the formation of a PMOS gate electrode with a work function that is between about 4.9 eV and about 5.2 eV.
- metals that may be used for the gate electrode include, but are not limited to, hafnium, zirconium, titanium, tantalum, aluminum, alloys of these metals, and carbides of these metals such as hafnium carbide, zirconium carbide, titanium carbide, tantalum carbide, and aluminum carbide.
- An N-type metal layer will enable the formation of an NMOS gate electrode with a work function that is between about 3.9 eV and about 4.2 eV.
- the gate electrode when viewed as a cross-section of the transistor along the source-channel-drain direction, may consist of a“U”-shaped structure that includes a bottom portion substantially parallel to the surface of the substrate and two sidewall portions that are substantially perpendicular to the top surface of the substrate.
- at least one of the metal layers that form the gate electrode may simply be a planar layer that is substantially parallel to the top surface of the substrate and does not include sidewall portions substantially perpendicular to the top surface of the substrate.
- the gate electrode may consist of a combination of U-shaped structures and planar, non-U-shaped structures.
- the gate electrode may consist of one or more U-shaped metal layers formed atop one or more planar, non-U-shaped layers.
- a pair of sidewall spacers may be formed on opposing sides of the gate stack that bracket the gate stack.
- the sidewall spacers may be formed from a material such as silicon nitride, silicon oxide, silicon carbide, silicon nitride doped with carbon, and silicon oxynitride. Processes for forming sidewall spacers are well known in the art and generally include deposition and etching process operations. In an alternate implementation, a plurality of spacer pairs may be used, for instance, two pairs, three pairs, or four pairs of sidewall spacers may be formed on opposing sides of the gate stack.
- source and drain regions are formed within the substrate adjacent to the gate stack of each MOS transistor.
- the source and drain regions are generally formed using either an implantation/diffusion process or an etching/deposition process.
- dopants such as boron, aluminum, antimony, phosphorous, or arsenic may be ion-implanted into the substrate to form the source and drain regions.
- An annealing process that activates the dopants and causes them to diffuse further into the substrate typically follows the ion implantation process.
- the substrate may first be etched to form recesses at the locations of the source and drain regions.
- the source and drain regions may be fabricated using a silicon alloy such as silicon germanium or silicon carbide.
- the epitaxially deposited silicon alloy may be doped in situ with dopants such as boron, arsenic, or phosphorous.
- the source and drain regions may be formed using one or more alternate semiconductor materials such as germanium or a group III-V material or alloy. And in further embodiments, one or more layers of metal and/or metal alloys may be used to form the source and drain regions.
- ILD interlayer dielectrics
- the ILD layers may be formed using dielectric materials known for their applicability in integrated circuit structures, such as low-k dielectric materials. Examples of dielectric materials that may be used include, but are not limited to, silicon dioxide (SiO 2 ), carbon doped oxide (CDO), silicon nitride, organic polymers such as perfluorocyclobutane or polytetrafluoroethylene, fluorosilicate glass (FSG), and organosilicates such as silsesquioxane, siloxane, or organosilicate glass.
- the ILD layers may include pores or air gaps to further reduce their dielectric constant.
- FIG. 1 schematically illustrates a diagram of a TFT 110 with a HDB layer 109, in accordance with some embodiments.
- the TFT 110 may include a substrate 101, a buffer layer 103, a gate electrode 105, a gate dielectric layer 107, the HDB layer 109, a channel layer 111, a source electrode 121 and a drain electrode 123, and an interlayer dielectric (ILD) layer 115.
- the TFT 110 may include an optional HDB layer, e.g., a HDB layer 113.
- the buffer layer 103 may be above the substrate 101.
- the gate electrode 105 may be above the buffer layer 103.
- the gate dielectric layer 107 may be above the gate electrode 105 and the buffer layer 103.
- the HDB layer 109 may be above the gate dielectric layer 107.
- the channel layer 111 may be above the HDB layer 109.
- the HDB layer 113 may be above the channel layer 111.
- the ILD layer 115 may be above the HDB layer 113.
- the source electrode 121 may be coupled to a source area 117 within the channel layer 111, and the drain electrode 123 may be coupled to a drain area 119 within the channel layer 111.
- the source area 117 and the drain area 119 may not be covered by the HDB layer 109 or the HDB layer 113 so that hydrogen may still diffuse into the source area 117 and the drain area 119.
- the structure of the TFT 110 shown in Figure 1 may be for illustration purpose only and is not limiting.
- the TFT 110 may have other configurations.
- the TFT 110 may have a reverse stagger structure in which the gate electrode 105 may be above the channel layer 111, separated by the gate dielectric layer 107 and the HDB layer 109 in between the gate electrode 105 and the channel layer 111.
- the substrate 101 may be a glass substrate, such as soda lime glass or borosilicate glass, a metal substrate, a plastic substrate, or another suitable substrate.
- Other inter-metal dielectric layer may be formed on the substrate.
- the substrate 101 may include an inter-metal dielectric layer, or other devices, not shown for clarity.
