WO2018123196A1 - ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム - Google Patents
ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム Download PDFInfo
- Publication number
- WO2018123196A1 WO2018123196A1 PCT/JP2017/036579 JP2017036579W WO2018123196A1 WO 2018123196 A1 WO2018123196 A1 WO 2018123196A1 JP 2017036579 W JP2017036579 W JP 2017036579W WO 2018123196 A1 WO2018123196 A1 WO 2018123196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- images
- gas
- region
- processing
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 174
- 238000003672 processing method Methods 0.000 title claims description 8
- 238000004364 calculation method Methods 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims description 64
- 238000001514 detection method Methods 0.000 claims description 63
- 230000008569 process Effects 0.000 claims description 51
- 238000000605 extraction Methods 0.000 claims description 7
- 239000000284 extract Substances 0.000 claims description 2
- 238000012544 monitoring process Methods 0.000 description 54
- 230000008859 change Effects 0.000 description 48
- 238000010586 diagram Methods 0.000 description 17
- 230000000875 corresponding effect Effects 0.000 description 16
- 238000012360 testing method Methods 0.000 description 11
- 238000004891 communication Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 239000004973 liquid crystal related substance Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/002—Investigating fluid-tightness of structures by using thermal means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/38—Investigating fluid-tightness of structures by using light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/751—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/758—Involving statistics of pixels or of feature values, e.g. histogram matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10048—Infrared image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
Definitions
- the present invention relates to a technology for detecting gas using an infrared image.
- Patent Literature 1 includes an infrared camera that captures an inspection target region and an image processing unit that processes an infrared image captured by the infrared camera. Discloses a gas leak detection apparatus having a fluctuation extraction unit that extracts dynamic fluctuation due to gas leakage from a plurality of infrared images arranged in time series.
- a reflection surface for example, a tower or a pipe.
- the reflecting surface reflects heat from the heat source or reflects light from the light source (sun).
- the present inventor has found that erroneous gas detection occurs in the following cases. (1) Steam or the like exists in the middle of the reflective surface from the heat source. (2) Steam or the like is present in the middle of the reflecting surface from the light source (3) Even if steam or the like is not present in the middle of the reflecting surface from the heat source, the heat source fluctuates and the heat from this heat source is reflected by the reflecting surface . (4) Even if vapor or the like is not present in the middle of the reflection surface from the light source, the light source fluctuates and the light from this light source is reflected by the reflection surface.
- the reflection surface is a curved surface and the cloud moves. That is, when the clouds move to block sunlight or the clouds blocking the sunlight move, the amount of light hitting the reflecting surface changes, and the apparent temperature changes, causing fluctuations.
- an image processing apparatus for gas detection reflecting one aspect of the present invention includes a first processing unit, a second processing unit, and a calculation unit.
- the first processing unit performs a first process of acquiring a first image including a first region image extracted from a predetermined region of the infrared image and indicating a region where a gas candidate appears, for a predetermined period.
- the process is executed for each of the plurality of infrared images captured in time series in step S1 to acquire the plurality of first images.
- the second processing unit uses a plurality of the first images to form a second image including a second region image indicating a region where the gas candidate has appeared in at least a part of the predetermined period.
- the second process to be generated is performed.
- the first processing unit performs the first process on the plurality of infrared images captured in time series in each of the two or more predetermined periods.
- the second processing unit generates the two or more second images by performing the second process on the plurality of first images generated corresponding to each of the two or more predetermined periods. To do.
- the calculation unit calculates a similarity between two or more second images.
- FIG. 1A It is a block diagram which shows the structure of the gas detection system which concerns on embodiment. It is a block diagram which shows the hardware constitutions of the image processing apparatus for gas detection shown to FIG. 1A. It is explanatory drawing explaining time series pixel data D1. It is an image figure which shows the infrared image which image
- difference data D4 It is a graph which shows difference data D4.
- difference data D8 It is an image figure which shows the image I10, the image I11, and the image I12 which were produced
- FIG. 1A is a block diagram illustrating a configuration of a gas detection system 1 according to an embodiment.
- the gas detection system 1 includes an infrared camera 2 and a gas detection image processing device 3.
- the infrared camera 2 captures a moving image of an infrared image and generates moving image data MD indicating the moving image of a subject including a gas leak monitoring target (for example, a place where gas transport pipes are connected). Any infrared image captured in time series may be used, and the image is not limited to a moving image.
- the infrared camera 2 includes an optical system 4, a filter 5, a two-dimensional image sensor 6, and a signal processing unit 7.
- the optical system 4 forms an infrared image of the subject on the two-dimensional image sensor 6.
- the filter 5 is disposed between the optical system 4 and the two-dimensional image sensor 6, and allows only infrared light having a specific wavelength to pass through the light that has passed through the optical system 4.
- the wavelength band that passes through the filter 5 depends on the type of gas to be detected. For example, in the case of methane, a filter 5 that passes a wavelength band of 3.2 to 3.4 ⁇ m is used.
- the two-dimensional image sensor 6 is a cooled indium antimony (InSb) image sensor, for example, and receives the infrared rays that have passed through the filter 5.
- the signal processing unit 7 converts the analog signal output from the two-dimensional image sensor 6 into a digital signal and performs known image processing. This digital signal becomes the moving image data MD.
- the gas detection image processing device 3 is a personal computer, a smartphone, a tablet terminal, or the like, and includes an image data input unit 8, an image processing unit 9, a display control unit 10, a display unit 11, and an input unit 12 as functional blocks.
- the image data input unit 8 is a communication interface that communicates with a communication unit (not shown) of the infrared camera 2.
- the moving image data MD sent from the communication unit of the infrared camera 2 is input to the image data input unit 8.
- the image data input unit 8 sends the moving image data MD to the image processing unit 9.
- the image processing unit 9 is realized by a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), an HDD (Hard Disk Drive), and the like, and performs predetermined processing on the moving image data MD.
- the predetermined process is, for example, a process for generating time-series pixel data from the moving image data MD.
- FIG. 2 is an explanatory diagram for explaining the time-series pixel data D1.
- the moving image indicated by the moving image data MD has a structure in which a plurality of frames are arranged in time series. Data obtained by arranging pixel data of pixels at the same position in time series in a plurality of frames (a plurality of infrared images) is referred to as time series pixel data D1.
- K be the number of frames of a moving image of an infrared image.
- One frame is composed of M pixels, that is, a first pixel, a second pixel,..., An M ⁇ 1th pixel, and an Mth pixel.
- Based on the pixel data (pixel value) physical quantities such as luminance and temperature are determined.
- Pixels in the same position in multiple (K) frames mean pixels in the same order.
- the pixel data of the first pixel included in the first frame the pixel data of the first pixel included in the second frame,..., The (K ⁇ 1) th frame.
- Data obtained by arranging the pixel data of the first pixel included in the pixel data and the pixel data of the first pixel included in the Kth frame in time series becomes the time series pixel data D1 of the first pixel.
- the pixel data of the Mth pixel included in the first frame, the pixel data of the Mth pixel included in the second frame the pixel data of the Mth pixel included in the second frame,..., The (K ⁇ 1) th frame.
- the time-series pixel data D1 of the Mth pixel is obtained by arranging the pixel data of the Mth pixel included in the pixel data and the pixel data of the Mth pixel included in the Kth frame in time series.
- the number of time-series pixel data D1 is the same as the number of pixels constituting one frame.
- the image processing unit 9 includes a first processing unit 91, a second processing unit 92, a calculation unit 93, and a determination unit 94. These will be described later.
- the display control unit 10 is realized by a CPU, RAM, ROM, HDD, and the like, and causes the display unit 11 to display an image or the like indicated by the moving image data MD.
- the display unit 11 is realized by a liquid crystal display, for example.
- the input unit 12 is realized by a keyboard, a touch panel, or the like, and performs various inputs related to gas detection.
- the gas detection image processing apparatus 3 includes the display control unit 10, the display unit 11, and the input unit 12, but may be the gas detection image processing apparatus 3 that does not include these.
- FIG. 1B is a block diagram showing a hardware configuration of the gas detection image processing apparatus 3 shown in FIG. 1A.
- the gas detection image processing apparatus 3 includes a CPU 3a, a RAM 3b, a ROM 3c, an HDD 3d, a liquid crystal display 3e, a communication interface 3f, a keyboard 3g, and a bus 3h for connecting them.
- the liquid crystal display 3 e is hardware that implements the display unit 11. Instead of the liquid crystal display 3e, an organic EL display (Organic Light Emitting Diode display), a plasma display, or the like may be used.
- the communication interface 3 f is hardware that implements the image data input unit 8.
- the keyboard 3g is hardware for realizing the input unit 12.
- the HDD 3d stores programs for realizing these functional blocks for the image processing unit 9 and the display control unit 10, respectively.
- the program that realizes the image processing unit 9 is a processing program that acquires the moving image data MD and performs the predetermined processing on the moving image data MD.
- the program for realizing the display control unit 10 is a display control program for causing the display unit 11 to display an image (for example, a moving image indicated by the moving image data MD). These programs may be stored in the ROM 3c instead of the HDD 3d.
- the CPU 3a reads out the processing program and the display control program from the HDD 3d, expands them in the RAM 3b, and executes the expanded programs to realize these functional blocks.
- the processing program and the display control program are stored in advance in the HDD 3d, but are not limited thereto.
- a recording medium for example, an external recording medium such as a magnetic disk or an optical disk
- the program stored in the recording medium may be stored in the HDD 3d.
- These programs may be stored in a server connected to the image processing apparatus 3 for gas detection via a network, and these programs may be sent to the HDD 3d via the network and stored in the HDD 3d.
- the gas detection image processing apparatus 3 has a first mode to a third mode as described below. Each of these aspects is constituted by a plurality of elements. Accordingly, the HDD 3d stores a program for realizing these elements.
- the first mode of the gas detection image processing apparatus 3 includes a first processing unit 91, a second processing unit 92, a calculation unit 93, and a determination unit 94 as elements.
- the HDD 3d stores a program for realizing each of the first processing unit 91, the second processing unit 92, the calculation unit 93, and the determination unit 94. These programs are expressed as a first processing program, a second processing program, a calculation program, and a determination program.
- the HDD that stores the first processing program, the HDD that stores the second processing program, the HDD that stores the calculation program, and the HDD that stores the determination program are different from each other. May be.
- a server having an HDD storing a first processing program, a server having an HDD storing a second processing program, a server having an HDD storing a calculation program, and a determination program May be connected via a network (for example, the Internet).
- a network for example, the Internet
- at least one HDD may be an external HDD connected to a USB port or the like, or a network compatible HDD (NAS: Network Attached Storage).
- At least two or more of these programs may be stored in the same HDD, and the remaining programs may be stored in an HDD different from this HDD (for example, the first processing program and the second processing program are stored in the first HDD).
- the calculation program is stored in the second HDD, and the determination program is stored in the third HDD).
- the first processing unit and the first processing program will be described as an example.
- the first processing unit performs a first process of acquiring a first image including a first region image extracted from a predetermined region of the infrared image and indicating a region where a gas candidate appears, for a predetermined period.
- the process is executed for each of a plurality of infrared images picked up in time series, and a plurality of first images are acquired.
- the first processing program performs a first process for acquiring a first image including a first region image indicating a region where a gas candidate appears, extracted from a predetermined region of the infrared image for a predetermined period. Is a program that is executed for each of a plurality of infrared images picked up in time series and acquires a plurality of first images.
- FIG. 15 A flowchart of these programs (first processing program, second processing program, calculation program, determination program) executed by the CPU 3a is FIG. 15 described later.
- the present inventor found that a gas leak and a background temperature change occur in parallel, and if the background temperature change is larger than the temperature change due to the leaked gas, the background temperature If changes are not taken into account, it has been found that the state of gas leakage cannot be displayed as an image. This will be described in detail.
- FIG. 3 is an image diagram showing, in time series, an infrared image obtained by photographing an outdoor test place in a state where gas leakage and background temperature change occur in parallel. These are infrared images obtained by shooting a moving image with an infrared camera. There is a point SP1 at the test place where gas can be ejected. For comparison with the point SP1, a point SP2 where no gas is ejected is shown.
- the image I1 is an infrared image of the test place taken at time T1 immediately before the sunlight is blocked by the clouds.
- the image I2 is an infrared image of the test place taken at time T2 after 5 seconds from time T1. At time T2, sunlight is blocked by clouds, so the background temperature is lower than at time T1.
- the image I3 is an infrared image of the test place taken at time T3 10 seconds after time T1. From time T2 to time T3, the state in which the sunlight is blocked by the cloud is continued, so that the temperature of the background is lower at time T3 than at time T2.
- the image I4 is an infrared image of the test place taken at time T4 15 seconds after time T1. From time T3 to time T4, the state in which sunlight is blocked by the cloud is continued, so that the background temperature is lower at time T4 than at time T3.
- the background temperature has dropped by about 4 ° C in 15 seconds from time T1 to time T4. For this reason, the image I4 is generally darker than the image I1, and it can be seen that the background temperature is lowered.
- FIG. 4A is a graph showing the temperature change at the point SP1 at the test location
- FIG. 4B is a graph showing the temperature change at the point SP2 at the test location.
- the vertical axis of these graphs indicates temperature.
- the horizontal axis of these graphs indicates the frame order. For example, 45 means the 45th frame.
- the frame rate is 30 fps. Therefore, the time from the first frame to the 450th frame is 15 seconds.
- the graph showing the temperature change at the point SP1 is different from the graph showing the temperature change at the point SP2. Since no gas is ejected at the point SP2, the temperature change at the point SP2 indicates the background temperature change. On the other hand, since gas is ejected at the point SP1, gas is drifting at the point SP1. For this reason, the temperature change at the point SP1 indicates the temperature change obtained by adding the background temperature change and the temperature change caused by the leaked gas.
- the moving image data MD (FIG. 1A) has low frequency component data D2 indicating a change in background temperature, in addition to the frequency component data indicating the temperature change due to the leaked gas, in addition to the frequency component data. Is included.
- the image indicated by the low-frequency component data D2 (change in brightness of the background) makes the image indicated by the frequency component data invisible.
- corresponds to the said frequency component data.
- the graph showing the temperature change at the point SP2 corresponds to the low frequency component data D2.
- the image processing unit 9 (FIG. 1A) generates a plurality of time-series pixel data D1 (that is, a plurality of time-series pixel data D1 constituting the moving image data MD) having different pixel positions from the moving image data MD.
- the low frequency component data D2 is removed from each of the plurality of time series pixel data D1.
- the plurality of time-series pixel data having different pixel positions refers to the time-series pixel data D1 of the first pixel, the time-series pixel data D1,. It means the time-series pixel data D1 of the pixels and the time-series pixel data D1 of the Mth pixel.
- the frequency component data that is higher in frequency than the frequency component data indicating the temperature change due to the leaked gas and that indicates high frequency noise is referred to as high frequency component data D3.
- the image processing unit 9 performs processing for removing the high-frequency component data D3 in addition to the processing for removing the low-frequency component data D2 for each of the plurality of time-series pixel data D1 constituting the moving image data MD.
- the image processing unit 9 does not perform the process of excluding the low frequency component data D2 and the high frequency component data D3 in units of frames, but the low frequency component data D2 and the high frequency component data in units of time series pixel data D1. Processing excluding D3.
- the gas detection image processing device 3 generates a monitoring image using an infrared image.
- the monitoring image includes an image showing a region where the gas appears due to the gas leak.
- the gas detection image processing device 3 detects gas leakage based on the monitoring image.
- There are various methods for generating a monitoring image Here, an example of a method for generating a monitoring image will be described.
- the monitoring image is generated using an infrared image of the monitoring target and the background.
- FIG. 5 is a flowchart for explaining monitoring image generation processing.
