+

WO2018123393A1 - Motive power transmission control device - Google Patents

Motive power transmission control device Download PDF

Info

Publication number
WO2018123393A1
WO2018123393A1 PCT/JP2017/042489 JP2017042489W WO2018123393A1 WO 2018123393 A1 WO2018123393 A1 WO 2018123393A1 JP 2017042489 W JP2017042489 W JP 2017042489W WO 2018123393 A1 WO2018123393 A1 WO 2018123393A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
power source
engine
rotational
shaft
Prior art date
Application number
PCT/JP2017/042489
Other languages
French (fr)
Japanese (ja)
Inventor
大貴 井上
Original Assignee
アイシン・エーアイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エーアイ株式会社 filed Critical アイシン・エーアイ株式会社
Publication of WO2018123393A1 publication Critical patent/WO2018123393A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by AC motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a power transmission control device mounted on a vehicle.
  • a switching mechanism for switching between transmission and reception of power transmission between the first power source, the first power source and the axle, a second power source for transmitting power to the axle, a switching operation of the switching mechanism, and A control unit configured to control operations of the first power source and the second power source, and transmitting power of the first power source to an axle according to a traveling state or the like while traveling by the second power source
  • the control unit adjusts the rotational speed of the first power source to make the switching mechanism switchable from the disconnected state to the connected state, and the power transmission control device shown in Patent Document 1 is known. It has become.
  • a first power source a first power source connected to the first power shaft and capable of adjusting the number of rotations of the first power shaft
  • a second power source connected to the first power shaft.
  • a second rotation shaft that rotates in conjunction with an axle, a first rotation number detection unit that detects the rotation number of the first rotation shaft, and a second rotation number detection unit that detects the rotation number of the second rotation shaft
  • a power transmission control device shown in Patent Document 2 having a control unit for controlling the motor has been known.
  • the first rotation shaft can be switched by the first power source so that the switching can be performed without using a synchronization mechanism such as a synchronizer ring. Control the rotation speed of
  • Patent Documents 1 and 2 adjust the rotational speed only by the first power source. For this reason, when using a power source which is difficult to adjust a high rotational speed with a high output, it becomes difficult to properly adjust the rotational speed. On the other hand, when using a motive power source capable of fine adjustment of the number of revolutions with a low output as the first motive power source, it takes time to adjust the number of revolutions, and rapid switching becomes difficult. Energy losses such as losses increase.
  • the present invention is provided with a switching mechanism that performs switching between power transmission and disconnection between a first rotation shaft to which a first power source and a second power source are connected, and a second rotation shaft that rotates in conjunction with an axle.
  • An object of the present invention is to provide a power transmission control device that switches the adjustment of the rotation speed of the first rotation shaft quickly and accurately when switching the switching mechanism from the disconnection state to the connection state while the vehicle is traveling.
  • the 1st power source which can be connected to the 1st axis of rotation, and can adjust the number of rotations of the 1st axis of rotation, and it is connected to the 1st axis of rotation.
  • a first rotation number detection unit that detects the rotation number of the rotation shaft
  • a second rotation number detection unit that detects the rotation number of the second rotation shaft
  • the first rotation shaft and the second rotation shaft
  • a control unit configured to control the connection switching operation of the switching mechanism and the operation of the first power source and the second power source, the control unit performing the switching
  • the first rotation number detection unit detects the number of rotations after switching, which is the number of rotations of the first rotation shaft when the switching mechanism is in the connected state, which is determined based on the number of rotations of the second rotation shaft
  • a differential rotation calculation process for calculating a differential rotation which is a rotational speed difference obtained by subtracting the rotational speed of the first rotation shaft, and at least until
  • the rotation of the first rotary shaft is controlled by the second power source while controlling the first power source to a constant torque so as to make the differential rotation coincide with a second predetermined differential rotation smaller than the first predetermined differential rotation.
  • a second speed control process to control the Characterized in that it is executable configured is.
  • the first power source is an engine
  • the second power source is a motor generator
  • the control unit calculates a maximum torque that can be generated by the motor generator, and the maximum torque calculation process. It is possible to execute target engine torque calculation processing for calculating the torque of the engine that maximizes the fuel efficiency of the engine when the motor generator applies load torque to the engine within the calculated maximum torque range.
  • the engine torque is generated to coincide with the target engine torque calculated by the target engine torque calculation process, and at the same time the torque of the motor generator is generated.
  • Rotational speed change which is rotational speed change per unit time of one rotation axis It may be used as to control the first rotary shaft to a predetermined change rate.
  • the first power source is an engine
  • the second power source is a motor generator
  • the differential rotation calculated by the differential rotation calculation processing has a negative value
  • the first power source is an engine
  • the second power source is a motor generator
  • the first rotation speed control process when the differential rotation calculated by the differential rotation calculation process is a positive value, At the same time as generating the torque of the engine so as to increase the number of revolutions of the engine, power may be generated by the motor generator.
  • the first rotational speed control process for adjusting the rotational speed of the first rotary shaft by the first power source, and the second power source capable of adjusting the rotational speed with higher accuracy than the first power source By the second rotation speed control process of adjusting the rotation speed, it is possible to quickly and accurately adjust the rotation speed of the first rotation shaft for switching the switching mechanism from the disconnected state to the connected state.
  • FIG. 1 It is a motive power transmission block diagram of the power transmission control apparatus to which this invention is applied.
  • (A) is an enlarged view of the low speed input gear and the sleeve in a state in which the uplock occurs
  • (B) is an enlarged view of the splined low speed input gear and the sleeve.
  • It is a block diagram showing composition of a control part. It is a timing chart figure at the time of shift down. It is a characteristic graph of engine speed and torque of an engine.
  • FIG. 1 is a power transmission configuration diagram of a power transmission control device to which the present invention is applied
  • FIG. 2 (A) is an enlarged view of a low speed input gear and a sleeve in a state where an uplock occurs.
  • B) is a magnified view of the splined low speed input gear and sleeve.
  • the power transmission control device 1 is mounted on a vehicle such as a private car and controls power transmission to the pair of left and right wheels 2 and 3 of the vehicle.
  • the power transmission control device 1 includes a first rotation shaft 4, a second rotation shaft 8 that rotates in conjunction with the axles 6, 7, and a third different from the first rotation shaft 4 and the second rotation shaft 8. It is possible to adjust the rotation speed of the first rotation shaft 4 and the engine 11 provided so that the rotation speed of the first rotation shaft 4 can be adjusted by outputting power to the rotation shaft 9 and the first rotation shaft 4 A first motor generator 12 provided in this manner, and a second motor generator 13 provided to output power to the third rotating shaft 9 to adjust the number of rotations of the third rotating shaft 9; There is.
  • the power transmission control device 1 has a first switching mechanism 14 which is a switching mechanism for performing connection switching of power transmission between the first rotation shaft 4 and the second rotation shaft 8, and the second rotation.
  • a second switching mechanism 16 is provided to switch between power transmission and disconnection between the shaft 8 and the third rotation shaft 9.
  • the engine 11 is an example of a first power source
  • the first generator 12 is an example of a second power source
  • the second motor generator 13 is an example of a third power source.
  • the first motor generator 12 can adjust the rotational speed of the first rotary shaft 4 with higher accuracy than the engine 11.
  • the first switching mechanism 14 includes a hub 17 mounted so as to rotate integrally with the first rotation shaft 4 and a pair of input gears 18 and 21 mounted in a free rotation state on the first rotation shaft 4; A pair of output gears 23 and 24 mounted so as to rotate integrally with the second rotation shaft 8, and mounted so as to rotate together with the outer periphery of the hub 17, can slide in the axial direction of the first rotation shaft 4 And a sleeve 26.
  • One of the pair of input gears 18 and 21 is a small diameter low speed input gear 18, and the other is a large diameter high speed input gear 21.
  • the hub 17 is disposed between the pair of input gears 18 and 21.
  • One of the pair of output gears 23 and 24 is a large diameter low speed output gear 23 always meshing with the low speed input gear 18 and the other is a small diameter high speed output gear 24 always meshing with the high speed input gear 21.
  • Pieces 19 and 22 projecting toward the hub 17 are integrally formed on the input gears 18 and 21, respectively.
  • the hub 17 is disposed so as to be sandwiched between the pair of pieces 19 and 22 and is adjacent to both.
  • Spline teeth 26a are formed at equal intervals, so that the outer periphery of the hub 17 and the inner periphery of the sleeve 26 are spline-connected.
  • Spline teeth 19a are formed on the outer periphery of each of the pieces 19 and 22 at equal intervals so as to enable spline connection with the inner periphery of the sleeve 26.
  • FIG. 2 shows the state of the low speed input gear 18 and the sleeve 26, but the state of the high speed input gear 21 and the sleeve 26 is the same.
