+

WO2018122360A1 - Gel comportant un coproduit liquide de l'agro-industrie et son utilisation pour l'élevage d'insectes - Google Patents

Gel comportant un coproduit liquide de l'agro-industrie et son utilisation pour l'élevage d'insectes Download PDF

Info

Publication number
WO2018122360A1
WO2018122360A1 PCT/EP2017/084783 EP2017084783W WO2018122360A1 WO 2018122360 A1 WO2018122360 A1 WO 2018122360A1 EP 2017084783 W EP2017084783 W EP 2017084783W WO 2018122360 A1 WO2018122360 A1 WO 2018122360A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
weight
solubles
liquid
product
Prior art date
Application number
PCT/EP2017/084783
Other languages
English (en)
Inventor
Fanny PEYRICHOU
Solene Comparat
Loïc CLESSE
Thibault DU JONCHAY
Thomas Lefebvre
Myriem BOUZIANE
Fabrice BERRO
Benedicte LORRETTE
Nathalie BEREZINA
Original Assignee
Ynsect
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ynsect filed Critical Ynsect
Priority to US16/474,172 priority Critical patent/US20190343148A1/en
Priority to BR112019013661-4A priority patent/BR112019013661A2/pt
Priority to CN201780081444.4A priority patent/CN110121270A/zh
Priority to JP2019535777A priority patent/JP7675499B2/ja
Priority to CA3047515A priority patent/CA3047515A1/fr
Priority to RU2019123586A priority patent/RU2767790C2/ru
Priority to AU2017385720A priority patent/AU2017385720A1/en
Priority to EP17832785.4A priority patent/EP3562326A1/fr
Publication of WO2018122360A1 publication Critical patent/WO2018122360A1/fr
Priority to ZA2019/04931A priority patent/ZA201904931B/en
Priority to AU2023266263A priority patent/AU2023266263A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/30Rearing or breeding invertebrates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • A23K10/38Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material from distillers' or brewers' waste
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • A23K10/26Animal feeding-stuffs from material of animal origin from waste material, e.g. feathers, bones or skin
    • A23K10/28Animal feeding-stuffs from material of animal origin from waste material, e.g. feathers, bones or skin from waste dairy products
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/33Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from molasses
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/174Vitamins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/20Shaping or working-up of animal feeding-stuffs by moulding, e.g. making cakes or briquettes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/90Feeding-stuffs specially adapted for particular animals for insects, e.g. bees or silkworms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23NMACHINES OR APPARATUS FOR TREATING HARVESTED FRUIT, VEGETABLES OR FLOWER BULBS IN BULK, NOT OTHERWISE PROVIDED FOR; PEELING VEGETABLES OR FRUIT IN BULK; APPARATUS FOR PREPARING ANIMAL FEEDING- STUFFS
    • A23N17/00Apparatus specially adapted for preparing animal feeding-stuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the present invention relates to the feeding of insects and in particular their supply of water in the form of gel.
  • the invention further relates to a diet, a method of preparing said gel, and its applications particularly in the breeding of insects.
  • insects The industrial breeding of insects is in full development and constitutes a major stake for the animal and human food, current and future, notably as an alternative source of animal proteins.
  • the larvae of Tenebrio molitor are particularly popular because they require little food and water to grow in their natural environment.
  • the breeding medium of insect larvae is for example constituted by a nutrient medium such as wheat bran and comprising, as a source of water, fresh fruits and vegetables. Water can also be supplied to insects via atmospheric water or by direct humidification of the substrate.
  • these media do not always provide satisfactory growth and / or acceptable mortality. Indeed, these media generally have at least one of the following disadvantages: a water intake too small, an inability to accurately assess the amount of water introduced / to be introduced into the culture medium, too much humidification of the medium conducive to the development of mold or mud, a complexity in the management of water needs, a difficult waste management that is generally a source of microbiological risk, a water supply at a limited rate for an industrial farm.
