+

WO2018122813A1 - 一种优先短停的优质泊位预约及动态定价方法 - Google Patents

一种优先短停的优质泊位预约及动态定价方法 Download PDF

Info

Publication number
WO2018122813A1
WO2018122813A1 PCT/IB2017/058543 IB2017058543W WO2018122813A1 WO 2018122813 A1 WO2018122813 A1 WO 2018122813A1 IB 2017058543 W IB2017058543 W IB 2017058543W WO 2018122813 A1 WO2018122813 A1 WO 2018122813A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking
time
berth
vehicles
price
Prior art date
Application number
PCT/IB2017/058543
Other languages
English (en)
French (fr)
Inventor
杜豫川
王晨薇
蒋盛川
王金栋
施曙东
Original Assignee
同济大学
上海浦东路桥建设股份有限公司
许军
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同济大学, 上海浦东路桥建设股份有限公司, 许军 filed Critical 同济大学
Priority to CN201780048086.7A priority Critical patent/CN110337680A/zh
Priority to GBGB1909413.5A priority patent/GB201909413D0/en
Publication of WO2018122813A1 publication Critical patent/WO2018122813A1/zh

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07BTICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
    • G07B15/00Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points
    • G07B15/02Arrangements or apparatus for collecting fares, tolls or entrance fees at one or more control points taking into account a variable factor such as distance or time, e.g. for passenger transport, parking systems or car rental systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/14Traffic control systems for road vehicles indicating individual free spaces in parking areas

