WO2018124815A1 - Fuel gas supply system - Google Patents
Fuel gas supply system Download PDFInfo
- Publication number
- WO2018124815A1 WO2018124815A1 PCT/KR2017/015736 KR2017015736W WO2018124815A1 WO 2018124815 A1 WO2018124815 A1 WO 2018124815A1 KR 2017015736 W KR2017015736 W KR 2017015736W WO 2018124815 A1 WO2018124815 A1 WO 2018124815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- unit
- boil
- liquefied gas
- cooling
- Prior art date
Links
- 239000002737 fuel gas Substances 0.000 title claims abstract description 95
- 239000007789 gas Substances 0.000 claims abstract description 701
- 238000003860 storage Methods 0.000 claims abstract description 200
- 238000009833 condensation Methods 0.000 claims abstract description 116
- 230000005494 condensation Effects 0.000 claims abstract description 111
- 239000006200 vaporizer Substances 0.000 claims abstract description 100
- 238000007906 compression Methods 0.000 claims abstract description 96
- 230000006835 compression Effects 0.000 claims abstract description 93
- 238000002156 mixing Methods 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 239000012809 cooling fluid Substances 0.000 claims description 115
- 238000001816 cooling Methods 0.000 claims description 96
- 239000012530 fluid Substances 0.000 claims description 58
- 238000010248 power generation Methods 0.000 claims description 45
- 235000013399 edible fruits Nutrition 0.000 claims description 42
- 238000001704 evaporation Methods 0.000 claims description 33
- 230000008020 evaporation Effects 0.000 claims description 33
- 230000001105 regulatory effect Effects 0.000 claims description 29
- 238000002347 injection Methods 0.000 claims description 26
- 239000007924 injection Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 26
- 238000011068 loading method Methods 0.000 claims description 22
- 230000001276 controlling effect Effects 0.000 claims description 17
- 230000005611 electricity Effects 0.000 claims description 14
- 230000032258 transport Effects 0.000 claims description 7
- 239000012159 carrier gas Substances 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 5
- 235000014678 Fruitflow® Nutrition 0.000 claims description 2
- 239000007921 spray Substances 0.000 claims 3
- 238000007667 floating Methods 0.000 description 28
- 239000003949 liquefied natural gas Substances 0.000 description 19
- 239000000446 fuel Substances 0.000 description 16
- 239000007788 liquid Substances 0.000 description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 12
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 10
- 239000003345 natural gas Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000013535 sea water Substances 0.000 description 4
- 229910052815 sulfur oxide Inorganic materials 0.000 description 4
- 230000008016 vaporization Effects 0.000 description 4
- 238000009413 insulation Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 241000163925 Bembidion minimum Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000010763 heavy fuel oil Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B25/00—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
- B63B25/02—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
- B63B25/08—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
- B63B25/12—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
- B63B25/16—Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B35/00—Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
- B63B35/44—Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63J—AUXILIARIES ON VESSELS
- B63J2/00—Arrangements of ventilation, heating, cooling, or air-conditioning
- B63J2/12—Heating; Cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K15/00—Adaptations of plants for special use
- F01K15/02—Adaptations of plants for special use for driving vehicles, e.g. locomotives
- F01K15/04—Adaptations of plants for special use for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K17/00—Using steam or condensate extracted or exhausted from steam engine plant
- F01K17/02—Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T70/00—Maritime or waterways transport
Definitions
- the present invention relates to a fuel gas supply system, and more particularly, to a fuel gas supply system for supplying fuel gas using a liquefied gas or an evaporated gas thereof.
- IMO International Maritime Organization
- the natural gas is cooled to about -162 degrees Celsius and reduced to a volume of 1/600 by phase change to Liquefied Natural Gas (LNG), a colorless and transparent cryogenic liquid. Is doing.
- LNG Liquefied Natural Gas
- the liquefied natural gas is accommodated in a storage tank which is insulated and installed in the hull and stored and transported.
- a storage tank which is insulated and installed in the hull and stored and transported.
- the external heat is continuously transferred to the inside of the storage tank so that the evaporated gas generated by the natural vaporization of the liquefied natural gas accumulates inside the storage tank. .
- the boil-off gas can raise the internal pressure of the storage tank and cause deformation and damage of the storage tank, it is necessary to process and remove the boil-off gas.
- a method of sending an evaporated gas to a vent mast provided at an upper side of a storage tank, or burning an evaporated gas by using a gas compression unit (GCU) has been used.
- GCU gas compression unit
- this is not desirable in terms of energy efficiency. Therefore, the method of supplying the boil-off gas together with the liquefied natural gas or the engine of the ship as fuel gas, or by re-liquefying the boil-off gas using a reliquefaction device composed of a refrigeration cycle, etc. It is used.
- a floating power generation system includes a recondenser for recondensing evaporated gas generated by liquefied gas from a storage tank in which liquefied gas is stored to be used as a fuel such as a gas turbine for producing electricity of the power generation system.
- a recondenser for recondensing evaporated gas generated by liquefied gas from a storage tank in which liquefied gas is stored to be used as a fuel such as a gas turbine for producing electricity of the power generation system.
- floating power generation systems include a vaporizer that vaporizes liquefied gas before supplying it to a gas turbine that generates electricity using liquefied gas.
- the floating power generation system may include an air cooler for cooling the air supplied to the gas turbine to increase the efficiency of the gas turbine.
- the thermofluid or cooling fluid used in the carburetor and air cooler and the system for circulating them are generally separate from the cooling system that cools the floating body or other components requiring cooling of the floating power generation system, such as a vessel with a floating power generation system. Is provided.
- the present invention is to provide a fuel gas supply system capable of effectively recondensing the generated evaporated gas with a small amount of evaporated gas with a large difference depending on the operation mode.
- the present invention is to provide a fuel gas supply system that can reduce the amount of evaporated gas generated.
- the present invention is to provide a fuel gas supply system that can utilize a large amount of boil-off gas.
- the present invention is to provide a fuel gas supply system that can adjust the temperature of the heat source flowing into the vaporizer.
- the present invention is to provide a fuel gas supply system that can increase the cooling and heating efficiency.
- the storage unit for receiving the liquefied gas and the boil-off gas generated therefrom;
- a compression unit which pressurizes and transports the boil-off gas generated in the storage unit;
- a recondensation unit for recondensing the boil-off gas compressed in the compression unit using the supercooled liquefied gas of the storage unit;
- a high pressure pump unit installed in a demand source supply line from the recondensation unit to a demand destination to pressurize the liquefied gas of the recondensation unit to a required pressure of the demand destination;
- a heat exchanger unit having a vaporizer for heating and regasifying the liquefied gas pressurized by the high pressure pump unit, wherein the recondensing unit mixes the liquefied gas transferred from the storage unit and the boiled gas compressed in the compression unit.
- a first condensation unit for recondensing the boil-off gas And a second condensation unit configured to heat-exchange the liquefied gas pressurized by the high pressure pump unit and the boil-off gas compressed by the compression unit to recondensate the boil-off gas.
- the compression unit includes a first compression unit for compressing the evaporated gas transported from the storage unit to send to the first condensation unit; And a second compression unit configured to compress the boil-off gas and transfer it to the second condensation unit when the boil-off gas is generated above the recondensation capacity of the first condensation unit.
- the fuel gas supply system further includes a minimum flow rate line branched from the rear end of the high pressure pump unit and circulated to the first condensation portion, and the second condensation portion branched from the minimum flow rate line and connected to the rear end of the high pressure pump unit again. Installed in the condensation line, it is possible to perform a heat exchange between the liquefied gas passing through the condensation line and the boil-off gas toward the first condensing unit in the compression unit.
- the boil-off gas recondensed in the second condensation unit may be recovered to the first condensation unit.
- the first condensation unit may mix the liquefied gas pressurized by the supply pump of the storage unit and the boil-off gas compressed in the first compression unit of the compression unit to condense all or part of the boil-off gas.
- the compression unit may further include a high-pressure compression unit for compressing a part of the boil-off gas generated in the storage unit to a high pressure to transfer to the demand supply line of the rear end of the vaporizer.
- the heat exchange unit may further include a heater for heating the fluid passing therethrough at the rear end of the vaporizer to a temperature required by the customer.
- the liquefied gas supply line for transferring the liquefied gas contained in the storage unit to the first condensing unit;
- a boil-off gas first supply line for transferring the boil-off gas contained in the storage unit to the first condensation unit through a first compression unit;
- a second boil-off gas supplying line for transferring the boil-off gas contained in the storage unit to a second condensation unit through a second compression unit;
- a demand destination supply line for transferring the liquefied gas stored in the first condenser to a demand destination via a high pressure pump unit and a vaporizer;
- a condensation line branched at a rear end of the high pressure pump unit of the demand source supply line and rejoined to bypass the liquefied gas pressurized by the high pressure pump unit, wherein the second condensation part evaporates the second supply line.
- a fuel gas supply system may be provided that heat-exchanges a gas and a liquefied gas of the condensation line to recondense the boil-off gas of the second boil-off gas
- the liquefied gas supply line includes a liquefied gas first supply line and a liquefied gas second supply line, and the first condensing unit injects liquefied gas supplied from the liquefied gas second supply line to the boil-off gas stored therein. Can be recondensed.
- the fuel gas supply system further includes a minimum flow rate line connected to the first condensing unit at a rear end of the high pressure pump unit of the demand supply line, and the condensation line is branched from the minimum flow rate line to supply the high pressure pump unit of the demand supply line. It may be rejoined later.
- the fuel gas supply system blocks the flow of fluid from the second supply line, the condensation line, and the demand supply line to the demand destination during operation of the minimum flow rate, wherein the liquefied gas stored in the first condensation unit is blocked.
- the fuel gas supply system interrupts the flow of fluid to the boil-off gas second supply line and the condensation line during normal operation and stops the operation of the second condensation unit, and the boil-off gas second supply line and By opening the fluid flow to the condensation line and operating the second condensation unit, it may be operated differently depending on the operation mode.
- the fuel gas supply system may provide an excess amount of boil-off gas when the amount of boil-off gas generated in the storage unit is greater than the amount that can be recondensed by the first condensation unit and the second condensation unit during the loading operation. It may further include a high pressure supply line for supplying the boil-off gas directly by pressurizing the high-pressure compression unit.
- the fuel gas supply system may further include a heat exchange line provided with a heater for controlling a temperature of the fuel gas supplied to the demand destination, and branched from the supply destination supply line.
- the fuel gas supply system may further include an evaporation loss module for reducing the evaporation amount of the liquefied gas in the storage unit, wherein the evaporation loss module may include a cooling unit for cooling the storage tank of the storage unit.
- the cooling unit includes an injection member for injecting liquefied gas stored in the storage tank into the storage tank;
- An injection pump for supplying the liquefied gas stored in the storage tank to the injection member; It may include an injection line connecting the injection member and the injection pump.
- the fuel gas supply system further includes a shipping unit for transferring the liquefied gas from the liquefied gas carrier to the storage tank, wherein the evaporation reduction module cools the storage tank before the shipping unit transfers the liquefied gas. It may further comprise a controller for controlling the unit.
- the controller may control the cooling unit to cool the storage tank while the shipping unit transports liquefied gas.
- the evaporation loss module may further include a pressure regulating unit for adjusting the pressure in the storage tank.
- the controller adjusts the pressure to pressurize the inside of the storage tank for a first time before or after the shipping unit starts liquefied gas transfer and maintain the pressure inside the storage tank for a second time after the first time. You can control the unit.
- the controller may control the pressure regulating unit to depressurize the inside of the storage tank for a third time after the second time.
- the fuel gas supply system further includes an evaporation gas supply line through which the evaporation gas is transferred from the storage tank to the recondensation unit, wherein the pressure control unit includes a pressure control valve for adjusting the opening rate of the evaporation gas supply line. can do.
- the demand destination includes a gas power generation module provided with a gas turbine for generating electricity using liquefied gas, and the fuel gas supply system compresses a portion of the boil-off gas in the boil-off gas supply line and supplies the excess gas to the gas turbine. It may further include a supply unit.
- the fuel gas supply system may further include an boil-off gas conveying unit for conveying a portion of the boil-off gas generated in the storage tank to the liquefied gas carrier.
- the boil-off gas conveying unit includes: a conveying line provided so that a portion of the boil-off gas generated in the storage tank is conveyed to the liquefied gas carrier; A carrier gas pressurizer for pressurizing the boil-off gas in the carrier line in the direction of the liquefied gas carrier may be included.
- the boil-off gas conveying unit may further include a bypass line provided so that boil-off gas is transferred to the liquefied gas carrier by bypassing the conveying gas pressurizer from the storage tank.
- the boil-off gas conveying unit may further include a pressure adjusting member for adjusting the pressure of the liquefied gas storage tank in which the liquefied gas of the liquefied gas carrier is stored.
- the fuel gas supply system further includes a circulation module for circulating a cooling fluid, the circulation module comprising: a main circulation module for circulating the cooling fluid to cool a cooling object; It may include an auxiliary circulation module for circulating the cooling fluid to be introduced into the vaporizer by branching the cooling fluid circulated by the main circulation module to heat exchange with the liquefied gas in the vaporizer.
- the consumer includes a gas power generation module provided with a gas turbine for generating electricity by using liquefied gas, the gas power generation module including an air cooler for cooling external air flowing into the gas turbine, wherein the auxiliary circulation module
- the cooling fluid after the heat exchange with the liquefied gas in the vaporizer may be introduced into the air cooler to circulate the cooling fluid to exchange heat with the outside air.
- the main circulation module includes a cooling unit for cooling the cooling fluid; A main circulation pipe through which the cooling fluid is circulated between the cooling unit and the cooling target; It may include a main pump for applying pressure to the cooling fluid to flow the cooling fluid along the main circulation pipe.
- the auxiliary circulation module includes a temperature regulating unit for controlling a temperature of the cooling fluid flowing into the vaporizer, wherein the temperature regulating unit includes the first fluid and the cooling fluid which is the cooling fluid flowing from the cooling unit to the cooling target.
- a mixing member to which a second fluid which is the cooling fluid flowing from the object to the cooling unit is mixed;
- a controller for controlling the mixing member to adjust the mixing ratio between the first fluid and the second fluid according to the temperature of the outside air and the temperature of the cooling fluid introduced into the vaporizer.
- a third fluid which is a cooling fluid in which heat exchange is completed with the liquefied gas in the vaporizer, is mixed with the first fluid and the second fluid, and the controller is configured to control the temperature of the outside air and the cooling fluid introduced into the vaporizer. According to the temperature, the mixing member may be controlled to adjust the mixing ratio between the first fluid, the second fluid and the third fluid.
- the auxiliary circulation module may comprise a bypass flow passage provided for the cooling fluid to bypass the air cooler.
- the auxiliary circulation module may circulate the cooling fluid such that the cooling fluid passing through the air cooler or the bypass passage is mixed with the first fluid and supplied to the cooling target.
- the controller may adjust the flow rate of the cooling fluid flowing into the vaporizer in accordance with the temperature of the outside air and the temperature of the cooling fluid flowing into the vaporizer.
- the fuel gas supply system further includes a circulation module for circulating the cooling fluid and the intermediate fruit, the circulation module comprising: a main circulation module for circulating the cooling fluid to cool a cooling object; An auxiliary circulation module for circulating the intermediate fruit to vaporize the liquefied gas in the vaporizer; It may include a heater for heating the intermediate fruit by heat exchange between the cooling fluid circulated by the main circulation module and the intermediate fruit circulated by the auxiliary circulation module.
- the consumer includes a gas power generation module provided with a gas turbine for generating electricity by using liquefied gas, the gas power generation module including an air cooler for cooling external air flowing into the gas turbine, wherein the auxiliary circulation module
- the intermediate fruit after the heat exchange with the liquefied gas in the vaporizer may be introduced into the air cooler to circulate the intermediate fruit to exchange heat with the outside air.
- the auxiliary circulation module includes a temperature control unit for controlling the temperature of the intermediate fruit flowing into the vaporizer, wherein the temperature control unit includes: a bypass tube provided to flow the intermediate fruit bypassing the heater; A control valve for controlling the flow of the intermediate fruit to the bypass pipe; According to the temperature of the outside air and the temperature of the intermediate fruit is heated by the heater and introduced into the vaporizer, it may include a controller for controlling the flow of the intermediate fruit by controlling the control valve.
- Fuel gas supply system can be supplied to the demand (HP Fuel Gas Consumer) by regasifying the liquefied gas, reducing the emissions of sulfur oxides (SOx), nitrogen oxides (NOx), etc. to reduce the cost of the exhaust gas treatment equipment can do.
- HP Fuel Gas Consumer HP Fuel Gas Consumer
- SOx sulfur oxides
- NOx nitrogen oxides
- the boil-off gas generated during operation can be recovered and used as fuel.
- the second compression unit (Aux. LP BOG Compressor) and the second condensation unit (Aux. BOG Recondenser) can be recondensed and recovered.
- the liquefied gas passing through the second condensation unit is pressurized by a high pressure pump unit (HP LNG Booster Pump) and sufficiently cooled, the boil-off gas (BOG) transferred from the second compression unit to the first condensation unit during the loading operation. Evaporative gas is not generated even when heat exchanged with, which enables efficient fuel gas supply.
- HP LNG Booster Pump high pressure pump unit
- BOG boil-off gas
- a part of the liquefied gas passing through the high-pressure pump unit condenses the evaporated gas in the second condensation unit, so that the evaporated gas is recondensed without an additional energy source, so that no separate reliquefaction apparatus is required. This also minimizes the energy required for reliquefaction.
- a second condensation unit (Aux. BOG Recondenser) is installed to recondensate the excess evaporated gas generated during the loading operation, but is installed in a condensation line branched from the minimum flow line. Quantity can be minimized.
- the compression unit may be classified according to the operating state by providing a first compression unit (first low compression unit), a second compression unit (second low compression unit), and three high compression units.
- first low compression unit first low compression unit
- second low compression unit second low compression unit
- three high compression units when the excess evaporation gas is generated unlike in the normal operation such as during the loading operation, the second low compression unit is used for the remaining evaporation gas more than the capacity of the first compression unit to handle the first low compression.
- the part and the second low compression part are in charge.
- the high-pressure compression unit may be applied and used for the remaining boil-off gas.
- energy consumption may be reduced by transferring the recondensed evaporated gas through the second condenser (Aux. BOG Recondenser) to the first condenser (Main BOG Recondenser) instead of the storage tank.
- the recondensed boil-off gas is returned to the low pressure storage tank, it is necessary to pressurize the feed pump again in the low pressure (5 kPag) environment and transfer it to the first condensation unit, thereby reducing energy waste.
- FIG. 1 shows a fuel gas supply system according to a first embodiment of the present invention.
- FIG. 2 shows a fuel gas supply system according to a second embodiment of the present invention.
- FIG 3 shows a normal operating state of a fuel gas supply system according to a second embodiment of the present invention.
- FIG. 4 shows a minimum flow rate operating state of a fuel gas supply system according to a second embodiment of the present invention.
- FIG 5 shows a loading operation state of a fuel gas supply system according to a second embodiment of the present invention.
- FIG. 6 shows a fuel gas supply system according to a third embodiment of the present invention.
- FIG. 7 shows a fuel gas supply system according to a fourth embodiment of the present invention.
- FIG 8 shows a fuel gas supply system according to a fifth embodiment of the present invention.
- FIG 9 shows a fuel gas supply system according to a sixth embodiment of the present invention.
- FIG. 10 is a block diagram illustrating the temperature control unit of FIG. 9.
- FIG 11 shows a fuel gas supply system according to a seventh embodiment of the present invention.
- FIG. 12 shows a fuel gas supply system according to an eighth embodiment of the present invention.
- FIG. 13 is a block diagram illustrating the temperature control unit of FIG. 12.
- FIG. 14 shows a fuel gas supply system according to a ninth embodiment of the present invention.
- the storage unit 100 for receiving the liquefied gas and the evaporated gas generated therefrom, the compression unit 200 for pressurizing and transporting the boiled gas generated in the storage unit 100, the compression unit (Recondensing unit 300 for recondensing the boil-off gas compressed in the 200 using the supercooled liquefied gas of the storage unit 100, from the recondensation unit 300 to the customer destination supply line (L30) leading to the customer destination (10)
- a high-pressure pump unit 400 installed to pressurize the liquefied gas of the recondensing unit 300 to the required pressure or more of the demand destination 10, and a vaporizer 510 for heating and re-vaporizing the liquefied gas pressurized by the high-pressure pump unit 400.
- the recondensation unit 300 is to condensate the evaporation gas by mixing the liquefied gas transported from the storage unit 100 and the boiled gas compressed in the compression unit 200 Pressurized by the first condenser 310 and the high pressure pump unit 400
- the second may comprise a condensing unit 320 to control the heat exchange the compressed boil-off gas in a liquefied gas transport and the compression unit 200, which is to re-condense the boil-off gas.
- the fuel gas supply system for transferring the liquefied gas contained in the storage unit 100 to the first condensation unit 310, the storage unit 100 )
- the first boil-off gas (L21) to transfer the boil-off gas contained in the first compression unit (210) to the first condensation unit (310), the second boil-off unit (evaporated gas received in the storage unit 100).
- the demand destination 10 is a gaseous state of the liquefied gas accommodated in the storage unit 100 through the boil-off gas supply line (L20) or liquefied gas supply line (L10) to be described later, evaporated gas or natural evaporated gas, etc.
- It may be an engine that receives fuel gas and generates propulsion of a ship.
- the engine may be a gas turbine that is a rotary heat engine that is operated by combustion gas of high temperature and high pressure, a high pressure gas injection engine such as a ME-GI engine, or a fuel gas having a medium pressure of about 15 to 17 bar, specifically, a fuel gas.
- An X-DF engine capable of generating an output may be used, but the present invention is not limited thereto, and includes an engine having various types of engines if the fuel gas is generated in a gaseous state.
- the gas compression unit (GCU) 20 may consume fuel gas by receiving a fluid pressurized by the first compression unit 210 from the boil-off gas first supply line L21 and incinerating it.
- the storage unit 100 may include a plurality of storage tanks 101 arranged in parallel. At this time, each storage tank 101 receives the liquefied fuel from the production site of the natural gas and the like, and stores and stores the liquefied fuel stably until the destination is unloaded.
- the storage tank 101 may be provided with a cargo hold of the membrane type heat-insulated treatment so as to minimize the vaporization of the liquefied fuel by the external heat intrusion.
- the liquefied fuel stored in the storage tank 101 may be used as fuel gas, such as a ship's propulsion engine, a power generation engine, and a GCU, as described below.
- the supply pump 110 may be provided at an inlet end of the liquefied gas supply line L10 in the storage tank 101, but may be provided adjacent to a bottom surface of the storage tank 101 to improve operating efficiency.
- the supply pump 110 may send the liquefied gas contained in the storage tank 101 to the liquefied gas supply line L10.
- the circulation line 120 returns a portion of the liquefied gas supplied to the liquefied gas supply line L10 through the supply pump 110 back to the storage tank 101, so that the amount or amount of liquefied gas in the first condensation unit 310 is
- the amount of liquefied gas supplied to the first condenser 310 may be adjusted according to the amount of fuel required by 10.
- the compression unit 200 compresses the boil-off gas transferred from the storage unit 100 and sends the first-compression unit 210 to the first condensation unit 310, and the re-condensation of the boil-off gas to the first condensation unit 310. It may include a second compression unit 220 for transferring the boil-off gas to the second condensation unit 320 when the capacity exceeds the capacity.
- the first compression unit 210 may be provided on the boil-off gas first supply line L21, and the second compression unit 220 may be provided on the boil-off gas second supply line L22.
- the first compression unit 210 is always operated according to the operation mode of the fuel gas supply system, and the second compression unit 220 may be operated only during the loading operation. Since a large amount of boil-off gas is generated in the storage unit 100 during the loading operation, the second compression unit 220 and the first compression unit 210 are operated together.
- the recondensation unit 300 will be described.
- the recondensation unit 300 largely includes a first condensation unit 310 and a second condensation unit 320.
- the first condenser 310 may serve as a reservoir for temporarily storing the liquefied gas supplied from the liquefied gas supply line L10. Furthermore, the first condensation unit 310 mixes the liquefied gas pressurized by the supply pump 110 of the storage unit 100 and the boil-off gas compressed by the first compression unit 210 of the compression unit 200, All or part of the boil-off gas may be recondensed. In this case, the recondensation of the introduced boil-off gas may be implemented by injection of the liquefied gas supplied through the liquefied gas second supply line (L12).
- the second condensing unit 320 is provided in the condensation line L41 to be described later, and the high pressure pump unit in the demand source supply line L30 through heat exchange with the boil-off gas first supply line L21 and the second supply line L22.
- the liquefied gas pressurized by 400 may be used to recondense the boil-off gas that passes through the boil-off gas second supply line L22 to the first condensation unit 310.
- the high pressure pump unit 400 sends the liquefied gas contained in the first condenser 310 to the demand source supply line L30 and liquefies the pressure level corresponding to the pressure condition of the fuel gas required by the demand source 10.
- the gas can be pressurized.
- the high pressure pump unit 400 may pressurize the liquefied gas to about 30 to 40 barg and send it toward the vaporizer 510.
- the heat exchange unit 500 includes a vaporizer 510 to vaporize the liquefied gas supplied from the first compression unit 210 toward the demand destination 10 through the supply destination L30.
- the heat exchange unit 500 may further include not only the vaporizer 510 but also a heater 520 that heats the fluid passing through the vaporizer 510 at the rear end of the vaporizer 510 to a temperature required by the customer 10.
- the heat exchange line (L31) is further provided in the demand source supply line (L30), the heater 520 is provided on the heat exchange line (L31), the fuel supplied to the demand source 10 through the demand source supply line (L30).
- the temperature of the gas can be controlled.
- the heat exchange line L31 may constantly supply the fuel supplied to the demand destination 10 through the demand destination supply line L30 at a temperature required by the demand destination 10.
- the liquefied gas supply line L10 connects the storage unit 100 and the recondensation unit 300 described above. Specifically, the liquefied gas supply line (L10) supplies the fuel gas sent from the supply pump 110 provided at one end to the first condensation unit (310).
- the liquefied gas supply line L10 may include a liquefied gas first supply line L11 and a liquefied gas second supply line L12.
- the liquefied gas first supply line (L11) is branched from the liquefied gas supply line (L10) is connected to the lower portion of the first condensation unit 310, the liquefied gas second supply line (L12) is a liquefied gas supply line (L10) Branched from and connected to the upper portion of the first condensation part 310, the liquefied gas is injected onto the first condensation part 310 to recondensate the boil-off gas supplied into the first condensation part 310.
- the boil-off gas supply line L20 supplies the boil-off gas stored in the storage unit 100 to the compression unit 200, but branches to the boil-off gas first supply line L21 and the boil-off gas second supply line L22 at a later stage. Can be.
- the boil-off gas first supply line L21 may extend toward the GCU 20 in the boil-off gas supply line L20.
- a first compression unit 210 may be provided in the boil-off gas first supply line L21 to pressurize and supply the boil-off gas toward the GCU 20.
- the boil-off gas first supply line L21 extends toward the GCU 20 and may transfer a portion of the boil-off gas to the first branch line L21a and the second branch line L21b.
- the first branch line L21a connects the boil-off gas first supply line L21 and the boil-off gas second supply line L22
- the second branch line L21b connects the boil-off gas first supply line L21.
- the first condensing unit 310 may be connected to each other to transfer the boil-off gas to the second boil-off gas supply line L22 or the first condensing unit 310.
- the boil-off gas second supply line L22 may extend from the boil-off gas supply line L20 to the first condensation part 310 via the second compression part 220 and the second condensation part 320.
- the second boil-off gas supply line L22 is used only when an excessive amount of boil-off gas is generated in the storage tank 101 to be treated in the boil-off gas first supply line L21, and thus the first boil-off gas first supply line L21. The amount of fluid passing through it can be relatively small compared to).
- the boil-off gas passing through the boil-off gas second supply line L22 may be re-condensed in the second condensation unit 320 and recovered to the first condensation unit 310.
- the demand source supply line L30 pressurizes the liquefied gas that has passed through the first condensation part 310 through the high pressure pump unit 400, and vaporizes the pressurized liquefied gas with the vaporizer 510 to supply it to the demand destination 10.
- a minimum flow rate line L40 connected to the first condenser 310 is provided, and the condensation line L41 branches from the minimum flow rate line L40. And it can be rejoined to the rear end of the high-pressure pump unit 400 of the supply line (L30).
- the minimum flow rate line L40 may be a line for returning the liquefied gas back to the first condenser 310 at the rear end of the high pressure pump unit 400 of the supply source L30. There is a minimum flow rate that the high pressure pump unit 400 can continuously transfer without problems, such as failure, by securing a minimum flow rate line (L40) for flowing this high pressure pump unit 400 before the normal operation state or standby state It is to be able to drive without difficulty.
- Condensation line (L41) is a second condensing unit 320 is installed to recondensate the excess boil off gas generated in the loading operation (Loading Operation) mode to be described later, the minimum flow line (L40, Minimum Flow) It can be installed branched off the line.
- FIG. 2 shows a fuel gas supply system according to a second embodiment of the present invention. Description of the second embodiment will be described below to be the same as the description of the fuel gas supply system according to the first embodiment except for the additional description with a separate reference numeral will be described in order to avoid duplication of content. Omit.
- boil-off gas when the boil-off gas is excessively generated in the storage tank 101 in the boil-off gas supply line (L20), it is pressurized by the high-pressure compressor 230 to the rear end of the vaporizer 510 of the demand source supply line (L30)
- a high pressure supply line (L23) for supplying boil-off gas may be provided. This functions as a means for supplying the boil-off gas directly to the demand destination 10 when the boil-off gas is excessively generated in a loading operation mode to be described later.
- FIG. 3 shows a normal operation state of a fuel gas supply system according to a second embodiment of the present invention
- FIG. 4 shows a minimum flow rate operating state of a fuel gas supply system according to a second embodiment of the present invention
- FIG. A loading operation state of the fuel gas supply system according to the second embodiment of the present invention is shown.
- the fuel gas supply system according to the second embodiment of the present invention may be operated in three operation modes, namely, a normal operation mode, a minimum flow rate operation mode, and a shipment operation mode.
- the liquefied gas stored in the first condenser 310 is blocked by the flow of the boil-off gas from the second supply line L22, the condensation line L41, and the supply source L30 to the demand source 10. Gas is circulated through the high pressure pump unit 400 through the minimum flow line (L40), it is possible to enable the continuous operation of the high pressure pump unit 400.
- the fluid flow to the second boil-off gas supply line (L22) and the condensation line (L41) is blocked and the second condensing unit (320) is stopped.
- the second condensing unit (320) By opening the fluid flow to the L22) and the condensation line (L41) and operating the second condensation unit 320, it can be operated differently depending on the operation mode.
- the operation of each of these modes will be described in detail.
- the liquefied gas is pressurized by the supply pump 110 to a predetermined pressure and transferred to the first condensation unit 310. At this time, since the liquefied gas is pressurized, it is in a state of supercooling at the corresponding pressure, and the liquid state can be maintained even if the temperature rises to some extent.
- Boil-off gas is generated in the storage tank 101 for storing the liquefied gas, the thickness of the insulation (insulation) provided in the storage tank 101, the size of the storage tank 101, outside conditions, liquefaction
- the amount of generated evaporated gas varies depending on the gas storage capacity.
- the maximum amount of boil-off gas (NBOG) is a conservative condition according to the storage capacity of the liquefied gas according to the storage state because the insulation thickness and the size and outside conditions of the storage tank 101 are fixed at design time. Can be calculated from
- the boil-off gas is pressurized by the first compression unit 210 in the boil-off gas first supply line L21 and transferred to the first condensation unit 310.
- the boil-off gas is recondensed by the supercooled liquefied gas transferred from the storage tank 101 through the supply pump 110 in the first condenser 310.
- the liquefied gas and the recondensed boil-off gas in the first condensation part 310 are sufficiently pressurized by the high pressure pump unit 400 to satisfy the required pressure of the demand destination 10.
- the liquefied gas pressurized to high pressure is regasified in the vapor phase in the vaporizer 510.
- the heat source may be sea water, heated cooling water and the like.
- the temperature of the fuel gas regasified by the heater 520 is heated to a temperature required by the customer 10.
- the heat source at this time may be steam or the like.
- the high pressure pump unit 400 may be operated without turning off, which means that a part of the liquefied gas stored in the first condensation unit 310 is transferred to the high pressure pump unit 400 and the minimum flow line L40.
- the first condensation unit 310 may serve to temporarily store the liquefied gas and separate the evaporated gas, such as a suction drum, instead of recondensing.
- the liquefied gas is not large enough to recondense the evaporated gas and the recirculation through the minimum flow line (L40) is repeated, and thus the condensed gas cannot be recondensed. If incinerated or impossible, it may be vented.
- the first condenser 310 Only the evaporation gas that can control the pressure and level of the first condenser 310 is sent to the first condenser 310 by using the first LP compressor (Main LP evaporator gas compressor).
- the first low compression unit (Main LP boil-off gas compressor) and the second low compression unit (Aux. LP boil-off gas compressor) are transferred to the second condenser 320 to condense the entire amount.