  • the present invention therefore relates to a gel comprising:
  • aqueous substrate comprising at least 25% by weight relative to the total weight of aqueous substrate of a liquid co-product of the agro-industry
  • said gel having a water content of greater than 50% by weight relative to the total weight of gel.
  • the inventors have indeed shown that the water supply carried out in a gel form comprising an aqueous substrate comprising at least 25% by weight on the total weight of aqueous substrate of a liquid co-product of the agro-industry allowed a good assimilation of water and nutrients by insects, leading to excellent growth, while limiting production costs through the valorization of co-products from agribusiness.
  • the use of the gel as a water source advantageously makes it possible to stabilize the medium from a microbiological point of view and to secure the insects with respect to any possible sticking.
  • the use of gel-like liquid co-products as a source of water and nutrients also makes it possible to provide insects with nutrients with good nutritional qualities. nutrients that do not undergo any industrial drying stage that could alter them.
  • Liquid co-products from agribusiness are also abundant and, in addition, have a low purchase cost. In addition, these liquid co-products are efficiently converted by certain insects, in particular by Tenebrio molitor.
  • the preferred insects for industrial breeding are, for example, Coleoptera, Diptera, Lepidoptera, Orthoptera, Hymenoptera, Dictopoptera, including the Bats, including Isoptera, and Mantoptera, Pestoptera, Hemiptera, Heteroptera, ephemeroptera and moptera, preferably beetles, dipterans, orthopterans, lepidopterans, blattoptera; or their mixtures.
  • the insects are preferably selected from the group consisting of Tenebrio molitor, Hermetia illucens, Galleria mellonella, Alphitobius diaperinus, Zophobas morio, Blattera fusca, Tribolium castaneum, Rhynchophorus ferrugineus, Musca domestica, Chrysomya megacephala, Locusta migratoria, Schistocerca gregaria, Asexual domestica, Samia ricini or mixtures thereof, and more preferably still, Tenebrio molitor.
  • the invention is directed to insect species having a crusher oral appliance, such as species belonging to the order Coleoptera, Lepidoptera in particular at the larval stage or hymenoptera; or with a piercing mouth-piece, such as species belonging to the order Diptera or Hemiptera.
  • a crusher oral appliance such as species belonging to the order Coleoptera, Lepidoptera in particular at the larval stage or hymenoptera
  • a piercing mouth-piece such as species belonging to the order Diptera or Hemiptera.
  • This gel is advantageously suitable for species belonging to the order Coleoptera such as beetles, ladybugs, lucans, beetles, cockchafers, weevils, ground beetles, and more particularly species of the family Tenebrionidae.
  • the gel diet is typically used for the breeding of Tenebrio molitor (mealworm sucker).
  • the gel is adapted to the larval stage of the insect species referred to above.
  • a co-product is an inevitable material created during a process of manufacturing a product of interest.
  • the co-product of the invention is liquid.
  • liquid is meant that the co-product is in liquid form at room temperature under normal conditions of atmospheric pressure. In particular, this means that it is a co-product obtained directly from an industrial process without any drying step having been carried out.
  • the liquid coproduct is an aqueous coproduct comprising soluble materials.
  • the soluble materials present in the liquid coproduct are proteins and / or carbohydrates such as sucrose and / or lactose, more preferably proteins and carbohydrates. Soluble materials may also include soluble fibers.
  • the liquid coproduct comprises at least 90% by weight of soluble materials on the total weight of dry matter.
  • the co-product has less than 10% insoluble matter on the total weight of dry matter.
  • the liquid co-products of these industries result from the effluents and more particularly from the water generated during the various manufacturing processes that are the subject of these industries.
  • the starch industry and the starch mill aim to separate the constituents of the plant and in particular starch or starch respectively.
  • the malting plant aims to germinate barley and prepare malt, using a so-called malting process.
  • the water generated during the manufacturing process for example when soaking the raw material in water, is called soluble.
  • soluble wheat There are various types of solubles according to the raw material used in this manufacturing process: soluble wheat, corn, potato, peas, barley, cassava.