  • the first switching mechanism 14 performs gear change switching in the connected state as well as the connection and disconnection switching. Further, according to the above configuration, the hub 17, the pair of pieces 19 and 22, and the sleeve 26 constitute dog clutches 27 and 28 for connecting and disconnecting power by spline coupling / uncoupling. In other words, the first switching mechanism 14 is a dog clutch type switching mechanism.
  • the engagement start position to be in the state is set.
  • the hub 17 and the sleeve 26 are always splined, the sleeve 26 and the pieces 19 and 22 are not always splined, and the splined state is released and the splined. Switching from one of the states to the other and the other to the other is performed. For this reason, in order for the pieces 19 and 22 and the sleeve 17 to be smoothly splined in connection with the sliding of the sleeve 26, the facing tips of the spline teeth 19a and 26a of the both are pointed in a bowl shape, respectively. Chamfers 19a1 and 26a1 are formed.
  • the number of rotations is such that the rotation difference ⁇ N is a target rotation difference which is a predetermined value within an optimum range which is a value sufficiently smaller than the rotation speed N1 and the rotation speed N2 and larger than 0.
  • the rotation difference ⁇ N is made the target rotation difference by matching the rotation speed of the first rotation shaft 4 to the rotation speed after switching which is a predetermined value by the engine 11 and the first motor generator 12.
  • the post-switching rotational speed is the rotational speed of the second rotary shaft 8 at that time, and after switching of the dog clutches 27 and 28 which are to be switched from the disconnected state to the connected state in the first switching mechanism 14 It can be obtained from the reduction ratio of the first switching mechanism 14 in.
  • the power of the second rotation shaft 8 is transmitted to the differential mechanism 33 via the drive gear 31 and the driven gear 32.
  • the differential mechanism 33 distributes the power from the second rotating shaft 8 to the left and right axles 6 and 7.
  • the left and right wheels 2 and 3 may be the rear wheels or front wheels of the vehicle.
  • the second switching mechanism 16 is a hub 34 mounted so as to rotate integrally with the third rotation shaft 9, and a gear supported in an idle state on the third rotation shaft 9 and always meshing with the drive gear 31.
  • 36 and a sleeve 38 mounted on the outer periphery of the hub 34 so as to be integrally rotatable and slidable in the axial direction of the third rotation shaft 9.
  • the gear 36 integrally has a piece 37 projecting toward the hub 34.
  • the hub 34, the gear 36 including the piece 37, and the sleeve 38 are configured the same as or substantially the same as the hub 17, the input gears 18 and 21 including the pieces 19 and 22, and the sleeve 26. Therefore, the piece 37 and the sleeve 38 constitute a dog clutch 39. That is, the second switching mechanism 16 is also a dog clutch type switching mechanism, similarly to the first switching mechanism 14.
  • Control of connection / disconnection switching of the three dog clutches 27, 28, 39 is performed by a control unit 42 shown in FIG.
  • FIG. 3 is a block diagram showing the configuration of the control unit.
  • the control unit 42 is configured by one microcomputer or a plurality of microcomputers interconnected by CAN or the like.
  • one of the plurality of microcomputers constituting the control unit 42 may be an ECU which is a dedicated microcomputer for controlling the engine 2.
  • a first rotation sensor 43 which is a first rotation number detection unit that detects the rotation number of the first rotation shaft 4, and a second rotation that detects the rotation number of the second rotation shaft 8.
  • the second rotation sensor 44 which is a number detection unit
  • the third rotation sensor 46 which is a third rotation number detection unit that detects the number of rotations of the third rotation shaft 9, and the position detection unit that detects the slide position of the sleeve 26
  • the first position sensor 47 which is the second position sensor 47
  • the second position sensor 48 which is a position detection unit that detects the slide position of the sleeve 38, are connected.
  • the engine 11, the first motor generator 12 and the second motor generator 13, and the first actuator 29 and the second actuator 41 are connected to the output side of the control unit 26.
  • Each of the first actuator 29 and the second actuator 41 includes an electric motor or the like for generating a driving force for sliding the sleeves 26, 38.
  • control unit 42 When switching from the motor non-operating state to the motor operating state by the second switching mechanism 16 while the vehicle is traveling, the control unit 42 first performs the third rotation shaft by the second motor generator 13 as described above.
  • the rotational speed of 9 is adjusted to synchronously rotate the sleeve 38 and the piece 37 with the target rotational difference, and in this state, the dog clutch 39 is switched from the disconnected state to the connected state.
  • One of the two dog clutches 27 and 28 is used to switch down from the high speed state to the low speed state by the first switching mechanism 14 or switch up from the low speed state to the high speed state while the vehicle is traveling.
  • the sleeve 26 is slid from the pressing completion position of the dog clutches 27, 28 by the first actuator 29 to the engagement release position, and the first switching mechanism 14 is in the connection state
  • the other of the two dog clutches 27 and 28 is switched from the disconnected state to the connected state to switch the first switching mechanism 14 from the connected state to the disconnected state.
  • the speed reduction ratio is different before and after switching from one of the high speed state and the low speed state to the other or from the other. It is necessary to perform synchronous processing to match the target rotational difference. In other words, it is necessary to make the first rotational shaft 4 coincide with the post-switching rotational speed.
  • the adjustment of the rotational speed to the post-switching rotational speed of the first rotating shaft 4 is performed using both the engine 11 and the first motor generator 12.
  • the control unit 42 first obtains the post-switching rotational speed from the rotational speed of the second rotation sensor 44 detected by the second rotation sensor 44, and subsequently, the calculated post-switching rotation
  • a differential rotation calculation process 42a is performed to calculate a differential rotation which is the difference between the number and the rotational speed of the first rotation shaft 4 detected by the first rotation sensor 43.
  • the differential rotation is a value obtained by subtracting the number of rotations of the first rotation shaft 4 detected by the first rotation sensor 43 from the number of rotations after switching. For this reason, when the differential rotation is negative, the first rotation number is reduced, which is the control content at the time of the shift up. On the other hand, when the differential rotation is positive, the first rotation number is increased, which is the control content at the time of the shift down.
  • the control unit 42 executes the differential rotation calculation process 42a, and based on the calculation result, the first rotation by the engine 11 until the differential rotation becomes equal to or less than a predetermined first predetermined differential rotation.
  • a first rotation speed control process 42b is performed to control the rotation speed so that the rotation speed of the shaft 4 approaches the after-switching rotation speed.
  • the control unit 42 may adjust the rotation speed of the second rotation shaft 8 using the first motor generator 12 together.
  • the post-switching rotational speed also changes sequentially as the rotational speed of the second rotation shaft 8 changes with the passage of time.
  • the control unit 42 executes the differential rotation calculation processing 42 a, and the calculation result is Based on the first motor generator 12, the rotational speed of the first rotary shaft 4 is controlled by the first motor generator 12 while controlling the engine 11 to a constant torque so that the differential rotation matches the predetermined second predetermined differential rotation.
  • the second rotation speed control process 42c to control is performed.
  • the second predetermined differential rotation is set to a value smaller than the first predetermined differential rotation and to a value close to zero or zero.
  • the intention to make the engine 11 constant at 0 or a predetermined small torque during execution of the second rotation speed control process 42c is to prevent the influence of engine friction.
  • FIG. 4 is a timing chart at the time of downshifting.
  • the contents of the first rotation speed control process 42 b and the second rotation speed control process 42 c are as shown in FIG.
  • the control unit 42 executes the first rotation speed control process 42b by the engine 11 that performs large output and rough adjustment of the rotation speed. Further, at this time, the control unit 42 uses the first motor generator 12 as a supplement.
  • the fuel is cut to the engine 11 While generating electric power by the first generator 12 to generate a constant torque as a resistance.
  • the power generated in this manner is charged into a battery or the like.
  • the control unit 42 performs the second rotation speed control process by the first motor generator 12 capable of adjusting the rotation speed of the first rotation shaft 8 with high accuracy after the execution of the first rotation speed control process 42 b. Execute 42c.
  • the value of the differential rotation can be more rapidly 0 or near 0 when executing the second rotational speed control process 42c. It is possible to match the second predetermined differential rotation which is
  • FIG. 5 is a characteristic graph of engine speed and torque.
  • the control unit 42 calculates the maximum torque that can be generated by the second motor generator 12, and the second motor generator 12 within the range of the maximum torque calculated by the maximum torque calculation process 42 d.
  • the target engine torque calculation process 42e for calculating the torque of the engine 11 which maximizes the fuel efficiency of the engine 11 when the load torque is applied to the engine 11 can be respectively executed.
  • the control unit 42 generates the torque of the engine so as to coincide with the target engine torque calculated by the target engine torque calculation process 42e in the first rotation speed control process 42b, and at the same time the first motor generator A torque of 12 is generated, and the first rotation shaft 4 is controlled such that the rotation speed change rate, which is the rotation speed change per unit time of the first rotation shaft 4, becomes a predetermined change rate.
  • the synchronous processing of the rotational speed for switching the connection of the dog clutches 27 and 28 can be executed accurately and quickly, and the fuel efficiency of the engine 11 is achieved. Also improve. Incidentally, since the power generation efficiency by the first motor generator 12 is improved as the absolute value of the differential rotation is larger, it is possible to achieve both the speeding-up of the synchronous processing and the increase of the fuel efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Structure Of Transmissions (AREA)
  • Control Of Transmission Device (AREA)