- the cold source is the liquefied gas pressurized by the high pressure pump unit 400 and branched from the minimum flow line L40 to be supplied to the second condenser 320.
- the amount of boil-off gas that can be recondensed in the second condenser 320 is first transferred to the second condenser 320, and the remaining amount of the evaporated gas is transferred to the first condenser 310 to condense.
- the operation is performed as in the case of 2), but the amount of recondensation in the two condensation units 310 and 320 is directly connected to the rear end of the vaporizer 510 by directly pressurizing the high pressure using the high pressure compressor 230. It can be transferred to the demand destination (10).
- the operation of the fuel gas supply system according to the present invention has been described above.
- the liquefied gas can be regasified and supplied to the demand destination (10, HP Fuel Gas Consumer)
- the emission of sulfur oxides (SOx), nitrogen oxides (NOx), and the like can be reduced, thereby reducing the cost of the exhaust gas treatment equipment. .
- the boil-off gas generated during operation can be recovered and used as fuel.
- the evaporation gas generated in various operations, in particular, excessively generated during the loading operation may be recondensed and recovered using the second compression unit 220 and the second condensation unit 320. Can be.
- the boil-off gas generated in various operations may be recondensed and recovered by using the second compression unit 220 and the second condensation unit 320. have. If the fuel is directly pressurized to high pressure without recondensation, the energy consumption required for compression increases, which is a big advantage in terms of energy efficiency. It is thermodynamically clear that evaporation of the liquid after pressurization requires less energy than pressurizing the gas.
- the first condensation unit 310 is discharged from the second compression unit 220. It is possible to supply fuel gas efficiently without generating boil-off gas even if it exchanges heat with boil-off gas (BOG).
- the high pressure pump unit 400 HP LNG Booster Pump
- the second condensing unit 320 is installed to recondensate the excess boil off gas generated during the loading operation, but is installed in the condensation line (L41) branched from the minimum flow line (L40). To minimize the amount of piping.
- the amount of the second condensation unit 320 can be reduced and the size can be minimized.
- the second compression unit may be configured for the remaining evaporation gas having a capacity that the first compression unit 210 (the first low compression unit) can handle.
- the first compression unit 210 and the second compression unit 220 are responsible for transporting the boil-off gas.
- the high-pressure compressor 230 may be applied and used for the remaining boil-off gas.
- energy consumption may be reduced by transferring the recondensed evaporated gas to the first condenser 310 instead of the storage tank.
- the recondensed boil-off gas is returned to the low pressure storage tank 101, it is necessary to pressurize it back to the supply pump 110 in the low pressure (5 kPag) environment and transfer it to the first condensation part. It can be reduced.
- FIG. 6 shows a fuel gas supply system according to a third embodiment of the present invention.
- a description will be given of a fuel gas supply system according to an embodiment of the present invention taking the case applied to the floating power generation system as an example.
- the fuel gas supply system according to the embodiment of FIG. 6 differs from the above-described embodiments in that the fuel gas supply system further includes a shipping unit 50, an evaporation reduction module 5000, and an evaporation gas conveying unit 6000. have.
- the floating power generation system is installed in a floating body to generate electricity using liquefied gas.
- Floating bodies may be provided in ships or offshore structures in which they are suspended in water or river water, and the floating power generation system is installed.
- the floating power generation system includes a storage tank 30, a gas power generation module 2000, a gas supply module 3000, a shipping unit 50, an evaporation loss module 5000, and an evaporation gas conveying unit 6000. ).
- the floating power generation system includes essential components such as a pump, a compressor, and a valve, which are naturally required for the operation of the floating power generation system.
- Liquefied gas is stored in the storage tank 30.
- Storage tank 30 corresponds to a storage unit for receiving liquefied gas and its boil-off gas.
- Liquefied gas is a flammable substance in which gaseous gas is condensed in a liquid state at room temperature.
- liquefied gas is provided as liquefied natural gas (LNG).
- the gas power generation module 2000 corresponds to a demand source of fuel gas.
- the gas power generation module 2000 generates electricity using the liquefied gas supplied from the storage tank 30.
- the gas power generation module 2000 has a gas turbine 2100.
- the gas turbine 2100 produces electricity by burning a liquefied gas supplied in a gaseous state from the storage tank 30 to rotate a turbine.
- rotation of a turbine of a predetermined rpm or more is generally required.
- the gas power generation module 2000 is provided with a starter (not shown) for rotating the turbine of the gas turbine 2100 above the predetermined ALPM before the gas turbine 2100 combusts the liquefied gas and operates itself.
- the gas power generation module 2000 may include an engine instead of the gas turbine 2100.
- the engine generates electricity by using liquefied gas vaporized in the same manner as the gas turbine 2100, but is different from the gas turbine 2100 in operating conditions.
- the gas supply module 3000 supplies the liquefied gas stored in the storage tank 30 to the engine.
- the gas power generation module 2000 may further include an air cooler (not shown).
- the air cooler cools external air introduced to the gas turbine 2100 for combustion of the liquefied gas. As the temperature of the air flowing into the gas turbine 2100 is lowered, the mass of the air supplied to the gas turbine for the same time increases to increase the output of the gas turbine.
- the air cooler may not be selectively provided.
- the gas supply module 3000 supplies the liquefied gas stored in the storage tank 30 to the gas turbine 2100.
- the gas supply module 3000 includes a recondensation unit 3100, a demand source supply line 3200, a vaporizer 3300, a supply pump 3400, a liquefied gas supply line 3500, and an evaporative gas supply line. 3600.
- the recondensation unit 3100 recondenses the boil-off gas generated from the liquefied gas in the storage tank 30. Inside the recondensation unit 3100, an evaporated gas in which the liquefied gas is evaporated from the storage tank 30 is supplied from an upper portion, and a liquefied gas in a liquid state is supplied from the storage tank 30.
- the boil-off gas supplied to the recondensation unit 3100 is cooled through heat exchange with the liquefied gas in the liquid state at high pressure and condensed in the liquid state. According to one embodiment, some of the liquid liquefied gas supplied into the recondensation unit 3100 is sprayed and supplied in the recondensation unit 3100. Therefore, the contact area with the boil-off gas is increased, so that heat exchange between the liquid liquefied gas and the boil-off gas is easier.
- the customer supply line 3200 connects the recondensation unit 3100 and the gas turbine 2100. Therefore, the liquefied gas condensed in the recondensation unit 3100 is vaporized in the vaporizer 3300 through the supply source line 3200 is supplied to the gas turbine 2100.
- the high pressure pump unit 3210 may be installed in the supply source 3200. The high pressure pump unit 3210 applies pressure to the liquefied gas so that the liquefied gas in the recondensation unit 3100 is transferred to the gas turbine 2100.
- the vaporizer 3300 vaporizes the liquefied gas before it is supplied to the gas turbine 2100 so that it can be used as fuel in the gas turbine 2100.
- the vaporizer 3300 is installed in the supply line 3200 of the customer.
- the supply pump 3400 transfers the liquefied gas in the storage tank 30 to the recondensation unit 3100. That is, the supply pump 3400 applies pressure to the liquefied gas so that the liquefied gas in the liquid state in the storage tank 30 is moved to the recondensing unit 3100 along the liquefied gas supply line 3500.
- the liquefied gas supply line 3500 connects the supply pump 3400 and the recondensation unit 3100. Therefore, the liquefied gas pressurized by the supply pump 3400 is transferred to the recondensing unit 3100 along the liquefied gas supply line 3500.
- the boil-off gas supply line 3600 connects the storage tank 30 and the recondensation unit 3100.
- the boil-off gas generated in the storage tank 30 is transferred to the recondensation unit 3100 along the boil-off gas supply line 3600 by the pressure in the storage tank 30.
- the boil-off gas supply line 3600 may be provided with a compression unit 3700.
- the compression unit 3700 compresses the boil-off gas transferred from the storage tank 30 to the re-condensation unit 3100 before the boil-off gas generated in the storage tank 30 is supplied to the re-condensation unit 3100.
- the boil-off gas can be more easily condensed in the recondensation unit 3100, and it is easy to maintain the pressure inside the re-condensation unit 3100.
- the gas supply module 3000 may further include a gas temperature controller (not shown).
- the gas temperature controller heats the liquefied gas vaporized in the vaporizer 3300 to a temperature at which the efficiency of the gas turbine 2100 is optimized and supplies the gas turbine 2100 to the gas turbine 2100.
- the shipping unit 50 transfers the liquefied gas from the liquefied gas carrier 40 to the storage tank 30.
- the liquefied gas carrier 40 is a vessel for transporting liquefied gas to the floating power generation system.
- the shipping unit 50 includes a transfer line through which liquefied gas is transferred from the liquefied gas carrier 40 to the storage tank 30.
- the shipping unit 50 may further include a valve (not shown) that opens and closes the transfer line, and a sensor (not shown) which transmits a signal to the controller 5300 whether the shipment is in progress.
- the evaporation loss module 5000 reduces the amount of evaporated liquefied gas in the storage tank 30.
- the evaporation loss module 5000 may reduce the evaporation amount of the liquefied gas in the storage tank 30 by cooling the storage tank 30 and pressurizing the internal pressure of the storage tank 30.
- the evaporation loss module 5000 includes a cooling unit 5100, a pressure regulation unit 5200 and a controller 5300.
- the cooling unit 5100 cools the storage tank 30.
- the storage tank 30 may have a larger amount of liquefied gas than the minimum amount that can be transferred to the supply pump 3400.
- the cooling unit 5100 may cool the storage tank 30 by spraying the liquefied gas in a liquid state stored in the storage tank 30 into the storage tank 30.
- the cooling unit 5100 includes an injection member 5110, an injection pump 5120, an injection line 5130 and a temperature meter 5140.
- the injection member 5110 injects the liquefied gas in the liquid state stored in the storage tank 30 into the storage tank 30.
- the injection pump 5120 applies pressure to the liquefied gas in the storage tank 30 so that the liquefied gas stored in the storage tank 30 is supplied to the injection member 5110.
- the injection line 5130 connects the injection member 5110 and the injection pump 5120. Therefore, the liquefied gas pressurized by the injection pump 5120 is transferred to the injection member 5110 through the injection line 5130.
- the temperature measuring device 5140 measures the temperature inside the storage tank 30.
- the temperature measuring unit 5140 transmits the measured value measuring the temperature of the storage tank 30 to the controller 5300 in real time.
- the pressure regulating unit 5200 adjusts the pressure in the storage tank 30.
- the pressure regulating unit 5200 may adjust the pressure in the storage tank 30 by adjusting the flow rate of the boil-off gas transferred from the storage tank 30 to the recondensation unit 3100.
- the pressure regulating unit 5200 includes a pressure regulating valve 5210 and a pressure meter 5220.
- the pressure regulating valve 5210 adjusts the opening rate of the boil-off gas supply line 3600. For example, when the opening ratio of the pressure regulating valve 5210 is lowered, since the amount of generated evaporated gas discharged to the outside of the storage tank 30 is reduced, the internal pressure of the storage tank 30 may increase. In addition, when the opening ratio of the pressure regulating valve 5210 is increased, the amount of the generated evaporated gas discharged to the outside of the storage tank 30 increases, so that the internal pressure of the storage tank 30 may decrease.
- the pressure gauge 5220 measures the pressure inside the storage tank 30.
- the pressure measuring unit 5220 transmits the measured value measuring the pressure of the storage tank 30 to the controller 5300 in real time.
- the controller 5300 controls the cooling unit 5100 and the pressure regulating unit 5200.
- the controller 5300 controls the cooling unit 5100 to cool the inside of the storage tank 30.
- the controller 5300 controls the cooling unit 5100 to cool the storage tank 30 before the shipping unit 50 starts transferring the liquefied gas from the liquefied gas carrier 40 to the storage tank 30.
- the controller 5300 operates the injection pump 5120 and opens the injection line 5130 to inject the liquefied gas through the injection member 5110 in the storage tank 30.
- the controller 5300 controls the cooling unit 5100 to inject liquefied gas for a sufficient time so that the temperature of the storage tank 30 is cooled to a preset temperature.
- the controller controls the cooling unit 5100 to inject liquefied gas until the storage tank 30 is cooled to -160 ° C.
- the controller 5300 may control the cooling unit 5100 to cool the storage tank 30 while the shipping unit 50 transfers the liquefied gas from the liquefied gas carrier 40 to the storage tank 30.
- Can be By continually cooling the storage tank not only before the shipping unit 50 starts to transfer to the storage tank 30 but also during the transfer, the liquefaction of the storage tank 30 while the shipping unit 50 transfers the liquefied gas. It prevents the temperature of the area which is not in contact with the gas from rising.
- the controller 5300 controls the cooling unit 5100 when cooling the storage tank 30 is described before the storage tank 30 starts to transfer the liquefied gas. It is the same as when cooling.
- the controller 5300 controls the pressure regulating unit 5200 to adjust the pressure in the storage tank 30. For example, the controller pressurizes the inside of the storage tank 30 for the first time before or after the shipping unit 50 starts to transfer the liquefied gas, and the storage tank 30 for the second time after the first time.
- the pressure regulating unit 5200 is controlled to maintain the pressure inside.
- the controller 5300 may control the pressure regulating unit 5200 to depressurize the inside of the storage tank for a third time after the second time.
- the first time may be a time before or after the shipping unit 50 starts liquefied gas transfer, until the pressure in the storage tank 30 reaches the set pressure.
- the set pressure may be at least 15 kPaG.
- the second time may be a time until the time when the shipping unit 50 finishes transferring the liquefied gas after the first time.
- the controller 5300 adjusts the pressure to reduce the pressure in the storage tank 30 to a suitable pressure for supplying liquefied gas to the configuration required for power generation such as the recondensation unit 3100 and the gas turbine 2100 for the third time.
- the unit 5200 may be controlled.
- the controller 5300 controls the opening rate of the pressure regulating valve 5210 so that the boil-off gas generated in the storage tank 30 is recondensed through the boil-off gas supply line 3600. By adjusting the amount to be transferred to), the pressure in the storage tank 30 is adjusted.
- the controller 5300 lowers the opening rate of the pressure regulating valve 5210, the amount of the boil-off gas in the storage tank 30 is transferred to the recondensation unit 3100 is reduced, thereby reducing the pressure of the storage tank 30. Can be high.
- the controller 5300 increases the opening rate of the pressure regulating valve 5210, the amount of the boil-off gas in the storage tank 30 is transferred to the recondensation unit 3100 increases so that the pressure of the storage tank 30 is increased. Can be lowered.
- the storage tank 30 is cooled and pressurized by the evaporation reduction module 5000, thereby reducing the amount of evaporated gas generated in the storage tank 30.
- the boil-off gas conveying unit 6000 conveys a portion of the boil-off gas generated in the storage tank 30 to the liquefied gas carrier 40. A portion of the boil-off gas generated in the storage tank 30 by the boil-off gas conveying unit 6000 is conveyed to the liquefied gas carrier ship 40, thereby reducing the amount of boil-off gas to be treated in the floating power generation system. In addition, it is possible to maintain the pressure of the liquefied gas storage tank of the liquefied gas carrier ship 40 can be lowered by loading the liquefied gas into the storage tank 30. Optionally, the boil-off gas conveying unit 6000 may not be provided.
- the boil-off gas conveying unit 6000 includes a conveying line 6100.
- the conveying line 6100 is provided such that a part of the boil-off gas generated in the storage tank 30 is conveyed to the liquefied gas carrier 40.
- the conveying line 6100 may be provided to connect a region between the pressure control valve 5210 and the compression unit 3700 of the boil-off gas supply line 3600 and the liquefied gas carrier line 40.
- the boil-off gas conveying unit 6000 may further include a conveying gas pressurizer 6200, a bypass line 6300, and a pressure regulating member 6400.
- the carrier gas pressurizer 6200 pressurizes the boil-off gas in the carrier line 6100 toward the liquefied gas carrier line 40. If the pressure in the storage tank 30 is not sufficient to easily transport the boil-off gas through the transfer line 6100 to the liquefied gas carrier 40, by applying pressure to the boil-off gas by the carrier gas pressurizer 6200 The boil-off gas may be more easily conveyed to the liquefied gas carrier through the transfer line 6100.
- the bypass line 6300 is provided such that the boil-off gas is bypassed from the storage tank 30 to the liquefied gas carrier 40 by bypassing the carrier gas pressurizer 6200.
- the bypass line 6300 has a point where both ends are branched from the boil-off gas supply line 3600 of the conveying line 6100 and a region between the conveying gas pressurizer 6200 and the conveying gas pressurizer of the conveying line 6100. And an area between the 6200 and the liquefied gas carrier 40. If the pressure in the storage tank 30 is sufficient to easily transport the boil-off gas through the conveying line 6100 to the liquefied gas carrier 40, the boil-off gas passing through the conveying line 6100 passes through the bypass line 6300. Unnecessary energy consumption can be reduced by being conveyed to the liquefied gas carrier 40 and preventing the conveying gas pressurizer 6200 from operating unnecessarily.
- the pressure regulating member 6400 adjusts the pressure of the liquefied gas storage tank of the liquefied gas carrier ship 40.
- the pressure adjusting member 6400 both ends so that some of the boil-off gas pressurized by the carrier gas pressurizer 6200 is transferred to the recondensation unit 3100 through the boil-off gas supply line 3600.
- the boil-off gas supply line 3600 and the transfer line 6100 may be provided as a valve 6400 for adjusting the opening rate of the gas line.
- the boil-off gas conveying unit 6000 may further include a pressure measurer 6500 that measures the pressure of the carrier tank of the liquefied gas carrier.
- the controller 5300 may adjust the pressure of the carrier tank by controlling the valve 6400 according to the pressure of the carrier tank measured by the pressure gauge 6500. By adjusting the pressure by the valve 6400, it is possible to prevent the pressure inside the carrier tank from excessively rising.
- Other configurations, structures and functions of the fuel gas supply system shown in FIG. 7 are similar to those of the fuel gas supply system of FIG. 6.
- the gas supply module 3000a may further include an excess gas supply unit 3800.
- the excess gas supply unit 3800 compresses a portion of the boil-off gas in the boil-off gas supply line 3600 and supplies the compressed gas to the gas turbine 2100.
- the excess gas supply unit 3800 includes an excess gas supply line 3810 and an excess gas compressor 3820.
- both ends of the excess gas supply pipe 3810 may be connected to an area between the boil-off gas supply line 3600 and the gas turbine 2100 and the vaporizer 3300 of the demand supply line 3200.
- the compression unit 3700 When the compression unit 3700 is provided, one end connected to the boil-off gas supply line 3600 of the excess gas supply pipe 3810 is connected to the compression unit 3700 and the pressure control valve 5210 of the boil-off gas supply line 3600. Is connected to the area between.
- the excess gas compressor 3820 compresses some of the boil-off gas in the boil-off gas supply line 3600 to a pressure that can be used for the gas turbine 2100.
- the excess gas compressor 3820 is installed in the excess gas supply pipe 3810.
- the controller 5300 is the amount of the boil-off gas generated in the storage tank 30 exceeds the amount that can be condensed in the recondensation unit 3100, the above in the boil-off gas supply line 3600 Excess amount of evaporated gas is compressed to open the excess gas supply pipe 3810 to be mixed with the liquefied gas vaporized in the vaporizer 3300 and supplied to the gas turbine 2100, and to control the excess gas compressor 3820 to operate. .
- the boil-off gas conveying unit 6000 of the fuel gas supply system illustrated in FIG. 8 may have a conveying gas pressurizer 6200, a bypass line 6300, a pressure regulating member 6400, and a pressure as in the fuel gas supply system of FIG. 7. It may further include a meter (5220).
- the fuel gas supply system according to the embodiment of the present invention can reduce the amount of generated boil-off gas by cooling and pressurizing the storage tank.
- the fuel gas supply system according to the embodiment of the present invention may utilize a large amount of boil-off gas by conveying a portion of the boil-off gas to the liquefied gas carrier or directly supplying the compressed gas to the gas turbine.
- the floating power generation system includes a storage tank 1000, a gas power generation module 2000, a gas supply module 3000, and a circulation module 4000.
- the liquefied gas is stored in the storage tank 1000.
- the storage tank 1000 corresponds to a storage unit accommodating liquefied gas and its boiled gas.
- the gas power generation module 2000 generates electricity using the liquefied gas supplied from the storage tank 1000.
- the gas power generation module 2000 includes a gas turbine 2100 and an air cooler 2200.
- the gas turbine 2100 generates electricity by burning a liquefied gas supplied in a gaseous state from the storage tank 1000 to rotate a turbine.
- the air cooler 2200 cools external air introduced to the gas turbine 2100 for combustion of the liquefied gas. As the temperature of the air flowing into the gas turbine is lowered, the mass of air supplied to the gas turbine for the same time increases, thereby increasing the output of the gas turbine.
- the gas power generation module 2000 may further include a bypass tube 2300.
- the bypass tube 2300 is provided so that outside air flows bypass the air cooler 2200.
- the air cooler 2200 may not be selectively provided.
- the gas supply module 3000 supplies the liquefied gas stored in the storage tank 1000 to the gas turbine 2100.
- the gas supply module 3000 has a vaporizer 3300.
- the vaporizer 3300 vaporizes the liquefied gas before it is supplied to the gas turbine 2100 so that it can be used as fuel in the gas turbine 2100.
- a compression unit 200 of FIGS. 1 to 5, or 3700 of FIGS. 6 to 8
- a recondensation unit FIGGS. 1 to 5
- Reference numeral 300 of FIG. 6, or reference numeral 3100 of FIGS. 6 to 8 may be provided.
- the gas supply module 3000 may further include a gas temperature controller 3900.
- the gas temperature controller 3900 heats the liquefied gas vaporized in the vaporizer 3300 to a temperature at which the efficiency of the gas turbine 2100 is optimized and supplies the gas turbine 2100 to the gas turbine 2100. .
- the circulation module 4000 circulates the cooling fluid.
- the circulation module 4000 includes a main circulation module 4100 and an auxiliary circulation module 4200.
- the main circulation module 4100 circulates the cooling fluid to cool the cooling target 7000 which requires cooling during configuration of the floating body and / or the floating power generation system.
- the cooling target 7000 is a general configuration requiring cooling of the floating body or the floating power generation system, and does not include the air cooler 2200 in which the cooling fluid is circulated by the auxiliary cooling module to be described below.
- the cooling target 7000 may be a cooling facility of a ship provided as a floating body, a cooling device of various electrical equipment, or the like.
- the main circulation module 4100 includes a cooling unit 4110, a main circulation pipe 4120, and a main pump 4130.
- the cooling unit 4110 cools the heated cooling fluid by cooling the cooling target 7000.
- the cooling unit 4110 may use seawater or river with a floating body as a cooling source for cooling the cooling fluid.
- the main circulation pipe 4120 is provided as a flow path through which cooling fluid is circulated between the cooling unit 4110 and the cooling target 7000.
- the main pump 4130 applies pressure to the cooling fluid so that the cooling fluid flows along the main circulation pipe 4120.
- the auxiliary circulation module 4200 branches the cooling fluid circulated by the main circulation module 4100 to circulate the cooling fluid so that the cooling fluid flows into the vaporizer 3300 and the air cooler 2200.
- the cooling fluid introduced into the vaporizer 3300 by the auxiliary circulation module 4200 exchanges heat with the liquefied gas.
- the liquefied gas heat-exchanged with the cooling fluid in the vaporizer 3300 is vaporized to be used as fuel in the gas turbine 2100.
- the auxiliary circulation module 4200 circulates the cooling fluid so that the cooling fluid having completed the heat exchange with the liquefied gas in the vaporizer 3300 flows into the air cooler 2200 to exchange heat with the outside air.
- the external air heat exchanged with the cooling fluid in the air cooler 2200 is cooled before being supplied to the gas turbine 2100.
- the cooling fluid is used as a heat source in the vaporizer 3300 to be cooled to a temperature sufficient to cool the outside air in the air cooler 2200.
- the auxiliary circulation module 4200 includes a temperature control unit 4210.
- the temperature control unit 4210 adjusts the temperature of the cooling fluid flowing into the vaporizer 3300.
- the air cooler 2200 since the cooling fluid passes sequentially through the vaporizer 3300 and the air cooler 2200, the higher the temperature of the cooling fluid supplied to the vaporizer 3300, the air cooler 2200.
- the temperature of the cooling fluid supplied to the furnace is also increased. Therefore, when the temperature of the cooling fluid flowing into the air cooler 2200 becomes higher than a predetermined temperature, the external air supplied to the gas turbine 2100 may not be sufficiently cooled.
- the temperature control unit 4210 for adjusting the temperature of the cooling fluid flowing into the vaporizer 3300, by adjusting the temperature of the cooling fluid flowing into the vaporizer 3300 to a suitable range of temperature, the vaporizer 3300 ) The amount of cooling fluid supplied per hour and the temperature of the air cooled in the air cooler 2200 can be adjusted to an appropriate range.
- the temperature control unit 4210 includes a mixing member 4211 and a controller 4212.
- FIG. 10 is a block diagram illustrating the temperature control unit of FIG. 9. 9 and 10, in the mixing member 4211, the first fluid, the second fluid, and the third fluid are mixed. Cooling fluid mixed in the mixing member 4211 flows sequentially through the vaporizer 3300 and the air cooler 2200.
- the first fluid is a cooling fluid flowing from the cooling unit 4110 to the cooling target 7000. That is, the first fluid is branched from the region in which the cooling fluid flows from the cooling unit 4110 of the main circulation pipe 4120 to the cooling target 7000 and flows into the mixing member 4211.
- the second fluid is a cooling fluid flowing from the cooling target 7000 to the cooling unit 4110.
- the second fluid is branched from the region where the cooling fluid flows from the cooling target 7000 of the main circulation pipe 4120 to the cooling unit 4110 and flows into the mixing member 4211.
- the third fluid is a cooling fluid in which heat exchange with liquefied gas is completed in the vaporizer 3300.
- the third fluid is a cooling fluid after the heat exchange in the vaporizer 3300 before passing through the bypass passage 4220 or the air cooler 2200 to the cooling target 7000 to be described below.
- the temperature of the third fluid heat-exchanged with the liquefied gas in the liquid state is generally lower than the temperature of the second fluid heat-exchanged with the refrigerant such as seawater used in the cooling unit 4110, The temperature is higher than the temperature of the second fluid cooled in the cooling unit.
- the controller 4212 controls the mixing member 4211 to adjust the mixing ratio between the first fluid, the second fluid, and the third fluid, in accordance with the temperature of the cooling fluid and the temperature of the external air introduced into the vaporizer 3300.
- the temperature control unit 4210 may further include an outside air temperature measurer 4213, a cooling fluid temperature measurer 4214, and a flow rate measurer 4215.
- the outside air temperature meter 4213 measures the temperature of the outside air of the floating body and the floating power generation system.
- the cooling fluid temperature measuring device 4214 measures the temperature of the cooling fluid flowing into the vaporizer 3300 after being mixed in the mixing member 4211.
- the flow meter 4215 measures the flow rate of the cooling fluid flowing into the vaporizer 3300 after mixing in the mixing member 4211.
- the controller 4212 controls the mixing member 4211 according to the values measured at the outside air temperature meter 4213, the cooling fluid temperature meter 4214, and the flow rate meter 4215.
- the controller 4212 may adjust the flow rate of the cooling fluid flowing into the vaporizer 3300 according to the temperature of the outside air and the temperature of the cooling fluid flowing into the vaporizer.
- a flow regulating valve 4216 is provided for adjusting the flow rate in a flow path through which the cooling fluid mixed by the mixing member 4211 flows to the vaporizer 3300, and the controller 4212 is provided with a temperature of the outside air and a vaporizer ( When it is necessary to increase the amount of cooling fluid to be introduced into the vaporizer 3300 in accordance with the temperature of the cooling fluid introduced into the 3300, the flow control valve 4216 is controlled to increase the opening rate of the flow control valve 4216.
- the flow control valve 4216 opens.
- the flow control valve 4216 is controlled to lower the rate.
- the secondary circulation module 4200 may further include a bypass flow path 4220.
- Bypass flow path 4220 is provided to allow cooling fluid to bypass the air cooler. For example, when the temperature of the outside air sucked into the air cooler 2200 is sufficiently low so that no separate cooling is required, the cooling fluid passing through the vaporizer 3300 is not introduced into the air cooler 2200 and bypassed.
- the cooling object 7000 is supplied to the cooling target 7000 through the flow path 4220.
- the auxiliary circulation module 4200 circulates the cooling fluid such that the cooling fluid passing through the air cooler 2200 or the bypass flow path 4220 is mixed with the first fluid and supplied to the cooling target 7000.
- FIG. 11 shows a fuel gas supply system according to a seventh embodiment of the present invention.
- the temperature control unit 4210 may not be provided.
- the cooling fluid is provided to sequentially circulate the cooling target 7000, the cooling unit 4110, and the vaporizer 3300. That is, only the first fluid flows into the vaporizer 3300.
- Other configurations, structures and functions of the fuel gas supply system shown in FIG. 11 are similar to those of the floating power generation system of FIG. 9.
- FIG. 12 shows a fuel gas supply system according to an eighth embodiment of the present invention.
- FIG. 13 is a block diagram illustrating the temperature control unit of FIG. 12. 12 and 13, unlike in the case of FIG. 11, in order to further increase the temperature of the cooling fluid supplied to the vaporizer 3300, a portion of the first fluid and the second fluid provided at a higher temperature than the first fluid. Temperature control unit 4210 may be provided to mix the. In this case, a configuration for introducing the third fluid, which is provided to lower the temperature of the cooling fluid, further into the mixing member 4211 may not be provided.
- Other configurations, structures, and functions of the fuel gas supply system shown in FIGS. 12 and 13 are similar to those of the floating power generation system of FIG. 9.
- the fuel gas supply system shown in FIG. 14 causes the intermediate fruit to circulate in the auxiliary circulation module 4200 of the circulation module 4000, and the cooling fluid flowing in the main circulation module 4100 and the intermediate flow in the auxiliary circulation module 420.
- the fruit is heat-exchanged by the heater 4300 and in the vaporizer 3300 by using the heat energy of the intermediate fruit of the auxiliary circulation module 4200 heated in the heater 4300 through heat exchange with the cooling fluid of the main circulation module 4100.
- the circulation module is configured to vaporize the liquefied gas.
- a fluid such as seawater, river water, or glycol may be used.
- the circulation module 4000 includes a main circulation module 4100, an auxiliary circulation module 4200, and a heater 4300. Some of the cooling fluid whose temperature has risen in the process of cooling the cooling target 7000 in the main circulation module 4100 is supplied to the cooling unit 4110 and cooled, and the other part of the heater 4300 through the transfer line L80. Is transferred to. The cooling fluid transferred to the heater 4300 through the transfer line L80 is cooled in the process of heat exchange with the intermediate fruit circulating in the auxiliary circulation module 4200, and then again cooled through the main pump 4130. Supplied by.
- the intermediate fruit circulating in the auxiliary circulation module 4200 is heat-exchanged with the cooling fluid of the main circulation module 4100 in the heater 4300 and is heated by the opposite feed to cool the cooling fluid of the main circulation module 4100.
- the intermediate fruit heated to the heater 4300 is supplied to the vaporizer 3300 through the intermediate fruit pipe L70 by the circulation pump 4230.
- the liquefied gas is vaporized by the heat energy of the intermediate fruit in the vaporizer 3300, and, on the contrary, the intermediate fruit is cooled by the liquefied gas and then supplied to the air cooler 2200.
- the intermediate fruit cooled by the vaporizer 3300 cools the outside air to be supplied to the gas turbine 2100 in the air cooler 2200, and then is supplied to the heater 4300 through the intermediate heating line L50, and then again to the heater 4300. ) Is heated in the process of heat exchange with the cooling fluid of the main circulation module 4100 and is supplied to the vaporizer 3300.
- the temperature control unit 4210 of the auxiliary circulation module 4200 adjusts the temperature of the intermediate fruit flowing into the vaporizer 330.
- the temperature regulating unit 4210 includes a bypass pipe L60, a regulating valve 4217, and a controller 4212.
- the bypass tube (L60) is connected to the intermediate fruit line (L50) so that the intermediate fruit flows bypass the heater (4300).
- the control valve 4217 controls the flow rate of the intermediate fruit which bypasses the bypass pipe L60.
- the control valve 4217 may be provided as a three-way valve installed at the contact between the intermediate fruit line (L50) and the bypass pipe (L60).
- the control valve 4217 may be provided as a valve installed in the intermediate fruit line L50 and / or the bypass pipe L60.
- the controller 4212 controls the regulating valve 4217 according to the temperature of the outside air measured by the outside air temperature meter 4213 and the vaporizer inlet-side medium fruit temperature measured by the middle fruit temperature meter 4214. 4300) to adjust the flow rate of the intermediate fruit.
- the fuel gas supply system of the present invention can adjust the temperature of the heat source flowing into the vaporizer by providing a temperature control unit.
