+

WO2018123678A1 - 抵抗変化素子と半導体装置および製造方法 - Google Patents

抵抗変化素子と半導体装置および製造方法 Download PDF

Info

Publication number
WO2018123678A1
WO2018123678A1 PCT/JP2017/045263 JP2017045263W WO2018123678A1 WO 2018123678 A1 WO2018123678 A1 WO 2018123678A1 JP 2017045263 W JP2017045263 W JP 2017045263W WO 2018123678 A1 WO2018123678 A1 WO 2018123678A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
resistance change
region
edge
film
Prior art date
Application number
PCT/JP2017/045263
Other languages
English (en)
French (fr)
Inventor
宗弘 多田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2018559065A priority Critical patent/JPWO2018123678A1/ja
Priority to US16/470,617 priority patent/US10957739B2/en
Publication of WO2018123678A1 publication Critical patent/WO2018123678A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8416Electrodes adapted for supplying ionic species

Definitions

  • the present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a semiconductor device having a variable resistance nonvolatile element (hereinafter referred to as “resistance variable element”) and a method for manufacturing the same.
  • resistance variable element a variable resistance nonvolatile element
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • FPGA Field-Programmable Gate Array
  • the FPGA allows the user to switch the circuit configuration after its manufacture. Such switching of the circuit configuration is expected to be performed by a switch element provided in the multilayer wiring layer. This is because by configuring the FPGA using the switch elements, it is possible to reduce power consumption while improving the degree of freedom of the circuit configuration.
  • Preferred switching elements for switching circuit configurations in such FPGAs include resistances such as ReRAM (Resistance Random Access Memory) using transition metal oxides, solid electrolyte switches using ionic conductors, and atomic switches. A change element is mentioned.
  • the ion conductor is a solid electrolyte in which ions can move by an electric field.
  • Patent Document 1 and Non-Patent Document 1 disclose a solid electrolyte switch (metal bridge type resistance change element) using metal bridge formation (also referred to as filament or conductive path) by metal ion movement and electrochemical reaction in an ion conductor. (Also called).
  • the solid electrolyte switch disclosed in Patent Literature 1 and Non-Patent Literature 1 includes an ion conductive layer and a first electrode and a second electrode provided to face each other with the ion conductive layer interposed therebetween.
  • the first electrode is an electrode that supplies metal ions to the ion conductive layer (referred to as an active electrode)
  • the second electrode is an electrode that does not supply metal ions to the ion conductive layer (referred to as an inactive electrode).
  • this solid electrolyte switch is as follows. First, when the second electrode is grounded and a positive voltage is applied to the first electrode, the metal of the first electrode becomes metal ions and dissolves in the ion conductive layer. The metal ions in the ion conductive layer receive electrons at the second electrode and are deposited as metals. Due to the deposited metal, a metal bridge connecting the first electrode and the second electrode is formed in the ion conductive layer. The switch is turned on by electrically connecting the first electrode and the second electrode by metal bridge. The operation for setting the on state is called a set operation, and the applied voltage for setting the on state is called a set voltage.
  • the metal of the metal bridge becomes a metal ion and dissolves in the ion conductive layer, and a part of the metal bridge is cut. Thereby, the electrical connection between the first electrode and the second electrode is cut off, and the switch is turned off.
  • the operation for setting the off state is called a reset operation, and the applied voltage for setting the off state is called a reset voltage.
  • the second electrode is grounded again and a positive voltage is applied to the first electrode.
  • Such a solid electrolyte switch is smaller in size and smaller in on-resistance than a semiconductor switch such as a MOSFET. Therefore, it is considered promising for application to programmable logic devices such as FPGA.
  • the solid electrolyte switch since the solid electrolyte switch is kept on or off without applying a voltage, it can be applied as a nonvolatile memory element.
  • Patent Document 2 discloses that there are unipolar and bipolar switches as solid electrolyte switches.
  • the unipolar type is a switch whose resistance changes depending on the magnitude of the applied voltage, regardless of the polarity of the applied voltage.
  • the bipolar type is a switch whose resistance changes depending on the magnitude and polarity of the applied voltage.
  • Patent Documents 2 to 5 disclose techniques for promoting ionization of the electrode metal and reducing the switching voltage and its variation by devising the shape of the electrode so that the electric field is easily concentrated.
  • FIG. 7A is a top view of a variable resistance element that is a solid electrolyte switch disclosed in Patent Document 2
  • FIG. 7B is a cross-sectional view taken along the line E-E ′ of the top view of FIG. 7A.
  • the resistance change element includes a lower electrode that is an active electrode that supplies metal ions, a resistance change film that is an ion conductive layer, and an upper electrode that is an inactive electrode that does not supply metal ions.
  • a copper wiring embedded in the first interlayer insulating film via a barrier metal can be used.
  • the lower electrode and the first interlayer insulating film are covered with an insulating barrier film, and the insulating barrier film has an opening that exposes an upper end portion of the lower electrode.
  • the resistance change film is in contact with the lower electrode at the opening of the insulating barrier film and covers the insulating barrier film around the opening.
  • the upper electrode is laminated on the resistance change film.
  • a second interlayer insulating film is formed on the insulating barrier film, and the second interlayer insulating film covers the resistance change film and the upper electrode.
  • the lower electrode is opposed to the upper electrode at the lower electrode edge portion at the upper end portion. Since the electric field is concentrated on the edge portion, by providing the edge portion on the electrode, ionization of the electrode metal is promoted by the electric field concentration, and the switching voltage and the variation in the switching voltage can be reduced.
  • At least one electrode has a shape in which an electric field is concentrated like the edge portion, and the other edge electrode faces the other electrode, thereby reducing the switching voltage and its variation. Yes.
  • Patent Documents 1 to 5 and Non-Patent Document 1 have the following problems. That is, when the variable resistance elements are miniaturized and densely integrated to increase the size of the switch, further reduction of switching voltage and reduction of switching voltage variation are required.
  • the techniques disclosed in Patent Documents 1 to 5 and Non-Patent Document 1 are insufficient for the demands of reducing the switching voltage and the variation of the switching voltage when the switches are scaled up. There is a need for improvement.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a metal bridge type resistance change element suitable for high-density integration with reduced switching voltage and variation thereof. .
  • the resistance change element of the present invention is in surface contact with a metal deposition type resistance change film, the first surface of the resistance change film in a predetermined first region, and supplies metal ions through the first region.
  • a variable resistance element in which a line segment outside the region of 1 exists and an edge of the first electrode is formed in a portion of the simple closed curve including each of the both ends.
  • the semiconductor device of the present invention has a semiconductor integrated circuit having a multilayer copper wiring, and the semiconductor integrated circuit is a semiconductor device in which the variable resistance element of the present invention is incorporated in the multilayer copper wiring.
  • a predetermined first region of the first electrode that supplies metal ions embedded in the first insulating film is formed on the second insulating film that covers the first insulating film.
  • the first region is exposed to an opening of the membrane, and includes a region surrounded by a concave simple closed curve or a region surrounded by each of a plurality of simple closed curves, and the first region is outside the first region.
  • the simple closed curve includes a line segment that passes through a point, the both ends thereof exist on the simple closed curve, and each point in the vicinity of both ends excluding the both ends is outside the first region.
  • the metal deposition type resistance change film is covered with the first surface of the resistance change film so as to cover the opening, and the first region has the edge of the first electrode.
  • the first electrode is laminated in surface contact, and the second electrode is laminated on the second surface of the resistance change film. It is a manufacturing method of the variable resistance element.
  • FIG. 1 is a block diagram showing a configuration of a semiconductor device according to a first embodiment of the present invention. It is a top view which shows the structure of the resistance change element of the 2nd Embodiment of this invention. It is sectional drawing which shows the structure of the resistance change element of the 2nd Embodiment of this invention. It is a top view which shows another structure of the variable resistance element of the 2nd Embodiment of this invention. It is sectional drawing which shows another structure of the variable resistance element of the 2nd Embodiment of this invention.