Abstract

The present invention addresses the problem of providing a motive power transmission control device which is provided with a switching mechanism for performing switching to connect and disconnect motive power transmission between a first rotational shaft having a first motive power source and a second motive power source connected thereto, and a second rotational shaft rotating in conjunction with an axle, and which, when the switching mechanism is switched from a disconnected state to a connected state during travel of a vehicle, promptly and accurately switches the adjustment of the rotational frequency of the first rotational shaft. A control unit executes: first rotational frequency control processing for controlling the rotational frequency of the first rotational shaft using at least the first motive power source until the rotational difference becomes a first prescribed rotational difference or smaller; and, after the rotational difference has become the first prescribed rotational difference or smaller as a result of the first rotational frequency control processing, second rotational frequency control processing for controlling the rotational frequency of the first rotational shaft using the second motive power source, which is capable of adjusting the rotational frequency with high accuracy, while controlling the first motive power source to a fixed torque, such that the rotational difference matches a second prescribed rotational difference smaller than the first prescribed rotational difference.

Description

動力伝達制御装置Power transmission control device
 本発明は、車両に搭載される動力伝達制御装置に関する。 The present invention relates to a power transmission control device mounted on a vehicle.
 第1動力源と、第1動力源と車軸との間で動力伝達の断接切替を行う切替機構と、車軸に動力を伝動する第2動力源と、前記切替機構の断接切替動作並びに前記第1動力源および前記第2動力源の動作を制御する制御部とを備え、第2動力源によって走行している最中に、走行状態等によって第1動力源の動力を車軸に伝動することが必要になった場合、前記制御部は、前記切替機構を切断状態から接続状態に切替可能とするために、第1動力源の回転数を調整する特許文献1に示す動力伝達制御装置が公知になっている。 A switching mechanism for switching between transmission and reception of power transmission between the first power source, the first power source and the axle, a second power source for transmitting power to the axle, a switching operation of the switching mechanism, and A control unit configured to control operations of the first power source and the second power source, and transmitting power of the first power source to an axle according to a traveling state or the like while traveling by the second power source When it becomes necessary, the control unit adjusts the rotational speed of the first power source to make the switching mechanism switchable from the disconnected state to the connected state, and the power transmission control device shown in Patent Document 1 is known. It has become.
 また、第1回転軸と、前記第1回転軸に接続され且つ前記第1回転軸の回転数を調整可能な第1動力源と、前記第1回転軸に接続された第2動力源と、車軸と連動して回転する第2回転軸と、前記第1回転軸の回転数を検出する第1回転数検出部と、前記第2回転軸の回転数を検出する第2回転数検出部と、前記第1回転軸と前記第2回転軸との間で動力伝達の断接切替を行う切替機構と、前記切替機構の断接切替動作並びに前記第1動力源および前記第2動力源の動作を制御する制御部とを備えた特許文献2に示す動力伝達制御装置が公知になっている。 Further, a first power source, a first power source connected to the first power shaft and capable of adjusting the number of rotations of the first power shaft, and a second power source connected to the first power shaft. A second rotation shaft that rotates in conjunction with an axle, a first rotation number detection unit that detects the rotation number of the first rotation shaft, and a second rotation number detection unit that detects the rotation number of the second rotation shaft A switching mechanism for switching between connection and disconnection of power transmission between the first rotation shaft and the second rotation shaft, connection and disconnection switching operation of the switching mechanism, and operations of the first power source and the second power source A power transmission control device shown in Patent Document 2 having a control unit for controlling the motor has been known.
 前記制御部は、前記切替機構において動力伝達を切断状態から接続状態に切り替える際、シンクロナイザリング等の同期機構を用いることなく、前記切り替えができるように、前記第1動力源によって前記第1回転軸の回転数を制御する。 When the control unit switches power transmission from the disconnection state to the connection state in the switching mechanism, the first rotation shaft can be switched by the first power source so that the switching can be performed without using a synchronization mechanism such as a synchronizer ring. Control the rotation speed of
特開2013-43592号公報JP, 2013-43592, A 特許第6019732号公報Patent No. 6019732
 前記特許文献1,2の動力伝達制御装置は、第1動力源のみによって回転数の調整を行っている。このため、高出力で細かい回転数の調整が難しい動力源を第1動力源に用いた場合には、前記回転数を正しく調整することが困難になる。一方、低出力で細かい回転数の調整が可能な動力源を第1動力源に用いた場合には、回転数の調整に時間を要し、迅速な切替が困難になるため、エンジンフリクション分のロス等、エネルギーロスが大きくなる。 The power transmission control devices of Patent Documents 1 and 2 adjust the rotational speed only by the first power source. For this reason, when using a power source which is difficult to adjust a high rotational speed with a high output, it becomes difficult to properly adjust the rotational speed. On the other hand, when using a motive power source capable of fine adjustment of the number of revolutions with a low output as the first motive power source, it takes time to adjust the number of revolutions, and rapid switching becomes difficult. Energy losses such as losses increase.
 本発明は、第1動力源及び第2動力源が接続された第1回転軸と、車軸と連動して回転する第2回転軸との間で動力伝達の断接切替を行う切替機構を備え、車両の走行中に、前記切替機構を切断状態から接続状態に切り替えるにあたり、前記第1回転軸の回転数の調整を迅速且つ正確に切り替える動力伝達制御装置を提供することを課題とする。 The present invention is provided with a switching mechanism that performs switching between power transmission and disconnection between a first rotation shaft to which a first power source and a second power source are connected, and a second rotation shaft that rotates in conjunction with an axle. An object of the present invention is to provide a power transmission control device that switches the adjustment of the rotation speed of the first rotation shaft quickly and accurately when switching the switching mechanism from the disconnection state to the connection state while the vehicle is traveling.
 上記課題を解決するため、第1回転軸と、前記第1回転軸に接続され、前記第1回転軸の回転数を調整可能な第1動力源と、前記第1回転軸に接続され、前記第1動力源より高い精度で前記第1回転軸の回転数調整が可能な前記第1動力源とは異なる第2動力源と、車軸と連動して回転する第2回転軸と、前記第1回転軸の回転数を検出する第1回転数検出部と、前記第2回転軸の回転数を検出する第2回転数検出部と、前記第1回転軸と前記第2回転軸との間で動力伝達の断接切替を行う切替機構と、前記切替機構の断接切替動作並びに前記第1動力源および前記第2動力源の動作を制御する制御部とを備え、前記制御部は、前記切替機構において動力伝達を切断状態から接続状態に切り替える際に、前記第2回転数検出部が検出した前記第2回転軸の回転数に基づいて決定される前記切替機構が接続状態になった際の前記第1回転軸の回転数である切替後回転数から前記第1回転数検出部が検出した前記第1回転軸の回転数を減算した回転数差である差回転を算出する差回転算出処理と、前記差回転算出処理により算出された前記差回転が第1の所定差回転以下になるまで少なくとも前記第1動力源によって前記第1回転軸の回転数を制御する第1回転数制御処理と、前記第1回転数制御処理によって前記差回転が前記第1の所定差回転以下になった後に、前記差回転を前記第1の所定差回転より小さい第2の所定差回転に一致させるように、前記第1動力源を一定トルクに制御しつつ前記第2動力源によって前記第1回転軸の回転数を制御する第2回転数制御処理とをそれぞれ実行可能に構成されたことを特徴とする。 In order to solve the above-mentioned subject, it is connected to the 1st axis of rotation, the 1st power source which can be connected to the 1st axis of rotation, and can adjust the number of rotations of the 1st axis of rotation, and it is connected to the 1st axis of rotation. A second power source different from the first power source capable of adjusting the rotational speed of the first rotary shaft with higher accuracy than the first power source, a second rotary shaft that rotates in conjunction with an axle, and the first power source A first rotation number detection unit that detects the rotation number of the rotation shaft, a second rotation number detection unit that detects the rotation number of the second rotation shaft, and the first rotation shaft and the second rotation shaft And a control unit configured to control the connection switching operation of the switching mechanism and the operation of the first power source and the second power source, the control unit performing the switching When the power transmission is switched from the disconnected state to the connected state in the mechanism, before the second rotation speed detecting unit detects The first rotation number detection unit detects the number of rotations after switching, which is the number of rotations of the first rotation shaft when the switching mechanism is in the connected state, which is determined based on the number of rotations of the second rotation shaft A differential rotation calculation process for calculating a differential rotation which is a rotational speed difference obtained by subtracting the rotational speed of the first rotation shaft, and at least until the differential rotation calculated by the differential rotation calculation process becomes equal to or less than a first predetermined differential rotation. A first rotation speed control process of controlling the rotation speed of the first rotation shaft by the first power source; and after the differential rotation becomes equal to or less than the first predetermined differential rotation by the first rotation speed control process; The rotation of the first rotary shaft is controlled by the second power source while controlling the first power source to a constant torque so as to make the differential rotation coincide with a second predetermined differential rotation smaller than the first predetermined differential rotation. A second speed control process to control the Characterized in that it is executable configured is.