  • solubles examples include CORAMI® (from wheat), SOLULYS® (from corn) marketed by ROQUETTE or AMYSTEEP 424® (from corn) marketed by TEREOS.
  • the solubles are chosen from wheat solubles and / or corn solubles.
  • distillery solubles There are also distillery solubles. These are obtained by fermentation-distillation of solubles during the bioethanol production process. It is therefore wheat, corn, peas, cassava, barley and cereal solubles (eg wheat, corn, barley).
  • yeast cream Another liquid coproduct can result from this bioethanol production process: yeast cream.
  • a yeast cream can be obtained by other processes such as for example fermentation, distillery or brewery or during bioprocesses for the production of propanediol, succinic acid or polyhydroxyalkanoates.
  • yeast In the case of a yeast cream from a bioethanol manufacturing process, it is advantageously yeast, active or inactive, recovered by filtration at the end of the fermentation process.
  • yeast creams it is possible to find, in particular, yeast creams from the alcoholic fermentation of wheat solubles.
  • the distillation solubles frequently include yeasts used during the fermentation and soluble (undistilled).
  • distillation solubles examples include ALCOMIX® (from wheat) marketed by TEREOS, CORAMI® BE (from wheat) marketed by ROQUETTE, PROTIWANZE® (from wheat). There is also a distillation solubles from wheat, corn and barley.
  • the sugar industry aims to extract sugar from sugar beet or sugar cane.
  • the sugar industry generates several kinds of liquid co-products, including the sewers of candy and molasses.
  • the sewers of candy and the molasses correspond to the syrupy residues obtained after crystallization of the liquor formed during the manufacture of the sugar.
  • Candy sewers contain more sugar than molasses.
  • sugar molasses and sewerage There are different types of sugar molasses and sewerage depending on the raw material used in this sugar process: sugar cane molasses, sugar beet molasses, sugar cane sugar sewers, sugar cane sugar beet sugar sewer.
  • molasses examples include sugar cane molasses such as that marketed by PRIMEAL and sugar beet molasses.
  • the fermentation, distillation and brewing industries aim to use microorganisms to produce microorganisms by multiplication (for example yeasts, especially baker's yeasts), to produce biological substances such as acids. amines (glutamic acid, lysine), organic substances (enzymes) or alcohol.
  • the production of alcohol can be made from raw materials of various origins such as by the fermentation of fruits (grapes, beetroot, sugar cane), cereals (wheat, maize), or cassava.
  • Vinasses are liquid co-products derived from the fermentation of the must after extraction of the compounds of interest.
  • vinasses examples include VINASSE 60® (vinasse for the production of baker's yeasts) and VIPROTAL® (vinasse of beetroot syrup from fermentation for the production of baker's yeasts) marketed by LESAFFRE, PRL 364® (vinasse of sugar beet syrup and glucose resulting from fermentation for the production of glutamic acid) and SIRIONAL® (vinasse of beet syrup and glucose resulting from fermentation for the production of lysine) marketed by AJINOMOTO.
  • VINASSE 60® vinasse for the production of baker's yeasts
  • VIPROTAL® vinasse of beetroot syrup from fermentation for the production of baker's yeasts
  • PRL 364® vinasse of sugar beet syrup and glucose resulting from fermentation for the production of glutamic acid
  • SIRIONAL® vinasse of beet syrup and glucose resulting from fermentation for the production of lysine
  • the yeast creams correspond to the co-products resulting from the separation of the must such as by filtration or centrifugation after fermentation.
  • transformation is meant any process using microorganisms such as, for example, yeasts, bacteria and / or fungi, for the transformation of the raw material.
  • the yeast creams may comprise microorganisms in an active or inactive form, advantageously yeasts.
  • the dairy industry aims in particular at the production of cheeses, butters and creams.
  • Whey also called whey
  • Whey protein concentrates in liquid form are ingredients derived from whey by removing some of the water, minerals and lactose.