- the buffer layer 103 may be optional. Some other embodiments may not have the buffer layer 103.
- the buffer layer 103 may include a silicon oxide (SiO) film, a silicon nitride (SiN) film, or another suitable material. In some embodiments, there may be multiple buffer layers included within the buffer layer 103.
- the gate electrode 105 may be formed as a single layer or a stacked layer using one or more conductive films including a conductive material, e.g., copper, aluminum, tantalum, tungsten, tantalum nitride (TaN), titanium, titanium nitride (TiN), the like, and/or a combination thereof.
- a conductive material e.g., copper, aluminum, tantalum, tungsten, tantalum nitride (TaN), titanium, titanium nitride (TiN), the like, and/or a combination thereof.
- the gate dielectric layer 107 may include silicon oxide (SiO 2 ), silicon nitride (SiN x ), yttrium oxide (Y 2 O 3 ), silicon oxynitride (SiO ⁇ N y ), aluminum oxide (Al 2 O 3 ), hafnium(IV) oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), titanium dioxide (TiO 2 ), or other materials.
- the gate dielectric layer 107 may be formed by plasma enhanced chemical vapor deposition (PECVD) at about 100 0 C to about 200 0 C.
- PECVD plasma enhanced chemical vapor deposition
- the gate dielectric layer 107 may prevent impurities, e.g., impurities in an atmosphere, such as moisture, or impurities included in the substrate, such as an alkali metal or a heavy metal, from entering the channel layer 111.
- the HDB layer 109 may include Al 2 O 3 , TiO 2, AlN, or doped Al 2 O 3 or TiO 2 , e.g., doped by nitrogen, carbon, sulfur, or another suitable material.
- the HDB layer 109 may have a thickness in a range of about 5 nm to about 20 nm.
- the HDB layer 109 may be formed by physical vapor deposition (PVD), atomic layer deposition (ALD), or chemical vapor deposition (CVD).
- the channel layer 111 may include the source area 117 and the drain area 119.
- the channel layer 111 may have a thickness in a range of about 10 nm to about 100 nm.
- the channel layer 111 may include a material comprising zinc (Zn) and oxygen (O), such as, IGZO, amorphous InGaZnO (a-IGZO), crystal-like InGaZnO (c- IGZO), GaZnON, ZnON, or C-Axis Aligned Crystal (CAAC).
- TFTs with the channel layer 111 including a-IGZO may hold great potential for large area and flexible electronics.
- CAAC is a partially crystallized form of IGZO, which may retain the uniformity of the amorphous phase while improving stability and exhibiting low leakage current.
- an optional HDB layer e.g., the HDB layer 113
- the HDB layer 113 may be similar to the HDB layer 109, including Al 2 O 3 , TiO 2, AlN, or doped Al 2 O 3 or TiO 2 , e.g., doped by nitrogen, carbon, sulfur, or another suitable material.
- the HDB layer 113 may have a different thickness than the thickness of the HDB layer 109.
- the ILD layer 115 may be formed above the channel layer 111, and above the HDB layer 113.
- the ILD layer 115 may include O 3 -tetraethylorthosilicate (TEOS), O 3 -hexamethyldisiloxane (HMDS), plasma-TEOS oxide layer, or other materials.
- TEOS O 3 -tetraethylorthosilicate
- HMDS O 3 -hexamethyldisiloxane
- plasma-TEOS oxide layer or other materials.
- the ILD layer 115 may be formed by chemical vapor deposition (CVD), PECVD, or another suitable technique.
- the source electrode 121 and the drain electrode 123 may be formed through the ILD layer 115 and coupled to the source area 117 and the drain area 119, respectively.
- the source electrode 121 and the drain electrode 123 may be formed through the HDB layer 113 as well.
- the source electrode 121 and the drain electrode 123 may include titanium (Ti), molybdenum (Mo), gold (Au), platinum (Pt), aluminum (Al), nickel (Ni), copper (Cu), chromium (Cr), an alloy of Ti, Mo, Au, Pt, Al Ni, Cu, Cr, or another suitable material.
- FIGS 2(a)-2(j) schematically illustrate a process 200 for forming a TFT 210 with a HDB layer 209, in accordance with some embodiments.
- the TFT 210 may be similar to the TFT 110 in Figure 1.
- a substrate 201 may be provided.
- the substrate 201 may be similar to the substrate 101 in Figure 1.
- the substrate 201 may be a glass substrate, such as soda lime glass or borosilicate glass, a metal substrate, a plastic substrate, or another suitable material.
- a buffer layer 203 may be formed above the substrate 201.
- the buffer layer 203 may be similar to the buffer layer 103 in Figure 1.
- the buffer layer 203 may include SiO, SiN, or another suitable material. There may be multiple buffer layers included within the buffer layer 203.
- a gate electrode 205 may be formed above the buffer layer 203.
- the gate electrode 205 may be similar to the gate electrode 105 in Figure 1.
- the gate electrode 205 may include one or more of conductive films including a conductive material, e.g., copper, aluminum, tantalum, tungsten, TaN, titanium, TiN, the like, and/or a combination thereof.
