WO2018124057A1 - Imaging device and control method therefor - Google Patents
Imaging device and control method therefor Download PDFInfo
- Publication number
- WO2018124057A1 WO2018124057A1 PCT/JP2017/046601 JP2017046601W WO2018124057A1 WO 2018124057 A1 WO2018124057 A1 WO 2018124057A1 JP 2017046601 W JP2017046601 W JP 2017046601W WO 2018124057 A1 WO2018124057 A1 WO 2018124057A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- images
- imaging apparatus
- exposure
- imaging device
- Prior art date
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims description 15
- 238000012937 correction Methods 0.000 claims abstract description 23
- 230000001066 destructive effect Effects 0.000 claims abstract description 20
- 238000012935 Averaging Methods 0.000 claims abstract description 6
- 238000006243 chemical reaction Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 15
- 230000003321 amplification Effects 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 4
- 239000000470 constituent Substances 0.000 description 3
- 230000000875 corresponding effect Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/60—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N25/618—Noise processing, e.g. detecting, correcting, reducing or removing noise for random or high-frequency noise
Definitions
- the present disclosure relates to an imaging apparatus and a control method thereof.
- Patent Document 1 A technique described in Patent Document 1 is known as an image sensor using an organic photoelectric conversion element.
- the imaging apparatus processing for reducing random noise is performed. Specifically, the imaging device captures a plurality of images continuously and calculates an average of the obtained plurality of images to obtain a corrected image.
- this method has a problem that the image quality of a moving image is deteriorated because shooting times of a plurality of images are strictly different.
- an object of the present disclosure is to provide an imaging apparatus or a control method thereof that can suppress a decrease in image quality.
- An imaging apparatus uses a non-destructive readout image sensor and a non-destructive readout to obtain a corrected image using a plurality of images obtained by the imaging device by one exposure.
- a correction unit to be generated.
- the present disclosure can provide an imaging apparatus or a control method thereof that can suppress a decrease in image quality.
- FIG. 1 is a block diagram of an imaging apparatus according to an embodiment.
- FIG. 2A is a diagram illustrating an appearance example of the imaging apparatus according to the embodiment.
- FIG. 2B is a diagram illustrating an appearance example of the imaging apparatus according to the embodiment.
- FIG. 3 is a diagram illustrating a configuration of the image sensor according to the embodiment.
- FIG. 4 is a circuit diagram illustrating a configuration of a pixel according to the embodiment.
- FIG. 5 is a flowchart illustrating the operation of the imaging apparatus according to the embodiment.
- FIG. 6 is a diagram illustrating the operation of the imaging apparatus according to the embodiment.
- FIG. 7 is a diagram illustrating a modified example of the operation of the imaging apparatus according to the embodiment.
- FIG. 1 is a block diagram illustrating a configuration of an imaging apparatus 100 according to the present embodiment.
- 2A and 2B are diagrams illustrating an example of the appearance of the imaging apparatus 100.
- the imaging apparatus 100 is a camera such as a digital still camera or a digital video camera.
- the imaging device 101 is a solid-state imaging device (solid-state imaging device) that converts incident light into an electrical signal (image) and outputs the obtained electrical signal.
- the imaging device 101 is an organic sensor using an organic photoelectric conversion device.
- the control unit 102 controls the image sensor 101.
- the control unit 102 performs various signal processing on the image obtained by the imaging element 101, and displays the obtained image on the display unit 103 or stores it in the storage unit 104.
- the image output from the control unit 102 may be output to the outside of the imaging apparatus 100 via an input / output interface (not shown).
- control unit 102 includes a correction unit 105 that corrects an image obtained by the image sensor 101.
- FIG. 3 is a block diagram illustrating a configuration of the image sensor 101.
- 3 includes a plurality of pixels (unit pixel cells) 201 arranged in a matrix, a vertical scanning unit 202, a column signal processing unit 203, a horizontal readout unit 204, and a row.
- Each of the plurality of pixels 201 outputs a signal corresponding to the incident light to the vertical signal line 207 provided in the corresponding column.
- the vertical scanning unit 202 resets the plurality of pixels 201 via the plurality of reset control lines 205.
- the vertical scanning unit 202 sequentially selects the plurality of pixels 201 in units of rows via the plurality of address control lines 206.
- the column signal processing unit 203 performs signal processing on the signals output to the plurality of vertical signal lines 207, and outputs the plurality of signals obtained by the signal processing to the horizontal reading unit 204.
- the column signal processing unit 203 performs noise suppression signal processing represented by correlated double sampling, analog / digital conversion processing, and the like.
- the horizontal readout unit 204 sequentially outputs a plurality of signals after the signal processing by the plurality of column signal processing units 203 to the horizontal output terminal 208.
- FIG. 4 is a circuit diagram illustrating a configuration of the pixel 201.