  • FIG. 1 It is a figure for demonstrating the effect of the resistance change element of the 2nd Embodiment of this invention. It is a block diagram which shows the structure of the semiconductor device of the 2nd Embodiment of this invention. It is a top view which shows the structure of the resistance change element of patent document 2. FIG. It is sectional drawing which shows the structure of the resistance change element of patent document 2. FIG.
  • FIG. 1A is a top view showing the configuration of the variable resistance element 1 according to the first embodiment of the present invention.
  • 1B is a cross-sectional view taken along the line AA ′ in the top view of FIG. 1A.
  • the resistance change element 1 is in surface contact with a metal deposition type resistance change film 12 and the first surface 12a of the resistance change film 12 at a predetermined first region 11a, and the metal changes via the first region 11a. It has the 1st electrode 11 which supplies ion, and the 2nd electrode 13 laminated
  • FIG. 2 is a block diagram showing a configuration of the semiconductor device 100 of the present embodiment.
  • the semiconductor device 100 includes a semiconductor integrated circuit 10 having a multilayer copper wiring, and the semiconductor integrated circuit 10 is a semiconductor device in which the variable resistance element 1 is incorporated in the multilayer copper wiring.
  • the edge 11b of the first electrode 11 faces the second electrode 13 with the resistance change film 12 interposed therebetween.
  • the edge part which opposes the 2nd electrode 13 can be lengthened compared with the well-known structure shown to FIG. 7A.
  • the metal bridge is formed at the long edge portion where the electric field is concentrated most, switching is easily performed at a lower voltage.
  • the switching voltages are easily aligned on the low voltage side, so that the switching voltages and variations thereof are reduced.
  • the concave portion of the simple closed curve that is concave or the portion between the plurality of simple closed curves is a portion that is not exposed during the exposure of the positive resist that is advantageous when forming a fine pattern. Therefore, formation with a width narrower than the minimum dimension of exposure is possible. This facilitates the miniaturization of the resistance change film 12 and the second electrode 13 straddling the edge portion, and is therefore suitable for the demand for miniaturizing the elements and integrating them at a high density to enlarge the switch.
  • FIG. 3A is a top view showing the configuration of the variable resistance element 2 according to the second embodiment of the present invention.
  • 3B is a cross-sectional view taken along the line BB ′ in the top view of FIG. 3A.
  • the resistance change element 2 includes a lower electrode 21 that supplies metal ions, a metal deposition-type resistance change film 22, and an upper electrode 23.
  • the upper electrode 23 has a laminated structure of a first upper electrode 23a and a second upper electrode 23b.
  • the resistance change element 2 includes a first insulating film 24 in which the lower electrode 21 is embedded via the barrier metal 27, a second insulating film 25 that covers the first insulating film 24 and has an opening 25a, 2 insulation film 25, resistance change film 22, and third insulation film covering upper electrode 23.
  • the opening 25a of the second insulating film 25 may have an inclined surface and open.
  • the lower electrode 21 is embedded in the first insulating film 24. Further, the lower electrode 21 has a first surface 21e corresponding to the upper surface. Furthermore, the lower electrode 21 is adjacent to the first portion 21a having the first edge 21c on the first surface 21e and the first portion 21a, and is opposed to the first edge 21c on the first surface 21e. And a second portion 21b having a second edge 21d. The first edge 21c and the second edge 21d face a portion between the adjacent first portion 21a and second portion 21b. Further, the first surface 21 e having at least a part of each of the first edge 21 c and the second edge 21 d is exposed to the opening 25 a of the second insulating film 25 covering the first insulating film 24. ing.
  • Each of the first edge 21c and the second edge 21d is preferably a straight line. By being a straight line, management during processing is facilitated, and processing accuracy can be improved.
  • each of the 1st edge 21c and the 2nd edge 21d is not limited to a straight line, You may have a curve.
  • the first edge 21c and the second edge 21d are preferably straight and provided in parallel. By being provided in a straight line and in parallel, management during processing becomes easy, and processing accuracy can be improved. Note that the first edge 21c and the second edge 21d are not limited to being provided in parallel, and may be provided substantially in parallel or inclined. The term “substantially parallel” includes a case where it deviates from parallel due to variations in processing by etching or the like, processing accuracy, and the like.
  • the resistance change film 22 covers the opening 25a and is in contact with the first surface 21e exposed to the opening 25a.
  • the upper electrode 23 is laminated on the resistance change film 22, and faces the first edge 21c and the second edge 21d through the resistance change film 22 at the opening 25a.
  • the first insulating film 24 is an insulating film formed on a semiconductor substrate such as silicon on which a transistor or the like is formed.
  • a semiconductor substrate such as silicon on which a transistor or the like is formed.
  • silicon oxide (SiO 2 ) or a material obtained by adding hydrogen or carbon to silicon oxide having a lower dielectric constant than this can be used.
  • silicon carbonitride (SiCN) can be used as the second insulating film. Note that the first insulating film 24, the second insulating film 25, and the third insulating film 26 are not limited to the above materials.
  • the lower electrode 21 is an active electrode that supplies metal ions to the resistance change film 22. Copper can be used for the lower electrode 21.
  • the lower electrode 21 may contain copper as a main component and may contain Ti, Al, Mn, W, Mg, or the like as an additive.
  • the barrier metal 27 prevents the metal of the lower electrode 21 from diffusing into the first insulating film 24.
  • As the barrier metal 27, Ta, a nitride thereof, or a laminated film thereof can be used.
  • As the lower electrode 21 and the barrier metal 27, a multilayer copper wiring provided in a semiconductor integrated circuit included in the semiconductor device can be used.
  • the resistance change film 22 is a solid electrolyte material, and an oxide, sulfide, organic substance, or the like can be used.
  • an oxide containing Al, Ti, Ta, Si, Hf, Zr, a chalcogenide compound containing Ge, As, TeS, or the like, an organic polymer film containing carbon, oxygen, and silicon can be used.
  • these laminated films may be sufficient.
  • the upper electrode 23 is an inactive electrode that does not supply metal ions to the resistance change film 22. Therefore, a noble metal such as Ru or Pt can be used for the first upper electrode 23a in contact with the resistance change film 22. Alternatively, these may be the main components and may contain Ta, Ti, W, or the like. Further, Ta or the like can be used for the second upper electrode 23b.
  • a noble metal such as Ru or Pt
  • these may be the main components and may contain Ta, Ti, W, or the like. Further, Ta or the like can be used for the second upper electrode 23b.
  • the manufacturing method of the resistance change element 2 of the present embodiment is as follows. First, a groove for forming the lower electrode 21 is formed in the first insulating film 24 by etching. Next, the barrier metal 27 is formed on the inner wall of the groove by CVD (Chemical Vapor Deposition), and the lower electrode 21 is formed by plating. Next, the top surfaces of the first insulating film 24, the barrier metal 27, and the lower electrode 21 are flattened by CMP (Chemical Mechanical Polishing), and a second insulating film 25 is formed on the flattened surface by CVD.
  • CVD Chemical Vapor Deposition
  • CMP Chemical Mechanical Polishing
  • the first surface 21e having at least a part of each of the first edge 21c and the second edge 21d of the lower electrode 21 is formed. And exposed to the opening 25a.
  • the upper surface of the first insulating film 24 exposed to the opening 25a between the first portion 21a and the second portion 21b of the lower electrode 21 is over-etched, whereby the first surface 21e. May be lowered.
  • the resistance change film 22 is formed by sputtering so as to cover the opening 25a. Thereby, the resistance change film 22 is in contact with the first surface 21e exposed to the opening 25a.
  • the upper electrode 23 is laminated on the resistance change film 22 and formed by sputtering. As a result, the upper electrode 23 faces the first edge 21c and the second edge 21d at the opening 25a.
  • a third insulating film 26 is formed by CVD.
  • the lower electrode 21 and the upper electrode 23 can be connected to a transistor formed on the semiconductor substrate by connecting to the copper wiring in the multilayer copper wiring.
  • the lower electrode 21 a part of the copper wiring in the multilayer copper wiring can be used.
  • the lower electrode 21 embedded in the first insulating film via the barrier metal 27 is formed by a multilayer copper wiring process using a copper plating film used in a normal semiconductor process. Can be used.
  • CVD film formation, photolithography, dry etching processing, and the like used in a normal semiconductor process can be used.
  • the resistance change film 22 and the upper electrode 23 can be formed by sputtering film formation, photolithography, dry etching processing, or the like used in a normal semiconductor process.
  • the lower electrode 21 and the upper electrode 23 are connected to a transistor or the like by connecting to a multilayer copper wiring on a silicon substrate on which the transistor or the like is formed. It can be applied or grounded.
