+

WO2018123473A1 - Steering system control device - Google Patents

Steering system control device Download PDF

Info

Publication number
WO2018123473A1
WO2018123473A1 PCT/JP2017/043678 JP2017043678W WO2018123473A1 WO 2018123473 A1 WO2018123473 A1 WO 2018123473A1 JP 2017043678 W JP2017043678 W JP 2017043678W WO 2018123473 A1 WO2018123473 A1 WO 2018123473A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
steering
clutch
battery
power supply
Prior art date
Application number
PCT/JP2017/043678
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 慎一郎
Original Assignee
株式会社オートネットワーク技術研究所
住友電装株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オートネットワーク技術研究所, 住友電装株式会社, 住友電気工業株式会社 filed Critical 株式会社オートネットワーク技術研究所
Publication of WO2018123473A1 publication Critical patent/WO2018123473A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Definitions

  • the present invention relates to a control device for a steering system.
  • Patent Literature 1 discloses a vehicle steering apparatus including a steering unit including a steering reaction force actuator, a steering unit including a steering actuator, and a backup mechanism that connects or separates the steering unit and the steering unit. Has been.
  • the steering unit and the steering unit are mechanically separated by an electromagnetic clutch or the like (backup mechanism) when normal, and the current supply to the electromagnetic clutch is stopped and the electromagnetic clutch is connected when abnormal. State.
  • the present invention has been made based on the above-described circumstances, and an object of the present invention is to provide a steering system control device that can reduce the amount of electric power required for steering a wheel when the power supply device is not in a normal state.
  • the steering system control device of the present invention comprises: A steering wheel operated by a vehicle driver, and a clutch that switches between a transmission state and a non-transmission state in which an operation force to the steering wheel is transmitted to the wheel side of the vehicle, and the steering operation when the clutch is in the transmission state
  • a control device for controlling a steering system having a steering unit that transmits force to steer the wheel, an actuator that steers the wheel, and a power supply device that supplies power to the actuator;
  • a drive unit that drives the actuator based on an operation amount of the steering;
  • An acquisition unit for acquiring a detection value indicating at least one of an output state or a deterioration state of the power supply device; Based on the detection value acquired by the acquisition unit, the clutch is set to the non-transmission state on the condition that the state of the power supply device is a predetermined normal state, and the clutch is set when the state of the power supply device is not the normal state.
  • the control unit switches the clutch to the transmission state, so the operation force when the driver performs the steering operation is used.
  • the wheel will be steered.
  • the power supply device is not in a normal state, at least a part of the power source for turning the wheel can be used as the operation force by the driver, and the degree of dependence on the actuator can be reduced. The driving force required in the actuator is reduced.
  • the power consumption of the actuator is reduced when the wheel is steered, and a problem that may occur when the wheel is steered when the power supply device is not in a normal state (the problem that the actuator cannot be driven, The problem that sufficient electric power is not supplied to the device can be made difficult to occur.
  • FIG. 1 is a block diagram schematically illustrating the steering system according to the first embodiment.
  • FIG. 2 is a block diagram schematically illustrating the control device of FIG.
  • FIG. 3 is a flowchart showing an operation example of the battery ECU of FIG.
  • FIG. 4 is a flowchart showing an operation example of the control device of FIG.
  • FIG. 5 is an explanatory diagram for explaining a supply state of electric power to the vehicle load when the system is normal.
  • FIG. 6 is an explanatory diagram for explaining a supply state of power to the vehicle load when the system is abnormal.
  • the power supply apparatus includes a battery, the acquisition unit includes a deterioration degree acquisition unit that acquires the deterioration degree of the battery, and the control unit is in a normal state where the deterioration degree of the battery acquired by the deterioration degree acquisition unit is less than a predetermined level.
  • the clutch may be in the non-transmission state, and the deterioration degree of the battery acquired by the deterioration degree acquisition unit is equal to or higher than a predetermined level.
  • the control device of the steering system configured as described above can switch the clutch to the non-transmission state and steer the wheel by driving the actuator when the battery is in a normal state where the deterioration degree is less than a predetermined level. Therefore, in the normal state in which the deterioration does not progress, the operation burden during the steering operation can be reduced.
  • the wheels can be steered by switching the clutch to the transmission state and transmitting at least the operation force during the steering operation. Therefore, when battery deterioration progresses, power consumption can be reliably suppressed, and problems caused by large current consumption during battery deterioration can be addressed.
  • the steering system includes a steering reaction force generation unit that generates a steering reaction force, and the control unit is based on the detection value acquired by the acquisition unit and is based on the condition that the state of the power supply device is in a normal state.
  • the operation may be permitted and the operation of the steering reaction force generator may be prohibited when the operation is not normal.
  • the control device of the steering system configured as described above supplies power from the power supply device to generate the steering reaction force by prohibiting the operation of the steering reaction force generation unit when the power supply device is not in a normal state. There is no need, and the power consumption can be further reduced.
  • the drive unit is configured to prohibit driving of the actuator when the state of the power supply device is in a predetermined abnormal state based on the detection value acquired by the acquisition unit, and to drive the actuator when the state of the power supply device is not an abnormal state. There may be.
  • the control device of the steering system configured as described above can further suppress the power consumed by the actuator when the power supply device is not in a normal state.
  • the drive unit may drive the actuator while maintaining the state where the control unit switches the clutch to the transmission state.
  • the control device of the steering system configured as described above can steer the wheel by the driving force of the actuator and the operation force by the steering operation when the state of the power supply device is not normal. That is, while suppressing power consumption, mechanical power transmission during steering operation can be assisted by the power of the actuator, and the burden on the driver accompanying the steering operation can be reduced.
  • a steering system 10 shown in FIG. 1 is configured as a steer-by-wire (SBW) system, detects an operation amount in the operation of the steering wheel 20 by a driver of the vehicle, and determines the left and right front wheels T1, T2 of the vehicle based on the detected amount. It is configured as a steering system. Further, the steering system 10 is configured to transmit the operation of the steering 20 by the vehicle driver to the left and right front wheels T1, T2 via the clutch 35 when the system is abnormal.
  • SBW steer-by-wire
  • This steering system 10 includes a steering 20, a steering unit 30 that transmits the operation of the steering 20 to the left and right front wheels T1 and T2 via the clutch 35, a first motor 42 and a second motor that steer the left and right front wheels T1 and T2. 44, a control device 50 that drives the first motor 42 and the second motor 44 based on the operation amount of the steering 20, and a power supply device 60 that supplies electric power to the first motor 42 and the second motor 44. Yes.
  • the steering 20 is an operation member that is rotated by the driver, and is fixed to the upper part of the steering shaft 31.
  • the steering unit 30 includes a steering shaft 31, a steering angle sensor 32, a steering torque sensor 33, a steering reaction force motor 34, a clutch 35, a steered shaft 36, and a rack bar 37.
  • the steering angle sensor 32 detects the steering angle of the steering wheel 20 that is turned by the driver, and the steering torque sensor 33 detects the steering torque applied to the steering wheel 20.
  • the steering reaction force motor 34 is configured as a steering reaction force motor that forms a steering reaction force, and is assembled to the lower portion of the steering shaft 31.
  • the steered shaft 36 is rotatable about an axis, and meshes with rack teeth (not shown) of the rack bar 37 via a pinion gear (not shown), whereby the rack bar 37 is driven by the steered shaft 36. It is displaced in the axial direction (the left-right direction of the vehicle) in conjunction with the rotation around the axis.
  • the upper end of the steered shaft 36 is connected to the clutch 35.
  • the clutch 35 is configured as an electromagnetic clutch such as a two-way clutch or a multi-plate clutch.
  • a current is supplied to be in a non-fitted state (separated state), while current is supplied when the system is abnormal Is stopped and brought into a fitted state by a spring force or the like. For this reason, when the current supply is stopped, the steering shaft 31 and the steered shaft 36 are integrally rotated via the engaged clutch 35.
  • the rack bar 37 extends in the left-right direction of the vehicle, and left and right front wheels T1, T2 are connected to both ends thereof via a tie rod and a knuckle arm (not shown).
  • the left and right front wheels T1 and T2 are steered left and right by the axial displacement of the rack bar 37.
  • the first motor 42 and the second motor 44 function as an example of an actuator, and are configured as a steering motor provided on the outer periphery of the rack bar 37, and the rotation is converted into an axial displacement of the rack bar 37.
  • Each of the first motor 42 and the second motor 44 includes a rotation angle sensor (not shown) that detects the rotation angle of the rotation shaft.
  • the control device 50 performs overall control of the steering system 10, and acquires information related to the deterioration state of the power supply device 60 from the control unit 51 and the battery ECU 64 configured by a CPU and the like.
  • the deterioration level acquisition unit 52, a drive unit 53 that transmits drive signals to the first motor 42 and the second motor 44, a memory (not shown), a system bus, an input / output interface, and the like function as an information processing device.
  • the deterioration level acquisition unit 52 functions as an example of an acquisition unit.
  • the control device 50 can communicate information with the steering angle sensor 32, the steering torque sensor 33, the steering reaction force motor 34, the clutch 35, the first motor 42, the second motor 44, the battery ECU 64, and the like via the input / output interface. It is configured.
  • control unit 51 transmits a drive signal to the first motor 42 and the second motor 44 based on the steering angle detection value received from the steering angle sensor 32. Further, the control unit 51 functions as an example of a steering reaction force generation unit, and based on the steering torque detected by the steering torque sensor 33, the steering reaction force motor 34 is applied so as to apply the command steering reaction force torque to the steering wheel 20. A drive signal is transmitted to. In addition, the control unit 51 transmits a non-engagement command signal to the clutch 35 when the system is normal, thereby bringing the clutch 35 into a non-engaged state, and transmits a engagement command signal to the clutch 35 when the system is abnormal. Then, the clutch 35 is brought into a fitted state.
  • the power supply device 60 includes a battery 62, a battery ECU 64 that detects the state (specifically, the degree of deterioration) of the battery 62, and a generator 66 (see FIG. 5) configured as an alternator.
  • the battery 62 is configured by known in-vehicle power storage means such as an electric double layer capacitor, a lead battery, or a lithium ion battery, and is electrically connected to a power supply path via a relay or the like.
  • the battery ECU 64 detects SOH (State Of Health), which is a value for specifying the degree of deterioration of the battery 62 based on information such as the terminal voltage, the charge / discharge current, and the temperature of the battery 62, and this detection result is deteriorated.
  • SOH State Of Health
  • various known methods can be adopted as a method for detecting the SOH of the battery 62.
  • a known detection method disclosed in Japanese Patent Application Laid-Open No. 2009-214766 can be used.
  • the battery ECU 64 transmits information on the detected degree of deterioration (specifically, the detected SOH value) to the control device 50.
  • the clutch 35 is in a non-engaged state. That is, the steering system 10 is in a state where only steer-by-wire (SBW) control is performed.
  • SBW steer-by-wire
  • the control device 50 derives the actual turning angles of the left and right front wheels T1 and T2 based on the rotation angle detection value received from the rotation angle sensor, and causes the actual turning angle to follow the command turning angle.
  • the first motor 42 and the second motor 44 are driven.
  • the control device 50 drives the first motor 42 and the second motor 44 so as to apply to the steering 20 a command steering reaction torque corresponding to the steering angle of the steering wheel 20 and the steered state of the left and right front wheels T1, T2. .
  • FIG. 5 is an explanatory diagram for explaining the state of power supply to the vehicle load (the first motor 42 and the like) when the system is normal.
  • the battery 62 When such a system is normal, the battery 62 is sufficiently charged, and as shown in FIG. 5, sufficient power is supplied from the battery 62 and the generator 66 to the first motor 42, the second motor 44, the control device 50, and the other. Supplied to the load. That is, even if the power consumption by the first motor 42 and the second motor 44 is large, it is possible to sufficiently supply power to other loads.