Definitions

  • the invention relates to a high quality berth reservation and dynamic pricing method with priority short stop.
  • Drivers tend to choose high-quality parking spaces that are convenient and safe to park. They are not willing to be remote, parking difficult, and difficult to find ordinary berths. Due to the shortage of quality berths, congestion and emissions will increase.
  • the present invention considers the number of high-quality parking berths, the characteristics of regional parking demand, the occupancy rate of parking spaces, etc., by means of incremental progressive charging, finely setting the charging price of high-quality berths and providing berth booking services to achieve limited
  • the high quality berths are preferentially provided for the purpose of vehicles with shorter parking lengths, so that more drivers can get comfortable and convenient parking services and shorter walking time, which improves the overall efficiency of the society.
  • a U.S. Patent Application Serial No. US20140122375 discloses a method for dynamically adjusting parking pricing based on real-time parking occupancy of a parking lot.
  • This pricing method needs to detect the real-time occupancy rate of the parking space through the smart sensor.
  • the comparison module compares the current occupancy rate with the target occupancy rate, and realizes the feedback control of the parking demand by adjusting the parking pricing in real time.
  • Figure 1 shows the flow chart for the implementation of this dynamic pricing method.
  • Figure 2 shows the change in parking demand, parking space occupancy, and set parking pricing for an implementation of this pricing method.
  • this pricing method improves the pricing of parking charges when it detects that the occupancy rate of the parking space exceeds the set target value, that is, when the parking demand is large, and suppresses the demand, thereby reducing the occupancy rate of the parking space to Set below the 85% threshold.
  • the system provides berth resources to the parking lot according to the principle of first-come first-served service, and does not consider the difference between the advantages and disadvantages of the berth resource conditions, and does not distinguish and select the parking time of the parking users. Therefore, the maximum utilization of high quality berth resources has not been realized.
  • Figure 3 shows the division of the berth category using this method in a parking lot.
  • the mark L is "large size berth”
  • the mark S is "safe berth”
  • the unmarked is the ordinary parking space.
  • the following table shows the classification of berths and pricing rules in one implementation of this method.
  • a Chinese patent application, CNid 00000063094751 discloses a method of regulating a parking guidance system that considers parking time.
  • the inductive system described in the method displays the parking condition of the area in the form of a road network diagram, and the inducing screen includes the berth information and the driving route of each parking lot in the area, and dynamically displays the road traffic condition of the road network and the parking lot of each parking lot.
  • Information on the difficulty level of parking This difficulty level information is given by different color identifications depending on the parking time range.
  • the control method of the parking guidance system is to calculate the parking time required by the driver in different parking lots in the current location selection area according to the parking time and select an appropriate manner for release, and the parking time of the parking lot considers the road section reaching the parking lot.
  • the driver's induction is determined only according to the current parking occupancy rate of different parking lots.
  • the convenience of parking resources is not distinguished, and the quality parking resources are not fully utilized.
  • a Chinese patent application, CN201510448131 discloses a parking dynamic pricing method based on demand characteristics and parking lot utilization.
  • a parking dynamic pricing method based on demand characteristics and parking lot utilization.
  • RP survey through the mobile APP to construct the parking lot probability equation of the parking lot or the parking lot area, to establish the relationship between parking utilization and parking lot attributes (including price), and then combined with the detector
  • the regional parking flow data can optimize the parking lot utilization rate of the parking lot by adjusting the parking price of the parking lot, and reach the previously set target, thereby realizing the reasonable dynamic pricing of the parking lot.
  • the prices of all berths within a particular parking lot are the same, ie, the convenience of different berths inside the parking lot is not differentiated.
  • a Chinese patent application, CNid00000071874281 discloses an intelligent parking space parking mechanism algorithm based on an optimal berth model.
  • the method includes the determination of the optimal berth model of the parking lot, the drawing of the weight map of the road network and the design and programming of the parking space induction algorithm.
  • the optimal berth is determined according to the driving distance of the vehicle entering the parking space, the walking distance from the parking lot and the personal safety.
  • a mathematical model is established with the shortest path method in which the sum of the three distances is the shortest, and the optimal berth is thus determined.
  • the parking lot road network can be abstracted into the weighted graph solution in the graph theory, so that the optimal berth problem can be converted into the shortest distance calculation problem on the weighted graph.
  • the improved floyd algorithm with better performance is used, and finally verified by Matlab simulation. This method distinguishes different berths in the parking lot and determines the optimal berth, but only uses the algorithm for parking induction, does not involve parking pricing, and does not regulate parking demand through differentiated pricing. Summary of the invention
  • the walking distance of the final destination that the traveler wants to reach after parking is 2 minutes; at the same time, there is a normal parking space with a far distance, and the walking distance to the final destination is 5 minutes.
  • two drivers, A and B need to stop at the same time and arrive at this destination.
  • the parking time of A is 6 hours
  • the parking time of B is 2 hours
  • the driver C is 2 hours later.
  • the driver D also needs to stop and arrive at the same destination.
  • the parking time is also 2 hours.
  • Driver A parks the car in a premium parking space and walks for 2 minutes to reach the destination; at the same time, driver B parks the car in the regular parking space and walks for 5 minutes to reach the destination.
  • the B car leaves, and the C that arrives can only park the car in the ordinary parking space (because the high quality berth is still occupied by the A car), and it takes 5 minutes to walk to the destination after parking.
  • C will leave, and the D that arrives at this time can only park the car in the ordinary parking space (because the high quality berth is still occupied by the A car), and it takes 5 minutes to walk to the destination after parking.
  • the idea of the present invention is adopted to prioritize the high quality berth to meet the short stop vehicle, the situation will become:
  • short stop vehicles vehicles with short parking periods
  • the overall walking time of the system is significantly reduced, and the efficiency is greatly improved.
  • How to stop the short stop vehicle to stop at the high quality berth and stop the vehicle to the ordinary parking by reasonable pricing of the high quality berth is the problem to be solved by the present invention.
  • the invention provides a method for preferential berth reservation and dynamic pricing based on priority berth quantity limitation and parking demand feature distribution, and obtains parking time control threshold and charging standard by obtaining parking parking behavior characteristics in the region, thereby realizing induction Transfer long-term vehicles to ordinary berths, and dynamically adjust prices according to actual demand status.
  • the high quality berth described here refers to a parking space with higher convenience.
  • the obvious feature is that the distance from the final destination of the driver to the parking area is relatively short, and the walking time required by the driver after parking is short.
  • the ordinary berths described here refer to berths that are less convenient than high quality berths, and are characterized by relatively remote locations, and the walking time required for the driver to walk to the final destination in the parking area after parking is longer.
  • the high quality berths therein can be pre-arranged and priced by the method of the present invention.
  • the invention specifically includes the following steps: (1) Establish a parking area geometry information table.
  • the information contained includes the number m parking garage entrance area, distance between the motor car dealers distance d n between the respective inlet and garage parking area quality berths, each parking area and a general parking garage entrance and ordinary quality Berth
  • the walking distance between the berths Ad, these data are obtained by field measurements.
  • An example of the established parking area geometry information table is as follows:
  • the unit billing time length t Q may be any length of time longer than the required price period. If the parking fee policy within 3 hours is to be established, it shall satisfy ⁇ ⁇ 3 hours. The portion of the parking duration that is less than one t Q is calculated by pressing a ⁇ during billing. In particular, the values proposed in the method should satisfy 1 minute ⁇ to ⁇ 20 minutes. This is because the larger the to, the more obvious the step-by-step mutation of the parking charge with the increase of the parking time, and the user whose time is near the sudden change threshold is more sensitive to the change of the charge, thereby increasing the user's time anxiety and reducing the parking user's Satisfaction with parking services.
  • the parking fee is 2 hours. Changes in internal growth over time.
  • the price sensitivity coefficient ⁇ of the parking user in the area can be obtained by field sampling survey in the parking area.
  • Berth reservation data ⁇ ⁇ t m in the berth reservation system Refers to the user who has the parking demand in advance through the berth system, including the website, mobile APP, WeChat public number, etc., to make an appointment for the high quality berth in the parking area, and to inform the required parking time.
  • the number of premium berths reserved during the reservation system and the appointment period can be obtained in real time from the application background.
  • the induced parking demand for temporary activities in known parking areas is t ni . Temporary activities that will occur in the parking area will increase the parking demand in the parking area, so it is necessary to know the number of people participating in the event and the time when the event is held.
  • the proportion of reserved users to all users is obtained through sample survey, car travel sharing The ratio of the ratio is greater than 0.1 and less than 0.3, which is obtained by field sampling survey;
  • the parking duration t in the parking area is the historical experience value tj of the parking time and the parking time t m of the parking demand determined by the historical data and the reservation system reservation data. It is superimposed on the parking time t ni of the parking demand that is induced by temporary activities in the parking area.
  • Number of vehicles with parking demand in the parking area Q real-time traffic flow Q Ti x of surrounding roads At the same time, the historical experience of stopping the number of noon cars in the parking area
  • the total duration of the parking time t distribution and the historical data of the parking time history value ⁇ the historical average of the real-time traffic flow of the surrounding roads ⁇
  • Method a) should be used when determining the premium berth price offered to the booking user in the reservation system ; method b) or method c) should be used when real-time dynamic adjustment of the premium berth price is made.
  • the price adjusted in real time is only applied to non-reserved users who enter the berth after the price is released.
  • the charging standard is still executed according to the charging standard notified at the time of the reservation.
  • the free parking time t of the high quality berth is set / t is not charged when the vehicle is parked at the high quality berth;
  • the value of t f may be 0, that is, the vehicle starts to charge from a high quality berth;
  • the price P t 'and the data in the parking area geometric information table are calculated according to the formula ( 1 ).
  • the parking time is t m , the parking fee of the vehicle parked at the high quality berth /
  • P t ' represents the parking fee required to park the vehicle at the ordinary berth when the parking time is equal to the duration control threshold t m ;
  • a represents the travel time value of the parking user in the parking area
  • Ad means walking distance between high quality berth and ordinary berth
  • d' denotes the distance between the ordinary berth and the entrance of the parking area. If there are multiple entrances in the parking area, a weighted average of the travel distance between the ordinary berth and each of the vehicle entrances is used, and the weight is the ratio of the vehicles entering the parking area from the respective entrances. Expressed by (2):