  • Permeate is a co-product resulting from the manufacture of milk protein or whey concentrate by ultrafiltration. It contains soluble particles of milk or whey, salts and lactose. The liquid permeate can be concentrated and used before drying.
  • the liquid coproduct is therefore advantageously chosen from the list comprising cereal solubles, corn solubles, wheat solubles, pea solubles, cassava solubles, sugar beet solubles, cane solubles. sugar, grain distillery solubles, wheat distillery solubles, corn distillery solubles, pea distillery solubles, cassava distillery solubles, vinasses, molasses, yeast creams, whey and their concentrated derivatives including permeate, or mixtures thereof.
  • liquid co-products in insect feeding, reduces the costs associated with feeding, while promoting the growth of insects due to the contribution of a co-product with good nutritional properties.
  • the co-products in liquid form allow a better growth than the dry co-products. This can be explained by the fact that the industrial drying processes by which dry co-products are produced alter the nutritional quality of the co-products thus obtained. Thus, liquid co-products have a better nutritional quality than dry co-products.
  • the liquid coproduct has a water content greater than 35% by total weight of the co-product.
  • the water content is greater than or equal to 40%, more preferably greater than or equal to 50%.
  • the liquid coproduct is chosen from the list comprising cereal solubles, corn solubles, wheat solubles, cereal distillers solubles, wheat distillers solubles, corn distillers solubles, vinasses, yeast creams, whey and their concentrated derivatives including permeate, or mixtures thereof.
  • the aqueous substrate comprises water and the co-product of the agro-industry.
  • the aqueous substrate consists of water and the co-product of the agro-industry.
  • the aqueous substrate has a total water content of between 56% and 98.2% by weight relative to the total weight of aqueous substrate, preferably between 60% and 95%, more preferably between 70% and 90%.
  • the gel comprises from 0.3 to 2% by weight of a gelling agent, preferably from 0.5 to 1.5% by weight of a gelling agent, the percentages by weight being given on the total weight of gel.
  • the water content of the gel is greater than 50% by weight relative to the total weight of gel, preferably from 65% to 85% by weight relative to the total weight of gel.
  • the presence in the gel of a preservative makes it possible to limit the development of molds in the gel.
  • the content of preservative is between 0.1 and 3% by weight, more preferably between 0.15 and 0.5% by weight, such as, for example, 0.3% by weight on the weight total gel.
  • the preserving agent is chosen from among the preserving agents that can be used in animal feed and more particularly from the group consisting of acetic acid, sodium acetate, formic acid, fumaric acid, and acid.
  • citric acid citric acid, sorbic acid, potassium sorbate, calcium sorbate, propionic acid, sodium propionate, calcium propionate, benzoic acid, sodium benzoate, calcium benzoate, benzoate potassium, butyric acid, as well as the salts and acids corresponding to these molecules.
  • the preservative is not a paraben.
  • the gel comprises:
  • aqueous substrate comprising at least 25% by weight relative to the total weight of aqueous substrate of a liquid co-product of the agro-industry
  • a preserving agent chosen from the preserving agents that can be used in animal feed and more particularly from the group consisting of acetic acid, sodium acetate, formic acid, fumaric acid, citric acid, sorbic acid, potassium sorbate, calcium sorbate, propionic acid, sodium propionate, calcium propionate, benzoic acid, sodium benzoate, calcium benzoate, potassium benzoate, butyric acid and the salts and acids corresponding to these molecules,
  • said gel having a water content of greater than 50% by weight relative to the total weight of gel.
  • the preservative is potassium sorbate or sodium propionate.
  • the co-product of agribusiness is liquid at room temperature.
  • the content of aqueous substrate is between 95 and 99% by weight relative to the total weight of gel.
  • the aqueous substrate comprises at least 50% by weight of a liquid co-product of the agro-industry, on the total weight of aqueous substrate.
  • the aqueous substrate comprises water and at least 50% by weight, for example at least 75% by weight, of co-product of the agro-industry.