- the pixel 201 includes a photoelectric conversion unit 211, a charge storage unit 212, a reset transistor 213, an amplification transistor 214 (source follower transistor), and a selection transistor 215.
- the photoelectric conversion unit 211 generates signal charges by photoelectrically converting incident light. A voltage Voe is applied to one end of the photoelectric conversion unit 211.
- the photoelectric conversion unit 211 includes a photoelectric conversion layer made of an organic material.
- the photoelectric conversion layer may include a layer made of an organic material and a layer made of an inorganic material.
- the charge storage unit 212 is connected to the photoelectric conversion unit 211 and stores the signal charge generated by the photoelectric conversion unit 211. Note that the charge storage unit 212 may be configured with a parasitic capacitance such as a wiring capacitance instead of a dedicated capacitance element.
- the reset transistor 213 is used to reset the potential of the signal charge.
- the gate of the reset transistor 213 is connected to the reset control line 205, the source is connected to the charge storage unit 212, and the reset voltage Vreset is applied to the drain.
- drain and source generally depend on circuit operation, and are often not specified from the element structure.
- one of the source and the drain is referred to as a source and the other of the source and the drain is referred to as a drain.
- the drain may be replaced with the source and the source may be replaced with the drain.
- the amplification transistor 214 amplifies the voltage of the charge storage unit 212 and outputs a signal corresponding to the voltage to the vertical signal line 207.
- the gate of the amplification transistor 214 is connected to the charge storage unit 212, and the power supply voltage Vdd or the ground voltage Vss is applied to the drain.
- the selection transistor 215 is connected in series with the amplification transistor 214, and switches whether to output the signal amplified by the amplification transistor 214 to the vertical signal line 207.
- the selection transistor 215 has a gate connected to the address control line 206, a drain connected to the source of the amplification transistor 214, and a source connected to the vertical signal line 207.
- the voltage Voe, the reset voltage Vreset, and the power supply voltage Vdd are voltages commonly used in all the pixels 201.
- Non-destructive reading is a process of reading image data during an exposure period and continuing exposure.
- conventional readout hereinafter referred to as destructive readout
- nondestructive reading it is possible to read the image data exposed up to that time during the exposure period and continue the exposure. Thereby, a plurality of images having different exposure times can be obtained by one exposure.
- the electronic ND control is a process for electrically controlling the transmittance of the image sensor.
- the transmittance means the proportion of light that is converted into an electrical signal in the incident light. That is, by setting the transmittance to 0%, it is possible to electrically shield the light.
- the transmittance is controlled by controlling the voltage Voe shown in FIG. Thereby, exposure can be electrically terminated without using a mechanical shutter.
- the image sensor 101 includes a mechanical shutter and may use both electronic ND control and light shielding by the mechanical shutter, or may use light shielding by the mechanical shutter without using the electronic ND control.
- the image sensor 101 is an organic sensor.
- the image sensor 101 only needs to realize nondestructive reading or electronic ND control, and may be other than an organic sensor.
- the photoelectric conversion layer included in the photoelectric conversion unit 211 may be made of an inorganic material.
- the photoelectric conversion layer may be made of amorphous silicon or chalcopyrite semiconductor.
- FIG. 5 is a flowchart showing an operation flow of the imaging apparatus 100.
- FIG. 6 is a diagram for explaining the operation of the imaging apparatus 100.
- the imaging apparatus 100 first performs exposure (S101). Specifically, after the exposure is started, the exposure is terminated by performing light shielding by the above-described electronic ND control or the mechanical shutter.
- the imaging apparatus 100 performs nondestructive reading a predetermined number of times (S102), and then generates an image by performing destructive reading (S103).
- the imaging apparatus 100 generates a corrected image in which random noise is reduced using the plurality of images obtained in steps S102 and S103 (S104).
- reducing the random noise means reducing the increase / decrease in the luminance value caused by the random noise included in each pixel.
- the imaging apparatus 100 generates a corrected image by averaging the obtained plurality of images.
- the random noise is, for example, noise generated in the signal readout path, and the position (pixel) where the noise is generated and the strength of the noise are random. Therefore, since random noise cannot be grasped in advance, correction cannot be performed based on the amount of noise grasped in advance.
- the pixel values of pixels in which random noise is generated can be averaged with the pixel values of normal pixels in other images, so that the influence of random noise can be reduced. .
- the imaging apparatus 100 may determine the presence or absence of noise in each pixel included in each of a plurality of images, and generate a corrected image using pixels without noise, instead of addition averaging.
- the presence of noise means that there is more noise than a predetermined value, and that there is no noise means that the noise is less than a predetermined value.
- the pixel value of a pixel in which random noise is generated is a value that is distant from the pixel value of the pixel at the same position in another plurality of images. Therefore, the imaging apparatus 100 determines whether or not random noise is generated in each pixel of each image based on the variation in the pixel value of each pixel between images, and a pixel in which random noise is not generated. May be combined to generate a correction image.