  • the metal of the lower electrode 21 becomes metal ions and melts into the resistance change film 22 which is a solid electrolyte.
  • the metal ions in the resistance change film 22 receive electrons at the upper electrode 23 and become metal to be deposited. Due to the deposited metal, a metal bridge that connects the lower electrode 21 and the upper electrode 23 is formed in the resistance change film 22.
  • the lower electrode 21 and the upper electrode 23 are electrically connected to each other by metal bridging so that the ON state is obtained.
  • the operation to turn on can also be performed by grounding the upper electrode 23 and applying a positive voltage to the lower electrode 21.
  • the potential difference between the lower electrode 21 and the upper electrode 23 is different between when the lower electrode 21 is grounded and a negative voltage is applied to the upper electrode 23, and when the upper electrode 23 is grounded and a positive voltage is applied to the lower electrode 21. Because it is the same.
  • the metal of the metal bridge becomes a metal ion and melts into the resistance change film 22, so The part is cut. Thereby, the electrical connection between the lower electrode 21 and the upper electrode 23 is cut off, and the switch is turned off. From the stage before the electrical connection is completely broken, a change in electrical characteristics such as an increase in resistance between the lower electrode 21 and the upper electrode 23 or a change in interelectrode capacitance occurs. The electrical connection is broken.
  • the operation to turn off can also be performed by grounding the upper electrode 23 and applying a negative voltage to the lower electrode 21.
  • the potential difference between the lower electrode 21 and the upper electrode 23 is different between when the lower electrode 21 is grounded and a positive voltage is applied to the upper electrode 23, and when the upper electrode 23 is grounded and a negative voltage is applied to the lower electrode 21. Because it is the same.
  • the lower electrode 21 is grounded again and a negative voltage is applied to the upper electrode 23, or the upper electrode 23 is grounded and a positive voltage is applied to the lower electrode 21. do it.
  • the two edge portions of the first edge 21 c and the second edge 21 d provided on the first surface 21 e of the lower electrode 21 face the upper electrode 23.
  • the edge portion where the electric field concentrates can be lengthened as compared to the case where the edge portion is opposed to the upper electrode.
  • the metal bridge is formed at the long edge portion where the electric field is concentrated most, switching is easily performed at a lower voltage.
  • the switching voltages are easily aligned on the low voltage side, so that the switching voltages and variations thereof are reduced.
  • the portion between the first portion 21a and the second portion 21b is a portion that is not exposed in the exposure of the positive resist that is advantageous when forming a fine pattern, the minimum dimension that can be exposed. A narrower width can be formed. This facilitates the miniaturization of the resistance change film 22 and the upper electrode 23 straddling the first edge 21c and the second edge 21d. Therefore, the elements are miniaturized and integrated at a high density, and the switch is scaled up. It is suitable for the request to be made.
  • the lower electrode 21 includes the first portion 21a and the second portion 21b has been described.
  • the present embodiment is not limited to this.
  • the lower electrode 21 may have two or more portions.
  • FIG. 4A is a top view showing a variable resistance element 3 having another configuration according to the present embodiment.
  • 4B is a cross-sectional view taken along the line D-D ′ in the top view of FIG. 4A.
  • the cross section at the C-C ′ position in the top view of FIG. 4A is the same as the cross section at the B-B ′ position in FIG. 3A shown in FIG. 3B.
  • variable resistance element 3 is different from the variable resistance element 2 in the variable resistance element 3.
  • the lower electrode 31 is connected to the first edge 31c and the second edge 31d on the first surface 31e and is connected to the opening 35a. This is a point having the exposed third edge 31f.
  • the upper electrode 33 composed of the first upper electrode 33a and the second upper electrode 33b is opposed to the third edge 31f at the opening 35a.
  • the resistance change element 3 that is, the first portion 31a, the second portion 31b, the first edge 31c, the second edge 31d, the first surface 31e, and the resistance change film 32 of the lower electrode 31.
  • the first insulating film 34, the second insulating film 35, the third insulating film 36, and the barrier metal 37 are the same as the constituent elements of the variable resistance element 2 corresponding thereto.
  • the resistance change element 3 Compared with the resistance change element 2, the resistance change element 3 has a longer edge portion where the electric field concentrates because the third edge 31f is exposed to the opening 35a and corresponds to the upper electrode 33. .
  • the metal bridge is formed at the long edge portion where the electric field is concentrated most, switching is easily performed at a lower voltage. As a result, the switching voltages are easily aligned on the low voltage side, so that the switching voltages and variations thereof are further reduced.
  • the shape of the third edge 31f is preferably a curved line such as an arc. Since the back part of the bag path as shown in FIG. 4A can be easily processed into a curve, the processing can be facilitated by using an arc or the like.
  • the shape of the third edge 31f is not limited to a curved line, and may have a straight line.
  • the manufacturing method of the resistance change element 3 of the present embodiment is as follows. First, a first electrode having at least a part of each of a first edge 31c and a second edge 31d and a third edge 31f of the lower electrode 31 embedded in the first insulating film 34 through the barrier metal 37. The surface 31e is exposed in the opening 35a of the second insulating film 35.
  • the resistance change film 32 is formed so as to cover the opening 35a. Thereby, the resistance change film 32 is in contact with the first surface 31e exposed to the opening 35a.
  • the upper electrode 33 is deposited on the resistance change film 32. Thereby, the upper electrode 33 is opposed to the first edge 31c, the second edge 31d, and the third edge 31f at the opening 35a.
  • a third insulating film 36 is formed.
  • a normal semiconductor process can be used to form the lower electrode 31, the resistance change film 32, the upper electrode 33, and various insulating films, as in the manufacturing method of the resistance change element 2.
  • FIG. 5 is a diagram for explaining the effect of the variable resistance element 3 of the present embodiment.
  • FIG. 5 compares the switching voltage (set voltage: Vset) of the variable resistance element and its variation ( ⁇ Vset) when the shape of the first surface of the lower electrode exposed to the opening of the second insulating film is changed. is doing.
  • the shape in which the first surface of the lower electrode is exposed at the opening of the second insulating film is as follows. (A) When the first surface is exposed at the entire surface of the opening, (b) (C) The first surface is exposed as in the resistance change element 3.
  • FIG. 5 shows, for each of (a), (b), and (c), an electron micrograph from the top and a schematic diagram thereof at the stage where the opening 35a of the second insulating film 35 is formed. .
  • Vset and ⁇ Vset are 2.7 V and 0.23 V in (a), 2.18 V and 0.17 V in (b), and 2.06 V and 0.13 V in (c), respectively. It has been confirmed that the switching voltage in the change element 3 and the variation thereof are reduced.
  • FIG. 6 is a block diagram showing the configuration of the semiconductor device 200 of this embodiment.
  • the semiconductor device 200 is a semiconductor device having the semiconductor integrated circuit 20 having a multilayer copper wiring and incorporating the resistance change element 2 or 3 in the multilayer copper wiring.
  • the semiconductor device 200 can include a semiconductor integrated circuit 20 such as a CMOS (Complementary Metal Oxide Semiconductor), a memory circuit having a bipolar transistor, a logic circuit such as a microprocessor, and a circuit on which these are simultaneously mounted.
  • CMOS Complementary Metal Oxide Semiconductor
  • an electronic circuit device an optical circuit device, a quantum circuit device, a micromachine, a MEMS (Micro Electro Mechanical Systems), or the like can be connected to the semiconductor device 200, and the resistance change element of this embodiment is used as a switch at the time of connection. be able to.
  • the variable resistance element according to the present embodiment can be used as a nonvolatile memory.
  • the first edge and the second edge provided on the first surface (upper surface) of the lower electrode, and the edge portion including the third edge face the upper electrode.
  • the edge part where an electric field concentrates can be lengthened compared with the well-known structure shown to FIG. 7A.
  • the metal bridge is formed at the long edge portion where the electric field is concentrated most, switching is easily performed at a lower voltage.
  • the switching voltages are easily aligned on the low voltage side, so that the switching voltages and variations thereof are reduced.
  • the portion between the first portion and the second portion is a portion that is not exposed when exposing a positive resist, which is advantageous when forming a fine pattern, and therefore, is smaller than the minimum dimension that can be exposed. Formation with a narrow width is possible. This facilitates miniaturization of the variable resistance film and upper electrode straddling the first edge and the second edge, and is suitable for requests for miniaturizing elements and integrating them at a high density to increase the size of the switch. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