  • the aqueous substrate consists of water and at least 50% by weight, for example at least 75% by weight, of co-product of the agro-industry.
  • when molasses is used it is appropriate to use a maximum amount of 55% by weight of molasses in the substrate.
  • vinasse when used, it is appropriate to use a maximum amount of 70% by weight of vinasse in the substrate.
  • yeast cream when yeast cream is introduced into the aqueous substrate, it should be introduced via a mixture of co-products, so that the amount of yeast cream does not exceed does not exceed 25% by weight in the aqueous substrate.
  • the aqueous substrate comprises water and at least 95% by weight of co-product of the agro-industry.
  • the aqueous substrate consists of water and at least 95% by weight of co-product of the agro-industry.
  • the aqueous substrate consists of a liquid co-product of the agro-industry.
  • the liquid coproduct is selected from the list comprising: cereal solubles, corn solubles, wheat solubles, cassava solubles, cereal distillers solubles, wheat distillers solubles, distillers solubles corn, manioc distillery solubles, yeast cream, whey and its concentrated derivatives, in particular permeate, or
  • a mixture of at least two co-products selected from cereal solubles, corn solubles, wheat solubles, cassava solubles, cereal distillers solubles, wheat distillers solubles, corn distillers solubles , cassava distillery solubles, yeast cream, whey and their concentrated derivatives, in particular permeate, yeast creams, vinasses and molasses.
  • the aqueous substrate has a total water content of between 50% and 95% by weight relative to the total weight of aqueous substrate.
  • the liquid co-product of the agribusiness is a distillery soluble or a mixture of a distillery soluble with another liquid co-product.
  • the distillery solubles are chosen from the group consisting of wheat distillers solubles, corn distillers solubles and cereal distillers solubles.
  • the gel according to the invention also contains a gelling agent.
  • the gelling agent is selected from the group consisting of agar-agar, carrageenan, guar gum, calcium alginate, chitosan, pectin, xanthan gum, carob gum. , gellan gum or mixtures thereof.
  • the gel comprises: from 90% to 99.6% by weight of an aqueous substrate comprising at least 25% by weight relative to the total weight of aqueous substrate of a liquid coproduct agribusiness,
  • a gelling agent selected from the group consisting of agar, carrageenan, guar gum, calcium alginate, chitosan, pectin, xanthan gum, locust bean gum, gellan gum or mixtures thereof, and
  • said gel having a water content of greater than 50% by weight relative to the total weight of gel.
  • the gel comprises:
  • aqueous substrate comprising at least 25% by weight relative to the total weight of aqueous substrate of a liquid co-product of the agro-industry
  • a gelling agent selected from the group consisting of agar, carrageenan, guar gum, calcium alginate, chitosan, pectin, xanthan gum, locust bean gum, gellan gum or mixtures thereof, and
  • a preserving agent being chosen from the preserving agents that can be used in animal feed and more particularly from the group consisting of acetic acid, sodium acetate, formic acid, fumaric acid, citric acid, sorbic acid, potassium sorbate, calcium sorbate, propionic acid, sodium propionate, calcium propionate, benzoic acid, sodium benzoate, calcium benzoate, potassium benzoate, butyric acid and the salts and acids corresponding to these molecules, the percentages by weight of aqueous substrate, gelling agent and preservative being expressed on the total weight of the gel,
  • said gel having a water content of greater than 50% by weight relative to the total weight of gel.
  • the gelling agent is a mixture of xanthan gum and locust bean gum, a mixture of xanthan gum and guar gum, or agar-agar.
  • the gelling agent comprises a 50/50 mixture of xanthan gum and locust bean gum.
  • a gelling agent is marketed under the name Flanogen® XL12 by Cargill.
  • Locust bean gum has the advantage of having an attractive effect on insect larvae and especially on Tenebrio molitor larvae.
  • the gel comprises yeasts.
  • Yeasts can be active or inactive.