- the imaging device 100 calculates, for each pixel, an average value of the pixel values of the pixels included in the plurality of images, and randomly selects a pixel having a value separated from the average value by a predetermined value or more. It is determined that the pixel is generated, and other pixels are determined as normal pixels without random noise.
- the imaging apparatus 100 generates a corrected image by combining normal pixels. For example, the imaging apparatus 100 may use the average value of the pixel values of normal pixels as the pixel value of the pixel of the corrected image, or use one of the pixel values of the normal pixel of the corrected image. You may use as a pixel value of the pixel concerned.
- the imaging apparatus 100 uses the image obtained by destructive readout as a basic image, and calculates the pixel value or average of the pixels in which noise included in the basic image is generated by nondestructive readout. It may be replaced with a value.
- some processing such as noise removal processing performed at the time of destructive reading is not performed. That is, an image obtained by destructive readout has higher image quality than an image obtained by nondestructive readout. Therefore, the image quality of the correction image can be improved by using the image obtained by destructive readout as the basic image.
- nondestructive reading may be performed during the exposure period as shown in FIG.
- nondestructive readings is arbitrary and is not limited to the number shown in FIGS. Further, destructive reading may not be performed.
- the imaging apparatus 100 uses the imaging element 101 capable of non-destructive readout and the non-destructive readout to obtain a plurality of images obtained by the imaging element by one exposure. And a correction unit 105 that generates a corrected image with reduced random noise.
- the imaging apparatus 100 can use a plurality of images obtained by single exposure using nondestructive readout, it is possible to suppress deterioration in image quality (for example, subject blur) in a moving image.
- image quality for example, subject blur
- the photographing time can be shortened compared to a case where a plurality of exposures are performed.
- the correction unit 105 acquires a plurality of images using nondestructive reading after stopping the exposure. Thereby, since the imaging device 100 can use a plurality of images obtained with the same exposure time, it is possible to further suppress deterioration in image quality in a moving image.
- An imaging apparatus 100 uses an imaging element 101 capable of nondestructive readout and a plurality of images obtained by the imaging element 101 by a single exposure using nondestructive readout. And a correction unit 105 that generates an image.
- the correction unit 105 may acquire a plurality of images using nondestructive reading after stopping the exposure.
- the correction unit 105 may generate a corrected image by averaging a plurality of images.
- the correction unit 105 may determine the presence or absence of noise in each pixel included in each of the plurality of images, and generate a corrected image using pixels without noise.
- the correction unit 105 may generate a corrected image using a plurality of images and an image acquired by destructive reading.
- the image sensor 101 may be an organic sensor.
- the control method according to an aspect of the present disclosure is a control method of the imaging apparatus 100 including the imaging element 101 capable of nondestructive readout, and is obtained by the imaging element 101 by one exposure using nondestructive readout. And a correction step (S104) for generating a corrected image using the plurality of images.
- the imaging device according to the embodiment of the present disclosure has been described above, but the present disclosure is not limited to this embodiment.
- each processing unit included in the imaging apparatus is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
- circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
- An FPGA Field Programmable Gate Array
- reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
- each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
- Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
- the present disclosure may be realized as a control method executed by the imaging apparatus.
- circuit configuration shown in the circuit diagram is an example, and the present disclosure is not limited to the circuit configuration. That is, similar to the circuit configuration described above, a circuit that can realize the characteristic function of the present disclosure is also included in the present disclosure. Moreover, all the numbers used above are illustrated for specifically explaining the present disclosure, and the present disclosure is not limited to the illustrated numbers.
- division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be.
- functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
- the imaging device has been described based on the embodiment, but the present disclosure is not limited to this embodiment. Unless it deviates from the gist of the present disclosure, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
- the present disclosure can be applied to an imaging apparatus such as a digital still camera or a digital video camera.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
本開示は、撮像装置及びその制御方法に関する。 The present disclosure relates to an imaging apparatus and a control method thereof.
有機光電変換素子を用いた撮像素子として、特許文献1に記載の技術が知られている。 A technique described in Patent Document 1 is known as an image sensor using an organic photoelectric conversion element.
撮像装置において、ランダムノイズを低減するための処理が行われている。具体的には、撮像装置は、連続して複数の画像を撮影し、得られた複数の画像の加算平均を算出することで補正後画像をする。 In the imaging apparatus, processing for reducing random noise is performed. Specifically, the imaging device captures a plurality of images continuously and calculates an average of the obtained plurality of images to obtain a corrected image.
しかしながら、この方法には、複数の画像の撮影時刻が厳密には異なるため、動きのある画像では画質が低下してしまうという課題がある。 However, this method has a problem that the image quality of a moving image is deteriorated because shooting times of a plurality of images are strictly different.