 前記第1動力源はエンジンであり、前記第2動力源はモータジェネレータであり、前記制御部は、前記モータジェネレータが発生可能な最大トルクを算出する最大トルク算出処理と、前記最大トルク算出処理によって算出した前記最大トルクの範囲内で前記モータジェネレータから前記エンジンに対して負荷トルクを与える場合に前記エンジンの燃費効率が最大になる前記エンジンのトルクを算出する目標エンジントルク算出処理とをそれぞれ実行可能に構成され、前記第1回転数制御処理では、前記目標エンジントルク算出処理によって算出された目標エンジントルクに一致するようにエンジンのトルクを発生させると同時に前記モータジェネレータのトルクを発生させ、前記第1回転軸の単位時間当たりの回転数変化である回転数変化率を所定変化率になるように前記第1回転軸を制御するものとしてもよい。 The first power source is an engine, the second power source is a motor generator, and the control unit calculates a maximum torque that can be generated by the motor generator, and the maximum torque calculation process. It is possible to execute target engine torque calculation processing for calculating the torque of the engine that maximizes the fuel efficiency of the engine when the motor generator applies load torque to the engine within the calculated maximum torque range. In the first rotation speed control process, the engine torque is generated to coincide with the target engine torque calculated by the target engine torque calculation process, and at the same time the torque of the motor generator is generated. Rotational speed change which is rotational speed change per unit time of one rotation axis It may be used as to control the first rotary shaft to a predetermined change rate.
 前記第1動力源はエンジンであり、前記第2動力源はモータジェネレータであり、前記第1回転数制御処理では、前記差回転算出処理によって算出された前記差回転が負の値の場合において、前記エンジンの回転数を燃料カット状態にすると同時に、前記モータジェネレータで発電を行うものとしてもよい。 The first power source is an engine, the second power source is a motor generator, and in the first rotation speed control processing, the differential rotation calculated by the differential rotation calculation processing has a negative value, At the same time as the engine speed is switched to the fuel cut state, power may be generated by the motor generator.
 前記第1動力源はエンジンであり、前記第2動力源はモータジェネレータであり、前記第1回転数制御処理では、前記差回転算出処理によって算出された前記差回転が正の値の場合において、前記エンジンの回転数を増加するように、前記エンジンのトルクを発生させると同時に前記モータジェネレータで発電を行うものとしてもよい。 The first power source is an engine, the second power source is a motor generator, and in the first rotation speed control process, when the differential rotation calculated by the differential rotation calculation process is a positive value, At the same time as generating the torque of the engine so as to increase the number of revolutions of the engine, power may be generated by the motor generator.
 第1動力源によって第1回転軸の回転数調整を行う第1回転数制御処理と、前記第1動力源よりも高精度に回転数の調整が可能な第2動力源によって第1回転軸の回転数調整を行う第2回転数制御処理とによって、切替機構を切断状態から接続状態に切り替えるための前記第1回転軸の回転数調整を迅速且つ正確に行うことが可能になる。 The first rotational speed control process for adjusting the rotational speed of the first rotary shaft by the first power source, and the second power source capable of adjusting the rotational speed with higher accuracy than the first power source By the second rotation speed control process of adjusting the rotation speed, it is possible to quickly and accurately adjust the rotation speed of the first rotation shaft for switching the switching mechanism from the disconnected state to the connected state.
本発明を適用した動力伝達制御装置の動力伝動構成図である。It is a motive power transmission block diagram of the power transmission control apparatus to which this invention is applied. (A)はアップロックが発生している状態の低速入力ギヤ及びスリーブの拡大図であり、(B)はスプライン結合した低速入力ギヤ及びスリーブの拡大図である。(A) is an enlarged view of the low speed input gear and the sleeve in a state in which the uplock occurs, and (B) is an enlarged view of the splined low speed input gear and the sleeve. 制御部の構成を示すブロック図である。It is a block diagram showing composition of a control part. シフトダウン時におけるタイミングチャート図である。It is a timing chart figure at the time of shift down. エンジンの回転数及びトルクの特性グラフである。It is a characteristic graph of engine speed and torque of an engine.
 図1は、本発明を適用した動力伝達制御装置の動力伝動構成図であり、図2(A)はアップロックが発生している状態の低速入力ギヤ及びスリーブの拡大図であり、図2(B)はスプライン結合した低速入力ギヤ及びスリーブの拡大図である。動力伝達制御装置1は、自家用車等の車両に搭載され、前記車両の左右一対の車輪2,3へ動力伝達を制御する。 FIG. 1 is a power transmission configuration diagram of a power transmission control device to which the present invention is applied, and FIG. 2 (A) is an enlarged view of a low speed input gear and a sleeve in a state where an uplock occurs. B) is a magnified view of the splined low speed input gear and sleeve. The power transmission control device 1 is mounted on a vehicle such as a private car and controls power transmission to the pair of left and right wheels 2 and 3 of the vehicle.
 前記動力伝達制御装置1は、第1回転軸4と、車軸6,7と連動して回転する第2回転軸8と、前記第1回転軸4及び前記第2回転軸8とは異なる第3回転軸9と、前記第1回転軸4に動力を出力して前記第1回転軸4の回転数を調整できるように設けられたエンジン11と、前記第1回転軸4の回転数を調整できるように設けられた第1モータジェネレータ12と、前記第3回転軸9に動力を出力して前記第3回転軸9の回転数を調整できるように設けられた第2モータジェネレータ13とを備えている。 The power transmission control device 1 includes a first rotation shaft 4, a second rotation shaft 8 that rotates in conjunction with the axles 6, 7, and a third different from the first rotation shaft 4 and the second rotation shaft 8. It is possible to adjust the rotation speed of the first rotation shaft 4 and the engine 11 provided so that the rotation speed of the first rotation shaft 4 can be adjusted by outputting power to the rotation shaft 9 and the first rotation shaft 4 A first motor generator 12 provided in this manner, and a second motor generator 13 provided to output power to the third rotating shaft 9 to adjust the number of rotations of the third rotating shaft 9; There is.
 さらに、前記動力伝達制御装置1は、前記第1回転軸4と前記第2回転軸8との間で動力伝達の断接切替を行う切替機構である第1切替機構14と、前記第2回転軸8と前記第3回転軸9との間で動力伝達の断接切替を行う第2切替機構16とを備えている。 Furthermore, the power transmission control device 1 has a first switching mechanism 14 which is a switching mechanism for performing connection switching of power transmission between the first rotation shaft 4 and the second rotation shaft 8, and the second rotation. A second switching mechanism 16 is provided to switch between power transmission and disconnection between the shaft 8 and the third rotation shaft 9.
 前記エンジン11は第1動力源の一例であり、前記第1ジェネレータ12は第2動力源の一例であり、前記第2モータジェネレータ13は第3動力源の一例である。また、前記第1モータジェネレータ12は、第1回転軸4の回転数の調整を、前記エンジン11よりも高精度に行うことができる。 The engine 11 is an example of a first power source, the first generator 12 is an example of a second power source, and the second motor generator 13 is an example of a third power source. Further, the first motor generator 12 can adjust the rotational speed of the first rotary shaft 4 with higher accuracy than the engine 11.
 前記第1切替機構14は、前記第1回転軸4に一体回転するように装着されたハブ17と、前記第1回転軸4に遊転状態で装着された一対の入力ギヤ18,21と、前記第2回転軸8に一体回転するように装着された一対の出力ギヤ23,24と、前記ハブ17の外周に一体回転するように装着され且つ前記第1回転軸4の軸方向にスライド可能なスリーブ26とを備えている。 The first switching mechanism 14 includes a hub 17 mounted so as to rotate integrally with the first rotation shaft 4 and a pair of input gears 18 and 21 mounted in a free rotation state on the first rotation shaft 4; A pair of output gears 23 and 24 mounted so as to rotate integrally with the second rotation shaft 8, and mounted so as to rotate together with the outer periphery of the hub 17, can slide in the axial direction of the first rotation shaft 4 And a sleeve 26.
 前記一対の入力ギヤ18,21の一方は小径の低速入力ギヤ18になり、他方は大径の高速入力ギヤ21になる。前記ハブ17は、この一対の入力ギヤ18,21の間に配置されている。前記一対の出力ギヤ23,24の一方は低速入力ギヤ18と常時噛合う大径の低速出力ギヤ23になり、他方は高速入力ギヤ21と常時噛合う小径の高速出力ギヤ24になる。 One of the pair of input gears 18 and 21 is a small diameter low speed input gear 18, and the other is a large diameter high speed input gear 21. The hub 17 is disposed between the pair of input gears 18 and 21. One of the pair of output gears 23 and 24 is a large diameter low speed output gear 23 always meshing with the low speed input gear 18 and the other is a small diameter high speed output gear 24 always meshing with the high speed input gear 21.
 各入力ギヤ18,21には、前記ハブ17に向かって突出するピース19,22がそれぞれ一体的に形成されている。言換えると、ハブ17は一対のピース19,22に挟まれるように配置され、両者と隣接している。 Pieces 19 and 22 projecting toward the hub 17 are integrally formed on the input gears 18 and 21, respectively. In other words, the hub 17 is disposed so as to be sandwiched between the pair of pieces 19 and 22 and is adjacent to both.