- a gate dielectric layer 207 may be formed above the gate electrode 205.
- the gate dielectric layer 207 may be similar to the gate dielectric layer 107 in Figure 1.
- the gate dielectric layer 207 may include SiO 2 , SiN x , Y 2 O 3 , SiO ⁇ N y , Al 2 O 3 , HfO 2 , Ta 2 O 5 , TiO 2 , or other materials.
- the gate dielectric layer 207 may conformally cover the gate electrode 205 and the substrate 201, where the dielectric layer 207 may follow the contour of the gate electrode 205, covering a top surface, the side surfaces of the gate electrode 205.
- the dielectric layer 207 may have a uniform thickness relative to the surface of the substrate 201, the top surface of the gate electrode 205, or the side surfaces of the gate electrode 205.
- the HDB layer 209 may be formed above the gate dielectric layer 207.
- the HDB layer 209 may be similar to the HDB layer 109 in Figure 1.
- the HDB layer 209 may include Al 2 O 3 , TiO 2, AlN, or doped Al 2 O 3 or TiO 2 , e.g., doped by nitrogen, carbon, sulfur, or other materials, formed by PVD, ALD, or CVD.
- a channel layer 211 may be formed above the HDB layer 209.
- the channel layer 211 may be similar to the channel layer 111 in Figure 1.
- the channel layer 211 may be a channel layer, including IGZO, a- IGZO, c-IGZO, GaZnON, ZnON, CAAC, or other materials.
- an optional HDB layer e.g., a HDB layer 213, may be formed above the channel layer 211.
- the HDB layer 213 may be similar to the HDB layer 113 in Figure 1.
- the HDB layer 213 may include Al 2 O 3 , TiO 2, AlN, or doped Al 2 O 3 or TiO 2 , e.g., doped by nitrogen, carbon, sulfur, or other materials.
- an ILD layer 215 may be formed above the HDB layer 213.
- the ILD layer 215 may be similar to the ILD layer 115 in Figure 1.
- the ILD layer 215 may include TEOS, HMDS, plasma-TEOS oxide, or other materials.
- an opening 212 and an opening 214 may be formed through the ILD layer 215 and the HDB layer 213 to expose an area 217 of the channel layer 211 to be a source area, and expose an area 219 of the channel layer 211 to be a drain area.
- a source electrode 221 and a drain electrode 223 may be formed filling the opening 212 and the opening 214, and through the ILD layer 215 and the HDB layer 213.
- the source electrode 221 may be coupled with the source area 217
- the drain electrode 223 may be coupled with the drain area 219.
- the source electrode 221 and the drain electrode 223 may be similar to the source electrode 121 and the drain electrode 123 in Figure 1, respectively.
- the source electrode 221 and the drain electrode 223 may include Ti, Mo, Au, Pt, Al, Ni, Cu, Cr, an alloy of Ti, Mo, Au, Pt, Al Ni, Cu, Cr, or another suitable material.
- FIG 3 schematically illustrates another process 300 for forming a TFT with a HDB layer, in accordance with some embodiments.
- the process 300 may be applied to form the TFT 110 with the HDB layer 109 in Figure 1, or the TFT 210 with the HDB 209 in Figure 2(j).
- the process 200 shown in Figures 2(a)-2(j) may be an example of the process 300.
- the process 300 may include forming a gate electrode above a substrate.
- the process 300 may include forming the gate electrode 205 above the substrate 201 as illustrated in Figure 2(c).
- the process 300 may include forming a gate dielectric layer conformally covering the gate electrode and the substrate.
- the process 300 may include forming the gate dielectric layer 207 covering the gate electrode 205 and the substrate 201 as illustrated in Figure 2(d).
- the gate dielectric layer 207 may include SiO2 or SiNx, and may be formed by PECVD at about 100 0 C to about 200 0 C.
- the process 300 may include forming a HDB layer above the gate dielectric layer.
- the process 300 may include forming the HDB layer 209 above the gate dielectric layer 207 as illustrated in Figure 2(e).
- the HDB layer 209 may include Al 2 O 3 , TiO 2, AlN, or doped Al 2 O 3 or TiO 2 , e.g., doped by nitrogen, carbon, sulfur.
- the HDB layer 209 may be formed by PVD, ALD, CVD, or another suitable process.
- the process 300 may include forming a channel layer above the HDB layer.
- the process 300 may include forming the channel layer 211 above the HDB layer 209 as illustrated in Figure 2(f).
- the channel layer 211 may include a material comprising zinc (Zn) and oxygen (O), such as, IGZO, a- IGZO, c-IGZO, GaZnON, ZnON, CAAC, or another suitable material.
- the channel layer 211 may be formed by depositing an a- IGZO film at about 25 0 C to about 300 0 C, e.g., by radio frequency (RF) sputtering, direct current (DC) sputtering, magnetron sputtering, plasma enhanced atomic layer deposition (PEALD), or PECVD.