そこで、本開示は、画質の低下を抑制できる撮像装置又はその制御方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide an imaging apparatus or a control method thereof that can suppress a decrease in image quality.
本開示の一態様に係る撮像装置は、非破壊読み出しが可能な撮像素子と、非破壊読み出しを用いて、1回の露光により前記撮像素子で得られた複数の画像を用いて補正後画像を生成する補正部とを備える。 An imaging apparatus according to one embodiment of the present disclosure uses a non-destructive readout image sensor and a non-destructive readout to obtain a corrected image using a plurality of images obtained by the imaging device by one exposure. A correction unit to be generated.
本開示は、画質の低下を抑制できる撮像装置又はその制御方法を提供できる。 The present disclosure can provide an imaging apparatus or a control method thereof that can suppress a decrease in image quality.
以下、本開示の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present disclosure. Therefore, the numerical values, shapes, materials, components, component arrangement positions, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present disclosure. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present disclosure are described as arbitrary constituent elements.
なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description is abbreviate | omitted or simplified.
(実施の形態)
[撮像装置の構成]
まず、本開示の実施の形態に係る撮像装置の構成を説明する。図1は、本実施の形態に係る撮像装置100の構成を示すブロック図である。また、図2A及び図2Bは、撮像装置100の外観の例を示す図である。例えば、図2A及び図2Bに示すように、撮像装置100は、デジタルスチルカメラ又はデジタルビデオカメラ等のカメラである。
(Embodiment)
[Configuration of imaging device]
First, the configuration of the imaging device according to the embodiment of the present disclosure will be described. FIG. 1 is a block diagram illustrating a configuration of an
図1に示す撮像装置100は、撮像素子101と、制御部102と、表示部103と、記憶部104とを備える。撮像素子101は、入射光を電気信号(画像)に変換し、得られた電気信号を出力する固体撮像素子(固体撮像装置)であり、例えば、有機光電変換素子を用いた有機センサである。
1 includes an
制御部102は、撮像素子101の制御を行う。また、制御部102は、撮像素子101で得られた画像に対して各種信号処理を施し、得られた画像を表示部103に表示したり、記憶部104に記憶したりする。なお、制御部102から出力された画像は、図示しない入出力インタフェースを介して撮像装置100の外部に出力されてもよい。
The
また、制御部102は、撮像素子101で得られた画像を補正する補正部105を備える。
In addition, the
[撮像素子の構成]
次に、撮像素子101の構成を説明する。図3は、撮像素子101の構成を示すブロック図である。
[Configuration of image sensor]
Next, the configuration of the
図3に示す撮像素子101は、行列状に配置された複数の画素(単位画素セル)201と、垂直走査部202と、カラム信号処理部203と、水平読み出し部204と、行毎に設けられている複数のリセット制御線205と、行毎に設けられている複数のアドレス制御線206と、列毎に設けられている複数の垂直信号線207と、水平出力端子208とを備える。
3 includes a plurality of pixels (unit pixel cells) 201 arranged in a matrix, a
複数の画素201の各々は、入射光に応じた信号を、対応する列に設けられている垂直信号線207に出力する。
Each of the plurality of
垂直走査部202は、複数のリセット制御線205を介して複数の画素201をリセットする。また、垂直走査部202は、複数のアドレス制御線206を介して、複数の画素201を行単位で順次選択する。
The
カラム信号処理部203は、複数の垂直信号線207に出力された信号に信号処理を行い、当該信号処理により得られた複数の信号を水平読み出し部204へ出力する。例えば、カラム信号処理部203は、相関二重サンプリングに代表される雑音抑圧信号処理及び、アナログ/デジタル変換処理等を行う。
The column
水平読み出し部204は、複数のカラム信号処理部203で信号処理された後の複数の信号を順次水平出力端子208に出力する。
The
以下、画素201の構成を説明する。図4は、画素201の構成を示す回路図である。
Hereinafter, the configuration of the
図4に示すように画素201は、光電変換部211と、電荷蓄積部212と、リセットトランジスタ213と、増幅トランジスタ214(ソースフォロアトランジスタ)と、選択トランジスタ215とを備える。
As shown in FIG. 4, the
光電変換部211は、入射光を光電変換することにより信号電荷を生成する。光電変換部211の一端には電圧Voeが印加されている。具体的には、光電変換部211は、有機材料で構成される光電変換層を含む。なお、この光電変換層は、有機材料で構成される層と無機材料で構成される層とを含んでもよい。
The
電荷蓄積部212は、光電変換部211に接続されており、光電変換部211で生成された信号電荷を蓄積する。なお、電荷蓄積部212は、専用の容量素子ではなく、配線容量等の寄生容量で構成されてもよい。
The
リセットトランジスタ213は、信号電荷の電位をリセットするために用いられる。リセットトランジスタ213のゲートはリセット制御線205に接続されており、ソースは電荷蓄積部212に接続されており、ドレインにはリセット電圧Vresetが印加される。
The
なお、ドレイン及びソースの定義は、一般的に回路動作に依存するものであり、素子構造からは特定できない場合が多い。本実施の形態では、便宜的にソース及びドレインの一方をソースと呼び、ソース及びドレインの他方をドレインと呼ぶが、本実施の形態におけるドレインをソース、ソースをドレインと置き換えてもよい。 Note that the definitions of drain and source generally depend on circuit operation, and are often not specified from the element structure. In this embodiment, for convenience, one of the source and the drain is referred to as a source and the other of the source and the drain is referred to as a drain. However, in this embodiment, the drain may be replaced with the source and the source may be replaced with the drain.