  • inactive yeasts it is also intended extracts and / or yeasts bark.
  • yeast peel is meant the insoluble fraction of the yeasts, that is the yeast wall and the yeast plasma membrane. It is therefore not a whole yeast, nor the cellular content of the yeast such as a yeast extract.
  • Yeast bark has very interesting properties in animal or human health or as a dietary supplement in animals and humans.
  • the total yeast content in the gel is between 0.5% and 20% by dry weight of yeasts, preferably from 3 to 15% by dry weight of yeasts, preferably from 4 to 10% by dry weight of yeasts. , on the total weight of gel.
  • Yeasts can come from the liquid co-product of agribusiness.
  • the co-product of the agribusiness can indeed be a distillery soluble that already contains yeasts or a mixture of at least two liquid co-products of the agribusiness, one of which is a yeast cream.
  • the yeasts can be added in solid form, for example, in the form of dry yeasts or as indicated below probiotic.
  • dry yeasts they are introduced at a content of between 0.1 to 6% by weight, preferably between 1 and 5% by weight relative to the total weight of the gel.
  • the agribusiness co-product may contain other nutrients of interest such as minerals.
  • the sodium content of the coproduct is greater than or equal to 1% by total weight of the co-product.
  • the liquid coproduct has a sodium content greater than 2% by weight relative to the total weight of the co-product.
  • the co-product has a sodium content ranging from 1% to 5%.
  • the coproduct advantageously comprises a sulfate content of less than 4% by total weight of the coproduct. Too high a sulphate level could be toxic to Tenebrio molitor larvae and hinder their good development.
  • the co-product has a sulphate content of less than 3%, preferably less than 2%, more preferably less than 1%.
  • the gel according to the invention may further comprise calcium.
  • the yeasts can come from the addition of probiotics to the gel.
  • this probiotic is introduced, for example, at a content of between 0.1 to 8% by weight, preferably between 1 and 5% by weight relative to the total weight of the gel.
  • yeasts As examples of probiotics, mention may be made of LB 2245® yeasts from LALLEMAND. These yeasts also contain vitamins and minerals.
  • the gel according to the invention may also contain from 0.001 to 0.5% by weight of vitamins over the total weight of the gel, such as, for example, from 0.001 to 0.1% by weight of vitamins over the total weight of the gel.
  • Vitamins can be introduced as a composition enriched with vitamins, such as a "premix”.
  • the premix comprises vitamins selected from the group consisting of vitamin A, vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (nicotinamide), vitamin B5 (pantothenic acid), vitamin B6 ( pyridoxine), vitamin B8 (biotin), vitamin B9 (folic acid), vitamin B12 (cobalamin), vitamin C, vitamin PP (Niacin), vitamin D3 (cholecalciferol), vitamin E, vitamin K2 (menaquinone), vitamin K3 (menadione) or their precursors and derivatives.
  • vitamins selected from the group consisting of vitamin A, vitamin B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (nicotinamide), vitamin B5 (pantothenic acid), vitamin B6 ( pyridoxine), vitamin B8 (biotin), vitamin B9 (folic acid), vitamin B12 (cobalamin), vitamin C, vitamin PP (Niacin), vitamin D3 (cholecalciferol), vitamin E, vitamin K2 (mena
  • the premix may also include choline, cholesterol, carnitine and / or inositol, as well as minerals and / or trace elements.
  • the gel may therefore advantageously comprise minerals selected from the group consisting of iron, copper, selenium, chromium, iodine, cobalt, manganese, fluorine, zinc, potassium, phosphorus, magnesium.
  • These minerals can also come from a co-product of the agro-industry or be added via a premix, said premix being a premix of vitamins containing minerals as indicated above or a premix of minerals only.
  • a premix a premix of vitamins containing minerals as indicated above or a premix of minerals only.
  • the vitamin premix is introduced into the gel at a content of between 0.1 and 5% by weight, based on the total weight of gel.