- RF radio frequency
- DC direct current
- PEALD plasma enhanced atomic layer deposition
- the channel layer 111 may be formed by simultaneously sputtering IGZO and ZnO at a temperature in a range of about 25 0 C to about 400 0 C, e.g., by RF sputtering, DC sputtering, or magnetron sputtering, to form a crystal-like InGaZnO (c-IGZO) film.
- c-IGZO crystal-like InGaZnO
- the process 300 may include forming a source area and a drain area within the channel layer.
- the process 300 may include forming the source area 217 and the drain area 219, as shown in Figure 2(i), by forming the opening 212 and the opening 214 through the ILD layer 215 and the HDB layer 213.
- the process 300 may include forming a source electrode coupled to the source area, and a drain electrode coupled to the drain area.
- the process 300 may include forming the source electrode 221 coupled to the source area 217, and the drain electrode 223 coupled to the drain area 219, as illustrated in Figure 2(j).
- the source electrode 221 and the drain electrode 223 may include Ti, Mo, Au, Pt, Al, Ni, Cu, Cr, an alloy of Ti, Mo, Au, Pt, Al Ni, Cu, Cr, or other materials.
- the process 300 may also include forming another HDB layer above the channel layer, and forming an interlayer dielectric (ILD) layer above the channel layer, not shown.
- the process 300 may further include forming a buffer layer above the substrate before forming the gate electrode.
- Figure 4 illustrates an interposer 400 that includes one or more embodiments of the disclosure.
- the interposer 400 is an intervening substrate used to bridge a first substrate 402 to a second substrate 404.
- the first substrate 402 may be, for instance, a substrate support for a TFT, e.g., the TFT 110 shown in Figure 1 or the TFT 210 shown in Figure 2(j).
- the second substrate 404 may be, for instance, a memory module, a computer motherboard, or another integrated circuit die.
- an interposer 400 may couple an integrated circuit die to a ball grid array (BGA) 406 that can subsequently be coupled to the second substrate 404.
- BGA ball grid array
- the first and second substrates 402/404 are attached to opposing sides of the interposer 400.
- the first and second substrates 402/404 are attached to the same side of the interposer 400.
- three or more substrates are interconnected by way of the interposer 400.
- the interposer 400 may be formed of an epoxy resin, a fiberglass-reinforced epoxy resin, a ceramic material, or a polymer material such as polyimide.
- the interposer may be formed of alternate rigid or flexible materials that may include the same materials described above for use in a semiconductor substrate, such as silicon, germanium, and other group III-V and group IV materials.
- the interposer may include metal interconnects 408 and vias 410, including but not limited to through-silicon vias (TSVs) 412.
- the interposer 400 may further include embedded devices 414, including both passive and active devices.
- Such devices include, but are not limited to, capacitors, decoupling capacitors, resistors, inductors, fuses, diodes, transformers, sensors, and electrostatic discharge (ESD) devices.
- More complex devices such as radio-frequency (RF) devices, power amplifiers, power management devices, antennas, arrays, sensors, and MEMS devices may also be formed on the interposer 400.
- RF radio-frequency
- apparatuses or processes disclosed herein may be used in the fabrication of interposer 400.
- FIG. 5 illustrates a computing device 500 in accordance with one embodiment of the disclosure.
- the computing device 500 may include a number of components. In one embodiment, these components are attached to one or more motherboards. In an alternate embodiment, some or all of these components are fabricated onto a single system-on-a-chip (SoC) die, such as a SoC used for mobile devices.
- SoC system-on-a-chip
- the components in the computing device 500 include, but are not limited to, an integrated circuit die 502 and at least one communications logic unit 508.
- the communications logic unit 508 is fabricated within the integrated circuit die 502 while in other implementations the communications logic unit 508 is fabricated in a separate integrated circuit chip that may be bonded to a substrate or motherboard that is shared with or electronically coupled to the integrated circuit die 502.
- the integrated circuit die 502 may include a processor 504 as well as on-die memory 506, often used as cache memory, which can be provided by technologies such as embedded DRAM (eDRAM), or SRAM.
- eDRAM
- the computing device 500 may include a display or a touchscreen display 524, and a touchscreen display controller 526.
- a display or the touchscreen display 524 may include a FPD, an AMOLED display, a TFT LCD, a micro light-emitting diode ( ⁇ LED) display, or others.
- the touchscreen display 524 may include the TFT 110 shown in Figure 1, the TFT 210 shown in Figure 2(j), or a TFT formed according to the process 300 shown in Figure 3.
- Computing device 500 may include other components that may or may not be physically and electrically coupled to the motherboard or fabricated within a SoC die. These other components include, but are not limited to, volatile memory 510 (e.g., dynamic random access memory (DRAM), non-volatile memory 512 (e.g., ROM or flash memory), a graphics processing unit 514 (GPU), a digital signal processor (DSP) 516, a crypto processor 542 (e.g., a specialized processor that executes cryptographic algorithms within hardware), a chipset 520, at least one antenna 522 (in some implementations two or more antenna may be used), a battery 530 or other power source, a power amplifier (not shown), a voltage regulator (not shown), a global positioning system (GPS) device 528, a compass, a motion coprocessor or sensors 532 (that may include an accelerometer, a gyroscope, and a compass), a microphone (not shown), a speaker 534, a camera 536,
- the computing device 500 may incorporate further transmission, telecommunication, or radio functionality not already described herein.