増幅トランジスタ214は、電荷蓄積部212の電圧を増幅することで、当該電圧に応じた信号を垂直信号線207へ出力する。増幅トランジスタ214のゲートは電荷蓄積部212に接続されており、ドレインに電源電圧Vddまたは接地電圧Vssが印加される。
The
選択トランジスタ215は、増幅トランジスタ214と直列に接続されており、増幅トランジスタ214が増幅した信号を垂直信号線207に出力するか否かを切り替える。選択トランジスタ215のゲートはアドレス制御線206に接続されており、ドレインは増幅トランジスタ214のソースに接続されており、ソースは垂直信号線207に接続されている。
The
また、例えば、電圧Voe、リセット電圧Vreset及び電源電圧Vddは、全画素201で共通に用いられる電圧である。
Further, for example, the voltage Voe, the reset voltage Vreset, and the power supply voltage Vdd are voltages commonly used in all the
また、有機センサの特徴として、非破壊読み出しと、電子ND(Neutral Density)制御とがある。非破壊読み出しとは、露光期間中に画像データを読み出し、引き続き露光を継続する処理である。従来の読み出し(以下、破壊読み出しと呼ぶ)では、読み出しを行う際には露光を終了する必要があった。つまり、1回の露光により1枚の画像しか得ることができなかった。これに対して、非破壊読み出しを用いることで、露光期間中に、その時刻までに露光された画像データを読み出し、引き続き露光を継続することができる。これにより、1回の露光で露光時間の異なる複数の画像を得ることができる。 The characteristics of the organic sensor include non-destructive readout and electronic ND (Neutral Density) control. Non-destructive reading is a process of reading image data during an exposure period and continuing exposure. In conventional readout (hereinafter referred to as destructive readout), it is necessary to end exposure when performing readout. That is, only one image could be obtained by one exposure. On the other hand, by using nondestructive reading, it is possible to read the image data exposed up to that time during the exposure period and continue the exposure. Thereby, a plurality of images having different exposure times can be obtained by one exposure.
また、電子ND制御とは、電気的に撮像素子の透過率を制御する処理である。ここで透過率とは、入射光のうち電気信号に変換される光の割合を意味する。つまり、透過率を0%に設定することで、電気的に遮光を実現できる。具体的には、図4に示す電圧Voeが制御されることで透過率が制御される。これにより、メカシャッタを用いることなく、電気的に露光を終了させることができる。 The electronic ND control is a process for electrically controlling the transmittance of the image sensor. Here, the transmittance means the proportion of light that is converted into an electrical signal in the incident light. That is, by setting the transmittance to 0%, it is possible to electrically shield the light. Specifically, the transmittance is controlled by controlling the voltage Voe shown in FIG. Thereby, exposure can be electrically terminated without using a mechanical shutter.
なお、撮像素子101は、メカシャッタを備え、電子ND制御とメカシャッタによる遮光とを併用してもよいし、電子ND制御を用いず、メカシャッタによる遮光を用いてもよい。
Note that the
また、ここでは、撮像素子101が有機センサである例を述べるが、撮像素子101は、非破壊読み出し、又は電子ND制御を実現できればよく、有機センサ以外であってもよい。つまり、光電変換部211に含まれる光電変換層は無機材料で構成されてもよい。例えば、光電変換層はアモルファスシリコン又はカルコパイライト系半導体等で構成されてもよい。
In addition, here, an example in which the
[撮像装置の動作]
次に、本実施の形態に係る撮像装置100の動作を説明する。図5は、撮像装置100の動作の流れを示すフローチャートである。図6は、撮像装置100の動作を説明するための図である。
[Operation of imaging device]
Next, the operation of the
図5に示すように、撮像装置100は、まず、露光を行う(S101)。具体的には、露光が開始された後、上述した電子ND制御、又は、メカシャッタにより遮光が行われることで露光が終了する。
As shown in FIG. 5, the
次に、撮像装置100は、予め定められた回数の非破壊読み出しを行い(S102)、その後、破壊読出しを行うことで画像を生成する(S103)。
Next, the
次に、撮像装置100は、ステップS102及びS103で得られた複数の画像を用いてランダムノイズを低減した補正後画像を生成する(S104)。ここで、ランダムノイズを低減するとは、各画素に含まれるランダムノイズに起因する輝度値の増減を減らすことを意味する。具体的には、撮像装置100は、得られた複数の画像を加算平均することで補正後画像を生成する。
Next, the
ここで、ランダムノイズとは、例えば、信号読み出し経路において発生するノイズであり、ノイズが発生する位置(画素)及びノイズの強さはランダムである。よって、予めランダムノイズを把握することはできないため、事前に把握したノイズ量等に基づき、補正を行うことはできない。一方で、複数の画像の加算平均を行うことで、ランダムノイズが発生している画素の画素値を、他の画像の正常な画素の画素値で平均化できるので、ランダムノイズの影響を低減できる。 Here, the random noise is, for example, noise generated in the signal readout path, and the position (pixel) where the noise is generated and the strength of the noise are random. Therefore, since random noise cannot be grasped in advance, correction cannot be performed based on the amount of noise grasped in advance. On the other hand, by performing the averaging of a plurality of images, the pixel values of pixels in which random noise is generated can be averaged with the pixel values of normal pixels in other images, so that the influence of random noise can be reduced. .