  • the gel according to the invention advantageously has a gel strength of at least 30 g / cm 2 , especially 30 g / cm 2 , 40 g / cm 2 or 50 g / cm 2 , preferably 80 g / cm 2 .
  • insects accept only a certain texture. They must be able to easily cut and ingest pieces of gel using their mouthparts. The gel must therefore be solid.
  • the strength of the gel is between 40 g / cm 2 and 150 g / cm 2 , in particular between 80 g / cm 2 and 150 g / cm 2 .
  • the strength of the gel is between 40 g / cm 2 and 100 g / cm 2 , in particular at least 50 g / cm 2 , or even at least 90 g / cm 2 , more preferably at least 100 g / cm 2 .
  • the strength of the gel is measured using a texturometer.
  • the gel is not sticky or sticky. Insects can therefore move above the gel without being stuck. This reduces insect mortality as insects find themselves less prone to freezing.
  • syneresis of the gel may advantageously be between 0.1 and 5% in order to prevent too much water from being released and to wet the insect environment.
  • the syneresis of the gel can be determined, for example, as indicated in G. BLANCHER (2009), Life Sciences, ENSIA (AgroParisTech). The measurement is carried out on products stored at 4 ° C. for 24 hours, by differential weighing with an analytical balance. Briefly, the product contained in a bucket is weighed, then the surface liquid is removed by tilting the bucket and then with a paper towel lightly pressed against the surface of the product. A second weighing is then performed. Syneresis is expressed as% loss between the two weighings.
  • the gel has a shape adapted to facilitate access to water for insects. It is, for example, in the form of units (blocks) of gel having a volume of between 30 cm 3 and 1500 cm 3 , such as a cube or a parallelepiped with a square base, or a cylinder whose length is the order of 0.5 to 15 cm, preferably 0.8 to 12 cm.
  • the invention also relates to an insect diet comprising a gel and a food:
  • the food being an insoluble substrate having a moisture content of less than or equal to 55% by weight relative to the total weight of the insoluble substrate.
  • the diet according to the invention thus comprises two distinct products, the food not being included in the gel.
  • the diet is used for rearing larvae of Tenebrio molitor.
  • the substrate is said to be "insoluble” because it comprises at least 60% by weight of insoluble matter, relative to the total weight of dry matter.
  • insoluble materials are for example selected from the group consisting of wheat bran, rice bran, corn bran, corn germ cake, corn fiber, legume fiber, wheat remolding , brewer's grains, barley rootlets (derived from malting), peels from tubers, potatoes, pea pulp, beet pulp.
  • the nutrient and water contents of the gel and insoluble substrate are determined so as to administer to the larvae of Tenebrio molitor an amount of nutrients and adequate water.
  • the insoluble substrate has a moisture content of less than 45% by total weight of the insoluble substrate, preferably less than 25%.
  • the advantage of using a gel for water supply reduces the microbiological risks, particularly of mold.
  • the supply of water in the form of a gel makes it possible to limit the water content of the insoluble substrate.
  • the invention also relates to a method for preparing a gel according to the invention, comprising:
  • a step of forming a liquid compound by mixing i. from 90% to 99.6% by weight of an aqueous substrate comprising at least 25% by weight relative to the total weight of aqueous substrate of a liquid co-product of the agro-industry, the aqueous substrate being brought to a temperature allowing the dissolution of a gelling agent;
  • the aqueous substrate, the liquid co-product of the agro-industry, the preserving agent and the gelling agent are as defined above for the gel according to the invention.
  • the process for producing a gel according to the invention may, in particular, comprise the following steps:
  • an aqueous substrate comprising at least 25% by weight relative to the total weight of aqueous substrate of a liquid co-product of the agro-industry, the aqueous substrate being brought to a temperature allowing the dissolution of a gelling agent;
  • aqueous substrate is heated to a temperature of between 60 ° C. and 100 ° C., in particular between 60 ° C. and 85 ° C., for example of the order at 80 ° C, preferably the temperature is such that it is sufficient to dissolve the gelling agent and does not alter the nutritional quality of the liquid coproduct.