- the fuel gas supply system of the present invention does not provide a system for circulating a separate thermal fluid or refrigerant for vaporizing liquefied gas or cooling the air supplied to the gas turbine, but instead of a cooling fluid circulated by the existing cooling module. By using it, cooling and heating efficiency can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
A fuel gas supply system is disclosed. A fuel gas supply system according to an embodiment of the present invention comprises: a storage unit for receiving a liquefied gas and a vaporized gas generated therefrom; a compression unit for pressurizing the vaporized gas generated in the storage unit and delivering pressurized vaporized gas; a recondensation unit for recondensing the vaporized gas pressurized in the compression unit by using a supercooled liquefied gas of the storage unit; a high pressure pump unit, installed on a consumer supply line connecting the recondensation unit and a consumer, for pressurizing a liquefied gas of the recondensation unit at a consumer pressure demand or more; and a heat-exchange unit including a vaporizer for re-vaporizing the liquefied gas pressurized in the high pressure pump unit by heating. The recondensation unit includes: a first condensation unit for mixing the liquefied gas delivered from the storage unit and the vaporized gas pressurized in the compression unit to recondense the vaporized gas; and a second condensation unit for allowing the liquefied gas, which has been pressurized in the high pressure pump unit and then delivered, and the vaporized gas pressurized in the compression unit to exchange heat with each other to recondense the vaporized gas.
Description
본 발명은 연료가스 공급 시스템에 관한 것으로, 더욱 상세하게는 액화가스나 이의 증발가스를 이용하여 연료가스를 공급하는 연료가스 공급 시스템에 관한 것이다.The present invention relates to a fuel gas supply system, and more particularly, to a fuel gas supply system for supplying fuel gas using a liquefied gas or an evaporated gas thereof.
온실가스 및 각종 대기오염 물질의 배출에 대한 국제해사기구(IMO)의 규제가 강화됨에 따라 조선 및 해운업계에서는 기존 연료인 중유, 디젤유의 이용을 대신하여, 청정 에너지원인 천연가스(Natural Gas)를 선박의 연료가스로 이용하는 경우가 많아지고 있다.As the International Maritime Organization (IMO) has tightened regulations on the emission of greenhouse gases and various air pollutants, the shipbuilding and shipping industry has replaced natural gas, a clean energy source, with the use of heavy fuel oil and diesel fuel. It is increasingly used as fuel gas for ships.
통상적으로 저장 및 수송의 용이성을 위해, 천연가스를 약 섭씨 -162도로 냉각해 그 부피를 1/600로 줄인 무색 투명한 초저온 액체인 액화천연가스(LNG; Liquefied Natural Gas)로 상 변화하여 관리 및 운용을 수행하고 있다.Normally, for ease of storage and transportation, the natural gas is cooled to about -162 degrees Celsius and reduced to a volume of 1/600 by phase change to Liquefied Natural Gas (LNG), a colorless and transparent cryogenic liquid. Is doing.
이러한 액화천연가스는 선체에 단열 처리되어 설치되는 저장탱크에 수용되어 저장 및 수송된다. 그러나 액화천연가스를 완전히 단열시켜 수용하는 것은 실질적으로 불가능하므로, 외부의 열이 저장탱크의 내부로 지속적으로 전달되어 액화천연가스가 자연적으로 기화하여 발생되는 증발가스가 저장탱크의 내부에 축적되게 된다. 증발가스는 저장탱크의 내부압력을 상승시켜 저장탱크의 변형 및 훼손을 유발할 수 있으므로 증발가스를 처리 및 제거할 필요가 있다.The liquefied natural gas is accommodated in a storage tank which is insulated and installed in the hull and stored and transported. However, since it is practically impossible to completely insulate the liquefied natural gas, the external heat is continuously transferred to the inside of the storage tank so that the evaporated gas generated by the natural vaporization of the liquefied natural gas accumulates inside the storage tank. . Since the boil-off gas can raise the internal pressure of the storage tank and cause deformation and damage of the storage tank, it is necessary to process and remove the boil-off gas.
이에 종래에는 저장탱크의 상측에 마련되는 벤트마스트(Vent mast)로 증발가스를 흘려 보내거나, GCU(Gas Combustion Unit)을 이용하여 증발가스를 태워버리는 방안 등이 이용되었다. 그러나 이는 에너지 효율 면에서 바람직하지 못하므로 증발가스를 액화천연가스와 함께 또는 각각 선박의 엔진에 연료가스로 공급하거나, 냉동 사이클 등으로 이루어지는 재액화장치를 이용해 증발가스를 재액화시켜 활용하는 방안이 이용되고 있다.In the related art, a method of sending an evaporated gas to a vent mast provided at an upper side of a storage tank, or burning an evaporated gas by using a gas compression unit (GCU) has been used. However, this is not desirable in terms of energy efficiency. Therefore, the method of supplying the boil-off gas together with the liquefied natural gas or the engine of the ship as fuel gas, or by re-liquefying the boil-off gas using a reliquefaction device composed of a refrigeration cycle, etc. It is used.
액화천연가스 등의 액화가스를 연료로 사용하는 발전 설비는 주로 육상에 설치되는데, 이를 위해서는 부지를 매입해야 하고, 송전선 등을 설치해야 하므로 과도한 설치 비용이 발생하였다. 이에 따라, 최근에는 원료 수급이 용이하고 용지확보 비용이 저렴한 해안가에 부유식 발전 시스템을 설치하는 사례가 늘어나고 있다.Power generation facilities that use liquefied natural gas, such as liquefied natural gas as fuel, are mainly installed on land, and this requires excessive land installation costs and installation of transmission lines. Accordingly, in recent years, there has been an increasing number of floating power generation systems installed on the shoreline where raw material supply is easy and land security costs are low.
일반적으로 부유식 발전 시스템은 액화가스가 저장되는 저장 탱크로부터 액화가스가 기화되어 발생되는 증발가스를 발전 시스템의 전기를 생산하는 가스 터빈 등의 연료로 사용하기 위해 재응축시키는 재응축기를 포함한다. 그러나, 액화가스를 이송하는 액화가스 운반선으로부터 저장 탱크로 액화가스를 선적하는 등의 경우, 이송되는 도중에 받는 열 등에 의해 일반적인 상태에 비해 많은 양의 증발가스가 발생된다. 이와 같이, 일반적인 상태에 비해 많은 양의 증발가스가 발생되는 경우, 증발가스의 발생량이 일반적인 재응축기의 용량을 초과하는 문제가 발생될 수 있다.In general, a floating power generation system includes a recondenser for recondensing evaporated gas generated by liquefied gas from a storage tank in which liquefied gas is stored to be used as a fuel such as a gas turbine for producing electricity of the power generation system. However, when the liquefied gas is shipped from the liquefied gas carrier to transport the liquefied gas to the storage tank, a larger amount of evaporated gas is generated than the normal state due to the heat received during the transfer. As such, when a large amount of boil-off gas is generated as compared to the general state, a problem may occur in which the amount of boil-off gas exceeds the capacity of a general recondenser.
일반적으로, 부유식 발전 시스템은 액화가스를 이용하여 전기를 발생시키는 가스 터빈으로 액화가스를 공급하기 전에 액화가스를 기화시키는 기화기를 포함한다. 또한, 부유식 발전시스템은 가스 터빈의 효율을 높이기 위해 가스 터빈에 공급되는 공기를 냉각하는 공기 냉각기를 포함할 수 있다. 기화기 및 공기 냉각기에서 사용되는 열유체 또는 냉각 유체 및 이를 순환시키는 시스템은 일반적으로 부유식 발전 시스템이 설치된 선박 등의 부유체 또는 부유식 발전 시스템의 냉각이 요구되는 다른 구성들을 냉각시키는 냉각 시스템과 별개로 제공된다.Generally, floating power generation systems include a vaporizer that vaporizes liquefied gas before supplying it to a gas turbine that generates electricity using liquefied gas. In addition, the floating power generation system may include an air cooler for cooling the air supplied to the gas turbine to increase the efficiency of the gas turbine. The thermofluid or cooling fluid used in the carburetor and air cooler and the system for circulating them are generally separate from the cooling system that cools the floating body or other components requiring cooling of the floating power generation system, such as a vessel with a floating power generation system. Is provided.
본 발명은 운전모드에 따라 큰 차이를 보이며 발생하는 증발가스를 적은 증발가스의 공급량으로도 효과적으로 재응축할 수 있는 연료가스 공급 시스템을 제공하기 위한 것이다.The present invention is to provide a fuel gas supply system capable of effectively recondensing the generated evaporated gas with a small amount of evaporated gas with a large difference depending on the operation mode.
또한, 본 발명은 증발가스의 발생량을 줄일 수 있는 연료가스 공급 시스템을 제공하기 위한 것이다.In addition, the present invention is to provide a fuel gas supply system that can reduce the amount of evaporated gas generated.
또한, 본 발명은 다량의 증발가스를 활용할 수 있는 연료가스 공급 시스템을 제공하기 위한 것이다.In addition, the present invention is to provide a fuel gas supply system that can utilize a large amount of boil-off gas.
또한, 본 발명은 기화기로 유입되는 열원의 온도를 조절할 수 있는 연료가스 공급 시스템을 제공하기 위한 것이다.In addition, the present invention is to provide a fuel gas supply system that can adjust the temperature of the heat source flowing into the vaporizer.
또한, 본 발명은 냉각 및 가열 효율을 높일 수 있는 연료가스 공급 시스템을 제공하기 위한 것이다.In addition, the present invention is to provide a fuel gas supply system that can increase the cooling and heating efficiency.
본 발명의 일 측면에 따르면, 액화가스와 그로부터 발생되는 증발가스를 수용하는 저장유닛; 상기 저장유닛에서 발생된 증발가스를 가압하여 이송하는 압축유닛; 상기 압축유닛에서 압축된 증발가스를 상기 저장유닛의 과냉각된 액화가스를 이용해 재응축시키는 재응축유닛; 상기 재응축유닛에서 수요처로 이어지는 수요처 공급라인에 설치되어 상기 재응축유닛의 액화가스를 상기 수요처의 요구압력 이상으로 가압하는 고압펌프유닛; 및 상기 고압펌프유닛에서 가압된 액화가스를 가열하여 재기화시키는 기화기를 구비하는 열교환유닛;을 포함하고, 상기 재응축유닛은 상기 저장유닛에서 이송되는 액화가스와 상기 압축유닛에서 압축된 증발가스를 혼합하여 증발가스를 재응축시키는 제1응축부; 및 상기 고압펌프유닛에서 가압되어 이송되는 액화가스와 상기 압축유닛에서 압축된 증발가스를 열교환하여 증발가스를 재응축시키는 제2응축부;를 포함하는 연료가스 공급 시스템이 제공될 수 있다.According to an aspect of the invention, the storage unit for receiving the liquefied gas and the boil-off gas generated therefrom; A compression unit which pressurizes and transports the boil-off gas generated in the storage unit; A recondensation unit for recondensing the boil-off gas compressed in the compression unit using the supercooled liquefied gas of the storage unit; A high pressure pump unit installed in a demand source supply line from the recondensation unit to a demand destination to pressurize the liquefied gas of the recondensation unit to a required pressure of the demand destination; And a heat exchanger unit having a vaporizer for heating and regasifying the liquefied gas pressurized by the high pressure pump unit, wherein the recondensing unit mixes the liquefied gas transferred from the storage unit and the boiled gas compressed in the compression unit. A first condensation unit for recondensing the boil-off gas; And a second condensation unit configured to heat-exchange the liquefied gas pressurized by the high pressure pump unit and the boil-off gas compressed by the compression unit to recondensate the boil-off gas.
상기 압축유닛은 상기 저장유닛에서 이송되는 증발가스를 압축하여 제1응축부로 보내는 제1압축부; 및 증발가스가 상기 제1응축부의 재응축 용량 이상으로 발생 시 증발가스를 압축하여 제2응축부로 이송시키는 제2압축부;를 포함할 수 있다.The compression unit includes a first compression unit for compressing the evaporated gas transported from the storage unit to send to the first condensation unit; And a second compression unit configured to compress the boil-off gas and transfer it to the second condensation unit when the boil-off gas is generated above the recondensation capacity of the first condensation unit.
상기 연료가스 공급 시스템은 상기 고압펌프유닛 후단에서 분기되어 상기 제1응축부로 순환되는 최소유량 라인을 더 포함하고, 상기 제2응축부는 상기 최소유량라인에서 분기되어 다시 상기 고압펌프유닛 후단으로 연결되는 응축라인에 설치되어, 상기 응축라인을 지나는 액화가스와 상기 압축유닛에서 상기 제1응축부로 향하는 증발가스 간의 열교환을 수행할 수 있다.The fuel gas supply system further includes a minimum flow rate line branched from the rear end of the high pressure pump unit and circulated to the first condensation portion, and the second condensation portion branched from the minimum flow rate line and connected to the rear end of the high pressure pump unit again. Installed in the condensation line, it is possible to perform a heat exchange between the liquefied gas passing through the condensation line and the boil-off gas toward the first condensing unit in the compression unit.
상기 제2응축부에서 재응축된 증발가스는 상기 제1응축부로 회수될 수 있다.The boil-off gas recondensed in the second condensation unit may be recovered to the first condensation unit.
상기 제1응축부는 상기 저장유닛의 공급펌프에 의해 가압되는 액화가스와 상기 압축유닛의 제1압축부에서 압축되는 증발가스를 혼합하여, 증발가스의 전부 또는 일부를 재응축시킬 수 있다.The first condensation unit may mix the liquefied gas pressurized by the supply pump of the storage unit and the boil-off gas compressed in the first compression unit of the compression unit to condense all or part of the boil-off gas.
상기 압축유닛은 상기 저장유닛에서 발생하는 증발가스 일부를 고압으로 압축하여 상기 기화기 후단의 수요처 공급라인으로 이송하는 고압압축부를 더 포함할 수 있다.The compression unit may further include a high-pressure compression unit for compressing a part of the boil-off gas generated in the storage unit to a high pressure to transfer to the demand supply line of the rear end of the vaporizer.
상기 열교환유닛은 상기 기화기 후단에서 그를 통과하는 유체를 수요처에서 요구하는 온도로 가열하는 히터를 더 포함할 수 있다.The heat exchange unit may further include a heater for heating the fluid passing therethrough at the rear end of the vaporizer to a temperature required by the customer.
본 발명의 다른 측면에 따르면, 저장유닛에 수용된 액화가스를 제1응축부로 이송하는 액화가스 공급라인; 상기 저장유닛에 수용된 증발가스를 제1압축부를 거쳐 상기 제1응축부로 이송하는 증발가스 제1공급라인; 상기 저장유닛에 수용된 증발가스를 제2압축부를 거쳐 제2응축부로 이송하는 증발가스 제2공급라인; 상기 제1응축부에 저장된 액화가스를 고압펌프유닛과 기화기를 거쳐 수요처로 이송하는 수요처 공급라인; 및 상기 수요처 공급라인의 고압펌프유닛 후단에서 분기되었다가 재합류하여 상기 고압펌프유닛에서 가압된 액화가스를 우회시키는 응축라인;을 포함하고, 상기 제2응축부는 상기 증발가스 제2공급라인의 증발가스와 상기 응축라인의 액화가스를 열교환하여 상기 증발가스 제2공급라인의 증발가스를 재응축시키는 연료가스 공급 시스템이 제공될 수 있다.According to another aspect of the invention, the liquefied gas supply line for transferring the liquefied gas contained in the storage unit to the first condensing unit; A boil-off gas first supply line for transferring the boil-off gas contained in the storage unit to the first condensation unit through a first compression unit; A second boil-off gas supplying line for transferring the boil-off gas contained in the storage unit to a second condensation unit through a second compression unit; A demand destination supply line for transferring the liquefied gas stored in the first condenser to a demand destination via a high pressure pump unit and a vaporizer; And a condensation line branched at a rear end of the high pressure pump unit of the demand source supply line and rejoined to bypass the liquefied gas pressurized by the high pressure pump unit, wherein the second condensation part evaporates the second supply line. A fuel gas supply system may be provided that heat-exchanges a gas and a liquefied gas of the condensation line to recondense the boil-off gas of the second boil-off gas.
상기 액화가스 공급라인은 액화가스 제1공급라인과 액화가스 제2공급라인을 포함하고, 상기 제1응축부는 내부에 저장되는 증발가스를 상기 액화가스 제2공급라인에서 공급되는 액화가스를 분사하여 재응축할 수 있다.The liquefied gas supply line includes a liquefied gas first supply line and a liquefied gas second supply line, and the first condensing unit injects liquefied gas supplied from the liquefied gas second supply line to the boil-off gas stored therein. Can be recondensed.
상기 연료가스 공급 시스템은 상기 수요처 공급라인의 고압펌프유닛 후단에서 상기 제1응축부로 연결되는 최소유량라인을 더 포함하고, 상기 응축라인은 상기 최소유량라인에서 분기되어 상기 수요처 공급라인의 고압펌프유닛 후단으로 재합류될 수 있다.The fuel gas supply system further includes a minimum flow rate line connected to the first condensing unit at a rear end of the high pressure pump unit of the demand supply line, and the condensation line is branched from the minimum flow rate line to supply the high pressure pump unit of the demand supply line. It may be rejoined later.
상기 연료가스 공급 시스템은 최소유량 운전 시에는 상기 증발가스 제2공급라인, 상기 응축라인, 및 상기 수요처 공급라인으로부터 상기 수요처로의 유체흐름을 차단하되, 상기 제1응축부에 저장된 액화가스를 상기 최소유량라인을 통해 상기 고압펌프유닛을 거쳐 순환되도록 하여, 상기 고압펌프유닛의 지속적인 작동을 가능하게 할 수 있다.The fuel gas supply system blocks the flow of fluid from the second supply line, the condensation line, and the demand supply line to the demand destination during operation of the minimum flow rate, wherein the liquefied gas stored in the first condensation unit is blocked. By circulating through the high pressure pump unit through a minimum flow line, it is possible to enable continuous operation of the high pressure pump unit.
상기 연료가스 공급 시스템은 정상 운전 시에는 상기 증발가스 제2공급라인 및 상기 응축라인으로의 유체흐름을 차단하고 상기 제2응축부의 가동을 중단하되, 선적 운전 시에는 상기 증발가스 제2공급라인 및 상기 응축라인으로의 유체흐름을 개방하고 상기 제2응축부를 가동시켜, 운전모드에 따라 달리 운용될 수 있다.The fuel gas supply system interrupts the flow of fluid to the boil-off gas second supply line and the condensation line during normal operation and stops the operation of the second condensation unit, and the boil-off gas second supply line and By opening the fluid flow to the condensation line and operating the second condensation unit, it may be operated differently depending on the operation mode.
상기 연료가스 공급 시스템은 상기 선적 운전 시에 상기 제1응축부와 상기 제2응축부에서 재응축시킬 수 있는 양 이상으로 상기 저장유닛에서 발생되는 증발가스의 양이 과다한 경우, 초과분의 증발가스를 고압압축부로 가압하여 상기 기화기 후단에 직접 공급하는 증발가스 고압공급라인을 더 포함할 수 있다.The fuel gas supply system may provide an excess amount of boil-off gas when the amount of boil-off gas generated in the storage unit is greater than the amount that can be recondensed by the first condensation unit and the second condensation unit during the loading operation. It may further include a high pressure supply line for supplying the boil-off gas directly by pressurizing the high-pressure compression unit.
상기 연료가스 공급 시스템은 상기 수요처로 공급되는 연료가스의 온도를 조절하는 히터가 마련되고, 상기 수요처 공급라인에서 분기되는 열교환라인을 더 포함할 수 있다.The fuel gas supply system may further include a heat exchange line provided with a heater for controlling a temperature of the fuel gas supplied to the demand destination, and branched from the supply destination supply line.
상기 연료가스 공급 시스템은 상기 저장유닛 내에서 액화가스의 증발량을 감소시키는 증발 감량 모듈을 더 포함하되, 상기 증발 감량 모듈은 상기 저장유닛의 저장탱크를 냉각시키는 냉각 유닛을 포함할 수 있다.The fuel gas supply system may further include an evaporation loss module for reducing the evaporation amount of the liquefied gas in the storage unit, wherein the evaporation loss module may include a cooling unit for cooling the storage tank of the storage unit.
상기 냉각 유닛은, 상기 저장탱크의 내부에 저장된 액화가스를 상기 저장탱크의 내부에 분사하는 분사 부재와; 상기 저장탱크의 내부에 저장된 액화가스를 상기 분사 부재로 공급하는 분사 펌프와; 상기 분사 부재 및 상기 분사 펌프를 연결하는 분사 라인을 포함할 수 있다.The cooling unit includes an injection member for injecting liquefied gas stored in the storage tank into the storage tank; An injection pump for supplying the liquefied gas stored in the storage tank to the injection member; It may include an injection line connecting the injection member and the injection pump.
상기 연료가스 공급 시스템은 액화가스 운반선으로부터 상기 저장탱크로 액화가스를 이송하는 선적 유닛을 더 포함하고, 상기 증발 감량 모듈은 상기 선적 유닛이 액화가스를 이송하기 전에 상기 저장탱크를 냉각시키도록 상기 냉각 유닛을 제어하는 제어기를 더 포함할 수 있다.The fuel gas supply system further includes a shipping unit for transferring the liquefied gas from the liquefied gas carrier to the storage tank, wherein the evaporation reduction module cools the storage tank before the shipping unit transfers the liquefied gas. It may further comprise a controller for controlling the unit.
상기 제어기는 상기 선적 유닛이 액화가스를 이송하는 동안 상기 저장탱크를 냉각시키도록 상기 냉각 유닛을 제어할 수 있다.The controller may control the cooling unit to cool the storage tank while the shipping unit transports liquefied gas.
상기 증발 감량 모듈은 상기 저장탱크 내의 압력을 조절하는 압력 조절 유닛을 더 포함할 수 있다.The evaporation loss module may further include a pressure regulating unit for adjusting the pressure in the storage tank.
상기 제어기는, 상기 선적 유닛이 액화가스 이송을 시작하기 전 또는 후 제 1 시간 동안 상기 저장탱크 내부를 가압하고, 상기 제 1 시간 후 제 2 시간 동안 상기 저장탱크 내부의 압력을 유지하도록 상기 압력 조절 유닛을 제어할 수 있다.The controller adjusts the pressure to pressurize the inside of the storage tank for a first time before or after the shipping unit starts liquefied gas transfer and maintain the pressure inside the storage tank for a second time after the first time. You can control the unit.
상기 제어기는 상기 제 2 시간 후 제 3 시간 동안 상기 저장탱크 내부를 감압하도록 상기 압력 조절 유닛을 제어할 수 있다.The controller may control the pressure regulating unit to depressurize the inside of the storage tank for a third time after the second time.
상기 연료가스 공급 시스템은 상기 저장탱크로부터 상기 재응축유닛으로 증발가스가 이송되는 증발가스 공급라인을 더 포함하되, 상기 압력 조절 유닛은 상기 증발가스 공급라인의 개방율을 조절하는 압력 조절 밸브를 포함할 수 있다.The fuel gas supply system further includes an evaporation gas supply line through which the evaporation gas is transferred from the storage tank to the recondensation unit, wherein the pressure control unit includes a pressure control valve for adjusting the opening rate of the evaporation gas supply line. can do.
상기 수요처는 액화가스를 이용하여 전기를 발생시키는 가스 터빈이 제공된 가스 발전 모듈을 포함하고, 상기 연료가스 공급 시스템은 상기 증발가스 공급라인 내의 증발가스 중 일부를 압축하여 상기 가스 터빈으로 공급하는 초과 가스 공급 유닛을 더 포함할 수 있다.The demand destination includes a gas power generation module provided with a gas turbine for generating electricity using liquefied gas, and the fuel gas supply system compresses a portion of the boil-off gas in the boil-off gas supply line and supplies the excess gas to the gas turbine. It may further include a supply unit.
상기 연료가스 공급 시스템은 상기 저장탱크에서 발생된 증발가스 중 일부를 상기 액화가스 운반선으로 반송하는 증발가스 반송 유닛을 더 포함할 수 있다.The fuel gas supply system may further include an boil-off gas conveying unit for conveying a portion of the boil-off gas generated in the storage tank to the liquefied gas carrier.
상기 증발가스 반송 유닛은, 상기 저장탱크에서 발생된 증발가스의 일부가 상기 액화가스 운반선으로 반송되도록 제공된 반송 라인과; 상기 반송 라인 내의 증발가스를 상기 액화가스 운반선 방향으로 가압하는 반송 가스 가압기를 포함할 수 있다.The boil-off gas conveying unit includes: a conveying line provided so that a portion of the boil-off gas generated in the storage tank is conveyed to the liquefied gas carrier; A carrier gas pressurizer for pressurizing the boil-off gas in the carrier line in the direction of the liquefied gas carrier may be included.
상기 증발가스 반송 유닛은 증발가스가 상기 저장탱크로부터 상기 반송 가스 가압기를 우회하여 상기 액화가스 운반선으로 이송되도록 제공된 우회 라인을 더 포함할 수 있다.The boil-off gas conveying unit may further include a bypass line provided so that boil-off gas is transferred to the liquefied gas carrier by bypassing the conveying gas pressurizer from the storage tank.
상기 증발가스 반송 유닛은 상기 액화가스 운반선의 액화가스가 저장된 액화가스 저장탱크의 압력을 조절하는 압력 조절 부재를 더 포함할 수 있다.The boil-off gas conveying unit may further include a pressure adjusting member for adjusting the pressure of the liquefied gas storage tank in which the liquefied gas of the liquefied gas carrier is stored.
상기 연료가스 공급 시스템은 냉각 유체를 순환시키는 순환 모듈을 더 포함하고, 상기 순환 모듈은, 냉각 대상을 냉각하도록 상기 냉각 유체를 순환시키는 주 순환 모듈과; 상기 기화기에서 액화가스와 열교환되도록, 상기 주 순환 모듈에 의해 순환되는 상기 냉각 유체를 분지하여 상기 기화기로 유입되도록 상기 냉각 유체를 순환시키는 보조 순환 모듈을 포함할 수 있다.The fuel gas supply system further includes a circulation module for circulating a cooling fluid, the circulation module comprising: a main circulation module for circulating the cooling fluid to cool a cooling object; It may include an auxiliary circulation module for circulating the cooling fluid to be introduced into the vaporizer by branching the cooling fluid circulated by the main circulation module to heat exchange with the liquefied gas in the vaporizer.
상기 수요처는 액화가스를 이용하여 전기를 발생시키는 가스 터빈이 제공된 가스 발전 모듈을 포함하고, 상기 가스 발전 모듈은 상기 가스 터빈에 유입되는 외부 공기를 냉각시키는 공기 냉각기를 포함하되, 상기 보조 순환 모듈은 상기 기화기에서 액화가스와 열교환된 후의 상기 냉각 유체가 상기 공기 냉각기로 유입되어 상기 외부 공기와 열교환되도록 상기 냉각 유체를 순환시킬 수 있다.The consumer includes a gas power generation module provided with a gas turbine for generating electricity by using liquefied gas, the gas power generation module including an air cooler for cooling external air flowing into the gas turbine, wherein the auxiliary circulation module The cooling fluid after the heat exchange with the liquefied gas in the vaporizer may be introduced into the air cooler to circulate the cooling fluid to exchange heat with the outside air.
상기 주 순환 모듈은, 상기 냉각 유체를 냉각시키는 냉각 유닛과; 상기 냉각 유체가 상기 냉각 유닛 및 상기 냉각 대상 간에 순환되도록 흐르는 주 순환관과; 상기 냉각 유체가 상기 주 순환관을 따라 흐르도록 상기 냉각 유체에 압력을 가하는 메인 펌프를 포함할 수 있다.The main circulation module includes a cooling unit for cooling the cooling fluid; A main circulation pipe through which the cooling fluid is circulated between the cooling unit and the cooling target; It may include a main pump for applying pressure to the cooling fluid to flow the cooling fluid along the main circulation pipe.
상기 보조 순환 모듈은 상기 기화기 내로 유입되는 상기 냉각 유체의 온도를 조절하는 온도 조절 유닛을 포함하되, 상기 온도 조절 유닛은, 상기 냉각 유닛으로부터 상기 냉각 대상으로 흐르는 상기 냉각 유체인 제 1 유체 및 상기 냉각 대상으로부터 상기 냉각 유닛으로 흐르는 상기 냉각 유체인 제 2 유체가 혼합되는 혼합 부재와; 외부 공기의 온도 및 상기 기화기 내로 유입되는 냉각 유체의 온도에 따라, 상기 제 1 유체 및 상기 제 2 유체 간의 혼합 비율을 조절하도록 상기 혼합 부재를 제어하는 제어기를 포함할 수 있다.The auxiliary circulation module includes a temperature regulating unit for controlling a temperature of the cooling fluid flowing into the vaporizer, wherein the temperature regulating unit includes the first fluid and the cooling fluid which is the cooling fluid flowing from the cooling unit to the cooling target. A mixing member to which a second fluid which is the cooling fluid flowing from the object to the cooling unit is mixed; And a controller for controlling the mixing member to adjust the mixing ratio between the first fluid and the second fluid according to the temperature of the outside air and the temperature of the cooling fluid introduced into the vaporizer.
상기 혼합 부재에서는 상기 기화기에서 상기 액화가스와 열교환이 완료된 냉각 유체인 제 3 유체가 상기 제 1 유체 및 상기 제 2 유체와 혼합되고, 상기 제어기는 외부 공기의 온도 및 상기 기화기 내로 유입되는 냉각 유체의 온도에 따라, 상기 제 1 유체, 상기 제 2 유체 및 상기 제 3 유체 간의 혼합 비율을 조절하도록 상기 혼합 부재를 제어할 수 있다.In the mixing member, a third fluid, which is a cooling fluid in which heat exchange is completed with the liquefied gas in the vaporizer, is mixed with the first fluid and the second fluid, and the controller is configured to control the temperature of the outside air and the cooling fluid introduced into the vaporizer. According to the temperature, the mixing member may be controlled to adjust the mixing ratio between the first fluid, the second fluid and the third fluid.
상기 보조 순환 모듈은 상기 냉각 유체가 상기 공기 냉각기를 우회하여 흐르도록 제공된 우회 유로를 포함할 수 있다.The auxiliary circulation module may comprise a bypass flow passage provided for the cooling fluid to bypass the air cooler.
상기 보조 순환 모듈은 상기 공기 냉각기 또는 상기 우회 유로를 지난 냉각 유체가 상기 제 1 유체와 혼합되어 상기 냉각 대상으로 공급되도록 상기 냉각 유체를 순환시킬 수 있다.The auxiliary circulation module may circulate the cooling fluid such that the cooling fluid passing through the air cooler or the bypass passage is mixed with the first fluid and supplied to the cooling target.
상기 제어기는 외부 공기의 온도 및 상기 기화기 내로 유입되는 냉각 유체의 온도에 따라, 상기 기화기로 유입되는 냉각 유체의 유량을 조절할 수 있다.The controller may adjust the flow rate of the cooling fluid flowing into the vaporizer in accordance with the temperature of the outside air and the temperature of the cooling fluid flowing into the vaporizer.
상기 연료가스 공급 시스템은 냉각 유체와 중간 열매를 순환시키는 순환 모듈을 더 포함하고, 상기 순환 모듈은, 냉각 대상을 냉각하도록 상기 냉각 유체를 순환시키는 주 순환 모듈과; 상기 기화기에서 액화가스를 기화시키도록 상기 중간 열매를 순환시키는 보조 순환 모듈과; 상기 주 순환 모듈에 의해 순환되는 상기 냉각 유체와 상기 보조 순환 모듈에 의해 순환되는 중간 열매를 열교환시켜 상기 중간 열매를 가열하는 가열기를 포함할 수 있다.The fuel gas supply system further includes a circulation module for circulating the cooling fluid and the intermediate fruit, the circulation module comprising: a main circulation module for circulating the cooling fluid to cool a cooling object; An auxiliary circulation module for circulating the intermediate fruit to vaporize the liquefied gas in the vaporizer; It may include a heater for heating the intermediate fruit by heat exchange between the cooling fluid circulated by the main circulation module and the intermediate fruit circulated by the auxiliary circulation module.
상기 수요처는 액화가스를 이용하여 전기를 발생시키는 가스 터빈이 제공된 가스 발전 모듈을 포함하고, 상기 가스 발전 모듈은 상기 가스 터빈에 유입되는 외부 공기를 냉각시키는 공기 냉각기를 포함하되, 상기 보조 순환 모듈은 상기 기화기에서 액화가스와 열교환된 후의 상기 중간 열매가 상기 공기 냉각기로 유입되어 상기 외부 공기와 열교환되도록 상기 중간 열매를 순환시킬 수 있다.The consumer includes a gas power generation module provided with a gas turbine for generating electricity by using liquefied gas, the gas power generation module including an air cooler for cooling external air flowing into the gas turbine, wherein the auxiliary circulation module The intermediate fruit after the heat exchange with the liquefied gas in the vaporizer may be introduced into the air cooler to circulate the intermediate fruit to exchange heat with the outside air.