- the computing device 500 includes a radio that is used to communicate over a distance by modulating and radiating electromagnetic waves in air or space.
- the computing device 500 includes a transmitter and a receiver (or a transceiver) that is used to communicate over a distance by modulating and radiating electromagnetic waves in air or space.
- the communications logic unit 508 enables wireless communications for the transfer of data to and from the computing device 500.
- the term“wireless” and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium.
- the communications logic unit 508 may implement any of a number of wireless standards or protocols, including but not limited to Wi-Fi (IEEE 802.11 family), WiMAX (IEEE 802.16 family), IEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Infrared (IR), Near Field Communication (NFC), Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond.
- the computing device 500 may include a plurality of communications logic units 508.
- a first communications logic unit 508 may be dedicated to shorter range wireless communications such as Wi-Fi, NFC, and Bluetooth and a second communications logic unit 508 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
- the processor 504 of the computing device 500 includes one or more devices, such as transistors.
- the term“processor” may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
- the communications logic unit 508 may also include one or more devices, such as transistors.
- another component housed within the computing device 500 may contain one or more devices, such as MRAM, or spin-transfer torque memory (STT-MRAM), that are formed in accordance with implementations of the current disclosure, e.g., the memory array 100 shown in Figure 1, the MRAM memory cell 210 shown in Figure 2, or a MRAM memory cell formed according to the process 300 shown in Figure 3.
- MRAM magnetic RAM
- STT-MRAM spin-transfer torque memory
- the computing device 500 may be a laptop computer, a netbook computer, a notebook computer, an ultrabook computer, a smartphone, a dumbphone, a tablet, a tablet/laptop hybrid, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder.
- the computing device 500 may be any other electronic device that processes data.
- Example 1 may include a semiconductor device, comprising: a substrate; a gate electrode above the substrate; a gate dielectric layer conformally covering the gate electrode and the substrate; a hydrogen diffusion barrier (HDB) layer above the gate dielectric layer; a channel layer above the HDB layer, wherein the channel layer includes a source area and a drain area; and a source electrode coupled to the source area, and a drain electrode coupled to the drain area.
- a semiconductor device comprising: a substrate; a gate electrode above the substrate; a gate dielectric layer conformally covering the gate electrode and the substrate; a hydrogen diffusion barrier (HDB) layer above the gate dielectric layer; a channel layer above the HDB layer, wherein the channel layer includes a source area and a drain area; and a source electrode coupled to the source area, and a drain electrode coupled to the drain area.
- HDB hydrogen diffusion barrier
- Example 2 may include the semiconductor device of example 1 and/or some other examples herein, further comprising: another HDB layer above the channel layer, wherein the source electrode is through the another HDB layer and coupled to the source area, and the drain electrode is through the another HDB layer and coupled to the drain area.
- Example 3 may include the semiconductor device of example 1 and/or some other examples herein, further comprising: an interlayer dielectric (ILD) layer above the channel layer, wherein the source electrode is through the ILD layer and coupled to the source area, and the drain electrode is through the ILD layer and coupled to the drain area.
- ILD interlayer dielectric
- Example 4 may include the semiconductor device of any of examples 1-3 and/or some other examples herein, wherein the HDB layer includes TiO 2 , Al 2 O 3 , AlN, doped- TiO 2 , or doped-Al 2 O 3 .
- Example 5 may include the semiconductor device of any of examples 1-3 and/or some other examples herein, wherein the channel layer includes zinc (Zn) and oxygen (O).
- Example 6 may include the semiconductor device of any of examples 1-3 and/or some other examples herein, wherein the channel layer includes InGaZnO (IGZO), amorphous InGaZnO (a-IGZO), crystal-like InGaZnO (c-IGZO), GaZnON, ZnON, or C- Axis Aligned Crystal (CAAC).
- IGZO InGaZnO
- a-IGZO amorphous InGaZnO
- c-IGZO crystal-like InGaZnO
- CAAC C- Axis Aligned Crystal
- Example 7 may include the semiconductor device of any of examples 1-3 and/or some other examples herein, wherein the channel layer has a thickness in a range of about 10 nm to about 100 nm.
- Example 8 may include the semiconductor device of any of examples 1-3 and/or some other examples herein, wherein the gate dielectric layer includes silicon oxide (SiO 2 ), silicon nitride (SiN x ), yttrium oxide (Y 2 O 3 ), silicon oxynitride (SiO ⁇ N y ), aluminum oxide (Al 2 O 3 ), hafnium(IV) oxide (HfO 2 ), tantalum oxide (Ta 2 O 5 ), or titanium dioxide
- Example 9 may include the semiconductor device of any of examples 1-3 and/or some other examples herein, wherein the source electrode or the drain electrode includes titanium (Ti), molybdenum (Mo), gold (Au), platinum (Pt), aluminum (Al), nickel (Ni), copper (Cu), chromium (Cr),
- Example 10 may include the semiconductor device of any of examples 1-3 and/or some other examples herein, wherein the substrate includes a glass substrate, a metal substrate, or a plastic substrate.