  • n the total number of vehicle entrances in the area
  • ⁇ ⁇ the proportion of vehicles entering the area from the nth car line entrance in the parking area
  • d indicates the distance between the nth car entrance and the ordinary berth.
  • d represents the distance between the high quality berth and the parking area entrance of the parking area. If there are multiple car park entrances in the area, the weighted average of the distance between the high quality berth and each car line entrance is used, and the weight is the ratio of the vehicles entering the parking area from each entrance/? n . Expressed by (3):
  • d n represents the distance between the nth car line entrance and the premium berth. The rest is the same as above.
  • v c represents the average traveling speed of the vehicle in the parking area;
  • v w represents the average walking speed of the traveler in the parking area.
  • n Pi + ( ⁇ — 1) " ( 5 ) where steps b), c), d) can be performed simultaneously, and Figure 7 shows a flow chart for calculating the premium berth parking charge price.
  • a possible implementation is for a parking user who makes a reservation for a premium berth using the mobile terminal application APP, and the system provides a charging plan at the time of reservation, and at the time of final charging, a certain degree of discount is provided on the basis of the charging scheme. .
  • the user should first provide the estimated parking time, calculate the parking fee for different berths according to the estimated parking time, and inform the user.
  • the retractable reservation price means that the appointment can be cancelled free of charge before the agreed time ⁇ hour, and the value of t e ranges from 0.1 to 5. The smaller the value of t e , the higher the price of the reservation can be revoked.
  • the irrevocable reservation price means that once the reservation is completed, it cannot be revoked free of charge, and if the reservation is cancelled, the prescribed default deduction is required, and the amount of the default deduction is set to 1% to 100% of the total price of the reservation order, and the time distance is revoked. The closer the appointment time, the higher the amount of default deduction.
  • the parking reservation system is composed of three modules, including:
  • a statistical module for counting the number and distribution of all available berths in the parking area when the user makes an appointment
  • a calculation module for calculating the parking charge when parking on different berths according to the attribute of the available parking space and the estimated parking time of the user;
  • a publishing module for generating and publishing parking space information based on available berths and calculated parking charge prices for the reserved user to select a parking space.
  • one possible implementation is to consider the price sensitivity coefficient ⁇ of the parking user in the parking area. That is, when the parking user in the parking area has a small response to the price change of the premium berth charge, the calculated parking charge price may be multiplied by a coefficient ⁇ , 1 ⁇ ⁇ ⁇ 1.5 to achieve a certain expansion to achieve the purpose of effective splitting. .
  • the price sensitivity coefficient ⁇ can be set to take into account user loyalty and user coupon usage. Among them, user loyalty is measured by the user's repurchase rate, that is, the number of repeated parkings in a month. The higher the user loyalty, the less sensitive the price is, and the corresponding price sensitivity coefficient ⁇ is larger. The higher the user coupon usage rate, the more sensitive the user is to the price and the smaller the price sensitive factor ⁇ .
  • Historical experience of parking time in parking area Historical experience of number of parking vehicles in parking area Real-time traffic flow of surrounding roads tIII Parking time of reserved berths on mobile terminal APP Qui berth reservation number on the mobile terminal APP The number of parking hours for the temporary parking activity in the parking area
  • the parking time control threshold 1 uncomfortable 1 corresponds to the group
  • Parking Pt length equal to t m
  • the vehicle is parked in the general parking is required to pay parking fees parking duration equal to p t t m
  • the vehicle is parked in high-berth required to pay parking fees
  • CLf A high-quality berth is the distance from the nearest self-service payment machine in the parking area. ac The distance from a high-quality berth to the nearest surveillance camera in the parking area is calculated as a + a 0 + for all the quality parking spaces in the parking area where a high-quality berth is located. a f +
  • the berth area of the highest quality berth in the parking area where a high quality berth is located c The total parking cost when the parking user selects a quality berth
  • Td The travel time required for the parking user to travel from the parking area entrance to the premium berth.
  • c' The total parking cost when the parking user selects the ordinary berth.
  • the travel time required for the parking user to travel from the entrance of the parking area to the ordinary berth t' The walking time required for the parking user to walk between the ordinary berth and the destination t r
  • QP Predicted value of the number of vehicles with parking demand from the beginning of the pricing period to the detection time.
  • Fig. 2 is an illustration of an embodiment of the prior art 1.
  • Fig. 3 is an example of berth classification in the prior art 2.
  • Figure 4 is a comparison of the existing situation and the optimization situation.
  • Figure 5 is a graph of the change in charging for different unit billing durations t Q .
  • Figure 6 is a flow chart for calculating the parking duration control threshold 1 ⁇ .
  • Figure 7 is a flow chart for calculating the premium berth parking charge price.
  • Figure 8 is a possible classification of multiple high quality berths in a parking lot.
  • Figure 9 is a flow chart of the implementation of the high-quality berth dynamic pricing method with priority short stop.
  • Fig. 10 is a schematic diagram of a parking area in the embodiment.
  • Figure 11 is an internal plan view of the parking lot where the premium berth is located in the embodiment.
  • the on-street parking space PI is a high-quality parking resource, there are 100 parking spaces; the off-street parking lot P' is an ordinary parking resource, and the charging research time is from 07:00 to 24:00 on a certain day.
  • the user can reserve the premium berth in the parking area in advance through the relevant mobile terminal application APP.
  • the APP will inform the user of the premium price of the premium berth, and finally charge the user who made the reservation according to the price.
  • the high-quality berth dynamic pricing method with priority short stop is used to make parking pricing for APP reservation users for the high quality berths in the parking area.
  • the implementation process is as follows:
  • the unit billing time to 10 minutes, and the part that stops for less than 10 minutes is charged for 10 minutes.
  • the number of vehicles entering the parking area from E1 every day in the parking area is 400, and the number of vehicles entering the parking area from E2 is 200; the travel time per person in the parking area is 25 yuan/hour; The average speed of vehicles in the area is 10km/h, and the per capita walking speed is 5km/h.
  • the historical experience value of the number of parking vehicles in the parking area is 500, and the parking time distribution is known.
  • the parking area is known to be in this day. An event is scheduled to be held.
  • the number of participants is expected to be 300, and the event time is from 9:00 to 11:00.
  • the proportion of people who participated in the event before driving was about 20%. Because it is the high quality berth parking pricing for the APP reservation user, according to the method a) in the step (3), the number of vehicles having the parking demand in the parking area is predicted during the day: the parking demand vehicle in the parking area Number Q
  • the number of vehicles Q with parking demand in the area is grouped according to their parking time t, and the parking demand statistics table is as follows: Parking time length ⁇ Average arrival amount q oi Required parking resources accumulation required parking space and time resources ⁇ Number of vehicles
  • the parking price for PI premium berths is free for the first 30 minutes, and the first lOmin for the first time is 0.5 yuan.
  • the price of each lOmin is 0.040 yuan higher than the previous lOmin, that is, the second one. lOmin charges 0.540 yuan, the third lOmin charges 0.580 yuan, the fourth lOmin charges 0.620 yuan ...
  • Period (min) 0-30 30-40 40-50 50-60 (30+n X lO)- [30+(n+l)X lO] Charge (yuan) 0 0.5 0.540 0.580 0.5+ ⁇ ⁇ 0.040
  • the final parking charge for users who come to the premium berth parking after the advance reservation through the APP is calculated at 90% of the above calculated price, that is, enjoy a 10% discount.
  • the price of the premium berth is adjusted in real time, the fee for the reserved user does not change, and it is still executed according to the charging standard notified by the system at the time of the reservation.
  • the parking area geometry information table is established as follows, and the results are the same as in the first embodiment.
  • the number of vehicles entering the parking area from E1 every day in the parking area is 400, and the number of vehicles entering the parking area from E2 is 200; the travel time per person in the parking area is 25 yuan/hour.
  • the average speed of vehicles in the parking area is 10km/h, and the per capita walking speed is 5km/h.
  • the number of high-quality berths in the parking area is 60, and the number of parking users who use the APP to reserve high-quality parking spaces here accounts for about the parking users here.
  • 10% of the total number of people the parking time is filled in at the time of booking; the historical experience value of the number of parking vehicles in the parking area is 500 by the intelligent gate data at the parking lot P, and the parking length is known. It is known that there will be an event on this day in the parking area. It is expected that the number of participants will be 300, and the event time will be from 9:00 to 11:00. The proportion of people who participate in the event is about 20%.
  • step (3) b) predict the number of vehicles with parking demand in the parking area during the day.
  • the number of vehicles with parking demand in the parking area Q the number of reserved berths in the parking area
  • the number of vehicles with parking demand in the area is grouped according to their parking time t.
  • the parking demand statistics are as follows:
  • 0.85xl00x( ⁇ ) 14.1667 (one hour).
  • the parking charge price is free for the first 30 minutes, after the first lOmin The charge is 0.5 yuan.
  • each lOmin is 0.043 yuan higher than the previous lOmin, that is, the second lOmin charge is 0.543 yuan, the third lOmin charge is 0.586 yuan, and the fourth lOmin charge is 0.629 yuan...
  • step (3) to step (5) are re-calculated, the charged price of the premium berth is recalculated according to the new parameters, and the updated parking charge price is released.
  • the parking from the high quality berth is from 09:00 to the next update.
  • the parking fee will be charged according to the updated charging standard.
  • the parking price of the parking users who have entered the market will still be charged according to the charging standard announced at the time of entry; the reserved user will still inform the APP according to his appointment. The fee is charged.
  • the parking area and known conditions are the same as those described in the second embodiment.
  • the high quality berths in the high quality berth parking lot P are graded according to the location, size and other conditions, and differentiated pricing is implemented for different grades of high quality berths.
  • the specific implementation process is as follows: Since the parking area and the implementation conditions are the same as those in the second embodiment, the preliminary steps and results are the same as those in the second embodiment, and the price changes with the parking time of the high quality berth under the non-grading condition are as follows: Show:
  • the quality berths are now graded.
  • the internal plan view of the parking lot P where the premium berth is located is shown in Fig. 14.
  • the berth of the sign 1 in the figure is a first-class high-quality berth located close to the entrance and exit, the elevator or the paying machine and larger than the remaining berths.
  • the berth of the sign 2 is the same size as the majority berth but close to the entrance and exit, the elevator or the paying machine.
  • High quality berths, unmarked berths are three quality berths.
  • the high quality berth grade is divided as shown in Figure 8.
  • the grade factor of different grades of high quality berths is set as shown in the following table: High quality berth level 1st level 2rd level 3 sign 1 2 No sign level factor) ⁇ 1.5 1.2 1.0
  • the charging standard for different grades of high quality berths in the parking lot is expressed in the form of a high quality berth charging matrix as shown in the following table:
  • the parking area can be obtained.
  • both indicators satisfy 0.85 ⁇ ⁇ ⁇ Q r ⁇ 1.15 ⁇ ⁇ and 0.7 ⁇ 0 r ⁇ 0.9 ⁇ Therefore, the premium berth for the unreserved users on the same day has been executed at the above price and has not been changed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Finance (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种优先短停的优质泊位预约及动态定价方法。通过对不同停车资源进行时间、空间差异化定价,实现对停车需求的管理和引导,并为停车者提供车位预约服务。特别地,通过递增累进计费的方式,精细化地设定优质泊位的收费价格并根据实际情况进行动态调整,以达到将有限的优质泊位优先供给停车时长较短的车辆的目的。