상기 보조 순환 모듈은 상기 기화기 내로 유입되는 상기 중간 열매의 온도를 조절하는 온도 조절 유닛을 포함하되, 상기 온도 조절 유닛은, 상기 중간 열매가 상기 가열기를 우회하여 흐르도록 제공되는 우회관과; 상기 우회관으로 우회하는 중간 열매의 흐름을 제어하기 위한 조절 밸브와; 외부 공기의 온도 및 상기 가열기에 의해 가열되어 상기 기화기 내로 유입되는 중간 열매의 온도에 따라, 상기 조절 밸브를 제어하여 상기 중간 열매의 흐름을 제어하는 제어기를 포함할 수 있다.The auxiliary circulation module includes a temperature control unit for controlling the temperature of the intermediate fruit flowing into the vaporizer, wherein the temperature control unit includes: a bypass tube provided to flow the intermediate fruit bypassing the heater; A control valve for controlling the flow of the intermediate fruit to the bypass pipe; According to the temperature of the outside air and the temperature of the intermediate fruit is heated by the heater and introduced into the vaporizer, it may include a controller for controlling the flow of the intermediate fruit by controlling the control valve.
본 발명에 따른 연료가스 공급 시스템은 액화가스를 재기화하여 수요처(HP Fuel Gas Consumer)에 공급할 수 있으므로, 황산화물(SOx), 질소산화물(NOx) 등의 배출이 적어 배기가스 처리장비 비용을 절감할 수 있다.Fuel gas supply system according to the present invention can be supplied to the demand (HP Fuel Gas Consumer) by regasifying the liquefied gas, reducing the emissions of sulfur oxides (SOx), nitrogen oxides (NOx), etc. to reduce the cost of the exhaust gas treatment equipment can do.
또한, 운전모드에 따라 큰 차이를 보이며 발생하는 증발가스를 적은 액화가스의 공급량으로도 효과적으로 재응축할 수 있다.In addition, it is possible to effectively recondensate the generated boil-off gas with a small supply amount of liquefied gas with a large difference depending on the operation mode.
또한, 운전 중 발생하는 증발가스를 회수하여 연료로 사용할 수 있다. 예를 들어, 다양한 운전에서 발생하는 증발가스, 특히 선적 운전(Loading Operation) 시 과도하게 발생하는 증발가스를 제2압축부(Aux. LP BOG Compressor) 및 제2응축부(Aux. BOG Recondenser)를 이용하여 재응축시켜 회수 할 수 있다.In addition, the boil-off gas generated during operation can be recovered and used as fuel. For example, the second compression unit (Aux. LP BOG Compressor) and the second condensation unit (Aux. BOG Recondenser) Can be recondensed and recovered.
또한, 선적 운전 시, 제2응축부를 통과하는 액화가스는 고압펌프유닛(HP LNG Booster Pump)에서 가압되어 충분히 과냉각된 상태이므로, 제2압축부로부터 제1응축부까지 이송되는 증발가스(BOG)와 열교환하여도 증발가스를 발생시키지 않아 효율적인 연료가스 공급이 가능하다.In addition, since the liquefied gas passing through the second condensation unit is pressurized by a high pressure pump unit (HP LNG Booster Pump) and sufficiently cooled, the boil-off gas (BOG) transferred from the second compression unit to the first condensation unit during the loading operation. Evaporative gas is not generated even when heat exchanged with, which enables efficient fuel gas supply.
또한, 고압펌프유닛을 통과한 액화가스 일부가 제2응축부에서 증발가스를 응축하도록 함으로써, 증발가스를 추가 에너지원 없이 재응축하여 사용하므로 별도의 재액화장치 등이 필요없다. 또, 이를 통해 재액화에 필요한 에너지도 최소화할 수 있다.In addition, a part of the liquefied gas passing through the high-pressure pump unit condenses the evaporated gas in the second condensation unit, so that the evaporated gas is recondensed without an additional energy source, so that no separate reliquefaction apparatus is required. This also minimizes the energy required for reliquefaction.
또한, 선적 운전(Loading Operation) 시 발생하는 과잉 증발가스를 재응축하기 위해 제2응축부(Aux. BOG Recondenser)를 설치하되, 최소유량라인(Minimum Flow Line)에서 분기된 응축라인에 설치하여 배관 물량을 최소화할 수 있다.In addition, a second condensation unit (Aux. BOG Recondenser) is installed to recondensate the excess evaporated gas generated during the loading operation, but is installed in a condensation line branched from the minimum flow line. Quantity can be minimized.
또한, 선적 운전 시 발생하는 과잉 증발가스를 재응축시키는데 있어서, 고압펌프유닛(HP LNG Booster Pump)에서 가압된 액화가스를 전량 사용하지 않고, 응축라인을 통해 액화에 필요한 양만 조절하여 공급 사용함으로써, 배관 물량을 줄이며 제2응축부(Aux. BOG Recondenser)의 크기도 최소화할 수 있다.In addition, in recondensing the excess boil-off gas generated during shipping operation, by supplying only the amount required for liquefaction through the condensation line, instead of using the entire amount of the liquefied gas pressurized in the HP LNG Booster Pump, The pipe volume can be reduced and the size of the second condenser (Aux. BOG Recondenser) can be minimized.
또한, 선적 운전 시에만 과잉 증발가스가 제2응축부를 통과하게 되므로, 정상 운전 시 압력 강하에 의한 에너지 손실이 발생하는 문제가 없다.In addition, since the excess evaporated gas passes through the second condensation unit only during the loading operation, there is no problem that energy loss due to the pressure drop occurs during the normal operation.
또한, 압축유닛을 제1압축부(제1저압압축부)와, 제2압축부(제2저압압축부), 및 고압압축부 세 개를 마련함으로써, 운전 상태에 따라 구분하여 이용할 수 있다. 예를 들어, 선적 운전 시 같이 정상 운전 시와는 달리 과잉 증발가스가 발생할 경우 제1압축부가 처리할 수 있는 용량 이상의 나머지 증발가스에 대해서는 제2압축부를 사용함으로써, 증발가스 이송을 제1저압압축부와 제2저압압축부가 함께 담당하는 것이다. 나아가, 제1저압압축부와 제2저압압축부가 담당할 수 있는 용량 이상으로 증발가스가 발생하는 경우에 나머지 증발가스에 대하여는 고압압축부가 적용 및 사용될 수 있다.In addition, the compression unit may be classified according to the operating state by providing a first compression unit (first low compression unit), a second compression unit (second low compression unit), and three high compression units. For example, when the excess evaporation gas is generated unlike in the normal operation such as during the loading operation, the second low compression unit is used for the remaining evaporation gas more than the capacity of the first compression unit to handle the first low compression. The part and the second low compression part are in charge. In addition, when the boil-off gas is generated in excess of the capacity that the first low-compression unit and the second low-compression unit can handle, the high-pressure compression unit may be applied and used for the remaining boil-off gas.
또한, 제2응축부(Aux. BOG Recondenser)를 통해 재응축된 증발가스를 저장탱크가 아닌 제1응축부(Main BOG Recondenser)로 이송하여 에너지 낭비를 절감할 수 있다. 즉, 만약 재응축된 증발가스를 저압의 저장탱크로 리턴(Return)시키면 저압(5kPag) 환경에서 다시 공급펌프로 가압하여 제1응축부로 이송시켜야 하므로, 그만큼의 에너지 낭비를 줄일 수 있는 것이다.In addition, energy consumption may be reduced by transferring the recondensed evaporated gas through the second condenser (Aux. BOG Recondenser) to the first condenser (Main BOG Recondenser) instead of the storage tank. In other words, if the recondensed boil-off gas is returned to the low pressure storage tank, it is necessary to pressurize the feed pump again in the low pressure (5 kPag) environment and transfer it to the first condensation unit, thereby reducing energy waste.
또한, 증발가스의 발생량을 줄일 수 있으며, 다량의 증발가스를 활용할 수 있다.In addition, it is possible to reduce the amount of boil-off gas, and to utilize a large amount of boil-off gas.
또한, 액화가스를 기화시키는 기화기로 유입되는 열원의 온도를 조절할 수 있으며, 냉각 및 가열 효율을 높일 수 있다.In addition, it is possible to control the temperature of the heat source flowing into the vaporizer to vaporize the liquefied gas, it is possible to increase the cooling and heating efficiency.
도 1은 본 발명의 제1실시예에 따른 연료가스 공급 시스템을 도시한다.1 shows a fuel gas supply system according to a first embodiment of the present invention.
도 2는 본 발명의 제2실시예에 따른 연료가스 공급 시스템을 도시한다.2 shows a fuel gas supply system according to a second embodiment of the present invention.
도 3은 본 발명의 제2실시예에 따른 연료가스 공급 시스템의 정상 운전 상태를 나타낸다.3 shows a normal operating state of a fuel gas supply system according to a second embodiment of the present invention.
도 4는 본 발명의 제2실시예에 따른 연료가스 공급 시스템의 최소유량 운전 상태를 나타낸다.4 shows a minimum flow rate operating state of a fuel gas supply system according to a second embodiment of the present invention.
도 5는 본 발명의 제2실시예에 따른 연료가스 공급 시스템의 선적 운전 상태를 나타낸다.5 shows a loading operation state of a fuel gas supply system according to a second embodiment of the present invention.
도 6은 본 발명의 제3실시예에 따른 연료가스 공급 시스템을 도시한다.6 shows a fuel gas supply system according to a third embodiment of the present invention.
도 7은 본 발명의 제4실시예에 따른 연료가스 공급 시스템을 도시한다.7 shows a fuel gas supply system according to a fourth embodiment of the present invention.
도 8은 본 발명의 제5실시예에 따른 연료가스 공급 시스템을 도시한다.8 shows a fuel gas supply system according to a fifth embodiment of the present invention.
도 9는 본 발명의 제6실시예에 따른 연료가스 공급 시스템을 도시한다.9 shows a fuel gas supply system according to a sixth embodiment of the present invention.
도 10은 도 9의 온도 조절 유닛을 나타낸 블록 구성도이다.FIG. 10 is a block diagram illustrating the temperature control unit of FIG. 9.
도 11은 본 발명의 제7실시예에 따른 연료가스 공급 시스템을 도시한다.11 shows a fuel gas supply system according to a seventh embodiment of the present invention.
도 12는 본 발명의 제8실시예에 따른 연료가스 공급 시스템을 도시한다.12 shows a fuel gas supply system according to an eighth embodiment of the present invention.
도 13은 도 12의 온도 조절 유닛을 나타낸 블록 구성도이다.FIG. 13 is a block diagram illustrating the temperature control unit of FIG. 12.
도 14는 본 발명의 제9실시예에 따른 연료가스 공급 시스템을 도시한다.14 shows a fuel gas supply system according to a ninth embodiment of the present invention.
이하에서는 본 발명의 실시예들을 첨부 도면을 참조하여 상세히 설명한다. 본 발명을 명확하게 설명하기 위하여 설명과 관계없는 부분은 도면에서 생략하였으며 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Parts not related to the description are omitted in the drawings in order to clearly describe the present invention, in the drawings, the width, length, thickness, etc. of the components may be exaggerated for convenience. Like numbers refer to like elements throughout.
이하에서는 본 발명에 대한 이해를 돕기 위한 일례로서, 액화천연가스 및 이로부터 발생하는 증발가스를 적용하여 설명하였으나, 이에 한정되는 것은 아니며 액화 에탄가스, 액화 탄화수소가스 등 다양한 액화가스 및 이로부터 발생하는 증발가스가 적용되는 경우에도 동일한 기술적 사상으로 동일하게 이해되어야 한다.Hereinafter, as an example to assist in understanding the present invention, it has been described by applying liquefied natural gas and evaporated gas generated therefrom, but is not limited thereto, and various liquefied gas such as liquefied ethane gas and liquefied hydrocarbon gas and generated therefrom Even when boil-off gas is applied, it should be understood as the same technical idea.
도 1은 본 발명의 제1실시예에 따른 연료가스 공급 시스템을 도시한다. 이를 참조하면, 제1실시예에서는 액화가스와 그로부터 발생되는 증발가스를 수용하는 저장유닛(100), 저장유닛(100)에서 발생된 증발가스를 가압하여 이송하는 압축유닛(200), 압축유닛(200)에서 압축된 증발가스를 저장유닛(100)의 과냉각된 액화가스를 이용해 재응축시키는 재응축유닛(300), 재응축유닛(300)에서 수요처(10)로 이어지는 수요처 공급라인(L30)에 설치되어 재응축유닛(300)의 액화가스를 수요처(10)의 요구압력 이상으로 가압하는 고압펌프유닛(400), 및 고압펌프유닛(400)에서 가압된 액화가스를 가열하여 재기화시키는 기화기(510)를 구비하는 열교환유닛(500)을 포함하되, 재응축유닛(300)은 저장유닛(100)에서 이송되는 액화가스와 압축유닛(200)에서 압축된 증발가스를 혼합하여 증발가스를 재응축시키는 제1응축부(310), 및 고압펌프유닛(400)에서 가압되어 이송되는 액화가스와 압축유닛(200)에서 압축된 증발가스를 열교환하여 증발가스를 재응축시키는 제2응축부(320)를 포함할 수 있다.1 shows a fuel gas supply system according to a first embodiment of the present invention. Referring to this, in the first embodiment, the storage unit 100 for receiving the liquefied gas and the evaporated gas generated therefrom, the compression unit 200 for pressurizing and transporting the boiled gas generated in the storage unit 100, the compression unit ( Recondensing unit 300 for recondensing the boil-off gas compressed in the 200 using the supercooled liquefied gas of the storage unit 100, from the recondensation unit 300 to the customer destination supply line (L30) leading to the customer destination (10) A high-pressure pump unit 400 installed to pressurize the liquefied gas of the recondensing unit 300 to the required pressure or more of the demand destination 10, and a vaporizer 510 for heating and re-vaporizing the liquefied gas pressurized by the high-pressure pump unit 400. It includes a heat exchange unit 500 having a), the recondensation unit 300 is to condensate the evaporation gas by mixing the liquefied gas transported from the storage unit 100 and the boiled gas compressed in the compression unit 200 Pressurized by the first condenser 310 and the high pressure pump unit 400 The second may comprise a condensing unit 320 to control the heat exchange the compressed boil-off gas in a liquefied gas transport and the compression unit 200, which is to re-condense the boil-off gas.
다시 말해, 본 발명의 제1실시예에 따른 연료가스 공급 시스템은, 저장유닛(100)에 수용된 액화가스를 제1응축부(310)로 이송하는 액화가스 공급라인(L10), 저장유닛(100)에 수용된 증발가스를 제1압축부(210)를 거쳐 제1응축부(310)로 이송하는 증발가스 제1공급라인(L21), 저장유닛(100)에 수용된 증발가스를 제2압축부(220)를 거쳐 제1응축부(310)로 이송하는 증발가스 제2공급라인(L22), 제1응축부(310)에 저장된 액화가스를 고압펌프유닛(400)과 기화기(510)를 거쳐 수요처(10)로 이송하는 수요처 공급라인(L30), 수요처 공급라인(L30)의 고압펌프유닛(400) 후단에서 분기되었다가 재합류하여 고압펌프유닛(400)에서 가압된 액화가스를 우회시키는 응축라인(L41), 및 증발가스 제2공급라인(L22)의 증발가스와 응축라인(L41)의 액화가스를 열교환하여 증발가스 제2공급라인(L22)의 증발가스를 재응축시키는 제2응축부(320)를 포함할 수 있다. 이하에서는 이러한 연료가스 공급 시스템을 이루는 각 부분들을 상세히 살펴보기로 한다.In other words, the fuel gas supply system according to the first embodiment of the present invention, the liquefied gas supply line (L10) for transferring the liquefied gas contained in the storage unit 100 to the first condensation unit 310, the storage unit 100 ) The first boil-off gas (L21) to transfer the boil-off gas contained in the first compression unit (210) to the first condensation unit (310), the second boil-off unit (evaporated gas received in the storage unit 100). The liquefied gas stored in the second supply line (L22) and the first condensation unit (310), which are transferred to the first condensation unit (310) through the high pressure pump unit (400) and the vaporizer (510), is a demand destination. A condensing line for branching at the rear end of the high pressure pump unit 400 of the customer supply line L30 and the customer supply line L30 transferred to 10 and rejoining to bypass the liquefied gas pressurized by the high pressure pump unit 400. (L41) and the boil-off gas of the second supply line (L22) and the liquefied gas of the condensation line (L41) heat exchange to increase the second boil-off gas (L22) It may include a second condensation unit 320 for recondensing the bale gas. Hereinafter, each part of the fuel gas supply system will be described in detail.
먼저, 수요처(10)는 후술할 증발가스 공급라인(L20) 또는 액화가스 공급라인(L10)을 통해, 저장유닛(100)에 수용된 액화가스가 기화되거나 자연증발된 증발가스 등으로 이루어지는 기체 상태의 연료가스를 공급받아 선박의 추진력 발생시키는 엔진일 수 있다. 일례로 엔진은 고온·고압의 연소가스로 가동되는 회전형 열기관인 가스터빈이거나, ME-GI 엔진과 같은 고압가스 분사엔진, 또는 약 15 내지 17 bar 수준의 중압의 연료가스, 구체적으로 연료가스를 공급받아 출력을 발생시킬 수 있는 X-DF 엔진이 이용될 수 있으나, 이에 한정되는 것은 아니며 기체 상태의 연료가스를 공급받아 출력을 발생시킬 수 있다면 다양한 형식의 엔진으로 이루어지는 경우를 포함한다.First, the demand destination 10 is a gaseous state of the liquefied gas accommodated in the storage unit 100 through the boil-off gas supply line (L20) or liquefied gas supply line (L10) to be described later, evaporated gas or natural evaporated gas, etc. It may be an engine that receives fuel gas and generates propulsion of a ship. For example, the engine may be a gas turbine that is a rotary heat engine that is operated by combustion gas of high temperature and high pressure, a high pressure gas injection engine such as a ME-GI engine, or a fuel gas having a medium pressure of about 15 to 17 bar, specifically, a fuel gas. An X-DF engine capable of generating an output may be used, but the present invention is not limited thereto, and includes an engine having various types of engines if the fuel gas is generated in a gaseous state.
GCU(20, Gas Combustion Unit)는 증발가스 제1공급라인(L21)으로부터 제1압축부(210)에 의해 가압된 유체를 공급받아 그를 소각하는 방식으로 연료가스를 소비할 수 있다.The gas compression unit (GCU) 20 may consume fuel gas by receiving a fluid pressurized by the first compression unit 210 from the boil-off gas first supply line L21 and incinerating it.
저장유닛(100)을 설명하기로 한다. 저장유닛(100)은 병렬로 배치되는 다수개의 저장탱크(101)를 포함할 수 있다. 이때, 각각의 저장탱크(101)는 천연가스의 생산지 등으로부터 액화연료를 공급받아 수용 및 저장하여, 목적지에 이르러 하역하기까지 액화연료를 안정적으로 보관한다. 또, 저장탱크(101)는 외부의 열 침입에 의한 액화연료의 기화를 최소화할 수 있도록 단열 처리된 멤브레인 타입의 화물창으로 마련될 수 있다. 저장탱크(101)에 저장되는 액화연료는 후술하는 바와 같이 선박의 추진용 엔진, 발전용 엔진 및 GCU 등의 연료가스로 이용될 수 있다.The storage unit 100 will be described. The storage unit 100 may include a plurality of storage tanks 101 arranged in parallel. At this time, each storage tank 101 receives the liquefied fuel from the production site of the natural gas and the like, and stores and stores the liquefied fuel stably until the destination is unloaded. In addition, the storage tank 101 may be provided with a cargo hold of the membrane type heat-insulated treatment so as to minimize the vaporization of the liquefied fuel by the external heat intrusion. The liquefied fuel stored in the storage tank 101 may be used as fuel gas, such as a ship's propulsion engine, a power generation engine, and a GCU, as described below.
공급펌프(110)는 저장탱크(101) 내부의 액화가스 공급라인(L10)의 입구측 단부에 마련되되 작동 효율성을 향상시킬 수 있도록 저장탱크(101) 내측의 저면에 인접하게 마련될 수 있다. 공급펌프(110)는 저장탱크(101)에 수용된 액화가스를 액화가스 공급라인(L10)으로 송출시킬 수 있다.The supply pump 110 may be provided at an inlet end of the liquefied gas supply line L10 in the storage tank 101, but may be provided adjacent to a bottom surface of the storage tank 101 to improve operating efficiency. The supply pump 110 may send the liquefied gas contained in the storage tank 101 to the liquefied gas supply line L10.
순환라인(120)은 공급펌프(110)를 통해 액화가스 공급라인(L10)으로 공급되는 액화가스 일부를 다시 저장탱크(101)로 복귀시킴으로써, 제1응축부(310) 내부의 액화가스량 또는 수요처(10)에서 요구하는 연료의 양에 따라 제1응축부(310)로 공급되는 액화가스 양을 조절할 수 있다.The circulation line 120 returns a portion of the liquefied gas supplied to the liquefied gas supply line L10 through the supply pump 110 back to the storage tank 101, so that the amount or amount of liquefied gas in the first condensation unit 310 is The amount of liquefied gas supplied to the first condenser 310 may be adjusted according to the amount of fuel required by 10.
다음으로 압축유닛(200)을 설명하기로 한다. 압축유닛(200)은 저장유닛(100)에서 이송되는 증발가스를 압축하여 제1응축부(310)로 보내는 제1압축부(210), 및 증발가스가 제1응축부(310)의 재응축 용량 이상으로 발생 시 증발가스를 제2응축부(320)로 이송시키는 제2압축부(220)를 포함할 수 있다.Next, the compression unit 200 will be described. The compression unit 200 compresses the boil-off gas transferred from the storage unit 100 and sends the first-compression unit 210 to the first condensation unit 310, and the re-condensation of the boil-off gas to the first condensation unit 310. It may include a second compression unit 220 for transferring the boil-off gas to the second condensation unit 320 when the capacity exceeds the capacity.
제1압축부(210)는 증발가스 제1공급라인(L21)에, 제2압축부(220)는 증발가스 제2공급라인(L22) 상에 각각 마련될 수 있다. 이때, 본 연료가스 공급 시스템의 운전 모드에 따라 제1압축부(210)는 상시 가동되고, 제2압축부(220)는 선적 운전 시에만 가동될 수 있다. 선적 운전 시에는 저장유닛(100)에 많은 증발가스가 발생하게 되므로, 제2압축부(220)와 제1압축부(210)가 함께 가동되는 것이다.The first compression unit 210 may be provided on the boil-off gas first supply line L21, and the second compression unit 220 may be provided on the boil-off gas second supply line L22. In this case, the first compression unit 210 is always operated according to the operation mode of the fuel gas supply system, and the second compression unit 220 may be operated only during the loading operation. Since a large amount of boil-off gas is generated in the storage unit 100 during the loading operation, the second compression unit 220 and the first compression unit 210 are operated together.
재응축유닛(300)을 설명하기로 한다. 재응축유닛(300)은 크게 제1응축부(310)와 제2응축부(320)를 포함한다.The recondensation unit 300 will be described. The recondensation unit 300 largely includes a first condensation unit 310 and a second condensation unit 320.
제1응축부(310)는 액화가스 공급라인(L10)으로부터 공급되는 액화가스를 일시 저장하는 저장고 역할을 할 수 있다. 나아가, 제1응축부(310)는 저장유닛(100)의 공급펌프(110)에 의해 가압되는 액화가스와 압축유닛(200)의 제1압축부(210)에서 압축되는 증발가스를 혼합하여, 증발가스의 전부 또는 일부를 재응축시킬 수 있다. 이때, 유입되는 증발가스의 재응축은 액화가스 제2공급라인(L12)을 통해 공급되는 액화가스의 분사에 의해 구현될 수 있다.The first condenser 310 may serve as a reservoir for temporarily storing the liquefied gas supplied from the liquefied gas supply line L10. Furthermore, the first condensation unit 310 mixes the liquefied gas pressurized by the supply pump 110 of the storage unit 100 and the boil-off gas compressed by the first compression unit 210 of the compression unit 200, All or part of the boil-off gas may be recondensed. In this case, the recondensation of the introduced boil-off gas may be implemented by injection of the liquefied gas supplied through the liquefied gas second supply line (L12).
제2응축부(320)는 후술할 응축라인(L41)에 마련되어, 증발가스 제1공급라인(L21) 및 제2공급라인(L22)과의 열교환을 통해 수요처 공급라인(L30)에서 고압펌프유닛(400)에 의해 가압되는 액화가스를 이용해 증발가스 제2공급라인(L22)을 지나 제1응축부(310)로 향하는 증발가스를 재응축시킬 수 있다.The second condensing unit 320 is provided in the condensation line L41 to be described later, and the high pressure pump unit in the demand source supply line L30 through heat exchange with the boil-off gas first supply line L21 and the second supply line L22. The liquefied gas pressurized by 400 may be used to recondense the boil-off gas that passes through the boil-off gas second supply line L22 to the first condensation unit 310.
고압펌프유닛(400)은 제1응축부(310)에 수용된 액화가스를 수요처 공급라인(L30)으로 송출시킴과 동시에, 수요처(10)가 요구하는 연료가스의 압력 조건에 상응하는 압력수준으로 액화가스를 가압할 수 있다. 일례로 수요처(10)가 가스 터빈으로 이루어지는 경우, 고압펌프유닛(400)은 액화가스를 약 30 내지 40 barg로 가압하여 기화기(510) 쪽으로 송출할 수 있다.The high pressure pump unit 400 sends the liquefied gas contained in the first condenser 310 to the demand source supply line L30 and liquefies the pressure level corresponding to the pressure condition of the fuel gas required by the demand source 10. The gas can be pressurized. For example, when the demand destination 10 is a gas turbine, the high pressure pump unit 400 may pressurize the liquefied gas to about 30 to 40 barg and send it toward the vaporizer 510.
열교환유닛(500)은 기화기(510)를 구비하여, 제1압축부(210)에서 수요처 공급라인(L30)을 통해 수요처(10) 쪽으로 공급되는 액화가스를 기화시킨다. 또한, 열교환유닛(500)은 기화기(510) 뿐만 아니라, 기화기(510) 후단에서 그를 통과하는 유체를 수요처(10)에서 요구하는 온도로 가열하는 히터(520)를 더 포함할 수 있다. 다시 말해, 수요처 공급라인(L30)에는 열교환라인(L31)이 추가로 마련되고, 열교환라인(L31) 상에는 히터(520)가 마련되어, 수요처 공급라인(L30)을 통해 수요처(10)로 공급되는 연료가스의 온도를 조절할 수 있다. 이러한 열교환라인(L31)은 수요처 공급라인(L30)을 통해 수요처(10)로 공급되는 연료를 수요처(10)가 요구하는 온도로 일정하게 공급할 수 있다.The heat exchange unit 500 includes a vaporizer 510 to vaporize the liquefied gas supplied from the first compression unit 210 toward the demand destination 10 through the supply destination L30. In addition, the heat exchange unit 500 may further include not only the vaporizer 510 but also a heater 520 that heats the fluid passing through the vaporizer 510 at the rear end of the vaporizer 510 to a temperature required by the customer 10. In other words, the heat exchange line (L31) is further provided in the demand source supply line (L30), the heater 520 is provided on the heat exchange line (L31), the fuel supplied to the demand source 10 through the demand source supply line (L30). The temperature of the gas can be controlled. The heat exchange line L31 may constantly supply the fuel supplied to the demand destination 10 through the demand destination supply line L30 at a temperature required by the demand destination 10.
액화가스 공급라인(L10)은 상술한 저장유닛(100)과 재응축유닛(300)을 연결한다. 구체적으로, 액화가스 공급라인(L10)은 일측 단부에 마련된 공급펌프(110)로부터 송출되는 연료가스를 제1응축부(310)로 공급한다. 그리고 액화가스 공급라인(L10)은 액화가스 제1공급라인(L11)과 액화가스 제2공급라인(L12)을 포함할 수 있다.The liquefied gas supply line L10 connects the storage unit 100 and the recondensation unit 300 described above. Specifically, the liquefied gas supply line (L10) supplies the fuel gas sent from the supply pump 110 provided at one end to the first condensation unit (310). The liquefied gas supply line L10 may include a liquefied gas first supply line L11 and a liquefied gas second supply line L12.
액화가스 제1공급라인(L11)은 액화가스 공급라인(L10)에서 분기되어 제1응축부(310)의 하부로 연결되고, 액화가스 제2공급라인(L12)은 액화가스 공급라인(L10)에서 분기되어 제1응축부(310)의 상부로 연결되되, 제1응축부(310) 상측에 액화가스를 분사하여 제1응축부(310) 내부로 공급되는 증발가스를 재응축할 수 있다.The liquefied gas first supply line (L11) is branched from the liquefied gas supply line (L10) is connected to the lower portion of the first condensation unit 310, the liquefied gas second supply line (L12) is a liquefied gas supply line (L10) Branched from and connected to the upper portion of the first condensation part 310, the liquefied gas is injected onto the first condensation part 310 to recondensate the boil-off gas supplied into the first condensation part 310.
증발가스 공급라인(L20)은 저장유닛(100)에 저장된 증발가스를 압축유닛(200)에 공급하되, 후단에서 증발가스 제1공급라인(L21)과 증발가스 제2공급라인(L22)으로 분기될 수 있다.The boil-off gas supply line L20 supplies the boil-off gas stored in the storage unit 100 to the compression unit 200, but branches to the boil-off gas first supply line L21 and the boil-off gas second supply line L22 at a later stage. Can be.
증발가스 제1공급라인(L21)은 증발가스 공급라인(L20)에서 GCU(20) 쪽으로 연장될 수 있다. 이때, 증발가스 제1공급라인(L21)에는 GCU(20) 쪽으로 증발가스를 가압 및 공급하는 제1압축부(210)가 마련될 수 있다.The boil-off gas first supply line L21 may extend toward the GCU 20 in the boil-off gas supply line L20. In this case, a first compression unit 210 may be provided in the boil-off gas first supply line L21 to pressurize and supply the boil-off gas toward the GCU 20.
그리고 증발가스 제1공급라인(L21)은 GCU(20) 쪽으로 연장되되, 제1분기라인(L21a)과 제2분기라인(L21b)으로 증발가스 일부를 이송할 수 있다. 이때, 제1분기라인(L21a)은 증발가스 제1공급라인(L21)과 증발가스 제2공급라인(L22)을 연결하고, 제2분기라인(L21b)은 증발가스 제1공급라인(L21)과 제1응축부(310)를 연결하여, 증발가스를 각각 증발가스 제2공급라인(L22)이나 제1응축부(310)로 이송할 수 있다.The boil-off gas first supply line L21 extends toward the GCU 20 and may transfer a portion of the boil-off gas to the first branch line L21a and the second branch line L21b. At this time, the first branch line L21a connects the boil-off gas first supply line L21 and the boil-off gas second supply line L22, and the second branch line L21b connects the boil-off gas first supply line L21. And the first condensing unit 310 may be connected to each other to transfer the boil-off gas to the second boil-off gas supply line L22 or the first condensing unit 310.
증발가스 제2공급라인(L22)은 증발가스 공급라인(L20)에서 제2압축부(220)와 제2응축부(320)를 거쳐 제1응축부(310) 쪽으로 연장될 수 있다. 이러한 증발가스 제2공급라인(L22)은 증발가스 제1공급라인(L21)에서 처리하기 과다한 정도의 증발가스가 저장탱크(101)에 발생되는 때에만 이용되어, 증발가스 제1공급라인(L21)에 비하여 상대적으로 그를 통과하는 유체이송량이 적을 수 있다. 또 증발가스 제2공급라인(L22)을 지나는 증발가스는 제2응축부(320)에서 재응축되어 제1응축부(310)로 회수될 수 있다.The boil-off gas second supply line L22 may extend from the boil-off gas supply line L20 to the first condensation part 310 via the second compression part 220 and the second condensation part 320. The second boil-off gas supply line L22 is used only when an excessive amount of boil-off gas is generated in the storage tank 101 to be treated in the boil-off gas first supply line L21, and thus the first boil-off gas first supply line L21. The amount of fluid passing through it can be relatively small compared to). In addition, the boil-off gas passing through the boil-off gas second supply line L22 may be re-condensed in the second condensation unit 320 and recovered to the first condensation unit 310.
수요처 공급라인(L30)은 제1응축부(310)를 거친 액화가스를 고압펌프유닛(400)을 거쳐 가압하고, 가압된 액화가스를 기화기(510)로 기화하여 수요처(10)로 공급한다.The demand source supply line L30 pressurizes the liquefied gas that has passed through the first condensation part 310 through the high pressure pump unit 400, and vaporizes the pressurized liquefied gas with the vaporizer 510 to supply it to the demand destination 10.
수요처 공급라인(L30)의 고압펌프유닛(400) 후단에는 제1응축부(310)로 연결되는 최소유량라인(L40)이 마련되고, 응축라인(L41)은 이러한 최소유량라인(L40)에서 분기되어 수요처 공급라인(L30)의 고압펌프유닛(400) 후단으로 재합류될 수 있다.At the rear end of the high pressure pump unit 400 of the supply line L30, a minimum flow rate line L40 connected to the first condenser 310 is provided, and the condensation line L41 branches from the minimum flow rate line L40. And it can be rejoined to the rear end of the high-pressure pump unit 400 of the supply line (L30).