なお、撮像装置100は、加算平均の代わりに、複数の画像の各々に含まれる各画素のノイズの有無を判定し、ノイズのない画素を用いて補正後画像を生成してもよい。なお、ノイズが有るとは、ノイズが予め定められた値より多いことを意味し、ノイズが無いとは、ノイズが予め定められた値より少ないことを意味する。
Note that the
ランダムノイズが発生している画素の画素値は、他の複数の画像の同一位置の画素の画素値から離れた値となる。よって、撮像装置100は、このような画像間の各画素の画素値のばらつきに基づき、各画像の各画素にランダムノイズが発生しているか否かを判定し、ランダムノイズが発生していない画素を組み合わせて補正用画像を生成してもよい。
The pixel value of a pixel in which random noise is generated is a value that is distant from the pixel value of the pixel at the same position in another plurality of images. Therefore, the
具体的には、撮像装置100は、画素毎に、複数の画像に含まれる当該画素の画素値の平均値を算出し、当該平均値から予め定められた値以上離れた値の画素をランダムノイズが発生している画素と判定し、それ以外の画素をランダムノイズのない正常な画素と判定する。次に、撮像装置100は、正常な画素を組み合わせることで補正後画像を生成する。例えば、撮像装置100は、正常な画素の画素値の平均値を補正後画像の当該画素の画素値として用いてもよいし、正常な画素の画素値のうちいずれか一つを補正後画像の当該画素の画素値として用いてもよい。
Specifically, the
または、撮像装置100は、破壊読出しで得られた画像を基本画像として、当該基本画像に含まれるノイズが発生している画素の画素値を、非破壊読み出しで得られた画像の画素値又は平均値に置き換えてもよい。ここで、一般に、非破壊読み出しでは、破壊読み出し時に行われるノイズ除去処理等の一部の処理が行われない。つまり、破壊読み出しで得られた画像は、非破壊読み出しで得られた画像よりも画質が高い。よって、破壊読み出しで得られた画像を基本画像として用いることで、補正用画像の画質を向上できる。
Alternatively, the
なお、ここでは、露光期間の終了後に非破壊読み出しを行う例を述べたが、図7に示すように、露光期間中に非破壊読み出しを行ってもよい。 Although an example in which nondestructive reading is performed after the exposure period ends is described here, nondestructive reading may be performed during the exposure period as shown in FIG.
また、非破壊読み出しの回数は任意であり、図6及び図7に示す回数に限らない。また、破壊読み出しは行われなくてもよい。 Further, the number of nondestructive readings is arbitrary and is not limited to the number shown in FIGS. Further, destructive reading may not be performed.
以上のように、本実施の形態に係る撮像装置100は、非破壊読み出しが可能な撮像素子101と、非破壊読み出しを用いて、1回の露光により前記撮像素子で得られた複数の画像を用いて、ランダムノイズを低減した補正後画像を生成する補正部105とを備える。
As described above, the
これにより、撮像装置100は、非破壊読み出しを用いて単一の露光により得られた複数の画像を用いることができるので、動きのある画像における画質の低下(例えば被写体のぼけ)を抑制できる。また、単一の露光により複数の画像を得ることができるので、複数回の露光を行う場合に比べ、撮影時間を短縮できる。
Thereby, since the
また、補正部105は、露光を停止した後、非破壊読み出しを用いて複数の画像を取得する。これにより、撮像装置100は、同一の露光時間で得られた複数の画像を用いることができるので、動きのある画像における画質の低下をより抑制できる。
Further, the
本開示の一態様に係る撮像装置100は、非破壊読み出しが可能な撮像素子101と、非破壊読み出しを用いて、1回の露光により撮像素子101で得られた複数の画像を用いて補正後画像を生成する補正部105とを備える。
An
これによれば、非破壊読み出しを用いて単一の露光により得られた複数の画像を用いることができるので、動きのある画像における画質の低下を抑制できる。 According to this, since a plurality of images obtained by a single exposure using nondestructive readout can be used, it is possible to suppress a decrease in image quality in a moving image.