Description

一种优先短停的优质泊位预约及动态定价方法 技术领域
本发明涉及一种优先短停的优质泊位预约及动态定价方法。 驾驶者通常倾向于选择位置便捷、 停放安 全的优质停泊位, 而不愿意位置较偏远、停放开出难度大、不易找车的普通泊位, 会因优质泊位数量供 不应求造成拥堵及排放增加。特别地, 本发明考虑优质停车泊位的数量、 区域停车需求特征、车位占有 率等, 通过递增累进计费的方式, 精细化地设定优质泊位的收费价格并提供泊位预约服务, 以达到将 有限的优质泊位优先供给停车时长较短的车辆的目的, 以使更多的驾驶者能够得到舒适便捷的停车服 务和较短的步行时间, 提高了社会整体效率。
背景技术
现有技术 1
一件美国专利申请, US20140122375 , 披露了一种根据停车场实时的车位占用率来动态调节停车定价的 方法。 这种定价方法需要通过智能传感器来检测车位的实时占用率, 通过比较模块将当前占用率与目 标占用率相比较, 通过实时调节停车定价来实现对停车需求的反馈控制。 图 1显示了这种动态定价方 法的实施流程图。 图 2显示了这种定价方法的一个实施安全中的停车需求、 车位占用率及设定的停车 定价的变化情况。
由图 2可以看出, 这种定价方法在检测到车位占用率超过设定的目标值, 即停车需求较大时提高停车 收费的定价, 起到抑制需求的作用, 以将车位占用率降到设定的 85%阈值以下。但是这种定价方法中, 系统是按照先到先服务的原则对停车者提供泊位资源的, 既没有考虑泊位资源条件优劣的差异化, 也 没有对停车用户进行停车时长的区分和选择。 因此, 未能实现对优质泊位资源的最大化利用。
现有技术 2 一件美国专利申请, US20110213672 , 披露了一种高需求情况下泊位的差异化定价方法。 这种方法将停 车场内的可用泊位从数量上分成"普通泊位"、 "最后保留泊位之一"、 "唯一最后保留泊位"等类别, 借 鉴使用了泊位 "贡献值"的概念, 根据不同类别泊位的贡献值不同, 对其进行不同的定价, 以期实现运 营商利润的最大化。
图 3显示了一个停车场内利用这种方法对泊位类别的划分。 其中标识 L的是 "大尺寸泊位", 标识 S的 是 "安全泊位", 没有标识的是普通车位。 下表显示了这种方法的一个实施实例中对泊位的类别划分以 及定价规则。 标 识 分 类 价格 ( S) 时长限制(h )
0 普通泊位 1.00 2.5
L 最后保留泊位 3.00 3.0
NL 最后保留车位的相邻泊位 2.00 3.0
S 安全泊位 10.00 10.0 可以看出, 这种定价方法虽然对泊位进行了差异化区分定价, 但并未对停车者的停车时长进行合理选 择。 这种定价方法的目的是运营商利润的最大化而不是社会效率的最优化, 因此无法保障其优质泊位 能最大程度地服务于更多驾驶者, 因此同样存在一定程度的优质泊位资源的浪费。
现有技术 3 一件中国专利申请, CNid00000063094751 ,披露了一种考虑停车时间的停车诱导系统的调控方法。这种 方法所述的诱导系统以路网图形式展现区域的停车状况, 诱导屏上包括了区域内各停车场的泊位信息 及行驶路线, 并动态显示路网的道路交通状况以及各停车场的停车难易程度信息。 这种难易程度信息 通过依据停车时间范围划分的不同颜色标识给出。 其所述停车诱导系统的调控方法是根据停车时间, 计算驾驶员在当前位置选择区域内不同停车场所需 的停车时间并选取合适的方式进行发布, 停车场的停车时间考虑到达停车场的路段行程时间, 排队进 入停车场时间和停车场内部寻找车位的时间三部分。 但其对驾驶者的诱导仅根据不同停车场当前的车 位占有率决定, 未区分停车资源的便捷性, 造成优质停车资源未得到最充分的利用。
现有技术 4
一件中国专利申请, CN201510448131 ,披露了一种基于需求特性和停车场利用率的停车动态定价方法。 通过将检测器采集到的停车场车辆进出数据做停车场利用率的时间序列分析来判断该停车场或该停车 场所在区域是否需要进行停车价格的调整, 并以此设定动态定价的目标和周期; 通过手机 APP进行 RP 调査进而构造该停车场或该停车场所在区域的停车选择概率方程, 以此建立停车利用率与停车场属性 (包括价格) 的关系, 再结合检测器采集到的区域停车流量数据即可通过调整停车场的停车价格来优 化该停车场的停车场利用率, 到达之前设定的目标, 从而实现停车场的合理动态定价。
在这种动态定价方法中, 对某个特定停车场内部所有泊位的价格均相同, 即未对停车场内部不同泊位 的便捷性做出区分。
现有技术 5 一件中国专利申请, CNid00000071874281, 披露了一种基于最优泊位模型的智能停车场车位诱导机制 算法。 该方法包括停车场最优泊位模型的确定, 路网带权图的绘制和车位诱导算法的设计及程序编写 三个部分。
其中, 最优泊位是根据车辆进入停车位的行驶距离、 走出停车场的步行距离和人身安全性三方面来确 定的。 通过将这三个距离定量表示, 以三个距离之和为最短的最短路径法建立数学模型并由此确定最 优泊位。 根据最优泊位模型, 可以将停车场路网抽象为图论中的带权图求解, 从而最优泊位问题就可 以转换为带权图上的最短距离计算问题。 在进行最优泊位选择时采用性能较优的改进 floyd算法, 最后 通过 Matlab仿真进行验证。 这种方法对停车场内的不同泊位进行了区分, 确定了最优泊位, 但仅将该算法用做停车诱导, 未涉及 停车定价, 也没有通过差异化定价来调控停车需求。 发明内容
将有限的优质泊位用来最大程度地满足停车时长较短的车辆的停车需求, 提高优质泊位的周转率, 是 提高社会整体效率的关键。 这一思路可以用下面的例子进行说明:
假设现有一个位置便捷的优质泊位,距离停车后出行者所想要到达的最终目的地的步行距离为 2分钟; 同时有位置较远的普通车位, 距离最终目的地的步行距离为 5分钟。 假设某一时段内先有 A、 B两名驾 驶者同时需要停车后到达这一目的地, 其中 A的停车时长为 6小时, B的停车时长为 2小时, 2小时后 有驾驶者 C, 4小时后有驾驶者 D也需要停车后到达同一目的地, 其停车时长也均为 2小时。 在现有的技术方法下, 可能会出现的情形为:
驾驶者 A将车停放在优质车位上, 停车后步行 2分钟到达目的地; 与此同时驾驶者 B将车停放在普通 车位上, 停车后步行 5分钟到达目的地。 2小时后, B车驶离, 此时到达的 C只能将车停放在普通车位 上 (因为优质泊位仍被 A车占用), 停车后也需步行 5分钟到达目的地; 同样地, 再过 2小时后 C驶 离, 而此时到达的 D也只能将车停放在普通车位上 (因为优质泊位仍被 A车占用), 停车后也需步行 5 分钟到达目的地。 在这种情形下, 整个系统中四名驾驶者所花费的步行时间共计为 2+5+5+5=17分钟。 而如果采用本发明的思路, 将优质泊位优先满足短停车辆, 则情形会变为:
驾驶者 A将车停放在普通车位上, 停车后步行 5分钟; 与此同时驾驶者 B将车停放在优质车位上, 停 车后步行 2分钟。 2小时后, 当 C到达时, 优质车位上的 B已经驶离, 因此 C会将车停放在优质车位 上; 同理, 又过 2小时 D到达时, 优质车位上的 C已经驶离, 因此 D会将车停放在优质车位上, 因此 C D 所需的步行时间均为 2 分钟。 在这种情形下, 整个系统中四名驾驶者所花费的步行时间共计为 5+2+2+2=11分钟。 图 4对这两种情形进行了对比说明。 通过这个例子可以发现, 通过将优质车位优先分配给停车时长较短的车辆(以下简称"短停车辆"), 在 这个系统中, 系统整体付出的步行时间明显减少, 效率极大提高。如何通过对优质泊位的合理定价, 引 导短停车辆停至优质泊位而长停车辆停至普通泊车, 是本发明要解决的问题。
本发明提供了一种基于优质泊位数量限制和停车需求特征分布的优先短停的优质泊位预约及动态定价 的方法, 通过得到区域内停车行为特征, 计算停车时长控制阈值和计费标准, 实现诱导转移长停车辆 至普通泊位, 并能根据实际需求状态对价格进行动态调控。 同时提供优质泊位预约服务, 实现提高优 质泊位利用率, 减少系统总巡游时间及步行时间的目的。
这里所述的优质泊位是指便捷性较高的车位, 其明显特征是距离停车区域内驾驶者所要到达的最终目 的地距离较近, 驾驶者停车后所需的步行时间较短。 这里所述的普通泊位是指便捷性差于优质泊位的 泊位, 其特征是所处位置相对较偏远, 驾驶者停车后步行至停车区域内的最终目的地所需的步行时间 较长。 当在某一区域内优质泊位和普通泊位同时存在时, 可用本发明的方法为其中的优质泊位进行预 约和定价。
本发明具体包括以下步骤: ( 1 ) 建立停车区域几何信息表。所含信息包括停车区域的车行入口的数量 m、各停车区域车行入口 与优质泊位间的车行路程 dn、 各停车区域车行入口与普通泊位间的车行路程 以及优质泊位与普 通泊位间的步行路程 Ad, 这些数据均通过实地测量得到。 所建立的停车区域几何信息表的一个示 例如下所示:
Figure imgf000006_0001
( 2 ) 确定单位计费时长 tQ。 单位计费时长 tQ可以是小于所需定价的时段长度的任一时长, 如要制定 的是 3小时内的停车收费政策, 则应满足^ < 3小时。 停车时长中不满一个 tQ的部分在计费时按一 个^计算。 特别地, 本方法中提出 的取值应满足 1分钟≤ to≤ 20分钟。 这是因为 to越大, 停车收费随停车 时长增加的阶梯性突变越明显,会使时长处在突变阈值附近的用户对收费的变化更为敏感,从而增 加用户的时间焦虑感, 降低停车用户对停车服务的满意度。
图 5显示了在假设某用户停车时长为 2小时, 最终支付的总费用相同的情况下, 设定单位计费时 长 to = 1小时和 to = 10分钟两种情况下,其停车费用在 2小时内随时间增长的变化情况。由图 5可 以看出, tQ = l小时情况下, 收费增长具有明显的阶梯性突变, 这使得停车者在停车接近 2小时的 时候便会产生明显的心理焦虑感, 因为担心时长一旦超过 2小时, 费用会产生突增。 而在 to = 10 分钟的情况下,收费增长更加平缓渐变,用户不必担心由于超过某个时限而产生费用的大幅增加, 从而改善用户的停车体验。
( 3 ) 确定停车区域内停车特征数据。这些数据包括进入所述停车区域内有停车需求的车辆数 Q、有 停车需求的车辆的停车时长 t、 所述停车区域内车辆从各车行入口进入的比例 /?n、 停车区域内停车 用户出行时间价值 α、停车区域内的平均车速 、停车区域内平均步行速度 17W以及停车区域内停车 用户的价格敏感系数 μ。
其中, 所述停车区域内车辆从各车行入口进入的比例 /?η、 停车区域内停车用户出行时间价值 α、 停 车区域内的平均车速 、 停车区域内停车用户的平均步行速度 17W以及停车区域内停车用户的价格 敏感系数 μ, 可通过在所述停车区域内实地抽样调査得到。 在确定所述停车区域内有停车需求的车辆数 Q和有停车需求的车辆的停车时长 t这两项数据时, 需要利用以下四种相关数据中的至少一种: a) 同时段所述停车区域内停车车辆数 Q τ及停车时长的历史经验值 t τ。 通过智能化的停车设施所 存储的数据或人工记录,得到优质泊位和普通泊位处停车车辆的到达数量并求和, 同时记录每 辆车的停车时长, 随机抽取多天的记录值并取平均值, 即为所述停车区域内停车车辆数历史经 验值及停车时长的历史经验值。特别地, 在进行历史数据的抽取统计时, 应将选取的日期分工 作日、 双休日及特殊节假日这三种需求差异较大的情况进行分别统计。 b) 周边道路的实时交通流量 Q n。 指由交通管理部门或有关专业第三方发布的, 围绕所述停车区 域周边的道路路网的实时交通流量数据。 c) 泊位预约系统中的泊位预约数据 ρΙΙΡ tm。 指有停车需求的用户提前通过泊位系统系统, 包括 网站、 手机 APP、 微信公众号等方式, 对所述停车区域内的优质泊位进行了预约, 并告知所需 停车的时段。 在预约系统上被预约的优质泊位的数量和预约时段可以从应用后台进行实时获 取。 d) 已知的停车区域内的临时活动的诱增停车需求量 tni。 所述停车区域内将发生的临时的活 动时会加大停车区域内的停车需求, 因此需要掌握参加活动的人数和活动举办的时间。 利用以上一种或多种相关数据, 通过以下三种方法之一, 对所述停车区域内的有停车需求的车辆 数 Q和有停车需求的车辆的停车时长 t进行预测: a) 所述停车区域内的有停车需求的车辆数 Q =同时段所述停车区域内停车车辆数的历史经验值
Q! +停车区域内临时活动的参加人数 QjyX小汽车出行的分担比;其中小汽车出行的分担比的 取值大于 0.1小于 0.3, 通过在实地抽样调査得到; 停车区域内的停车时长 t由停车时长的历 史经验值 t j和停车区域内临时活动诱增的停车需求的停车时长分布 tjy叠加得到。 b) 所述停车区域内的有停车需求的车辆数 Q =预约系统中预约泊位数量 Qm + 同时段所述停车区域内停车车辆数的历史经验值 Q! x(l - 预约用户占所有停车用户的比例) +停车区域内临时活动的参加人数 QjyX 小汽车出行的分担比; 其中预约用户占所有用户的比例是通过抽样调査得到, 小汽车出行的 分担比的取值大于 0.1小于 0.3, 通过在实地抽样调査得到; 停车区域内的停车时长 t由停车 时长的历史经验值 t j和由历史数据、 预约系统预约数据确定的停车需求的停车时长 tm和由停 车区域内临时活动诱增的停车需求的停车时长 tni三项叠加得到。 c) 所述停车区域内的有停车需求的车辆数 Q =周边道路的实时交通流量 Q Ti x 同时段所述停午 域内停午午辆数的历史经验值