최소유량라인(L40)은 수요처 공급라인(L30)의 고압펌프유닛(400) 후단에서 다시 제1응축부(310)로 액화가스를 복귀시키는 라인일 수 있다. 고압펌프유닛(400)이 고장 등의 문제발생 없이 지속적으로 이송할 수 있는 최소 유량이 있는데, 이를 흘려보내는 최소유량라인(L40)을 확보하여 고압펌프유닛(400)이 정상운전 상태 이전이나 대기 상태에서 무리없이 구동할 수 있게 하는 것이다.The minimum flow rate line L40 may be a line for returning the liquefied gas back to the first condenser 310 at the rear end of the high pressure pump unit 400 of the supply source L30. There is a minimum flow rate that the high pressure pump unit 400 can continuously transfer without problems, such as failure, by securing a minimum flow rate line (L40) for flowing this high pressure pump unit 400 before the normal operation state or standby state It is to be able to drive without difficulty.
응축라인(L41)은 후술할 선적 운전(Loading Operation) 모드에서 발생되는 과잉 증발가스를 재응축하기 위해 제2응축부(320)가 설치되되, 기존에 확보되어 있는 최소유량라인(L40, Minimum Flow Line)에서 분기되어 설치될 수 있다.Condensation line (L41) is a second condensing unit 320 is installed to recondensate the excess boil off gas generated in the loading operation (Loading Operation) mode to be described later, the minimum flow line (L40, Minimum Flow) It can be installed branched off the line.
도 2는 본 발명의 제2실시예에 따른 연료가스 공급 시스템을 도시한다. 이하에서 설명하는 제2실시예에 대한 설명 중 별도의 도면부호를 들어 추가적으로 설명하는 경우 외에는 전술한 제1실시예에 의한 연료가스 공급 시스템에 대한 설명과 동일한 것으로서 내용의 중복을 방지하기 위해 설명을 생략한다.2 shows a fuel gas supply system according to a second embodiment of the present invention. Description of the second embodiment will be described below to be the same as the description of the fuel gas supply system according to the first embodiment except for the additional description with a separate reference numeral will be described in order to avoid duplication of content. Omit.
도면을 참조하면, 증발가스 공급라인(L20)에는 저장탱크(101)에 증발가스가 과도하게 발생하는 경우, 이를 고압압축부(230)로 가압하여 수요처 공급라인(L30)의 기화기(510) 후단에 공급하는 증발가스 고압공급라인(L23)이 마련될 수 있다. 이는 후술할 선적 운전(Loading Operation) 모드에서 증발가스가 과다하게 발생되는 경우 증발가스를 수요처(10)에 직접 공급하기 위한 수단으로 기능한다.Referring to the drawings, when the boil-off gas is excessively generated in the storage tank 101 in the boil-off gas supply line (L20), it is pressurized by the high-pressure compressor 230 to the rear end of the vaporizer 510 of the demand source supply line (L30) A high pressure supply line (L23) for supplying boil-off gas may be provided. This functions as a means for supplying the boil-off gas directly to the demand destination 10 when the boil-off gas is excessively generated in a loading operation mode to be described later.
도 3은 본 발명의 제2실시예에 따른 연료가스 공급 시스템의 노말 오퍼레이션 상태를 나타내고, 도 4은 본 발명의 제2실시예에 따른 연료가스 공급 시스템의 최소유량 운전 상태를 나타내며, 도 5는 본 발명의 제2실시예에 따른 연료가스 공급 시스템의 선적 운전 상태를 나타낸다.3 shows a normal operation state of a fuel gas supply system according to a second embodiment of the present invention, FIG. 4 shows a minimum flow rate operating state of a fuel gas supply system according to a second embodiment of the present invention, and FIG. A loading operation state of the fuel gas supply system according to the second embodiment of the present invention is shown.
이를 참조하면, 본 발명의 제2실시예에 따른 연료가스 공급 시스템은 크게 정상 운전(Normal Operation) 모드와, 최소유량 운전 모드와, 선적 운전 모드의 세 가지의 운전 모드로 가동될 수 있다.Referring to this, the fuel gas supply system according to the second embodiment of the present invention may be operated in three operation modes, namely, a normal operation mode, a minimum flow rate operation mode, and a shipment operation mode.
최소유량 운전 모드에서는 증발가스 제2공급라인(L22), 응축라인(L41), 및 수요처 공급라인(L30)으로부터 수요처(10)로의 유체흐름을 차단하되, 제1응축부(310)에 저장된 액화가스를 최소유량라인(L40)을 통해 고압펌프유닛(400)을 거쳐 순환되도록 하여, 고압펌프유닛(400)의 지속적인 작동을 가능하게 할 수 있다.In the minimum flow mode, the liquefied gas stored in the first condenser 310 is blocked by the flow of the boil-off gas from the second supply line L22, the condensation line L41, and the supply source L30 to the demand source 10. Gas is circulated through the high pressure pump unit 400 through the minimum flow line (L40), it is possible to enable the continuous operation of the high pressure pump unit 400.
정상 운전 모드에서는 증발가스 제2공급라인(L22) 및 응축라인(L41)으로의 유체흐름을 차단하고 제2응축부(320)의 가동을 중단하되, 선적 운전 시에는 증발가스 제2공급라인(L22) 및 응축라인(L41)으로의 유체흐름을 개방하고 제2응축부(320)를 가동시켜, 운전모드에 따라 달리 운용될 수 있다. 이하에서는 이들 각 모드의 작동방식에 대하여 상세히 설명하기로 한다.In the normal operation mode, the fluid flow to the second boil-off gas supply line (L22) and the condensation line (L41) is blocked and the second condensing unit (320) is stopped. By opening the fluid flow to the L22) and the condensation line (L41) and operating the second condensation unit 320, it can be operated differently depending on the operation mode. Hereinafter, the operation of each of these modes will be described in detail.
A. 정상 운전(Normal Operation) 모드A. Normal Operation Mode
저장탱크(101)에서 공급펌프(110)에 의해 액화가스를 일정압으로 가압하여 제1응축부(310)로 이송시킨다. 이때, 액화가스는 가압되었으므로 해당 압력에서 과냉각된 상태이고, 어느 정도 온도가 더 올라가도 액체 상태를 유지할 수 있다.In the storage tank 101, the liquefied gas is pressurized by the supply pump 110 to a predetermined pressure and transferred to the first condensation unit 310. At this time, since the liquefied gas is pressurized, it is in a state of supercooling at the corresponding pressure, and the liquid state can be maintained even if the temperature rises to some extent.
증발가스(Boil-off Gas)는 액화가스를 저장하는 저장탱크(101)에서 발생되는데, 저장탱크(101)에 마련되는 단열재(insulation)의 두께 및 저장탱크(101)의 크기, 외기조건, 액화가스 저장 용량 등에 따라 증발가스 발생량이 달라진다. 이때, 최대 증발가스 발생량(Max. NBOG)은 단열재(Insulation) 두께 및 저장탱크(101)의 크기와 외기조건은 설계 시 고정되는 값이기 때문에, 저장 상태에 따른 액화가스 저장용량에 따라 보수적인 조건에서 산정될 수 있다.Boil-off gas is generated in the storage tank 101 for storing the liquefied gas, the thickness of the insulation (insulation) provided in the storage tank 101, the size of the storage tank 101, outside conditions, liquefaction The amount of generated evaporated gas varies depending on the gas storage capacity. At this time, the maximum amount of boil-off gas (NBOG) is a conservative condition according to the storage capacity of the liquefied gas according to the storage state because the insulation thickness and the size and outside conditions of the storage tank 101 are fixed at design time. Can be calculated from
증발가스는 증발가스 제1공급라인(L21)에서 제1압축부(210)에 의해 가압되어 제1응축부(310)로 이송된다. 그리고 제1응축부(310)에서 저장탱크(101)에서 공급펌프(110)를 통해 이송되는 과냉각된 액화가스에 의해 증발가스는 재응축된다.The boil-off gas is pressurized by the first compression unit 210 in the boil-off gas first supply line L21 and transferred to the first condensation unit 310. The boil-off gas is recondensed by the supercooled liquefied gas transferred from the storage tank 101 through the supply pump 110 in the first condenser 310.
제1응축부(310) 내의 액화가스 및 재응축된 증발가스는 수요처(10)의 요구 압력을 만족시키기 위해 고압펌프유닛(400)으로 충분히 가압한다. 고압으로 가압된 액화가스는 기화기(510)에서 기상으로 재기화된다. 이때의 열원은 해수, 가열된 냉각수 등 일 수 있다. 또 필요 시 히터(520, Fuel Gas Heater)에서 재기화된 연료가스의 온도를 수요처(10)에서 요구하는 온도로 가열한다. 이 때의 열원은 스팀(Steam) 등 일 수 있다.The liquefied gas and the recondensed boil-off gas in the first condensation part 310 are sufficiently pressurized by the high pressure pump unit 400 to satisfy the required pressure of the demand destination 10. The liquefied gas pressurized to high pressure is regasified in the vapor phase in the vaporizer 510. At this time, the heat source may be sea water, heated cooling water and the like. In addition, if necessary, the temperature of the fuel gas regasified by the heater 520 is heated to a temperature required by the customer 10. The heat source at this time may be steam or the like.
B. 최소유량 운전(Minimum Flow Circulation) 모드B. Minimum Flow Circulation Mode
초기 운전 및 대기 상태에서 고압펌프유닛(400)을 끄지 않은 상태로 운전을 할 수 있는데, 이는 제1응축부(310)에 저장된 액화가스 일부를 고압펌프유닛(400)과 최소유량라인(L40)을 거쳐 다시 제1응축부(310)로 순환시킴으로써 가능하다. 이 경우 제1응축부(310)는 재응축을 시키는 역할이 아니라 석션드럼(Suction Drum)과 같이 임시로 액화가스를 저장하고 증발가스를 분리시키는 역할을 수행할 수 있다.In the initial operation and stand-by state, the high pressure pump unit 400 may be operated without turning off, which means that a part of the liquefied gas stored in the first condensation unit 310 is transferred to the high pressure pump unit 400 and the minimum flow line L40. By circulating back to the first condensation unit 310 is possible. In this case, the first condensation unit 310 may serve to temporarily store the liquefied gas and separate the evaporated gas, such as a suction drum, instead of recondensing.
이 모드에서는 액화가스가 증발가스를 재응축할 수 있을 만큼 이송량이 크지 않고 최소유량라인(L40)을 통한 재순환을 반복하므로 재응축 역할을 할 수 없어, 증발가스는 전량 GCU(20)로 이송 및 소각되거나 불가한 경우 이를 벤트(Vent)시킬 수 있다.In this mode, the liquefied gas is not large enough to recondense the evaporated gas and the recirculation through the minimum flow line (L40) is repeated, and thus the condensed gas cannot be recondensed. If incinerated or impossible, it may be vented.
C. 선적 운전(Loading Operation) 모드C. Loading Operation Mode
기본적으로 정상 운전(Normal Operation) 모드와 동일한 운전을 수행한다. 이 선적 운전 모드에서는, 정상 운전 모드에 비해 과도한 양의 증발가스가 발생하게 된다. 발생하는 증발가스의 양은 선적(Loading) 방법 및 시스템 구성에 따라 차이가 나는데, 아래와 같은 세 경우에 대해 각각 다르게 적용이 된다.Basically, the same operation as in the normal operation mode is performed. In this shipping operation mode, excessive amount of boil-off gas is generated compared with the normal operation mode. The amount of boil-off gas generated varies depending on the loading method and system configuration, and is applied differently for the following three cases.
1) 증발가스 발생량 < 제2응축부(320)의 용량1) Evaporation gas amount <capacity of the second condensation unit 320
제1응축부(310)의 압력 및 레벨(Level)을 제어할 수 있을 정도의 증발가스만 제1저압압축부(Main LP 증발가스 Compressor)를 이용하여 제1응축부(310)로 보내고 나머지는 제1저압압축부(Main LP 증발가스 Compressor) 및 제2저압압축부(Aux. LP 증발가스 Compressor)를 이용하여 제2 응축기(320)로 이송하여 전량을 재응축시킨다. 이때의 냉원은 고압펌프유닛(400)에서 가압된 액화가스며 최소유량라인(L40)에서 분기되어 제2 응축기(320)로 공급된다.Only the evaporation gas that can control the pressure and level of the first condenser 310 is sent to the first condenser 310 by using the first LP compressor (Main LP evaporator gas compressor). The first low compression unit (Main LP boil-off gas compressor) and the second low compression unit (Aux. LP boil-off gas compressor) are transferred to the second condenser 320 to condense the entire amount. At this time, the cold source is the liquefied gas pressurized by the high pressure pump unit 400 and branched from the minimum flow line L40 to be supplied to the second condenser 320.
2) 제2응축부(320) 용량 < 증발가스 발생량 < 제2응축부(320) + 제1응축부(310) 용량2) Capacity of second condenser 320 <Evaporation gas amount <Capacity of second condenser 320 + First condenser 310
제2 응축기(320)에서 재응축시킬 수 있는 증발가스양을 우선적으로 제2 응축기(320)로 이송시키고, 그 나머지에 대해 제1응축부(310)로 이송하여 재응축시킨다.The amount of boil-off gas that can be recondensed in the second condenser 320 is first transferred to the second condenser 320, and the remaining amount of the evaporated gas is transferred to the first condenser 310 to condense.
3) 제2응축부(320) + 제1응축부(310) 용량 < 증발가스 발생량3) Capacity of the second condenser 320 + first condenser 310
기본적으로 2)의 경우와 같이 운전을 하되, 두 응축부(310,320)에서 재응축시킬 수 있는 양 이상에 대해서는 고압압축부(230)를 이용하여 직접 고압으로 가압하여 기화기(510) 후단에 연결하여 수요처(10)로 이송될 수 있도록 한다.Basically, the operation is performed as in the case of 2), but the amount of recondensation in the two condensation units 310 and 320 is directly connected to the rear end of the vaporizer 510 by directly pressurizing the high pressure using the high pressure compressor 230. It can be transferred to the demand destination (10).
이상으로 본 발명에 따른 연료가스 공급 시스템의 작동방식에 대하여 설명하였다. 이처럼 본 발명에서는 액화가스를 재기화하여 수요처(10, HP Fuel Gas Consumer)에 공급할 수 있으므로, 황산화물(SOx), 질소산화물(NOx) 등의 배출이 적어 배기가스 처리장비 비용을 절감할 수 있다.The operation of the fuel gas supply system according to the present invention has been described above. As described above, in the present invention, since the liquefied gas can be regasified and supplied to the demand destination (10, HP Fuel Gas Consumer), the emission of sulfur oxides (SOx), nitrogen oxides (NOx), and the like can be reduced, thereby reducing the cost of the exhaust gas treatment equipment. .
또한, 운전모드에 따라 큰 차이를 보이며 발생하는 증발가스를 적은 액화가스의 공급량으로도 효과적으로 재응축할 수 있다.In addition, it is possible to effectively recondensate the generated boil-off gas with a small supply amount of liquefied gas with a large difference depending on the operation mode.
또한, 운전 중 발생하는 증발가스를 회수하여 연료로 사용할 수 있다. 예를 들어, 다양한 운전에서 발생하는 증발가스, 특히 선적 운전(Loading Operation) 시 과도하게 발생하는 증발가스를 제2압축부(220) 및 제2응축부(320)를 이용하여 재응축시켜 회수 할 수 있다.In addition, the boil-off gas generated during operation can be recovered and used as fuel. For example, the evaporation gas generated in various operations, in particular, excessively generated during the loading operation, may be recondensed and recovered using the second compression unit 220 and the second condensation unit 320. Can be.
다시 말해, 다양한 운전에서 발생하는 증발가스, 특히 선적 운전(Loading Operation) 시 과도하게 발생하는 증발가스를 제2압축부(220) 및 제2응축부(320)를 이용하여 재응축시켜 회수 할 수 있다. 만약 재응축하지 않고 고압으로 바로 가압하여 연료로 공급할 시 압축에 필요한 에너지 소모가 증가하므로 에너지 효율 측면에서 이점이 크다. 액체를 가압 후 기화시키는 것이 기체를 가압하는 것보다 에너지 소모가 적은 것은 열역학적으로 자명하기 때문이다.In other words, the boil-off gas generated in various operations, in particular, the boil-off gas generated during loading operation may be recondensed and recovered by using the second compression unit 220 and the second condensation unit 320. have. If the fuel is directly pressurized to high pressure without recondensation, the energy consumption required for compression increases, which is a big advantage in terms of energy efficiency. It is thermodynamically clear that evaporation of the liquid after pressurization requires less energy than pressurizing the gas.
또한, 선적 운전 시, 제2응축부를 통과하는 액화가스는 고압펌프유닛(400, HP LNG Booster Pump)에서 가압되어 충분히 과냉각된 상태이므로, 제2압축부(220)로부터 제1응축부(310)까지 이송되는 증발가스(BOG)와 열교환하여도 증발가스를 발생시키지 않아 효율적인 연료가스 공급이 가능하다.In addition, since the liquefied gas passing through the second condensation unit is pressurized by the high pressure pump unit 400 (HP LNG Booster Pump) and sufficiently cooled, the first condensation unit 310 is discharged from the second compression unit 220. It is possible to supply fuel gas efficiently without generating boil-off gas even if it exchanges heat with boil-off gas (BOG).
또한, 고압펌프유닛(400)을 통과한 액화가스 일부가 제2응축부(320)에서 증발가스를 응축하도록 함으로써, 증발가스를 추가 에너지원 없이 재응축하여 사용하므로 별도의 재액화장치 등이 필요없다. 또, 이를 통해 재액화에 필요한 에너지도 최소화할 수 있다.In addition, a part of the liquefied gas passing through the high-pressure pump unit 400 to condense the boil-off gas in the second condensing unit 320, so that the re-condensation of the boil-off gas without using an additional energy source is required, such as a separate reliquefaction device none. This also minimizes the energy required for reliquefaction.
또한, 선적 운전(Loading Operation) 시 발생하는 과잉 증발가스를 재응축하기 위해 제2응축부(320)를 설치하되, 최소유량라인(L40, Minimum Flow Line)에서 분기된 응축라인(L41)에 설치하여 배관 물량을 최소화할 수 있다.In addition, the second condensing unit 320 is installed to recondensate the excess boil off gas generated during the loading operation, but is installed in the condensation line (L41) branched from the minimum flow line (L40). To minimize the amount of piping.
또한, 선적 운전 시 발생하는 과잉 증발가스를 액화시키는데 있어서, 고압펌프유닛(400)에서 가압된 액화가스를 전량 사용하지 않고, 응축라인(L41)을 통해 액화에 필요한 양만 조절하여 공급 사용함으로써, 배관 물량을 줄이며 제2응축부(320)의 크기도 최소화할 수 있다.In addition, in liquefying the excess evaporated gas generated during the shipping operation, by supplying only the amount required for liquefaction through the condensation line (L41) without supplying the entire amount of the liquefied gas pressurized in the high-pressure pump unit 400, The amount of the second condensation unit 320 can be reduced and the size can be minimized.
또한, 선적 운전 시에만 과잉 증발가스가 제2응축부(320)를 통과하게 되므로, 정상 운전시 압력 강하에 의한 에너지 손실이 발생하는 문제가 없다.In addition, since the excess condensed gas passes through the second condensation unit 320 only during the loading operation, there is no problem that energy loss occurs due to the pressure drop during the normal operation.
또한, 압축유닛(200)을 제1압축부(210)와 제2압축부(220)와 고압압축부(230) 세 개를 마련함으로써, 운전 상태에 따라 구분하여 이용할 수 있다. 예를 들어, 선적 운전 시 같이 정상 운전 시와는 달리 과잉 증발가스가 발생할 경우 제1압축부(210)(제1저압압축부)가 처리할 수 있는 용량 이상의 나머지 증발가스에 대해서는 제2압축부(220)(제2저압압축부)를 사용함으로써, 증발가스 이송을 제1압축부(210)와 제2압축부(220)가 함께 담당하는 것이다. 나아가, 제1압축부(210)와 제2압축부(220)가 담당할 수 있는 용량 이상으로 증발가스가 발생하는 경우에 나머지 증발가스에 대하여는 고압압축부(230)가 적용 및 사용될 수 있다.In addition, by providing three compression unit 200, the first compression unit 210, the second compression unit 220 and the high compression unit 230, it can be used according to the operating state. For example, when the excess evaporation gas is generated unlike the normal operation such as during the loading operation, the second compression unit may be configured for the remaining evaporation gas having a capacity that the first compression unit 210 (the first low compression unit) can handle. By using the 220 (second low compression unit), the first compression unit 210 and the second compression unit 220 are responsible for transporting the boil-off gas. In addition, when the boil-off gas is generated more than the capacity that the first compressor 210 and the second compressor 220 can be in charge, the high-pressure compressor 230 may be applied and used for the remaining boil-off gas.
또한, 제2응축부(320)를 통해 재응축된 증발가스를 저장탱크가 아닌 제1응축부(310)로 이송하여 에너지 낭비를 절감할 수 있다. 즉, 만약 재응축된 증발가스를 저압의 저장탱크(101)로 리턴(Return)시키면 저압(5kPag) 환경에서 다시 공급펌프(110)로 가압하여 제1응축부로 이송시켜야 하므로, 그만큼의 에너지 낭비를 줄일 수 있는 것이다.In addition, energy consumption may be reduced by transferring the recondensed evaporated gas to the first condenser 310 instead of the storage tank. In other words, if the recondensed boil-off gas is returned to the low pressure storage tank 101, it is necessary to pressurize it back to the supply pump 110 in the low pressure (5 kPag) environment and transfer it to the first condensation part. It can be reduced.
도 6은 본 발명의 제3실시예에 따른 연료가스 공급 시스템을 도시한다. 이하에서, 부유식 발전 시스템에 적용되는 경우를 예로 들어 본 발명의 실시예에 따른 연료가스 공급 시스템에 대해 설명한다. 도 6의 실시예에 따른 연료가스 공급 시스템은 선적 유닛(50)과, 증발 감량 모듈(5000) 및 증발가스 반송 유닛(6000)을 더 포함하여 구성되는 점에서, 앞서 설명한 실시예들과 차이가 있다.6 shows a fuel gas supply system according to a third embodiment of the present invention. Hereinafter, a description will be given of a fuel gas supply system according to an embodiment of the present invention taking the case applied to the floating power generation system as an example. The fuel gas supply system according to the embodiment of FIG. 6 differs from the above-described embodiments in that the fuel gas supply system further includes a shipping unit 50, an evaporation reduction module 5000, and an evaporation gas conveying unit 6000. have.
도 6을 참조하면, 부유식 발전 시스템은 부유체에 설치되어 액화가스를 이용하여 전기를 생산한다. 부유체는 해상 또는 강물 등의 수상에 부유되고, 부유식 발전 시스템이 설치되는 선박 또는 해양 구조물로 제공될 수 있다. 일 실시예에 따르면, 부유식 발전 시스템은 저장탱크(30), 가스 발전 모듈(2000), 가스 공급 모듈(3000), 선적 유닛(50), 증발 감량 모듈(5000) 및 증발가스 반송 유닛(6000)을 포함한다. 설명의 편의를 위해 도면 및 명세서에는 기재되지 않았으나, 부유식 발전 시스템은 부유식 발전 시스템의 운용에 당연히 요구되는 펌프, 압축기 및 밸브 등의 필수 구성을 포함하는 것으로 가정한다.Referring to FIG. 6, the floating power generation system is installed in a floating body to generate electricity using liquefied gas. Floating bodies may be provided in ships or offshore structures in which they are suspended in water or river water, and the floating power generation system is installed. According to an embodiment, the floating power generation system includes a storage tank 30, a gas power generation module 2000, a gas supply module 3000, a shipping unit 50, an evaporation loss module 5000, and an evaporation gas conveying unit 6000. ). Although not described in the drawings and the specification for the convenience of description, it is assumed that the floating power generation system includes essential components such as a pump, a compressor, and a valve, which are naturally required for the operation of the floating power generation system.
저장탱크(30)에는 액화가스가 저장된다. 저장탱크(30)는 액화가스와 이의 증발가스를 수용하는 저장유닛에 해당한다. 액화가스는 상온에서는 기체 상태인 가스가 액체 상태로 응축된 가연성 물질이다. 예를 들면, 액화가스는 액화천연가스(LNG)로 제공된다.Liquefied gas is stored in the storage tank 30. Storage tank 30 corresponds to a storage unit for receiving liquefied gas and its boil-off gas. Liquefied gas is a flammable substance in which gaseous gas is condensed in a liquid state at room temperature. For example, liquefied gas is provided as liquefied natural gas (LNG).
가스 발전 모듈(2000)은 연료가스의 수요처에 해당한다. 가스 발전 모듈(2000)은 저장탱크(30)로부터 공급된 액화가스를 이용하여 전기를 생산한다. 일 실시예에 따르면, 가스 발전 모듈(2000)은 가스 터빈(2100)을 가진다.The gas power generation module 2000 corresponds to a demand source of fuel gas. The gas power generation module 2000 generates electricity using the liquefied gas supplied from the storage tank 30. According to one embodiment, the gas power generation module 2000 has a gas turbine 2100.
가스 터빈(2100)은 저장탱크(30)로부터 기체 상태로 공급된 액화가스를 연소하여 터빈(Turbine)을 회전시킴으로써 전기를 생산한다. 가스 터빈(2100)이 액화가스를 이용하여 동작하기 위해서는 일반적으로 일정 알피엠(rpm) 이상의 터빈의 회전이 요구된다. 따라서, 일반적으로, 가스 발전 모듈(2000)에는 가스 터빈(2100)이 액화가스를 연소하여 자체적으로 동작되기 전에 가스 터빈(2100)의 터빈을 상기 일정 알피엠 이상으로 회전시키는 스타터(미도시)가 제공된다. 이와 달리, 가스 발전 모듈(2000)은 가스 터빈(2100)을 대신하여, 엔진(Engine)을 포함할 수 있다. 엔진은 가스 터빈(2100)과 동일하게 기화된 액화가스를 연료로 사용하여 전기를 발생시키나 작동 조건에 있어서 가스 터빈(2100)과 상이하다. 가스 터빈(2100) 대신 엔진이 제공되는 경우, 가스 공급 모듈(3000)은 저장탱크(30)에 저장된 액화가스를 엔진으로 공급한다.The gas turbine 2100 produces electricity by burning a liquefied gas supplied in a gaseous state from the storage tank 30 to rotate a turbine. In order for the gas turbine 2100 to operate using liquefied gas, rotation of a turbine of a predetermined rpm or more is generally required. Thus, in general, the gas power generation module 2000 is provided with a starter (not shown) for rotating the turbine of the gas turbine 2100 above the predetermined ALPM before the gas turbine 2100 combusts the liquefied gas and operates itself. do. Alternatively, the gas power generation module 2000 may include an engine instead of the gas turbine 2100. The engine generates electricity by using liquefied gas vaporized in the same manner as the gas turbine 2100, but is different from the gas turbine 2100 in operating conditions. When the engine is provided instead of the gas turbine 2100, the gas supply module 3000 supplies the liquefied gas stored in the storage tank 30 to the engine.
가스 발전 모듈(2000)은 공기 냉각기(미도시)를 더 포함할 수 있다. 공기 냉각기는 가스 터빈(2100)에 액화가스의 연소를 위해 유입되는 외부 공기를 냉각한다. 가스 터빈(2100)에 유입되는 공기의 온도를 낮출수록 가스 터빈에 동일 시간 동안 공급되는 공기의 질량이 증가하여 가스 터빈의 출력을 높일 수 있다. 가스 터빈(2100)이 공급되는 외부 공기의 온도에 민감하지 않은 기종으로 제공되는 경우, 공기 냉각기는 선택적으로 제공되지 않을 수 있다. The gas power generation module 2000 may further include an air cooler (not shown). The air cooler cools external air introduced to the gas turbine 2100 for combustion of the liquefied gas. As the temperature of the air flowing into the gas turbine 2100 is lowered, the mass of the air supplied to the gas turbine for the same time increases to increase the output of the gas turbine. When the gas turbine 2100 is provided as a model that is not sensitive to the temperature of the external air supplied, the air cooler may not be selectively provided.
가스 공급 모듈(3000)은 저장탱크(30)에 저장된 액화가스를 가스 터빈(2100)으로 공급한다. 일 실시예에 따르면, 가스 공급 모듈(3000)은 재응축유닛(3100), 수요처 공급라인(3200), 기화기(3300), 공급펌프(3400), 액화가스 공급라인(3500) 및 증발가스 공급라인(3600)을 포함한다.The gas supply module 3000 supplies the liquefied gas stored in the storage tank 30 to the gas turbine 2100. According to an embodiment, the gas supply module 3000 includes a recondensation unit 3100, a demand source supply line 3200, a vaporizer 3300, a supply pump 3400, a liquefied gas supply line 3500, and an evaporative gas supply line. 3600.
재응축유닛(3100)은 저장탱크(30) 내의 액화가스로부터 발생된 증발가스를 재응축시킨다. 재응축유닛(3100)의 내부에는 상부로부터 저장탱크(30)에서 액화가스가 증발된 증발가스가 공급되고, 액체 상태의 액화가스가 저장탱크(30)로부터 공급된다. 재응축유닛(3100)으로 공급된 증발가스는 고압 상태에서 액체 상태의 액화가스와의 열교환을 통해 냉각되어 액체 상태로 응축된다. 일 실시예에 따르면, 재응축유닛(3100) 내로 공급되는 액체 상태의 액화가스 중 일부는 재응축유닛(3100) 내에서 스프레이 방식으로 분사되어 공급된다. 따라서, 증발가스와의 접촉 면적이 증가되어 액체 상태의 액화가스와 증발가스 간에 열교환이 보다 용이해진다.The recondensation unit 3100 recondenses the boil-off gas generated from the liquefied gas in the storage tank 30. Inside the recondensation unit 3100, an evaporated gas in which the liquefied gas is evaporated from the storage tank 30 is supplied from an upper portion, and a liquefied gas in a liquid state is supplied from the storage tank 30. The boil-off gas supplied to the recondensation unit 3100 is cooled through heat exchange with the liquefied gas in the liquid state at high pressure and condensed in the liquid state. According to one embodiment, some of the liquid liquefied gas supplied into the recondensation unit 3100 is sprayed and supplied in the recondensation unit 3100. Therefore, the contact area with the boil-off gas is increased, so that heat exchange between the liquid liquefied gas and the boil-off gas is easier.
수요처 공급라인(3200)은 재응축유닛(3100)과 가스 터빈(2100)을 연결한다. 따라서, 재응축유닛(3100)에서 응축된 액화가스는 수요처 공급라인(3200)을 통해 기화기(3300)에서 기화된 후 가스 터빈(2100)으로 공급된다. 수요처 공급라인(3200)에는 고압펌프유닛(3210)이 설치될 수 있다. 고압펌프유닛(3210)은 재응축유닛(3100) 내의 액화가스가 가스 터빈(2100)으로 이송되도록 액화가스에 압력을 인가한다.The customer supply line 3200 connects the recondensation unit 3100 and the gas turbine 2100. Therefore, the liquefied gas condensed in the recondensation unit 3100 is vaporized in the vaporizer 3300 through the supply source line 3200 is supplied to the gas turbine 2100. The high pressure pump unit 3210 may be installed in the supply source 3200. The high pressure pump unit 3210 applies pressure to the liquefied gas so that the liquefied gas in the recondensation unit 3100 is transferred to the gas turbine 2100.
기화기(3300)는 가스 터빈(2100)에서 연료로 사용될 수 있도록, 가스 터빈(2100)으로 공급되기 전에 액화가스를 기화시킨다. 기화기(3300)는 수요처 공급라인(3200)에 설치된다.The vaporizer 3300 vaporizes the liquefied gas before it is supplied to the gas turbine 2100 so that it can be used as fuel in the gas turbine 2100. The vaporizer 3300 is installed in the supply line 3200 of the customer.
공급펌프(3400)는 저장탱크(30) 내의 액화가스를 재응축유닛(3100)으로 이송시킨다. 즉, 공급펌프(3400)는 저장탱크(30) 내의 액체 상태의 액화가스가 액화가스 공급라인(3500)을 따라 재응축유닛(3100)으로 이동되도록 액화가스에 압력을 인가한다.The supply pump 3400 transfers the liquefied gas in the storage tank 30 to the recondensation unit 3100. That is, the supply pump 3400 applies pressure to the liquefied gas so that the liquefied gas in the liquid state in the storage tank 30 is moved to the recondensing unit 3100 along the liquefied gas supply line 3500.
액화가스 공급라인(3500)은 공급펌프(3400)와 재응축유닛(3100)을 연결한다. 따라서, 공급펌프(3400)에 의해 압력이 가해진 액화가스는 액화가스 공급라인(3500)을 따라 재응축유닛(3100)으로 이송된다.The liquefied gas supply line 3500 connects the supply pump 3400 and the recondensation unit 3100. Therefore, the liquefied gas pressurized by the supply pump 3400 is transferred to the recondensing unit 3100 along the liquefied gas supply line 3500.