- the image processing unit 9 generates M pieces of time-series pixel data D1 from the moving image data MD (step S1).
- the first predetermined number of frames is, for example, 21 frames.
- the breakdown is a target frame, 10 consecutive frames before this, and 10 consecutive frames after this.
- the first predetermined number is not limited to 21 but may be more than 21 or less than 21 as long as the low-frequency component data D2 can be extracted from the time-series pixel data D1.
- the image processing unit 9 calculates a simple moving average in units of a third predetermined number (for example, 3) smaller than the first predetermined number (for example, 21) for the time-series pixel data D1.
- a third predetermined number for example, 3
- the first predetermined number for example, 21
- the image processing unit 9 calculates a simple moving average in units of a third predetermined number (for example, 3) smaller than the first predetermined number (for example, 21) for the time-series pixel data D1.
- the data extracted from the time series pixel data D1 is used as the high frequency component data D3, and M pieces of high frequency component data D3 corresponding to each of the M pieces of time series pixel data D1 are extracted (step S3).
- FIG. 6 shows time-series pixel data D1 of pixels corresponding to the point SP1 (FIG. 4A), low-frequency component data D2 extracted from the time-series pixel data D1, and high-frequency component data D3 extracted from the time-series pixel data D1. It is a graph to show. The vertical axis and horizontal axis of the graph are the same as the vertical axis and horizontal axis of the graph of FIG. 4A.
- the temperature indicated by the time-series pixel data D1 changes relatively abruptly (change period is relatively short), and the temperature indicated by the low-frequency component data D2 changes relatively slowly (change period). Is relatively long).
- the high frequency component data D3 appears to substantially overlap the time series pixel data D1.
- the third predetermined number of frames is, for example, 3 frames.
- the breakdown is the target frame, the immediately preceding frame, and the immediately following frame.
- the third predetermined number is not limited to 3 and may be more than 3 as long as the third frequency component can be extracted from the time-series pixel data.
- the image processing unit 9 obtains data obtained by calculating the difference between the time-series pixel data D1 and the low-frequency component data D2 extracted from the time-series pixel data D1. Is the difference data D4, and M pieces of difference data D4 corresponding to each of the M pieces of time-series pixel data D1 are calculated (step S4).
- the image processing unit 9 sets the difference data D5 as data obtained by calculating the difference between the time-series pixel data D1 and the high-frequency component data D3 extracted from the time-series pixel data D1, and M pieces of time-series pixel data. M pieces of difference data D5 corresponding to each of D1 are calculated (step S5).
- FIG. 7A is a graph showing the difference data D4, and FIG. 7B is a graph showing the difference data D5.
- the vertical and horizontal axes of these graphs are the same as the vertical and horizontal axes of the graph of FIG. 4A.
- the difference data D4 is data obtained by calculating a difference between the time-series pixel data D1 and the low-frequency component data D2 shown in FIG. Before the gas ejection starts at the point SP1 shown in FIG. 4A (up to about the 90th frame), the minute amplitude repetition indicated by the difference data D4 mainly indicates the sensor noise of the two-dimensional image sensor 6. ing. After starting gas ejection at the point SP1 (the 90th and subsequent frames), the amplitude and waveform variations of the difference data D4 are large.
- the difference data D5 is data obtained by calculating a difference between the time-series pixel data D1 and the high-frequency component data D3 shown in FIG.
- the difference data D4 includes frequency component data indicating the temperature change due to the leaked gas and high frequency component data D3 (data indicating high frequency noise).
- the difference data D5 does not include the frequency component data indicating the temperature change due to the leaked gas, but includes the high frequency component data D3.
- the difference data D4 includes frequency component data indicating a temperature change due to the leaked gas, after the gas ejection is started at the point SP1 (the 90th and subsequent frames), the difference data D4 has large variations in amplitude and waveform. It has become.
- the difference data D5 does not include frequency component data indicating a temperature change due to the leaked gas, this is not the case.
- the difference data D5 repeats a minute amplitude. This is high frequency noise.
- the difference data D4 and the difference data D5 are correlated, but not completely correlated. That is, in a certain frame, the value of the difference data D4 may be plus and the value of the difference data D5 may be minus or vice versa. For this reason, even if the difference between the difference data D4 and the difference data D5 is calculated, the high frequency component data D3 cannot be removed. In order to remove the high-frequency component data D3, it is necessary to convert the difference data D4 and the difference data D5 into values such as absolute values that can be subtracted.
- the image processing unit 9 sets, as the standard deviation data D6, data obtained by calculating the moving standard deviation with the second predetermined number of frames smaller than K frames as a unit for the difference data D4. M pieces of standard deviation data D6 corresponding to each of the M pieces of time-series pixel data D1 are calculated (step S6). Note that the movement variance may be calculated instead of the movement standard deviation.
- the image processing unit 9 uses the data obtained by calculating the moving standard deviation in units of a fourth predetermined number (for example, 21) fewer than K frames as the standard for the difference data D5.
- a fourth predetermined number for example, 21
- M standard deviation data D7 corresponding to each of the M time-series pixel data D1 are calculated (step S7).
- moving variance may be used.
- FIG. 8 is a graph showing standard deviation data D6 and standard deviation data D7.
- the horizontal axis of the graph is the same as the horizontal axis of the graph of FIG. 4A.
- the vertical axis of the graph indicates standard deviation.
- the standard deviation data D6 is data indicating the moving standard deviation of the difference data D4 shown in FIG. 7A.
- the standard deviation data D7 is data indicating the moving standard deviation of the difference data D5 illustrated in FIG. 7B.
- the number of frames used for the calculation of the moving standard deviation is 21 in both the standard deviation data D6 and the standard deviation data D7. However, any number may be used as long as a statistically significant standard deviation is obtained. It is not limited.
- the standard deviation data D6 and the standard deviation data D7 are standard deviations and do not include negative values. Therefore, the standard deviation data D6 and the standard deviation data D7 can be regarded as data converted so that the difference data D4 and the difference data D5 can be subtracted.
- the image processing unit 9 sets difference data D8 as data obtained by calculating the difference between the standard deviation data D6 and the standard deviation data D7 obtained from the same time series pixel data D1, and M pieces of time series pixel data D1. M pieces of difference data D8 corresponding to each are calculated (step S8).
- FIG. 9 is a graph showing the difference data D8.
- the horizontal axis of the graph is the same as the horizontal axis of the graph of FIG. 4A.
- the vertical axis of the graph is the standard deviation difference.
- the difference data D8 is data indicating a difference between the standard deviation data D6 and the standard deviation data D7 shown in FIG.
- the difference data D8 is data that has been processed to exclude the low-frequency component data D2 and the high-frequency component data D3.
- the image processing unit 9 generates a monitoring image (step S9). That is, the image processing unit 9 generates a moving image composed of M pieces of difference data D8 obtained in step S8. Each frame constituting the moving image is a monitoring image.
- the monitoring image is an image that visualizes the difference of the standard deviation.
- the image processing unit 9 outputs the moving image obtained in step S9 to the display control unit 10.
- the display control unit 10 displays this moving image on the display unit 11.
- the monitoring images included in this moving image for example, there are an image I12 shown in FIG. 10 and an image I15 shown in FIG.
- FIG. 10 is an image diagram showing an image I10, an image I11, and an image I12 generated based on the frame at time T1.
- the image I10 is a frame image at time T1 in the moving image indicated by the M standard deviation data D6 obtained in step S6 of FIG.
- the image I11 is a frame image at time T1 in the moving image indicated by the M standard deviation data D7 obtained in step S7 of FIG.
- a difference between the image I10 and the image I11 is an image I12 (monitoring image).
- FIG. 11 is an image diagram showing an image I13, an image I14, and an image I15 generated based on the frame at time T2.
- the image I13 is an image of a frame at time T2 in the moving image indicated by the M standard deviation data D6 obtained in step S6.
- the image I14 is an image of a frame at time T2 in the moving image indicated by the M standard deviation data D7 obtained in step S7.
- the difference between the image I13 and the image I14 is an image I15 (monitoring image).
- Each of the images I10 to I15 shown in FIGS. 10 and 11 is an image with a standard deviation multiplied by 5000.
- the image I12 shown in FIG. 10 is an image taken before the gas is ejected from the point SP1 shown in FIG. 4A, the state in which the gas is emitted from the point SP1 does not appear in the image I12.
- the image I15 shown in FIG. 11 is an image taken at the time when the gas is ejected from the point SP1, a state in which the gas is emitted from the point SP1 appears in the image I15.
- the image processing unit 9 (FIG. 1A) generates the moving image data by performing the process of removing the low frequency component data D2 included in the moving image data MD of the infrared image
- the display control unit 10 causes the display unit 11 to display the moving image (the moving image of the monitoring image) indicated by the moving image data. Therefore, according to the embodiment, the gas leakage and the background temperature change occur in parallel, and even when the background temperature change is larger than the temperature change due to the leaked gas, the state of the gas leak is monitored. Can be displayed in the video.
- FIG. 12 is an image diagram showing an image 100 cut out from the infrared image.
- the image 100 includes a tower image 101. Heat from the heat source is reflected on the surface (reflecting surface) of the tower. The surface of the tower has a curved surface. Steam is present in the middle of the tower from the heat source. No gas appears in the vicinity of the tower, and there is no gas at one point SP3 on the surface of the tower. The point SP3 corresponds to one pixel of the image 100.
- FIG. 13 is a graph showing a temperature change at the point SP3.
- the horizontal axis and vertical axis of the graph are the same as the horizontal axis and vertical axis of the graph of FIG. 4A. Since the frame rate is 30 fps, a graph of temperature change for 10 seconds is shown. With reference to FIG. 4A and FIG. 13, the temperature change at point SP3 and the temperature change at point SP1 where gas is leaking are common in that the temperature is finely changed.
- FIG. 14 is a graph showing difference data D8 generated based on the time-series pixel data D1 indicating the temperature change at the point SP3.
- the horizontal axis of the graph is the same as the horizontal axis of the graph of FIG. 4A.
- the vertical axis of the graph represents the standard deviation difference.
- the difference data D8 is generated by performing the processing in steps S2 to S8 shown in FIG. 5 on the time-series pixel data D1 indicating the temperature change at the point SP3.
- the difference data D8 during the period when the gas is out is larger than the difference data D8 during the period when the gas is out.
- the difference data D8 shown in FIG. 14 is as large as the difference data D8 during the period when the gas is emitted. Therefore, when the difference data D8 shown in FIG. 14 is obtained, the gas detection image processing apparatus 3 may erroneously detect gas.
- Embodiments include a first aspect to a third aspect. The first aspect will be described.
- FIG. 15 is a flowchart of processing executed in the first aspect of the embodiment.
- the first processing unit 91 generates a moving image of the monitoring image based on the moving image data MD (step S100). More specifically, the first processing unit 91 performs the processing of steps S1 to S9 shown in FIG. 5 for the moving image data MD. Thereby, each frame constituting the moving image becomes a monitoring image from the infrared image, and the moving image of the monitoring image is generated.
- the monitoring images are, for example, an image I12 shown in FIG. 10 and an image I15 shown in FIG. If a gas candidate has appeared, a first region image indicating a region in which the gas candidate has appeared is included in the monitoring image.
- An image indicating a region where gas appears may be a first region image, or an image generated due to the above case (hereinafter, a non-gas region image) may be a first region image.
- 1 region image may be obtained.
- the image I15 is an image 2 seconds after the start of gas ejection.
- a white area located near the center of the image I15 is the first area image.
- the first region image is a gas region image.
- the first region image is obtained by the processing of step S1 to step S9.
- a known technique for obtaining a gas region image by image processing for an infrared image for example, disclosed in Patent Document 1).
- the first region image may be obtained using image processing.
- the processing in step S100 is processing for extracting the first region image from the infrared image.
- the infrared image that has been processed to extract the first region image is a monitoring image.
- the first processing unit 91 sets a predetermined area including the first area image as each monitoring image, and acquires the predetermined area as the first image (step S101). That is, the first processing unit 91 sets a predetermined region including the first region image in each infrared image that has been subjected to the process of extracting the first region image, and acquires the predetermined region as the first image. To do.
- FIG. 16 is an explanatory diagram illustrating the first image 1I and the second image 2I generated by the first aspect of the embodiment when steam is present in the middle of the reflection surface from the heat source.
- FIG. 16 shows a first image 1I cut out from the monitoring image.
- the first processing unit 91 may automatically cut out the first image 1I from the monitoring image, or the user actually operates the gas detection system 1 and confirms a region where reflection that is erroneously recognized as gas occurs. However, it may be cut out manually. In the latter case, the user determines the size of the first image 1I so that the first region image 1i is included in the first image 1I. The determined size is stored in the first processing unit 91 in advance.
- the first processing unit 91 binarizes the monitoring image shown in FIGS. 10 and 11 (that is, for example, the difference data D8 shown in FIG. 9 and the difference data D8 shown in FIG. After binarization with a predetermined threshold (for example, 0.02), labeling processing is performed, and the image is automatically cut out.
- a predetermined threshold for example, 0.02
- each first image 1I shown in FIG. 16 is a first image 1I set in each frame (each monitoring image) constituting the moving image.
- the first image 1I-1 is the first image 1I set as the first monitoring image
- the first image 1I-2 is the first image set as the second monitoring image.
- the first image 1I-3 is the first image 1I set as the third monitoring image
- the first image 1I-4 is the first image set as the Nth monitoring image.
- the first image 1I-5 is the first image 1I set as the (N + 1) th monitoring image
- the first image 1I-6 is set as the (N + 2) th monitoring image. This is the first image 1I.
- the first image 1I is a part of the monitoring image and has a rectangular shape.
- the shape of the first image 1I is not limited to a rectangular shape.
- the value of each pixel constituting the first image 1I is a difference in standard deviation.
- an image composed of pixels other than black pixels is the first region image 1i.
- the first region image 1i does not always have the same shape, and changes with time. This is because steam exists in the middle of the reflective surface from the heat source.
- the first processing unit 91 performs the first processing on the plurality of infrared images captured in time series in each of the two predetermined periods (0 second to 5 seconds, 5 seconds to 10 seconds). (Step S100 and Step S101).
- the first process is a process of acquiring the first image 1I including the first region image 1i extracted from the predetermined region of the infrared image.
- the first processing unit 91 performs a first process on each of a plurality of infrared images captured in time series in a predetermined period (0 to 5 seconds), and performs a plurality of first images 1I (first ), And a plurality of infrared images captured in time series for a predetermined period (5 to 10 seconds), and the first image 1I-2, the first image 1I-2, the first image 1I-3,. For each of these, a first process is performed to obtain a plurality of first images 1I (first image 1I-4, first image 1I-5, first image 1I-6,). To do.
- the first processing unit 91 performs processing for extracting the first region image 1i for each infrared image (step S100), and each infrared image subjected to this processing.
- a predetermined area including the first area image 1i is set, and the predetermined area is acquired as the first image 1I (step S101).
- the user may set a predetermined region in the infrared image in advance. The modification is applied when a location where gas is likely to appear is known in advance.
- the input unit 12 functions as a first input unit.
- the display control unit 10 displays a moving image (infrared image moving image) indicated by the moving image data MD on the display unit 11.
- the user operates the input unit 12 to set a predetermined region in the infrared image displayed on the display unit 11.
- the first processing unit 91 When the input unit 12 is operated and a predetermined region is set in the infrared image, the first processing unit 91 performs a process of extracting the first region image 1i from the entire infrared image. Instead, the first region image 1i is extracted from the predetermined region. The first processing unit 91 acquires the predetermined area subjected to this processing as the first image 1I.
- the modification since the process of extracting the first region image 1i is performed not on the entire infrared image but on a predetermined region set in the infrared image, the amount of image processing can be reduced.
- the modification can also be applied to the second aspect and the third aspect of the embodiments described later.