  • the battery ECU 64 measures the terminal voltage, charge / discharge current, temperature, and the like of the battery 62 (S11).
  • the degree of deterioration of the battery 62 is detected based on the terminal voltage, charge / discharge current, temperature, etc. of the battery 62 measured in S11 (S12).
  • S12 specifically, SOH (State Of Health), which is a value for specifying the degree of deterioration, is detected.
  • SOH corresponds to an example of a detection value indicating a deterioration state of the power supply device.
  • the current SOH of the battery 62 (at the time of execution of step S12) is the current full charge capacity of the battery 62 relative to the reference full charge capacity (specifically, the initial full charge capacity of the battery 62 (for example, at the time of product shipment)). Can be represented.
  • SOH is set to “value for specifying the degree of deterioration”. For example, if SOH is 30%, the degree of deterioration corresponds to SOH 30%, and if SOH is 50%, it corresponds to SOH 50%. Degree of deterioration.
  • information on the degree of deterioration of the battery 62 (specifically, the SOH of the battery 62 detected in S12) is transmitted to the control device 50 (S13).
  • the battery ECU 64 may repeat such processing (S11 to S13) every time a predetermined time elapses, and when the predetermined time (for example, when the ignition switch is switched from the on state to the off state). For example, at the start of vehicle operation, etc.).
  • FIG. 6 is an explanatory diagram for explaining the state of power supply to the vehicle load when the system is abnormal.
  • the battery 62 is not sufficiently charged, and rapid power supply is difficult for the generator 66. Therefore, sufficient power is supplied from the battery 62 and the generator 66 to the first motor 42, the second motor 44, The control device 50 and other loads will not be supplied.
  • FIG. 6 shows an example in which power is not supplied to the second motor 44 and some other loads, and the operation stops.
  • the control device 50 operates to perform the following processing based on the abnormality signal transmitted in S13 by the battery ECU 64.
  • the control device 50 receives a signal including information related to the degree of deterioration from the battery ECU 64 (S21). Specifically, the information regarding the deterioration level is SOH (value for specifying the deterioration level) data transmitted in S13 by the battery ECU 64, and the control device 50 receives the SOH data in S21. Next, based on the information received from the battery ECU 64, it is determined whether or not the deterioration level of the battery 62 is equal to or higher than a predetermined level (S22).
  • SOH value for specifying the deterioration level
  • the case where the SOH received in S21 is equal to or smaller than a predetermined threshold corresponds to “a case where the degree of deterioration of the battery 62 is equal to or higher than a predetermined level”.
  • the case where the SOH received in S21 exceeds the predetermined threshold corresponds to “the case where the deterioration level of the battery 62 is less than the predetermined level”.
  • the predetermined threshold is set to 30%
  • the case where the SOH received in step S21 is equal to or lower than the predetermined threshold (30%) is “when the deterioration level of the battery 62 is equal to or higher than the predetermined level” in step S22. .
  • the control device 50 determines that the SOH received in step S21 is equal to or lower than a predetermined threshold (30%), that is, determines that the deterioration level of the battery 62 is equal to or higher than a predetermined level (in S22). Yes), fitting instruction information is transmitted to the clutch 35 (S23). While the control device 50 transmits fitting instruction information to the clutch 35 and gives the fitting instruction, the non-fitting operation (current supply for non-fitting) is stopped in the clutch 35, and the clutch 35 Is in a fitted state. As a result, the clutch 35 enters a power transmission state, and the operation of the steering wheel 20 is transmitted to the left and right front wheels T1, T2 of the vehicle via the clutch 35.
  • a signal for prohibiting the output of the steering reaction force is transmitted to the steering reaction force motor 34 (S24).
  • the steering reaction force motor 34 does not perform the operation of generating the steering reaction force.
  • the control device 50 receives the signal from the battery ECU 64 again (S21).
  • the left and right front wheels T1 and T2 are steered based on the power generated by the driver's steering operation while maintaining the steer-by-wire (SBW) control.
  • Steer-by-wire (SBW) control can be assisted by power based on the steering operation. Therefore, the amount of electric power required for steering the left and right front wheels T1, T2 can be reduced, and more electric power can be supplied to other loads.
  • the steering reaction motor 34 does not operate when the system is in an abnormal state, it is possible to supply larger power to the left and right front wheels T1 and T2 and other loads.
  • the control device 50 determines that the SOH received in S21 exceeds the predetermined threshold (30%), that is, the degree of deterioration of the battery 62 is predetermined.
  • disconnection instruction information non-fitting instruction information
  • the clutch 35 While the cutting instruction information (non-fitting instruction information) is transmitted from the control device 50 to the clutch 35 and the cutting instruction is given to the clutch 35, the clutch 35 is in the non-fitted state (fitted state). Is supplied, and the clutch 35 is maintained in a disconnected state (non-fitted state).
  • the clutch 35 is in a power non-transmission state, and the steering system 10 is in a state where only steer-by-wire (SBW) control is performed.
  • SBW steer-by-wire
  • a signal for permitting the steering reaction force output to the steering reaction force motor 34 is transmitted (S26).
  • steering is performed while applying a command steering reaction torque corresponding to the steering angle of the steering wheel 20 and the steered state of the left and right front wheels T1 and T2 to the steering wheel 20.
  • the control device 50 receives the signal from the battery ECU 64 again (S21), and performs the subsequent processes.
  • the control unit 51 switches the clutch 35 to the transmission state.
  • the left and right front wheels T1 and T2 are steered using.
  • the power supply device 60 is not in a normal state, at least a part of the power source for turning the left and right front wheels T1 and T2 can be used as the operating force by the driver. Since the degree of dependence on the two motors 44 can be reduced, the driving force required for the first motor 42 and the second motor 44 is reduced.
  • the power consumption of the first motor 42 and the second motor 44 is reduced, and occurs when the left and right front wheels T1 and T2 are steered when the power supply device 60 is not in a normal state.
  • the problem that the first motor 42 and the second motor 44 cannot be driven, or the problem that the first motor 42 and the second motor 44 are not supplied with sufficient power cannot be obtained. Can do.
  • the power supply device 60 includes a battery 62, the deterioration level acquisition unit 52 acquires the deterioration level of the battery 62, and the control unit 51 is normal in which the deterioration level of the battery 62 acquired by the deterioration level acquisition unit 52 is less than a predetermined level.
  • the clutch 35 is set to a non-transmission state on condition that it is in a state, and the deterioration level of the battery 62 acquired by the deterioration level acquisition unit 52 is equal to or higher than a predetermined level. ing.
  • the control device 50 configured in this way switches the clutch 35 to the non-transmission state when the deterioration level of the battery 62 is less than a predetermined level, and drives the first motor 42 and the second motor 44 to drive the left and right front wheels. T1 and T2 can be steered. Therefore, in the normal state in which the deterioration does not progress, the operation burden during the steering operation can be reduced. On the other hand, when the deterioration level of the battery 62 is a predetermined level or higher, the left and right front wheels T1, T2 are steered by switching the clutch 35 to the transmission state and transmitting at least the operation force during the steering operation. Can do. Therefore, when the battery 62 is deteriorated, the power consumption can be reliably suppressed, and the problem caused by the large current consumed when the battery is deteriorated can be dealt with.
  • the steering system 10 includes a steering reaction force motor 34 that generates a steering reaction force, and the control unit 51 is based on the detection value acquired by the deterioration level acquisition unit 52 on the condition that the state of the power supply device 60 is normal.
  • the operation of the steering reaction force motor 34 is permitted, and the operation of the steering reaction force motor 34 is prohibited when it is not in a normal state.
  • the control device 50 configured in this manner supplies power from the power supply device 60 to generate the steering reaction force by prohibiting the operation of the steering reaction force motor 34 when the power supply device 60 is not in a normal state. There is no need, and the power consumption can be further reduced.
  • the drive unit 53 When the state of the power supply device 60 acquired by the deterioration level acquisition unit 52 is not normal, the drive unit 53 maintains the state where the control unit 51 switches the clutch 35 to the transmission state, and the drive unit 53 performs the first motor 42 and the second motor. 44 is driven.
  • the control device 50 configured as described above steers the left and right front wheels T1, T2 by the driving force of the first motor 42 and the second motor 44 and the operation force by the steering operation. It can be performed. That is, while suppressing power consumption, mechanical power transmission during steering operation can be assisted by the power of the first motor 42 and the second motor 44, and the burden on the driver accompanying the steering operation can be reduced. .
  • the battery ECU 64 measures the output voltage and output current of the battery 62, and uses the output state of the battery 62, for example, an index value of the remaining charge.
  • a certain SOC State Of Charge
  • the SOC can be detected by a known detection method disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-214766, and may be detected by other known methods.
  • the SOC corresponds to an example of a detection value indicating the output state of the power supply device.
  • the battery ECU 64 detects the SOC of the battery 62 in S12 of FIG. 3, the SOC detected in S12 is transmitted in S13.
  • the control device 50 may receive the SOC transmitted in S13 in S21 of the control in FIG. 4, and in S22, if it is determined whether or not the SOC received in S21 is below a predetermined level. Good.
  • the “predetermined level” various values can be adopted, for example, 30%.
  • the control device 50 determines in S22 that the SOC received in S21 is equal to or lower than the predetermined level, the control device 50 transmits a fitting instruction signal to the clutch 35 in S23, engages the clutch 35, and steers in S24.
  • a reaction force prohibition signal is transmitted to prevent the steering reaction force motor 34 from performing an operation for generating a steering reaction force.
  • the control device 50 transmits a disconnection instruction signal to the clutch 35 in S25 so that the clutch 35 is not engaged.
  • a steering reaction force permission signal is transmitted to cause the steering reaction force motor 34 to perform an operation for generating a steering reaction force.
  • the left and right front wheels T1 and T2 are steered based on the power generated by the driver's steering operation while maintaining the steer-by-wire (SBW) control in an abnormal state of the system.
  • SBW steer-by-wire
  • the left and right front wheels T1, T2 may be steered based only on the power generated by the driver's steering operation.
  • the drive unit 53 is based on the detection value acquired by the deterioration level acquisition unit 52 when the state of the power supply device 60 is a predetermined abnormal state (for example, when the deterioration level of the battery 62 is equal to or higher than a predetermined level, The driving of the first motor 42 and the second motor 44 is prohibited when the output state is equal to or less than a predetermined level, and the first motor 42 and the second motor 44 are driven when the state of the power supply device 60 is not an abnormal state. It is good also as a structure.
  • the control device 50 configured as described above can further suppress the power consumed by the first motor 42 and the second motor 44 when the power supply device 60 is not in a normal state.
  • a signal for prohibiting the output of the steering reaction force is transmitted to the steering reaction force motor 34.
  • a signal is not transmitted. There may be.
  • the steer-by-wire (SBW) system when the steer-by-wire (SBW) system is abnormal (for example, when a drive signal is not normally transmitted from the control device 50 to the clutch 35), a fitting command signal is transmitted from the control device 50 to the clutch 35.
  • the clutch 35 may be engaged and steering may be performed by the driver's steering operation.
  • the configuration in which the determination of the abnormal state of the system is performed based on the degree of deterioration of the battery 62 detected by the battery ECU 64 (S22).
  • the configuration may be a state.
  • the battery ECU 64 is configured to detect the output state of the generator 66, and the control device 50 detects that the output voltage included in the information acquired from the battery ECU 64 via the deterioration level acquisition unit 52 is less than or equal to a predetermined voltage value.
  • an abnormal signal may be transmitted.
  • the power supply device 60 includes a DC-DC converter, and the battery ECU 64 detects the output state of the DC-DC converter.
  • the control device 50 uses the information acquired from the battery ECU 64 via the deterioration level acquisition unit 52.
  • the configuration may be such that an abnormal signal is transmitted when the included output voltage is equal to or lower than a predetermined voltage value.
  • the battery ECU 64 detects the SOH or SOC of the battery 62, and the control device 50 acquires these information.
  • the control device 50 measures the output voltage, output current, and the like of the battery 62.
  • the control device 50 may be configured to detect the SOH or SOC of the battery 62.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