증발가스 공급라인(3600)은 저장탱크(30) 및 재응축유닛(3100)을 연결한다. 저장탱크(30)에서 발생된 증발가스는 저장탱크(30) 내의 압력에 의해 증발가스 공급라인(3600)을 따라 재응축유닛(3100)으로 이송된다. 증발가스 공급라인(3600)에는 압축유닛(3700)이 제공될 수 있다. 압축유닛(3700)은 저장탱크(30)에서 발생된 증발가스가 재응축유닛(3100)으로 공급되기 전에 저장탱크(30)로부터 재응축유닛(3100)으로 이송되는 증발가스를 압축한다. 증발가스가 압축유닛(3700)에서 압축됨으로써, 재응축유닛(3100) 내에서 증발가스가 보다 용이하게 응축될 수 있고, 재응축유닛(3100) 내부의 압력을 유지하기에 용이하다.The boil-off gas supply line 3600 connects the storage tank 30 and the recondensation unit 3100. The boil-off gas generated in the storage tank 30 is transferred to the recondensation unit 3100 along the boil-off gas supply line 3600 by the pressure in the storage tank 30. The boil-off gas supply line 3600 may be provided with a compression unit 3700. The compression unit 3700 compresses the boil-off gas transferred from the storage tank 30 to the re-condensation unit 3100 before the boil-off gas generated in the storage tank 30 is supplied to the re-condensation unit 3100. As the boil-off gas is compressed in the compression unit 3700, the boil-off gas can be more easily condensed in the recondensation unit 3100, and it is easy to maintain the pressure inside the re-condensation unit 3100.
가스 공급 모듈(3000)은 가스 온도 조절기(미도시)를 더 포함할 수 있다. 가스 온도 조절기는 가스 터빈(2100)의 효율을 높이기 위해, 기화기(3300)에서 기화된 액화가스를 가스 터빈(2100)의 효율이 최적화되는 온도로 가열하여 가스 터빈(2100)으로 공급한다.The gas supply module 3000 may further include a gas temperature controller (not shown). In order to increase the efficiency of the gas turbine 2100, the gas temperature controller heats the liquefied gas vaporized in the vaporizer 3300 to a temperature at which the efficiency of the gas turbine 2100 is optimized and supplies the gas turbine 2100 to the gas turbine 2100.
선적 유닛(50)은 액화가스 운반선(40)으로부터 저장탱크(30)로 액화가스를 이송한다. 액화가스 운반선(40)은 부유식 발전 시스템으로 액화가스를 운반하는 선박이다. 선적 유닛(50)은 액화가스 운반선(40)으로부터 저장탱크(30)로 액화가스가 이송되는 이송 라인을 포함한다. 선적 유닛(50)은 이송 라인을 개폐하는 밸브(미도시)와, 선적 중인지 여부의 신호를 제어기(5300)로 전달하는 센서(미도시)를 더 포함할 수 있다.The shipping unit 50 transfers the liquefied gas from the liquefied gas carrier 40 to the storage tank 30. The liquefied gas carrier 40 is a vessel for transporting liquefied gas to the floating power generation system. The shipping unit 50 includes a transfer line through which liquefied gas is transferred from the liquefied gas carrier 40 to the storage tank 30. The shipping unit 50 may further include a valve (not shown) that opens and closes the transfer line, and a sensor (not shown) which transmits a signal to the controller 5300 whether the shipment is in progress.
증발 감량 모듈(5000)은 저장탱크(30) 내에서 액화가스의 증발량을 감소시킨다. 예를 들면, 증발 감량 모듈(5000)은 저장탱크(30)를 냉각 시키고, 저장탱크(30)의 내부 압력을 가압시킴으로써, 저장탱크(30) 내에서의 액화가스의 증발량을 감소시킬 수 있다. 일 실시예에 따르면, 증발 감량 모듈(5000)은 냉각 유닛(5100), 압력 조절 유닛(5200) 및 제어기(5300)를 포함한다. The evaporation loss module 5000 reduces the amount of evaporated liquefied gas in the storage tank 30. For example, the evaporation loss module 5000 may reduce the evaporation amount of the liquefied gas in the storage tank 30 by cooling the storage tank 30 and pressurizing the internal pressure of the storage tank 30. According to one embodiment, the evaporation loss module 5000 includes a cooling unit 5100, a pressure regulation unit 5200 and a controller 5300.
냉각 유닛(5100)은 저장탱크(30)를 냉각시킨다. 일반적으로, 공급펌프(3400)로 이송하기 위해서는 최소한의 액화가스량이 요구되므로, 저장탱크(30)에는 공급펌프(3400)로 이송이 가능한 최소량보다 많은 양의 액화가스가 잔류할 수 있다. 냉각 유닛(5100)은 저장탱크(30) 내에 저장된 액체 상태의 액화가스를 저장탱크(30)의 내부에 분사하여 저장탱크(30)를 냉각시킬 수 있다. 일 실시예에 따르면, 냉각 유닛(5100)은 분사 부재(5110), 분사 펌프(5120), 분사 라인(5130) 및 온도 측정기(5140)를 포함한다.The cooling unit 5100 cools the storage tank 30. In general, since a minimum amount of liquefied gas is required to transfer the feed pump 3400, the storage tank 30 may have a larger amount of liquefied gas than the minimum amount that can be transferred to the supply pump 3400. The cooling unit 5100 may cool the storage tank 30 by spraying the liquefied gas in a liquid state stored in the storage tank 30 into the storage tank 30. According to one embodiment, the cooling unit 5100 includes an injection member 5110, an injection pump 5120, an injection line 5130 and a temperature meter 5140.
분사 부재(5110)는 저장탱크(30)에 저장된 액체 상태의 액화가스를 저장탱크(30)의 내부에 분사한다. The injection member 5110 injects the liquefied gas in the liquid state stored in the storage tank 30 into the storage tank 30.
분사 펌프(5120)는 저장탱크(30)의 내부에 저장된 액화가스가 분사 부재(5110)로 공급되도록 저장탱크(30) 내부의 액화가스에 압력을 가한다. The injection pump 5120 applies pressure to the liquefied gas in the storage tank 30 so that the liquefied gas stored in the storage tank 30 is supplied to the injection member 5110.
분사 라인(5130)은 분사 부재(5110) 및 분사 펌프(5120)를 연결한다. 따라서, 분사 펌프(5120)에 의해 가압된 액화가스는 분사 라인(5130)을 통해 분사 부재(5110)로 이송된다.The injection line 5130 connects the injection member 5110 and the injection pump 5120. Therefore, the liquefied gas pressurized by the injection pump 5120 is transferred to the injection member 5110 through the injection line 5130.
온도 측정기(5140)는 저장탱크(30) 내부의 온도를 측정한다. 온도 측정기(5140)는 저장탱크(30)의 온도를 측정한 측정 값을 실시간으로 제어기(5300)로 전달한다.The temperature measuring device 5140 measures the temperature inside the storage tank 30. The temperature measuring unit 5140 transmits the measured value measuring the temperature of the storage tank 30 to the controller 5300 in real time.
압력 조절 유닛(5200)은 저장탱크(30) 내의 압력을 조절한다. 압력 조절 유닛(5200)은 저장탱크(30)로부터 재응축유닛(3100)으로 이송되는 증발가스의 유량을 조절함으로써 저장탱크(30) 내의 압력을 조절할 수 있다. 일 실시예에 따르면, 압력 조절 유닛(5200)은 압력 조절 밸브(5210) 및 압력 측정기(5220)를 포함한다.The pressure regulating unit 5200 adjusts the pressure in the storage tank 30. The pressure regulating unit 5200 may adjust the pressure in the storage tank 30 by adjusting the flow rate of the boil-off gas transferred from the storage tank 30 to the recondensation unit 3100. According to one embodiment, the pressure regulating unit 5200 includes a pressure regulating valve 5210 and a pressure meter 5220.
압력 조절 밸브(5210)는 증발가스 공급라인(3600)의 개방율을 조절한다. 예를 들면, 압력 조절 밸브(5210)의 개방율을 낮추는 경우, 발생되는 증발가스가 저장탱크(30) 외부로 배출되는 양이 감소하므로 저장탱크(30)의 내부 압력이 상승할 수 있다. 또한, 압력 조절 밸브(5210)의 개방율을 높이는 경우, 발생되는 증발가스가 저장탱크(30) 외부로 배출되는 양이 증가하므로 저장탱크(30)의 내부 압력이 감소할 수 있다.The pressure regulating valve 5210 adjusts the opening rate of the boil-off gas supply line 3600. For example, when the opening ratio of the pressure regulating valve 5210 is lowered, since the amount of generated evaporated gas discharged to the outside of the storage tank 30 is reduced, the internal pressure of the storage tank 30 may increase. In addition, when the opening ratio of the pressure regulating valve 5210 is increased, the amount of the generated evaporated gas discharged to the outside of the storage tank 30 increases, so that the internal pressure of the storage tank 30 may decrease.
압력 측정기(5220)는 저장탱크(30) 내부의 압력을 측정한다. 압력 측정기(5220)는 저장탱크(30)의 압력을 측정한 측정 값을 실시간으로 제어기(5300)로 전달한다.The pressure gauge 5220 measures the pressure inside the storage tank 30. The pressure measuring unit 5220 transmits the measured value measuring the pressure of the storage tank 30 to the controller 5300 in real time.
제어기(5300)는 냉각 유닛(5100) 및 압력 조절 유닛(5200)을 제어한다. The controller 5300 controls the cooling unit 5100 and the pressure regulating unit 5200.
제어기(5300)는 저장탱크(30)의 내부를 냉각시키도록 냉각 유닛(5100)을 제어한다. 제어기(5300)는 선적 유닛(50)이 액화가스를 액화가스 운반선(40)으로부터 저장탱크(30)로 이송을 시작하기 전에 저장탱크(30)를 냉각시키도록 냉각 유닛(5100)을 제어한다. 일 실시예에 따르면, 제어기(5300)는 저장탱크(30) 내에서 분사 부재(5110)를 통해 액화가스를 분사하도록 분사 펌프(5120)를 작동시키고 분사 라인(5130)을 개방한다. 제어기(5300)는 저장탱크(30)의 온도가 미리 설정된 온도까지 냉각되도록 충분한 시간 동안 액화가스를 분사하도록 냉각 유닛(5100)을 제어한다. 예를 들면, 액화가스가 액화천연가스(LNG)로 제공되는 경우, 제어기는 저장탱크(30)가 -160℃까지 냉각될 때까지 액화가스를 분사하도록 냉각 유닛(5100)을 제어한다. 또한, 제어기(5300)는 선적 유닛(50)이 액화가스를 액화가스 운반선(40)으로부터 저장탱크(30)로 이송하는 동안, 저장탱크(30)를 냉각시키도록 냉각 유닛(5100)을 제어할 수 있다. 선적 유닛(50)이 저장탱크(30)로 이송을 시작하기 전 뿐만 아니라 이송하는 동안에도 저장탱크를 지속적으로 냉각시킴으로써, 선적 유닛(50)이 액화가스를 이송하는 동안 저장탱크(30)의 액화가스와 접촉되지 않는 영역의 온도가 상승하는 것을 방지한다. 저장탱크(30)로 액화가스를 이송하는 동안, 저장탱크(30)를 냉각 시 제어기(5300)가 냉각 유닛(5100)을 제어하는 구체적인 예는 액화가스의 이송을 시작하기 전에 저장탱크(30)를 냉각시키는 경우와 같다.The controller 5300 controls the cooling unit 5100 to cool the inside of the storage tank 30. The controller 5300 controls the cooling unit 5100 to cool the storage tank 30 before the shipping unit 50 starts transferring the liquefied gas from the liquefied gas carrier 40 to the storage tank 30. According to one embodiment, the controller 5300 operates the injection pump 5120 and opens the injection line 5130 to inject the liquefied gas through the injection member 5110 in the storage tank 30. The controller 5300 controls the cooling unit 5100 to inject liquefied gas for a sufficient time so that the temperature of the storage tank 30 is cooled to a preset temperature. For example, when liquefied gas is provided as liquefied natural gas (LNG), the controller controls the cooling unit 5100 to inject liquefied gas until the storage tank 30 is cooled to -160 ° C. In addition, the controller 5300 may control the cooling unit 5100 to cool the storage tank 30 while the shipping unit 50 transfers the liquefied gas from the liquefied gas carrier 40 to the storage tank 30. Can be. By continually cooling the storage tank not only before the shipping unit 50 starts to transfer to the storage tank 30 but also during the transfer, the liquefaction of the storage tank 30 while the shipping unit 50 transfers the liquefied gas. It prevents the temperature of the area which is not in contact with the gas from rising. While transferring the liquefied gas to the storage tank 30, a specific example in which the controller 5300 controls the cooling unit 5100 when cooling the storage tank 30 is described before the storage tank 30 starts to transfer the liquefied gas. It is the same as when cooling.
제어기(5300)는 저장탱크(30) 내의 압력을 조절하도록 압력 조절 유닛(5200)을 제어한다. 예를 들면, 제어기는 선적 유닛(50)이 액화가스 이송을 시작하기 전 또는 후 제 1 시간 동안 저장탱크(30) 내부를 가압하고, 상기 제 1 시간 후 제 2 시간 동안 저장탱크(30)의 내부의 압력을 유지하도록 압력 조절 유닛(5200)을 제어한다. 또한, 제어기(5300)는 제 2 시간 후 제 3 시간 동안 저장탱크 내부를 감압하도록 압력 조절 유닛(5200)을 제어할 수 있다. 제 1 시간은 선적 유닛(50)이 액화가스 이송을 시작하기 전 또는 후, 저장탱크(30)의 압력이 설정된 압력에 도달하기까지의 시간일 수 있다. 예를 들면, 설정된 압력은 15kPaG 이상의 값일 수 있다. 제 2 시간은 제 1 시간 후 선적 유닛(50)이 액화가스 이송을 종료한 시점까지의 시간일 수 있다. 제어기(5300)는 제 3 시간 동안 저장탱크(30) 내의 압력을 재응축유닛(3100) 및 가스 터빈(2100) 등 발전에 요구되는 구성으로 액화가스를 공급하여 발전하는데 적절한 압력으로 감압하도록 압력 조절 유닛(5200)을 제어할 수 있다. 일 실시예에 따르면, 제어기(5300)는 압력 조절 밸브(5210)의 개방율을 제어하여, 저장탱크(30) 내에서 발생되는 증발가스가 증발가스 공급라인(3600)을 통해 재응축유닛(3100)으로 이송되는 양을 조절함으로써, 저장탱크(30) 내의 압력을 조절한다. 예를 들면, 제어기(5300)가 압력 조절 밸브(5210)의 개방율을 낮추는 경우 저장탱크(30) 내의 증발가스가 재응축유닛(3100)으로 이송되는 양이 줄어듦으로써 저장탱크(30)의 압력은 높아질 수 있다. 이와 달리, 제어기(5300)가 압력 조절 밸브(5210)의 개방율을 높이는 경우 저장탱크(30) 내의 증발가스가 재응축유닛(3100)으로 이송되는 양이 증가함으로써 저장탱크(30)의 압력은 낮아질 수 있다.The controller 5300 controls the pressure regulating unit 5200 to adjust the pressure in the storage tank 30. For example, the controller pressurizes the inside of the storage tank 30 for the first time before or after the shipping unit 50 starts to transfer the liquefied gas, and the storage tank 30 for the second time after the first time. The pressure regulating unit 5200 is controlled to maintain the pressure inside. Also, the controller 5300 may control the pressure regulating unit 5200 to depressurize the inside of the storage tank for a third time after the second time. The first time may be a time before or after the shipping unit 50 starts liquefied gas transfer, until the pressure in the storage tank 30 reaches the set pressure. For example, the set pressure may be at least 15 kPaG. The second time may be a time until the time when the shipping unit 50 finishes transferring the liquefied gas after the first time. The controller 5300 adjusts the pressure to reduce the pressure in the storage tank 30 to a suitable pressure for supplying liquefied gas to the configuration required for power generation such as the recondensation unit 3100 and the gas turbine 2100 for the third time. The unit 5200 may be controlled. According to an embodiment, the controller 5300 controls the opening rate of the pressure regulating valve 5210 so that the boil-off gas generated in the storage tank 30 is recondensed through the boil-off gas supply line 3600. By adjusting the amount to be transferred to), the pressure in the storage tank 30 is adjusted. For example, when the controller 5300 lowers the opening rate of the pressure regulating valve 5210, the amount of the boil-off gas in the storage tank 30 is transferred to the recondensation unit 3100 is reduced, thereby reducing the pressure of the storage tank 30. Can be high. On the contrary, when the controller 5300 increases the opening rate of the pressure regulating valve 5210, the amount of the boil-off gas in the storage tank 30 is transferred to the recondensation unit 3100 increases so that the pressure of the storage tank 30 is increased. Can be lowered.
상술한 바와 같이, 증발 감량 모듈(5000)에 의해 저장탱크(30)가 냉각되고, 가압됨으로써, 저장탱크(30) 내에서의 증발가스의 발생량을 줄일 수 있다. As described above, the storage tank 30 is cooled and pressurized by the evaporation reduction module 5000, thereby reducing the amount of evaporated gas generated in the storage tank 30.
증발가스 반송 유닛(6000)은 저장탱크(30)에서 발생된 증발가스 중 일부를 액화가스 운반선(40)으로 반송한다. 증발가스 반송 유닛(6000)에 의해 저장탱크(30)에서 발생된 증발가스의 일부가 액화가스 운반선(40)으로 반송됨으로써, 부유식 발전 시스템에서 처리해야 하는 증발가스의 양을 줄일 수 있다. 또한, 액화가스를 저장탱크(30)로 선적시킴에 의해 낮아질 수 있는 액화가스 운반선(40)의 액화가스 저장탱크의 압력을 유지시킬 수 있다. 선택적으로, 증발가스 반송 유닛(6000)은 제공되지 않을 수 있다.The boil-off gas conveying unit 6000 conveys a portion of the boil-off gas generated in the storage tank 30 to the liquefied gas carrier 40. A portion of the boil-off gas generated in the storage tank 30 by the boil-off gas conveying unit 6000 is conveyed to the liquefied gas carrier ship 40, thereby reducing the amount of boil-off gas to be treated in the floating power generation system. In addition, it is possible to maintain the pressure of the liquefied gas storage tank of the liquefied gas carrier ship 40 can be lowered by loading the liquefied gas into the storage tank 30. Optionally, the boil-off gas conveying unit 6000 may not be provided.
증발가스 반송 유닛(6000)은 반송 라인(6100)을 포함한다. 반송 라인(6100)은 저장탱크(30)에서 발생된 증발가스의 일부가 액화가스 운반선(40)으로 반송되도록 제공된다. 예를 들면, 반송 라인(6100)은 증발가스 공급라인(3600)의 압력 조절 밸브(5210) 및 압축유닛(3700)의 사이 영역과, 액화가스 운반선(40)을 연결하도록 제공될 수 있다. The boil-off gas conveying unit 6000 includes a conveying line 6100. The conveying line 6100 is provided such that a part of the boil-off gas generated in the storage tank 30 is conveyed to the liquefied gas carrier 40. For example, the conveying line 6100 may be provided to connect a region between the pressure control valve 5210 and the compression unit 3700 of the boil-off gas supply line 3600 and the liquefied gas carrier line 40.
도 7은 본 발명의 제4실시예에 따른 연료가스 공급 시스템을 도시한다. 도 7을 참조하면, 도 6의 경우와 달리, 증발가스 반송 유닛(6000)은 반송 가스 가압기(6200), 우회 라인(6300) 및 압력 조절 부재(6400)를 더 포함할 수 있다.7 shows a fuel gas supply system according to a fourth embodiment of the present invention. Referring to FIG. 7, unlike the case of FIG. 6, the boil-off gas conveying unit 6000 may further include a conveying gas pressurizer 6200, a bypass line 6300, and a pressure regulating member 6400.
반송 가스 가압기(6200)는 반송 라인(6100) 내의 증발가스를 액화가스 운반선(40) 방향으로 가압한다. 저장탱크(30) 내의 압력이 반송 라인(6100)을 통해 액화가스 운반선(40)으로 증발가스를 용이하게 이송하기에 충분하지 않은 경우, 반송 가스 가압기(6200)에 의해 증발가스에 압력을 인가함으로써, 반송 라인(6100)을 통해 증발가스가 액화가스 운반선으로 보다 용이하게 반송될 수 있다.The carrier gas pressurizer 6200 pressurizes the boil-off gas in the carrier line 6100 toward the liquefied gas carrier line 40. If the pressure in the storage tank 30 is not sufficient to easily transport the boil-off gas through the transfer line 6100 to the liquefied gas carrier 40, by applying pressure to the boil-off gas by the carrier gas pressurizer 6200 The boil-off gas may be more easily conveyed to the liquefied gas carrier through the transfer line 6100.
우회 라인(6300)은 증발가스가 저장탱크(30)로부터 반송 가스 가압기(6200)를 우회하여 액화가스 운반선(40)으로 이송되도록 제공된다. 예를 들면, 우회 라인(6300)은 양 끝단이 반송 라인(6100)의 증발가스 공급라인(3600)으로부터 분지된 지점 및 반송 가스 가압기(6200)의 사이 영역과 반송 라인(6100)의 반송 가스 가압기(6200) 및 액화가스 운반선(40)의 사이 영역에 연결된다. 저장탱크(30) 내의 압력이 반송 라인(6100)을 통해 액화가스 운반선(40)으로 증발가스를 용이하게 이송하기에 충분한 경우, 반송 라인(6100)을 지나는 증발가스는 우회 라인(6300)을 통해 액화가스 운반선(40)으로 반송되고, 반송 가스 가압기(6200)가 불필요하게 작동되는 것을 방지함으로써, 불필요한 에너지 소비를 줄일 수 있다. The bypass line 6300 is provided such that the boil-off gas is bypassed from the storage tank 30 to the liquefied gas carrier 40 by bypassing the carrier gas pressurizer 6200. For example, the bypass line 6300 has a point where both ends are branched from the boil-off gas supply line 3600 of the conveying line 6100 and a region between the conveying gas pressurizer 6200 and the conveying gas pressurizer of the conveying line 6100. And an area between the 6200 and the liquefied gas carrier 40. If the pressure in the storage tank 30 is sufficient to easily transport the boil-off gas through the conveying line 6100 to the liquefied gas carrier 40, the boil-off gas passing through the conveying line 6100 passes through the bypass line 6300. Unnecessary energy consumption can be reduced by being conveyed to the liquefied gas carrier 40 and preventing the conveying gas pressurizer 6200 from operating unnecessarily.
압력 조절 부재(6400)는 액화가스 운반선(40)의 액화가스 저장탱크의 압력을 조절한다. 일 실시예에 따르면, 압력 조절 부재(6400)는, 반송 가스 가압기(6200)에 의해 가압된 증발가스 중 일부가 증발가스 공급라인(3600)을 통해 재응축유닛(3100)으로 이송되도록, 양 끝단이 증발가스 공급라인(3600) 및 반송 라인(6100)에 연결된 가스 라인의 개방율을 조절하는 밸브(6400)로 제공될 수 있다. 증발가스 반송 유닛(6000)은 액화가스 운반선의 운반선 탱크의 압력을 측정하는 압력 측정기(6500)를 더 포함할 수 있다. 일 실시예에 따르면, 제어기(5300)는 압력 측정기(6500)에 의해 측정된 운반선 탱크의 압력에 따라 밸브(6400)를 제어함으로써, 운반선 탱크의 압력을 조절 할 수 있다. 밸브(6400)에 의해 압력이 조절됨으로써, 운반선 탱크 내부의 압력이 과도하게 상승하는 것을 방지할 수 있다. 도 7에 도시된 연료가스 공급 시스템의 그 외 구성, 구조 및 기능 등은 도 6의 연료가스 공급 시스템과 유사하다.The pressure regulating member 6400 adjusts the pressure of the liquefied gas storage tank of the liquefied gas carrier ship 40. According to one embodiment, the pressure adjusting member 6400, both ends so that some of the boil-off gas pressurized by the carrier gas pressurizer 6200 is transferred to the recondensation unit 3100 through the boil-off gas supply line 3600. The boil-off gas supply line 3600 and the transfer line 6100 may be provided as a valve 6400 for adjusting the opening rate of the gas line. The boil-off gas conveying unit 6000 may further include a pressure measurer 6500 that measures the pressure of the carrier tank of the liquefied gas carrier. According to an embodiment, the controller 5300 may adjust the pressure of the carrier tank by controlling the valve 6400 according to the pressure of the carrier tank measured by the pressure gauge 6500. By adjusting the pressure by the valve 6400, it is possible to prevent the pressure inside the carrier tank from excessively rising. Other configurations, structures and functions of the fuel gas supply system shown in FIG. 7 are similar to those of the fuel gas supply system of FIG. 6.
도 8은 본 발명의 제5실시예에 따른 연료가스 공급 시스템을 도시한다. 도 8을 참조하면, 가스 공급 모듈(3000a)은 초과 가스 공급 유닛(3800)을 더 포함할 수 있다. 초과 가스 공급 유닛(3800)은 증발가스 공급라인(3600) 내의 증발가스 중 일부를 압축하여 가스 터빈(2100)으로 공급한다. 일 실시예에 따르면, 초과 가스 공급 유닛(3800)은 초과 가스 공급관(3810) 및 초과 가스 압축기(3820)를 포함한다.8 shows a fuel gas supply system according to a fifth embodiment of the present invention. Referring to FIG. 8, the gas supply module 3000a may further include an excess gas supply unit 3800. The excess gas supply unit 3800 compresses a portion of the boil-off gas in the boil-off gas supply line 3600 and supplies the compressed gas to the gas turbine 2100. According to one embodiment, the excess gas supply unit 3800 includes an excess gas supply line 3810 and an excess gas compressor 3820.
일 실시예에 따르면, 초과 가스 공급관(3810)은 양끝단이 증발가스 공급라인(3600)과, 수요처 공급라인(3200)의 가스 터빈(2100) 및 기화기(3300)의 사이 영역에 연결될 수 있다. 압축유닛(3700)이 제공되는 경우, 초과 가스 공급관(3810)의 증발가스 공급라인(3600)에 연결되는 일단은 증발가스 공급라인(3600)의 압축유닛(3700) 및 압력 조절 밸브(5210)의 사이 영역에 연결된다.According to an embodiment, both ends of the excess gas supply pipe 3810 may be connected to an area between the boil-off gas supply line 3600 and the gas turbine 2100 and the vaporizer 3300 of the demand supply line 3200. When the compression unit 3700 is provided, one end connected to the boil-off gas supply line 3600 of the excess gas supply pipe 3810 is connected to the compression unit 3700 and the pressure control valve 5210 of the boil-off gas supply line 3600. Is connected to the area between.
초과 가스 압축기(3820)는 증발가스 공급라인(3600) 내의 증발가스 중 일부를 가스 터빈(2100)에 사용될 수 있는 압력으로 압축시킨다. 초과 가스 압축기(3820)는 초과 가스 공급관(3810)에 설치된다. 일 실시예에 따르면, 제어기(5300)는 저장탱크(30)에서 발생되는 증발가스의 양이 재응축유닛(3100)에서 응축할 수 있는 양을 초과하는 경우, 증발가스 공급라인(3600) 내의 상기 초과되는 양의 증발가스를 압축시켜 기화기(3300)에서 기화된 액화가스와 혼합되어 가스 터빈(2100)으로 공급되도록 초과 가스 공급관(3810)을 개방하고, 초과 가스 압축기(3820)가 작동되도록 제어한다. 따라서, 초과 가스 공급관(3810) 및 초과 가스 압축기(3820)가 제공됨으로써, 재응축유닛(3100)에서 응축할 수 있는 양을 초과하는 증발가스가 발생되는 경우에도, 증발가스를 가스 터빈(2100)의 연료로 사용함으로써 처리할 수 있다. 도 8에 도시된 연료가스 공급 시스템의 그 외 구성, 구조 및 기능 등은 도 6의 연료가스 공급 시스템과 유사하다. 또한, 도 8에 도시된 연료가스 공급 시스템의 증발가스 반송 유닛(6000)은 도 7의 연료가스 공급 시스템과 같이 반송 가스 가압기(6200), 우회 라인(6300), 압력 조절 부재(6400) 및 압력 측정기(5220)를 더 포함할 수 있다.The excess gas compressor 3820 compresses some of the boil-off gas in the boil-off gas supply line 3600 to a pressure that can be used for the gas turbine 2100. The excess gas compressor 3820 is installed in the excess gas supply pipe 3810. According to one embodiment, the controller 5300 is the amount of the boil-off gas generated in the storage tank 30 exceeds the amount that can be condensed in the recondensation unit 3100, the above in the boil-off gas supply line 3600 Excess amount of evaporated gas is compressed to open the excess gas supply pipe 3810 to be mixed with the liquefied gas vaporized in the vaporizer 3300 and supplied to the gas turbine 2100, and to control the excess gas compressor 3820 to operate. . Therefore, when the excess gas supply pipe 3810 and the excess gas compressor 3820 are provided, even if the boil-off gas exceeding the amount that can be condensed in the recondensation unit 3100 is generated, the boil-off gas is supplied to the gas turbine 2100. It can be processed by using as fuel. Other configurations, structures, and functions of the fuel gas supply system shown in FIG. 8 are similar to those of the fuel gas supply system of FIG. 6. In addition, the boil-off gas conveying unit 6000 of the fuel gas supply system illustrated in FIG. 8 may have a conveying gas pressurizer 6200, a bypass line 6300, a pressure regulating member 6400, and a pressure as in the fuel gas supply system of FIG. 7. It may further include a meter (5220).
상술한 바와 같이, 본 발명의 실시예에 따른 연료가스 공급 시스템은 저장탱크를 냉각시키고, 가압시킴으로써 증발가스의 발생량을 줄일 수 있다. 본 발명의 실시예에 따른 연료가스 공급 시스템은 증발가스의 일부를 액화가스 운반선으로 반송하거나, 압축하여 가스 터빈으로 직접 공급함으로써, 다량의 증발가스를 활용할 수 있다.As described above, the fuel gas supply system according to the embodiment of the present invention can reduce the amount of generated boil-off gas by cooling and pressurizing the storage tank. The fuel gas supply system according to the embodiment of the present invention may utilize a large amount of boil-off gas by conveying a portion of the boil-off gas to the liquefied gas carrier or directly supplying the compressed gas to the gas turbine.
도 9는 본 발명의 제6실시예에 따른 연료가스 공급 시스템을 도시한다. 도 9의 실시예에 따른 연료가스 공급 시스템은 냉각 유체를 순환시키는 순환 모듈(4000)을 더 포함하여 구성되는 점에서, 앞서 설명한 실시예들과 차이가 있다. 도 9를 참조하면, 부유식 발전 시스템은 저장탱크(1000), 가스 발전 모듈(2000), 가스 공급 모듈(3000) 및 순환 모듈(4000)을 포함한다.9 shows a fuel gas supply system according to a sixth embodiment of the present invention. 9 is different from the above-described embodiments in that the fuel gas supply system according to the embodiment of FIG. 9 further includes a circulation module 4000 for circulating a cooling fluid. Referring to FIG. 9, the floating power generation system includes a storage tank 1000, a gas power generation module 2000, a gas supply module 3000, and a circulation module 4000.
저장탱크(1000)에는 액화가스가 저장된다. 저장탱크(1000)는 액화가스와 이의 증발가스를 수용하는 저장유닛에 해당한다.The liquefied gas is stored in the storage tank 1000. The storage tank 1000 corresponds to a storage unit accommodating liquefied gas and its boiled gas.
가스 발전 모듈(2000)은 저장탱크(1000)로부터 공급된 액화가스를 이용하여 전기를 생산한다. 일 실시 예에 따르면, 가스 발전 모듈(2000)은 가스 터빈(2100) 및 공기 냉각기(2200)를 포함한다.The gas power generation module 2000 generates electricity using the liquefied gas supplied from the storage tank 1000. According to an embodiment, the gas power generation module 2000 includes a gas turbine 2100 and an air cooler 2200.
가스 터빈(2100)은 저장탱크(1000)로부터 기체 상태로 공급된 액화가스를 연소하여 터빈(Turbine)을 회전시킴으로써 전기를 생산한다.The gas turbine 2100 generates electricity by burning a liquefied gas supplied in a gaseous state from the storage tank 1000 to rotate a turbine.
공기 냉각기(2200)는 가스 터빈(2100)에 액화가스의 연소를 위해 유입되는 외부 공기를 냉각한다. 가스 터빈에 유입되는 공기의 온도를 낮출수록 가스 터빈에 동일 시간 동안 공급되는 공기의 질량이 증가하여 가스 터빈의 출력을 높일 수 있다.The air cooler 2200 cools external air introduced to the gas turbine 2100 for combustion of the liquefied gas. As the temperature of the air flowing into the gas turbine is lowered, the mass of air supplied to the gas turbine for the same time increases, thereby increasing the output of the gas turbine.