 前記ハブ17の外周と、前記スリーブ26の内周とは、スプライン結合するように、スプライン歯26aが等間隔毎にそれぞれ形成されている。各ピース19,22の外周にも、スリーブ26の内周とスプライン結合可能となるように、スプライン歯19aが相互且つ等間隔に形成されている。ちなみに、図2は、低速入力ギヤ18及びスリーブ26の状態を示しているが、高速入力ギヤ21及びスリーブ26の状態も同様になる。 Spline teeth 26a are formed at equal intervals, so that the outer periphery of the hub 17 and the inner periphery of the sleeve 26 are spline-connected. Spline teeth 19a are formed on the outer periphery of each of the pieces 19 and 22 at equal intervals so as to enable spline connection with the inner periphery of the sleeve 26. Incidentally, FIG. 2 shows the state of the low speed input gear 18 and the sleeve 26, but the state of the high speed input gear 21 and the sleeve 26 is the same.
 前記スリーブ26が前記低速入力ギヤ18に向かってスライド移動した場合、この低速入力ギヤ18のピース19の外周と、前記スリーブ26の内周とがスプライン結合され、前記ピース19を含む低速入力ギヤ18が前記ハブ17及びスリーブ26と共に一体回転する。この状態は、前記第1回転軸4の動力が第2回転軸8に低速伝動される低速状態になる。 When the sleeve 26 slides toward the low speed input gear 18, the outer periphery of the piece 19 of the low speed input gear 18 and the inner periphery of the sleeve 26 are splined to each other, and the low speed input gear 18 including the piece 19. Integrally rotate with the hub 17 and the sleeve 26. In this state, the power of the first rotary shaft 4 is transmitted to the second rotary shaft 8 at a low speed.
 前記スリーブ26が前記高速入力ギヤ21に向かってスライド移動した場合、この高速入力ギヤ21のピース22の外周と、前記スリーブ26の内周とがスプライン結合され、前記ピース22を含む高速入力ギヤ21が前記ハブ17及びスリーブ26と共に一体回転する。この状態は、前記第1回転軸4の動力が第2回転軸8に高速伝動される高速状態になる。 When the sleeve 26 slides toward the high-speed input gear 21, the outer periphery of the piece 22 of the high-speed input gear 21 and the inner periphery of the sleeve 26 are spline-coupled, and the high-speed input gear 21 including the piece 22 Integrally rotate with the hub 17 and the sleeve 26. In this state, the power of the first rotation shaft 4 is transmitted at high speed to the second rotation shaft 8.
 前記スリーブ26が隣接する一対のピース19,22の中間に位置する係合解除位置にスライド移動した場合、前記スリーブ26は、前記一対のピース19,22の何れにもスプライン結合せず、前記第1回転軸4の動力が第2回転軸8には伝動されない係合解除状態になる。 When the sleeve 26 slides to the disengagement position between the adjacent pair of pieces 19 and 22, the sleeve 26 is not splined to any of the pair of pieces 19 and 22, and The power of the first rotation shaft 4 is not transmitted to the second rotation shaft 8 in the disengagement state.
 すなわち、前記第1切替機構14は、前記断接切替と共に、接続状態においては変速切替も行う。また、前記構成によって、前記ハブ17、一対のピース19,22及びスリーブ26は、スプライン結合・結合解除によって動力を断接するドグクラッチ27,28を構成している。言換えると、前記第1切替機構14はドグクラッチ形式の切替機構になる。 That is, the first switching mechanism 14 performs gear change switching in the connected state as well as the connection and disconnection switching. Further, according to the above configuration, the hub 17, the pair of pieces 19 and 22, and the sleeve 26 constitute dog clutches 27 and 28 for connecting and disconnecting power by spline coupling / uncoupling. In other words, the first switching mechanism 14 is a dog clutch type switching mechanism.
 前記スリーブ26のスライド範囲内の両端寄りには、それぞれ、このスリーブ26が前記低速入力ギヤ18のピース19と完全にスプライン結合される係合完了位置が設定されている。前記スリーブ26を、前記スライド範囲において、係合完了位置よりもさらに端寄りにスライドした場合、図示しないストッパと当接して押付けられる押付け完了状態になる。 At the both ends of the sliding range of the sleeve 26, engagement completion positions where the sleeve 26 is completely splined with the piece 19 of the low speed input gear 18 are respectively set. When the sleeve 26 is slid further toward the end than the engagement completion position in the sliding range, a pressing completion state where the sleeve 26 is pressed against the stopper (not shown) is obtained.
 前記スリーブ26のスライド範囲内における係合完了位置と係合解除位置との間には、前記スリーブ26及び前記ピース19,22のスプライン歯19a,26a同士が接触し且つ動力は伝動されない係合開始状態になる係合開始位置が設定されている。 Between the engagement complete position and the engagement release position within the sliding range of the sleeve 26, the spline teeth 19a and 26a of the sleeve 26 and the pieces 19 and 22 are in contact with each other and power is not transmitted. The engagement start position to be in the state is set.
 ちなみに、前記ハブ17と前記スリーブ26とは常にスプライン結合しているが、前記スリーブ26と前記ピース19,22とは、常時スプライン結合はされておらず、スプライン結合が解除された状態及びスプライン結合させる状態の一方から他方及び他方から一方への切替が行われる。このため、スリーブ26のスライドに伴って前記ピース19,22と前記スリーブ17とがスムーズにスプライン結合されるように、両者のスプライン歯19a,26aの向い合う先端部同士には、それぞれ楔状に尖ったチャンファ19a1,26a1が形成されている。 Incidentally, although the hub 17 and the sleeve 26 are always splined, the sleeve 26 and the pieces 19 and 22 are not always splined, and the splined state is released and the splined. Switching from one of the states to the other and the other to the other is performed. For this reason, in order for the pieces 19 and 22 and the sleeve 17 to be smoothly splined in connection with the sliding of the sleeve 26, the facing tips of the spline teeth 19a and 26a of the both are pointed in a bowl shape, respectively. Chamfers 19a1 and 26a1 are formed.
 このチャンファ19a1,26a1の作用を利用して、一方のスプライン歯19a1が他方のスプライン歯19a1,19a1の間に形成された歯溝に正確に位置していない場合でも、両者を噛合わせることが可能になる。 Even if one spline tooth 19a1 is not accurately positioned in the tooth groove formed between the other spline teeth 19a1 and 19a1, both can be engaged by utilizing the action of the chamfers 19a1 and 26a1. become.
 ただし、前記ピース19,22及びスリーブ26の位相が完全に一致してチャンファ19a1の周方向位置が一致して回転位相が同一な状態のまま、前記スリーブ26を前記係合完了位置にスライドさせようとすると、図2(A)に示すように、前記チャンファ19a1,26a1の先端同士が当接するアップロックが発生し、前記係合が妨げられる。 However, while the phases of the pieces 19 and 22 and the sleeve 26 completely match, the circumferential position of the chamfer 19a1 matches, and the rotational phase is the same, the sleeve 26 is slid to the engagement completion position. Then, as shown in FIG. 2A, an up lock occurs in which the tips of the chamfers 19a1 and 26a1 abut each other, and the engagement is hindered.
 このアップロックの発生を防止し、図2(B)に示すように、前記係合をスムーズに完了させるためには、チャンファ19a1,26a1の押し分け作用が発生するように、前記ピース19,22及びスリーブ26の回転位相を完全に一致させていない状態で、このスリーブ26を前記係合完了位置にスライドさせる必要がある。 In order to prevent the occurrence of the uplock and smoothly complete the engagement as shown in FIG. 2B, the pieces 19, 22 and the pushing action of the chamfers 19a1 and 26a1 are generated. It is necessary to slide the sleeve 26 to the engagement complete position while the rotational phase of the sleeve 26 is not completely in phase.
 また、前記ピース19,22の回転数N1と、スリーブ26の回転数N2との回転数差である回転差ΔNが大きい場合、ピース19,22及びスリーブ26の回転位相関係がそもそも安定的しないため、前記ピース19,22の前記係合完了位置へのスライド作動をスムーズに行うことが困難になる。一方、前記回転差ΔNを0とすると、前記ピース19,22及びスリーブ26の回転位相が完全に一致していた場合、前記アップロックが発生する。 In addition, when the rotational difference ΔN which is the difference between the rotational speed N1 of the pieces 19 and 22 and the rotational speed N2 of the sleeve 26 is large, the rotational phase relationship between the pieces 19 and 22 and the sleeve 26 is not stable in the first place It becomes difficult to smoothly slide the pieces 19 and 22 to the engagement completion position. On the other hand, assuming that the rotational difference ΔN is 0, the uplock occurs when the rotational phases of the pieces 19 and 22 and the sleeve 26 completely coincide with each other.
 すなわち、前記回転差ΔNが前記回転数N1及び前記回転数N2よりも十分に小さい値であって且つ0よりも大きい範囲である最適範囲内の所定値である目標回転差となるように回転数の制御を実行することにより、シンクロナイザリング等の同期機構を用いることなく、ドグクラッチ27,28の切断状態から接続状態への切替をスムーズに行うことが可能になる。 That is, the number of rotations is such that the rotation difference ΔN is a target rotation difference which is a predetermined value within an optimum range which is a value sufficiently smaller than the rotation speed N1 and the rotation speed N2 and larger than 0. By executing the above control, it is possible to smoothly switch the dog clutches 27 and 28 from the disconnected state to the connected state without using a synchronization mechanism such as a synchronizer ring.
 具体的には、第1回転軸4の回転数を、前記エンジン11及び前記第1モータジェネレータ12によって、所定値である切替後回転数に一致させることにより、前記回転差ΔNを目標回転差とする。前記切替後回転数は、前記第2回転軸8のその時点での回転数と、前記第1切替機構14において、これから切断状態から接続状態の切り替える対象になっているドグクラッチ27,28の切替後における前記第1切替機構14の減速比から求められる。 Specifically, the rotation difference ΔN is made the target rotation difference by matching the rotation speed of the first rotation shaft 4 to the rotation speed after switching which is a predetermined value by the engine 11 and the first motor generator 12. Do. The post-switching rotational speed is the rotational speed of the second rotary shaft 8 at that time, and after switching of the dog clutches 27 and 28 which are to be switched from the disconnected state to the connected state in the first switching mechanism 14 It can be obtained from the reduction ratio of the first switching mechanism 14 in.
 ちなみに、ドグクラッチ27,28の断接切替を行うための前記スリーブ26のスライド操作は、図3に示す第1アクチュエータ29によって行う。 Incidentally, the sliding operation of the sleeve 26 for switching the connection and disconnection of the dog clutches 27 and 28 is performed by the first actuator 29 shown in FIG.
 前記第2回転軸8の動力は、ドライブギヤ31及びドリブンギヤ32を介して、差動機構33に伝動される。前記差動機構33は、前記第2回転軸8からの動力を、左右の前記車軸6,7に分配する。ちなみに、左右の車輪2,3は、車両の後輪であってもよいし、前輪であってもよい。 The power of the second rotation shaft 8 is transmitted to the differential mechanism 33 via the drive gear 31 and the driven gear 32. The differential mechanism 33 distributes the power from the second rotating shaft 8 to the left and right axles 6 and 7. Incidentally, the left and right wheels 2 and 3 may be the rear wheels or front wheels of the vehicle.