总需求的停车时长 t 的分布与停车时长历史数据经验值 ~周边道路的实时交通流量的历史平均值 ~
的分布 t T一致。 当用于确定预约系统中提供给预约用户的优质泊位价格时,应使用方法 a) ; 当进行优质泊位价 格的实时动态调整时, 应使用方法 b)或方法 c)。 但实时调整的价格仅应用于价格发布后进入 泊位的非预约用户, 对于已在 APP 上进行预约的停车用户, 其收费标准依然按照其预约时所 被告知的收费标准执行。
确定停车时长控制阈值 tm。 按照以下步骤进行:
由步骤(3 )中所获得的数据,将停车区域内有停车需求的车辆总量 Q按停车时长 t进行分组, 组距为单位计费时长 tQ。 即第 i组数据的停车时长为 = iXtQ, 该组的车辆数为 i的取值范 围为 i = 1,2,3 , T/t0, 其中 T是总定价时长; 由第 i组的车辆数 , 计算第 i组车辆平均每 to时长的到达量 qQi = ^-; 由第 i组车辆平均每 tQ时长的到达量 q( ^和第 i组车辆的停车时长 t, 计算第 i组车辆所需要的 停车时空资源数量 = i^ Xti ;
由各组车辆所需要的停车时空资源数量 S2 , St , 计算前 i组车辆累积所需停车时空资源数 量∑s = Sx + S2 +… + Sr'
由优质泊位的泊位数 s计算其所能提供的停车时空资源 Sp = 0.85X5X t0 ; 将∑Si, ∑S2 ∑ 与优质泊位所能提供的停车时空资源 Sp进行比较,找出一个 i',使得∑S 最接近但且不超过 Sp, 其所在组别 i'对应的停车时长 即为停车时长控制阈值 tm。 图 6 显示了停车时长控制阈值 tm的计算流程。 这一计算过程可以利用停车需求统计表来进行 计算。 下表是停车需求统计表的一个示例。
停车时长^ 平均到达量 qoi 所需停车资源 累积所需停车时空资源∑ 辆数
(lOmin) (辆 /lOmin ) (个'小时) (个'小时)
1 6 0.333 0.056 0.056
2 1 0.056 0.019 0.074
3 1 0.056 0.028 0.102
4 1 0.056 0.037 0.139
5 3 0.167 0.139 0.278
6 2 0.111 0.111 0.389
7 3 0.167 0.194 0.583
8 1 0.056 0.074 0.657
9 3 0.167 0.250 0.907
Figure imgf000009_0001
确定优质泊位停车收费价格。 按以下步骤进行:
由已知的普通泊位停车收费政策, 计算当停车时长为停车时长控制阈值1时, 普通泊位的停 车收费价格 Pt' ;
设定优质泊位的免费停车时长 t/ 即车辆在优质泊位处停放时长不超过^时, 不进行收费; tf 的取值可以为 0, 即车辆从一停入优质泊位就开始计费;
按成本定价法确定优质泊位在^时长内的价格下限, 作为优质泊位免费停车时长 ^结束后第一 个^时长内的收费价格 p1 ; 由当停车时长为1时,普通泊位的停车收费价格 Pt'和所述停车区域几何信息表中的数据,按式 ( 1 ) 计算当停车时长为 tm时, 车辆停放在优质泊位处的停车收费 /
( 1 )
d vw 其中:
Pt' 表示求得当停车时长等于时长控制阈值 tm时, 将车辆停放在普通泊位处所需缴纳的停车费 用;
a 表示所述停车区域停车用户的出行时间价值;
Ad 表示优质泊位与普通泊位之间的步行路程;
d' 表示普通泊位与所述停车区域入口间的车行路程。 若所述停车区域存在多个入口, 则采用 普通泊位与各车行入口间车行路程的加权平均值, 权重为所述停车区域内的车辆从各入口进 入的比例 。 用 (2 ) 式表示:
d' =∑^=1 βη - άη' ( 2 ) 其中:
m 表示区域中车辆入口总数; βη 表示在所述停车区域内的车辆从第 η个车行入口进入区域的比例;
d 表示第 n个车行入口与普通泊位间的车行路程。
d 表示该优质泊位与所述停车区域车行入口间的车行路程。 若该区域存在多个车行入口, 则 用该优质泊位与各车行入口间路程的加权平均值表示, 权重为所述停车区域内的车辆从各入 口进入的比例 /?n。 用 (3 ) 式表示:
( 3 ) 其中:
dn 表示第 n个车行入口与该优质泊位间的车行路程。 其余意义同上。 vc 表示所述停车区域内车辆的平均行驶速度; vw 表示所述停车区域内出行者的平均步行速度。
e) 由当停车时长为1时车辆停放在优质泊位处的停车收费/ 按式 (4 ) 计算得到优质泊位的价 格递增方差 Δρ,即优质泊位第 η个单位计费时长 tQ的收费比第 (η-1)个单位计费时长 tQ收费上涨 的部分:
2( ^ ( 4 ) 其中:
Ν表示停车时长控制阈值1中所含的单位计费时长^的个数, 即 Ν =
Figure imgf000010_0001
f) 由优质泊位免费停车时长 ^结束后第一个 tQ时长的收费价格 1和优质泊位的价格递增方差 Δρ, 按式 (5 ) 计算得到优质泊位免费停车时长 ^结束后第 n个tQ时长的收费价格 ρη :
n = Pi + (η— 1) " ( 5 ) 其中, 步骤 b),c),d)可以同时进行, 图 7显示了优质泊位停车收费价格的计算流程图。 在这一步骤中, 一种可能的实施方式是对于使用移动终端应用 APP对优质泊位进行预约的停车用 户, 在预定时系统即为其提供一个收费方案, 并在最终收费时, 在此收费方案基础上进行一定程度 的折扣优惠。
在所述的停车预约服务中,应先由用户提供其预估停车时长,根据其预估停车时长计算不同泊位应 收取的停车费, 并告知用户。
在预约系统中,应提供可撤消预约价格和不可撤消预约价格两种价格供用户选择。所述可撤消预约 价格是指该预约可在距离约定时刻 ^个小时前被免费取消, te的取值范围为 0.1至 5。 te取值越小, 可撤消预约价格越高。所述不可撤消预约价格是指一旦完成预约, 则不可免费撤消, 如需撤消预约 需要支付规定的违约扣款, 违约扣款的金额设置为预约订单总价的 1%至 100%, 撤消时间距离约 定时间越近, 违约扣款的金额越高。 所述的停车预约系统由三个模块组成, 包括:
i) 统计模块, 用于统计用户预约时停车区域内所有的可用泊位数量及分布;
i) 计算模块, 用于根据可用车位的属性及该用户的预估停车时长计算其停放在不同泊位上时的 停车收费; iii) 发布模块,用于根据可用泊位以及所计算停车收费价格生成并发布车位信息,供预约用户选择 车位。
在这一步骤中, 一种可能的实施方式是考虑所述停车区域内停车用户的价格敏感系数 μ。 即当所述 停车区域内停车用户对优质泊位收费价格变化的反应较小时, 可以对计算所得的停车收费价格乘 以系数 μ, 1 < μ < 1.5 , 进行一定的扩大, 以达到有效分流的目的。 所述价格敏感系数 μ的设定可以考虑用户忠诚度和用户优惠券使用情况。 其中, 用户忠诚度通过用 户的复购率, 即一月内重复停放的次数来衡量。用户忠诚度越高, 对价格的敏感程度越小, 相应的 价格敏感系数 μ越大。 用户优惠券使用率越高, 则用户对价格的敏感程度越高, 相应的价格敏感系 数 μ越小。
( 6 ) 确定实时检测间隔时长 ^, 对在优质泊位处停车的实际车辆数 和优质泊位的实时占用率 ^ 进行定时的实时统计与检测。利用智能道闸、视频车位探测器、 红外车位探测器、微波车位探测器 或地磁线圈,每隔 ^时长统计从定价时段起始到当前时刻,在优质泊位处停车的实际车辆数 和此 时优质泊位的实时占用率 , 并将数据上报给系统。
( 7 ) 将实时检测数据与预测数据进行比较, 确定之后时段的优质泊位停车收费价格。 由步骤 (3 ) 中确定的所述停车区域内有停车需求的车辆数 Q, 求得从定价时段起始到当前时刻的预测需求量 从定价时段起始到当前时刻的时长
Qv = QX - 和优质泊位处停车的实际车辆数 比较, 若 0.85 ≤ Qr≤ ip v 定价时段的总时长 τ ' ' " '/u'^
1.15 且0.7≤ Or≤ 0.9, 则原定收费方案不
更新相关参数, 定并发布新的收费方案。
以上符号及其所表示含义归纳如下表: 符 号 含 义
m 停车区域中车行入口总数
dn 停车区域第 n个车行入口与优质泊位间的车行路程
d 停车区域第 n个车行入口与普通泊位间的车行路程
Ad 优质泊位与普通泊位间的步行路程
to 单位计费时长
Q 停车区域内有停车需求的车辆数
t 停车区域内有停车需求的车辆的停车时长
停车区域内停车时长的历史经验值 停车区域内停车车辆数的历史经验值 周边道路的实时交通流量 tIII 移动终端 APP上的预约泊位的停车时长 Qui 移动终端 APP上的泊位预约数量 停车区域内的临时活动的诱增停车需求的停车时长
Q N 停车区域内的临时活动的诱增停车需求量 βη 停车区域内从第 n个车行入口进入的车辆所占比例 a 停车区域内停车用户的出行时间价值
停车区域内车辆的平均行驶速度
停车区域内停车用户的平均步行速度
μ 停车区域内停车用户的价格敏感系数
停车时长控制阈值
ti 停车需求统计表中第 i组车辆的停车时长
q; 停车需求统计表中第 i组的车辆数
q0i 停车需求统计表中第 i组车辆平均每 tQ时长的到达量
T 总定价时长
Si 停车需求统计表中第 i组车辆所需的停车时空资源数量
停车需求统计表中前 i组车辆累积所需停车时空资源数量
S 优质泊位的泊位数
s 优质泊位所能提供的停车时空资源数量
V 停车需求统计表中停车时长控制阈值1„1所对应的组别
Pt 停车时长等于 tm时, 车辆停在普通泊位所需缴纳的停车费 pt 停车时长等于 tm时, 车辆停在优质泊位所需缴纳的停车费
优质泊位的免费停车时长
Pi 优质泊位免费停车时长 ^结束后第 1个^时长的收费价格 d 优质泊位与停车区域各车行入口间车行路程的加权平均值 d' 普通泊位与停车区域各车行入口间车行路程的加权平均值
Δρ 优质泊位的价格递增方差
N 当停车时长为 tm时, 所含的单位计费时长 tQ的个数
Pn 优质泊位免费停车时长 ^结束后第 n个^时长的收费价格
Yi 等级为 i的优质泊位的等级系数
a-i 某优质泊位距离所在停车区域最近一个入口的距离 a0 某优质泊位距离所在停车区域最近一个出口的距离
CLf 某优质泊位距离所在停车区域内最近一个自助缴费机的距离 a-c 某优质泊位距离所在停车区域内最近一个监控摄像头的距离 对某优质泊位所在停车区域内所有优质车位分别计算其 a + a0 + af +
^后得到的最小值 s 某优质泊位的泊位面积
某优质泊位所在停车区域内面积最大的优质泊位的泊位面积 c 停车用户选择优质泊位时的总停车成本
P 停车用户选择优质泊位时所缴纳的停车费
td 停车用户从停车区域入口行驶至优质泊位所需的行驶时间 停车用户步行往返于优质泊位与目的地之间所需的步行时间 c' 停车用户选择普通泊位时的总停车成本
P' 停车用户选择普通泊位时所缴纳的停车费
停车用户从停车区域入口行驶至普通泊位所需的行驶时间 t' 停车用户步行往返于普通泊位与目的地之间所需的步行时间 tr 优质泊位实时检测间隔时长
Qr 在优质泊位处停车的实际车辆数
or 优质泊位的实时占用率
QP 从定价时段起始到检测时刻有停车需求的车辆数的预测值 附图简要说明
图 1是现有技术 1的实施流程图。
图 2是现有技术 1实施实例说明。 图 3是现有技术 2中泊位分类示例。
图 4是现有情形与优化情形对比图。
图 5是不同单位计费时长 tQ下收费变化对图。
图 6是停车时长控制阈值 1的计算流程图。 图 7是优质泊位停车收费价格的计算流程图。 图 8是某停车场内多个优质泊位一种可能的分级方式。
图 9是优先短停的优质泊位动态定价方法实施流程图。
图 10是实施例中的停车区域概况图。 图 11是实施例中优质泊位所在停车场的内部平面图。
具体实 ¾ ¾r式
具体实施方式一
在本实施例中, 提供一个上述发明的可能实施方式, 本实例中停车区域概况图如图 11所示, 区域内共 有两个入口 El和 E2,路内停车位 PI为优质停车资源,有 100个车位;路外停车场 P'为普通停车资源, 收费研究时间为某天的 07:00— 24:00。 用户可通过相关的移动终端应用 APP提前预约该停车区域内的 优质泊位, 在预约时 APP将告知用户该优质泊位的收费价格, 并最终按照这一价格对预约前来的用户 进行收费。 现利用优先短停的优质泊位动态定价方法为该停车区域内的优质泊位进行针对 APP预约用 户的停车定价。 实施过程如下:
1. 通过实地测量, 建立该停车区域几何信息表如下:
Figure imgf000014_0001
设定单位计费时长 to为 10分钟, 停车时长不足 10分钟的部分按 10分钟计费。 通过实地抽样调査得到, 该停车区域内每天从 E1进入停车区域的车辆数为 400辆, 从 E2进入停 车区域的车辆数为 200辆; 停车区域内人均出行时间价值为 25元 /小时; 停车区域内车辆平均行 驶速度为 10km/h, 人均步行速度为 5km/h。 由优质泊位停车场 P和普通泊位停车场 P'处的智能道闸数据得到停车区域内停车车辆数的历史经 验值为 500辆, 其停车时长分布已知; 同时已知该停车区域内在这天将要举办一个活动, 预计参 加人数为 300人, 活动时间为 9:00— 11:00, 参加活动的人中选择开车前为的人数比例约为 20%。 因为是针对 APP预约用户进行的优质泊位停车定价, 则按照步骤 (3 ) 中的方法 a)预测这天内该 停车区域内有停车需求的车辆数 Q: 所述停车区域内的有停车需求的车辆数 Q