The purpose of the present invention is to provide a steering system control device capable of reducing the amount of power required for steering wheels when a power supply is under abnormal conditions. A control device (50) comprises: a drive unit (53) which drives a first motor (42) and a second motor (44) on the basis of the amount of manipulation of a steering wheel (20); a deterioration degree acquisition unit (52) which acquires a detection value showing the deterioration state of a battery (62); and a control unit (51) which, on the basis of the detection value acquired by the deterioration degree acquisition unit (52), switches a clutch (35) to a non-power transmission state on condition that the battery (62) is under predetermined normal conditions, and switches the clutch (35) to a power transmission state if the battery (62) is under abnormal conditions.

Description

ステアリングシステムの制御装置Steering system control device
 本発明は、ステアリングシステムの制御装置に関するものである。 The present invention relates to a control device for a steering system.
 近年、操舵ハンドルを含む操舵部と、転舵機構を含む転舵部とが機械的に切り離されたステアバイワイヤの開発が進められている。例えば、特許文献1には、操舵反力アクチュエータを含む操舵部と、転舵アクチュエータを含む転舵部と、操舵部と転舵部とを連結または分離するバックアップ機構とを備える車両操舵装置が開示されている。 In recent years, the development of steer-by-wire in which a steering unit including a steering handle and a steering unit including a steering mechanism are mechanically separated has been underway. For example, Patent Literature 1 discloses a vehicle steering apparatus including a steering unit including a steering reaction force actuator, a steering unit including a steering actuator, and a backup mechanism that connects or separates the steering unit and the steering unit. Has been.
特開2015-3539号公報Japanese Patent Laid-Open No. 2015-3539
 特許文献1の車両操舵装置は、正常時には、操舵部と転舵部とが電磁クラッチ等(バックアップ機構)により機械的に分離され、異常時には電磁クラッチへの電流供給が停止されて電磁クラッチが接続状態とされる。 In the vehicle steering device of Patent Document 1, the steering unit and the steering unit are mechanically separated by an electromagnetic clutch or the like (backup mechanism) when normal, and the current supply to the electromagnetic clutch is stopped and the electromagnetic clutch is connected when abnormal. State.
 ところで、電気的な制御によって転舵アクチュエータを動作させるステアリングシステムでは、転舵アクチュエータの駆動時に大電流が流れることが想定される。このようなシステムでは、車両に搭載された電源装置が正常状態でない場合(例えば、バッテリが劣化している場合など)には、転舵アクチュエータを適正に動作させるために必要な電流を十分に供給できなかったり、或いは、転舵アクチュエータに大電流を供給することにより、車両に搭載された他の機器への電力供給が不足したりする虞がある。 Incidentally, in a steering system that operates a steering actuator by electrical control, it is assumed that a large current flows when the steering actuator is driven. In such a system, when the power supply device mounted on the vehicle is not in a normal state (for example, when the battery is deteriorated), sufficient current is supplied to operate the steering actuator properly. There is a possibility that the power supply to other devices mounted on the vehicle may be insufficient due to the inability to perform the operation or by supplying a large current to the steering actuator.
 本発明は上記した事情に基づいてなされたものであり、電源装置が正常状態でないときに、車輪の操舵に要する必要電力量を低減し得るステアリングシステムの制御装置を提供することを目的とする。 The present invention has been made based on the above-described circumstances, and an object of the present invention is to provide a steering system control device that can reduce the amount of electric power required for steering a wheel when the power supply device is not in a normal state.
 本発明のステアリングシステムの制御装置は、
 車両の運転者が操作するステアリングと、前記ステアリングに対する操作力を前記車両の車輪側に伝達する伝達状態と非伝達状態とに切り替わるクラッチを備えるとともに前記クラッチが前記伝達状態のときに前記ステアリングの操作力を伝達して前記車輪を転舵する操舵部と、前記車輪を転舵するアクチュエータと、前記アクチュエータに電力を供給する電源装置とを有するステアリングシステムを制御する制御装置であって、
 前記ステアリングの操作量に基づいて前記アクチュエータを駆動する駆動部と、
 前記電源装置の出力状態又は劣化状態の少なくともいずれかを示す検出値を取得する取得部と、
 前記取得部が取得した検出値に基づき、前記電源装置の状態が所定の正常状態であることを条件として前記クラッチを前記非伝達状態とし、前記電源装置の状態が前記正常状態でない場合に前記クラッチを前記伝達状態に切り替える制御部と、
を有する。
The steering system control device of the present invention comprises:
A steering wheel operated by a vehicle driver, and a clutch that switches between a transmission state and a non-transmission state in which an operation force to the steering wheel is transmitted to the wheel side of the vehicle, and the steering operation when the clutch is in the transmission state A control device for controlling a steering system having a steering unit that transmits force to steer the wheel, an actuator that steers the wheel, and a power supply device that supplies power to the actuator;
A drive unit that drives the actuator based on an operation amount of the steering;
An acquisition unit for acquiring a detection value indicating at least one of an output state or a deterioration state of the power supply device;
Based on the detection value acquired by the acquisition unit, the clutch is set to the non-transmission state on the condition that the state of the power supply device is a predetermined normal state, and the clutch is set when the state of the power supply device is not the normal state. A control unit for switching to the transmission state;
Have
 上記ステアリングシステムの制御装置では、取得部が取得した電源装置の状態が正常状態でない場合に、制御部がクラッチを伝達状態に切り替えるため、運転者がステアリング操作を行うときの操作力を利用して車輪の転舵が行われることになる。このように、電源装置が正常状態でないときには、車輪の転舵を行う上での動力源の少なくとも一部を運転者による操作力とすることができ、アクチュエータに依存する度合いを減らすことができるため、アクチュエータにおいて必要となる駆動力が減少する。よって、車輪の転舵時には、アクチュエータの消費電力が低減することになり、電源装置が正常状態でないときに車輪の転舵時に生じ得る問題(アクチュエータが駆動できない問題、或いは、アクチュエータの駆動により他の機器に十分な電力が供給されなくなる問題など)を生じにくくすることができる。 In the control device of the steering system, when the state of the power supply device acquired by the acquisition unit is not normal, the control unit switches the clutch to the transmission state, so the operation force when the driver performs the steering operation is used. The wheel will be steered. As described above, when the power supply device is not in a normal state, at least a part of the power source for turning the wheel can be used as the operation force by the driver, and the degree of dependence on the actuator can be reduced. The driving force required in the actuator is reduced. Therefore, the power consumption of the actuator is reduced when the wheel is steered, and a problem that may occur when the wheel is steered when the power supply device is not in a normal state (the problem that the actuator cannot be driven, The problem that sufficient electric power is not supplied to the device can be made difficult to occur.
図1は、実施例1のステアリングシステムを概略的に例示するブロック図である。FIG. 1 is a block diagram schematically illustrating the steering system according to the first embodiment. 図2は、図1の制御装置を概略的に例示するブロック図である。FIG. 2 is a block diagram schematically illustrating the control device of FIG. 図3は、図1のバッテリECUの動作例を示すフローチャートである。FIG. 3 is a flowchart showing an operation example of the battery ECU of FIG. 図4は、図1の制御装置の動作例を示すフローチャートである。FIG. 4 is a flowchart showing an operation example of the control device of FIG. 図5は、システム正常時における車両負荷への電力の供給状態を説明する説明図である。FIG. 5 is an explanatory diagram for explaining a supply state of electric power to the vehicle load when the system is normal. 図6は、システム異常時における車両負荷への電力の供給状態を説明する説明図である。FIG. 6 is an explanatory diagram for explaining a supply state of power to the vehicle load when the system is abnormal.
 ここで、本発明の望ましい例を示す。 Here, a desirable example of the present invention will be shown.
 電源装置はバッテリを備え、取得部は、バッテリの劣化度を取得する劣化度取得部を備え、制御部は、劣化度取得部が取得したバッテリの劣化度が所定レベル未満となる正常状態であることを条件としてクラッチを非伝達状態とし、劣化度取得部が取得したバッテリの劣化度が所定レベル以上となる、正常状態でない場合にクラッチを伝達状態に切り替える構成であってもよい。 The power supply apparatus includes a battery, the acquisition unit includes a deterioration degree acquisition unit that acquires the deterioration degree of the battery, and the control unit is in a normal state where the deterioration degree of the battery acquired by the deterioration degree acquisition unit is less than a predetermined level. On this condition, the clutch may be in the non-transmission state, and the deterioration degree of the battery acquired by the deterioration degree acquisition unit is equal to or higher than a predetermined level.
 このように構成されたステアリングシステムの制御装置は、バッテリの劣化度が所定レベル未満である正常状態のときには、クラッチを非伝達状態に切り替え、アクチュエータの駆動によって車輪の転舵を行うことができる。よって、劣化が進行していない正常状態のときには、ステアリング操作時の操作負担を軽減することができる。一方、バッテリの劣化度が所定レベル以上となった劣化状態のときには、クラッチを伝達状態に切り替え、少なくともステアリング操作時の操作力を伝達することで車輪の転舵を行うことができる。よって、バッテリの劣化が進行したときには、電力消費を確実に抑え、バッテリ劣化時に大電流が消費されることに起因する問題に対処することができる。 The control device of the steering system configured as described above can switch the clutch to the non-transmission state and steer the wheel by driving the actuator when the battery is in a normal state where the deterioration degree is less than a predetermined level. Therefore, in the normal state in which the deterioration does not progress, the operation burden during the steering operation can be reduced. On the other hand, when the deterioration level of the battery is a predetermined level or higher, the wheels can be steered by switching the clutch to the transmission state and transmitting at least the operation force during the steering operation. Therefore, when battery deterioration progresses, power consumption can be reliably suppressed, and problems caused by large current consumption during battery deterioration can be addressed.
 ステアリングシステムは、操舵反力を発生させる操舵反力発生部を備え、制御部は、取得部が取得した検出値に基づき、電源装置の状態が正常状態であることを条件として操舵反力発生部の動作を許可し、正常状態でない場合に操舵反力発生部の動作を禁止する構成であってもよい。 The steering system includes a steering reaction force generation unit that generates a steering reaction force, and the control unit is based on the detection value acquired by the acquisition unit and is based on the condition that the state of the power supply device is in a normal state. The operation may be permitted and the operation of the steering reaction force generator may be prohibited when the operation is not normal.
 このように構成されたステアリングシステムの制御装置は、電源装置が正常状態でないときに、操舵反力発生部の動作を禁止することで、操舵反力の発生のために電源装置から電力供給を行う必要がなく、より一層電力消費を抑えることができる。 The control device of the steering system configured as described above supplies power from the power supply device to generate the steering reaction force by prohibiting the operation of the steering reaction force generation unit when the power supply device is not in a normal state. There is no need, and the power consumption can be further reduced.
 駆動部は、取得部が取得した検出値に基づき、電源装置の状態が所定の異状状態である場合にアクチュエータの駆動を禁止し、電源装置の状態が異常状態でない場合にアクチュエータを駆動する構成であってもよい。 The drive unit is configured to prohibit driving of the actuator when the state of the power supply device is in a predetermined abnormal state based on the detection value acquired by the acquisition unit, and to drive the actuator when the state of the power supply device is not an abnormal state. There may be.
 このように構成されたステアリングシステムの制御装置は、電源装置が正常状態でないときに、アクチュエータで消費される電力をより一層抑えることができる。 The control device of the steering system configured as described above can further suppress the power consumed by the actuator when the power supply device is not in a normal state.
 取得部が取得した電源装置の状態が正常状態でない場合に、制御部がクラッチを伝達状態に切り替えた状態を維持しつつ、駆動部がアクチュエータを駆動する構成であってもよい。 When the state of the power supply device acquired by the acquisition unit is not normal, the drive unit may drive the actuator while maintaining the state where the control unit switches the clutch to the transmission state.
 このように構成されたステアリングシステムの制御装置は、電源装置の状態が正常状態でない場合、アクチュエータの駆動力とステアリング操作による操作力とによって車輪の転舵を行うことができる。つまり、電力消費を抑えつつ、アクチュエータの動力によってステアリング操作時の機械的な動力伝達を補助することができ、ステアリング操作に伴う運転者の負担を軽減することができる。 The control device of the steering system configured as described above can steer the wheel by the driving force of the actuator and the operation force by the steering operation when the state of the power supply device is not normal. That is, while suppressing power consumption, mechanical power transmission during steering operation can be assisted by the power of the actuator, and the burden on the driver accompanying the steering operation can be reduced.
 <実施例1>
 以下、本発明を具体化した実施例1について説明する。