- Example 11 may include a computing device comprising: a processor; a memory device coupled to the processor; and a display coupled to the processor, the display including a transistor, and the transistor including: a substrate; a gate electrode above the substrate; a gate dielectric layer conformally covering the gate electrode and the substrate; a hydrogen diffusion barrier (HDB) layer above the gate dielectric layer; a channel layer above the HDB layer, wherein the channel layer includes a source area and a drain area; and a source electrode coupled to the source area, and a drain electrode coupled to the drain area.
- a computing device comprising: a processor; a memory device coupled to the processor; and a display coupled to the processor, the display including a transistor, and the transistor including: a substrate; a gate electrode above the substrate; a gate dielectric layer conformally covering the gate electrode and the substrate; a hydrogen diffusion barrier (HDB) layer above the gate dielectric layer; a channel layer above the HDB layer, wherein the channel layer includes a source area and a drain area; and
- Example 12 may include the computing device of example 11 and/or some other examples herein, wherein the transistor further includes: another HDB layer above the channel layer, wherein the source electrode is through the another HDB layer and coupled to the source area, and the drain electrode is through the another HDB layer and coupled to the drain area.
- Example 13 may include the computing device of example 11 and/or some other examples herein, wherein the transistor further includes: an interlayer dielectric (ILD) layer above the channel layer, wherein the source electrode is through the ILD layer and coupled to the source area, and the drain electrode is through the ILD layer and coupled to the drain area.
- ILD interlayer dielectric
- Example 14 may include the computing device of any of examples 11-13 and/or some other examples herein, wherein the HDB layer includes TiO 2 , Al 2 O 3 , AlN, doped- TiO 2 , or doped-Al 2 O 3 .
- Example 15 may include the computing device of any of examples 11-13 and/or some other examples herein, wherein the channel layer includes InGaZnO (IGZO), amorphous InGaZnO (a-IGZO), crystal-like InGaZnO (c-IGZO), GaZnON, ZnON, or C- Axis Aligned Crystal (CAAC).
- IGZO InGaZnO
- a-IGZO amorphous InGaZnO
- c-IGZO crystal-like InGaZnO
- GaZnON GaZnON
- ZnON ZnON
- CAAC C- Axis Aligned Crystal
- Example 16 may include the computing device of any of examples 11-13 and/or some other examples herein, wherein the computing device is a wearable device or a mobile computing device, the wearable device or the mobile computing device including one or more of an antenna, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, a Geiger counter, an accelerometer, a gyroscope, a speaker, or a camera coupled with the processor.
- the computing device is a wearable device or a mobile computing device, the wearable device or the mobile computing device including one or more of an antenna, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, a Geiger counter, an accelerometer, a gyroscope, a speaker, or a camera coupled with the processor.
- GPS global positioning system
- Example 17 may include a method for forming a semiconductor device, the method comprising: forming a gate electrode above a substrate; forming a gate dielectric layer conformally covering the gate electrode and the substrate; forming a hydrogen diffusion barrier (HDB) layer above the gate dielectric layer; forming channel layer above the HDB layer; forming a source area and a drain area within the channel layer; and forming a source electrode coupled to the source area, and a drain electrode coupled to the drain area.
- HDB hydrogen diffusion barrier
- Example 18 may include the method of example 17 and/or some other examples herein, further comprising: forming another HDB layer above the channel layer, wherein the source electrode is formed through the another HDB layer and coupled to the source area, and the drain electrode is formed through the another HDB layer and coupled to the drain area.
- Example 19 may include the method of example 17 and/or some other examples herein, further comprising: forming an interlayer dielectric (ILD) layer above the channel layer, wherein the source electrode is formed through the ILD layer and coupled to the source area, and the drain electrode is through the ILD layer and coupled to the drain area.
- ILD interlayer dielectric
- Example 20 may include the method of example 17 and/or some other examples herein, further comprising: forming a buffer layer above the substrate, and wherein the forming the gate electrode above the substrate includes forming the gate electrode above the buffer layer.
- Example 21 may include the method of any of examples 17-20 and/or some other examples herein, wherein the gate dielectric layer includes SiO 2 or SiN x , and wherein the forming the gate dielectric layer includes forming the gate dielectric layer by plasma enhanced chemical vapor deposition (PECVD) at 100 0 C to 200 0 C.
- PECVD plasma enhanced chemical vapor deposition
- Example 22 may include the method of any of examples 17-20 and/or some other examples herein, wherein the HDB layer includes TiO 2 , Al 2 O 3 , AlN, doped-TiO 2 , or doped-Al 2 O 3 , and wherein the forming the HDB layer includes forming the HDB layer by physical vapor deposition (PVD), atomic layer deposition (ALD), or chemical vapor deposition (CVD).