가스 발전 모듈(2000)은 우회관(2300)을 더 포함할 수 있다. 우회관(2300)은 외부 공기가 공기 냉각기(2200)를 우회하여 흐르도록 제공된다. 예를 들면, 가스 터빈(2100)으로 공급되는 외부 공기의 온도가 충분히 낮아 별도의 냉각이 요구되지 않는 경우, 외부 공기는 공기 냉각기(2200)로 유입되지 않고, 우회관(2300)을 통해 가스 터빈(2100)으로 공급된다. 가스 터빈(2100)이 공급되는 외부 공기의 온도에 민감하지 않은 기종으로 제공되는 경우, 공기 냉각기(2200)는 선택적으로 제공되지 않을 수 있다.The gas power generation module 2000 may further include a bypass tube 2300. The bypass tube 2300 is provided so that outside air flows bypass the air cooler 2200. For example, when the temperature of the outside air supplied to the gas turbine 2100 is sufficiently low that no separate cooling is required, the outside air does not flow into the air cooler 2200, and the gas turbine through the bypass tube 2300. Supplied to 2100. When the gas turbine 2100 is provided as a model that is not sensitive to the temperature of the external air supplied, the air cooler 2200 may not be selectively provided.
가스 공급 모듈(3000)은 저장탱크(1000)에 저장된 액화가스를 가스 터빈(2100)으로 공급한다. 가스 공급 모듈(3000)은 기화기(3300)를 가진다.The gas supply module 3000 supplies the liquefied gas stored in the storage tank 1000 to the gas turbine 2100. The gas supply module 3000 has a vaporizer 3300.
기화기(3300)는 가스 터빈(2100)에서 연료로 사용될 수 있도록, 가스 터빈(2100)으로 공급되기 전에 액화가스를 기화시킨다. 선택적으로, 기화기(3300)와 저장탱크(1000)의 사이에는 압축유닛(도 1 내지 도 5의 도면부호 200, 또는 도 6 내지 도 8의 도면부호 3700) 및 재응축유닛(도 1 내지 도 5의 도면부호 300, 또는 도 6 내지 도 8의 도면부호 3100)이 제공될 수 있다.The vaporizer 3300 vaporizes the liquefied gas before it is supplied to the gas turbine 2100 so that it can be used as fuel in the gas turbine 2100. Optionally, between the vaporizer 3300 and the storage tank 1000 a compression unit (200 of FIGS. 1 to 5, or 3700 of FIGS. 6 to 8) and a recondensation unit (FIGS. 1 to 5). Reference numeral 300 of FIG. 6, or reference numeral 3100 of FIGS. 6 to 8 may be provided.
가스 공급 모듈(3000)은 가스 온도 조절기(3900)를 더 포함할 수 있다. 가스 온도 조절기(3900)는 가스 터빈(2100)의 효율을 높이기 위해, 기화기(3300)에서 기화된 액화가스를 가스 터빈(2100)의 효율이 최적화되는 온도로 가열하여 가스 터빈(2100)으로 공급한다.The gas supply module 3000 may further include a gas temperature controller 3900. In order to increase the efficiency of the gas turbine 2100, the gas temperature controller 3900 heats the liquefied gas vaporized in the vaporizer 3300 to a temperature at which the efficiency of the gas turbine 2100 is optimized and supplies the gas turbine 2100 to the gas turbine 2100. .
순환 모듈(4000)은 냉각 유체를 순환시킨다. 순환 모듈(4000)은 주 순환 모듈(4100)과 보조 순환 모듈(4200)을 포함한다.The circulation module 4000 circulates the cooling fluid. The circulation module 4000 includes a main circulation module 4100 and an auxiliary circulation module 4200.
주 순환 모듈(4100)은 부유체 및/또는 부유식 발전 시스템의 구성 중 냉각이 요구되는 냉각 대상(7000)을 냉각하도록 냉각 유체를 순환시킨다. 여기서 냉각 대상(7000)은 부유체 또는 부유식 발전 시스템의 냉각이 요구되는 일반적인 구성으로서, 이하 설명될 보조 냉각 모듈에 의해 냉각 유체가 순환되는 공기 냉각기(2200)는 포함되지 않는다. 예를 들면, 냉각 대상(7000)은 부유체로 제공된 선박의 냉방 시설 및 각종 전기 장비의 냉각 장치 등 일 수 있다. 일 실시 예에 따르면, 주 순환 모듈(4100)은 냉각 유닛(4110), 주 순환관(4120) 및 메인 펌프(4130)를 포함한다.The main circulation module 4100 circulates the cooling fluid to cool the cooling target 7000 which requires cooling during configuration of the floating body and / or the floating power generation system. Here, the cooling target 7000 is a general configuration requiring cooling of the floating body or the floating power generation system, and does not include the air cooler 2200 in which the cooling fluid is circulated by the auxiliary cooling module to be described below. For example, the cooling target 7000 may be a cooling facility of a ship provided as a floating body, a cooling device of various electrical equipment, or the like. According to an embodiment, the main circulation module 4100 includes a cooling unit 4110, a main circulation pipe 4120, and a main pump 4130.
냉각 유닛(4110)은 냉각 대상(7000)을 냉각시킴으로써 가열된 냉각 유체를 냉각시킨다. 냉각 유닛(4110)은 냉각 유체를 냉각시키는 냉각원으로서 부유체가 부유된 해수 또는 강물을 사용할 수 있다.The cooling unit 4110 cools the heated cooling fluid by cooling the cooling target 7000. The cooling unit 4110 may use seawater or river with a floating body as a cooling source for cooling the cooling fluid.
주 순환관(4120)은 냉각 유닛(4110) 및 냉각 대상(7000) 간에 냉각 유체가 순환되는 유로로 제공된다.The main circulation pipe 4120 is provided as a flow path through which cooling fluid is circulated between the cooling unit 4110 and the cooling target 7000.
메인 펌프(4130)는 냉각 유체가 주 순환관(4120)을 따라 흐르도록 냉각 유체에 압력을 가한다. The main pump 4130 applies pressure to the cooling fluid so that the cooling fluid flows along the main circulation pipe 4120.
보조 순환 모듈(4200)은 주 순환 모듈(4100)에 의해 순환되는 냉각 유체를 분지하여 냉각 유체가 기화기(3300) 및 공기 냉각기(2200)로 유입되도록 냉각 유체를 순환시킨다. 보조 순환 모듈(4200)에 의해 기화기(3300)로 유입된 냉각 유체는 액화가스와 열교환된다. 기화기(3300)에서 냉각 유체와 열교환된 액화가스는 가스 터빈(2100)에서 연료로 사용될 수 있도록 기화된다. 보조 순환 모듈(4200)은 기화기(3300)에서 액화가스와의 열교환이 완료된 냉각 유체가 공기 냉각기(2200)로 유입되어 외부 공기와 열교환 되도록 냉각 유체를 순환시킨다. 공기 냉각기(2200)에서 냉각 유체와 열교환된 외부 공기는 가스 터빈(2100)으로 공급되기 전에 냉각된다. 냉각 유체는 기화기(3300)에서 열원으로 사용됨으로써 공기 냉각기(2200)에서 외부 공기를 냉각 시키기에 충분한 온도로 냉각된다. 일 실시 예에 따르면, 보조 순환 모듈(4200)은 온도 조절 유닛(4210)을 포함한다.The auxiliary circulation module 4200 branches the cooling fluid circulated by the main circulation module 4100 to circulate the cooling fluid so that the cooling fluid flows into the vaporizer 3300 and the air cooler 2200. The cooling fluid introduced into the vaporizer 3300 by the auxiliary circulation module 4200 exchanges heat with the liquefied gas. The liquefied gas heat-exchanged with the cooling fluid in the vaporizer 3300 is vaporized to be used as fuel in the gas turbine 2100. The auxiliary circulation module 4200 circulates the cooling fluid so that the cooling fluid having completed the heat exchange with the liquefied gas in the vaporizer 3300 flows into the air cooler 2200 to exchange heat with the outside air. The external air heat exchanged with the cooling fluid in the air cooler 2200 is cooled before being supplied to the gas turbine 2100. The cooling fluid is used as a heat source in the vaporizer 3300 to be cooled to a temperature sufficient to cool the outside air in the air cooler 2200. According to one embodiment, the auxiliary circulation module 4200 includes a temperature control unit 4210.
온도 조절 유닛(4210)은 기화기(3300) 내로 유입되는 냉각 유체의 온도를 조절한다. 기화기(3300) 내로 유입되는 냉각 유체의 온도가 낮게 제공될수록 액화가스를 기화하기 위한 충분한 열량을 공급하기 위해서는 기화기(3300)에 시간당 공급되는 냉각 유체의 요구되는 양이 증가된다. 그러나, 공기 냉각기(2200)가 제공되는 경우, 냉각 유체가 기화기(3300) 및 공기 냉각기(2200)를 순차적으로 지나므로, 기화기(3300)로 공급되는 냉각 유체의 온도가 높을수록 공기 냉각기(2200)로 공급되는 냉각 유체의 온도 또한 높아지게 된다. 따라서, 공기 냉각기(2200)로 유입되는 냉각 유체의 온도가 일정 온도 이상이 되면 가스 터빈(2100)으로 공급되는 외부 공기를 충분히 냉각시킬 수 없게 된다. 따라서, 기화기(3300) 내로 유입되는 냉각 유체의 온도를 조절하는 온도 조절 유닛(4210)을 제공함으로써, 기화기(3300) 내로 유입되는 냉각 유체의 온도를 적절한 일정 범위의 온도로 조절하여, 기화기(3300)에 시간당 공급되는 냉각 유체의 양 및 공기 냉각기(2200)에서 냉각되는 공기의 온도를 적절한 범위로 조절할 수 있다. 일 실시 예에 따르면 온도 조절 유닛(4210)은 혼합 부재(4211) 및 제어기(4212)를 포함한다.The temperature control unit 4210 adjusts the temperature of the cooling fluid flowing into the vaporizer 3300. The lower the temperature of the cooling fluid flowing into the vaporizer 3300 is provided, the higher the amount of cooling fluid supplied per hour to the vaporizer 3300 to supply sufficient heat for vaporizing the liquefied gas. However, when the air cooler 2200 is provided, since the cooling fluid passes sequentially through the vaporizer 3300 and the air cooler 2200, the higher the temperature of the cooling fluid supplied to the vaporizer 3300, the air cooler 2200. The temperature of the cooling fluid supplied to the furnace is also increased. Therefore, when the temperature of the cooling fluid flowing into the air cooler 2200 becomes higher than a predetermined temperature, the external air supplied to the gas turbine 2100 may not be sufficiently cooled. Thus, by providing a temperature control unit 4210 for adjusting the temperature of the cooling fluid flowing into the vaporizer 3300, by adjusting the temperature of the cooling fluid flowing into the vaporizer 3300 to a suitable range of temperature, the vaporizer 3300 ) The amount of cooling fluid supplied per hour and the temperature of the air cooled in the air cooler 2200 can be adjusted to an appropriate range. According to one embodiment, the temperature control unit 4210 includes a mixing member 4211 and a controller 4212.
도 10은 도 9의 온도 조절 유닛을 나타낸 블록 구성도이다. 도 9 및 도 10을 참조하면, 혼합 부재(4211)에서는 제 1 유체, 제 2 유체 및 제 3 유체가 혼합된다. 혼합 부재(4211)에서 혼합된 냉각 유체는 기화기(3300) 및 공기 냉각기(2200)를 순차적으로 흐른다. 제 1 유체는 냉각 유닛(4110)으로부터 냉각 대상(7000)으로 흐르는 냉각 유체이다. 즉, 제 1 유체는 주 순환관(4120)의 냉각 유닛(4110)에서 냉각 대상(7000)으로 냉각 유체가 흐르는 영역으로부터 분지되어 혼합 부재(4211)로 유입된다. 제 2 유체는 냉각 대상(7000)으로부터 냉각 유닛(4110)으로 흐르는 냉각 유체이다. 즉, 제 2 유체는 주 순환관(4120)의 냉각 대상(7000)에서 냉각 유닛(4110)으로 냉각 유체가 흐르는 영역으로부터 분지되어 혼합 부재(4211)로 유입된다. 제 3 유체는 기화기(3300)에서 액화가스와 열교환이 완료된 냉각 유체이다. 일 실시 예에 따르면, 제 3 유체는 기화기(3300)에서 열교환된 후 아래에 설명될 우회 유로(4220) 또는 공기 냉각기(2200)를 지나 냉각 대상(7000)으로 유입되기 전의 냉각 유체이다. 따라서, 액체 상태의 액화가스와 열교환된 제 3 유체의 온도는 일반적으로 냉각 유닛(4110)에서 사용되는 해수 등의 냉매와 열교환된 제 2 유체의 온도보다 낮고, 냉각 대상과 열교환된 제 1 유체의 온도는 냉각 유닛에서 냉각된 제 2 유체의 온도보다 높다.FIG. 10 is a block diagram illustrating the temperature control unit of FIG. 9. 9 and 10, in the mixing member 4211, the first fluid, the second fluid, and the third fluid are mixed. Cooling fluid mixed in the mixing member 4211 flows sequentially through the vaporizer 3300 and the air cooler 2200. The first fluid is a cooling fluid flowing from the cooling unit 4110 to the cooling target 7000. That is, the first fluid is branched from the region in which the cooling fluid flows from the cooling unit 4110 of the main circulation pipe 4120 to the cooling target 7000 and flows into the mixing member 4211. The second fluid is a cooling fluid flowing from the cooling target 7000 to the cooling unit 4110. That is, the second fluid is branched from the region where the cooling fluid flows from the cooling target 7000 of the main circulation pipe 4120 to the cooling unit 4110 and flows into the mixing member 4211. The third fluid is a cooling fluid in which heat exchange with liquefied gas is completed in the vaporizer 3300. According to one embodiment, the third fluid is a cooling fluid after the heat exchange in the vaporizer 3300 before passing through the bypass passage 4220 or the air cooler 2200 to the cooling target 7000 to be described below. Therefore, the temperature of the third fluid heat-exchanged with the liquefied gas in the liquid state is generally lower than the temperature of the second fluid heat-exchanged with the refrigerant such as seawater used in the cooling unit 4110, The temperature is higher than the temperature of the second fluid cooled in the cooling unit.
제어기(4212)는 기화기(3300) 내로 유입되는 냉각 유체의 온도 및 외부 공기의 온도에 따라, 제 1 유체, 제 2 유체 및 제 3 유체 간의 혼합 비율을 조절하도록 혼합 부재(4211)를 제어한다.The controller 4212 controls the mixing member 4211 to adjust the mixing ratio between the first fluid, the second fluid, and the third fluid, in accordance with the temperature of the cooling fluid and the temperature of the external air introduced into the vaporizer 3300.
일 실시 예에 따르면, 온도 조절 유닛(4210)은 외기 온도 측정기(4213), 냉각 유체 온도 측정기(4214) 및 유량 측정기(4215)를 더 포함할 수 있다. 외기 온도 측정기(4213)는 부유체 및 부유식 발전 시스템의 외부의 외부 공기의 온도를 측정한다. 냉각 유체 온도 측정기(4214)는 혼합 부재(4211)에서 혼합된 후 기화기(3300)로 유입되는 냉각 유체의 온도를 측정한다. 유량 측정기(4215)는 혼합 부재(4211)에서 혼합된 후 기화기(3300)로 유입되는 냉각 유체의 유량을 측정한다. 제어기(4212)는 외기 온도 측정기(4213), 냉각 유체 온도 측정기(4214) 및 유량 측정기(4215)에 측정된 값에 따라 혼합 부재(4211)를 제어한다.According to an embodiment of the present disclosure, the temperature control unit 4210 may further include an outside air temperature measurer 4213, a cooling fluid temperature measurer 4214, and a flow rate measurer 4215. The outside air temperature meter 4213 measures the temperature of the outside air of the floating body and the floating power generation system. The cooling fluid temperature measuring device 4214 measures the temperature of the cooling fluid flowing into the vaporizer 3300 after being mixed in the mixing member 4211. The flow meter 4215 measures the flow rate of the cooling fluid flowing into the vaporizer 3300 after mixing in the mixing member 4211. The controller 4212 controls the mixing member 4211 according to the values measured at the outside air temperature meter 4213, the cooling fluid temperature meter 4214, and the flow rate meter 4215.
제어기(4212)는 외부 공기의 온도 및 기화기 내로 유입되는 냉각 유체의 온도에 따라 기화기(3300)로 유입되는 냉각 유체의 유량을 조절할 수 있다. 예를 들면, 혼합 부재(4211)에 의해 혼합된 냉각 유체가 기화기(3300)로 흐르는 유로에 유량을 조절하는 유량 조절 밸브(4216)가 제공되고, 제어기(4212)는 외부 공기의 온도 및 기화기(3300) 내로 유입되는 냉각 유체의 온도에 따라 기화기(3300)로 유입될 냉각 유체의 양을 증가시켜야 할 경우, 유량 조절 밸브(4216)의 개방율이 높아지도록 유량 조절 밸브(4216)를 제어한다. 또한, 제어기(4212)는 외부 공기의 온도 및 기화기(3300) 내로 유입되는 냉각 유체의 온도에 따라 기화기(3300)로 유입될 냉각 유체의 양을 감소시켜야 할 경우, 유량 조절 밸브(4216)의 개방율이 낮아지도록 유량 조절 밸브(4216)를 제어한다.The controller 4212 may adjust the flow rate of the cooling fluid flowing into the vaporizer 3300 according to the temperature of the outside air and the temperature of the cooling fluid flowing into the vaporizer. For example, a flow regulating valve 4216 is provided for adjusting the flow rate in a flow path through which the cooling fluid mixed by the mixing member 4211 flows to the vaporizer 3300, and the controller 4212 is provided with a temperature of the outside air and a vaporizer ( When it is necessary to increase the amount of cooling fluid to be introduced into the vaporizer 3300 in accordance with the temperature of the cooling fluid introduced into the 3300, the flow control valve 4216 is controlled to increase the opening rate of the flow control valve 4216. In addition, when the controller 4212 needs to reduce the amount of cooling fluid to be introduced into the vaporizer 3300 according to the temperature of the outside air and the temperature of the cooling fluid flowing into the vaporizer 3300, the flow control valve 4216 opens. The flow control valve 4216 is controlled to lower the rate.
보조 순환 모듈(4200)은 우회 유로(4220)를 더 포함할 수 있다. 우회 유로(4220)는 냉각 유체가 공기 냉각기를 우회하여 흐르도록 제공된다. 예를 들면, 공기 냉각기(2200)로 흡입되는 외부 공기의 온도가 충분히 낮게 제공되어 별도의 냉각이 요구되지 않는 경우, 기화기(3300)를 지난 냉각 유체는 공기 냉각기(2200)로 유입되지 않고, 우회 유로(4220)를 통해 냉각 대상(7000)으로 공급된다. The secondary circulation module 4200 may further include a bypass flow path 4220. Bypass flow path 4220 is provided to allow cooling fluid to bypass the air cooler. For example, when the temperature of the outside air sucked into the air cooler 2200 is sufficiently low so that no separate cooling is required, the cooling fluid passing through the vaporizer 3300 is not introduced into the air cooler 2200 and bypassed. The cooling object 7000 is supplied to the cooling target 7000 through the flow path 4220.
보조 순환 모듈(4200)은 공기 냉각기(2200) 또는 우회 유로(4220)를 지난 냉각 유체가 제 1 유체와 혼합되어 냉각 대상(7000)으로 공급되도록 냉각 유체를 순환시킨다.The auxiliary circulation module 4200 circulates the cooling fluid such that the cooling fluid passing through the air cooler 2200 or the bypass flow path 4220 is mixed with the first fluid and supplied to the cooling target 7000.
도 11은 본 발명의 제7실시예에 따른 연료가스 공급 시스템을 도시한다. 도 11을 참조하면, 공기 냉각기(2200)가 제공되지 않는 경우, 공기 냉각기(2200)에 공급되는 냉각 유체의 온도를 낮추는 것이 요구되지 않으므로, 온도 조절 유닛(4210)은 제공되지 않을 수 있다. 이 경우, 냉각 유체는 냉각 대상(7000), 냉각 유닛(4110), 기화기(3300)를 순차적으로 순환하도록 제공된다. 즉, 기화기(3300)에는 상기 제 1 유체만이 유입된다. 도 11에 도시된 연료가스 공급 시스템의 그 외 구성, 구조 및 기능 등은 도 9의 부유식 발전 시스템과 유사하다.11 shows a fuel gas supply system according to a seventh embodiment of the present invention. Referring to FIG. 11, when the air cooler 2200 is not provided, since it is not required to lower the temperature of the cooling fluid supplied to the air cooler 2200, the temperature control unit 4210 may not be provided. In this case, the cooling fluid is provided to sequentially circulate the cooling target 7000, the cooling unit 4110, and the vaporizer 3300. That is, only the first fluid flows into the vaporizer 3300. Other configurations, structures and functions of the fuel gas supply system shown in FIG. 11 are similar to those of the floating power generation system of FIG. 9.
도 12는 본 발명의 제8실시예에 따른 연료가스 공급 시스템을 도시한다. 도 13은 도 12의 온도 조절 유닛을 나타낸 블록 구성도이다. 도 12 및 도 13을 참조하면, 도 11의 경우와 달리, 기화기(3300)에 공급되는 냉각 유체의 온도를 보다 높이기 위해, 제 1 유체 및 제 1 유체보다 높은 온도로 제공되는 제 2 유체의 일부를 혼합할 수 있도록 온도 조절 유닛(4210)이 제공될 수 있다. 이 경우, 냉각 유체의 온도를 보다 더 낮추기 위해 제공되는 제 3 유체를 혼합 부재(4211)로 유입시키는 구성은 제공되지 않을 수 있다. 도 12 및 도 13에 도시된 연료가스 공급 시스템의 그 외 구성, 구조 및 기능 등은 도 9의 부유식 발전 시스템과 유사하다.12 shows a fuel gas supply system according to an eighth embodiment of the present invention. FIG. 13 is a block diagram illustrating the temperature control unit of FIG. 12. 12 and 13, unlike in the case of FIG. 11, in order to further increase the temperature of the cooling fluid supplied to the vaporizer 3300, a portion of the first fluid and the second fluid provided at a higher temperature than the first fluid. Temperature control unit 4210 may be provided to mix the. In this case, a configuration for introducing the third fluid, which is provided to lower the temperature of the cooling fluid, further into the mixing member 4211 may not be provided. Other configurations, structures, and functions of the fuel gas supply system shown in FIGS. 12 and 13 are similar to those of the floating power generation system of FIG. 9.
도 14는 본 발명의 제9실시예에 따른 연료가스 공급 시스템을 도시한다. 도 14에 도시된 연료가스 공급 시스템은 순환 모듈(4000)의 보조 순환 모듈(4200)에 중간 열매가 순환하게 하고, 주 순환 모듈(4100)에 흐르는 냉각 유체와 보조 순환 모듈(420)에 흐르는 중간 열매를 가열기(4300)에 의해 열교환시켜, 주 순환 모듈(4100)의 냉각 유체와 열교환을 통해 가열기(4300)에서 가열된 보조 순환 모듈(4200)의 중간 열매의 열에너지를 이용하여 기화기(3300)에서 액화가스를 기화시키도록, 순환 모듈이 구성되는 점에서 앞서 설명한 실시예들과 차이가 있다. 보조 순환 모듈(4200)에서 순환하는 중간 열매로는 예를 들어, 해수, 강물 또는 글리콜(glycol) 등의 유체가 사용될 수 있다.14 shows a fuel gas supply system according to a ninth embodiment of the present invention. The fuel gas supply system shown in FIG. 14 causes the intermediate fruit to circulate in the auxiliary circulation module 4200 of the circulation module 4000, and the cooling fluid flowing in the main circulation module 4100 and the intermediate flow in the auxiliary circulation module 420. The fruit is heat-exchanged by the heater 4300 and in the vaporizer 3300 by using the heat energy of the intermediate fruit of the auxiliary circulation module 4200 heated in the heater 4300 through heat exchange with the cooling fluid of the main circulation module 4100. There is a difference from the above-described embodiments in that the circulation module is configured to vaporize the liquefied gas. As the intermediate fruit circulating in the auxiliary circulation module 4200, for example, a fluid such as seawater, river water, or glycol may be used.
순환 모듈(4000)은 주 순환 모듈(4100)과, 보조 순환 모듈(4200) 및 가열기(4300)를 포함한다. 주 순환 모듈(4100)에서 냉각 대상(7000)을 냉각시키는 과정에서 온도가 상승한 냉각 유체 중 일부는 냉각 유닛(4110)으로 공급되어 냉각되며, 나머지 일부는 이송라인(L80)을 통해 가열기(4300)로 이송된다. 이송라인(L80)을 통해 가열기(4300)로 이송된 냉각 유체는 보조 순환 모듈(4200)에서 순환하는 중간 열매와 열교환되는 과정에서 냉각된 후, 메인 펌프(4130)를 통해 다시 냉각 대상(7000)으로 공급된다.The circulation module 4000 includes a main circulation module 4100, an auxiliary circulation module 4200, and a heater 4300. Some of the cooling fluid whose temperature has risen in the process of cooling the cooling target 7000 in the main circulation module 4100 is supplied to the cooling unit 4110 and cooled, and the other part of the heater 4300 through the transfer line L80. Is transferred to. The cooling fluid transferred to the heater 4300 through the transfer line L80 is cooled in the process of heat exchange with the intermediate fruit circulating in the auxiliary circulation module 4200, and then again cooled through the main pump 4130. Supplied by.
보조 순환 모듈(4200)에서 순환하는 중간 열매는 가열기(4300)에서 주 순환 모듈(4100)의 냉각 유체와 열교환되어, 주 순환 모듈(4100)의 냉각 유체를 냉각시키는 반대 급부에 의해 가열된다. 가열기(4300)에 가열된 중간 열매는 순환 펌프(4230)에 의해 중간열매관(L70)을 통해 기화기(3300)로 공급된다. 액화가스는 기화기(3300)에서 중간 열매의 열에너지에 의해 기화되고, 그에 대한 반대급부로 중간 열매는 액화가스에 의해 냉각된 후 공기 냉각기(2200)로 공급된다. 기화기(3300)에서 냉각된 중간 열매는 가스 터빈(2100)으로 공급될 외부 공기를 공기 냉각기(2200)에서 냉각시킨 후 중간열매라인(L50)을 통해 가열기(4300)로 공급되며, 다시 가열기(4300)에서 주 순환 모듈(4100)의 냉각 유체와 열교환되는 과정에서 가열되어 기화기(3300)로 공급된다.The intermediate fruit circulating in the auxiliary circulation module 4200 is heat-exchanged with the cooling fluid of the main circulation module 4100 in the heater 4300 and is heated by the opposite feed to cool the cooling fluid of the main circulation module 4100. The intermediate fruit heated to the heater 4300 is supplied to the vaporizer 3300 through the intermediate fruit pipe L70 by the circulation pump 4230. The liquefied gas is vaporized by the heat energy of the intermediate fruit in the vaporizer 3300, and, on the contrary, the intermediate fruit is cooled by the liquefied gas and then supplied to the air cooler 2200. The intermediate fruit cooled by the vaporizer 3300 cools the outside air to be supplied to the gas turbine 2100 in the air cooler 2200, and then is supplied to the heater 4300 through the intermediate heating line L50, and then again to the heater 4300. ) Is heated in the process of heat exchange with the cooling fluid of the main circulation module 4100 and is supplied to the vaporizer 3300.
보조 순환 모듈(4200)의 온도 조절 유닛(4210)은 기화기(330) 내로 유입되는 중간 열매의 온도를 조절한다. 온도 조절 유닛(4210)은 우회관(L60)과, 조절 밸브(4217)와, 제어기(4212)를 포함한다.The temperature control unit 4210 of the auxiliary circulation module 4200 adjusts the temperature of the intermediate fruit flowing into the vaporizer 330. The temperature regulating unit 4210 includes a bypass pipe L60, a regulating valve 4217, and a controller 4212.
우회관(L60)은 중간 열매가 가열기(4300)를 우회하여 흐르도록 중간열매라인(L50)에 연결된다. 조절 밸브(4217)는 우회관(L60)으로 우회하는 중간 열매의 유량을 제어한다. 일 실시예로, 조절 밸브(4217)는 중간열매라인(L50)과 우회관(L60)의 접점에 설치되는 3방 밸브로 제공될 수 있다. 다른 실시예로, 조절 밸브(4217)는 중간열매라인(L50) 및/또는 우회관(L60)에 설치되는 밸브로 제공될 수 있다.The bypass tube (L60) is connected to the intermediate fruit line (L50) so that the intermediate fruit flows bypass the heater (4300). The control valve 4217 controls the flow rate of the intermediate fruit which bypasses the bypass pipe L60. In one embodiment, the control valve 4217 may be provided as a three-way valve installed at the contact between the intermediate fruit line (L50) and the bypass pipe (L60). In another embodiment, the control valve 4217 may be provided as a valve installed in the intermediate fruit line L50 and / or the bypass pipe L60.
제어기(4212)는 외기 온도 측정기(4213)에 의해 측정되는 외부 공기의 온도, 중간 열매 온도 측정기(4214)에 의해 측정되는 기화기 유입측 중간 열매 온도에 따라 조절 밸브(4217)를 제어하여, 가열기(4300)를 통과하는 중간 열매의 유량을 조절한다.The controller 4212 controls the regulating valve 4217 according to the temperature of the outside air measured by the outside air temperature meter 4213 and the vaporizer inlet-side medium fruit temperature measured by the middle fruit temperature meter 4214. 4300) to adjust the flow rate of the intermediate fruit.
도 14의 실시예에 의하면, 도 9 내지 도 13의 실시예에 의해 얻을 수 있는 효과 뿐 아니라, 기화기(3300)에서 액화천연가스 또는 천연가스의 누설 시 안전성을 높일 수 있는 효과도 얻을 수 있다. 기화기(3300)에서 액화천연가스 또는 천연가스가 누설되더라도, 누설된 액화천연가스 또는 천연가스는 보조 순환 모듈(4200)을 벗어나지 않으므로, 안전성이 향상된다. 또한, 보조 순환 모듈(4200)에 흐르는 중간 열매의 유량 제어를 하지 않고, 가열기(4300)로의 중간 열매의 흐름을 조절 밸브(4217)에 의해 제어하여, 가열기(4300) 후단 측의 중간 열매 온도를 제어하기 때문에, 제어가 용이한 이점도 제공된다.According to the embodiment of FIG. 14, not only the effect obtained by the embodiments of FIGS. 9 to 13 but also the effect of increasing the safety when leakage of liquefied natural gas or natural gas from the vaporizer 3300 may be obtained. Even if liquefied natural gas or natural gas leaks from the vaporizer 3300, the leaked liquefied natural gas or natural gas does not leave the auxiliary circulation module 4200, thereby improving safety. In addition, without controlling the flow rate of the intermediate fruit flowing through the auxiliary circulation module 4200, the flow of the intermediate fruit to the heater 4300 is controlled by the control valve 4217 to adjust the intermediate fruit temperature on the rear end side of the heater 4300. Because of the control, the advantage of easy control is also provided.
상술한 바와 같이, 본 발명의 연료가스 공급 시스템은 온도 조절 유닛을 제공함으로써, 기화기로 유입되는 열원의 온도를 조절할 수 있다. 또한 본 발명의 연료가스 공급 시스템은 액화가스를 기화시키거나 가스 터빈에 공급되는 공기를 냉각시키는 별도의 열유체 또는 냉매를 순환시키는 시스템을 제공하지 않고, 기존의 냉각 모듈에 의해 순환되는 냉각 유체를 이용함으로써, 냉각 및 가열 효율을 높일 수 있다.As described above, the fuel gas supply system of the present invention can adjust the temperature of the heat source flowing into the vaporizer by providing a temperature control unit. In addition, the fuel gas supply system of the present invention does not provide a system for circulating a separate thermal fluid or refrigerant for vaporizing liquefied gas or cooling the air supplied to the gas turbine, but instead of a cooling fluid circulated by the existing cooling module. By using it, cooling and heating efficiency can be improved.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다.Although the present invention has been described with reference to one embodiment shown in the accompanying drawings, it is merely an example, and those skilled in the art that various modifications and equivalent other embodiments are possible. I can understand. Therefore, the true scope of the invention should be defined only by the appended claims.
Claims (22)
- 액화가스와 그로부터 발생되는 증발가스를 수용하는 저장유닛;A storage unit accommodating liquefied gas and evaporated gas generated therefrom;상기 저장유닛에서 발생된 증발가스를 가압하여 이송하는 압축유닛;A compression unit which pressurizes and transports the boil-off gas generated in the storage unit;상기 압축유닛에서 압축된 증발가스를 상기 저장유닛의 과냉각된 액화가스를 이용해 재응축시키는 재응축유닛;A recondensation unit for recondensing the boil-off gas compressed in the compression unit using the supercooled liquefied gas of the storage unit;상기 재응축유닛에서 수요처로 이어지는 수요처 공급라인에 설치되어 상기 재응축유닛의 액화가스를 상기 수요처의 요구압력 이상으로 가압하는 고압펌프유닛; 및A high pressure pump unit installed in a demand source supply line from the recondensation unit to a demand destination to pressurize the liquefied gas of the recondensation unit to a required pressure of the demand destination; And상기 고압펌프유닛에서 가압된 액화가스를 가열하여 재기화시키는 기화기를 구비하는 열교환유닛;을 포함하고,And a heat exchange unit having a vaporizer for heating and regasifying the liquefied gas pressurized by the high pressure pump unit.상기 재응축유닛은The recondensation unit상기 저장유닛에서 이송되는 액화가스와 상기 압축유닛에서 압축된 증발가스를 혼합하여 증발가스를 재응축시키는 제1응축부; 및A first condensation unit for recondensing the boil-off gas by mixing the liquefied gas conveyed from the storage unit and the boil-off gas compressed in the compression unit; And상기 고압펌프유닛에서 가압되어 이송되는 액화가스와 상기 압축유닛에서 압축된 증발가스를 열교환하여 증발가스를 재응축시키는 제2응축부;를 포함하는 연료가스 공급 시스템.And a second condensation unit configured to heat-exchange the liquefied gas pressurized by the high pressure pump unit and the boiled gas compressed in the compression unit to recondensate the boiled gas.