 図1で示すステアリングシステム10は、ステアバイワイヤ(SBW)システムとして構成され、車両の運転者によるステアリング20の操作における操作量を検出して、その検出量に基づいて車両の左右前輪T1,T2を操舵するシステムとして構成されている。また、ステアリングシステム10は、システムの異常時に、クラッチ35を介して車両の運転者によるステアリング20の操作を左右前輪T1,T2に伝達する構成となっている。このステアリングシステム10は、ステアリング20と、クラッチ35を介してステアリング20の操作を左右前輪T1,T2に伝達する操舵部30と、左右前輪T1,T2を転舵する第1モータ42及び第2モータ44と、ステアリング20の操作量に基づいて第1モータ42及び第2モータ44を駆動する制御装置50と、第1モータ42及び第2モータ44に電力を供給する電源装置60と、を備えている。
<Example 1>
Embodiment 1 of the present invention will be described below.
A steering system 10 shown in FIG. 1 is configured as a steer-by-wire (SBW) system, detects an operation amount in the operation of the steering wheel 20 by a driver of the vehicle, and determines the left and right front wheels T1, T2 of the vehicle based on the detected amount. It is configured as a steering system. Further, the steering system 10 is configured to transmit the operation of the steering 20 by the vehicle driver to the left and right front wheels T1, T2 via the clutch 35 when the system is abnormal. This steering system 10 includes a steering 20, a steering unit 30 that transmits the operation of the steering 20 to the left and right front wheels T1 and T2 via the clutch 35, a first motor 42 and a second motor that steer the left and right front wheels T1 and T2. 44, a control device 50 that drives the first motor 42 and the second motor 44 based on the operation amount of the steering 20, and a power supply device 60 that supplies electric power to the first motor 42 and the second motor 44. Yes.
 ステアリング20は、運転者により回動操作される操作部材であり、操舵軸31の上部に固定される。操舵部30は、操舵軸31と、操舵角センサ32と、操舵トルクセンサ33と、操舵反力モータ34と、クラッチ35と、転舵軸36と、ラックバー37と、を備えている。操舵角センサ32は、運転者により回動操作されるステアリング20の操舵角を検出し、操舵トルクセンサ33は、ステアリング20に加えられる操舵トルクを検出する。操舵反力モータ34は、操舵反力を形成する操舵反力用のモータとして構成され、操舵軸31の下部に組み付けられている。転舵軸36は、軸線周りに回転可能であり、ピニオンギア(図示略)を介してラックバー37のラック歯(図示略)に噛み合っており、これによりラックバー37は、転舵軸36による軸線周りの回転に連動して軸線方向(車両の左右方向)に変位する。また、転舵軸36は、その上端がクラッチ35に接続されている。 The steering 20 is an operation member that is rotated by the driver, and is fixed to the upper part of the steering shaft 31. The steering unit 30 includes a steering shaft 31, a steering angle sensor 32, a steering torque sensor 33, a steering reaction force motor 34, a clutch 35, a steered shaft 36, and a rack bar 37. The steering angle sensor 32 detects the steering angle of the steering wheel 20 that is turned by the driver, and the steering torque sensor 33 detects the steering torque applied to the steering wheel 20. The steering reaction force motor 34 is configured as a steering reaction force motor that forms a steering reaction force, and is assembled to the lower portion of the steering shaft 31. The steered shaft 36 is rotatable about an axis, and meshes with rack teeth (not shown) of the rack bar 37 via a pinion gear (not shown), whereby the rack bar 37 is driven by the steered shaft 36. It is displaced in the axial direction (the left-right direction of the vehicle) in conjunction with the rotation around the axis. The upper end of the steered shaft 36 is connected to the clutch 35.
 クラッチ35は、2ウェイクラッチや多板クラッチ等の電磁クラッチとして構成され、ステアリングシステム10のシステム正常時には、電流が供給されて非嵌合状態(分離状態)とされ、一方でシステム異常時には電流供給が停止されてスプリング力等により嵌合状態とされる。このため、電流供給停止時には、嵌合したクラッチ35を介して操舵軸31と転舵軸36とが一体回転するようになる。 The clutch 35 is configured as an electromagnetic clutch such as a two-way clutch or a multi-plate clutch. When the system of the steering system 10 is normal, a current is supplied to be in a non-fitted state (separated state), while current is supplied when the system is abnormal Is stopped and brought into a fitted state by a spring force or the like. For this reason, when the current supply is stopped, the steering shaft 31 and the steered shaft 36 are integrally rotated via the engaged clutch 35.
 ラックバー37は、車両の左右方向に延び、その両端部には、タイロッドおよびナックルアーム(図示せず)を介して、左右前輪T1、T2が転舵可能に接続されている。左右前輪T1、T2は、ラックバー37の軸線方向の変位により左右に転舵される。 The rack bar 37 extends in the left-right direction of the vehicle, and left and right front wheels T1, T2 are connected to both ends thereof via a tie rod and a knuckle arm (not shown). The left and right front wheels T1 and T2 are steered left and right by the axial displacement of the rack bar 37.
 第1モータ42及び第2モータ44は、アクチュエータの一例として機能し、ラックバー37の外周に設けられる転舵用のモータとして構成され、回転がラックバー37の軸線方向の変位に変換される。また、第1モータ42及び第2モータ44は、それぞれ回転軸の回転角を検出する回転角センサ(図示略)を備えている。 The first motor 42 and the second motor 44 function as an example of an actuator, and are configured as a steering motor provided on the outer periphery of the rack bar 37, and the rotation is converted into an axial displacement of the rack bar 37. Each of the first motor 42 and the second motor 44 includes a rotation angle sensor (not shown) that detects the rotation angle of the rotation shaft.
 制御装置50は、図2に示すように、ステアリングシステム10の全体的な制御を行うものであり、CPU等によって構成される制御部51、バッテリECU64から電源装置60の劣化状態に関する情報を取得する劣化度取得部52、第1モータ42及び第2モータ44に駆動信号を送信する駆動部53、図示しないメモリ、システムバス、入出力インタフェース等を備え、情報処理装置として機能する。なお、劣化度取得部52は、取得部の一例として機能する。また、制御装置50は、入出力インタフェースを介して、操舵角センサ32、操舵トルクセンサ33、操舵反力モータ34、クラッチ35、第1モータ42、第2モータ44、バッテリECU64等と情報通信可能に構成されている。 As shown in FIG. 2, the control device 50 performs overall control of the steering system 10, and acquires information related to the deterioration state of the power supply device 60 from the control unit 51 and the battery ECU 64 configured by a CPU and the like. The deterioration level acquisition unit 52, a drive unit 53 that transmits drive signals to the first motor 42 and the second motor 44, a memory (not shown), a system bus, an input / output interface, and the like function as an information processing device. The deterioration level acquisition unit 52 functions as an example of an acquisition unit. The control device 50 can communicate information with the steering angle sensor 32, the steering torque sensor 33, the steering reaction force motor 34, the clutch 35, the first motor 42, the second motor 44, the battery ECU 64, and the like via the input / output interface. It is configured.
 具体的には、制御部51は、操舵角センサ32から受け取る操舵角検出値に基づいて、第1モータ42及び第2モータ44に対して駆動信号を送信する。また、制御部51は、操舵反力発生部の一例として機能し、操舵トルクセンサ33によって検出された操舵トルクに基づいて、指令操舵反力トルクをステアリング20に付与するように操舵反力モータ34に駆動信号を送信する。また、制御部51は、システム正常時、クラッチ35に非嵌合指令信号を送信して、クラッチ35を非嵌合状態とするとともに、システム異常時、クラッチ35に嵌合指令信号を送信して、クラッチ35を嵌合状態とする。 Specifically, the control unit 51 transmits a drive signal to the first motor 42 and the second motor 44 based on the steering angle detection value received from the steering angle sensor 32. Further, the control unit 51 functions as an example of a steering reaction force generation unit, and based on the steering torque detected by the steering torque sensor 33, the steering reaction force motor 34 is applied so as to apply the command steering reaction force torque to the steering wheel 20. A drive signal is transmitted to. In addition, the control unit 51 transmits a non-engagement command signal to the clutch 35 when the system is normal, thereby bringing the clutch 35 into a non-engaged state, and transmits a engagement command signal to the clutch 35 when the system is abnormal. Then, the clutch 35 is brought into a fitted state.
 電源装置60は、バッテリ62と、このバッテリ62の状態(具体的には、劣化度)を検出するバッテリECU64と、オルタネータとして構成される発電機66(図5参照)と、を備えている。バッテリ62は、例えば、電気二重層コンデンサ、鉛バッテリ、リチウムイオン電池などの公知の車載用蓄電手段によって構成されており、リレー等を介して電源路に電気的に接続されている。バッテリECU64は、バッテリ62の端子電圧、充放電電流、温度などの情報に基づいてバッテリ62の劣化度を特定するための値であるSOH(State Of Health)を検出し、この検出結果を、劣化度取得部52を介して制御装置50に送信する。なお、バッテリ62のSOHの検出方法は、公知の様々な方法を採用することができ、例えば特開2009-214766号公報などに開示されている公知の検出方法を用いることができる。また、バッテリECU64は、検出した劣化度の情報(具体的には、検出したSOHの値)を制御装置50へ送信する。 The power supply device 60 includes a battery 62, a battery ECU 64 that detects the state (specifically, the degree of deterioration) of the battery 62, and a generator 66 (see FIG. 5) configured as an alternator. The battery 62 is configured by known in-vehicle power storage means such as an electric double layer capacitor, a lead battery, or a lithium ion battery, and is electrically connected to a power supply path via a relay or the like. The battery ECU 64 detects SOH (State Of Health), which is a value for specifying the degree of deterioration of the battery 62 based on information such as the terminal voltage, the charge / discharge current, and the temperature of the battery 62, and this detection result is deteriorated. This is transmitted to the control device 50 via the degree acquisition unit 52. Note that various known methods can be adopted as a method for detecting the SOH of the battery 62. For example, a known detection method disclosed in Japanese Patent Application Laid-Open No. 2009-214766 can be used. Further, the battery ECU 64 transmits information on the detected degree of deterioration (specifically, the detected SOH value) to the control device 50.
 次に、ステアリングシステム10の動作の例について、図3~図6を用いて説明する。バッテリ62の劣化度が所定レベル未満である場合(具体的には、バッテリ62のSOHが所定閾値よりも大きい場合)であるシステム正常時には、クラッチ35は非嵌合状態となっている。すなわち、ステアリングシステム10は、ステアバイワイヤ(SBW)制御のみが行われる状態となっている。運転者がステアリング20を回動操作すると、制御装置50が操舵角センサ32から操舵角検出値を受け取り、ステアリング20の操作状態に応じた左右前輪T1、T2の指令転舵角を求め、その指令転舵角となるように第1モータ42及び第2モータ44を駆動する。具体的には、制御装置50は、回転角センサから受け取る回転角検出値をもとに、左右前輪T1、T2の実転舵角を導出し、実転舵角を指令転舵角に追従させるように第1モータ42及び第2モータ44を駆動する。また、制御装置50は、ステアリング20の操舵角および左右前輪T1、T2の転舵状態に応じた指令操舵反力トルクをステアリング20に付与するように第1モータ42及び第2モータ44を駆動する。 Next, an example of the operation of the steering system 10 will be described with reference to FIGS. When the system is normal when the degree of deterioration of the battery 62 is less than a predetermined level (specifically, when the SOH of the battery 62 is greater than a predetermined threshold), the clutch 35 is in a non-engaged state. That is, the steering system 10 is in a state where only steer-by-wire (SBW) control is performed. When the driver rotates the steering wheel 20, the control device 50 receives the detected steering angle value from the steering angle sensor 32, obtains the command turning angles of the left and right front wheels T 1 and T 2 according to the operation state of the steering wheel 20, and The 1st motor 42 and the 2nd motor 44 are driven so that it may become a turning angle. Specifically, the control device 50 derives the actual turning angles of the left and right front wheels T1 and T2 based on the rotation angle detection value received from the rotation angle sensor, and causes the actual turning angle to follow the command turning angle. Thus, the first motor 42 and the second motor 44 are driven. Further, the control device 50 drives the first motor 42 and the second motor 44 so as to apply to the steering 20 a command steering reaction torque corresponding to the steering angle of the steering wheel 20 and the steered state of the left and right front wheels T1, T2. .
 図5は、システム正常時における車両負荷(第1モータ42等)への電力の供給状態を説明する説明図である。このようなシステム正常時には、バッテリ62が十分に充電され、図5に示すように、バッテリ62及び発電機66から十分な電力が第1モータ42、第2モータ44、制御装置50、及びその他の負荷に供給される。すなわち、第1モータ42、第2モータ44による電力消費が大きくても、その他の負荷にも十分に電力を供給することができる。 FIG. 5 is an explanatory diagram for explaining the state of power supply to the vehicle load (the first motor 42 and the like) when the system is normal. When such a system is normal, the battery 62 is sufficiently charged, and as shown in FIG. 5, sufficient power is supplied from the battery 62 and the generator 66 to the first motor 42, the second motor 44, the control device 50, and the other. Supplied to the load. That is, even if the power consumption by the first motor 42 and the second motor 44 is large, it is possible to sufficiently supply power to other loads.