- the second processing unit 92 generates two second images 2I-1 and 2I-2 (step S102).
- the second processing unit 92 includes a plurality of first images 1I (first images 1I-1, 1A-1) acquired from each frame (each monitoring image) constituting a moving image of 0 to 5 seconds (predetermined period). Using the first image 1I-2, the first image 1I-3,..., A second image 2I-1 is generated. More specifically, the second processing unit 92 determines the maximum value of the values (in this case, the standard deviation difference) indicated by the pixels from the pixels located in the same order in the plurality of first images 1I. .
- the second processing unit 92 sets the maximum value as the value of the pixel located in the above order in the second image 2I-1. More specifically, the second processing unit 92 determines the maximum value indicated by the first pixel in the plurality of first images 1I, and uses this value as 1 of the second image 2I-1. The value of the second pixel. The second processing unit 92 determines the maximum value indicated by the second pixel in the plurality of first images 1I, and uses this value as the value of the second pixel of the second image 2I-1. To do. The second processing unit 92 performs the same process for the third and subsequent pixels.
- the image included in the second image 2I-1 is an area where the gas candidate has appeared in at least a part of the predetermined period. It turned out that it becomes the image (2nd area
- the second image 2I is generated using the maximum value of pixels located in the same order. There are other methods for generating the second image 2I. In the second aspect of the embodiment described later, the second image 2I is generated by another method.
- the second processing unit 92 includes a plurality of first images 1I (first images 1I-4,...) Acquired from each frame (each monitoring image) constituting a moving image of 5 to 10 seconds (predetermined period).
- a second image 2I-2 is generated using the first image 1I-5, the first image 1I-6,. Since the method for generating the second image 2I-2 is the same as the method for generating the second image 2I-1, description thereof will be omitted.
- the second processing unit 92 performs the second processing on the plurality of first images 1I generated corresponding to each of the two predetermined periods (0 to 5 seconds, 5 to 10 seconds). To generate two second images 2I-1 and 2I-2. In the second process, a second image 2I including a second region image 2i indicating a region where a gas candidate has appeared in at least a part of a predetermined period is generated using the plurality of first images 1I. It is processing.
- the calculating unit 93 calculates the similarity between the second image 2I-1 and the second image 2I-2 using Equation 1 (step S103).
- Formula 1 shows the normalized cross correlation (NCC).
- I (i, j) indicates coordinates on the second image 2I-1.
- T (i, j) indicates coordinates on the second image 2I-2.
- i represents a coordinate value in the x direction.
- j represents a coordinate value in the y direction.
- M indicates the number of pixels in the x direction of the second image 2I.
- N indicates the number of pixels in the y direction of the second image 2I.
- Normalized cross-correlation is a value in the range of -1 to +1. When there is no correlation between the second image 2I-1 and the second image 2I-2, the normalized cross-correlation is zero. As the positive correlation between the second image 2I-1 and the second image 2I-2 increases, the normalized cross-correlation approaches +1. As the negative correlation between the second image 2I-1 and the second image 2I-2 becomes stronger, the normalized cross-correlation approaches -1. As the normalized cross-correlation approaches +1, the similarity between the second image 2I-1 and the second image 2I-2 increases. The similarity between the second image 2I-1 and the second image 2I-2 is 0.979.
- FIG. 17 is an explanatory diagram for explaining the first image 1I and the second image 2I generated by the first aspect of the embodiment when gas is present.
- Each first image 1I shown in FIG. 17 is the first image 1I acquired from each frame (each monitoring image) that forms a 10-second moving image, as in FIG.
- the second image 2I-3 includes a plurality of first images 1I (first image 1I-7, first image 1I) acquired from each frame (each monitoring image) constituting a moving image of 0 to 5 seconds. ⁇ 8, the first image 1I-9,...)).
- the second image 2I-4 is a first image 1I (first image 1I-10, first image 1I-11) acquired from each frame (each monitoring image) constituting a moving image of 5 to 10 seconds. , The first image 1I-12,).
- the similarity between the second image 2I-3 and the second image 2I-4 is 0.855.
- FIG. 18 is an image diagram showing the image 102 cut out from the infrared image.
- Image 102 includes a tower image. Vapor is present in the middle of the tower from the light source.
- FIG. 19 is an explanatory diagram illustrating the first image 1I and the second image 2I generated by the first aspect of the embodiment when steam is present in the middle of the reflection surface from the light source.
- Each first image 1I shown in FIG. 19 is the first image 1I acquired from each frame (each monitoring image) constituting a 10-second moving image, as in FIG.
- the second image 2I-5 is a first image 1I (first image 1I-13, first image 1I-14) acquired from each frame (each monitoring image) constituting a moving image of 0 to 5 seconds.
- First image 1I-15 The second image 2I-6 is a first image 1I (first image 1I-16, first image 1I-17) acquired from each frame (each monitoring image) constituting a moving image of 5 to 10 seconds.
- the first image 1I-18 The similarity between the second image 2I-5 and the second image 2I-6 is 0.917.
- the similarity threshold is 0.900, for example, the gas candidate can be identified as a gas.
- the determination unit 94 compares the similarity with a threshold value (for example, 0.900), and determines that the gas candidate is not a gas if the similarity exceeds the threshold value. If it is below, it determines with a gas candidate being gas (step S104).
- two second images 2I are generated, and based on the similarity between these second images 2I, whether or not the gas candidate is a gas is determined. Since the determination is made, the accuracy of gas detection can be improved.
- the length of the two predetermined periods has been described by taking 5 seconds as an example, but is not limited to 5 seconds (for example, 10 seconds).
- the lengths of the two predetermined periods may be the same or different.
- FIG. 20 is a flowchart of processing executed in the second mode of the embodiment.
- the 1st process part 91 produces
- the first processing unit 91 performs binarization processing on each frame (each monitoring image) constituting the moving image generated in step S200 (step S201).
- the threshold value used in this process will be described.
- FIG. 21 is a graph obtained by adding a threshold value to the graph shown in FIG.
- This graph is a graph showing a change in the value of the pixel corresponding to the location where the gas does not appear (point SP3).
- This graph shows the difference data D8. Since the frame rate is 30 fps, differential data D8 for 10 seconds is shown. The difference data D8 in this graph is always greater than 0.02. Therefore, here, the threshold value of the binarization process is set to 0.02.
- each frame (each binarized image) constituting the moving image binarized in step S201 includes a first region image 1i indicating a region where a gas candidate appears.
- FIG. 22 is an explanatory diagram for explaining the first image 1I and the second image 2I generated by the second aspect of the embodiment when steam is present in the middle of the reflection surface from the heat source.
- the reflective surface is the surface of the tower.
- the first processing unit 91 acquires the first image 1I from each frame (each binarized image) constituting a moving image for 10 seconds by the same process as step S101 of the first mode (step S202).
- the second processing unit 92 generates two second images 2I-7 and 2I-8 (step S203).
- the second processing unit 92 includes a plurality of first images 1I (first images 1I ⁇ ) acquired from each frame (each binarized image) constituting a moving image of 0 to 5 seconds (predetermined period). 19, the second image 2I-7 is generated using the first image 1I-20, the first image 1I-21,. More specifically, the pixels constituting the first region image 1i are white pixels, and the other pixels are black pixels. If at least one white pixel is present in the same order of pixels in the plurality of first images 1I, the second processing unit 92 is a pixel located in the above order in the second image 2I-7. Is a white pixel.
- the second processing unit 92 determines that if there is at least one white pixel among the first pixels in the plurality of first images 1I, The second pixel is a white pixel. If there is at least one white pixel among the second pixels in the plurality of first images 1I, the second processing unit 92 sets the second pixel as a white pixel in the second image 2I-7. And The second processing unit 92 performs the same process for the third and subsequent pixels.
- the image included in the second image 2I-7 is an area where the gas candidate has appeared in at least a part of the predetermined period. It turned out that it becomes the image (2nd area
- the second processing unit 92 includes a plurality of first images 1I (first images 1I ⁇ ) acquired from each frame (each binarized image) constituting a moving image of 5 to 10 seconds (predetermined period). 22, a first image 1I-23, a first image 1I-24,...) Are used to generate a second image 2I-8. Since the method for generating the second image 2I-8 is the same as the method for generating the second image 2I-7, description thereof is omitted.
- the calculating unit 93 calculates the similarity between the second image 2I-7 and the second image 2I-8 using Expression 2 (step S204).
- Equation 2 shows the ratio of the pixels located in the same order in the second image 2I-7 and the second image 2I-8. Equation 2 will be described in detail.
- the second image 2I is a binarized image.
- the calculation unit 93 determines whether or not the pixels located in the same order match in the second image 2I-7 and the second image 2I-8. If one is a black pixel and the other is a white pixel, the pixels do not match. Pixels positioned in this order are not coincident pixels. If both are white pixels, the pixels match. Pixels positioned in this order are coincident pixels. If both are black pixels, the pixels match. Pixels positioned in this order are coincident pixels.
- the total number of pixels in Equation 2 is the number of pixels in one second image 2I.
- the number of matching pixels is the total number of matching pixels.
- the similarity between the second image 2I-7 and the second image 2I-8 is 0.97.
- FIG. 23 is an explanatory diagram for explaining the first image 1I and the second image 2I generated by the second aspect of the embodiment when gas is present.
- Each first image 1I shown in FIG. 23 is the first image 1I acquired from each frame (each monitoring image) constituting a 10-second moving image, as in FIG.
- the second image 2I-9 includes a plurality of first images 1I (first image 1I-25, first image) acquired from each frame (each binarized image) constituting a moving image of 0 to 5 seconds. This is a second image 2I generated using the image 1I-26, the first image 1I-27,.
- the second image 2I-10 is a first image 1I (first image 1I-28, first image 1I) obtained from each frame (each binarized image) constituting a moving image of 5 to 10 seconds. -29, first image 1I-30,...)).
- the similarity between the second image 2I-9 and the second image 2I-10 is 0.69.
- the similarity threshold is 0.90, for example, it is possible to identify whether or not the gas candidate is a gas.
- the determination unit 94 compares the similarity with a threshold (for example, 0.90), and determines that the gas candidate is not a gas if the similarity exceeds the threshold, and the similarity is equal to or less than the threshold. If so, it is determined that the gas candidate is a gas (step S205).
- the similarity is calculated using Equation 2, but the similarity may be calculated using Equation 1.
- a third aspect of the embodiment will be described.
- the similarity of the second image 2I exceeds the threshold value, it is determined that the gas candidate is not a gas.
- the following determination process is performed in addition to the similarity in order to further increase the determination accuracy of whether or not the gas candidate is a gas.
- the input unit 12 functions as a second input unit.
- a user operates the input unit 12 to set a range of a reflection surface that may reflect at least one of light and heat in an infrared image in advance.
- the reflecting surface is, for example, a tower surface.
- FIG. 24 is an image diagram showing the infrared image 103 in which the range 104 of the reflection surface is set.
- a reflection surface range 104 is set in the tower image 101.
- the reflection surface range 104 is set in each frame constituting the moving image indicated by the moving image data MD (set in each infrared image).
- FIG. 25 is an image diagram showing a first image 1I generated from the infrared image 103 shown in FIG.
- the determination unit 94 determines whether or not the first region image 1i included in the first image 1I protrudes from the range 104 of the reflection surface.
- the determination unit 94 determines whether or not the gas candidate is a gas based on whether or not the first region image 1I protrudes from the reflection surface range 104 and the similarity of the second image 2I.
- the similarity may be the similarity calculated in the first mode (step S103 in FIG. 15) or the similarity calculated in the second mode (step S204 in FIG. 20).
- the first region image 1i may exceed the range 104 of the reflecting surface.
- the first region image 1 i does not exceed the range 104 of the reflecting surface. Therefore, when the first region image 1i exceeds the reflection surface range 104, the gas candidate may be a gas.
- the third aspect of the embodiment is based on the similarity of the second image 2I and whether or not the gas candidate is a gas based on whether or not the first region image 1i protrudes from the range 104 of the reflecting surface. Determine whether. Therefore, according to the 3rd mode of an embodiment, the accuracy of gas detection can be raised more.
- a monitoring period in which the determination unit 94 monitors whether or not the first region image 1i exceeds the reflection surface range 104 (in other words, whether or not the first region image 1i exceeds the reflection surface range 104.
- the number of first images 1I to be determined) is arbitrary.
- the determination unit 94 may make the monitoring period parallel to two predetermined periods (0 to 5 seconds, 5 seconds to 10 seconds). In this case, the monitoring period is 10 seconds. The longer the monitoring period, the higher the accuracy of discrimination between gas and reflection with less fluctuation. This is because if the monitoring time is short, the first region image 1i may not exceed the reflection surface range 104 even when gas is present.
- the determination unit 94 when the similarity of the second image 2I exceeds the threshold, and the first region image 1i does not exceed the reflection surface range 104 in the monitoring period of 10 seconds, It is determined that the gas candidate is highly likely to be generated due to reflection. Then, the determination unit 94 determines that the gas candidate is generated due to reflection when the first region image 1i does not exceed the range 104 of the reflecting surface in a period longer than the monitoring period (for example, 1 minute). May be.
- the gas detection image processing apparatus obtains a first image including a first region image extracted from a predetermined region of an infrared image and indicating a region where a gas candidate appears. Performing a first process on each of the plurality of infrared images captured in time series in a predetermined period, and acquiring a plurality of the first images; and at least the predetermined period A second process of performing a second process of generating a second image including a second region image indicating a region where the gas candidate has appeared using a plurality of the first images. A section. The first processing unit performs the first process on the plurality of infrared images captured in time series in each of the two or more predetermined periods.
- the second processing unit generates the two or more second images by performing the second process on the plurality of first images generated corresponding to each of the two or more predetermined periods. To do.
- the gas detection image processing apparatus according to the first aspect of the embodiment further includes a determination unit that determines whether the gas candidate is a gas based on the similarity between two or more second images.
- the first region image is generated not only when the gas appears, but also in the cases (1) to (4) described above (for example, steam or the like is present in the middle of the reflection surface from the heat source).
- the second region image included in the second image is an image indicating a region where the gas candidate has appeared in at least a part of the predetermined period.
- the predetermined period may be the entire period (5 seconds) or a part of the predetermined period (for example, 1 second).
- the present inventor found that the similarity between the second images is relatively low when gas is present, and the similarity between the second images is relatively high when the causes are (1) to (4). I found out that More specifically, when the reflection caused by the above (1) to (4) occurs in a predetermined period, the reflected points are different when individual times in the predetermined period are compared. That is, when the first region image is generated due to (1) to (4), the similarity between the first images is relatively low. When the whole period is compared, the reflected points are similar. That is, in the cases (1) to (4), the similarity between the second images is relatively high.
- the gas fluctuates irregularly.
- the locations where the gas appears are different. That is, when the first region image is generated due to the appearance of gas, the similarity between the first images is relatively low. This is the same as in the case of reflection. Comparing the whole of the predetermined period, the part where the gas appears is not similar. That is, when gas appears, the similarity between the second images is relatively low.
- the determination unit determines whether the gas candidate is a gas based on the similarity between two or more second images. For example, when there are two second images, if the similarity between the two second images exceeds a predetermined threshold, the determination unit determines that the gas candidate is not a gas, and the similarity is If it is equal to or less than the predetermined threshold, the gas candidate is determined to be gas. For example, when there are three or more second images, the determination unit uses one second image as the reference image, and the similarity between the reference image and the remaining second images exceeds the threshold value. For example, it is determined that the gas candidate is not a gas, and if at least one of the similarities is equal to or less than a predetermined threshold value, the gas candidate is determined to be a gas.
- two or more second images are generated, and the gas is determined based on the similarity between the second images. Since it is determined whether a candidate is gas, the accuracy of gas detection can be improved.