 前記第2切換機構16は、前記第3回転軸9に一体回転するように装着されたハブ34と、前記第3回転軸9に遊転状態で支持され且つ前記ドライブギヤ31と常時噛合うギヤ36と、前記ハブ34の外周に一体回転するように装着され且つ前記第3回転軸9の軸方向にスライド可能なスリーブ38とを備えている。前記ギヤ36は、前記ハブ34に向かって突出するピース37を一体的に有している The second switching mechanism 16 is a hub 34 mounted so as to rotate integrally with the third rotation shaft 9, and a gear supported in an idle state on the third rotation shaft 9 and always meshing with the drive gear 31. 36 and a sleeve 38 mounted on the outer periphery of the hub 34 so as to be integrally rotatable and slidable in the axial direction of the third rotation shaft 9. The gear 36 integrally has a piece 37 projecting toward the hub 34.
 前記ハブ34、前記ピース37を含む前記ギヤ36及び前記スリーブ38は、前記ハブ17、前記ピース19,22を含む入力ギヤ18,21及び前記スリーブ26と同一又は略同一に構成されている。このため、前記ピース37及び前記スリーブ38はドグクラッチ39を構成している。すなわち、前記第2切替機構16も前記第1切替機構14と同様にドグクラッチ形式の切替機構になる。 The hub 34, the gear 36 including the piece 37, and the sleeve 38 are configured the same as or substantially the same as the hub 17, the input gears 18 and 21 including the pieces 19 and 22, and the sleeve 26. Therefore, the piece 37 and the sleeve 38 constitute a dog clutch 39. That is, the second switching mechanism 16 is also a dog clutch type switching mechanism, similarly to the first switching mechanism 14.
 前記スリーブ38を、前記ハブ34に隣接する前記ピース37にスライド移動した場合、前記スリーブ38が前記ハブ34及び前記ピース37の両方にスプライン結合し、ドグクラッチ39の接続切替が行われ、前記第2モータジェネレータ13によって回転駆動される第3回転軸9の動力が第2回転軸8に伝動されるモータ作動状態に切替る。 When the sleeve 38 is slid to the piece 37 adjacent to the hub 34, the sleeve 38 is splined to both the hub 34 and the piece 37, switching of the dog clutch 39 is performed, and the second The power of the third rotating shaft 9 rotationally driven by the motor generator 13 is switched to the motor operating state in which the power is transmitted to the second rotating shaft 8.
 前記スリーブ38を、前記ギヤ36から離れた位置にスライド移動した場合、このスリーブ38が前記ハブ34のみとスプライン結合し、前記ドグクラッチ39の切断切替が行われ、前記第2モータジェネレータ13によって回転駆動される第3回転軸9の動力が前記第2回転軸8に伝動されないモータ非作動状態に切換る。 When the sleeve 38 is slid to a position away from the gear 36, the sleeve 38 is splined only with the hub 34, the dog clutch 39 is disconnected and switched, and the second motor generator 13 rotationally drives it. The power of the third rotating shaft 9 is switched to the motor non-operating state where the power of the third rotating shaft 9 is not transmitted to the second rotating shaft 8.
 ちなみに、前記ドグクラッチ39の切断状態から接続状態への切り替えの際にも、前記ドグクラッチ27,28の切断状態から接続状態への切り替え時における前記エンジン11及び第1モータジェネレータ12による前記第1回転軸4の回転数の調整と同様に、前記第2モータジェネレータ13による前記第3回転軸9の回転数の調整を行う。 Incidentally, also when switching from the disconnected state to the connected state of the dog clutch 39, the first rotating shaft by the engine 11 and the first motor generator 12 at the time of switching from the disconnected state to the connected state of the dog clutches 27 and 28. Similar to the adjustment of the rotational speed of 4, the rotational speed of the third rotation shaft 9 is adjusted by the second motor generator 13.
 また、前記ドグクラッチ39の断接切替のための前記スリーブ38のスライド操作は、図3に示す第2アクチュエータ41によって行われる。 Further, the sliding operation of the sleeve 38 for switching the connection and disconnection of the dog clutch 39 is performed by the second actuator 41 shown in FIG.
 3つの前記ドグクラッチ27,28,39の断接切替の制御は、図3に示す制御部42によって行う。 Control of connection / disconnection switching of the three dog clutches 27, 28, 39 is performed by a control unit 42 shown in FIG.
 図3は、制御部の構成を示すブロック図である。制御部42は、1つのマイコンによって構成されるか、或いはCAN等によって相互接続された複数のマイコンによって構成される。ちなみに、制御部42を構成する複数のマイコンのうちの1つは、前記エンジン2を制御する専用のマイコンであるECUであってもよい。 FIG. 3 is a block diagram showing the configuration of the control unit. The control unit 42 is configured by one microcomputer or a plurality of microcomputers interconnected by CAN or the like. Incidentally, one of the plurality of microcomputers constituting the control unit 42 may be an ECU which is a dedicated microcomputer for controlling the engine 2.
 この制御部42の入力側には、第1回転軸4の回転数を検出する第1回転数検出部である第1回転センサ43と、第2回転軸8の回転数を検出する第2回転数検出部である第2回転センサ44と、第3回転軸9の回転数を検出する第3回転数検出部である第3回転センサ46と、前記スリーブ26のスライド位置を検出する位置検出部である第1位置センサ47と、前記スリーブ38のスライド位置を検出する位置検出部である第2位置センサ48とがそれぞれ接続されている。 On the input side of the control unit 42, a first rotation sensor 43, which is a first rotation number detection unit that detects the rotation number of the first rotation shaft 4, and a second rotation that detects the rotation number of the second rotation shaft 8. The second rotation sensor 44, which is a number detection unit, the third rotation sensor 46, which is a third rotation number detection unit that detects the number of rotations of the third rotation shaft 9, and the position detection unit that detects the slide position of the sleeve 26 The first position sensor 47, which is the second position sensor 47, and the second position sensor 48, which is a position detection unit that detects the slide position of the sleeve 38, are connected.
 前記制御部26の出力側には、前記エンジン11、前記第1モータジェネレータ12及び前記第2モータジェネレータ13と、前記第1アクチュエータ29及び前記第2アクチュエータ41とがそれぞれ接続されている。 The engine 11, the first motor generator 12 and the second motor generator 13, and the first actuator 29 and the second actuator 41 are connected to the output side of the control unit 26.
 前記第1アクチュエータ29及び前記第2アクチュエータ41は、前記スリーブ26,38をスライド操作させる駆動力を発生させる電動式のモータ等をそれぞれ含む。 Each of the first actuator 29 and the second actuator 41 includes an electric motor or the like for generating a driving force for sliding the sleeves 26, 38.
 車両の走行中、第2切換機構16によるモータ非作動状態からモータ作動状態への切替を行う場合、前記制御部42は、まず、上述した通り、前記第2モータジェネレータ13によって前記第3回転軸9の回転数の調整を行って前記スリーブ38及び前記ピース37を前記目標回転差で同期回転させ、この状態で前記ドグクラッチ39を切断状態から接続状態に切り替える。 When switching from the motor non-operating state to the motor operating state by the second switching mechanism 16 while the vehicle is traveling, the control unit 42 first performs the third rotation shaft by the second motor generator 13 as described above. The rotational speed of 9 is adjusted to synchronously rotate the sleeve 38 and the piece 37 with the target rotational difference, and in this state, the dog clutch 39 is switched from the disconnected state to the connected state.
 車両の走行中、前記第1切替機構14による高速状態から低速状態へのシフトダウンの切替、或いは、低速状態から高速状態へのシフトアップの切替を行う場合、2つの前記ドグクラッチ27,28の一方を接続状態から切断状態に切り替えるため、第1アクチュエータ29により前記スリーブ26を前記一方のドグクラッチ27,28の前記押付け完了位置から前記係合解除位置にスライドさせ、前記第1切替機構14を接続状態から切断状態に切り替えた後、2つの前記ドグクラッチ27,28の他方を、切断状態から接続状態に切り替えて前記第1切替機構14を接続状態から切断状態に切り替える。 One of the two dog clutches 27 and 28 is used to switch down from the high speed state to the low speed state by the first switching mechanism 14 or switch up from the low speed state to the high speed state while the vehicle is traveling. In order to switch the connection state from the connection state to the disconnection state, the sleeve 26 is slid from the pressing completion position of the dog clutches 27, 28 by the first actuator 29 to the engagement release position, and the first switching mechanism 14 is in the connection state After switching from the second state to the disconnected state, the other of the two dog clutches 27 and 28 is switched from the disconnected state to the connected state to switch the first switching mechanism 14 from the connected state to the disconnected state.
 前記他方のドグクラッチ27,28を切断状態から接続状態に切り替える際には、高速状態及び低速状態の一方から他方又は他方から一方の切替の前後で、減速比が異なるため、前記回転差ΔNを前記目標回転差に一致させる同期処理を行う必要がある。言換えると、前記第1回転軸4を、前記切替後回転数に一致させる必要がある。 When switching the other dog clutches 27 and 28 from the disconnected state to the connected state, the speed reduction ratio is different before and after switching from one of the high speed state and the low speed state to the other or from the other. It is necessary to perform synchronous processing to match the target rotational difference. In other words, it is necessary to make the first rotational shaft 4 coincide with the post-switching rotational speed.
 ちなみに、第1回転軸4の前記切替後回転数への回転数の調整は、前記エンジン11及び前記第1モータジェネレータ12の両方を用いて、行う。 Incidentally, the adjustment of the rotational speed to the post-switching rotational speed of the first rotating shaft 4 is performed using both the engine 11 and the first motor generator 12.