 次に、バッテリECU64の動作の例を、それを示す図3のフローチャートを参照しながら説明する。まず、バッテリECU64は、バッテリ62の端子電圧、充放電電流、温度などを測定する(S11)。次に、S11で測定したバッテリ62の端子電圧、充放電電流、温度などに基づいて、バッテリ62の劣化度を検出する(S12)。S12では、具体的には、劣化度を特定するための値であるSOH(State Of Health)を検出する。この場合、SOHは、電源装置の劣化状態を示す検出値の一例に相当する。現在(ステップS12の実行時点)のバッテリ62のSOHは、基準満充電容量(具体的には、バッテリ62の初期(例えば製品出荷時)の満充電容量)に対する現在のバッテリ62の満充電容量で表すことができる。本実施例では、SOHを「劣化度を特定するための値」とし、例えば、SOHが30%であれば、SOH30%に相当する劣化度とし、SOHが50%であれば、SOH50%に相当する劣化度とする。S12の後には、バッテリ62の劣化度に関する情報(具体的には、S12で検出したバッテリ62のSOH)を制御装置50に送信する(S13)。バッテリECU64は、例えば、このような処理(S11~S13)を所定時間が経過するごとに繰り返し行うようになっていてもよく、所定時期(例えば、イグニッションスイッチがオン状態からオフ状態に切り替わった時などの車両動作開始時等)に行うようになっていてもよい。 Next, an example of the operation of the battery ECU 64 will be described with reference to the flowchart of FIG. First, the battery ECU 64 measures the terminal voltage, charge / discharge current, temperature, and the like of the battery 62 (S11). Next, the degree of deterioration of the battery 62 is detected based on the terminal voltage, charge / discharge current, temperature, etc. of the battery 62 measured in S11 (S12). In S12, specifically, SOH (State Of Health), which is a value for specifying the degree of deterioration, is detected. In this case, SOH corresponds to an example of a detection value indicating a deterioration state of the power supply device. The current SOH of the battery 62 (at the time of execution of step S12) is the current full charge capacity of the battery 62 relative to the reference full charge capacity (specifically, the initial full charge capacity of the battery 62 (for example, at the time of product shipment)). Can be represented. In this embodiment, SOH is set to “value for specifying the degree of deterioration”. For example, if SOH is 30%, the degree of deterioration corresponds to SOH 30%, and if SOH is 50%, it corresponds to SOH 50%. Degree of deterioration. After S12, information on the degree of deterioration of the battery 62 (specifically, the SOH of the battery 62 detected in S12) is transmitted to the control device 50 (S13). For example, the battery ECU 64 may repeat such processing (S11 to S13) every time a predetermined time elapses, and when the predetermined time (for example, when the ignition switch is switched from the on state to the off state). For example, at the start of vehicle operation, etc.).
 図6は、システム異常時における車両負荷への電力の供給状態を説明する説明図である。このようなシステム異常時には、バッテリ62が十分に充電されず、発電機66においては急速な電力供給が難しいため、バッテリ62及び発電機66から十分な電力が第1モータ42、第2モータ44、制御装置50、及びその他の負荷に供給されなくなってしまう。図6では、第2モータ44と、その他の負荷の一部に電力が供給されず、動作が停止する例を示している。特に、ステアリング20の急操舵などによって、第1モータ42及び第2モータ44への電力供給が不足し、さらにはその他の負荷にも十分に電力を供給することができなくなってしまう。このような問題を解消するために、制御装置50は、バッテリECU64によってS13で送信された異常信号に基づいて、以下の処理を行うように動作する。 FIG. 6 is an explanatory diagram for explaining the state of power supply to the vehicle load when the system is abnormal. When such a system abnormality occurs, the battery 62 is not sufficiently charged, and rapid power supply is difficult for the generator 66. Therefore, sufficient power is supplied from the battery 62 and the generator 66 to the first motor 42, the second motor 44, The control device 50 and other loads will not be supplied. FIG. 6 shows an example in which power is not supplied to the second motor 44 and some other loads, and the operation stops. In particular, due to the sudden steering of the steering 20 or the like, power supply to the first motor 42 and the second motor 44 is insufficient, and furthermore, it is not possible to supply sufficient power to other loads. In order to solve such a problem, the control device 50 operates to perform the following processing based on the abnormality signal transmitted in S13 by the battery ECU 64.
 次に、制御装置50の動作の例を、それを示す図4のフローチャートを参照しつつ説明する。まず、制御装置50は、バッテリECU64から、劣化度に関する情報を含む信号を受信する(S21)。具体的には、劣化度に関する情報は、バッテリECU64によってS13で送信されたSOH(劣化度を特定するための値)のデータであり、制御装置50は、S21でSOHのデータを受信する。次に、バッテリECU64から受信した情報に基づき、バッテリ62の劣化度が所定レベル以上であるか否か判断する(S22)。ここでは、S21で受信したSOHが所定閾値以下である場合が「バッテリ62の劣化度が所定レベル以上である場合」に該当する。逆に、S21で受信したSOHが所定閾値を超える場合が「バッテリ62の劣化度が所定レベル未満である場合」に該当する。例えば、上記所定閾値を30%に設定した場合、ステップS21で受信したSOHが所定閾値(30%)以下である場合がステップS22において「バッテリ62の劣化度が所定レベル以上である場合」となる。この例では、制御装置50は、ステップS21で受信したSOHが所定閾値(30%)以下であると判断した場合、即ち、バッテリ62の劣化度が所定レベル以上であると判断した場合(S22でYes)、クラッチ35に対して嵌合指示情報を送信する(S23)。制御装置50がクラッチ35に対して嵌合指示情報を送信し、嵌合指示を与えている間は、クラッチ35において非嵌合動作(非嵌合のための電流供給)が停止し、クラッチ35は嵌合状態となる。これにより、クラッチ35が動力の伝達状態となり、クラッチ35を介してステアリング20の操作を車両の左右前輪T1、T2に伝達するようになる。次に、操舵反力モータ34に対して操舵反力の出力を禁止させる信号を送信する(S24)。これにより、操舵反力モータ34は、操舵反力を発生させる動作を行わなくなる。S24の処理後、制御装置50は、再びバッテリECU64からの信号を受信する(S21)。 Next, an example of the operation of the control device 50 will be described with reference to the flowchart shown in FIG. First, the control device 50 receives a signal including information related to the degree of deterioration from the battery ECU 64 (S21). Specifically, the information regarding the deterioration level is SOH (value for specifying the deterioration level) data transmitted in S13 by the battery ECU 64, and the control device 50 receives the SOH data in S21. Next, based on the information received from the battery ECU 64, it is determined whether or not the deterioration level of the battery 62 is equal to or higher than a predetermined level (S22). Here, the case where the SOH received in S21 is equal to or smaller than a predetermined threshold corresponds to “a case where the degree of deterioration of the battery 62 is equal to or higher than a predetermined level”. Conversely, the case where the SOH received in S21 exceeds the predetermined threshold corresponds to “the case where the deterioration level of the battery 62 is less than the predetermined level”. For example, when the predetermined threshold is set to 30%, the case where the SOH received in step S21 is equal to or lower than the predetermined threshold (30%) is “when the deterioration level of the battery 62 is equal to or higher than the predetermined level” in step S22. . In this example, the control device 50 determines that the SOH received in step S21 is equal to or lower than a predetermined threshold (30%), that is, determines that the deterioration level of the battery 62 is equal to or higher than a predetermined level (in S22). Yes), fitting instruction information is transmitted to the clutch 35 (S23). While the control device 50 transmits fitting instruction information to the clutch 35 and gives the fitting instruction, the non-fitting operation (current supply for non-fitting) is stopped in the clutch 35, and the clutch 35 Is in a fitted state. As a result, the clutch 35 enters a power transmission state, and the operation of the steering wheel 20 is transmitted to the left and right front wheels T1, T2 of the vehicle via the clutch 35. Next, a signal for prohibiting the output of the steering reaction force is transmitted to the steering reaction force motor 34 (S24). Thereby, the steering reaction force motor 34 does not perform the operation of generating the steering reaction force. After the process of S24, the control device 50 receives the signal from the battery ECU 64 again (S21).
 このように、システムの異常状態において、ステアバイワイヤ(SBW)制御を維持しつつ、運転者のステアリング操作によって生じる動力に基づいて左右前輪T1,T2の操舵が行われる構成とすることで、運転者のステアリング操作に基づく動力によってステアバイワイヤ(SBW)制御を補助することができる。そのため、左右前輪T1,T2の操舵に要する必要電力量を低減することができ、さらには、その他の負荷にも、より大きな電力を供給することができる。特に、システムの異常状態のときに、操舵反力モータ34が動作を行わないため、左右前輪T1,T2や、その他の負荷に対し、より大きな電力を供給することができる。 Thus, in a system abnormal state, the left and right front wheels T1 and T2 are steered based on the power generated by the driver's steering operation while maintaining the steer-by-wire (SBW) control. Steer-by-wire (SBW) control can be assisted by power based on the steering operation. Therefore, the amount of electric power required for steering the left and right front wheels T1, T2 can be reduced, and more electric power can be supplied to other loads. In particular, since the steering reaction motor 34 does not operate when the system is in an abnormal state, it is possible to supply larger power to the left and right front wheels T1 and T2 and other loads.
 制御装置50は、上述したように所定閾値が30%に設定されている場合において、S21で受信したSOHが所定閾値(30%)を超えると判断した場合、即ち、バッテリ62の劣化度が所定レベル未満であると判断した場合(S22でNoの場合)、クラッチ35に対して切断指示情報(非嵌合指示情報)を送信する(S25)。制御装置50からクラッチ35に対して切断指示情報(非嵌合指示情報)が送信され、クラッチ35に対して切断指示を与えている間は、クラッチ35では非嵌合状態(嵌合解除状態)を維持するための電流が供給され、クラッチ35が切断状態(非嵌合状態)で維持される。このようにして、クラッチ35が動力の非伝達状態となり、ステアリングシステム10は、ステアバイワイヤ(SBW)制御のみが行われる状態となる。次に、操舵反力モータ34に対して操舵反力の出力を許可させる信号を送信する(S26)。これにより、ステアリング20の操舵角および左右前輪T1、T2の転舵状態に応じた指令操舵反力トルクをステアリング20に付与しつつ操舵が行われる状態となる。S26の処理後、制御装置50は、再びバッテリECU64からの信号を受信し(S21)、それ以降の処理を行う。 When the predetermined threshold is set to 30% as described above, the control device 50 determines that the SOH received in S21 exceeds the predetermined threshold (30%), that is, the degree of deterioration of the battery 62 is predetermined. When it is determined that the level is less than the level (No in S22), disconnection instruction information (non-fitting instruction information) is transmitted to the clutch 35 (S25). While the cutting instruction information (non-fitting instruction information) is transmitted from the control device 50 to the clutch 35 and the cutting instruction is given to the clutch 35, the clutch 35 is in the non-fitted state (fitted state). Is supplied, and the clutch 35 is maintained in a disconnected state (non-fitted state). Thus, the clutch 35 is in a power non-transmission state, and the steering system 10 is in a state where only steer-by-wire (SBW) control is performed. Next, a signal for permitting the steering reaction force output to the steering reaction force motor 34 is transmitted (S26). As a result, steering is performed while applying a command steering reaction torque corresponding to the steering angle of the steering wheel 20 and the steered state of the left and right front wheels T1 and T2 to the steering wheel 20. After the process of S26, the control device 50 receives the signal from the battery ECU 64 again (S21), and performs the subsequent processes.
 次に、本構成の効果を例示する。
 上記制御装置50では、劣化度取得部52が検出した電源装置60の状態が正常状態でない場合に、制御部51がクラッチ35を伝達状態に切り替えるため、運転者がステアリング操作を行うときの操作力を利用して左右前輪T1,T2の転舵が行われることになる。このように、電源装置60が正常状態でないときには、左右前輪T1,T2の転舵を行う上での動力源の少なくとも一部を運転者による操作力とすることができ、第1モータ42及び第2モータ44に依存する度合いを減らすことができるため、第1モータ42及び第2モータ44において必要となる駆動力が減少する。よって、左右前輪T1,T2の転舵時には、第1モータ42及び第2モータ44の消費電力が低減することになり、電源装置60が正常状態でないときに左右前輪T1,T2の転舵時に生じ得る問題(第1モータ42及び第2モータ44が駆動できない問題、或いは、第1モータ42及び第2モータ44の駆動により他の機器に十分な電力が供給されなくなる問題など)を生じにくくすることができる。
Next, the effect of this configuration will be exemplified.
In the control device 50, when the state of the power supply device 60 detected by the deterioration level acquisition unit 52 is not normal, the control unit 51 switches the clutch 35 to the transmission state. The left and right front wheels T1 and T2 are steered using. As described above, when the power supply device 60 is not in a normal state, at least a part of the power source for turning the left and right front wheels T1 and T2 can be used as the operating force by the driver. Since the degree of dependence on the two motors 44 can be reduced, the driving force required for the first motor 42 and the second motor 44 is reduced. Therefore, when the left and right front wheels T1 and T2 are steered, the power consumption of the first motor 42 and the second motor 44 is reduced, and occurs when the left and right front wheels T1 and T2 are steered when the power supply device 60 is not in a normal state. The problem that the first motor 42 and the second motor 44 cannot be driven, or the problem that the first motor 42 and the second motor 44 are not supplied with sufficient power cannot be obtained. Can do.
 電源装置60はバッテリ62を備え、劣化度取得部52は、バッテリ62の劣化度を取得し、制御部51は、劣化度取得部52が取得したバッテリ62の劣化度が所定レベル未満となる正常状態であることを条件としてクラッチ35を非伝達状態とし、劣化度取得部52が取得したバッテリ62の劣化度が所定レベル以上となる、正常状態でない場合にクラッチ35を伝達状態に切り替える構成となっている。 The power supply device 60 includes a battery 62, the deterioration level acquisition unit 52 acquires the deterioration level of the battery 62, and the control unit 51 is normal in which the deterioration level of the battery 62 acquired by the deterioration level acquisition unit 52 is less than a predetermined level. The clutch 35 is set to a non-transmission state on condition that it is in a state, and the deterioration level of the battery 62 acquired by the deterioration level acquisition unit 52 is equal to or higher than a predetermined level. ing.