- Two or more predetermined periods may be continuous (for example, one predetermined period is 0 to 5 seconds, another predetermined period is 5 to 10 seconds), or may be separated (for example, A certain predetermined period between 0 and 5 seconds, another predetermined period between 10 seconds and 15 seconds), and some may overlap (for example, a certain predetermined period between 0 and 5 seconds; The predetermined period of 3 seconds to 8 seconds).
- the determination unit may calculate the degree of similarity using normalized cross-correlation, and in the two or more second images binarized, the ratio of pixels that are located in the same order matches.
- the similarity may be calculated.
- the first processing unit performs an extraction process for extracting the first region image from the infrared image, and the first image is extracted from the infrared image that has been subjected to the extraction process.
- the predetermined area including the area image is set, and the predetermined area is acquired as the first image.
- This configuration performs a process of extracting a first region image (that is, an image showing a region where a gas candidate appears) for the entire infrared image.
- the method of extracting the first region image is not limited to this, and a process of extracting the first region image may be performed on a part of the infrared image. This is shown below.
- the image processing apparatus further includes a first input unit, and the first processing unit operates in the predetermined region when the predetermined region is set in the infrared image by operating the first input unit.
- the first processing unit operates in the predetermined region when the predetermined region is set in the infrared image by operating the first input unit.
- an extraction process for extracting the first area image is performed, and the predetermined area subjected to the extraction process is acquired as the first image.
- This configuration is applied when a location where gas is likely to appear is known in advance. According to this configuration, since the first region image is extracted with respect to a predetermined region set in the infrared image instead of the entire infrared image, the amount of image processing can be reduced.
- the second processing unit uses, as a value of pixels positioned in the order of the second image, a maximum value indicated by pixels positioned in the same order in the plurality of first images. Set to generate the second image.
- the second image generated by this configuration is a first example of the second image.
- the maximum value of the first pixel is 0.2 in the plurality of first images
- the value of the first pixel is 0.2 in the second image.
- the values of the remaining pixels of the second image are determined in the same manner.
- the image contained in a 2nd image will show the area
- the second processing unit sets, in the plurality of first images, pixels that exceed a predetermined threshold as pixels constituting the second region image, Generate an image.
- the second image generated by this configuration is a second example of the second image.
- a plurality of first images are binarized and the first region image is composed of white pixels.
- the pixels located in that order in the second image are white pixels.
- the second region image is composed of white pixels.
- the image forming apparatus further includes a second input unit, and the determination unit has a reflection surface range in which at least one of light and heat may be reflected when the second input unit is operated.
- the determination unit When the plurality of infrared images are set, it is determined whether the first region image included in the first image protrudes from the range, and the determination unit protrudes from the range. Whether or not the gas candidate is a gas is determined based on whether or not the gas is present and the similarity.
- the user presets the range of the reflective surface that may reflect at least one of light and heat in the infrared image.
- This range is, for example, a tower image range or a piping image range.
- the first region image may exceed the range of the reflecting surface.
- the first region image does not exceed the range of the reflection surface. Therefore, when the first region image exceeds the range of the reflecting surface, the gas candidate may be a gas.
- this configuration determines whether or not the gas candidate is a gas based on the similarity of the second image and whether or not the first region image protrudes from the range of the reflecting surface. Therefore, according to this configuration, the accuracy of gas detection can be further increased.
- the gas detection image processing method acquires a first image including a first region image extracted from a predetermined region of an infrared image and indicating a region where a gas candidate appears. Performing a first process on each of the plurality of infrared images captured in time series in a predetermined period, and acquiring a plurality of the first images; and at least the predetermined period A second process of performing a second process of generating a second image including a second region image indicating a region where the gas candidate has appeared using a plurality of the first images. Steps.
- the first processing step performs the first processing on the plurality of infrared images captured in time series in each of the two or more predetermined periods.
- the second processing step generates the two or more second images by performing the second processing on the plurality of the first images generated corresponding to each of the two or more predetermined periods. To do.
- the image processing method for gas detection according to the second aspect of the embodiment further includes a determination step of determining whether or not the gas candidate is a gas based on the similarity of two or more second images.
- the image processing method for gas detection according to the second aspect of the embodiment defines the image processing apparatus for gas detection according to the first aspect of the embodiment from the viewpoint of the method, and the gas detection according to the first aspect of the embodiment. This has the same effect as the image processing apparatus for use.
- the gas detection image processing program acquires a first image including a first region image extracted from a predetermined region of an infrared image and indicating a region where a gas candidate appears. Performing a first process on each of the plurality of infrared images captured in time series in a predetermined period, and acquiring a plurality of the first images; and at least the predetermined period A second process of performing a second process of generating a second image including a second region image indicating a region where the gas candidate has appeared using a plurality of the first images. And causing the computer to execute the steps.
- the first processing step performs the first processing on the plurality of infrared images captured in time series in each of the two or more predetermined periods.
- the second processing step generates the two or more second images by performing the second processing on the plurality of the first images generated corresponding to each of the two or more predetermined periods. To do.
- the image processing program for gas detection according to the third aspect of the embodiment further includes a determination step for determining whether or not the gas candidate is a gas based on the similarity of two or more second images. Let it run.
- the gas detection image processing program according to the third aspect of the embodiment defines the gas detection image processing apparatus according to the first aspect of the embodiment from the viewpoint of the program, and the gas detection according to the first aspect of the embodiment. This has the same effect as the image processing apparatus for use.
- the gas detection image processing apparatus may include a calculation unit that calculates the similarity of two or more second images instead of the determination unit. The same applies to the gas detection image processing method according to the second aspect of the embodiment and the gas detection image processing program according to the third aspect of the embodiment.
- the present invention it is possible to provide a gas detection image processing apparatus, a gas detection image processing method, and a gas detection image processing program.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Quality & Reliability (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Image Analysis (AREA)