スイッチング電圧とそのばらつきが低減され、高密度な集積化に適した金属架橋型の抵抗変化素子を提供するために、金属析出型の抵抗変化膜と、前記抵抗変化膜の第1の面と所定の第1の領域で面接触し、前記第1の領域を介して金属イオンを供給する第1の電極と、前記抵抗変化膜の第2の面に積層された第2の電極と、を有し、前記第1の領域は、凹である単純閉曲線で囲まれた領域、又は、複数の単純閉曲線の各々で囲まれた領域を含み、前記第1の領域外の点を通り、その両端が前記単純閉曲線上に存在し、前記両端を除く前記両端の近傍の各点が前記第1の領域外にある線分が存在し、前記両端の各々を含む前記単純閉曲線の部分に前記第1の電極のエッジが形成されている抵抗変化素子とする。

Description

抵抗変化素子と半導体装置および製造方法
 本発明は、半導体装置とその製造方法に関し、特に、抵抗変化型不揮発性素子(以下、「抵抗変化素子」と呼ぶ)を有する半導体装置およびその製造方法に関する。
 半導体装置である半導体デバイス、特に、シリコンデバイスは、Mooreの法則と呼ばれるスケーリング則に沿った微細化により、3年間で4倍という速度で集積化や低電力化が進められてきた。しかしながら、近年、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)のゲート長は20nm以下となり、これに対応するためのリソグラフィプロセスの高騰、すなわち、リソグラフィ装置価格とマスクセット価格の高騰が著しい。加えて、デバイス寸法の物理的な限界、すなわち、微細化による動作限界やばらつきの増大により、これまでの速度でのスケーリングが不可能となってきた。そこで、スケーリング則とは異なる別の方法でデバイス性能を向上させることが求められている。
 近年、ゲートアレイとスタンダードセルとの中間に位置づけられるFPGA(Field-Programmable Gate Array)と呼ばれる再書き換え可能なプログラマブルロジックデバイスが開発されている。FPGAは、利用者がその製造後に回路構成の切り替えを行うことを可能とする。このような回路構成の切り替えを、多層配線層内に設けたスイッチ素子により行うことが期待されている。スイッチ素子を用いてFPGAを構成することによって、回路構成の自由度を向上させつつ低消費電力化を行うことができるようになるためである。
 このようなFPGAにおける回路構成の切り替え用途に好ましいスイッチ素子としては、遷移金属酸化物を用いたReRAM(Resistance Random Access Memory)や、イオン伝導体を用いた固体電解質スイッチや、原子スイッチなどの、抵抗変化素子が挙げられる。なお、イオン伝導体とは、イオンが電界によって動くことのできる固体電解質である。
 特許文献1や非特許文献1には、イオン伝導体中における金属イオン移動と電気化学反応とによる金属架橋(フィラメント、導電性パスともいう)形成を利用した固体電解質スイッチ(金属架橋型抵抗変化素子ともいう)が開示されている。特許文献1や非特許文献1に開示された固体電解質スイッチは、イオン伝導層と、イオン伝導層を挟んで対向して設けられた第1電極および第2電極とを有する。このうち、第1電極はイオン伝導層に金属イオンを供給する電極(活性電極という)であり、第2電極はイオン伝導層に金属イオンを供給しない電極(不活性電極という)である。
 この固体電解質スイッチの動作は、以下の通りである。まず、第2電極を接地して第1電極に正電圧を印加すると、第1電極の金属が金属イオンになってイオン伝導層に溶解する。イオン伝導層中の金属イオンは、第2電極で電子を受け取って金属になって析出する。析出した金属により、イオン伝導層中には第1電極と第2電極を接続する金属架橋が形成される。金属架橋で第1電極と第2電極が電気的に接続することで、スイッチがオン状態になる。オン状態とするための動作をセット動作といい、オン状態とするための印加電圧をセット電圧という。
 一方、このオン状態で第1電極を接地して第2電極に正電圧を印加すると、金属架橋の金属が金属イオンになってイオン伝導層に溶解し、金属架橋の一部が切れる。これにより、第1電極と第2電極との電気的接続が切れ、スイッチがオフ状態になる。オフ状態とするための動作をリセット動作といい、オフ状態とするための印加電圧をリセット電圧という。また、このオフ状態からオン状態にするには、再び第2電極を接地して第1電極に正電圧を印加すればよい。
 このような固体電解質スイッチは、MOSFETなどの半導体スイッチよりもサイズが小さく、オン抵抗が小さいという特徴を持っている。そのため、FPGAなどのプログラマブルロジックデバイスへの適用に有望と考えられている。また、この固体電解質スイッチは、電圧を印加しなくてもオンまたはオフの状態が維持されるので、不揮発性のメモリ素子としての応用も可能である。
 また、特許文献2には、固体電解質スイッチとしてユニポーラ型とバイポーラ型のスイッチがあることが開示されている。ユニポーラ型は、印加電圧の極性にはよらず、印加電圧の大きさにより抵抗変化するスイッチである。また、バイポーラ型は、印加電圧の大きさと極性とによって抵抗変化するスイッチである。
 以上のような固体電解質スイッチのスイッチング電圧とそのばらつきの低減は、これを用いた半導体装置の高性能化や低電力化に欠かせない。特許文献2~5には、電極の形状を電界が集中しやすい形状に工夫することで、電極金属のイオン化を促進し、スイッチング電圧とそのばらつきを低減する技術が開示されている。
 図7Aは、特許文献2に開示された固体電解質スイッチである抵抗変化素子の上面図を、図7Bは、図7Aの上面図のE-E’位置の断面図を、各々示す。抵抗変化素子は、金属イオンを供給する活性電極である下部電極、イオン伝導層である抵抗変化膜、金属イオンを供給しない不活性電極である上部電極を有する。
 下部電極は、第1の層間絶縁膜中にバリアメタルを介して埋設された銅配線を利用することができる。下部電極と第1の層間絶縁膜は、絶縁性バリア膜で覆われ、絶縁性バリア膜は下部電極の上面端部を露出させる開口部を有する。抵抗変化膜は、絶縁性バリア膜の開口部で下部電極と接し、また、開口部周辺の絶縁性バリア膜を覆っている。上部電極は、抵抗変化膜に積層されている。絶縁性バリア膜上には第2の層間絶縁膜が形成され、第2の層間絶縁膜は、抵抗変化膜と上部電極を覆っている。
 以上の構造によれば、下部電極は、その上面端部の下部電極エッジ部で上部電極に対向する。エッジ部には電界が集中することから、電極にエッジ部を設けることによって、電界集中により電極金属のイオン化が促進され、スイッチング電圧の低減とスイッチング電圧のばらつきの低減とが可能である。
 特許文献2~5の構造は、少なくとも一方の電極が前記エッジ部のように電界が集中する形状を有し、エッジ部で他方の電極に対向することで、スイッチング電圧とそのばらつきを低減させている。
特開2005-101535号公報 国際公開第2013/136798号 特開2011-146632号公報 国際公開第2014/057734号 国際公開第2016/084349号
S.Kaeriyama et al., "A Nonvolatile Programmable Solid-Electrolyte Nanometer Switch", IEEE Journal of Solid-State Circuits, Vol.40(1), pp.168-176, (2005).