 具体的に説明すると、前記制御部42は、まず、前記第2回転センサ44によって検出される第2回転センサ44の回転数から前記切替後回転数を求め、続いて、この求めた切替後回転数と、前記第1回転センサ43によって検出される前記第1回転軸4の回転数との回転数差である差回転を算出する差回転算出処理42aを実行する。詳しくは、前記差回転は、前記切替後回転数から前記第1回転センサ43によって検出される前記第1回転軸4の回転数を減算した値とする。このため、前記差回転が負の場合は、前記第1回転数を下げることになり、これは前記シフトアップ時の制御内容になる。一方、前記差回転が正の場合は、前記第1回転数を上げることになり、これは前記シフトダウン時の制御内容になる。 Specifically, the control unit 42 first obtains the post-switching rotational speed from the rotational speed of the second rotation sensor 44 detected by the second rotation sensor 44, and subsequently, the calculated post-switching rotation A differential rotation calculation process 42a is performed to calculate a differential rotation which is the difference between the number and the rotational speed of the first rotation shaft 4 detected by the first rotation sensor 43. Specifically, the differential rotation is a value obtained by subtracting the number of rotations of the first rotation shaft 4 detected by the first rotation sensor 43 from the number of rotations after switching. For this reason, when the differential rotation is negative, the first rotation number is reduced, which is the control content at the time of the shift up. On the other hand, when the differential rotation is positive, the first rotation number is increased, which is the control content at the time of the shift down.
 前記制御部42は、前記差回転算出処理42aを実行しつつ、その算出結果に基づいて、前記差回転が予め定めた第1の所定差回転以下になるまで、前記エンジン11によって前記第1回転軸4の回転数が前記切替後回転数に近づくように回転数を制御する第1回転数制御処理42bを実行する。前記第1回転数制御処理42bの実行時、前記制御部42は、第1モータジェネレータ12を併せて用いて、前記第2回転軸8の回転数の調整を行ってもよい。ちなみに、前記切替後回転数も時間経過に伴う第2回転軸8の回転数の変化によって逐次変化していく。 The control unit 42 executes the differential rotation calculation process 42a, and based on the calculation result, the first rotation by the engine 11 until the differential rotation becomes equal to or less than a predetermined first predetermined differential rotation. A first rotation speed control process 42b is performed to control the rotation speed so that the rotation speed of the shaft 4 approaches the after-switching rotation speed. At the time of execution of the first rotation speed control process 42b, the control unit 42 may adjust the rotation speed of the second rotation shaft 8 using the first motor generator 12 together. Incidentally, the post-switching rotational speed also changes sequentially as the rotational speed of the second rotation shaft 8 changes with the passage of time.
 前記制御部42は、前記第1回転数制御処理42bの実行によって、前記差回転が前記第1の所定差回転以下になった後、前記差回転算出処理42aを実行しつつ、その算出結果に基づいて、前記差回転が予め定めた第2の所定差回転に一致するように、前記エンジン11を一定トルクに制御しつつ、前記第1モータジェネレータ12によって前記第1回転軸4の回転数を制御する第2回転数制御処理42cを実行する。前記第2の所定差回転は、前記第1の所定差回転よりも小さく、0又は0に近い値に設定される。 After the differential rotation becomes equal to or less than the first predetermined differential rotation by execution of the first rotation speed control processing 42 b, the control unit 42 executes the differential rotation calculation processing 42 a, and the calculation result is Based on the first motor generator 12, the rotational speed of the first rotary shaft 4 is controlled by the first motor generator 12 while controlling the engine 11 to a constant torque so that the differential rotation matches the predetermined second predetermined differential rotation. The second rotation speed control process 42c to control is performed. The second predetermined differential rotation is set to a value smaller than the first predetermined differential rotation and to a value close to zero or zero.
 なお、前記第2回転数制御処理42cの実行時において、前記エンジン11を0又は所定の小トルクで一定する意図は、エンジンフリクションの影響を与えないようにするためである。 The intention to make the engine 11 constant at 0 or a predetermined small torque during execution of the second rotation speed control process 42c is to prevent the influence of engine friction.
 図4はシフトダウン時におけるタイミングチャート図である。前記第1回転数制御処理42b及び前記第2回転数制御処理42cの内容は、同図に示す通りである。まず、前記制御部42は、大出力且つ大雑把な回転数の調整を行う前記エンジン11によって、前記第1回転数制御処理42bを実行する。また、この際、前記制御部42は、第1モータジェネレータ12を補助的に用いる。 FIG. 4 is a timing chart at the time of downshifting. The contents of the first rotation speed control process 42 b and the second rotation speed control process 42 c are as shown in FIG. First, the control unit 42 executes the first rotation speed control process 42b by the engine 11 that performs large output and rough adjustment of the rotation speed. Further, at this time, the control unit 42 uses the first motor generator 12 as a supplement.
 前記第1回転数制御処理42bの実行時、シフトアップ切替等で前記差回転が負の場合、前記第1回転軸4の回転数を下げる必要があるため、前記エンジン11に対して燃料のカットを行うとともに、前記第1ジェネレータ12による発電を行って一定トルクを抵抗として発生させる。このようにして発電された電力はバッテリ等に充填される。 Since it is necessary to lower the rotational speed of the first rotating shaft 4 when the differential rotation is negative due to shift-up switching or the like at the time of execution of the first rotational speed control process 42b, the fuel is cut to the engine 11 While generating electric power by the first generator 12 to generate a constant torque as a resistance. The power generated in this manner is charged into a battery or the like.
 一方、前記第1回転数制御処理42bの実行時、シフトダウン切替等で、前記差回転が正の場合、前記第1回転軸4の回転数を上げる必要があるため、前記エンジン11の回転数が上昇するようにエンジントルクを発生させると同時に、前記第1ジェネレータ12による発電を行う。 On the other hand, at the time of execution of the first rotation speed control process 42b, if the differential rotation is positive by shift down switching etc., it is necessary to increase the rotation speed of the first rotation shaft 4 Generates an engine torque so that the first generator 12 generates electric power.
 前記制御部42は、前記第1回転数制御処理42bの実行後、高精度に前記第1回転軸8の回転数の調整が可能な前記第1モータジェネレータ12によって、前記第2回転数制御処理42cを実行する。 The control unit 42 performs the second rotation speed control process by the first motor generator 12 capable of adjusting the rotation speed of the first rotation shaft 8 with high accuracy after the execution of the first rotation speed control process 42 b. Execute 42c.
 前記第1モータジェネレータ12の回転数の微調整機能は、前記エンジン11と比較して優れているため、第2回転数制御処理42cの実行時、前記差回転をより迅速に0又は0近い値である前記第2の所定差回転に一致させることが可能になる。 Since the fine adjustment function of the rotational speed of the first motor generator 12 is superior to that of the engine 11, the value of the differential rotation can be more rapidly 0 or near 0 when executing the second rotational speed control process 42c. It is possible to match the second predetermined differential rotation which is
 図5は、エンジンの回転数及びトルクの特性グラフである。前記制御部42は、前記第2モータジェネレータ12が発生可能な最大トルクを算出する最大トルク算出処理42dと、前記最大トルク算出処理42dによって算出した前記最大トルクの範囲内で前記第2モータジェネレータ12から前記エンジン11に対して負荷トルクを与える場合に前記エンジン11の燃費効率が最大になる前記エンジン11のトルクを算出する目標エンジントルク算出処理42eとをそれぞれ実行可能に構成されている。 FIG. 5 is a characteristic graph of engine speed and torque. The control unit 42 calculates the maximum torque that can be generated by the second motor generator 12, and the second motor generator 12 within the range of the maximum torque calculated by the maximum torque calculation process 42 d. The target engine torque calculation process 42e for calculating the torque of the engine 11 which maximizes the fuel efficiency of the engine 11 when the load torque is applied to the engine 11 can be respectively executed.
 そして、前記制御部42は、前記第1回転数制御処理42bにおいて、前記目標エンジントルク算出処理42eによって算出された目標エンジントルクに一致するようにエンジンのトルクを発生させると同時に前記第1モータジェネレータ12のトルクを発生させ、前記第1回転軸4の単位時間当たりの回転数変化である回転数変化率が所定変化率になるように前記第1回転軸4を制御する。 The control unit 42 generates the torque of the engine so as to coincide with the target engine torque calculated by the target engine torque calculation process 42e in the first rotation speed control process 42b, and at the same time the first motor generator A torque of 12 is generated, and the first rotation shaft 4 is controlled such that the rotation speed change rate, which is the rotation speed change per unit time of the first rotation shaft 4, becomes a predetermined change rate.
 このような制御によって、前記エンジン2の回転数(Ne)の対するトルク(Te)の値が、より内側の楕円内を通過するようになり、前記エンジン11の燃費が向上できるとともに、効率的な発電を行うことが可能になる。この制御は、シフトアップとシフトダウンの両方に適用可能である。ちなみに、図4に示す特性は前記エンジン11の固有の特性である。 By such control, the value of the torque (Te) against the number of revolutions (Ne) of the engine 2 passes through the inside of the inner circle, and the fuel efficiency of the engine 11 can be improved, and it is efficient. It will be possible to generate electricity. This control is applicable to both upshifts and downshifts. Incidentally, the characteristic shown in FIG. 4 is an inherent characteristic of the engine 11.
 以上のように構成された動力伝達制御装置1によれば、前記ドグクラッチ27、28の接続切替を行うための回転数の同期処理を正確且つ迅速に実行可能であるとともに、前記エンジン11の燃費効率も向上する。ちなみに、前記差回転の絶対値が大きい程、第1モータジェネレータ12による発電効率が向上するため、同期処理の迅速化と燃費効率の上昇とを両立できる。 According to the power transmission control device 1 configured as described above, the synchronous processing of the rotational speed for switching the connection of the dog clutches 27 and 28 can be executed accurately and quickly, and the fuel efficiency of the engine 11 is achieved. Also improve. Incidentally, since the power generation efficiency by the first motor generator 12 is improved as the absolute value of the differential rotation is larger, it is possible to achieve both the speeding-up of the synchronous processing and the increase of the fuel efficiency.
  4 第1回転軸
  6 車軸
  7 車軸
  8 第2回転軸
  11 エンジン(第1動力源)
  12 第1モータジェネレータ(第2動力源)
  14 第1切替機構(切替機構)
  42 制御部
  43 第1回転センサ(第1回転検出部)
  44 第2回転センサ(第2回転検出部)
 