- Closed-Circuit Television Systems (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
ガス検知用画像処理装置3は、第1の処理部91と、第2の処理部92と、算出部93と、を備える。第1の処理部91は、2以上の所定期間のそれぞれにおいて、時系列に撮像された複数の赤外画像に関して、第1の処理をする。第1の処理は、ガス候補が出現している領域を示す第1の領域像1iを含む第1の画像1Iを取得する処理である。第2の処理部92は、2以上の所定期間のそれぞれに対応して生成された複数の第1の画像1Iに第2の処理をして、2以上の第2の画像2Iを生成する。第2の処理は、所定期間の少なくとも一部において、ガス候補が出現していた領域を示す第2の領域像2iを含む第2の画像2Iを、複数の第1の画像1Iを用いて生成する処理である。算出部93は、2以上の第2の画像2Iの類似度を算出する。
Description
本発明は、赤外画像を利用してガスを検知する技術に関する。
ガス漏れが発生したとき、漏れたガスが漂っている領域では、わずかな温度変化が生じる。この原理を利用してガス検知する技術として、赤外画像を利用したガス検知が知られている。
赤外画像を利用したガス検知として、例えば、特許文献1は、検査対象領域を撮影する赤外線カメラと、赤外線カメラにより撮影された赤外画像を処理する画像処理部と、を有し、画像処理部は、時系列に並べられた複数の赤外画像からガス漏れによる動的なゆらぎを抽出するゆらぎ抽出部を有するガス漏れ検出装置を開示している。
ガス検知がされる場所(例えば、ガスプラント)には、反射面となる物がある(例えば、塔、配管)。反射面は、熱源からの熱を反射したり、光源(太陽)からの光を反射したりする。本発明者は、以下の場合、ガスの誤検知が発生することを見出した。
(1)熱源から反射面の途中に蒸気等が存在する。
(2)光源から反射面の途中に蒸気等が存在する
(3)熱源から反射面の途中に蒸気等が存在しなくても、熱源がゆらぎ、この熱源からの熱が反射面で反射される。
(4)光源から反射面の途中に蒸気等が存在しなくても、光源がゆらぎ、この光源からの光が反射面で反射される。
(1)熱源から反射面の途中に蒸気等が存在する。
(2)光源から反射面の途中に蒸気等が存在する
(3)熱源から反射面の途中に蒸気等が存在しなくても、熱源がゆらぎ、この熱源からの熱が反射面で反射される。
(4)光源から反射面の途中に蒸気等が存在しなくても、光源がゆらぎ、この光源からの光が反射面で反射される。
例えば、光源から反射面の途中に蒸気が存在する場合、反射面に写る蒸気の影が、赤外画像にガスのように写るのである。光源がゆらぐと、ガスがゆらいでいるように、赤外画像に光源のゆらぎが写るのである。ゆらぎが発生する条件として、例えば、反射面が曲面であり、かつ、雲が移動することである。すなわち、雲が移動して太陽光を遮ったり、太陽光を遮っている雲が移動したりすると、反射面にあたる光の量が変わり、見かけの温度が変化することにより、ゆらぎが発生する。
本発明は、ガスの検知精度を向上させることができるガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラムを提供することを目的とする。
上述した目的を実現するために、本発明の一側面を反映したガス検知用画像処理装置は、第1の処理部と、第2の処理部と、算出部と、を備える。第1の処理部は、赤外画像の所定領域から抽出された、ガス候補が出現している領域を示す第1の領域像を含む第1の画像を取得する第1の処理を、所定期間において時系列に撮像された複数の前記赤外画像のそれぞれに関して実行し、複数の前記第1の画像を取得する。第2の処理部は、前記所定期間の少なくとも一部において、前記ガス候補が出現していた領域を示す第2の領域像を含む第2の画像を、複数の前記第1の画像を用いて生成する第2の処理をする。前記第1の処理部は、2以上の前記所定期間のそれぞれにおいて、時系列に撮像された複数の前記赤外画像に関して、前記第1の処理をする。前記第2の処理部は、2以上の前記所定期間のそれぞれに対応して生成された複数の前記第1の画像に前記第2の処理をして、2以上の前記第2の画像を生成する。算出部は、2以上の前記第2の画像の類似度を算出する。
発明の1又は複数の実施形態により与えられる利点及び特徴は以下に与えられる詳細な説明及び添付図面から十分に理解される。これら詳細な説明及び添付図面は、例としてのみ与えられるものであり本発明の限定の定義として意図されるものではない。
以下、図面を参照して、本発明の1又は複数の実施形態が説明される。しかし、発明の範囲は、開示された実施形態に限定されない。
各図において、同一符号を付した構成は、同一の構成であることを示し、その構成について、既に説明している内容については、その説明を省略する。本明細書において、総称する場合には添え字を省略した参照符号で示し(例えば、第1の画像1I)、個別の構成を指す場合には添え字を付した参照符号で示す(例えば、第1の画像1I-1)。
図1Aは、実施形態に係るガス検知システム1の構成を示すブロック図である。ガス検知システム1は、赤外線カメラ2とガス検知用画像処理装置3とを備える。
赤外線カメラ2は、ガス漏れの監視対象(例えば、ガス輸送管どうしが接続されている箇所)を含む被写体について、赤外画像の動画を撮影し、動画を示す動画データMDを生成する。時系列に撮像された複数の赤外画像であればよく、動画に限定されない。赤外線カメラ2は、光学系4、フィルター5、二次元イメージセンサー6及び信号処理部7を備える。
光学系4は、被写体の赤外画像を二次元イメージセンサー6上で結像させる。フィルター5は、光学系4と二次元イメージセンサー6との間に配置され、光学系4を通過した光のうち、特定波長の赤外線のみを通過させる。赤外の波長帯のうち、フィルター5を通過させる波長帯は、検知するガスの種類に依存する。例えばメタンの場合、3.2~3.4μmの波長帯を通過させるフィルター5が用いられる。二次元イメージセンサー6は、例えば、冷却型インジウムアンチモン(InSb)イメージセンサーであり、フィルター5を通過した赤外線を受光する。信号処理部7は、二次元イメージセンサー6から出力されたアナログ信号を、デジタル信号に変換し、公知の画像処理をする。このデジタル信号が、動画データMDとなる。
ガス検知用画像処理装置3は、パーソナルコンピュータ、スマートフォン、タブレット端末等であり、機能ブロックとして、画像データ入力部8、画像処理部9、表示制御部10、表示部11及び入力部12を備える。
画像データ入力部8は、赤外線カメラ2の通信部(不図示)と通信する通信インターフェイスである。画像データ入力部8には、赤外線カメラ2の通信部から送られてきた動画データMDが入力される。画像データ入力部8は、動画データMDを画像処理部9へ送る。
画像処理部9は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及び、HDD(Hard Disk Drive)等によって実現され、動画データMDに所定の処理をする。所定の処理とは、例えば、動画データMDから時系列画素データを生成する処理である。
時系列画素データを具体的に説明する。図2は、時系列画素データD1を説明する説明図である。動画データMDで示される動画は、フレームが時系列に複数並べられた構造を有する。複数のフレーム(複数の赤外画像)において、同じ位置にある画素の画素データを時系列に並べたデータを、時系列画素データD1とする。赤外画像の動画のフレーム数をKとする。一つのフレームがM個の画素、すなわち、1番目の画素、2番目の画素、・・・、M-1番目の画素、M番目の画素で構成されている。画素データ(画素値)を基にして、輝度、温度等の物理量が定められる。
複数(K個)のフレームの同じ位置にある画素とは、同じ順番の画素を意味する。例えば、1番目の画素で説明すると、1番目のフレームに含まれる1番目の画素の画素データ、2番目のフレームに含まれる1番目の画素の画素データ、・・・、K-1番目のフレームに含まれる1番目の画素の画素データ、K番目のフレームに含まれる1番目の画素の画素データを、時系列に並べたデータが、1番目の画素の時系列画素データD1となる。また、M番目の画素で説明すると、1番目のフレームに含まれるM番目の画素の画素データ、2番目のフレームに含まれるM番目の画素の画素データ、・・・、K-1番目のフレームに含まれるM番目の画素の画素データ、K番目のフレームに含まれるM番目の画素の画素データを、時系列に並べたデータが、M番目の画素の時系列画素データD1となる。時系列画素データD1の数は、一つのフレームを構成する画素の数と同じである。
図1Aを参照して、画像処理部9は、第1の処理部91、第2の処理部92、算出部93、及び、判定部94を備える。これらについては、後で説明する。
表示制御部10は、CPU、RAM、ROM及びHDD等によって実現され、動画データMDで示される画像等を、表示部11に表示させる。表示部11は、例えば、液晶ディスプレイにより実現される。
入力部12は、キーボード、タッチパネル等により実現され、ガス検知に関連する各種入力がされる。実施形態に係るガス検知用画像処理装置3は、表示制御部10、表示部11及び入力部12を備えるが、これらを備えないガス検知用画像処理装置3でもよい。
図1Bは、図1Aに示すガス検知用画像処理装置3のハードウェア構成を示すブロック図である。ガス検知用画像処理装置3は、CPU3a、RAM3b、ROM3c、HDD3d、液晶ディスプレイ3e、通信インターフェイス3f、キーボード等3g、及び、これらを接続するバス3hを備える。液晶ディスプレイ3eは、表示部11を実現するハードウェアである。液晶ディスプレイ3eの替わりに、有機ELディスプレイ(Organic Light Emitting Diode display)、プラズマディスプレイ等でもよい。通信インターフェイス3fは、画像データ入力部8を実現するハードウェアである。キーボード等3gは、入力部12を実現するハードウェアである。
HDD3dには、画像処理部9及び表示制御部10について、これらの機能ブロックをそれぞれ実現するためのプログラムが格納されている。画像処理部9を実現するプログラムは、動画データMDを取得し、動画データMDに上記所定の処理をする処理プログラムである。表示制御部10を実現するプログラムは、画像(例えば、動画データMDで示される動画)を表示部11に表示させる表示制御プログラムである。これらのプログラムは、HDD3dの替わりにROM3cに格納しても良い。
CPU3aは、処理プログラム及び表示制御プログラムを、HDD3dから読み出してRAM3bに展開させ、展開されたプログラムを実行することによって、これらの機能ブロックが実現される。処理プログラム及び表示制御プログラムは、HDD3dに予め記憶されているが、これに限定されない。例えば、これらのプログラムを記録している記録媒体(例えば、磁気ディスク、光学ディスクのような外部記録媒体)が用意されており、この記録媒体に記憶されているプログラムがHDD3dに記憶されてもよい。また、これらのプログラムは、ガス検知用画像処理装置3とネットワーク接続されたサーバに格納されており、ネットワークを介して、これらのプログラムがHDD3dに送られ、HDD3dに記憶されても良い。
なお、ガス検知用画像処理装置3は、次に説明するように、第1態様から第3態様がある。これらの態様は、それぞれ、複数の要素によって構成される。従って、HDD3dには、これらの要素を実現するためのプログラムが格納されている。例えば、ガス検知用画像処理装置3の第1態様は、要素として、第1の処理部91、第2の処理部92、算出部93、及び、判定部94を含む。HDD3dには、第1の処理部91、第2の処理部92、算出部93、判定部94のそれぞれを実現するためのプログラムが格納されている。これらのプログラムは、第1の処理プログラム、第2の処理プログラム、算出プログラム、判定プログラムと表現される。
第1の処理プログラムを記憶しているHDDと、第2の処理プログラムを記憶しているHDDと、算出プログラムを記憶しているHDDと、判定プログラムを記憶しているHDDと、が互いに異なっていてもよい。この場合、第1の処理プログラムを記憶しているHDDを有するサーバと、第2の処理プログラムを記憶しているHDDを有するサーバと、算出プログラムを記憶しているHDDを有するサーバと、判定プログラムを記憶しているHDDを有するサーバとが、ネットワーク(例えば、インターネット)を介して接続されていてもよい。又は、少なくとも一つのHDDが、USBポートなどに接続された外付けHDDでもよいし、ネットワーク対応のHDD(NAS:Network Attached Storage)でもよい。これらのプログラムの少なくとも二以上を同じHDDに記憶させ、残りのプログラムを、このHDDと異なるHDDに記憶させてもよい(例えば、第1の処理プログラム及び第2の処理プログラムを第1のHDDに記憶させ、算出プログラムを第2のHDDに記憶させ、判定プログラムを第3のHDDに記憶させる)。
これらのプログラムは、要素の定義を用いて表現される。第1の処理部及び第1の処理プログラムを例にして説明する。第1の処理部は、赤外画像の所定領域から抽出された、ガス候補が出現している領域を示す第1の領域像を含む第1の画像を取得する第1の処理を、所定期間において時系列に撮像された複数の赤外画像のそれぞれに関して実行し、複数の第1の画像を取得する。第1の処理プログラムは、赤外画像の所定領域から抽出された、ガス候補が出現している領域を示す第1の領域像を含む第1の画像を取得する第1の処理を、所定期間において時系列に撮像された複数の赤外画像のそれぞれに関して実行し、複数の第1の画像を取得するプログラムである。
CPU3aによって実行されるこれらのプログラム(第1の処理プログラム、第2の処理プログラム、算出プログラム、判定プログラム)のフローチャートが、後で説明する図15である。
本発明者は、赤外画像を利用したガス検知において、ガス漏れと背景の温度変化とが並行して発生し、背景の温度変化が、漏れたガスによる温度変化よりも大きい場合、背景の温度変化を考慮しなければ、ガスが漏れている様子を画像で表示できないことを見出した。これについて詳しく説明する。
図3は、ガス漏れと背景の温度変化とが並行して発生している状態で、屋外の試験場所を撮影した赤外画像を時系列で示す画像図である。これらは、赤外線カメラで動画を撮影して得られた赤外画像である。試験場所には、ガスを噴出させることができる地点SP1がある。地点SP1と比較するために、ガスが噴出しない地点SP2を示している。
画像I1は、太陽光が雲で遮られる直前の時刻T1に撮影された試験場所の赤外画像である。画像I2は、時刻T1から5秒後の時刻T2に撮影された試験場所の赤外画像である。時刻T2は、太陽光が雲で遮られているので、時刻T1と比べて背景の温度が下がっている。
画像I3は、時刻T1から10秒後の時刻T3に撮影された試験場所の赤外画像である。時刻T2から時刻T3まで、太陽光が雲で遮られた状態が継続されているので、時刻T3は、時刻T2と比べて背景の温度が下がっている。
画像I4は、時刻T1から15秒後の時刻T4に撮影された試験場所の赤外画像である。時刻T3から時刻T4まで、太陽光が雲で遮られた状態が継続されているので、時刻T4は、時刻T3と比べて背景の温度が下がっている。
時刻T1から時刻T4までの15秒間で、背景の温度が約4℃下がっている。このため、画像I4は、画像I1と比べて全体的に暗くなっており、背景の温度が低下していることが分かる。
時刻T1後かつ時刻T2前の時刻に、地点SP1において、ガスの噴出を開始させている。噴出されたガスによる温度変化は、わずかである(約0.5℃)。このため、時刻T2、時刻T3、時刻T4では、地点SP1でガスが噴出しているが、噴出されたガスによる温度変化よりも、背景の温度変化の方がはるかに大きいので、画像I2、画像I3、画像I4を見ても地点SP1からガスが出ている様子が分からない。
図4Aは、試験場所の地点SP1の温度変化を示すグラフであり、図4Bは、試験場所の地点SP2の温度変化を示すグラフである。これらのグラフの縦軸は、温度を示している。これらのグラフの横軸は、フレームの順番を示している。例えば、45とは、45番目のフレームを意味する。フレームレートは、30fpsである。よって、1番目のフレームから450番目のフレームまでの時間は、15秒となる。
地点SP1の温度変化を示すグラフと地点SP2の温度変化を示すグラフとは異なる。地点SP2ではガスが噴出していないので、地点SP2の温度変化は、背景の温度変化を示している。これに対して、地点SP1では、ガスが噴出しているので、地点SP1には、ガスが漂っている。このため、地点SP1の温度変化は、背景の温度変化と漏れたガスによる温度変化とを加算した温度変化を示している。
図4Aに示すグラフからは、地点SP1でガスが噴出していることが分かる(すなわち、地点SP1でガス漏れが発生していることが分かる)。しかし、上述したように、図3に示す画像I2、画像I3、画像I4からは、地点SP1でガスが噴出していることが分からない(すなわち、地点SP1でガス漏れが発生していることが分からない)。
このように、噴出されたガス(漏れたガス)による温度変化よりも、背景の温度変化の方がはるかに大きい場合、図3に示す画像I2、画像I3、画像I4を見ても地点SP1からガスが出ている様子が分からない。
この原因は、動画データMD(図1A)には、漏れたガスによる温度変化を示す周波数成分データに加えて、この周波数成分データよりも周波数が低く、背景温度の変化を示す低周波成分データD2が含まれるからである。低周波成分データD2で示される像(背景の明暗の変化)により、前記周波数成分データで示される像が見えなくなるのである。図4A及び図4Bを参照して、地点SP1の温度変化を示すグラフに含まれる細かい変化が、前記周波数成分データに対応する。地点SP2の温度変化を示すグラフが低周波成分データD2に対応する。
そこで、画像処理部9(図1A)は、画素の位置がそれぞれ異なる複数の時系列画素データD1(すなわち、動画データMDを構成する複数の時系列画素データD1)を、動画データMDから生成し、複数の時系列画素データD1のそれぞれに対して、低周波成分データD2を除く処理をする。画素の位置がそれぞれ異なる複数の時系列画素データとは、図2を参照して、1番目画素の時系列画素データD1、2番目画素の時系列画素データD1、・・・、M-1番目画素の時系列画素データD1、M番目画素の時系列画素データD1を意味する。
漏れたガスによる温度変化を示す周波数成分データの周波数よりも周波数が高く、高周波ノイズを示す周波数成分データを、高周波成分データD3とする。画像処理部9は、動画データMDを構成する複数の時系列画素データD1のそれぞれに対して、低周波成分データD2を除く処理に加えて、高周波成分データD3を除く処理をする。
このように、画像処理部9は、フレームの単位で低周波成分データD2及び高周波成分データD3を除く処理をするのではなく、時系列画素データD1の単位で低周波成分データD2及び高周波成分データD3を除く処理をする。
ガス検知用画像処理装置3は、赤外画像を利用して、監視画像を生成する。ガス漏れが発生している場合、監視画像には、ガス漏れによりガスが出現している領域を示す像が含まれる。ガス検知用画像処理装置3は、監視画像を基にしてガス漏れを検知する。監視画像の生成方法として、様々な方法があるが、ここでは、監視画像の生成方法の一例を説明する。監視画像は、監視対象及び背景の赤外画像を利用して生成される。図5は、監視画像の生成処理を説明するフローチャートである。
図1A、図2及び図5を参照して、画像処理部9は、動画データMDからM個の時系列画素データD1を生成する(ステップS1)。
画像処理部9は、時系列画素データD1に対して、K個のフレームより少ない第1の所定数のフレームを単位とする単純移動平均を算出することにより時系列画素データD1から抽出されたデータを、低周波成分データD2とし、M個の時系列画素データD1のそれぞれに対応するM個の低周波成分データD2を抽出する(ステップS2)。