- PVD physical vapor deposition
- ALD atomic layer deposition
- CVD chemical vapor deposition
- Example 23 may include the method of any of examples 17-20 and/or some other examples herein, wherein the forming the channel layer includes depositing an amorphous InGaZnO (a-IGZO) film at 25 0 C to 300 0 C by radio frequency (RF) sputtering, direct current (DC) sputtering, magnetron sputtering, ALD, plasma enhanced atomic layer deposition (PEALD), or PECVD.
- RF radio frequency
- DC direct current
- PEALD plasma enhanced atomic layer deposition
- Example 24 may include the method of any of examples 17-20 and/or some other examples herein, wherein the forming the channel layer includes simultaneously sputtering InGaZnO (IGZO) and ZnO at a temperature in a range of 25 0 C to 400 0 C by radio frequency (RF) sputtering, direct current (DC) sputtering, or magnetron sputtering, to form a crystal-like InGaZnO (c-IGZO) film.
- RF radio frequency
- DC direct current
- c-IGZO crystal-like InGaZnO
- Example 25 may include the method of any of examples 17-20 and/or some other examples herein, wherein the channel layer includes InGaZnO (IGZO), amorphous InGaZnO (a-IGZO), crystal-like InGaZnO (c-IGZO), GaZnON, ZnON, or C-Axis Aligned Crystal (CAAC).
- IGZO InGaZnO
- a-IGZO amorphous InGaZnO
- c-IGZO crystal-like InGaZnO
- CAAC C-Axis Aligned Crystal
- Various embodiments may include any suitable combination of the above- described embodiments including alternative (or) embodiments of embodiments that are described in conjunctive form (and) above (e.g., the “and” may be “and/or”). Furthermore, some embodiments may include one or more articles of manufacture (e.g., non-transitory computer-readable media) having instructions, stored thereon, that when executed result in actions of any of the above-described embodiments. Moreover, some embodiments may include apparatuses or systems having any suitable means for carrying out the various operations of the above-described embodiments.
Landscapes
- Thin Film Transistor (AREA)
Abstract
Des modes de réalisation de la présente invention concernent des techniques pour un dispositif semiconducteur comprenant une couche HDB qui protège la couche de canal d'un TFT contre la diffusion d'hydrogène, par exemple provenant de la couche diélectrique de gâchette. Des modes de réalisation peuvent comprendre un substrat et une électrode de gâchette au-dessus du substrat. Une couche diélectrique de gâchette peut recouvrir de manière enrobante l'électrode de gâchette et le substrat. Une couche HDB peut se trouver au-dessus de la couche diélectrique de gâchette et une couche de canal peut se trouver au-dessus de la couche HDB. Par conséquent, la couche HDB peut se trouver entre la couche diélectrique de gâchette et la couche de canal, réduisant la diffusion d'hydrogène de la couche diélectrique de gâchette à la couche de canal. Pour une couche de canal, du TiO2, de l'Al2O3, de l'AlN, du TiO2 dopé ou de l'Al2O3 dopé peut être sélectionnée en tant que matériau pour la couche HDB. L'invention concerne également d'autres modes de réalisation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2016/069213 WO2018125140A1 (fr) | 2016-12-29 | 2016-12-29 | Transistors à film mince d'oxyde métallique à hydrogène contrôlé |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2016/069213 WO2018125140A1 (fr) | 2016-12-29 | 2016-12-29 | Transistors à film mince d'oxyde métallique à hydrogène contrôlé |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018125140A1 true WO2018125140A1 (fr) | 2018-07-05 |
Family
ID=62709697
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2016/069213 WO2018125140A1 (fr) | 2016-12-29 | 2016-12-29 | Transistors à film mince d'oxyde métallique à hydrogène contrôlé |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018125140A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111146277A (zh) * | 2020-01-02 | 2020-05-12 | 歌尔股份有限公司 | 场效应晶体管及其制备方法 |
KR20200119119A (ko) * | 2019-04-09 | 2020-10-19 | 한양대학교 산학협력단 | 수소 확산 방지막을 포함하는 표시 장치 및 그 제조 방법 |
CN114122143A (zh) * | 2021-11-08 | 2022-03-01 | 深圳市华星光电半导体显示技术有限公司 | 阵列基板及其制备方法、显示面板 |
TWI810838B (zh) * | 2021-05-03 | 2023-08-01 | 台灣積體電路製造股份有限公司 | 電晶體及其形成方法 |
TWI814465B (zh) * | 2021-07-12 | 2023-09-01 | 台灣積體電路製造股份有限公司 | 電晶體及其形成方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050161724A1 (en) * | 2002-05-28 | 2005-07-28 | Yasushi Igarashi | Semiconductor device and manufacturing method thereof |
US20110136305A1 (en) * | 2004-01-16 | 2011-06-09 | Adam William Saxler | Group III Nitride Semiconductor Devices with Silicon Nitride Layers and Methods of Manufacturing Such Devices |