 
4 1st rotation shaft 6 axle 7 axle 8 2nd rotation shaft 11 engine (1st power source)
12 1st motor generator (2nd power source)
14 First switching mechanism (switching mechanism)
42 control unit 43 first rotation sensor (first rotation detection unit)
44 Second rotation sensor (second rotation detection unit)


Claims (4)

  1.  第1回転軸と、
     前記第1回転軸に接続され、前記第1回転軸の回転数を調整可能な第1動力源と、
     前記第1回転軸に接続され、前記第1動力源より高い精度で前記第1回転軸の回転数調整が可能な前記第1動力源とは異なる第2動力源と、
     車軸と連動して回転する第2回転軸と、
     前記第1回転軸の回転数を検出する第1回転数検出部と、
     前記第2回転軸の回転数を検出する第2回転数検出部と、
     前記第1回転軸と前記第2回転軸との間で動力伝達の断接切替を行う切替機構と、
     前記切替機構の断接切替動作並びに前記第1動力源および前記第2動力源の動作を制御する制御部とを備え、
     前記制御部は、
     前記切替機構において動力伝達を切断状態から接続状態に切り替える際に、前記第2回転数検出部が検出した前記第2回転軸の回転数に基づいて決定される前記切替機構が接続状態になった際の前記第1回転軸の回転数である切替後回転数から前記第1回転数検出部が検出した前記第1回転軸の回転数を減算した回転数差である差回転を算出する差回転算出処理と、
     前記差回転算出処理により算出された前記差回転が第1の所定差回転以下になるまで少なくとも前記第1動力源によって前記第1回転軸の回転数を制御する第1回転数制御処理と、
     前記第1回転数制御処理によって前記差回転が前記第1の所定差回転以下になった後に、前記差回転を前記第1の所定差回転より小さい第2の所定差回転に一致させるように、前記第1動力源を一定トルクに制御しつつ前記第2動力源によって前記第1回転軸の回転数を制御する第2回転数制御処理とをそれぞれ実行可能に構成された
     動力伝達制御装置。
    A first rotation axis,
    A first power source connected to the first rotation shaft and capable of adjusting the number of rotations of the first rotation shaft;
    A second power source different from the first power source connected to the first rotation shaft and capable of adjusting the rotational speed of the first rotation shaft with higher precision than the first power source;
    A second rotating shaft that rotates in conjunction with the axle,
    A first rotation number detection unit that detects the rotation number of the first rotation shaft;
    A second rotation number detection unit that detects the rotation number of the second rotation shaft;
    A switching mechanism for switching between transmission and reception of power transmission between the first rotation shaft and the second rotation shaft;
    A control unit that controls connection / disconnection switching operation of the switching mechanism and operations of the first power source and the second power source;
    The control unit
    When switching the power transmission from the disconnection state to the connection state in the switching mechanism, the switching mechanism determined based on the rotation speed of the second rotation shaft detected by the second rotation speed detection unit is in the connection state A differential rotation which is a rotational speed difference obtained by subtracting the rotational speed of the first rotational shaft detected by the first rotational speed detection unit from the rotational speed after switching which is the rotational speed of the first rotational shaft Calculation processing,
    First rotation number control processing for controlling the number of rotations of the first rotation shaft by at least the first power source until the differential rotation calculated by the differential rotation calculation processing becomes equal to or less than a first predetermined differential rotation;
    After the differential rotation becomes equal to or less than the first predetermined differential rotation by the first rotation speed control process, the differential rotation is made to coincide with a second predetermined differential rotation smaller than the first predetermined differential rotation. A power transmission control device configured to be able to execute second rotation speed control processing in which the rotation speed of the first rotating shaft is controlled by the second power source while controlling the first power source to a constant torque.
  2.  前記第1動力源はエンジンであり、
     前記第2動力源はモータジェネレータであり、
     前記制御部は、
     前記モータジェネレータが発生可能な最大トルクを算出する最大トルク算出処理と、
     前記最大トルク算出処理によって算出した前記最大トルクの範囲内で前記モータジェネレータから前記エンジンに対して負荷トルクを与える場合に前記エンジンの燃費効率が最大になる前記エンジンのトルクを算出する目標エンジントルク算出処理とをそれぞれ実行可能に構成され、
     前記第1回転数制御処理では、前記目標エンジントルク算出処理によって算出された目標エンジントルクに一致するようにエンジンのトルクを発生させると同時に前記モータジェネレータのトルクを発生させ、前記第1回転軸の単位時間当たりの回転数変化である回転数変化率を所定変化率になるように前記第1回転軸を制御する
     請求項1に記載の動力伝達装置。
    The first power source is an engine,
    The second power source is a motor generator,
    The control unit
    Maximum torque calculation processing for calculating the maximum torque that the motor generator can generate;
    Target engine torque calculation for calculating the torque of the engine that maximizes the fuel efficiency of the engine when the motor generator applies load torque to the engine within the range of the maximum torque calculated by the maximum torque calculation process Are configured to be able to execute processing and
    In the first rotation speed control process, the torque of the motor generator is generated at the same time as the torque of the engine is generated so as to match the target engine torque calculated by the target engine torque calculation process. The power transmission device according to claim 1, wherein the first rotation shaft is controlled such that a rotational speed change rate, which is a rotational speed change per unit time, becomes a predetermined change rate.
  3.  前記第1動力源はエンジンであり、
     前記第2動力源はモータジェネレータであり、
     前記第1回転数制御処理では、前記差回転算出処理によって算出された前記差回転が負の値の場合において、前記エンジンの回転数を燃料カット状態にすると同時に、前記モータジェネレータで発電を行う
     請求項1に記載の動力伝達装置。
    The first power source is an engine,
    The second power source is a motor generator,
    In the first rotation speed control process, when the differential rotation calculated by the differential rotation calculation process is a negative value, the motor generator generates power at the same time as making the engine rotation speed into a fuel cut state. The power transmission device according to Item 1.
  4.  前記第1動力源はエンジンであり、
     前記第2動力源はモータジェネレータであり、
     前記第1回転数制御処理では、前記差回転算出処理によって算出された前記差回転が正の値の場合において、前記エンジンの回転数を増加するように、前記エンジンのトルクを発生させると同時に前記モータジェネレータで発電を行う
     請求項1又は2の何れかに記載の動力伝達装置。
     

     
    The first power source is an engine,
    The second power source is a motor generator,
    In the first rotation speed control process, when the differential rotation calculated by the differential rotation calculation process is a positive value, the torque of the engine is generated at the same time as the engine rotational speed is increased. The power transmission device according to any one of claims 1 and 2, wherein power generation is performed by a motor generator.


PCT/JP2017/042489 2016-12-27 2017-11-28 Motive power transmission control device WO2018123393A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-253215 2016-12-27
JP2016253215A JP6729355B2 (en) 2016-12-27 2016-12-27 Power transmission control device

Publications (1)

Publication Number Publication Date
WO2018123393A1 true WO2018123393A1 (en) 2018-07-05

Family

ID=62707453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042489 WO2018123393A1 (en) 2016-12-27 2017-11-28 Motive power transmission control device

Country Status (2)

Country Link
JP (1) JP6729355B2 (en)
WO (1) WO2018123393A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159645A (en) * 2015-02-26 2016-09-05 スズキ株式会社 Hybrid vehicle
JP2016210313A (en) * 2015-05-11 2016-12-15 アイシン・エーアイ株式会社 Driving device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159645A (en) * 2015-02-26 2016-09-05 スズキ株式会社 Hybrid vehicle
JP2016210313A (en) * 2015-05-11 2016-12-15 アイシン・エーアイ株式会社 Driving device

Also Published As

Publication number Publication date
JP2018103860A (en) 2018-07-05
JP6729355B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
US8480535B2 (en) Control device for electric rotating machine in hybrid-type power transmission
US9469294B2 (en) Hybrid vehicle
CN104214283B (en) The manual transmission of the automation with motor generator
US10875409B2 (en) Power transmission control device
WO2009134241A3 (en) Powertrain with input shaft and engine speed synchronization
KR20130115618A (en) Automated manual transmission of hybrid vehicle
RU2619358C2 (en) Method to synchronize gears at shaft of gearbox
JP2011098679A (en) Controller of mechanical automatic transmission
JP2013035403A (en) Hybrid vehicle
JP5331387B2 (en) Transmission and transmission control method
JP2013060043A (en) Power transmission device for vehicle
WO2018123393A1 (en) Motive power transmission control device
WO2017095298A1 (en) A method for gear shifting in a gearbox, a gearbox and a vehicle
JP5634967B2 (en) Hybrid vehicle and control method thereof
JP2018066413A (en) Control device of transmission
JP5367445B2 (en) Vehicle power transmission control device
SE540845C2 (en) A method for gear shifting in a gearbox, a gearbox and a vehicle
CN115397688B (en) Learning method of shift drum in hybrid powertrain
JP6558149B2 (en) Hybrid vehicle drive device
JP5734693B2 (en) Vehicle control device
JP2020034046A (en) Control device of vehicle
JP2012236508A (en) Driving device of hybrid vehicle and hybrid vehicle
JP2013035404A (en) Hybrid vehicle and method for controlling the same
WO2018124218A1 (en) Power transmission control device
JP2021518511A (en) Methods and systems for controlling gearbox actuators in hybrid propulsion vehicle transmissions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17888988

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载