 このように構成された制御装置50は、バッテリ62の劣化度が所定レベル未満である正常状態のときには、クラッチ35を非伝達状態に切り替え、第1モータ42及び第2モータ44の駆動によって左右前輪T1,T2の転舵を行うことができる。よって、劣化が進行していない正常状態のときには、ステアリング操作時の操作負担を軽減することができる。一方、バッテリ62の劣化度が所定レベル以上となった劣化状態のときには、クラッチ35を伝達状態に切り替え、少なくともステアリング操作時の操作力を伝達することで左右前輪T1,T2の転舵を行うことができる。よって、バッテリ62の劣化が進行したときには、電力消費を確実に抑え、バッテリ劣化時に大電流が消費されることに起因する問題に対処することができる。 The control device 50 configured in this way switches the clutch 35 to the non-transmission state when the deterioration level of the battery 62 is less than a predetermined level, and drives the first motor 42 and the second motor 44 to drive the left and right front wheels. T1 and T2 can be steered. Therefore, in the normal state in which the deterioration does not progress, the operation burden during the steering operation can be reduced. On the other hand, when the deterioration level of the battery 62 is a predetermined level or higher, the left and right front wheels T1, T2 are steered by switching the clutch 35 to the transmission state and transmitting at least the operation force during the steering operation. Can do. Therefore, when the battery 62 is deteriorated, the power consumption can be reliably suppressed, and the problem caused by the large current consumed when the battery is deteriorated can be dealt with.
 ステアリングシステム10は、操舵反力を発生させる操舵反力モータ34を備え、制御部51は、劣化度取得部52が取得した検出値に基づき、電源装置60の状態が正常状態であることを条件として操舵反力モータ34の動作を許可し、正常状態でない場合に操舵反力モータ34の動作を禁止する構成となっている。 The steering system 10 includes a steering reaction force motor 34 that generates a steering reaction force, and the control unit 51 is based on the detection value acquired by the deterioration level acquisition unit 52 on the condition that the state of the power supply device 60 is normal. The operation of the steering reaction force motor 34 is permitted, and the operation of the steering reaction force motor 34 is prohibited when it is not in a normal state.
 このように構成された制御装置50は、電源装置60が正常状態でないときに、操舵反力モータ34の動作を禁止することで、操舵反力の発生のために電源装置60から電力供給を行う必要がなく、より一層電力消費を抑えることができる。 The control device 50 configured in this manner supplies power from the power supply device 60 to generate the steering reaction force by prohibiting the operation of the steering reaction force motor 34 when the power supply device 60 is not in a normal state. There is no need, and the power consumption can be further reduced.
 劣化度取得部52が取得した電源装置60の状態が正常状態でない場合に、制御部51がクラッチ35を伝達状態に切り替えた状態を維持しつつ、駆動部53が第1モータ42及び第2モータ44を駆動する構成となっている。 When the state of the power supply device 60 acquired by the deterioration level acquisition unit 52 is not normal, the drive unit 53 maintains the state where the control unit 51 switches the clutch 35 to the transmission state, and the drive unit 53 performs the first motor 42 and the second motor. 44 is driven.
 このように構成された制御装置50は、電源装置60の状態が正常状態でない場合、第1モータ42及び第2モータ44の駆動力とステアリング操作による操作力とによって左右前輪T1,T2の転舵を行うことができる。つまり、電力消費を抑えつつ、第1モータ42及び第2モータ44の動力によってステアリング操作時の機械的な動力伝達を補助することができ、ステアリング操作に伴う運転者の負担を軽減することができる。 When the state of the power supply device 60 is not normal, the control device 50 configured as described above steers the left and right front wheels T1, T2 by the driving force of the first motor 42 and the second motor 44 and the operation force by the steering operation. It can be performed. That is, while suppressing power consumption, mechanical power transmission during steering operation can be assisted by the power of the first motor 42 and the second motor 44, and the burden on the driver accompanying the steering operation can be reduced. .
 <他の実施例>
 本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。また、上述した実施例や後述する実施例は矛盾しない範囲で組み合わせることが可能である。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention. In addition, the embodiments described above and the embodiments described later can be combined within a consistent range.
 実施例1では、制御装置50の動作におけるS22の処理において、バッテリ62の劣化度が所定レベル以上であるか否か判断する構成としたが、バッテリ62の出力状態が所定レベル以下であるか否か判断する構成としてもよい。具体的には、図3の制御のS12において、劣化度の検出に代えて、バッテリECU64がバッテリ62の出力電圧及び出力電流を測定し、バッテリ62の出力状態、例えば充電残量の指標値であるSOC(State Of Charge)を、公知の方法で検出してもよい。SOCは、例えば、特開2009-214766号公報などに開示されている公知の検出方法で検出することができ、これ以外の公知の方法で検出してもよい。この場合、SOCは、電源装置の出力状態を示す検出値の一例に相当する。バッテリECU64が図3のS12でバッテリ62のSOCを検出する場合、S12で検出したSOCをS13で送信する。そして、この場合、制御装置50は、S13で送信されたSOCを図4の制御のS21で受信すればよく、S22では、S21で受信したSOCが所定レベル以下であるか否かを判断すればよい。「所定レベル」は、様々な値を採用することができ、例えば30%などとすることができる。そして、制御装置50は、S21で受信したSOCが所定レベル以下であるとS22で判断した場合、S23においてクラッチ35に対して嵌合指示信号を送信し、クラッチ35を嵌合させ、S24において操舵反力禁止信号を送信し、操舵反力モータ34に操舵反力を発生させる動作を行わせないようにする。一方、制御装置50は、S21で受信したSOCが所定レベル以下でないとS22で判断した場合、S25においてクラッチ35に対して切断指示信号を送信し、クラッチ35を嵌合させないようにする。更に、S26において操舵反力許可信号を送信し、操舵反力モータ34に操舵反力を発生させる動作を行わせるようにする。 In the first embodiment, in the process of S22 in the operation of the control device 50, it is determined whether or not the degree of deterioration of the battery 62 is equal to or higher than a predetermined level. It is good also as a structure which judges whether. Specifically, in S12 of the control of FIG. 3, instead of detecting the deterioration level, the battery ECU 64 measures the output voltage and output current of the battery 62, and uses the output state of the battery 62, for example, an index value of the remaining charge. A certain SOC (State Of Charge) may be detected by a known method. The SOC can be detected by a known detection method disclosed in, for example, Japanese Patent Application Laid-Open No. 2009-214766, and may be detected by other known methods. In this case, the SOC corresponds to an example of a detection value indicating the output state of the power supply device. When the battery ECU 64 detects the SOC of the battery 62 in S12 of FIG. 3, the SOC detected in S12 is transmitted in S13. In this case, the control device 50 may receive the SOC transmitted in S13 in S21 of the control in FIG. 4, and in S22, if it is determined whether or not the SOC received in S21 is below a predetermined level. Good. As the “predetermined level”, various values can be adopted, for example, 30%. When the control device 50 determines in S22 that the SOC received in S21 is equal to or lower than the predetermined level, the control device 50 transmits a fitting instruction signal to the clutch 35 in S23, engages the clutch 35, and steers in S24. A reaction force prohibition signal is transmitted to prevent the steering reaction force motor 34 from performing an operation for generating a steering reaction force. On the other hand, when it is determined in S22 that the SOC received in S21 is not equal to or lower than the predetermined level, the control device 50 transmits a disconnection instruction signal to the clutch 35 in S25 so that the clutch 35 is not engaged. In S26, a steering reaction force permission signal is transmitted to cause the steering reaction force motor 34 to perform an operation for generating a steering reaction force.
 実施例1では、システムの異常状態において、ステアバイワイヤ(SBW)制御を維持しつつ、運転者のステアリング操作によって生じる動力に基づいて左右前輪T1,T2の操舵が行われる構成としたが、システムの異常状態において、運転者のステアリング操作によって生じる動力のみに基づいて左右前輪T1,T2の操舵が行われる構成としてもよい。すなわち、駆動部53は、劣化度取得部52が取得した検出値に基づき、電源装置60の状態が所定の異状状態である場合(例えば、バッテリ62の劣化度が所定レベル以上である場合や、出力状態が所定レベル以下である場合など)に第1モータ42及び第2モータ44の駆動を禁止し、電源装置60の状態が異常状態でない場合に第1モータ42及び第2モータ44を駆動する構成としてもよい。
 このように構成された制御装置50は、電源装置60が正常状態でないときに、第1モータ42及び第2モータ44で消費される電力をより一層抑えることができる。
In the first embodiment, the left and right front wheels T1 and T2 are steered based on the power generated by the driver's steering operation while maintaining the steer-by-wire (SBW) control in an abnormal state of the system. In an abnormal state, the left and right front wheels T1, T2 may be steered based only on the power generated by the driver's steering operation. That is, the drive unit 53 is based on the detection value acquired by the deterioration level acquisition unit 52 when the state of the power supply device 60 is a predetermined abnormal state (for example, when the deterioration level of the battery 62 is equal to or higher than a predetermined level, The driving of the first motor 42 and the second motor 44 is prohibited when the output state is equal to or less than a predetermined level, and the first motor 42 and the second motor 44 are driven when the state of the power supply device 60 is not an abnormal state. It is good also as a structure.
The control device 50 configured as described above can further suppress the power consumed by the first motor 42 and the second motor 44 when the power supply device 60 is not in a normal state.
 実施例1では、制御装置50の動作におけるS24の処理において、操舵反力モータ34に対して操舵反力の出力を禁止させる信号を送信する構成としたが、このような信号を送信しない構成であってもよい。 In the first embodiment, in the process of S24 in the operation of the control device 50, a signal for prohibiting the output of the steering reaction force is transmitted to the steering reaction force motor 34. However, such a signal is not transmitted. There may be.
 実施例1において、ステアバイワイヤ(SBW)システムの異常時(例えば、制御装置50から駆動信号が正常にクラッチ35へ送信されない異常時)に、制御装置50からクラッチ35に嵌合指令信号を送信して、クラッチ35を嵌合状態とし、運転者のステアリング操作によって操舵が行われる構成としてもよい。 In the first embodiment, when the steer-by-wire (SBW) system is abnormal (for example, when a drive signal is not normally transmitted from the control device 50 to the clutch 35), a fitting command signal is transmitted from the control device 50 to the clutch 35. Thus, the clutch 35 may be engaged and steering may be performed by the driver's steering operation.
 実施例1では、システムの異常状態の判別が、バッテリECU64によって検出されたバッテリ62の劣化度に基づいて行われる構成(S22)を例示したが、その他の電源装置60の異常状態をシステムの異常状態とする構成であってもよい。例えば、バッテリECU64が発電機66の出力状態を検出する構成であり、制御装置50は、バッテリECU64から劣化度取得部52を介して取得した情報に含まれる出力電圧が、所定の電圧値以下である場合に異常信号を送信する構成であってもよい。また、電源装置60がDC-DCコンバータを備え、バッテリECU64がDC-DCコンバータの出力状態を検出する構成であり、制御装置50は、バッテリECU64から劣化度取得部52を介して取得した情報に含まれる出力電圧が所定の電圧値以下である場合に異常信号を送信する構成であってもよい。 In the first embodiment, the configuration in which the determination of the abnormal state of the system is performed based on the degree of deterioration of the battery 62 detected by the battery ECU 64 (S22). The configuration may be a state. For example, the battery ECU 64 is configured to detect the output state of the generator 66, and the control device 50 detects that the output voltage included in the information acquired from the battery ECU 64 via the deterioration level acquisition unit 52 is less than or equal to a predetermined voltage value. In some cases, an abnormal signal may be transmitted. Further, the power supply device 60 includes a DC-DC converter, and the battery ECU 64 detects the output state of the DC-DC converter. The control device 50 uses the information acquired from the battery ECU 64 via the deterioration level acquisition unit 52. The configuration may be such that an abnormal signal is transmitted when the included output voltage is equal to or lower than a predetermined voltage value.
 上述したように、バッテリECU64が、バッテリ62のSOH又はSOCを検出し、制御装置50がこれらの情報を取得する例を示したが、制御装置50がバッテリ62の出力電圧、出力電流などを測定し得るように構成され、制御装置50がバッテリ62のSOH又はSOCを検出し得るようにしてもよい。 As described above, the battery ECU 64 detects the SOH or SOC of the battery 62, and the control device 50 acquires these information. However, the control device 50 measures the output voltage, output current, and the like of the battery 62. The control device 50 may be configured to detect the SOH or SOC of the battery 62.
 10…ステアリングシステム
 20…ステアリング
 30…操舵部
 34…操舵反力モータ(操舵反力発生部)
 35…クラッチ
 42…第1モータ(アクチュエータ)
 44…第2モータ(アクチュエータ)
 50…制御装置
 51…制御部
 52…劣化度取得部(取得部)
 53…駆動部
 60…電源装置
 62…バッテリ
 T1…左前輪
 T2…右前輪
DESCRIPTION OF SYMBOLS 10 ... Steering system 20 ... Steering 30 ... Steering part 34 ... Steering reaction force motor (steering reaction force generation part)
35 ... Clutch 42 ... First motor (actuator)
44 ... Second motor (actuator)
DESCRIPTION OF SYMBOLS 50 ... Control apparatus 51 ... Control part 52 ... Deterioration degree acquisition part (acquisition part)
53 ... Drive unit 60 ... Power supply device 62 ... Battery T1 ... Left front wheel T2 ... Right front wheel