 しかしながら、特許文献1~5及び非特許文献1に開示された技術は、次のような課題を有している。すなわち、抵抗変化素子を微細化して高密度に集積しスイッチを大規模化する要求に際しては、さらなるスイッチング電圧の低減とスイッチング電圧のばらつきの低減とが求められている。特許文献1~5及び非特許文献1に開示された技術は、前記のスイッチの大規模化に際しての、スイッチング電圧の低減とスイッチング電圧のばらつきの低減の要求に対しては不十分であり、さらなる改善が求められている。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、スイッチング電圧とそのばらつきが低減され、高密度な集積化に適した金属架橋型の抵抗変化素子を提供することである。
 本発明の抵抗変化素子は、金属析出型の抵抗変化膜と、前記抵抗変化膜の第1の面と所定の第1の領域で面接触し、前記第1の領域を介して金属イオンを供給する第1の電極と、前記抵抗変化膜の第2の面に積層された第2の電極と、を有し、前記第1の領域は、凹である単純閉曲線で囲まれた領域、又は、複数の単純閉曲線の各々で囲まれた領域を含み、前記第1の領域外の点を通り、その両端が前記単純閉曲線上に存在し、前記両端を除く前記両端の近傍の各点が前記第1の領域外にある線分が存在し、前記両端の各々を含む前記単純閉曲線の部分に前記第1の電極のエッジが形成されている、抵抗変化素子である。
 本発明の半導体装置は、多層銅配線を有する半導体集積回路を有し、前記半導体集積回路は本発明の抵抗変化素子を前記多層銅配線内に組み込んだ半導体装置である。
 本発明の抵抗変化素子の製造方法は、第1の絶縁膜に埋め込まれた金属イオンを供給する第1の電極の所定の第1の領域を、前記第1の絶縁膜を覆う第2の絶縁膜の有する開口部に露出させ、前記第1の領域は、凹である単純閉曲線で囲まれた領域、又は、複数の単純閉曲線の各々で囲まれた領域を含み、前記第1の領域外の点を通り、その両端が前記単純閉曲線上に存在し、前記両端を除く前記両端の近傍の各点が前記第1の領域外にある線分が存在し、前記両端の各々を含む前記単純閉曲線の部分に前記第1の電極のエッジを有しており、金属析出型の抵抗変化膜を、前記抵抗変化膜の第1の面で、前記開口部を覆って、前記第1の領域で前記第1の電極に面接触させて積層させ、第2の電極を前記抵抗変化膜の第2の面に積層させる、抵抗変化素子の製造方法である。
 本発明によれば、スイッチング電圧とそのばらつきが低減され、高密度な集積化に適した金属架橋型の抵抗変化素子を提供することができる。
本発明の第1の実施形態の抵抗変化素子の構成を示す上面図である。 本発明の第1の実施形態の抵抗変化素子の構成を示す断面図である。 本発明の第1の実施形態の半導体装置の構成を示すブロック図である。 本発明の第2の実施形態の抵抗変化素子の構成を示す上面図である。 本発明の第2の実施形態の抵抗変化素子の構成を示す断面図である。 本発明の第2の実施形態の抵抗変化素子の別の構成を示す上面図である。 本発明の第2の実施形態の抵抗変化素子の別の構成を示す断面図である。 本発明の第2の実施形態の抵抗変化素子の効果を説明するための図である。 本発明の第2の実施形態の半導体装置の構成を示すブロック図である。 特許文献2の抵抗変化素子の構成を示す上面図である。 特許文献2の抵抗変化素子の構成を示す断面図である。
 以下、図を参照しながら、本発明の実施形態を詳細に説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
(第1の実施形態)
 図1Aは、本発明の第1の実施形態の抵抗変化素子1の構成を示す上面図である。また、図1Bは、図1Aの上面図におけるA-A’位置の断面図である。
 抵抗変化素子1は、金属析出型の抵抗変化膜12と、前記抵抗変化膜12の第1の面12aと所定の第1の領域11aで面接触し、前記第1の領域11aを介して金属イオンを供給する第1の電極11と、前記抵抗変化膜12の第2の面12bに積層された第2の電極13と、を有する。さらに、前記第1の領域11aは、凹である単純閉曲線で囲まれた領域、又は、複数の単純閉曲線の各々で囲まれた領域を含む。さらに、前記第1の領域外の点を通り、その両端が前記単純閉曲線上に存在し、前記両端を除く前記両端の近傍の各点が前記第1の領域外にある線分が存在し、前記両端の各々を含む前記単純閉曲線の部分に前記第1の電極11のエッジが形成されている。
 図2は、本実施形態の半導体装置100の構成を示すブロック図である。半導体装置100は、多層銅配線を有する半導体集積回路10を有し、前記半導体集積回路10は抵抗変化素子1を前記多層銅配線内に組み込んだ半導体装置である。
 本実施形態によれば、第1の電極11のエッジ11bが抵抗変化膜12を介して第2の電極13に対向する。これにより、図7Aに示す公知の構成に比べて、第2の電極13に対向するエッジ部を長くすることができる。その結果、長いエッジ部の最も電界が集中する箇所で金属架橋が形成されるようになるため、より低い電圧でスイッチングが行われやすくなる。これにより、スイッチング電圧が低電圧側に揃いやすくなるため、スイッチング電圧とそのばらつきが低減される。
 また、凹である単純閉曲線の凹の部分、又は、前記複数の単純閉曲線同士の間の部分は、微細パタンを形成する際に有利なポジ型レジストの露光の際には、露光されない部分であるため、露光の最小寸法よりも狭い幅での形成が可能である。このことは、エッジ部に跨る抵抗変化膜12や第2の電極13を微細化しやすくするものであるため、素子を微細化して高密度に集積しスイッチを大規模化する要求に際して好適である。
 以上のように、本実施形態によれば、スイッチング電圧とそのばらつきが低減され、高密度な集積化に適した金属架橋型の抵抗変化素子を提供することができる。
(第2の実施形態)
 図3Aは、本発明の第2の実施形態の抵抗変化素子2の構成を示す上面図である。また、図3Bは、図3Aの上面図におけるB-B’位置の断面図である。
 抵抗変化素子2は、金属イオンを供給する下部電極21と、金属析出型の抵抗変化膜22と、上部電極23とを有する。上部電極23は、第1の上部電極23aと第2の上部電極23bの積層構成を有する。さらに、抵抗変化素子2は、バリアメタル27を介して下部電極21を埋設する第1の絶縁膜24と、第1の絶縁膜24を覆い開口部25aを有する第2の絶縁膜25と、第2の絶縁膜25と抵抗変化膜22と上部電極23を覆う第3の絶縁膜とを有する。第2の絶縁膜25の開口部25aは、傾斜面を有して開口していてもよい。
 下部電極21は、第1の絶縁膜24に埋め込まれている。さらに、下部電極21は、上面に相当する第1の面21eを有する。さらに、下部電極21は、第1の面21eに第1のエッジ21cを有する第1の部分21aと、第1の部分21aに隣接し、第1の面21eに第1のエッジ21cに対向する第2のエッジ21dを有する第2の部分21bと、を有する。第1のエッジ21cと第2のエッジ21dは、隣接する第1の部分21aと第2の部分21bの間の部分に面している。さらに、第1のエッジ21cと第2のエッジ21dの各々の少なくとも一部を有する第1の面21eが、第1の絶縁膜24を覆う第2の絶縁膜25の有する開口部25aに露出している。
 第1のエッジ21cと第2のエッジ21dの各々は、直線であることが好ましい。直線であることによって加工時の管理が容易となり、加工の精度を向上させることができる。なお、第1のエッジ21cと第2のエッジ21dの各々は、直線には限定されず、曲線を有していてもよい。