例えば、補正部105は、露光を停止した後、非破壊読み出しを用いて複数の画像を取得してもよい。
For example, the
これによれば、同一の露光時間で得られた複数の画像を用いることができるので、動きのある画像における画質の低下を抑制できる。 According to this, since a plurality of images obtained with the same exposure time can be used, it is possible to suppress a decrease in image quality in a moving image.
例えば、補正部105は、複数の画像を加算平均することで補正後画像を生成してもよい。
For example, the
例えば、補正部105は、複数の画像の各々に含まれる各画素のノイズの有無を判定し、ノイズのない画素を用いて補正後画像を生成してもよい。
For example, the
例えば、補正部105は、複数の画像と、破壊読み出しにより取得した画像とを用いて補正後画像を生成してもよい。
For example, the
例えば、撮像素子101は、有機センサであってもよい。
For example, the
本開示の一態様に係る制御方法は、非破壊読み出しが可能な撮像素子101を備える撮像装置100の制御方法であって、非破壊読み出しを用いて、1回の露光により撮像素子101で得られた複数の画像を用いて補正後画像を生成する補正ステップ(S104)を含む。
The control method according to an aspect of the present disclosure is a control method of the
これによれば、非破壊読み出しを用いて単一の露光により得られた複数の画像を用いることができるので、動きのある画像における画質の低下を抑制できる。 According to this, since a plurality of images obtained by a single exposure using nondestructive readout can be used, it is possible to suppress a decrease in image quality in a moving image.
なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 Note that these comprehensive or specific modes may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer-readable CD-ROM, and the system, method, integrated circuit, and computer program. Also, any combination of recording media may be realized.
以上、本開示の実施の形態に係る撮像装置について説明したが、本開示は、この実施の形態に限定されるものではない。 The imaging device according to the embodiment of the present disclosure has been described above, but the present disclosure is not limited to this embodiment.
例えば、上記実施の形態に係る撮像装置に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。 For example, each processing unit included in the imaging apparatus according to the above embodiment is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the integration of circuits is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
また、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in each of the above embodiments, each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
また、本開示は、撮像装置により実行される制御方法として実現されてもよい。 Also, the present disclosure may be realized as a control method executed by the imaging apparatus.
また、上記回路図に示す回路構成は、一例であり、本開示は上記回路構成に限定されない。つまり、上記回路構成と同様に、本開示の特徴的な機能を実現できる回路も本開示に含まれる。また、上記で用いた数字は、全て本開示を具体的に説明するために例示するものであり、本開示は例示された数字に制限されない。 The circuit configuration shown in the circuit diagram is an example, and the present disclosure is not limited to the circuit configuration. That is, similar to the circuit configuration described above, a circuit that can realize the characteristic function of the present disclosure is also included in the present disclosure. Moreover, all the numbers used above are illustrated for specifically explaining the present disclosure, and the present disclosure is not limited to the illustrated numbers.
また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。 In addition, division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be. In addition, functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
また、フローチャートにおける各ステップが実行される順序は、本開示を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。 In addition, the order in which the steps in the flowchart are executed is for illustration in order to specifically describe the present disclosure, and may be in an order other than the above. Also, some of the above steps may be executed simultaneously (in parallel) with other steps.
以上、一つまたは複数の態様に係る撮像装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。 As described above, the imaging device according to one or more aspects has been described based on the embodiment, but the present disclosure is not limited to this embodiment. Unless it deviates from the gist of the present disclosure, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
本開示は、デジタルスチルカメラ又はデジタルビデオカメラ等の撮像装置に適用できる。 The present disclosure can be applied to an imaging apparatus such as a digital still camera or a digital video camera.
100 撮像装置
101 撮像素子
102 制御部
103 表示部
104 記憶部
105 補正部
201 画素
202 垂直走査部
203 カラム信号処理部
204 水平読み出し部
205 リセット制御線
206 アドレス制御線
207 垂直信号線
208 水平出力端子
211 光電変換部
212 電荷蓄積部
213 リセットトランジスタ
214 増幅トランジスタ
215 選択トランジスタ
DESCRIPTION OF
Claims (7)
非破壊読み出しを用いて、1回の露光により前記撮像素子で得られた複数の画像を用いて補正後画像を生成する補正部とを備える
撮像装置。 An image sensor capable of non-destructive readout;
An image pickup apparatus comprising: a correction unit that generates a corrected image using a plurality of images obtained by the image pickup device by one exposure using nondestructive readout.