Claims (5)

  1.  車両の運転者が操作するステアリングと、前記ステアリングに対する操作力を前記車両の車輪側に伝達する伝達状態と非伝達状態とに切り替わるクラッチを備えるとともに前記クラッチが前記伝達状態のときに前記ステアリングの操作力を伝達して前記車輪を転舵する操舵部と、前記車輪を転舵するアクチュエータと、前記アクチュエータに電力を供給する電源装置とを有するステアリングシステムを制御する制御装置であって、
     前記ステアリングの操作量に基づいて前記アクチュエータを駆動する駆動部と、
     前記電源装置の出力状態又は劣化状態の少なくともいずれかを示す検出値を取得する取得部と、
     前記取得部が取得した検出値に基づき、前記電源装置の状態が所定の正常状態であることを条件として前記クラッチを前記非伝達状態とし、前記電源装置の状態が前記正常状態でない場合に前記クラッチを前記伝達状態に切り替える制御部と、
    を有するステアリングシステムの制御装置。
    A steering wheel operated by a vehicle driver, and a clutch that switches between a transmission state and a non-transmission state in which an operation force to the steering wheel is transmitted to the wheel side of the vehicle, and the steering operation when the clutch is in the transmission state A control device for controlling a steering system having a steering unit that transmits force to steer the wheel, an actuator that steers the wheel, and a power supply device that supplies power to the actuator;
    A drive unit that drives the actuator based on an operation amount of the steering;
    An acquisition unit for acquiring a detection value indicating at least one of an output state or a deterioration state of the power supply device;
    Based on the detection value acquired by the acquisition unit, the clutch is set to the non-transmission state on the condition that the state of the power supply device is a predetermined normal state, and the clutch is set when the state of the power supply device is not the normal state. A control unit for switching to the transmission state;
    A control device for a steering system.
  2.  前記電源装置はバッテリを備え、
     前記取得部は、前記バッテリの劣化度を取得する劣化度取得部を備え、
     前記制御部は、前記劣化度取得部が取得した前記バッテリの劣化度が所定レベル未満となる前記正常状態であることを条件として前記クラッチを前記非伝達状態とし、前記劣化度取得部が取得した前記バッテリの劣化度が所定レベル以上となる、前記正常状態でない場合に前記クラッチを前記伝達状態に切り替える請求項1に記載のステアリングシステムの制御装置。
    The power supply device includes a battery,
    The acquisition unit includes a deterioration level acquisition unit that acquires a deterioration level of the battery,
    The control unit sets the clutch to the non-transmission state on the condition that the deterioration level of the battery acquired by the deterioration level acquisition unit is less than a predetermined level and is acquired by the deterioration level acquisition unit. The steering system control device according to claim 1, wherein the clutch is switched to the transmission state when the deterioration level of the battery is equal to or higher than a predetermined level and is not in the normal state.
  3.  前記ステアリングシステムは、操舵反力を発生させる操舵反力発生部を備え、
     前記制御部は、前記取得部が取得した検出値に基づき、前記電源装置の状態が前記正常状態であることを条件として前記操舵反力発生部の動作を許可し、前記正常状態でない場合に前記操舵反力発生部の動作を禁止する請求項1又は請求項2に記載のステアリングシステムの制御装置。
    The steering system includes a steering reaction force generation unit that generates a steering reaction force,
    The control unit permits the operation of the steering reaction force generation unit on the condition that the state of the power supply device is the normal state based on the detection value acquired by the acquisition unit, and when the state is not the normal state, The steering system control device according to claim 1 or 2, wherein operation of the steering reaction force generator is prohibited.
  4.  前記駆動部は、前記取得部が取得した検出値に基づき、前記電源装置の状態が所定の異状状態である場合に前記アクチュエータの駆動を禁止し、前記電源装置の状態が前記異常状態でない場合に前記アクチュエータを駆動する請求項1から請求項3のいずれか一項に記載のステアリングシステムの制御装置。 The drive unit prohibits driving of the actuator when the state of the power supply device is a predetermined abnormal state based on the detection value acquired by the acquisition unit, and when the state of the power supply device is not the abnormal state The steering system control device according to any one of claims 1 to 3, wherein the actuator is driven.
  5.  前記取得部が取得した前記電源装置の状態が前記正常状態でない場合に、前記制御部が前記クラッチを前記伝達状態に切り替えた状態を維持しつつ、前記駆動部が前記アクチュエータを駆動する請求項1から請求項3のいずれか一項に記載のステアリングシステムの制御装置。 The drive unit drives the actuator while maintaining the state where the control unit switches the clutch to the transmission state when the state of the power supply device acquired by the acquisition unit is not the normal state. The control device for the steering system according to any one of claims 1 to 3.
PCT/JP2017/043678 2016-12-26 2017-12-05 Steering system control device WO2018123473A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-251213 2016-12-26
JP2016251213A JP2018103731A (en) 2016-12-26 2016-12-26 Control apparatus for steering system