第1の所定数のフレームは、例えば、21フレームである。内訳は、ターゲットとなるフレーム、これより前の連続する10フレーム、これより後の連続する10フレームである。第1の所定数は、時系列画素データD1から低周波成分データD2を抽出できる数であればよく、21に限らず、21より多くてもよいし、21より少なくてもよい。
画像処理部9は、時系列画素データD1に対して、第1の所定数(例えば、21)より少ない第3の所定数(例えば、3)のフレームを単位とする単純移動平均を算出することにより時系列画素データD1から抽出されたデータを、高周波成分データD3とし、M個の時系列画素データD1のそれぞれに対応するM個の高周波成分データD3を抽出する(ステップS3)。
図6は、地点SP1(図4A)に対応する画素の時系列画素データD1、時系列画素データD1から抽出された低周波成分データD2、時系列画素データD1から抽出された高周波成分データD3を示すグラフである。グラフの縦軸及び横軸は、図4Aのグラフの縦軸及び横軸と同じである。時系列画素データD1で示される温度は、比較的急に変化し(変化の周期が比較的短く)、低周波成分データD2で示される温度は、比較的緩やかに変化している(変化の周期が比較的長い)。高周波成分データD3は、時系列画素データD1とほぼ重なって見える。
第3の所定数のフレームは、例えば、3フレームである。内訳は、ターゲットとなるフレーム、この直前の1フレーム、この直後の1フレームである。第3の所定数は、時系列画素データから第3の周波数成分を抽出できる数であればよく、3に限定されず、3より多くてもよい。
図1A、図2及び図5を参照して、画像処理部9は、時系列画素データD1とこの時系列画素データD1から抽出された低周波成分データD2との差分を算出して得られるデータを、差分データD4とし、M個の時系列画素データD1のそれぞれに対応するM個の差分データD4を算出する(ステップS4)。
画像処理部9は、時系列画素データD1とこの時系列画素データD1から抽出された高周波成分データD3との差分を算出して得られるデータを、差分データD5とし、M個の時系列画素データD1のそれぞれに対応するM個の差分データD5を算出する(ステップS5)。
図7Aは、差分データD4を示すグラフであり、図7Bは、差分データD5を示すグラフである。これらのグラフの縦軸及び横軸は、図4Aのグラフの縦軸及び横軸と同じである。差分データD4は、図6に示す時系列画素データD1と低周波成分データD2との差分を算出して得られたデータである。図4Aに示す地点SP1でガスの噴出を開始する前において(90番目くらいまでのフレーム)、差分データD4で示される微小な振幅の繰り返しは、主に、二次元イメージセンサー6のセンサーノイズを示している。地点SP1でガスの噴出を開始した後において(90番目以降のフレーム)、差分データD4の振幅及び波形のばらつきが大きくなっている。
差分データD5は、図6に示す時系列画素データD1と高周波成分データD3との差分を算出して得られたデータである。
差分データD4は、漏れたガスによる温度変化を示す周波数成分データ及び高周波成分データD3(高周波ノイズを示すデータ)を含む。差分データD5は、漏れたガスによる温度変化を示す周波数成分データを含まず、高周波成分データD3を含む。
差分データD4は、漏れたガスによる温度変化を示す周波数成分データを含むので、地点SP1でガスの噴出を開始した後において(90番目以降のフレーム)、差分データD4の振幅及び波形のばらつきが大きくなっている。これに対して、差分データD5は、漏れたガスによる温度変化を示す周波数成分データを含まないので、そのようなことはない。差分データD5は、微小な振幅を繰り返している。これが高周波ノイズである。
差分データD4と差分データD5とは、相関しているが、完全に相関していない。すなわち、あるフレームにおいて、差分データD4の値がプラス、差分データD5の値がマイナスとなり、又は、その逆となる場合がある。このため、差分データD4と差分データD5との差分を算出しても、高周波成分データD3を除去できない。高周波成分データD3を除去するには、差分データD4及び差分データD5を引き算できる絶対値のような値に変換する必要がある。
そこで、画像処理部9は、差分データD4に対して、K個のフレームより少ない第2の所定数のフレームを単位とする移動標準偏差を算出して得られるデータを、標準偏差データD6とし、M個の時系列画素データD1のそれぞれに対応するM個の標準偏差データD6を算出する(ステップS6)。なお、移動標準偏差の替わりに、移動分散を算出してもよい。
また、画像処理部9は、差分データD5に対して、K個のフレームより少ない第4の所定数(例えば、21)のフレームを単位とする移動標準偏差を算出して得られるデータを、標準偏差データD7とし、M個の時系列画素データD1のそれぞれに対応するM個の標準偏差データD7を算出する(ステップS7)。移動標準偏差の替わりに、移動分散を用いてもよい。
図8は、標準偏差データD6及び標準偏差データD7を示すグラフである。グラフの横軸は、図4Aのグラフの横軸と同じである。グラフの縦軸は、標準偏差を示している。標準偏差データD6は、図7Aに示す差分データD4の移動標準偏差を示すデータである。標準偏差データD7は、図7Bに示す差分データD5の移動標準偏差を示すデータである。移動標準偏差の算出に用いるフレーム数は、標準偏差データD6及び標準偏差データD7のいずれの場合も、21であるが、統計的に意義がある標準偏差が求められる数であればよく、21に限定されない。
標準偏差データD6及び標準偏差データD7は、標準偏差なので、マイナスの値を含まない。このため、標準偏差データD6及び標準偏差データD7は、差分データD4及差分データD5を引き算できるように変換したデータと見なすことができる。
画像処理部9は、同じ時系列画素データD1から得られた標準偏差データD6と標準偏差データD7との差分を算出して得られるデータを、差分データD8とし、M個の時系列画素データD1のそれぞれに対応するM個の差分データD8を算出する(ステップS8)。
図9は、差分データD8を示すグラフである。グラフの横軸は、図4Aのグラフの横軸と同じである。グラフの縦軸は、標準偏差の差分である。差分データD8は、図8に示す標準偏差データD6と標準偏差データD7との差分を示すデータである。差分データD8は、低周波成分データD2及び高周波成分データD3を除く処理がされたデータである。
画像処理部9は、監視画像を生成する(ステップS9)。すなわち、画像処理部9は、ステップS8で得られたM個の差分データD8で構成される動画を生成する。この動画を構成する各フレームが監視画像である。監視画像は、標準偏差の差分を可視化した画像である。画像処理部9は、ステップS9で得られた動画を表示制御部10に出力する。表示制御部10は、この動画を表示部11に表示させる。この動画に含まれる監視画像として、例えば、図10に示す画像I12及び図11に示す画像I15がある。
図10は、時刻T1のフレームを基にして生成された、画像I10、画像I11及び画像I12を示す画像図である。画像I10は、図5のステップS6で得られたM個の標準偏差データD6で示される動画において、時刻T1のフレームの画像である。画像I11は、図5のステップS7で得られたM個の標準偏差データD7で示される動画において、時刻T1のフレームの画像である。画像I10と画像I11との差分が、画像I12(監視画像)となる。
図11は、時刻T2のフレームを基にして生成された、画像I13、画像I14及び画像I15を示す画像図である。画像I13は、ステップS6で得られたM個の標準偏差データD6で示される動画において、時刻T2のフレームの画像である。画像I14は、ステップS7で得られたM個の標準偏差データD7で示される動画において、時刻T2のフレームの画像である。画像I13と画像I14との差分が、画像I15(監視画像)となる。図10及び図11に示す画像I10~画像I15のいずれも、標準偏差を5000倍にした画像である。
図10に示す画像I12は、図4Aに示す地点SP1からガスが噴出される前に撮影された画像なので、画像I12には、地点SP1からガスが出ている様子が現れていない。これに対して、図11に示す画像I15は、地点SP1からガスが噴出されている時刻で撮影された画像なので、画像I15には、地点SP1からガスが出ている様子が現れている。
以上説明したように、実施形態によれば、画像処理部9(図1A)が、赤外画像の動画データMDに含まれる低周波成分データD2を除く処理をして、動画データを生成し、表示制御部10が、この動画データで示される動画(監視画像の動画)を表示部11に表示させる。従って、実施形態によれば、ガス漏れと背景の温度変化とが並行して発生し、背景の温度変化が、漏れたガスによる温度変化よりも大きい場合でも、ガスが漏れている様子を監視画像の動画で表示できる。
センサーノイズは、温度が高くなるに従って小さくなるので、温度に応じて異なる。二次元イメージセンサー6(図1A)において、画素が感知している温度に応じたノイズが、各画素で発生する。すなわち、全ての画素のノイズが同じではない。実施形態によれば、動画から高周波ノイズを除くことができるので、僅かなガス漏れでも表示部11に表示させることができる。
蒸気が原因となるガスの誤検知について説明する。図12は、赤外画像から切り出された画像100を示す画像図である。画像100には、塔の像101が含まれる。熱源からの熱が、塔の表面(反射面)で反射されている。塔の表面は、曲面を有する。熱源から塔の途中に蒸気が存在している。塔の付近には、ガスが出現しておらず、塔の表面上の1つ地点SP3には、ガスが存在しない。地点SP3は、画像100の一つの画素と対応する。
図13は、地点SP3の温度変化を示すグラフである。グラフの横軸及び縦軸は、図4Aのグラフの横軸及び縦軸と同じである。フレームレートは、30fpsなので、10秒間の温度変化のグラフが示されている。図4A及び図13を参照して、地点SP3の温度変化と、ガスが漏れている地点SP1の温度変化とは、温度が細かく変化している点で共通している。
図14は、地点SP3の温度変化を示す時系列画素データD1を基にして生成された差分データD8を示すグラフである。グラフの横軸は、図4Aのグラフの横軸と同じである。グラフの縦軸は、標準偏差の差分を示している。この差分データD8は、地点SP3の温度変化を示す時系列画素データD1に対して、図5に示すステップS2~ステップS8の処理がされて生成される。
図9を参照して、ガスが出ている期間の差分データD8は、ガスが出ていない期間の差分データD8と比べて大きい。図14に示す差分データD8は、ガスが出ている期間の差分データD8と同様に大きい。従って、図14に示す差分データD8が得られた場合、ガス検知用画像処理装置3は、ガスと誤検知する可能性がある。
熱源から反射面の途中に蒸気が存在する場合を例にして説明したが、光源から反射面の途中に蒸気が存在する場合も同様となる。また、蒸気が存在しなくても、熱源、光源がゆらぐ場合も同様となる。実施形態は、このような場合とガスが出現している場合とを区別できるようにしている。実施形態には、第1態様から第3態様がある。第1態様から説明する。図15は、実施形態の第1態様で実行される処理のフローチャートである。
図1A及び図15を参照して、第1の処理部91は、動画データMDを基にして、監視画像の動画を生成する(ステップS100)。詳しく説明すると、第1の処理部91は、動画データMDに対して、図5に示すステップS1~ステップS9の処理をする。これにより、動画を構成する各フレームは、赤外画像から監視画像となり、監視画像の動画が生成される。監視画像は、例えば、図10に示す画像I12、図11に示す画像I15である。ガス候補が出現していれば、ガス候補が出現している領域を示す第1の領域像が、監視画像に含まれる。ガスが出現している領域を示す像(以下、ガス領域像)が、第1の領域像になることもあるし、上記場合が原因で発生する像(以下、非ガス領域像)が、第1の領域像になることもある。画像I15は、ガス噴出の開始から2秒後の画像である。画像I15の中央付近に位置する白領域が第1の領域像である。ここでは、第1の領域像は、ガス領域像である。
実施形態では、ステップS1~ステップS9の処理で第1の領域像を得ているが、赤外画像に対して画像処理でガス領域像を得る公知の技術(例えば、特許文献1に開示された画像処理)を用いて第1の領域像を得ても良い。
以上説明したように、ステップS100の処理は、赤外画像に対して、第1の領域像を抽出する処理である。第1の領域像を抽出する処理がされた赤外画像が、監視画像である。
ステップS100で生成された動画を構成する各フレーム(各監視画像)に、第1の領域像が含まれているとする。第1の処理部91は、第1の領域像を含む所定領域を各監視画像に設定し、所定領域を第1の画像として取得する(ステップS101)。すなわち、第1の処理部91は、第1の領域像を抽出する処理がされた各赤外画像に、第1の領域像を含む所定領域を設定し、所定領域を第1の画像として取得する。
図16は、熱源から反射面の途中に蒸気が存在する場合に、実施形態の第1態様によって生成された第1の画像1Iと第2の画像2Iとを説明する説明図である。図16は、監視画像から切り出された第1の画像1Iが示されている。第1の処理部91が、監視画像から第1の画像1Iを自動で切り出してもよいし、ユーザーが、ガス検知システム1を実際に動作させ、ガスと誤認識する反射が発生する領域を確認し、マニュアルで切り出してもよい。後者の場合、ユーザーが、第1の画像1Iに第1の領域像1iが含まれるように、第1の画像1Iのサイズを決定する。この決定されたサイズが、第1の処理部91に予め記憶されている。前者の場合、第1の処理部91が、例えば、図10及び図11に示す監視画像を2値化した後(すなわち、例えば、図9に示す差分データD8及び図14に示す差分データD8を所定のしきい値(例えば、0.02)で2値化した後)、ラベリング処理をして、自動で切り出す。
ステップS100で生成された動画が、例えば、10秒間の動画とする。図16に示す各第1の画像1Iは、その動画を構成する各フレーム(各監視画像)に設定された第1の画像1Iである。例えば、第1の画像1I-1は、1番目の監視画像に設定された第1の画像1Iであり、第1の画像1I-2は、2番目の監視画像に設定された第1の画像1Iであり、第1の画像1I-3は、3番目の監視画像に設定された第1の画像1Iであり、第1の画像1I-4は、N番目の監視画像に設定された第1の画像1Iであり、第1の画像1I-5は、N+1番目の監視画像に設定された第1の画像1Iであり、第1の画像1I-6は、N+2番目の監視画像に設定された第1の画像1Iである。
第1の画像1Iは、監視画像の一部であり、矩形形状を有する。第1の画像1Iの形状は、矩形形状に限定されない。第1の画像1Iを構成する各画素の値は、標準偏差の差分である。第1の画像1Iにおいて、黒画素以外の画素で構成される像が第1の領域像1iである。第1の領域像1iは、常に同じ形状でなく、時間の経過により変化する。これは、熱源から反射面の途中に蒸気が存在するからである。
以上説明したように、第1の処理部91は、2つの所定期間(0秒~5秒、5秒~10秒)のそれぞれにおいて、時系列に撮像された複数の赤外画像に関して、第1の処理をする(ステップS100及びステップS101)。第1の処理とは、赤外画像の所定領域から抽出された第1の領域像1iを含む第1の画像1Iを取得する処理である。第1の処理部91は、所定期間(0~5秒)において時系列に撮像された複数の赤外画像のそれぞれに関して、第1の処理をして、複数の第1の画像1I(第1の画像1I-1、第1の画像1I-2、第1の画像1I-3、・・・)を取得し、所定期間(5~10秒)において時系列に撮像された複数の赤外画像のそれぞれに関して、第1の処理をして、複数の第1の画像1I(第1の画像1I-4、第1の画像1I-5、第1の画像1I-6、・・・)を取得する。
実施形態の第1態様において、第1の処理部91は、各赤外画像に対して、第1の領域像1iを抽出する処理をし(ステップS100)、この処理がされた各赤外画像に、第1の領域像1iを含む所定領域を設定し、所定領域を第1の画像1Iとして取得している(ステップS101)。しかしながら、変形例として、ユーザーが赤外画像に予め所定領域を設定してもよい。変形例は、ガスが出現する可能性が高い箇所が予め分かっているときに適用される。詳しく説明すると、図1Aを参照して、入力部12は、第1の入力部として機能する。表示制御部10は、動画データMDで示される動画(赤外画像の動画)を表示部11に表示させている。ユーザーは、入力部12を操作して、表示部11に表示されている赤外画像に所定領域を設定する。
第1の処理部91は、入力部12が操作されて、赤外画像に所定領域が設定されたとき、赤外画像の全体に対して第1の領域像1iを抽出する処理をするのではなく、その所定領域に対して第1の領域像1iを抽出する処理をする。第1の処理部91は、この処理がされた所定領域を第1の画像1Iとして取得する。
変形例によれば、赤外画像の全体でなく、赤外画像に設定された所定領域に対して、第1の領域像1iを抽出する処理をするので、画像処理量を減らすことができる。変形例は、後で説明する実施形態の第2態様及び第3態様にも適用できる。
実施形態の第1態様の説明に戻る。第2の処理部92は、2つの第2の画像2I-1,2I-2を生成する(ステップS102)。第2の処理部92は、例えば、0~5秒間(所定期間)の動画を構成する各フレーム(各監視画像)から取得された複数の第1の画像1I(第1の画像1I-1、第1の画像1I-2、第1の画像1I-3、・・・)を用いて、第2の画像2I-1を生成する。詳しく説明すると、第2の処理部92は、複数の第1の画像1Iにおいて、同じ順番に位置する画素の中から、画素が示す値(ここでは、標準偏差の差分)の最大値を決定する。第2の処理部92は、この最大値を、第2の画像2I-1の上記順番に位置する画素の値とする。具体的に説明すると、第2の処理部92は、複数の第1の画像1Iにおいて、1番目の画素が示す値の最大値を決定し、この値を、第2の画像2I-1の1番目の画素の値とする。第2の処理部92は、複数の第1の画像1Iにおいて、2番目の画素が示す値の最大値を決定し、この値を、第2の画像2I-1の2番目の画素の値とする。第2の処理部92は、3番目以降の画素についても同様の処理をする。
このようにして、第2の画像2I-1を構成する画素の値を定めると、第2の画像2I-1に含まれる像が、所定期間の少なくとも一部においてガス候補が出現していた領域を示す像(第2の領域像2i)になることが分かった。このことは、後で説明する第2の画像2I-2~第2の画像2I-6についても言えることである。実施形態の第1態様では、同じ順番に位置する画素の最大値を用いて、第2の画像2Iを生成している。第2の画像2Iの生成方法は、これ以外もあり、後で説明する実施形態の第2態様では、別の方法で第2の画像2Iを生成している。
第2の処理部92は、例えば、5~10秒間(所定期間)の動画を構成する各フレーム(各監視画像)から取得された複数の第1の画像1I(第1の画像1I-4、第1の画像1I-5、第1の画像1I-6、・・・)を用いて、第2の画像2I-2を生成する。第2の画像2I-2の生成方法は、第2の画像2I-1の生成方法と同じなので、説明を省略する。
以上説明したように、第2の処理部92は、2つの所定期間(0~5秒間、5~10秒間)のそれぞれに対応して生成された複数の第1の画像1Iに第2の処理をして、2つの第2の画像2I-1,2I-2を生成する。第2の処理は、所定期間の少なくとも一部にガス候補が出現していた領域を示す第2の領域像2iを含む第2の画像2Iを、複数の第1の画像1Iを用いて生成する処理である。