US20120052636A1 (en) * | 2007-05-29 | 2012-03-01 | Samsung Mobile Display Co., Ltd. | Method of manufacturing thin film transistor |
US20140002426A1 (en) * | 2012-06-29 | 2014-01-02 | Semiconductor Energy Laboratory Co., Ltd. | Pulse output circuit and semiconductor device |
US20160149047A1 (en) * | 2014-11-25 | 2016-05-26 | Japan Display Inc. | Thin-film transistor and method of manufacturing the same field |
-
2016
- 2016-12-29 WO PCT/US2016/069213 patent/WO2018125140A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050161724A1 (en) * | 2002-05-28 | 2005-07-28 | Yasushi Igarashi | Semiconductor device and manufacturing method thereof |
US20110136305A1 (en) * | 2004-01-16 | 2011-06-09 | Adam William Saxler | Group III Nitride Semiconductor Devices with Silicon Nitride Layers and Methods of Manufacturing Such Devices |
US20120052636A1 (en) * | 2007-05-29 | 2012-03-01 | Samsung Mobile Display Co., Ltd. | Method of manufacturing thin film transistor |
US20140002426A1 (en) * | 2012-06-29 | 2014-01-02 | Semiconductor Energy Laboratory Co., Ltd. | Pulse output circuit and semiconductor device |
US20160149047A1 (en) * | 2014-11-25 | 2016-05-26 | Japan Display Inc. | Thin-film transistor and method of manufacturing the same field |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20200119119A (ko) * | 2019-04-09 | 2020-10-19 | 한양대학교 산학협력단 | 수소 확산 방지막을 포함하는 표시 장치 및 그 제조 방법 |
KR102315554B1 (ko) | 2019-04-09 | 2021-10-21 | 한양대학교 산학협력단 | 수소 확산 방지막을 포함하는 표시 장치 및 그 제조 방법 |
CN111146277A (zh) * | 2020-01-02 | 2020-05-12 | 歌尔股份有限公司 | 场效应晶体管及其制备方法 |
TWI810838B (zh) * | 2021-05-03 | 2023-08-01 | 台灣積體電路製造股份有限公司 | 電晶體及其形成方法 |
US11935935B2 (en) | 2021-05-03 | 2024-03-19 | Taiwan Semiconductor Manufacturing Company Limited | Transistor including a hydrogen-diffusion barrier and methods for forming the same |
TWI814465B (zh) * | 2021-07-12 | 2023-09-01 | 台灣積體電路製造股份有限公司 | 電晶體及其形成方法 |
US12206024B2 (en) | 2021-07-12 | 2025-01-21 | Taiwan Semiconductor Manufacturing Company Limited | Transistors including crystalline raised active regions and methods for forming the same |
CN114122143A (zh) * | 2021-11-08 | 2022-03-01 | 深圳市华星光电半导体显示技术有限公司 | 阵列基板及其制备方法、显示面板 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11527656B2 (en) | Contact electrodes for vertical thin-film transistors | |
US11450750B2 (en) | Thin-film transistors with vertical channels | |
US20200091274A1 (en) | Non-linear gate dielectric material for thin-film transistors | |
US11417770B2 (en) | Vertical thin-film transistors between metal layers | |
US11387366B2 (en) | Encapsulation layers of thin film transistors | |
US11158711B2 (en) | Air gap for thin film transistors | |
US11437405B2 (en) | Transistors stacked on front-end p-type transistors | |
US11462568B2 (en) | Stacked thin film transistors | |
US11777013B2 (en) | Channel formation for three dimensional transistors | |
US20220336634A1 (en) | Source electrode and drain electrode protection for nanowire transistors | |
US20200006322A1 (en) | Schottky diode structures and integration with iii-v transistors | |
US20220310849A1 (en) | Memory cells based on thin-film transistors | |
US11444205B2 (en) | Contact stacks to reduce hydrogen in thin film transistor | |
US12183831B2 (en) | Self-aligned contacts for thin film transistors | |
US11302808B2 (en) | III-V transistors with resistive gate contacts | |
US20200098934A1 (en) | Spacer and channel layer of thin-film transistors | |
WO2018125140A1 (fr) | Transistors à film mince d'oxyde métallique à hydrogène contrôlé | |
US11398560B2 (en) | Contact electrodes and dielectric structures for thin film transistors | |
US11810980B2 (en) | Channel formation for three dimensional transistors | |
US20200211911A1 (en) | Spacer-patterned inverters based on thin-film transistors | |
WO2019132905A1 (fr) | Couches à canaux multiples pour transistors à couches minces verticaux | |
US11335796B2 (en) | Source to channel junction for III-V metal-oxide-semiconductor field effect transistors (MOSFETs) | |
WO2019132894A1 (fr) | Électrode source et électrode drain auto-alignées destinées à des transistors en couches minces | |
WO2019125496A1 (fr) | Couches d'étanchéité pour transistors à couches minces | |
WO2019132942A1 (fr) | Intégration de composants actifs et passifs avec une technologie iii-v |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16925290 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16925290 Country of ref document: EP Kind code of ref document: A1 |