Publications (1)

Publication Number Publication Date
WO2018123473A1 true WO2018123473A1 (en) 2018-07-05

Family

ID=62711121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/043678 WO2018123473A1 (en) 2016-12-26 2017-12-05 Steering system control device

Country Status (2)

Country Link
JP (1) JP2018103731A (en)
WO (1) WO2018123473A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4173868A1 (en) * 2021-10-26 2023-05-03 Jtekt Corporation Steering control device, vehicle power source system, and vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224709A (en) * 2005-02-15 2006-08-31 Nissan Motor Co Ltd Steering control device
JP2007022461A (en) * 2005-07-20 2007-02-01 Fuji Kiko Co Ltd Steering gear for vehicle
JP2007055453A (en) * 2005-08-25 2007-03-08 Nissan Motor Co Ltd Steering control device
JP2015003689A (en) * 2013-06-24 2015-01-08 トヨタ自動車株式会社 Vehicle steering device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224709A (en) * 2005-02-15 2006-08-31 Nissan Motor Co Ltd Steering control device
JP2007022461A (en) * 2005-07-20 2007-02-01 Fuji Kiko Co Ltd Steering gear for vehicle
JP2007055453A (en) * 2005-08-25 2007-03-08 Nissan Motor Co Ltd Steering control device
JP2015003689A (en) * 2013-06-24 2015-01-08 トヨタ自動車株式会社 Vehicle steering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4173868A1 (en) * 2021-10-26 2023-05-03 Jtekt Corporation Steering control device, vehicle power source system, and vehicle
US12286171B2 (en) 2021-10-26 2025-04-29 Jtekt Corporation Steering control device, vehicle power source system, and vehicle

Also Published As

Publication number Publication date
JP2018103731A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
US11305783B2 (en) Vehicle control device
JP5930058B2 (en) Steering control device and steering control method
EP1958851B1 (en) Power source control device for power steering
US7526372B2 (en) Steering control device
WO2018016541A1 (en) Motor control device and electric power steering device
CN103660999A (en) Two-wheeled inverted pendulum vehicle and control method therefor
US20150274202A1 (en) Electric Power Steering Apparatus
JP5666010B2 (en) Electric power steering device
US11807316B2 (en) Power steering apparatus
JP6496356B2 (en) vehicle
WO2017159277A1 (en) Control system
WO2019049731A1 (en) Control device for power steering device
JP2009262609A (en) Steering system for vehicle
JP2015166199A (en) Vehicular steering device
WO2008059731A1 (en) Vehicle steering device
WO2018123473A1 (en) Steering system control device
JP5050402B2 (en) Vehicle steering control device
JP2022088234A (en) Power system
US12145665B2 (en) Steer-by-wire steering system
JP4956775B2 (en) Steering control device
JP5092509B2 (en) Electric power steering device
US20240227923A9 (en) Vehicle power supply system and control method of vehicle power supply system
JP2009046044A (en) Control device for electric power steering device
JP3955026B2 (en) Battery state determination device in electric steering device
JP2008013096A (en) Vehicular steering device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17889107

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17889107

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载