請求項1記載の撮像装置。 The imaging device according to claim 1, wherein the correction unit acquires the plurality of images using the non-destructive readout after stopping exposure.
請求項1又は2記載の撮像装置。 The imaging apparatus according to claim 1, wherein the correction unit generates the corrected image by averaging the plurality of images.
請求項1又は2記載の撮像装置。 The imaging device according to claim 1, wherein the correction unit determines the presence or absence of noise in each pixel included in each of the plurality of images, and generates the corrected image using pixels without noise.
請求項1~4のいずれか1項に記載の撮像装置。 The imaging apparatus according to claim 1, wherein the correction unit generates the corrected image using the plurality of images and an image acquired by destructive readout.
請求項1~5のいずれか1項に記載の撮像装置。 The imaging device according to any one of claims 1 to 5, wherein the imaging element is an organic sensor.
非破壊読み出しを用いて、1回の露光により前記撮像素子で得られた複数の画像を用いて補正後画像を生成する補正ステップを含む
制御方法。 A method for controlling an imaging apparatus including an imaging element capable of nondestructive readout,
A control method including a correction step of generating a corrected image using a plurality of images obtained by the imaging device by one exposure using non-destructive readout.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016254485A JP2018107733A (en) | 2016-12-27 | 2016-12-27 | Imaging apparatus and control method thereof |
JP2016-254485 | 2016-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018124057A1 true WO2018124057A1 (en) | 2018-07-05 |
Family
ID=62709347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/046601 WO2018124057A1 (en) | 2016-12-27 | 2017-12-26 | Imaging device and control method therefor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018107733A (en) |
WO (1) | WO2018124057A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005269452A (en) * | 2004-03-19 | 2005-09-29 | Olympus Corp | Imaging device and imaging apparatus |
JP2011171950A (en) * | 2010-02-18 | 2011-09-01 | Sony Corp | Signal processing apparatus, semiconductor device, solid-state imaging device, imaging apparatus, electronic device, and method of suppressing noise |
WO2015045828A1 (en) * | 2013-09-27 | 2015-04-02 | 富士フイルム株式会社 | Imaging device and imaging method |
-
2016
- 2016-12-27 JP JP2016254485A patent/JP2018107733A/en active Pending
-
2017
- 2017-12-26 WO PCT/JP2017/046601 patent/WO2018124057A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005269452A (en) * | 2004-03-19 | 2005-09-29 | Olympus Corp | Imaging device and imaging apparatus |
JP2011171950A (en) * | 2010-02-18 | 2011-09-01 | Sony Corp | Signal processing apparatus, semiconductor device, solid-state imaging device, imaging apparatus, electronic device, and method of suppressing noise |
WO2015045828A1 (en) * | 2013-09-27 | 2015-04-02 | 富士フイルム株式会社 | Imaging device and imaging method |
Also Published As
Publication number | Publication date |
---|---|
JP2018107733A (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN207369180U (en) | Global shutter imaging pixel and the imaging sensor including imaging pixel array | |
JP5516960B2 (en) | Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus | |
JP6727938B2 (en) | IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, AND IMAGING SYSTEM | |
JP5499789B2 (en) | Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus | |
US9584745B2 (en) | Image sensors with N-row parallel readout capability | |
JP5066996B2 (en) | Solid-state imaging device, signal processing method for solid-state imaging device, and imaging device | |
JP6045156B2 (en) | Solid-state imaging device | |
JP5871496B2 (en) | Imaging apparatus and driving method thereof | |
JP5959834B2 (en) | Imaging device | |
CN109997352B (en) | Imaging device, camera, and imaging method | |
JP2008263546A (en) | Solid-state imaging apparatus, method for driving the solid-state imaging apparatus and imaging system using them | |
JP5936386B2 (en) | Imaging device | |
JP2016167773A (en) | Imaging apparatus and processing method of imaging apparatus | |
WO2020022120A1 (en) | Streaking correction circuit, image capture device, and electronic apparatus | |
JP2008017100A (en) | Solid-state imaging device | |
JP5672363B2 (en) | Solid-state imaging device and camera system | |
JP2007266760A (en) | Image sensor | |
JP2005311736A (en) | Solid-state imaging apparatus and drive method of the solid-state imaging apparatus | |
JP2012235193A (en) | Image sensor, imaging device, control method therefor, and control program | |
JP6748979B2 (en) | Imaging device and control method thereof | |
JP6049304B2 (en) | Solid-state imaging device and imaging device | |
JP2011151461A (en) | Solid-state imaging element | |
JP6775408B2 (en) | Radiation imaging device and radiation imaging system | |
WO2018124057A1 (en) | Imaging device and control method therefor | |
JP2013157881A (en) | Imaging apparatus, control method and program thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17889381 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17889381 Country of ref document: EP Kind code of ref document: A1 |