=停车车辆到达速率的历史经验值
+停车区域内临时活动的参加人数 X小汽车出行的分担比 = 500 + 300 X 20O
= 560辆
对该区域内有停车需求的车辆数 Q按其停车时长 t进行分组, 得到停车需求统计表如下: 停车时长^ 平均到达量 qoi 所需停车资源 累积所需停车时空资源∑ 辆数
(lOmin) (辆 /lOmin ) (个'小时) (个'小时)
1 10 0.1190 0.0198 0.0198
2 11 0.1310 0.0437 0.0635
3 14 0.1667 0.0833 0.1468
4 5 0.0595 0.0397 0.1865
5 9 0.1071 0.0893 0.2758
Figure imgf000015_0001
Cl7S8S0/Z.l0Zai/X3d £18 8Ϊ0Ζ OAV //3u O 3s8soZJOSI1d 28siAV
Figure imgf000016_0001
80 2 0.0238 0.3175 36.4226
81 3 0.0357 0.4821 36.9048
82 1 0.0119 0.1627 37.0675
83 2 0.0238 0.3294 37.3968
84 0 0.0000 0.0000 37.3968 同时, 由于优质泊位的数量 s=100个, 其所能提供的停车时空资源 Sp = 0.85 X5Xt0 =
0.85x l00x (^) = 14.1667(个.小时) 。 通过在停车需求统计表中与各组的累积所需停车时空资 源∑S相比较, 发现在第 42组数据中, 即当停车时长 = 42 X 10 = 420min时, 其累积所需停车 时空资源∑S = 13.7698个 ·小时, 是最接近且不超过 Sp = 14.1667个.小时的组别。 因此, 确定 该停车区域的停车时长控制阈值 tm = 420min。 已知该停车区域内普通泊位的停车收费为 5元 /h, 不足 1小时部分按 1小时计。 则当停车时长为 停车时长控制阈值 tm = 420min时, 停放在路外停车场的停车费用为 =7h X5元 /h=35元。 优质泊
400 200 位与该停车区域各车行入口间车行路程的加权平均值 d =∑™ i /?n■ dn = X0.5 +■ X
400+200 400+200
400
2 = 1 km ;普通泊位与停车区域各车行入口间车行路程的加权平均值 =∑^=1 βη■ d = X
400+200
200
L.2 +■ x l.2 = 1.2 km。 按式(1 )计算当停车时长为 tm时, 车辆停放在优质泊位处的停车收
400+200
id'— d Ad\ L.2 - 1 1.4\ 兀一
Pt = Pt + α + 2—— 1 = 35 + 25x + 2x ) = 49.5
V vd vwJ
设定优质泊位的免费停车时长 to = 30min , 即在路内停车位停车不超过 30min 时不收费。 则当停 车时长为停车时长控制阈值 tm = 420min时, 其中包括的单位计费时长 tQ = lOmin的个数 N = tm-tf _ 420-30
39 c
10 同时, 根据成本定价法, P1处路内停车位的价格下限为 2元 /h, 即在免费停车时长 to = 30min结 束后路内停车位第一个单位计费时长 tQ = lOmin的收费 Pl=0.5元。 因此, 按 (4 ) 式求得 Δρ = ¾^ =
W(W_1) 2X( 399x'5 '5) = 0.040元
(393-l) 因此, PI优质泊位的停车收费价格为前 30min免费, 超过之后第一个 lOmin 收费 0.5元, 之后每 个 l Omin的收费价格比前一个 lOmin上涨 0.040元, 即第二个 lOmin收费 0.540元, 第三个 lOmin 收费 0.580元, 第四个 lOmin收费 0.620元 ......依次类推, 如下表所示: 时段 (min) 0-30 30-40 40-50 50-60 (30+n X lO)- [30+(n+l)X lO] 收费 (元) 0 0.5 0.540 0.580 0.5+Π Χ0.040 同时, 为了鼓励停车用户通过 APP进行优质泊位的预约使用, 对于通过 APP提前预约后前来优质 泊位停车的用户, 其最终停车收费为在以上计算价格的 90%计算, 即享受 9折优惠。 在停车当天, 若 优质泊位的收费价格进行实时调整, 预约用户的收费也不改变, 仍按照其预约时系统所告知其的收费 标准执行。
具体实施方式二
在本实施例中, 提供一个上述发明的可能实施方式, 同样是实施例一所述的停车区域, 现在已知通过 APP 被预约的优质泊位的数量情况下, 为该停车区域内的优质泊位制定当天适用于未预约车辆的停车 收费标准, 并根据实际停车情况进行动态调整。 实施过程如下:
1. 通过实地测量, 建立该停车区域几何信息表如下, 结果与实施例一中相同。
2. 设定单位计费时长 to为 10分钟, 停车时长不足 10分钟的部分按 10分钟计费。
3. 通过实地抽样调査得到, 该停车区域内每天从 E1进入停车区域的车辆数为 400辆, 从 E2进入停 车区域的车辆数为 200辆; 停车区域内人均出行时间价值为 25元 /小时; 停车区域内车辆平均行 驶速度为 10km/h, 人均步行速度为 5km/h。
现已知在相关的移动终端 APP中, 该停车区域内的优质泊位被预订的数量为 60个, 同时通过实 地抽样调査得到此处使用 APP预约优质车位的停车用户人数约占此处停车用户总人数的 10%, 其 停车时长均在预约时进行填写; 由停车场 P处的智能道闸数据得到停车区域内停车车辆数的历史 经验值为 500辆, 其停车时长分布已知; 同时已知该停车区域内在这天将要举办一个活动, 预计 参加人数为 300人, 活动时间为 9:00— 11:00, 参加活动的人中选择开车前为的人数比例约为 20%。
按照步骤 (3 ) 中的方法 b)预测这天内该停车区域内有停车需求的车辆数 该停车区域内的有停车需求的车辆数 Q = ΑΡΡ中预约泊位数量
+停车车辆到达速率的历史经验值 x(l - ΑΡΡ预约用户占所有用户的比例) +停车区域内临时活动的参加人数 X小汽车出行的分担比
= 60 + 500x(l - 10%) + 300x20% = 570 (ft)
4. 对该区域内有停车需求的车辆数 Q按其停车时长 t进行分组, 得到停车需求统计表如下:
停车时长^ 平均到达量 qoi 所需停车资源 累积所需停车时空资源∑ 辆数
(lOmin) (辆 /lOmin ) (个'小时) (个'小时)
1 7 0.0833 0.0139 0.0139
Figure imgf000019_0001
Figure imgf000020_0001
76 2 0.0238 0.3016 33.6389
77 5 0.0595 0.7639 34.4028
78 1 0.0119 0.1548 34.5575
79 1 0.0119 0.1567 34.7143
80 1 0.0119 0.1587 34.8730
81 0 0.0000 0.0000 34.8730
82 0 0.0000 0.0000 34.8730
83 2 0.0238 0.3294 35.2024
84 3 0.0357 0.5000 35.7024 同时, 由于优质泊位的数量 s=100个, 其所能提供的停车时空资源 Sp = 0.85X5Xt0 =
0.85xl00x(^) = 14.1667(个.小时) 。 通过在停车需求统计表中与各组的累积所需停车时空资 源∑S相比较, 发现在第 41组数据中, 即当停车时长 = 41X10 = 410min时, 其累积所需停车 时空资源∑S = 14.0357个,小时, 是最接近且不超过 Sp = 14.1667个.小时的组别。 因此, 确定 该停车区域的停车时长控制阈值 tm = 410min。 已知该停车区域内普通泊位的停车收费为 5元 /h, 不足 1小时部分按 1小时计。 则当停车时长为 停车时长控制阈值 tm = 410min时, 停放在路外停车场
Figure imgf000021_0001
元 /h=35元。 优质泊 位与该停车区域各车行入口间车行路程的加权平均值 d =∑™=1/?n■ dn = 7^^X0.5 + ^^^x
2 = 1 km;普通泊位与停车区域各车行入口间车行路程的加权平均值 cf = Σ^ιβη■ d = -^-x
!-2 +7^1^x1-2 = 1-2 km。 按式(1)计算当停车时长为 tm时, 车辆停放在优质泊位处的停车收 费 Pt:
Pt = P + α
Figure imgf000021_0002
设定优质泊位的免费停车时长 to = 30min, 即在路内停车位停车不超过 30min 时不收费。 则当停 车时长为停车时长控制阈值 tm = 410min时, 其中包括的单位计费时长 tQ = lOmin的个数 N = tm-tf 410-30 „0
= = oo
to 10 同时, 根据成本定价法, P1处路内停车位的价格下限为 2元 /h, 即在免费停车时长 to = 30min结 束后路内停车位第一个单位计费时长 tQ = lOmin的收费 Pl=0.5元。 因此, 按 (4) ^ Δρ = ^ = β ^ = 0.043^ 因此, P1优质泊位的适用于未预约用户的停车收费价格为前 30min免费, 超过之后第一个 lOmin 收费 0.5元, 之后每个 lOmin的收费价格比前一个 lOmin上涨 0.043元, 即第二个 lOmin收费 0.543 元, 第三个 lOmin收费 0.586元, 第四个 lOmin收费 0.629元 ......依次类推, 如下表所示:
Figure imgf000022_0001
6. 设定系统实时检测间隔时长 = lh, 即每过 1小时, 由智能道闸和视频车位探测器上自动检测一 次优质泊位处停车的实际车辆数 和此时优质泊位的实时占用率 ^, 并上报给系统, 与预测数据 及目标值进行比较。 现以这天 09:00这一次的检测结果为例, 对比较过程进行说明。
系统在早晨 09:00检测由道闸检测数据得到在 07:00-09:00这一时段内, 在优质泊位处停车的实际 车辆总数为 = 120辆, 由视频车位探测器的在 09:00的检测数据知此时 100个做优质泊位中共 有 79辆, 即此时优质泊位的实时占用率 ^ = 0.79 ί I B / ί I r> r»r> Π A ;^ * # , μ r,n M,| 从 ¾价时段起始到当前时 « 时长 从优质泊 从 07:00 开始 as宫起截止 09:00, 预测需求虽 (¾ = Q X - m ^ T =
560x ^ = 80辆, 贝 IJ有 120〉 1.15x80 = 92, 即不满足 0.85(¾≤ Qr≤ 1.15(¾。 因此, 需要重新预 测当天剩余时段该停车区域内有停车需求的车辆数 Q, 即重新进行步骤 (3 ) 至步骤 (5 ), 按新的 参数重新计算优质泊位的收费价格, 并发布更新后停车收费价格。从 09:00后到下一次更新之间来 优质泊位处停车的非预约用户,其停车收费将按照更新后的收费标准执行。但已进场的停车用户, 其收费价格仍按照其进场时所公布的收费标准执行; 预约用户仍按照其预约时 APP 中告知的收费 标准进行收费。
具体实施方式三
在本实施例中, 提供一个上述发明的可能实施方式, 停车区域及已知条件同实施例二中所述。 现进一 步对优质泊位停车场 P 中的优质泊位根据位置、 尺寸等条件进行分级, 对不同等级的优质泊位实施差 异化定价。 具体实施过程如下: 由于停车区域及实施条件均与实施例二中相同, 因此前期步骤与结果均与实施例二中相同, 得到与优 质泊位在不分级条件下价格随停车时长的变化如下表所示:
Figure imgf000022_0002
现对优质泊位进行分级。 优质泊位所在停车场 P的内部平面图如图 14所示。 图中标识①的泊位是位置 上靠近出入口、 电梯或缴费机且尺寸大于其余泊位的一级优质泊位, 标识②的泊位是尺寸与多数泊位 相同但位置上靠近出入口、 电梯或缴费机的二级优质泊位, 未进行标识的泊位为三级优质泊位。 其优 质泊位等级划分如图 8所示, 不同等级的优质泊位的等级系数) ^设定如下表所示: 优质泊位等级 一级 二级 三级 标识 1 2 无标识 等级系数)^ 1.5 1.2 1.0 将该停车场中不同等级优质泊位的收费标准用优质泊位收费矩阵的形式表达如下表所示:
Figure imgf000023_0001
根据该等级系数和实施例二中计算所得的不分级情况下优质泊位收费价格, 可以得到该停车区域内优
Figure imgf000023_0002
在当天的进行的 13次对优质泊位处停车的实际车辆数 和优质泊位的实时占用率 ^的实时检测中,两 项指标均满足 0.85ρρ ≤ Qr ≤ 1.15ρρ且 0.7≤ 0r ≤ 0.9 ο 因此当天优质泊位适用于未预约用户的收费标 准一直按上述价格执行, 未进行改变。