 また、第1のエッジ21cと第2のエッジ21dは、直線であり平行に設けられていることが好ましい。直線であり平行に設けられていることによって加工時の管理が容易となり、加工の精度を向上させることができる。なお、第1のエッジ21cと第2のエッジ21dは、平行に設けられていることには限定されず、略平行に、もしくは傾斜して設けられていてもよい。略平行とは、エッチングなどによる加工の際のばらつきや加工精度などにより、平行からずれた場合を含む。
 抵抗変化膜22は、開口部25aを覆い、開口部25aに露出した第1の面21eに接している。上部電極23は、抵抗変化膜22に積層され、抵抗変化膜22を介して開口部25aで第1のエッジ21cと第2のエッジ21dとに対向している。
 第1の絶縁膜24は、トランジスタなどが形成されたシリコンなどの半導体基板上に形成された絶縁膜である。第1の絶縁膜24および第3の絶縁膜26としては、酸化シリコン(SiO2)や、これよりも低誘電率な酸化シリコンに水素や炭素を添加した材料を用いることができる。また、第2の絶縁膜としては、炭窒化シリコン(SiCN)を用いることができる。なお、第1の絶縁膜24や第2の絶縁膜25や第3の絶縁膜26は、前記の材料には限定されない。
 下部電極21は、抵抗変化膜22に金属イオンを供給する活性電極である。下部電極21には銅を用いることができる。また、下部電極21は、銅を主成分とし、Ti、Al、Mn、W、Mgなどを添加物として含んでいても良い。バリアメタル27は、下部電極21の金属が第1の絶縁膜24に拡散することを防止する。バリアメタル27としては、Taやその窒化物、およびこれらの積層膜を用いることができる。下部電極21およびバリアメタル27には、半導体装置の有する半導体集積回路中に設けられている多層銅配線を利用することができる。
 抵抗変化膜22は、固体電解質材料であって、酸化物や硫化物や有機物などを用いることができる。例えば、Al、Ti、Ta、Si、Hf、Zrなどを含む酸化物や、Ge、As、TeSなどを含むカルコゲナイド化合物や、炭素と酸素とシリコンを含む有機ポリマー膜などを用いることができる。また、これらの積層膜であっても良い。
 上部電極23は、抵抗変化膜22に金属イオンを供給しない不活性電極である。このために、抵抗変化膜22に接する第1の上部電極23aには、RuやPtなどの貴金属を用いることができる。あるいは、これらを主成分とし、Ta、Ti、Wなどを含んでいても良い。また、第2の上部電極23bには、Taなどを用いることができる。
 本実施形態の、抵抗変化素子2の製造方法は、次の通りである。まず、第1の絶縁膜24に、下部電極21を形成する溝をエッチングにより形成する。次に、この溝の内壁にバリアメタル27をCVD(Chemical Vapor Deposition)で成膜し、下部電極21をめっきで成膜する。次に、第1の絶縁膜24とバリアメタル27と下部電極21の上面をCMP(Chemical Mechanical Polishing)で平坦化し、平坦化した面上に第2の絶縁膜25をCVDで成膜する。
 次に、第2の絶縁膜25に開口部25aをエッチングで形成することによって、下部電極21の第1のエッジ21cと第2のエッジ21dの各々の少なくとも一部を有する第1の面21eを、開口部25aに露出させる。このとき、下部電極21の第1の部分21aと第2の部分21bの間で、開口部25aに露出した第1の絶縁膜24の上面は、オーバーエッチングされることで、第1の面21eよりも下がっていてもよい。
 次に、抵抗変化膜22を、開口部25aを覆ってスパッタで成膜する。これにより、抵抗変化膜22は、開口部25aに露出した第1の面21eに接する。次に、上部電極23を、抵抗変化膜22に積層させてスパッタで成膜する。これにより、上部電極23は、開口部25aで第1のエッジ21cと第2のエッジ21dとに対向する。次に、第3の絶縁膜26をCVDで成膜する。
 なお、図3Bには図示されていないが、下部電極21および上部電極23は、多層銅配線内の銅配線に接続することによって、半導体基板に形成されているトランジスタに接続することができる。また、下部電極21には、多層銅配線内の銅配線の一部を用いることができる。
 以上の製造方法において、バリアメタル27を介して第1の絶縁膜に埋設された下部電極21の形成には、通常の半導体プロセスで用いられている銅めっき成膜を用いた多層銅配線プロセスを用いることができる。また、各種絶縁膜の形成や開口には、通常の半導体プロセスで用いられているCVD成膜やフォトリソグラフィやドライエッチング加工などを用いることができる。また、抵抗変化膜22や上部電極23の形成には、通常の半導体プロセスで用いられているスパッタ成膜やフォトリソグラフィやドライエッチング加工などを用いることができる。
 以下に、抵抗変化素子2の動作について説明する。図3Aや図3Bには図示されていないが、下部電極21および上部電極23は、トランジスタなどが形成されているシリコン基板上の多層銅配線に接続することでトランジスタなどに接続され、正負電圧を印加されたり接地されたりすることができる。
 まず、下部電極21を接地して上部電極23に負電圧を印加すると、下部電極21の金属が金属イオンになって固体電解質である抵抗変化膜22中に溶け出す。抵抗変化膜22中の金属イオンは、上部電極23で電子を受け取って金属になって析出する。析出した金属により、抵抗変化膜22中には下部電極21と上部電極23とを接続する金属架橋が形成される。金属架橋により下部電極21と上部電極23とが電気的に接続することで、ON状態になる。
 このON状態とする動作は、上部電極23を接地して下部電極21に正電圧を印加することによっても可能である。下部電極21と上部電極23との電位差は、下部電極21を接地して上部電極23に負電圧を印加する場合と、上部電極23を接地して下部電極21に正電圧を印加する場合とで、同じなためである。
 一方、前記のON状態で、下部電極21を接地して上部電極23に正電圧を印加すると、金属架橋の金属が金属イオンになって抵抗変化膜22中に溶け出すことにより、金属架橋の一部が切れる。これにより、下部電極21と上部電極23との電気的接続が切れ、OFF状態になる。なお、電気的接続が完全に切れる前の段階から、下部電極21と上部電極23の間の抵抗が大きくなったり、電極間容量が変化したりするなどの電気特性の変化が生じ、最終的に電気的接続が切れる。
 このOFF状態とする動作は、上部電極23を接地して下部電極21に負電圧を印加することによっても可能である。下部電極21と上部電極23との電位差は、下部電極21を接地して上部電極23に正電圧を印加する場合と、上部電極23を接地して下部電極21に負電圧を印加する場合とで、同じなためである。
 また、前記のOFF状態からON状態にするには、再び、下部電極21を接地して上部電極23に負電圧を印加する、あるいは、上部電極23を接地して下部電極21に正電圧を印加すればよい。
 以上の動作において、抵抗変化素子2によれば、下部電極21の第1の面21eに設けられた第1のエッジ21cと第2のエッジ21dの2箇所のエッジ部が、上部電極23に対向する。これにより、図7Aに示す公知の構成のように、1箇所のエッジ部で上部電極に対向する場合に比べて、電界が集中するエッジ部を長くすることができる。その結果、長いエッジ部の最も電界が集中する箇所で金属架橋が形成されるようになるため、より低い電圧でスイッチングが行われやすくなる。これにより、スイッチング電圧が低電圧側に揃いやすくなるため、スイッチング電圧とそのばらつきが低減される。