算出部93は、式1を用いて、第2の画像2I-1と第2の画像2I-2との類似度を算出する(ステップS103)。式1は、正規化相互相関(NCC:Normalized Cross Correlation)を示している。
I(i,j)は、第2の画像2I-1上の座標を示す。T(i,j)は、第2の画像2I-2上の座標を示す。iは、x方向の座標値を示す。jは、y方向の座標値を示す。Mは、第2の画像2Iのx方向の画素数を示す。Nは、第2の画像2Iのy方向の画素数を示す。
正規化相互相関は、-1から+1の範囲の値である。第2の画像2I-1と第2の画像2I-2との相関性がない場合、正規化相互相関は、0となる。第2の画像2I-1と第2の画像2I-2とが、正の相関性が強くなるに従って、正規化相互相関は、+1に近づく。第2の画像2I-1と第2の画像2I-2とが、負の相関性が強くなるに従って、正規化相互相関は、-1に近づく。正規化相互相関が、+1に近づくに従って、第2の画像2I-1と第2の画像2I-2との類似度が高くなる。第2の画像2I-1と第2の画像2I-2との類似度は、0.979である。
図17は、ガスが出現している場合に、実施形態の第1態様によって生成された第1の画像1Iと第2の画像2Iとを説明する説明図である。図17に示す各第1の画像1Iは、図16と同じく、10秒間の動画を構成する各フレーム(各監視画像)から取得された第1の画像1Iである。
第2の画像2I-3は、0~5秒間の動画を構成する各フレーム(各監視画像)から取得された複数の第1の画像1I(第1の画像1I-7、第1の画像1I-8、第1の画像1I-9、・・・)を用いて生成された第2の画像2Iである。第2の画像2I-4は、5~10秒間の動画を構成する各フレーム(各監視画像)から取得された第1の画像1I(第1の画像1I-10、第1の画像1I-11、第1の画像1I-12、・・・)を用いて生成された第2の画像2Iである。第2の画像2I-3と第2の画像2I-4との類似度は、0.855である。
光源から反射面の途中に蒸気が存在する場合の類似度について説明する。光源は、太陽であり、反射面は、塔の表面である。図18は、赤外画像から切り出された画像102を示す画像図である。画像102に塔の像が含まれている。光源から塔の途中に蒸気が存在している。
図19は、光源から反射面の途中に蒸気が存在する場合に、実施形態の第1態様によって生成された第1の画像1Iと第2の画像2Iとを説明する説明図である。図19に示す各第1の画像1Iは、図16と同じく、10秒間の動画を構成する各フレーム(各監視画像)から取得された第1の画像1Iである。
第2の画像2I-5は、0~5秒間の動画を構成する各フレーム(各監視画像)から取得された第1の画像1I(第1の画像1I-13、第1の画像1I-14、第1の画像1I-15、・・・)を用いて生成された第2の画像2Iである。第2の画像2I-6は、5~10秒間の動画を構成する各フレーム(各監視画像)から取得された第1の画像1I(第1の画像1I-16、第1の画像1I-17、第1の画像1I-18、・・・)を用いて生成された第2の画像2Iである。第2の画像2I-5と第2の画像2I-6との類似度は、0.917である。
図16、図17及び図19を参照して、類似度のしきい値が、例えば、0.900にすれば、ガス候補について、ガスか否かが識別できることが分かる。判定部94は、類似度を、しきい値(例えば、0.900)と比較し、類似度がしきい値を超えていれば、ガス候補をガスでないと判定し、類似度がしきい値以下であれば、ガス候補をガスと判定する(ステップS104)。
以上説明したように、実施形態の第1態様によれば、2つの第2の画像2Iを生成し、これらの第2の画像2Iの類似度を基にして、ガス候補がガスか否かを判定するので、ガス検知の精度を向上させることができる。
2つの所定期間の長さが、それぞれ5秒間を例に説明したが、5秒間に限定されない(例えば、10秒間)。2つの所定期間の長さは、同じでもよいし、異なっていてもよい。
実施形態の第2態様を説明する。実施形態の第2態様では、実施形態の第1態様と別の方法で第2の画像2Iを生成する。図20は、実施形態の第2態様で実行される処理のフローチャートである。図1A及び図20を参照して、第1の処理部91は、動画データMDを基にして、監視画像の動画を生成する(ステップS200)。これは、図15に示すステップS100と同じなので、説明を省略する。
第1の処理部91は、ステップS200で生成された動画を構成する各フレーム(各監視画像)を二値化処理する(ステップS201)。この処理で用いられるしきい値について説明する。図21は、図14に示すグラフにしきい値を追加したグラフである。このグラフは、ガスが出現していない箇所(地点SP3)と対応する画素の値の変化を示すグラフである。このグラフは、差分データD8を示している。フレームレートは、30fpsなので、10秒間の差分データD8が示されている。このグラフの差分データD8は、常に、0.02より大きい。そこで、ここでは、二値化処理のしきい値を0.02とする。
ステップS201で二値化処理された動画を構成する各フレーム(各二値化画像)に、ガス候補が出現している領域を示す第1の領域像1iが含まれているとする。図22は、熱源から反射面の途中に蒸気が存在する場合に、実施形態の第2態様によって生成された第1の画像1Iと第2の画像2Iとを説明する説明図である。反射面は、塔の表面である。
第1の処理部91は、第1態様のステップS101と同様の処理によって、10秒間の動画を構成する各フレーム(各二値化画像)から第1の画像1Iを取得する(ステップS202)。
第2の処理部92は、2つの第2の画像2I-7,2I-8を生成する(ステップS203)。第2の処理部92は、例えば、0~5秒間(所定期間)の動画を構成する各フレーム(各二値化画像)から取得された複数の第1の画像1I(第1の画像1I-19、第1の画像1I-20、第1の画像1I-21、・・・)を用いて、第2の画像2I-7を生成する。詳しく説明すると、第1の領域像1iを構成する画素を白画素とし、この像以外を黒画素とする。第2の処理部92は、複数の第1の画像1Iにおいて、同じ順番の画素の中に、白画素が少なくとも一つ存在すれば、第2の画像2I-7において、上記順番に位置する画素を白画素とする。具体的に説明すると、第2の処理部92は、複数の第1の画像1Iにおいて、1番目の画素のうち、白画素が少なくとも一つ存在すれば、第2の画像2I-7において、1番目の画素を白画素とする。第2の処理部92は、複数の第1の画像1Iにおいて、2番目の画素のうち、白画素が少なくとも一つ存在すれば、第2の画像2I-7において、2番目の画素を白画素とする。第2の処理部92は、3番目以降の画素についても同様の処理をする。
このようにして、第2の画像2I-7を構成する画素の値を定めると、第2の画像2I-7に含まれる像が、所定期間の少なくとも一部においてガス候補が出現していた領域を示す像(第2の領域像2i)になることが分かった。このことは、後で説明する第2の画像2I-8~第2の画像2I-10についても言えることである。
第2の処理部92は、例えば、5~10秒間(所定期間)の動画を構成する各フレーム(各二値化画像)から取得された複数の第1の画像1I(第1の画像1I-22、第1の画像1I-23、第1の画像1I-24、・・・)を用いて、第2の画像2I-8を生成する。第2の画像2I-8の生成方法は、第2の画像2I-7の生成方法と同じなので、説明を省略する。
算出部93は、式2を用いて、第2の画像2I-7と第2の画像2I-8との類似度を算出する(ステップS204)。
式2は、第2の画像2I-7と第2の画像2I-8とにおいて、同じ順番に位置する画素が一致している割合を示している。式2について詳しく説明する。第2の画像2Iは、二値化画像である。算出部93は、第2の画像2I-7と第2の画像2I-8とにおいて、同じ順番に位置する画素が一致するか否かを判定する。一方が黒画素であり、他方が白画素であれば、画素は一致していない。この順番に位置する画素は、一致画素ではない。両方が白画素であれば、画素は一致している。この順番に位置する画素は、一致画素である。両方が黒画素であれば、画素は一致している。この順番に位置する画素は、一致画素である。
式2の全画素数とは、一つの第2の画像2Iの画素数である。一致画素数とは、一致画素の合計である。第2の画像2I-7と第2の画像2I-8との類似度は、0.97である。
図23は、ガスが出現している場合に、実施形態の第2態様によって生成された第1の画像1Iと第2の画像2Iとを説明する説明図である。図23に示す各第1の画像1Iは、図16と同じく、10秒間の動画を構成する各フレーム(各監視画像)から取得された第1の画像1Iである。
第2の画像2I-9は、0~5秒間の動画を構成する各フレーム(各2値化画像)から取得された複数の第1の画像1I(第1の画像1I-25、第1の画像1I-26、第1の画像1I-27、・・・)を用いて生成された第2の画像2Iである。第2の画像2I-10は、5~10秒間の動画を構成する各フレーム(各2値化画像)から取得された第1の画像1I(第1の画像1I-28、第1の画像1I-29、第1の画像1I-30、・・・)を用いて生成された第2の画像2Iである。第2の画像2I-9と第2の画像2I-10との類似度は、0.69である。
図22及び図23を参照して、類似度のしきい値が、例えば、0.90にすれば、ガス候補について、ガスか否かを識別できることが分かる。判定部94は、類似度をしきい値(例えば、0.90)と比較し、類似度がしきい値を超えていれば、ガス候補をガスでないと判定し、類似度がしきい値以下であれば、ガス候補をガスであると判定する(ステップS205)。
実施形態の第2態様では、式2を用いて類似度を算出しているが、式1を用いて類似度を算出してもよい。
実施形態の第3態様を説明する。実施形態の第1態様及び第2態様は、第2の画像2Iの類似度がしきい値を超えていれば、ガス候補がガスでないと判定している。第3態様は、ガス候補がガスか否かの判定精度をさらに高めるために、類似度に加えて、以下の判定処理をする。
図1を参照して、入力部12は、第2の入力部として機能する。光及び熱の少なくとも一方を反射する可能性がある反射面の範囲を、ユーザーが、入力部12を操作して、赤外画像に予め設定する。反射面は、例えば、塔の表面である。図24は、反射面の範囲104が設定された赤外画像103を示す画像図である。塔の像101に、反射面の範囲104が設定されている。反射面の範囲104は、動画データMDで示される動画を構成する各フレームに設定される(各赤外画像に設定される)。図25は、図24に示す赤外画像103から生成された第1の画像1Iを示す画像図である。
判定部94は、第1の画像1Iに含まれる第1の領域像1iが、反射面の範囲104からはみ出しているか否かを判定する。判定部94は、第1の領域像1Iが、反射面の範囲104からはみ出しているか否か、及び、第2の画像2Iの類似度を基にして、ガス候補がガスか否かを判定する。類似度は、第1態様で算出された類似度でもよいし(図15のステップS103)、第2態様で算出された類似度でもよい(図20のステップS204)。
ガスの場合、ガスのゆらぎが小さくても、第1の領域像1iが反射面の範囲104を超える可能性がある。反射の場合、第1の領域像1iが反射面の範囲104を超えない。よって、第1の領域像1iが反射面の範囲104を超える場合、ガス候補がガスである可能性がある。
ガスのゆらぎが小さい場合、第2の画像2Iの類似度が比較的高くなるので、第2の画像2Iの類似度だけでは、ガス候補がガスか否かの識別が難しくなる。そこで、実施形態の第3態様は、第2の画像2Iの類似度、及び、第1の領域像1iが反射面の範囲104からはみ出しているか否かを基にして、ガス候補がガスか否かを判定する。従って、実施形態の第3態様によれば、ガス検知の精度をより高めることができる。
判定部94が、第1の領域像1iが反射面の範囲104を超えているか否かを監視する監視期間(言い換えれば、第1の領域像1iが反射面の範囲104を超えているか否かの判定対象となる第1の画像1Iの数)は、任意である。例えば、判定部94は、監視期間を、2つの所定期間(0~5秒、5秒~10秒)と並行させてもよい。この場合は、監視期間が10秒となる。監視期間が長いほど、ゆらぎが小さいガスと反射との区別の精度を高めることができる。監視時間が短ければ、ガスが出現している場合でも第1の領域像1iが反射面の範囲104を超えない可能性があるからである。
また、判定部94は、第2の画像2Iの類似度がしきい値を超えており、かつ、10秒間の監視期間で第1の領域像1iが反射面の範囲104を超えていないとき、ガス候補は反射が原因で発生した可能性が高いと判定する。そして、判定部94は、その監視期間より長い期間(例えば、1分間)において、第1の領域像1iが反射面の範囲104を超えていないとき、ガス候補は反射が原因で発生したと確定してもよい。
(実施形態の纏め)
実施形態の第1態様に係るガス検知用画像処理装置は、赤外画像の所定領域から抽出された、ガス候補が出現している領域を示す第1の領域像を含む第1の画像を取得する第1の処理を、所定期間において時系列に撮像された複数の前記赤外画像のそれぞれに関して実行し、複数の前記第1の画像を取得する第1の処理部と、前記所定期間の少なくとも一部において、前記ガス候補が出現していた領域を示す第2の領域像を含む第2の画像を、複数の前記第1の画像を用いて生成する第2の処理をする第2の処理部と、を備える。前記第1の処理部は、2以上の前記所定期間のそれぞれにおいて、時系列に撮像された複数の前記赤外画像に関して、前記第1の処理をする。前記第2の処理部は、2以上の前記所定期間のそれぞれに対応して生成された複数の前記第1の画像に前記第2の処理をして、2以上の前記第2の画像を生成する。実施形態の第1態様に係るガス検知用画像処理装置は、さらに、2以上の前記第2の画像の類似度を基にして、前記ガス候補がガスか否かを判定する判定部を備える。
実施形態の第1態様に係るガス検知用画像処理装置は、赤外画像の所定領域から抽出された、ガス候補が出現している領域を示す第1の領域像を含む第1の画像を取得する第1の処理を、所定期間において時系列に撮像された複数の前記赤外画像のそれぞれに関して実行し、複数の前記第1の画像を取得する第1の処理部と、前記所定期間の少なくとも一部において、前記ガス候補が出現していた領域を示す第2の領域像を含む第2の画像を、複数の前記第1の画像を用いて生成する第2の処理をする第2の処理部と、を備える。前記第1の処理部は、2以上の前記所定期間のそれぞれにおいて、時系列に撮像された複数の前記赤外画像に関して、前記第1の処理をする。前記第2の処理部は、2以上の前記所定期間のそれぞれに対応して生成された複数の前記第1の画像に前記第2の処理をして、2以上の前記第2の画像を生成する。実施形態の第1態様に係るガス検知用画像処理装置は、さらに、2以上の前記第2の画像の類似度を基にして、前記ガス候補がガスか否かを判定する判定部を備える。
第1の領域像は、ガスが出現した場合に発生する以外に、上述した(1)~(4)の場合(例えば、熱源から反射面の途中に蒸気等が存在する)にも発生する。
第2の画像に含まれる第2の領域像は、所定期間の少なくとも一部において、ガス候補が出現していた領域を示す像である。所定期間の少なくとも一部とは、所定期間が、例えば、5秒間としたとき、所定期間の全期間(5秒間)でもよいし、所定期間の一部(例えば、1秒間)でもよい。
本発明者は、ガスが出現している場合、第2の画像どうしは類似度が比較的低く、(1)~(4)が原因の場合、第2の画像どうしの類似度が比較的高くなることを見出した。詳しく説明すると、所定期間において、上述した(1)~(4)が原因となる反射が発生している場合、所定期間の個々の時刻どうしを比較すると、反射している箇所が異なる。すなわち、(1)~(4)が原因で第1の領域像が発生している場合、第1の画像どうしの類似度は比較的低い。所定期間の全体どうしを比較すると、反射している箇所が似ている。すなわち、(1)~(4)の場合、第2の画像どうしの類似度は比較的高い。
ガスは、不規則にゆらぐ。所定期間においてガスが出現している場合、所定期間の個々の時刻どうしを比較すると、ガスが出現している箇所が異なる。すなわち、ガスの出現が原因で第1の領域像が発生している場合、第1の画像どうしの類似度は比較的低い。これは、反射の場合と同様である。所定期間の全体どうしを比較すると、ガスが出現している箇所は似ていない。すなわち、ガスが出現している場合、第2の画像どうしの類似度は比較的低い。
判定部は、2以上の第2の画像の類似度を基にして、ガス候補がガスか否かを判定する。例えば、判定部は、第2の画像が2つの場合、2つの第2の画像の類似度が、所定のしきい値を超えていれば、ガス候補をガスでないと判定し、その類似度が、所定のしきい値以下であれば、ガス候補をガスであると判定する。例えば、判定部は、第2の画像が3つ以上の場合、一つの第2の画像を基準画像として、基準画像と残りの第2の画像との類似度がいずれもしきい値を超えていれば、ガス候補をガスでないと判定し、それらの類似度の少なくとも一つが、所定のしきい値以下であれば、ガス候補をガスであると判定する。
以上説明したように、実施形態の第1態様に係るガス検知用画像処理装置によれば、2以上の第2の画像を生成し、これらの第2の画像の類似度を基にして、ガス候補がガスか否かを判定するので、ガス検知の精度を向上させることができる。
2以上の所定期間は、連続していてもよいし(例えば、ある所定期間が0~5秒の間、別の所定期間が5秒~10秒の間)、離れていてもよいし(例えば、ある所定期間が0~5秒の間、別の所定期間が10秒~15秒の間)、一部が重複していてもよい(例えば、ある所定期間が0~5秒の間、別の所定期間が3秒~8秒の間)。
類似度の表現の仕方は、様々である。例えば、判定部は、正規化相互相関を用いて類似度を算出してもよいし、2値化された2以上の第2の画像において、同じ順番に位置する画素が一致している割合を類似度として算出してもよい。
上記構成において、前記第1の処理部は、前記赤外画像に対して、前記第1の領域像を抽出する抽出処理をし、前記抽出処理がされた前記赤外画像に、前記第1の領域像を含む前記所定領域を設定し、前記所定領域を前記第1の画像として取得する。
この構成は、赤外画像の全体に対して、第1の領域像(すなわち、ガス候補が出現している領域を示す像)を抽出する処理をする。第1の領域像の抽出の仕方は、これに限定されず、赤外画像の一部に対して、第1の領域像を抽出する処理がされてもよい。これを以下に示す。
上記構成において、第1の入力部をさらに備え、前記第1の処理部は、前記第1の入力部が操作されて、前記赤外画像に前記所定領域が設定されたとき、前記所定領域に対して前記第1の領域像を抽出する抽出処理をし、前記抽出処理がされた前記所定領域を前記第1の画像として取得する。
この構成は、ガスが出現する可能性が高い箇所が予め分かっているときに適用される。この構成によれば、赤外画像の全体でなく、赤外画像に設定された所定領域に対して、第1の領域像を抽出する処理をするので、画像処理量を減らすことができる。
上記構成において、前記第2の処理部は、複数の前記第1の画像において、同じ順番に位置する画素が示す値の最大値を、前記第2の画像の前記順番に位置する画素の値として設定して前記第2の画像を生成する。
この構成によって生成される第2の画像は、第2の画像の第1例である。例えば、複数の第1の画像において、1番目の画素の値の最大値が0.2のとき、第2の画像において、1番目の画素の値が0.2とする。第2の画像の残りの画素の値についても同様にして決められる。このようにして、第2の画像を構成する画素の値を定めると、第2の画像に含まれる像が、所定期間の少なくとも一部においてガス候補が出現していた領域を示す像(第2の領域像)になることが分かった。
上記構成において、前記第2の処理部は、複数の前記第1の画像において、所定のしきい値を超えている画素を前記第2の領域像を構成する画素として設定して前記第2の画像を生成する。