Claims

权利要求书
1. 一种优先短停的优质泊位预约及动态定价方法, 其步骤包括:
1 ) 建立停车区域几何信息表, 表中包括停车区域的车行入口的数量 m、 各停车区域车 行入口与优质泊位间的车行路程 dn、 各停车区域车行入口与普通泊位间的车行路程 以及优质泊位与普通泊位间的步行路程 Ad, 这些数据均通过实地测量得到;
2 ) 确定单位计费时长 to ;
3 ) 确定停车区域内停车特征数据, 包括所述停车区域内有停车需求的车辆数 Q、 有停 车需求的车辆的停车时长 t、 所述停车区域内车辆从各车行入口进入的比例 、 停 车区域内停车用户出行时间价值 α、停车区域内的平均车速 i7d、停车区域内平均步行 速度 uw以及停车区域内停车用户的价格敏感系数 μ;
4 ) 确定停车时长控制阈值 tm ;
5 ) 确定优质泊位停车收费价格 pn, 并对其进行调节, 调节的方式包括对其乘以取值应 满足 1≤ μ≤ 1.5的所述停车区域内停车用户价格敏感系数 μ,以及对提前预约的停车 用户进行折扣优惠;
6 ) 确定实时检测间隔时长 ^, 每隔 寸长对在优质泊位处停车的实际车辆数 和优质 泊位的实时占用率 进行实时统计与检测;
7 ) 将实时检测数据与预测数据进行比较, 确定之后时段的优质泊位停车收费价格。
2. 如权利要求 1所述的优先短停的优质泊位预约及动态定价方法, 其特征在于, 所述的单 位计费时长 to取值应满足 1分钟≤ to≤ 30分钟。
3. 如权利要求 1所述的优先短停的优质泊位预约及动态定价方法, 其特征在于, 所述停车 区域内车辆从各车行入口进入的比例/? n、 停车区域内停车用户出行时间价值 α、 停车区 域内的平均车速 、停车区域内停车用户的平均步行速度 17W以及停车区域内停车用户的 价格敏感系数 μ, 是通过在所述停车区域内实地抽样调査得到。
4. 如权利要求 1所述的优先短停的优质泊位预约及动态定价方法, 其特征在于, 确定所述 的停车区域内有停车需求的车辆数 Q和有停车需求的车辆的停车时长 t时, 首先获取以 下四种相关数据中的至少两种:
a) 同时段所述停车区域内停车车辆数 Q j及停车时长的历史经验值 t j :指通过智能化的 停车设施所存储的数据或人工记录, 分别得到优质泊位和普通泊位处同时段停车车 辆数, 对两者求和得到所述停车区域内停车车辆数; 同时记录每辆车的停车时长; 随机抽取多天的记录值并取平均值, 即为所述停车区域内停车车辆数历史经验值及 停车时长的历史经验值;特别地, 在进行历史数据的抽取统计时, 应将选取的曰期 分工作日、 周末及特殊节假日这三种需求差异较大的情况进行分别统计; b) 周边道路的实时交通流量 Q n :指由交通管理部门或有关专业第三方发布的, 围绕所 述停车区域周边的道路路网的实时交通流量数据;
c) 泊位预约系统中的泊位预约数据 Qm、 tm;指有停车需求的用户提前通过泊位系统系 统, 包括网站、 手机 APP、 微信公众号等方式, 对所述停车区域内的优质泊位进行 了预约, 并告知所需停车的时段;在预约系统上被预约的优质泊位的数量和预约时 段可以从应用后台进行实时获取;
d) 已知的停车区域内的临时活动的诱增停车需求量 、 tni :指所述停车区域内将发生 的临时活动的参与人数和活动举办的时间, 诱增的停车需求的停车时长和活动举办 时长一致;
利用所获取的数据, 按以下三种方法之一计算得到所述停车区域内有停车需求的车辆数 Q和有停车需求的车辆的停车时长 t : i) 所述停车区域内的有停车需求的车辆数 Q = 同时段所述停车区域内停车车辆数的历史经验值 Q! +停车区域内临时活动的参加人数 小汽车出行的分担比;其中小汽车出行的分担比的取值大于 0.1小于 0.3, 通过在 实地抽样调查得到;停车区域内的停车时长 t由停车时长的历史经验值 t j和停车区域内 临时活动诱增的停车需求的停车时长分布 叠加得到; ϋ) 所述停车区域内的有停车需求的车辆数 Q = APP中预约泊位数量^^^ + 同时段所述停车区域内停车车辆数的历史经验值 Q! x(l -
APP预约用户占所有停车用户的比例) +停车区域内临时活动的参加人数 小汽车出行的分担比;其中 APP预约用户占所有用户的比例是通过抽样调查得到, 小汽 车出行的分担比的取值大于 0.1小于 0.3, 通过在实地抽样调查得到;停车区域内的停车 时长 t由停车时长的历史经验值 t j和由历史数据、 APP预约数据确定的停车需求的停车 时长 ¾和由停车区域内临时活动诱增的停车需求的停车时长 tni三项叠加得到; iii) 所述停车区域内的有停车需求的车辆数 Q =周边道路的实时交通流量 Q TI x 同时段所述停车区域内停车车辆数的历史经验值 /周边道路的实时交通流量的历史平均值
, 总需求的停车时长 t的分布与停车时长历史数据经验值的分布 t j一致; 当确定提供给预约用户的优质泊位价格时, 应使用方法 i) ; 当进行优质泊位价格的实时 动态调整时, 应使用方法 i i)或方法 i i i) ; 实时调整的价格仅适用于价格发布后进入泊 位的非预约用户, 对于已进行预约的停车用户, 其收费价格依然按照其预约时所被告知 的收费标准执行。
5. 如权利要求 4所述的优先短停的优质泊位预约及动态定价方法, 其特征在于, 在预约系 统中,提供可撤消预约价格和不可撤消预约价格两种价格供用户选择;所述可撤消预约价 格是指该预约可在距离约定时刻 ^个小时前被免费取消, te的取值范围为 0. 1至 5 ; ^取 值越小, 可撤消预约价格越高;所述不可撤消预约价格是指一旦完成预约, 则不可免费撤 消, 如需撤消预约需要支付规定的违约扣款, 违约扣款的金额设置为预约订单总价的 1% 至 100%, 撤消时间距离约定时间越近, 违约扣款的金额越高。
6. 如权利要求 1至 5之一所述的优先短停的优质泊位预约及动态定价方法, 其特征在于, 所述的停车时长控制阈值 1按以下步骤进行确定:
(1) 将所述停车区域内有停车需求的车辆总量 Q按有停车需求的车辆的停车时长 t分组 统计, 组距为单位计费时长 tQ, 得到第 i 组数据的停车时长为 = ix tQ, 车辆数为 qi , i的取值范围为 i = 1,2,3 T/to, 其中 T是总定价时长;
(2) 由第 i组的车辆数 , 计算得到第 i组车辆平均每 to时长的到达量 qQi = qi/(r/t0) ;
(3) 由第 i组车辆平均每 tQ时长的到达量 q( ^和第 i组车辆的停车时长 t, 计算得到第 i 组车辆所需要的停车时空资源数量 = qoi Xtr,
(4) 由各组车辆所需要的停车时空资源数量 S2 St , 计算得到前 i 组车辆累积所需 停车时空资源数量∑ = Si + S2 +… + S;;
(5) 由优质泊位的泊位数 s计算得到其所能提供的停车时空资源 Sp = 0.85X5X t0 ;
(6) 将∑S1 ∑S2 ∑S与优质泊位所能提供的停车时空资源 Sp进行比较, 找出一个 i', 使得∑ 最接近但且不超过 Sp, 其所在组别 i ' 对应的停车时长 即为停车时长控 制阈值 tm
7. 如权利要求 1至 5之一所述的优先短停的优质泊位预约及动态定价方法, 其特征在于, 所述的优质泊位停车收费价格按以下步骤进行确定:
(a) 由已知的普通泊位停车收费政策, 计算得到当停车时长为停车时长控制阈值 tm时, 普通泊位的停车收费价格 Pt' ; (b) 设定优质泊位的免费停车时长 t/ ;
(c) 按成本定价法确定优质泊位免费停车时长 ^结束后第一个 tQ时长内的收费价格 p1 ;
(d) 由 = Pt' + α (― + 2■ ^^计算当停车时长为1时, 车辆停放在优质泊位处的停车 收费 其中 Pt'为当停车时长为 1时普通泊位的停车收费价格, cf由 cf =∑^=1 /?η · 计算, d由 d二 ?^ /?^ ^计算;
(e) 由 Δρ = [2(Pt - N■ Pl ]/[N(N - 1)]计算优质泊位的价格递增方差 Δρ,其中 Pt为当停 车时长为1时车辆停放在优质泊位处的停车收费, N = (tm - tf)/t0 , 各符号的含义 如说明书中表格所示;
(f) 由 = Pl + (n - 1)■ Δρ计算优质泊位免费停车时长 ^结束后第 η个^时长的收费价 格 ρη, 其中 Pl为优质泊位免费停车时长 ^结束后第一个 tQ时长的收费价格, Δρ为优 质泊位的价格递增方差。
8. 如权利要求 1至 5之一所述的优先短停的优质泊位预约及动态定价方法, 其特征在于, 所述的优质泊位停车收费在优质泊位数量较多时,依据不同的优质泊位之间位置、设施、 尺寸等条件的差异, 对优质泊位进行分级; 通过对计算所得的停车收费价格乘以不同的 优质泊位等级系数)^, 得到优质泊位收费矩阵。
9. 如权利要求 1至 5之一所述的优先短停的优质泊位预约及动态定价方法, 其特征在于, 所述的优质泊位处停车的实际车辆数 和优质泊位的实时占用率 ^是利用智能道闸、 视 频车位探测器、 红外车位探测器、 微波车位探测器或地磁线圈中的至少一种智能停车设 施采集得到的实时信息, 这些信息每隔 寸长采集一次; 所述的优质泊位处停车的实际 车辆数 是指从定价时段起始时刻到实时检测的当下时刻, 在优质泊位处停车的实际车 辆数; 优质泊位的实时占用率 ^是指当前时刻被占用的优质泊位数量与优质泊位总量的 比值。
10.如权利要求 1至 5之一所述的优先短停的优质泊位预约及动态定价方法, 其特征在于, 所述的将实时检测数据与预测数据进行比较, 当 > 10时, 确定之后时段的优质泊位停 车收费价格的判断标准是:
0.85 ≤ Qr≤ 1.15 且0.7≤ Or≤ 0.9, 其中从定价时段起始到当前时刻的预测需求量
Qp = 从定价时段起始到当前时刻的时长 /定价时段的总时长 T ; 若满足这一标准, 则 原定收费方案不变; 若不满足, 则需重新执行权利要求 1中所述的步骤 3 ) 至步骤 5 ), 更新相关参数, 制定并发布新的收费方案。
PCT/IB2017/058543 2016-12-30 2017-12-30 一种优先短停的优质泊位预约及动态定价方法 WO2018122813A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780048086.7A CN110337680A (zh) 2016-12-30 2017-12-30 一种优先短停的优质泊位预约及动态定价方法
GBGB1909413.5A GB201909413D0 (en) 2016-12-30 2017-12-30 Method for premium parking space reservation priorizing short-term parking and for dynamic pricing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/IB2016/058107 WO2018122587A1 (zh) 2016-12-30 2016-12-30 一种优先短停的优质泊位动态定价方法
IBPCT/IB2016/058107 2016-12-30