 また、第1の部分21aと第2の部分21bの間の部分は、微細パタンを形成する際に有利なポジ型レジストの露光の際には、露光されない部分であるため、露光可能な最小寸法よりも狭い幅での形成が可能である。このことは、第1のエッジ21cと第2のエッジ21dに跨る抵抗変化膜22や上部電極23を微細化しやすくするものであるため、素子を微細化して高密度に集積しスイッチを大規模化する要求に際して好適である。
 なお、以上の説明では、下部電極21が第1の部分21aと第2の部分21bの2つを有する場合を用いて説明したが、本実施形態はこれには限定されない。本実施形態では、下部電極21は2つ以上の複数の部分を有することができる。
 図4Aは、本実施形態の別の構成の抵抗変化素子3を示す上面図である。また、図4Bは、図4Aの上面図におけるD-D’位置の断面図である。図4Aの上面図におけるC-C’位置の断面は、図3Bに示した図3AにおけるB-B’位置の断面と同じである。
 抵抗変化素子3が抵抗変化素子2と異なる点は、抵抗変化素子3では、下部電極31が、第1の面31eで第1のエッジ31cと第2のエッジ31dとに接続し開口部35aに露出している第3のエッジ31fを有する点である。さらに、第1の上部電極33aと第2の上部電極33bからなる上部電極33が、開口部35aで第3のエッジ31fに対向している点である。
 その他の抵抗変化素子3の構成要素、すなわち、下部電極31の第1の部分31aや第2の部分31bや第1のエッジ31cや第2のエッジ31dや第1の面31e、抵抗変化膜32、第1の絶縁膜34、第2の絶縁膜35、第3の絶縁膜36、バリアメタル37は、これらに対応する抵抗変化素子2の構成要素と同様である。
 抵抗変化素子3は、抵抗変化素子2と比較して、第3のエッジ31fが開口部35aに露出して上部電極33に対応している分、電界が集中するエッジ部がより長くなっている。その結果、長いエッジ部の最も電界が集中する箇所で金属架橋が形成されるようになるため、より低い電圧でスイッチングが行われやすくなる。これにより、スイッチング電圧が低電圧側に揃いやすくなるため、スイッチング電圧とそのばらつきがさらに低減される。
 第3のエッジ31fの形状は、円弧などの曲線であることが好ましい。図4Aに示すような袋小路の奥の部分は、曲線に加工することが容易であるため、円弧などとすることで加工を容易にすることができる。なお、第3のエッジ31fの形状は、曲線には限定されず、直線を有していてもよい。
 本実施形態の、抵抗変化素子3の製造方法は、次の通りである。まず、バリアメタル37を介して第1の絶縁膜34に埋め込まれた下部電極31の、第1のエッジ31cと第2のエッジ31dの各々の少なくとも一部と第3のエッジ31fを有する第1の面31eを、第2の絶縁膜35の開口部35aに露出させる。
 次に、抵抗変化膜32を、開口部35aを覆うようにして成膜する。これにより、抵抗変化膜32は、開口部35aに露出した第1の面31eに接する。次に、上部電極33を、抵抗変化膜32に積層させて成膜する。これにより、上部電極33は、開口部35aで第1のエッジ31cと第2のエッジ31dと第3のエッジ31fに対向する。次に、第3の絶縁膜36を成膜する。
 以上の製造方法において、下部電極31や抵抗変化膜32や上部電極33や各種絶縁膜の形成には、抵抗変化素子2の製造方法と同様に通常の半導体プロセスを用いることができる。
 図5は、本実施形態の抵抗変化素子3の効果を説明するための図である。図5では、下部電極の第1の面が第2の絶縁膜の開口部に露出した形状を変えたときの、抵抗変化素子のスイッチング電圧(セット電圧:Vset)とそのばらつき(σVset)を比較している。下部電極の第1の面が第2の絶縁膜の開口部に露出した形状は、(a)開口部の全面に第1の面が露出した場合、(b)特許文献2のように第1の面が露出した場合、(c)抵抗変化素子3のように第1の面が露出した場合である。図5では(a)、(b)、(c)のそれぞれについて、第2の絶縁膜35の開口部35aを形成した段階での、上面からの電子顕微鏡写真とその模式図とを示している。
 VsetおよびσVsetは、各々、(a)で2.7Vおよび0.23V、(b)で2.18Vおよび0.17V、(c)で2.06Vおよび0.13Vであり、本実施形態の抵抗変化素子3でのスイッチング電圧とそのばらつきの低減が確認されている。
 図6は、本実施形態の半導体装置200の構成を示すブロック図である。半導体装置200は、多層銅配線を有する半導体集積回路20を有し、抵抗変化素子2または3を多層銅配線内に組み込んだ半導体装置である。半導体装置200は、CMOS(Complementary Metal Oxide Semiconductor)やバイポーラトランジスタを有するメモリ回路、マイクロプロセッサなどの論理回路、これらを同時に搭載した回路、などの半導体集積回路20を有することができる。
 また、半導体装置200に電子回路装置、光回路装置、量子回路装置、マイクロマシン、MEMS(Micro Electro Mechanical Systems)などを接続することができ、本実施形態の抵抗変化素子を接続の際のスイッチとして用いることができる。また、本実施形態の抵抗変化素子は、スイッチ以外にも、不揮発性メモリとして用いることができる。
 本実施形態によれば、下部電極の第1の面(上面)に設けられた第1のエッジと第2のエッジ、さらには第3のエッジからなるエッジ部が、上部電極に対向する。これにより、図7Aに示す公知の構成に比べて、電界が集中するエッジ部を長くすることができる。その結果、長いエッジ部の最も電界が集中する箇所で金属架橋が形成されるようになるため、より低い電圧でスイッチングが行われやすくなる。これにより、スイッチング電圧が低電圧側に揃いやすくなるため、スイッチング電圧とそのばらつきが低減される。
 また、第1の部分と第2の部分の間の部分は、微細パタンを形成する際に有利なポジ型レジストの露光の際には、露光されない部分であるため、露光可能な最小寸法よりも狭い幅での形成が可能である。このことは、第1のエッジと第2のエッジに跨る抵抗変化膜や上部電極を微細化しやすくするものであるため、素子を微細化して高密度に集積しスイッチを大規模化する要求に際して好適である。
 以上のように本実施形態によれば、スイッチング電圧とそのばらつきが低減され、高密度な集積化に適した金属架橋型の抵抗変化素子を提供することができる。
 本発明は上記の実施形態に限定されることなく、請求の範囲に記載した発明の範囲内で、種々の変形が可能であり、それらも本発明の範囲内に含まれるものであることはいうまでもない。
 この出願は、2016年12月27日に出願された日本出願特願2016-252480を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1、2、3  抵抗変化素子
 10、20  半導体集積回路
 100、200  半導体装置
 11  第1の電極
 11a  第1の領域
 11b  エッジ
 12  抵抗変化膜
 12a  第1の面
 12b  第2の面
 13  第2の電極
 21、31  下部電極
 21a、31a  第1の部分
 21b、31b  第2の部分
 21c、31c  第1のエッジ
 21d、31d  第2のエッジ
 21e、31e  第1の面
 31f  第3のエッジ
 22、32  抵抗変化膜
 23、33  上部電極
 24、34  第1の絶縁膜
 25、35  第2の絶縁膜
 25a、35a  開口部
 26、36  第3の絶縁膜
 27、37  バリアメタル