- 제1항에 있어서,The method of claim 1,상기 압축유닛은The compression unit is상기 저장유닛에서 이송되는 증발가스를 압축하여 제1응축부로 보내는 제1압축부;A first compression unit compressing the evaporated gas transferred from the storage unit and sending the compressed gas to a first condensation unit;증발가스가 상기 제1응축부의 재응축 용량 이상으로 발생 시 증발가스를 압축하여 제2응축부로 이송시키는 제2압축부; 및A second compression unit compressing the boil-off gas when the boil-off gas is generated above the recondensation capacity of the first condensation unit and transferring the boil-off gas to the second condensation unit; And상기 저장유닛에서 발생하는 증발가스 일부를 고압으로 압축하여 상기 기화기 후단의 수요처 공급라인으로 이송하는 고압압축부;를 포함하는 연료가스 공급 시스템.And a high pressure compression unit configured to compress a portion of the boil-off gas generated in the storage unit to a high pressure and transfer the portion of the boil-off gas to a demand supply line at the rear end of the vaporizer.
- 제1항에 있어서,The method of claim 1,상기 고압펌프유닛 후단에서 분기되어 상기 제1응축부로 순환되는 최소유량 라인을 더 포함하고,And a minimum flow rate line branched from the high pressure pump unit and circulated to the first condensation unit.상기 제2응축부는 상기 최소유량라인에서 분기되어 다시 상기 고압펌프유닛 후단으로 연결되는 응축라인에 설치되어, 상기 응축라인을 지나는 액화가스와 상기 압축유닛에서 상기 제1응축부로 향하는 증발가스 간의 열교환을 수행하고,The second condensation unit is installed in a condensation line branched from the minimum flow line and connected to the rear end of the high pressure pump unit again to exchange heat between the liquefied gas passing through the condensation line and the evaporation gas from the compression unit toward the first condensation unit. Doing,상기 제2응축부에서 재응축된 증발가스는 상기 제1응축부로 회수되는 연료가스 공급 시스템.The boil-off gas recondensed by the second condensation unit is recovered to the first condensation unit.
- 제1항에 있어서,The method of claim 1,상기 제1응축부는The first condensation part상기 저장유닛의 공급펌프에 의해 가압되는 액화가스와 상기 압축유닛의 제1압축부에서 압축되는 증발가스를 혼합하여, 증발가스의 전부 또는 일부를 재응축시키는 연료가스 공급 시스템.And a liquefied gas pressurized by the supply pump of the storage unit and an evaporated gas compressed in the first compression unit of the compression unit to recondense all or part of the boiled gas.
- 저장유닛에 수용된 액화가스를 제1응축부로 이송하는 액화가스 공급라인;Liquefied gas supply line for transferring the liquefied gas contained in the storage unit to the first condensing unit;상기 저장유닛에 수용된 증발가스를 제1압축부를 거쳐 상기 제1응축부로 이송하는 증발가스 제1공급라인;A boil-off gas first supply line for transferring the boil-off gas contained in the storage unit to the first condensation unit through a first compression unit;상기 저장유닛에 수용된 증발가스를 제2압축부를 거쳐 제2응축부로 이송하는 증발가스 제2공급라인;A second boil-off gas supplying line for transferring the boil-off gas contained in the storage unit to a second condensation unit through a second compression unit;상기 제1응축부에 저장된 액화가스를 고압펌프유닛과 기화기를 거쳐 수요처로 이송하는 수요처 공급라인; 및A demand destination supply line for transferring the liquefied gas stored in the first condenser to a demand destination via a high pressure pump unit and a vaporizer; And상기 수요처 공급라인의 고압펌프유닛 후단에서 분기되었다가 재합류하여 상기 고압펌프유닛에서 가압된 액화가스를 우회시키는 응축라인;을 포함하고,And a condensation line branched at a rear end of the high pressure pump unit of the demand supply line and rejoined to bypass the liquefied gas pressurized by the high pressure pump unit.상기 제2응축부는The second condensation unit상기 증발가스 제2공급라인의 증발가스와 상기 응축라인의 액화가스를 열교환하여 상기 증발가스 제2공급라인의 증발가스를 재응축시키는 연료가스 공급 시스템.And a heat exchanged heat exchanger between the boil-off gas of the second boil-off gas and the liquefied gas of the condensation line to re-condense the boil-off gas of the boil-off gas second supply line.
- 제5항에 있어서,The method of claim 5,상기 액화가스 공급라인은 액화가스 제1공급라인과 액화가스 제2공급라인을 포함하고,The liquefied gas supply line includes a liquefied gas first supply line and a liquefied gas second supply line,상기 제1응축부는 내부에 저장되는 증발가스를 상기 액화가스 제2공급라인에서 공급되는 액화가스를 분사하여 재응축하는 연료가스 공급 시스템.The first condensing unit is a fuel gas supply system for condensing the liquefied gas supplied from the liquefied gas second supply line to the boil-off gas stored therein.
- 제5항에 있어서,The method of claim 5,상기 수요처 공급라인의 고압펌프유닛 후단에서 상기 제1응축부로 연결되는 최소유량라인을 더 포함하고,And a minimum flow rate line connected to the first condensing unit at a rear end of the high pressure pump unit of the demand supply line.상기 응축라인은 상기 최소유량라인에서 분기되어 상기 수요처 공급라인의 고압펌프유닛 후단으로 재합류되는 연료가스 공급 시스템.And the condensation line is branched from the minimum flow line and rejoined to a rear end of the high pressure pump unit of the supply line.
- 제7항에 있어서,The method of claim 7, wherein최소유량 운전 시에는When operating at minimum flow상기 증발가스 제2공급라인, 상기 응축라인, 및 상기 수요처 공급라인으로부터 상기 수요처로의 유체흐름을 차단하되,Block the flow of fluid from the second supply line, the condensation line, and the demand supply line to the demand destination,상기 제1응축부에 저장된 액화가스를 상기 최소유량라인을 통해 상기 고압펌프유닛을 거쳐 순환되도록 하여, 상기 고압펌프유닛의 지속적인 작동을 가능하게 하고,The liquefied gas stored in the first condensation unit is circulated through the high pressure pump unit through the minimum flow line, thereby enabling continuous operation of the high pressure pump unit,정상 운전 시에는 상기 증발가스 제2공급라인 및 상기 응축라인으로의 유체흐름을 차단하고 상기 제2응축부의 가동을 중단하되,In normal operation, the fluid flow to the second supply line and the condensation line of the boil-off gas is blocked and the operation of the second condensation unit is stopped.선적 운전 시에는 상기 증발가스 제2공급라인 및 상기 응축라인으로의 유체흐름을 개방하고 상기 제2응축부를 가동시켜, 운전모드에 따라 달리 운용되고,During the loading operation, the fluid flow to the second supply line and the condensation line of the boil-off gas is opened and the second condenser is operated to operate differently according to the operation mode.상기 선적 운전 시에 상기 제1응축부와 상기 제2응축부에서 재응축시킬 수 있는 양 이상으로 상기 저장유닛에서 발생되는 증발가스의 양이 과다한 경우, 초과분의 증발가스를 고압압축부로 가압하여 상기 기화기 후단에 직접 공급하는 증발가스 고압공급라인을 더 포함하는 연료가스 공급 시스템.If the amount of boil-off gas generated in the storage unit is greater than the amount that can be recondensed in the first condensation unit and the second condensation unit during the loading operation, the excess boil-off gas is pressurized by the high-pressure compression unit. Fuel gas supply system further comprising a high-pressure supply line of the boil-off gas directly to the rear end of the vaporizer.
- 제1항에 있어서,The method of claim 1,상기 저장유닛 내에서 액화가스의 증발량을 감소시키는 증발 감량 모듈을 더 포함하되,Further comprising an evaporation loss module for reducing the evaporation amount of the liquefied gas in the storage unit,상기 증발 감량 모듈은 상기 저장유닛의 저장탱크를 냉각시키는 냉각 유닛을 포함하는 연료가스 공급 시스템.The evaporation reduction module includes a cooling unit for cooling the storage tank of the storage unit.
- 제9항에 있어서,The method of claim 9,상기 냉각 유닛은,The cooling unit,상기 저장탱크의 내부에 저장된 액화가스를 상기 저장탱크의 내부에 분사하는 분사 부재와;An injection member for injecting liquefied gas stored in the storage tank into the storage tank;상기 저장탱크의 내부에 저장된 액화가스를 상기 분사 부재로 공급하는 분사 펌프와;An injection pump for supplying the liquefied gas stored in the storage tank to the injection member;상기 분사 부재 및 상기 분사 펌프를 연결하는 분사 라인을 포함하는 연료가스 공급 시스템.And a spray line connecting the spray member and the spray pump.
- 제9항에 있어서,The method of claim 9,액화가스 운반선으로부터 상기 저장탱크로 액화가스를 이송하는 선적 유닛을 더 포함하고,Further comprising a shipping unit for transferring the liquefied gas from the liquefied gas carrier to the storage tank,상기 증발 감량 모듈은 상기 선적 유닛이 액화가스를 이송하기 전에 상기 저장탱크를 냉각시키도록 상기 냉각 유닛을 제어하는 제어기를 더 포함하는 연료가스 공급 시스템.The evaporation reduction module further includes a controller to control the cooling unit to cool the storage tank before the shipping unit transfers liquefied gas.
- 제11항에 있어서,The method of claim 11,상기 증발 감량 모듈은 상기 저장탱크 내의 압력을 조절하는 압력 조절 유닛을 더 포함하고,The evaporation loss module further includes a pressure regulating unit for adjusting the pressure in the storage tank,상기 제어기는, The controller,상기 선적 유닛이 액화가스를 이송하는 동안 상기 저장탱크를 냉각시키도록 상기 냉각 유닛을 제어하고, 상기 선적 유닛이 액화가스 이송을 시작하기 전 또는 후 제 1 시간 동안 상기 저장탱크 내부를 가압하고, 상기 제 1 시간 후 제 2 시간 동안 상기 저장탱크 내부의 압력을 유지하도록 상기 압력 조절 유닛을 제어하고, 상기 제 2 시간 후 제 3 시간 동안 상기 저장탱크 내부를 감압하도록 상기 압력 조절 유닛을 제어하는 연료가스 공급 시스템.Control the cooling unit to cool the storage tank while the shipping unit is transferring liquefied gas, pressurize the inside of the storage tank for a first time before or after the shipping unit starts liquefied gas transfer, A fuel gas for controlling the pressure regulating unit to maintain the pressure inside the storage tank for a second time after a first time and for depressurizing the inside of the storage tank for a third time after the second time Supply system.
- 제12항에 있어서,The method of claim 12,상기 저장탱크로부터 상기 재응축유닛으로 증발가스가 이송되는 증발가스 공급라인을 더 포함하되,Further comprising a boil-off gas supply line for transferring boil-off gas from the storage tank to the recondensation unit,상기 압력 조절 유닛은 상기 증발가스 공급라인의 개방율을 조절하는 압력 조절 밸브를 포함하고,The pressure control unit includes a pressure control valve for adjusting the opening rate of the boil-off gas supply line,상기 수요처는 액화가스를 이용하여 전기를 발생시키는 가스 터빈이 제공된 가스 발전 모듈을 포함하고,The demand source includes a gas power generation module provided with a gas turbine for generating electricity using liquefied gas,상기 증발가스 공급라인 내의 증발가스 중 일부를 압축하여 상기 가스 터빈으로 공급하는 초과 가스 공급 유닛을 더 포함하는 연료가스 공급 시스템.And an excess gas supply unit configured to compress a portion of the boil-off gas in the boil-off gas supply line and supply the compressed gas to the gas turbine.
- 제11항에 있어서,The method of claim 11,상기 저장탱크에서 발생된 증발가스 중 일부를 상기 액화가스 운반선으로 반송하는 증발가스 반송 유닛을 더 포함하고,Further comprising a boil-off gas conveying unit for conveying a portion of the boil-off gas generated in the storage tank to the liquefied gas carrier,상기 증발가스 반송 유닛은,The boil-off gas conveying unit,상기 저장탱크에서 발생된 증발가스의 일부가 상기 액화가스 운반선으로 반송되도록 제공된 반송 라인과;A conveying line provided to convey a portion of the boil-off gas generated in the storage tank to the liquefied gas carrier;상기 반송 라인 내의 증발가스를 상기 액화가스 운반선 방향으로 가압하는 반송 가스 가압기와;A conveying gas pressurizing unit which pressurizes the boil-off gas in the conveying line toward the liquefied gas carrier;증발가스가 상기 저장탱크로부터 상기 반송 가스 가압기를 우회하여 상기 액화가스 운반선으로 이송되도록 제공된 우회 라인과;A bypass line provided for allowing boil-off gas to be diverted from the storage tank to the liquefied gas carrier by bypassing the carrier gas pressurizer;상기 액화가스 운반선의 액화가스가 저장된 액화가스 저장탱크의 압력을 조절하는 압력 조절 부재를 포함하는 연료가스 공급 시스템.And a pressure regulating member for adjusting a pressure of a liquefied gas storage tank in which liquefied gas of the liquefied gas carrier is stored.
- 제1항에 있어서,The method of claim 1,냉각 유체를 순환시키는 순환 모듈을 더 포함하고,Further comprising a circulation module for circulating the cooling fluid,상기 순환 모듈은,The circulation module,냉각 대상을 냉각하도록 상기 냉각 유체를 순환시키는 주 순환 모듈과;A main circulation module for circulating the cooling fluid to cool a cooling object;상기 기화기에서 액화가스와 열교환되도록, 상기 주 순환 모듈에 의해 순환되는 상기 냉각 유체를 분지하여 상기 기화기로 유입되도록 상기 냉각 유체를 순환시키는 보조 순환 모듈을 포함하는 연료가스 공급 시스템.And an auxiliary circulation module configured to circulate the cooling fluid to flow into the vaporizer by branching the cooling fluid circulated by the main circulation module to exchange heat with the liquefied gas in the vaporizer.
- 제15항에 있어서,The method of claim 15,상기 수요처는 액화가스를 이용하여 전기를 발생시키는 가스 터빈이 제공된 가스 발전 모듈을 포함하고,The demand source includes a gas power generation module provided with a gas turbine for generating electricity using liquefied gas,상기 가스 발전 모듈은 상기 가스 터빈에 유입되는 외부 공기를 냉각시키는 공기 냉각기를 포함하되,The gas power generation module includes an air cooler for cooling external air introduced into the gas turbine,상기 보조 순환 모듈은 상기 기화기에서 액화가스와 열교환된 후의 상기 냉각 유체가 상기 공기 냉각기로 유입되어 상기 외부 공기와 열교환되도록 상기 냉각 유체를 순환시키는 연료가스 공급 시스템.The auxiliary circulation module is a fuel gas supply system for circulating the cooling fluid so that the cooling fluid after the heat exchange with the liquefied gas in the vaporizer flows into the air cooler to exchange heat with the outside air.
- 제16항에 있어서,The method of claim 16,상기 주 순환 모듈은,The main circulation module,상기 냉각 유체를 냉각시키는 냉각 유닛과;A cooling unit for cooling the cooling fluid;상기 냉각 유체가 상기 냉각 유닛 및 상기 냉각 대상 간에 순환되도록 흐르는 주 순환관과;A main circulation pipe through which the cooling fluid is circulated between the cooling unit and the cooling target;상기 냉각 유체가 상기 주 순환관을 따라 흐르도록 상기 냉각 유체에 압력을 가하는 메인 펌프를 포함하는 연료가스 공급 시스템.And a main pump to pressurize the cooling fluid such that the cooling fluid flows along the main circulation pipe.
- 제17항에 있어서,The method of claim 17,상기 보조 순환 모듈은 상기 기화기 내로 유입되는 상기 냉각 유체의 온도를 조절하는 온도 조절 유닛과;The auxiliary circulation module includes a temperature control unit for controlling the temperature of the cooling fluid flowing into the vaporizer;상기 냉각 유체가 상기 공기 냉각기를 우회하여 흐르도록 제공된 우회 유로를 포함하되,A bypass flow path provided for said cooling fluid to flow bypass said air cooler,상기 온도 조절 유닛은,The temperature control unit,상기 냉각 유닛으로부터 상기 냉각 대상으로 흐르는 상기 냉각 유체인 제 1 유체 및 상기 냉각 대상으로부터 상기 냉각 유닛으로 흐르는 상기 냉각 유체인 제 2 유체가 혼합되는 혼합 부재와;A mixing member in which a first fluid, which is the cooling fluid flowing from the cooling unit to the cooling object, and a second fluid, which is the cooling fluid flowing from the cooling object to the cooling unit, are mixed;외부 공기의 온도 및 상기 기화기 내로 유입되는 냉각 유체의 온도에 따라, 상기 제 1 유체 및 상기 제 2 유체 간의 혼합 비율을 조절하도록 상기 혼합 부재를 제어하는 제어기를 포함하는 연료가스 공급 시스템.And a controller for controlling the mixing member to adjust the mixing ratio between the first fluid and the second fluid, in accordance with the temperature of the outside air and the temperature of the cooling fluid introduced into the vaporizer.
- 제18항에 있어서,The method of claim 18,상기 혼합 부재에서는 상기 기화기에서 상기 액화가스와 열교환이 완료된 냉각 유체인 제 3 유체가 상기 제 1 유체 및 상기 제 2 유체와 혼합되고,In the mixing member, a third fluid, which is a cooling fluid in which heat exchange is completed with the liquefied gas in the vaporizer, is mixed with the first fluid and the second fluid,상기 보조 순환 모듈은 상기 공기 냉각기 또는 상기 우회 유로를 지난 냉각 유체가 상기 제 1 유체와 혼합되어 상기 냉각 대상으로 공급되도록 상기 냉각 유체를 순환시키고,The auxiliary circulation module circulates the cooling fluid such that the cooling fluid passing through the air cooler or the bypass passage is mixed with the first fluid and supplied to the cooling target.상기 제어기는, 외부 공기의 온도 및 상기 기화기 내로 유입되는 냉각 유체의 온도에 따라 상기 제 1 유체, 상기 제 2 유체 및 상기 제 3 유체 간의 혼합 비율을 조절하도록 상기 혼합 부재를 제어하고, 상기 외부 공기의 온도 및 상기 기화기 내로 유입되는 냉각 유체의 온도에 따라 상기 기화기로 유입되는 냉각 유체의 유량을 조절하는 연료가스 공급 시스템.The controller controls the mixing member to adjust the mixing ratio between the first fluid, the second fluid and the third fluid according to the temperature of the outside air and the temperature of the cooling fluid flowing into the vaporizer, and the outside air And a flow rate of the cooling fluid flowing into the vaporizer according to the temperature of the cooling fluid and the temperature of the cooling fluid flowing into the vaporizer.
- 제1항에 있어서,The method of claim 1,냉각 유체와 중간 열매를 순환시키는 순환 모듈을 더 포함하고,Further comprising a circulation module for circulating the cooling fluid and the intermediate fruit,상기 순환 모듈은,The circulation module,냉각 대상을 냉각하도록 상기 냉각 유체를 순환시키는 주 순환 모듈과;A main circulation module for circulating the cooling fluid to cool a cooling object;상기 기화기에서 액화가스를 기화시키도록 상기 중간 열매를 순환시키는 보조 순환 모듈과;An auxiliary circulation module for circulating the intermediate fruit to vaporize the liquefied gas in the vaporizer;상기 주 순환 모듈에 의해 순환되는 상기 냉각 유체와 상기 보조 순환 모듈에 의해 순환되는 중간 열매를 열교환시켜 상기 중간 열매를 가열하는 가열기를 포함하는 연료가스 공급 시스템.And a heater for heating the intermediate fruit by heat-exchanging the intermediate fluid circulated by the auxiliary circulation module with the cooling fluid circulated by the main circulation module.
- 제20항에 있어서,The method of claim 20,상기 수요처는 액화가스를 이용하여 전기를 발생시키는 가스 터빈이 제공된 가스 발전 모듈을 포함하고,The demand source includes a gas power generation module provided with a gas turbine for generating electricity using liquefied gas,상기 가스 발전 모듈은 상기 가스 터빈에 유입되는 외부 공기를 냉각시키는 공기 냉각기를 포함하되,The gas power generation module includes an air cooler for cooling external air introduced into the gas turbine,상기 보조 순환 모듈은 상기 기화기에서 액화가스와 열교환된 후의 상기 중간 열매가 상기 공기 냉각기로 유입되어 상기 외부 공기와 열교환되도록 상기 중간 열매를 순환시키는 연료가스 공급 시스템.The auxiliary circulation module is a fuel gas supply system for circulating the intermediate fruit so that the intermediate fruit after the heat exchange with the liquefied gas in the vaporizer flows into the air cooler to exchange heat with the outside air.
- 제20항에 있어서,The method of claim 20,상기 보조 순환 모듈은 상기 기화기 내로 유입되는 상기 중간 열매의 온도를 조절하는 온도 조절 유닛을 포함하되,The auxiliary circulation module includes a temperature control unit for controlling the temperature of the intermediate fruit flowing into the vaporizer,상기 온도 조절 유닛은,The temperature control unit,상기 중간 열매가 상기 가열기를 우회하여 흐르도록 제공되는 우회관과;A bypass tube provided so that the intermediate fruit flows by bypassing the heater;상기 우회관으로 우회하는 중간 열매의 흐름을 제어하기 위한 조절 밸브와;A control valve for controlling the flow of the intermediate fruit to the bypass pipe;외부 공기의 온도 및 상기 가열기에 의해 가열되어 상기 기화기 내로 유입되는 중간 열매의 온도에 따라, 상기 조절 밸브를 제어하여 상기 중간 열매의 흐름을 제어하는 제어기를 포함하는 연료가스 공급 시스템.And a controller for controlling the flow of the intermediate fruit by controlling the regulating valve according to the temperature of external air and the temperature of the intermediate fruit heated by the heater and introduced into the vaporizer.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780082063.8A CN110167837B (en) | 2017-01-02 | 2017-12-29 | Fuel gas supply system |
JP2019556779A JP6876826B2 (en) | 2017-01-02 | 2017-12-29 | Fuel gas supply system |
SG11201906121RA SG11201906121RA (en) | 2017-01-02 | 2017-12-29 | Fuel gas supply system |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170000153A KR101824421B1 (en) | 2017-01-02 | 2017-01-02 | Fuel gas supply system |
KR10-2017-0000153 | 2017-01-02 | ||
KR10-2017-0005975 | 2017-01-13 | ||
KR1020170005978A KR20180083556A (en) | 2017-01-13 | 2017-01-13 | Floating generating system |
KR10-2017-0005978 | 2017-01-13 | ||
KR1020170005975A KR101924535B1 (en) | 2017-01-13 | 2017-01-13 | Floating generating system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018124815A1 true WO2018124815A1 (en) | 2018-07-05 |
Family
ID=62710110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/015736 WO2018124815A1 (en) | 2017-01-02 | 2017-12-29 | Fuel gas supply system |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6876826B2 (en) |
CN (1) | CN110167837B (en) |
SG (1) | SG11201906121RA (en) |
WO (1) | WO2018124815A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116626217A (en) * | 2023-04-23 | 2023-08-22 | 北京航天试验技术研究所 | High-temperature gas acquisition device and method |
JP7580387B2 (en) | 2019-03-27 | 2024-11-11 | エルジーイー アイピー マネジメント カンパニー リミテッド | Method and apparatus for cooling boil-off gas |
WO2024236013A1 (en) * | 2023-05-15 | 2024-11-21 | Tge Marine Gas Engineering Gmbh | Recondensing system for recondensing boil-off gas, and associated method |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3913273A1 (en) * | 2020-05-19 | 2021-11-24 | Burckhardt Compression AG | Fuel gas supply system and method for supplying fuel gas to a high pressure gas injection engine |
CN113734352A (en) * | 2021-09-24 | 2021-12-03 | 上海外高桥造船有限公司 | Gas supply system with re-condensation function and working method |
JP7669966B2 (en) | 2022-04-05 | 2025-04-30 | トヨタ自動車株式会社 | High Pressure Gas Charging System |
JP2024129877A (en) * | 2023-03-14 | 2024-09-30 | 川崎重工業株式会社 | Ship equipment and gas fuel production method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080097141A (en) * | 2007-04-30 | 2008-11-04 | 대우조선해양 주식회사 | Floating offshore structures with in-tank recondensing means and method for treating boil-off gas in the floating offshore structures |
KR20100129039A (en) * | 2009-05-29 | 2010-12-08 | 삼성중공업 주식회사 | Ship with spray nozzle |
KR20150057684A (en) * | 2013-11-20 | 2015-05-28 | 대우조선해양 주식회사 | System for using very low temperature energy of lng, and very large floating structure comprising the same |
KR20150104668A (en) * | 2014-03-05 | 2015-09-16 | 현대중공업 주식회사 | Engine waste heat recovery charge air cooling control system |
KR20160062786A (en) * | 2014-11-25 | 2016-06-03 | 삼성중공업 주식회사 | Reliquefaction system |
KR20160128662A (en) * | 2015-04-29 | 2016-11-08 | 대우조선해양 주식회사 | LNG Offloading System And Method For FLNG |
KR101683158B1 (en) * | 2014-07-30 | 2016-12-07 | 삼성중공업 주식회사 | Fuel supplying system |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09162933A (en) * | 1995-12-11 | 1997-06-20 | Jatco Corp | Communication equipment for controller |
US6745576B1 (en) * | 2003-01-17 | 2004-06-08 | Darron Granger | Natural gas vapor recondenser system |
MX2007002937A (en) * | 2004-09-13 | 2008-03-05 | Argent Marine Operations Inc | System and process for transporting lng by non-self-propelled marine lng carrier. |
US20070001322A1 (en) * | 2005-06-01 | 2007-01-04 | Aikhorin Christy E | Method and apparatus for treating lng |
CN101881549B (en) * | 2010-06-25 | 2014-02-12 | 华南理工大学 | A liquefied natural gas receiving station evaporated gas recondensation recovery system and recovery method thereof |
KR101258934B1 (en) * | 2010-12-09 | 2013-04-29 | 삼성중공업 주식회사 | Vessel |
CN103443435A (en) * | 2011-03-11 | 2013-12-11 | 大宇造船海洋株式会社 | Method for driving system for supplying fuel to marine structure having re-iquefying device and high-<wbr/>pressure natural gas injection engine |
CN104321581B (en) * | 2011-12-02 | 2016-10-19 | 氟石科技公司 | LNG boil-off gas condenses arrangements and methods again |
US20130298572A1 (en) * | 2012-05-09 | 2013-11-14 | Fluor Technologies Corporation | Configurations and methods of vapor recovery and lng sendout systems for lng import terminals |
KR101386543B1 (en) * | 2012-10-24 | 2014-04-18 | 대우조선해양 주식회사 | System for treating boil-off gas for a ship |
JP2014142021A (en) * | 2013-01-24 | 2014-08-07 | Ihi Corp | Tank facility, and method for transferring cryogenic liquified gas |
CN203100350U (en) * | 2013-02-07 | 2013-07-31 | 中国寰球工程公司 | Liquefying system of BOG |
CN104034122B (en) * | 2013-03-04 | 2016-02-10 | 中国石化工程建设有限公司 | A kind of natural gas vaporization gas condenser system and method again |
CN203248991U (en) * | 2013-04-22 | 2013-10-23 | 中国海洋石油总公司 | BOG treatment system utilizing pressure energy of LNG receiving station |
KR101707500B1 (en) * | 2013-10-31 | 2017-02-16 | 대우조선해양 주식회사 | System And Method For BOG Management |
KR101788749B1 (en) * | 2014-02-24 | 2017-10-20 | 대우조선해양 주식회사 | BOG Treatment System And Method |
JP6404169B2 (en) * | 2015-04-02 | 2018-10-10 | 株式会社神戸製鋼所 | Compressor unit and gas supply device |
CN204717340U (en) * | 2015-06-02 | 2015-10-21 | 中国石油化工股份有限公司 | A kind of LNG Liquefied natural gas receiving station rock gas output system |
-
2017
- 2017-12-29 WO PCT/KR2017/015736 patent/WO2018124815A1/en active Application Filing
- 2017-12-29 CN CN201780082063.8A patent/CN110167837B/en active Active
- 2017-12-29 JP JP2019556779A patent/JP6876826B2/en active Active
- 2017-12-29 SG SG11201906121RA patent/SG11201906121RA/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20080097141A (en) * | 2007-04-30 | 2008-11-04 | 대우조선해양 주식회사 | Floating offshore structures with in-tank recondensing means and method for treating boil-off gas in the floating offshore structures |
KR20100129039A (en) * | 2009-05-29 | 2010-12-08 | 삼성중공업 주식회사 | Ship with spray nozzle |
KR20150057684A (en) * | 2013-11-20 | 2015-05-28 | 대우조선해양 주식회사 | System for using very low temperature energy of lng, and very large floating structure comprising the same |
KR20150104668A (en) * | 2014-03-05 | 2015-09-16 | 현대중공업 주식회사 | Engine waste heat recovery charge air cooling control system |
KR101683158B1 (en) * | 2014-07-30 | 2016-12-07 | 삼성중공업 주식회사 | Fuel supplying system |
KR20160062786A (en) * | 2014-11-25 | 2016-06-03 | 삼성중공업 주식회사 | Reliquefaction system |
KR20160128662A (en) * | 2015-04-29 | 2016-11-08 | 대우조선해양 주식회사 | LNG Offloading System And Method For FLNG |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7580387B2 (en) | 2019-03-27 | 2024-11-11 | エルジーイー アイピー マネジメント カンパニー リミテッド | Method and apparatus for cooling boil-off gas |
CN116626217A (en) * | 2023-04-23 | 2023-08-22 | 北京航天试验技术研究所 | High-temperature gas acquisition device and method |
CN116626217B (en) * | 2023-04-23 | 2023-10-03 | 北京航天试验技术研究所 | High-temperature gas acquisition device and method |
WO2024236013A1 (en) * | 2023-05-15 | 2024-11-21 | Tge Marine Gas Engineering Gmbh | Recondensing system for recondensing boil-off gas, and associated method |
Also Published As
Publication number | Publication date |
---|---|
CN110167837B (en) | 2021-12-24 |
CN110167837A (en) | 2019-08-23 |
SG11201906121RA (en) | 2019-08-27 |
JP2020514649A (en) | 2020-05-21 |
JP6876826B2 (en) | 2021-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018124815A1 (en) | Fuel gas supply system | |
WO2014209029A1 (en) | System and method for treating boil-off gas in ship | |
WO2014065620A1 (en) | Method for processing liquefied gas in ship | |
WO2014092368A1 (en) | Liquefied gas processing system for ship | |
WO2019194670A1 (en) | Gas treatment system and ship including same | |
WO2012124884A1 (en) | Method for supplying fuel for high-pressure natural gas injection engine | |
WO2012128447A1 (en) | System for supplying fuel to high-pressure natural gas injection engine having excess evaporation gas consumption means | |
WO2012128448A1 (en) | Method and system for supplying fuel to high-pressure natural gas injection engine | |
WO2015130122A1 (en) | Boil-off gas treatment system | |
WO2012124886A1 (en) | System for supplying fuel to marine structure having re-liquefying device and high-pressure natural gas injection engine | |
WO2017078245A1 (en) | Gas treatment system and vessel containing same | |
WO2009102136A2 (en) | Apparatus and method for processing hydrocarbon liquefied gas | |
WO2012074283A2 (en) | Apparatus for pressurizing delivery of low-temperature liquefied material | |
WO2016126037A1 (en) | Apparatus and method for treating boil-off gas of vessel | |
WO2016126025A1 (en) | Fuel gas supply system for ship | |
WO2017030221A1 (en) | Thermoelectric power generating module, and thermoelectric power generating device, anti-freezing vaporizer, and vaporized fuel gas liquefaction process device including same | |
WO2015012578A1 (en) | Insulation system for floating marine structure | |
WO2021167343A1 (en) | Gas treatment system and ship including same | |
WO2021157855A1 (en) | System and method for regasifying liquefied gas of ship | |
WO2012118317A2 (en) | Lng refueling system and boil-off gas treatment method | |
WO2016195233A1 (en) | Ship | |
WO2021132955A1 (en) | System and method for supplying liquefied gas to ship, and system for supplying liquefied gas fuel to ship | |
WO2017135804A1 (en) | Ship including gas re-vaporizing system | |
WO2016195231A1 (en) | Ship | |
WO2017209492A1 (en) | Gas treatment system and ship including same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17888075 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019556779 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17888075 Country of ref document: EP Kind code of ref document: A1 |