Publications (1)

Publication Number Publication Date
WO2018122813A1 true WO2018122813A1 (zh) 2018-07-05

Family

ID=59713539

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/IB2016/058107 WO2018122587A1 (zh) 2016-12-30 2016-12-30 一种优先短停的优质泊位动态定价方法
PCT/IB2017/058542 WO2018122812A1 (zh) 2016-12-30 2017-12-30 一种优先短停的泊位分级动态定价方法
PCT/IB2017/058543 WO2018122813A1 (zh) 2016-12-30 2017-12-30 一种优先短停的优质泊位预约及动态定价方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
PCT/IB2016/058107 WO2018122587A1 (zh) 2016-12-30 2016-12-30 一种优先短停的优质泊位动态定价方法
PCT/IB2017/058542 WO2018122812A1 (zh) 2016-12-30 2017-12-30 一种优先短停的泊位分级动态定价方法

Country Status (3)

Country Link
CN (3) CN109661693B (zh)
GB (2) GB201711410D0 (zh)
WO (3) WO2018122587A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109887326A (zh) * 2019-03-20 2019-06-14 南通帕哥智能科技有限公司 车位预约控制方法及车位预约控制装置
CN110956844A (zh) * 2019-12-10 2020-04-03 珠海格力电器股份有限公司 停车场的管理方法、装置及存储介质
CN111260802A (zh) * 2020-01-16 2020-06-09 淄博职业学院 基于无线通信网络的停车场智能化控制方法与系统
CN111785069A (zh) * 2020-07-01 2020-10-16 宁波工程学院 一种停车诱导方法、系统、智能终端和储存介质
US20210142671A1 (en) * 2019-11-12 2021-05-13 Toyota Jidosha Kabushiki Kaisha Automated valet parking system and terminal device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110246338A (zh) * 2019-05-28 2019-09-17 安徽安科智能有限公司 一种用于出入口智能车闸远程控制系统及方法
CN110060503A (zh) * 2019-05-30 2019-07-26 禄丰隆城城市服务有限公司 车辆停放管理系统、方法、装置、计算机设备及存储介质
CN110443444B (zh) * 2019-06-24 2022-04-22 中交二航局建筑科技有限公司 基于数字化平台的码头设施检测评估系统及其实现方法
CN114730525A (zh) * 2019-11-28 2022-07-08 邱海燕 停车位分配系统及方法
CN112950979A (zh) * 2019-12-10 2021-06-11 奥迪股份公司 停车位推荐方法、装置、计算机设备和存储介质
CN113034969B (zh) * 2020-05-11 2022-08-23 路特迩科技(杭州)有限公司 基于区域的停车服务与管理方法、系统
JP7596768B2 (ja) * 2020-12-11 2024-12-10 トヨタ自動車株式会社 制御装置及び料金決定方法
CN112820134B (zh) * 2020-12-30 2022-08-23 深圳市前海亿车科技有限公司 一种局部区域预约停车的方法、系统及介质
CN113327333B (zh) * 2021-04-08 2022-12-13 厦门路桥信息股份有限公司 停车位预约价格动态调整方法及装置
CN113188820B (zh) * 2021-04-22 2022-04-12 王聿波 一种基于杠杆原理的电梯载荷检测装置
CN113554276B (zh) * 2021-06-25 2023-11-07 桂林电子科技大学 基于泊位供给可用性感知冲突规避泊位分配系统
CN113936347B (zh) * 2021-09-30 2023-12-19 深圳市科漫达智能管理科技有限公司 一种停车计费方法、停车计费装置以及终端设备
CN114360078A (zh) * 2021-12-31 2022-04-15 浙江树人学院(浙江树人大学) 一种基于车位物联系统的车位计费方法
CN115223389B (zh) * 2022-07-15 2023-11-21 西南交通大学 一种基于动态路段代价的停车引导路径规划方法
CN115798196B (zh) * 2022-11-02 2024-12-27 智慧互通科技股份有限公司 视频设备路侧泊车流量预测方法以及系统
CN117409492A (zh) * 2023-12-14 2024-01-16 杭州万物互联智慧产业有限公司 路内智慧停车无人化运营管理方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102063745A (zh) * 2010-12-31 2011-05-18 钟明 一种停车管理系统
CN103548068A (zh) * 2011-03-24 2014-01-29 普雷米尔停车有限公司 停车管理系统和方法
US20160171891A1 (en) * 2014-12-16 2016-06-16 International Business Machines Corporation Dynamically managing parking space utilization

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157617A (ja) * 2000-11-20 2002-05-31 Nippon Parking Corp 駐車場の課金装置とその課金方法
US20110213672A1 (en) * 2009-10-19 2011-09-01 Liberty Pluglns, Inc. System and method for managing a parking lot
US20120161986A1 (en) * 2010-12-27 2012-06-28 Eyal Amir Providing guidance for locating street parking
US20140122375A1 (en) * 2012-11-01 2014-05-01 Palo Alto Research Center Incorporated Parking pricing system
US9035799B2 (en) * 2013-03-14 2015-05-19 Verizon Patent And Licensing Inc. Providing parking availability information and parking alerts
CN103366603B (zh) * 2013-06-20 2017-02-08 上海市城市建设设计研究总院 地面停车场停车泊位引导系统
CN103985268B (zh) * 2014-03-04 2017-04-05 江南大学 一种基于最优泊位模型的智能停车场车位诱导机制算法
CN103942976B (zh) * 2014-04-16 2016-04-06 同济大学 一种考虑停车时间的停车诱导系统的调控方法
CN105427651A (zh) * 2014-09-11 2016-03-23 惠州市德赛西威汽车电子股份有限公司 基于惯性导航的泊车导航方法及装置
US9478134B2 (en) * 2014-10-10 2016-10-25 General Motors Llc Method of determining an attribute of a parking structure
CN105894849A (zh) * 2015-01-23 2016-08-24 汤建华 基于云平台的有序停车系统及其实现方法
CN105303882B (zh) * 2015-11-16 2017-11-10 东南大学 基于时空维度动态停车收费策略的停车管理系统及方法
CN105574997A (zh) * 2015-12-14 2016-05-11 中能易电新能源技术有限公司 充电式停车场的车位分配方法及装置
CN106023641B (zh) * 2016-06-23 2018-06-19 北京交通大学 基于动态优化的停车位预约分配方法及系统
CN106169253B (zh) * 2016-08-25 2019-01-01 华南师范大学 基于停车难易度的停车场空闲状况预测方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102063745A (zh) * 2010-12-31 2011-05-18 钟明 一种停车管理系统
CN103548068A (zh) * 2011-03-24 2014-01-29 普雷米尔停车有限公司 停车管理系统和方法
US20160171891A1 (en) * 2014-12-16 2016-06-16 International Business Machines Corporation Dynamically managing parking space utilization

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109887326A (zh) * 2019-03-20 2019-06-14 南通帕哥智能科技有限公司 车位预约控制方法及车位预约控制装置
US20210142671A1 (en) * 2019-11-12 2021-05-13 Toyota Jidosha Kabushiki Kaisha Automated valet parking system and terminal device
CN110956844A (zh) * 2019-12-10 2020-04-03 珠海格力电器股份有限公司 停车场的管理方法、装置及存储介质
CN111260802A (zh) * 2020-01-16 2020-06-09 淄博职业学院 基于无线通信网络的停车场智能化控制方法与系统
CN111785069A (zh) * 2020-07-01 2020-10-16 宁波工程学院 一种停车诱导方法、系统、智能终端和储存介质

Also Published As

Publication number Publication date
CN109661693A (zh) 2019-04-19
CN109416879A (zh) 2019-03-01
CN110337680A (zh) 2019-10-15
WO2018122812A1 (zh) 2018-07-05
WO2018122587A1 (zh) 2018-07-05
GB201909413D0 (en) 2019-08-14
CN109661693B (zh) 2021-06-15
CN109416879B (zh) 2021-06-15
GB201711410D0 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
WO2018122813A1 (zh) 一种优先短停的优质泊位预约及动态定价方法
CN108133613B (zh) 一种实时发布路内停车服务指数方法及系统
Repoux et al. Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations
US7312722B2 (en) System and method for assessing parking space occupancy and for reserving same
Lin et al. SPA: Smart parking algorithm based on driver behavior and parking traffic predictions
CN109492801B (zh) 一种停车价格优化方法及其管理系统
US8816879B2 (en) Computer-implemented system and method for managing interchangeable parking spaces
Shaheen Smart parking management field test: A bay area rapid transit (bart) district parking demonstration
Wang et al. Parking practices and policies under rapid motorization: The case of China
JP2017502437A (ja) リソースへのアクセスを管理するための装置及び方法
CN113034969A (zh) 基于区域的停车服务与管理方法、系统
CN111510488B (zh) 一种智能停车场搜寻与导航方法
CN102214327A (zh) 停车场信息整合管理交易系统及方法
Xiong et al. Understanding operation patterns of urban online ride-hailing services: A case study of Xiamen
CN108460537A (zh) 一种基于大数据与用户心理预测共享自行车需求量的方法
CN117576943A (zh) 一种停车场车辆信息智能分析管理系统
CN112184930A (zh) 智能预约停车诱导系统及停车诱导方法
CN115829286A (zh) 一种考虑出行者个性需求偏好的动态停车推荐方法
CN107832972A (zh) 基于拍卖机制的网约车辆资源分配及定价方法
CN114511937B (zh) 一种基于停车时长的自动驾驶停车收费方法
CN116843044A (zh) 基于出行类型的预约方法、装置、电子设备及存储介质
Magsino et al. An evaluation of temporal-and spatial-based dynamic parking pricing for commercial establishments
CN110942661A (zh) 一种智能停车管理方法及其系统
CN111160597A (zh) 基于出租车司机综合满意度的智能调度方法
CN114913612A (zh) 一种智能无感停车场管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 22/10/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17888441

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载