Claims (10)

  1.  金属析出型の抵抗変化膜と、
     前記抵抗変化膜の第1の面と所定の第1の領域で面接触し、前記第1の領域を介して金属イオンを供給する第1の電極と、
     前記抵抗変化膜の第2の面に積層された第2の電極と、を有し、
     前記第1の領域は、凹である単純閉曲線で囲まれた領域、又は、複数の単純閉曲線の各々で囲まれた領域を含み、
     前記第1の領域外の点を通り、その両端が前記単純閉曲線上に存在し、前記両端を除く前記両端の近傍の各点が前記第1の領域外にある線分が存在し、前記両端の各々を含む前記単純閉曲線の部分に前記第1の電極のエッジが形成されている、抵抗変化素子。
  2.  前記第1の電極は、第1の絶縁膜に埋め込まれ、
     前記抵抗変化膜は、前記第1の電極の前記第1の領域を露出させる開口部を有して前記第1の絶縁膜を覆う第2の絶縁膜の、前記開口部を覆って設けられている、請求項1記載の抵抗変化素子。
  3.  前記エッジは、直線部分を有する、請求項1または2記載の抵抗変化素子。
  4.  前記エッジは、平行している部分を有する、請求項1から3の内の1項記載の抵抗変化素子。
  5.  前記第1の電極は、半導体集積回路の多層銅配線内の銅配線を有する、請求項1から4の内の1項記載の抵抗変化素子。
  6.  多層銅配線を有する半導体集積回路を有し、前記半導体集積回路は請求項1から5の内の1項記載の抵抗変化素子を前記多層銅配線内に組み込んだ半導体装置。
  7.  第1の絶縁膜に埋め込まれた金属イオンを供給する第1の電極の所定の第1の領域を、前記第1の絶縁膜を覆う第2の絶縁膜の有する開口部に露出させ、
    前記第1の領域は、凹である単純閉曲線で囲まれた領域、又は、複数の単純閉曲線の各々で囲まれた領域を含み、
    前記第1の領域外の点を通り、その両端が前記単純閉曲線上に存在し、前記両端を除く前記両端の近傍の各点が前記第1の領域外にある線分が存在し、前記両端の各々を含む前記単純閉曲線の部分に前記第1の電極のエッジを有しており、
     金属析出型の抵抗変化膜を、前記抵抗変化膜の第1の面で、前記開口部を覆って、前記第1の領域で前記第1の電極に面接触させて積層させ、
     第2の電極を前記抵抗変化膜の第2の面に積層させる、抵抗変化素子の製造方法。
  8.  前記エッジは、直線部分を有する、請求項7記載の抵抗変化素子の製造方法。
  9.  前記エッジは、平行している部分を有する、請求項7または8記載の抵抗変化素子の製造方法。
  10.  前記第1の電極は、半導体集積回路の多層銅配線内の銅配線を有する、請求項7から9の内の1項記載の抵抗変化素子の製造方法。
PCT/JP2017/045263 2016-12-27 2017-12-18 抵抗変化素子と半導体装置および製造方法 WO2018123678A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018559065A JPWO2018123678A1 (ja) 2016-12-27 2017-12-18 抵抗変化素子と半導体装置および製造方法
US16/470,617 US10957739B2 (en) 2016-12-27 2017-12-18 Resistance variation element, semiconductor device, and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016252480 2016-12-27
JP2016-252480 2016-12-27

Publications (1)

Publication Number Publication Date
WO2018123678A1 true WO2018123678A1 (ja) 2018-07-05

Family

ID=62710461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045263 WO2018123678A1 (ja) 2016-12-27 2017-12-18 抵抗変化素子と半導体装置および製造方法

Country Status (3)

Country Link
US (1) US10957739B2 (ja)
JP (1) JPWO2018123678A1 (ja)
WO (1) WO2018123678A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683941B2 (en) 2019-12-03 2023-06-20 International Business Machines Corporation Resistive random access memory integrated with vertical transport field effect transistors

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244017A (ja) * 2011-05-20 2012-12-10 Panasonic Corp 不揮発性記憶素子及びその製造方法並びに不揮発性記憶装置
JP2013168454A (ja) * 2012-02-14 2013-08-29 Panasonic Corp 半導体記憶装置及びその製造方法
JP2013187503A (ja) * 2012-03-09 2013-09-19 Panasonic Corp 不揮発性記憶素子およびその製造方法
WO2013136798A1 (ja) * 2012-03-16 2013-09-19 日本電気株式会社 抵抗変化素子、その抵抗変化素子を有する半導体装置、その半導体装置の製造方法およびその抵抗変化素子を用いたプログラミング方法
WO2014112365A1 (ja) * 2013-01-18 2014-07-24 日本電気株式会社 スイッチング素子、および半導体スイッチング装置の製造方法
WO2015182074A1 (ja) * 2014-05-29 2015-12-03 日本電気株式会社 半導体装置およびその製造方法
WO2016084349A1 (ja) * 2014-11-25 2016-06-02 日本電気株式会社 抵抗変化素子とその製造方法および半導体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4356542B2 (ja) 2003-08-27 2009-11-04 日本電気株式会社 半導体装置
JP2011146632A (ja) 2010-01-18 2011-07-28 Toshiba Corp 不揮発性記憶装置及びその製造方法
WO2014057734A1 (ja) 2012-10-09 2014-04-17 日本電気株式会社 配線形成方法
JP6096144B2 (ja) 2014-03-26 2017-03-15 出光興産株式会社 搬送治具、装填方法、および精製方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012244017A (ja) * 2011-05-20 2012-12-10 Panasonic Corp 不揮発性記憶素子及びその製造方法並びに不揮発性記憶装置
JP2013168454A (ja) * 2012-02-14 2013-08-29 Panasonic Corp 半導体記憶装置及びその製造方法
JP2013187503A (ja) * 2012-03-09 2013-09-19 Panasonic Corp 不揮発性記憶素子およびその製造方法
WO2013136798A1 (ja) * 2012-03-16 2013-09-19 日本電気株式会社 抵抗変化素子、その抵抗変化素子を有する半導体装置、その半導体装置の製造方法およびその抵抗変化素子を用いたプログラミング方法
WO2014112365A1 (ja) * 2013-01-18 2014-07-24 日本電気株式会社 スイッチング素子、および半導体スイッチング装置の製造方法
WO2015182074A1 (ja) * 2014-05-29 2015-12-03 日本電気株式会社 半導体装置およびその製造方法
WO2016084349A1 (ja) * 2014-11-25 2016-06-02 日本電気株式会社 抵抗変化素子とその製造方法および半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683941B2 (en) 2019-12-03 2023-06-20 International Business Machines Corporation Resistive random access memory integrated with vertical transport field effect transistors

Also Published As

Publication number Publication date
JPWO2018123678A1 (ja) 2019-10-31
US10957739B2 (en) 2021-03-23
US20200020743A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP6112106B2 (ja) 抵抗変化素子、その抵抗変化素子を有する半導体装置、その半導体装置の製造方法およびその抵抗変化素子を用いたプログラミング方法
JP5776826B2 (ja) 電気化学反応を利用した抵抗変化素子、並びにその製造方法及び動作方法
US10312288B2 (en) Switching element, semiconductor device, and semiconductor device manufacturing method
US8421049B2 (en) Metal atom migration switching device, drive and manufacturing methods for the same, integrated circuit device and memory device using same
US11653583B2 (en) Resistive random access memories and method for fabricating the same
JPWO2009157479A1 (ja) スイッチング素子およびスイッチング素子の製造方法
JPWO2014076869A1 (ja) 不揮発性記憶素子及びその製造方法
WO2018123678A1 (ja) 抵抗変化素子と半導体装置および製造方法
WO2013103122A1 (ja) スイッチング素子及びその製造方法
JP5135797B2 (ja) スイッチング素子、スイッチング素子の製造方法、書き換え可能な論理集積回路、およびメモリ素子
WO2016084349A1 (ja) 抵抗変化素子とその製造方法および半導体装置
JP2012216724A (ja) 抵抗記憶装置およびその書き込み方法
JP7165976B2 (ja) 抵抗変化素子、および抵抗変化素子の製造方法
JP2012216725A (ja) 抵抗記憶装置およびその製造方法
CN114079004A (zh) 电阻随机存取存储器器件
US9196828B2 (en) Resistive memory and fabricating method thereof
CN103515530B (zh) 电阻式存储器及其制造方法
TWI746137B (zh) 記憶體結構及其製造方法
WO2017051527A1 (ja) 抵抗変化素子とその製造方法および半導体装置
US20240196626A1 (en) Structures for three-terminal memory cells
CN114665009A (zh) 存储器结构及其制造方法
CN116249356A (zh) 集成晶片及其制造方法
WO2014050198A1 (ja) スイッチング素子およびスイッチング素子の製造方法
JPWO2006070681A1 (ja) スイッチング素子、および書き換え可能な論理集積回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17885899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018559065

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17885899

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载