この構成によって生成される第2の画像は、第2の画像の第2例である。例えば、複数の第1の画像が2値化され、第1の領域像が白画素で構成されるとする。複数の第1の画像において、同じ順番に位置する画素の少なくとも一つが白画素のとき、第2の画像において、その順番に位置する画素が白画素となる。第2の画像を構成する画素のうち、白画素により第2の領域像が構成される。このようにして、第2の画像を構成する画素の値を定めると、第2の画像に含まれる像が、所定期間の少なくとも一部においてガス候補が出現していた領域を示す像(第2の領域像)になることが分かった。
上記構成において、第2の入力部をさらに備え、前記判定部は、前記第2の入力部が操作されて、光及び熱の少なくともいずれか一方を反射する可能性がある反射面の範囲が、複数の前記赤外画像に設定されたとき、前記第1の画像に含まれる前記第1の領域像が、前記範囲からはみ出しているか否かを判定し、前記判定部は、前記範囲からはみ出しているか否か、及び、前記類似度を基にして、前記ガス候補がガスか否かを判定する。
この構成は、光及び熱の少なくともいずれか一方を反射する可能性がある反射面の範囲を、ユーザーが赤外画像に予め設定する。この範囲は、例えば、塔の像の範囲、配管の像の範囲である。ガスの場合、ガスのゆらぎが小さくても、第1の領域像が反射面の範囲を超える可能性がある。反射の場合、第1の領域像が反射面の範囲を超えない。よって、第1の領域像が反射面の範囲を超える場合、ガス候補がガスである可能性がある。
ガスのゆらぎが小さい場合、第2の画像の類似度が比較的高くなるので、第2の画像の類似度だけでは、ガス候補がガスか否かの識別が難しくなる。そこで、この構成は、第2の画像の類似度、及び、第1の領域像が反射面の範囲からはみ出しているか否かを基にして、ガス候補がガスか否かを判定する。従って、この構成によれば、ガス検知の精度をより高めることができる。
実施形態の第2態様に係るガス検知用画像処理方法は、赤外画像の所定領域から抽出された、ガス候補が出現している領域を示す第1の領域像を含む第1の画像を取得する第1の処理を、所定期間において時系列に撮像された複数の前記赤外画像のそれぞれに関して実行し、複数の前記第1の画像を取得する第1の処理ステップと、前記所定期間の少なくとも一部において、前記ガス候補が出現していた領域を示す第2の領域像を含む第2の画像を、複数の前記第1の画像を用いて生成する第2の処理をする第2の処理ステップと、を備える。前記第1の処理ステップは、2以上の前記所定期間のそれぞれにおいて、時系列に撮像された複数の前記赤外画像に関して、前記第1の処理をする。前記第2の処理ステップは、2以上の前記所定期間のそれぞれに対応して生成された複数の前記第1の画像に前記第2の処理をして、2以上の前記第2の画像を生成する。実施形態の第2態様に係るガス検知用画像処理方法は、さらに、2以上の前記第2の画像の類似度を基にして、前記ガス候補がガスか否かを判定する判定ステップを備える。
実施形態の第2態様に係るガス検知用画像処理方法は、実施形態の第1態様に係るガス検知用画像処理装置を方法の観点から規定しており、実施形態の第1態様に係るガス検知用画像処理装置と同様の作用効果を有する。
実施形態の第3態様に係るガス検知用画像処理プログラムは、赤外画像の所定領域から抽出された、ガス候補が出現している領域を示す第1の領域像を含む第1の画像を取得する第1の処理を、所定期間において時系列に撮像された複数の前記赤外画像のそれぞれに関して実行し、複数の前記第1の画像を取得する第1の処理ステップと、前記所定期間の少なくとも一部において、前記ガス候補が出現していた領域を示す第2の領域像を含む第2の画像を、複数の前記第1の画像を用いて生成する第2の処理をする第2の処理ステップと、をコンピュータに実行させる。前記第1の処理ステップは、2以上の前記所定期間のそれぞれにおいて、時系列に撮像された複数の前記赤外画像に関して、前記第1の処理をする。前記第2の処理ステップは、2以上の前記所定期間のそれぞれに対応して生成された複数の前記第1の画像に前記第2の処理をして、2以上の前記第2の画像を生成する。実施形態の第3態様に係るガス検知用画像処理プログラムは、さらに、2以上の前記第2の画像の類似度を基にして、前記ガス候補がガスか否かを判定する判定ステップをコンピュータに実行させる。
実施形態の第3態様に係るガス検知用画像処理プログラムは、実施形態の第1態様に係るガス検知用画像処理装置をプログラムの観点から規定しており、実施形態の第1態様に係るガス検知用画像処理装置と同様の作用効果を有する。
実施形態の第1態様に係るガス検知用画像処理装置は、判定部の替わりに、2以上の前記第2の画像の類似度を算出する算出部を備えてもよい。実施形態の第2態様に係るガス検知用画像処理方法、実施形態の第3態様に係るガス検知用画像処理プログラムについても同様である。
本発明の実施形態が詳細に図示され、かつ、説明されたが、それは単なる図例及び実例であって限定ではない。本発明の範囲は、添付されたクレームの文言によって解釈されるべきである。
明細書、クレーム、図面及び要約を含む、2016年12月27日に提出された日本国特許出願特願2016-252269は、その全体の開示が、その全体において参照によりここに組み込まれる。
本発明によれば、ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラムを提供することができる。
Claims (11)
- 赤外画像の所定領域から抽出された、ガス候補が出現している領域を示す第1の領域像を含む第1の画像を取得する第1の処理を、所定期間において時系列に撮像された複数の前記赤外画像のそれぞれに関して実行し、複数の前記第1の画像を取得する第1の処理部と、
前記所定期間の少なくとも一部において、前記ガス候補が出現していた領域を示す第2の領域像を含む第2の画像を、複数の前記第1の画像を用いて生成する第2の処理をする第2の処理部と、を備え、
前記第1の処理部は、2以上の前記所定期間のそれぞれにおいて、時系列に撮像された複数の前記赤外画像に関して、前記第1の処理をし、
前記第2の処理部は、2以上の前記所定期間のそれぞれに対応して生成された複数の前記第1の画像に前記第2の処理をして、2以上の前記第2の画像を生成し、
さらに、2以上の前記第2の画像の類似度を算出する算出部を備える、ガス検知用画像処理装置。 - 前記第1の処理部は、前記赤外画像に対して、前記第1の領域像を抽出する抽出処理をし、前記抽出処理がされた前記赤外画像に、前記第1の領域像を含む前記所定領域を設定し、前記所定領域を前記第1の画像として取得する、請求項1に記載のガス検知用画像処理装置。
- 第1の入力部をさらに備え、
前記第1の処理部は、前記第1の入力部が操作されて、前記赤外画像に前記所定領域が設定されたとき、前記所定領域に対して前記第1の領域像を抽出する抽出処理をし、前記抽出処理がされた前記所定領域を前記第1の画像として取得する、請求項1に記載のガス検知用画像処理装置。 - 前記第2の処理部は、複数の前記第1の画像において、同じ順番に位置する画素が示す値の最大値を、前記第2の画像の前記順番に位置する画素の値として設定して前記第2の画像を生成する、請求項1~3のいずれか一項に記載のガス検知用画像処理装置。
- 前記第2の処理部は、複数の前記第1の画像において、所定のしきい値を超えている画素を前記第2の領域像を構成する画素として設定して前記第2の画像を生成する、請求項1~3のいずれか一項に記載のガス検知用画像処理装置。
- 前記算出部は、正規化相互相関を用いて前記類似度を算出する、請求項1~5のいずれか一項に記載のガス検知用画像処理装置。
- 前記算出部は、2値化された2以上の前記第2の画像において、同じ順番に位置する画素が一致している割合を前記類似度として算出する、請求項1~5のいずれか一項に記載のガス検知用画像処理装置。
- 前記類似度を基にして、前記ガス候補がガスか否かを判定する判定部をさらに備える請求項1~7のいずれか一項に記載のガス検知用画像処理装置。
- 第2の入力部をさらに備え、
前記判定部は、前記第2の入力部が操作されて、光及び熱の少なくともいずれか一方を反射する可能性がある反射面の範囲が、複数の前記赤外画像に設定されたとき、前記第1の画像に含まれる前記第1の領域像が、前記範囲からはみ出しているか否かを判定し、
前記判定部は、前記範囲からはみ出しているか否か、及び、前記類似度を基にして、前記ガス候補がガスか否かを判定する、請求項8に記載のガス検知用画像処理装置。 - 赤外画像の所定領域から抽出された、ガス候補が出現している領域を示す第1の領域像を含む第1の画像を取得する第1の処理を、所定期間において時系列に撮像された複数の前記赤外画像のそれぞれに関して実行し、複数の前記第1の画像を取得する第1の処理ステップと、
前記所定期間の少なくとも一部において、前記ガス候補が出現していた領域を示す第2の領域像を含む第2の画像を、複数の前記第1の画像を用いて生成する第2の処理をする第2の処理ステップと、を備え、
前記第1の処理ステップは、2以上の前記所定期間のそれぞれにおいて、時系列に撮像された複数の前記赤外画像に関して、前記第1の処理をし、
前記第2の処理ステップは、2以上の前記所定期間のそれぞれに対応して生成された複数の前記第1の画像に前記第2の処理をして、2以上の前記第2の画像を生成し、
さらに、2以上の前記第2の画像の類似度を算出する算出ステップを備える、ガス検知用画像処理方法。 - 赤外画像の所定領域から抽出された、ガス候補が出現している領域を示す第1の領域像を含む第1の画像を取得する第1の処理を、所定期間において時系列に撮像された複数の前記赤外画像のそれぞれに関して実行し、複数の前記第1の画像を取得する第1の処理ステップと、
前記所定期間の少なくとも一部において、前記ガス候補が出現していた領域を示す第2の領域像を含む第2の画像を、複数の前記第1の画像を用いて生成する第2の処理をする第2の処理ステップと、をコンピュータに実行させ、
前記第1の処理ステップは、2以上の前記所定期間のそれぞれにおいて、時系列に撮像された複数の前記赤外画像に関して、前記第1の処理をし、
前記第2の処理ステップは、2以上の前記所定期間のそれぞれに対応して生成された複数の前記第1の画像に前記第2の処理をして、2以上の前記第2の画像を生成し、
さらに、2以上の前記第2の画像の類似度を算出する算出ステップをコンピュータに実行させるガス検知用画像処理プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018558831A JP6504325B2 (ja) | 2016-12-27 | 2017-10-10 | ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム |
US16/466,267 US10991090B2 (en) | 2016-12-27 | 2017-10-10 | Gas detection-use image processing device, gas detection-use image processing method, and gas detection-use image processing program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016252269 | 2016-12-27 | ||
JP2016-252269 | 2016-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018123196A1 true WO2018123196A1 (ja) | 2018-07-05 |
Family
ID=62707222
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/036579 WO2018123196A1 (ja) | 2016-12-27 | 2017-10-10 | ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US10991090B2 (ja) |
JP (1) | JP6504325B2 (ja) |
WO (1) | WO2018123196A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007263829A (ja) * | 2006-03-29 | 2007-10-11 | Jfe Steel Kk | Coガスの漏洩監視方法 |
JP2012058093A (ja) * | 2010-09-09 | 2012-03-22 | Mitsubishi Electric Building Techno Service Co Ltd | ガス漏れ検出装置 |
JP2016206139A (ja) * | 2015-04-28 | 2016-12-08 | コニカミノルタ株式会社 | ガス検出装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10281864A (ja) * | 1997-04-03 | 1998-10-23 | Nikon Corp | 熱型赤外線カメラ |
US9008457B2 (en) * | 2010-05-31 | 2015-04-14 | Pesonify, Inc. | Systems and methods for illumination correction of an image |
US20140002639A1 (en) | 2011-03-25 | 2014-01-02 | Joseph M. Cheben | Autonomous Detection of Chemical Plumes |
US20160284075A1 (en) * | 2013-03-14 | 2016-09-29 | Essess, Inc. | Methods, apparatus, and systems for structural analysis using thermal imaging |
US9460340B2 (en) * | 2014-01-31 | 2016-10-04 | Google Inc. | Self-initiated change of appearance for subjects in video and images |
JP6441546B2 (ja) * | 2016-10-31 | 2018-12-19 | 株式会社オプティム | コンピュータシステム、物体の診断方法及びプログラム |
-
2017
- 2017-10-10 WO PCT/JP2017/036579 patent/WO2018123196A1/ja active Application Filing
- 2017-10-10 US US16/466,267 patent/US10991090B2/en active Active
- 2017-10-10 JP JP2018558831A patent/JP6504325B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007263829A (ja) * | 2006-03-29 | 2007-10-11 | Jfe Steel Kk | Coガスの漏洩監視方法 |
JP2012058093A (ja) * | 2010-09-09 | 2012-03-22 | Mitsubishi Electric Building Techno Service Co Ltd | ガス漏れ検出装置 |
JP2016206139A (ja) * | 2015-04-28 | 2016-12-08 | コニカミノルタ株式会社 | ガス検出装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018123196A1 (ja) | 2019-06-27 |
JP6504325B2 (ja) | 2019-04-24 |
US10991090B2 (en) | 2021-04-27 |
US20200065953A1 (en) | 2020-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10520429B2 (en) | Image processing device, image processing method and image processing program | |
JP6319527B2 (ja) | ガス検知用画像処理装置、ガス検知用画像処理方法、ガス検知用画像処理プログラム、ガス検知用画像処理プログラムを記録したコンピュータ読み取り可能な記録媒体、及び、ガス検知システム | |
JP6344533B2 (ja) | ガス濃度厚み積測定装置、ガス濃度厚み積測定方法、ガス濃度厚み積測定プログラム、及び、ガス濃度厚み積測定プログラムを記録したコンピュータ読み取り可能な記録媒体 | |
WO2017150565A1 (ja) | ガス漏れ位置推定装置、ガス漏れ位置推定方法及びガス漏れ位置推定プログラム | |
JP6493624B2 (ja) | ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム | |
WO2018123197A1 (ja) | ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム | |
US11393096B2 (en) | Gas-detection image processing device, gas-detection image processing method, and gas-detection image processing program | |
US11302010B2 (en) | Gas-detection image processing device, gas-detection image processing method, and gas-detection image processing program | |
TW201430615A (zh) | 光學式指向系統 | |
JP7047638B2 (ja) | ガス可視化用画像処理装置、ガス可視化用画像処理方法、ガス可視化用画像処理プログラム、及び、ガス検知システム | |
WO2018123196A1 (ja) | ガス検知用画像処理装置、ガス検知用画像処理方法及びガス検知用画像処理プログラム | |
US20200258267A1 (en) | Image processing device for gas detection, image processing method for gas detection, and image processing program for gas detection | |
US11954839B2 (en) | Leak source specification assistance device, leak source specification assistance method, and leak source specification assistance program | |
JP7036112B2 (ja) | ガス漏れ位置推定装置、ガス漏れ位置推定方法及びガス漏れ位置推定プログラム | |
Choi et al. | Steam leak detection by using image signal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17886792 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018558831 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17886792 Country of ref document: EP Kind code of ref document: A1 |