  • liquid compound refers to a compound, which is in liquid form at the heating temperature. Indeed, this liquid compound, during its cooling is intended to gel.
  • withdrawal is meant a step of extracting the liquid compound formed by the first step of mixing the aqueous substrate with the gelling agent and the preservative, the tank in which it is located.
  • the racking step makes it possible to extract an appropriate quantity of liquid compound, uniformly mixed, in order to provide the insects with the quantity of gel adapted to their need for water and nutrients.
  • in-line cooling is meant a cooling step along a gel production device, by means provided for this purpose.
  • the liquid compound withdrawn is cooled during its transport, between the tank in which the liquid compound is located and the insect breeding medium.
  • This in-line cooling brings the liquid compound to a temperature below its gelation temperature, which can be for example of the order of 40 ° C. More generally, the compound thus gelled is brought to a temperature compatible with the use for which it is intended.
  • the compound which will be dispensed at a temperature close to its temperature after cooling in line is brought to a maximum temperature of 25 ° C at the outlet of the in-line cooling.
  • In-line cooling can be achieved at one time, or via several cooling stages, by gradual and successive cooling.
  • the transfer step corresponds to the delivery of the gel from the cooling zone to the debiting zone.
  • This routing is carried out by means provided for this purpose.
  • the routing is implemented at a temperature of less than or equal to 25 ° C to maintain the good cohesion of the gel.
  • the debiting step corresponds to a cutting step of the gel.
  • the cutting is carried out by means of mechanical cuts allowing the cutting of the gel according to the needs of water and nutrients of the insects.
  • the gel By gelling the compound in line, after withdrawal in liquid form, and by delivering it into blocks directly at the outlet of a distribution line, the gel is produced as needed and continuously.
  • the handling of the gel and its storage (in gel form) are eliminated, which effectively eliminates the associated problems.
  • the risks of Bacterial contamination or development is severely limited because the gel is dispensed immediately at the outlet of the distribution line, shortly after the compound has been formed.
  • the size of the output blocks can be adapted to the needs of fine, and continuous.
  • the invention further relates to the use of a gel according to the invention as a source of water and / or nutrients for the breeding of insects.
  • the gel according to the invention is used as a source of water and / or nutrients, advantageously as a source of water and nutrients, for the industrial breeding of insects.
  • gel improves larval growth over carrot utilization, even when grown at high densities such as those used in an industrial production facility. Indeed, the growth rate of larvae under these conditions is significantly greater for larvae reared with gel.
  • Feeding insects with sufficient water is therefore a key factor in fast and efficient larval growth. This also makes it possible to considerably increase the productivity of an insect farm, particularly Tenebrio molitor.
  • the gel according to the invention also allows a supply of interesting nutrients.
  • this gel is used for the breeding of Tenebrio molitor, in particular for the breeding of larvae of Tenebrio molitor.
  • the invention relates to the use of a liquid co-product of agribusiness in the form of a gel as a source of water and / or nutrients, advantageously as a source of water and nutrients, for the cultivation of insects, especially the industrial breeding of insects.
  • FIG. 1a is a diagram illustrating the growth and mortality of Tenebrio molitor larvae reared on gels comprising various liquid co-products of the agribusiness (two wheat solubles, a soluble grain distillery and a vinasse) ;
  • Figure 1b corresponds to the growth curve of Tenebrio molitor in breeding on gels containing the liquid co-products of the agro-industry mentioned in Figure 1 a;
  • FIG. 1 c is a diagram illustrating the food conversion index FCR, also called consumption index, calculated for Tenebrio molitor according to the liquid co-product of agribusiness, in gel form, which has been incorporated into its regime food;
  • FIG. 2 comprises a FIG. 2a which is a table showing comparative diets comprising liquid co-products of a wheat and maize starch factory, dried or freeze-dried, and a FIG. 2b, which comprises two diagrams illustrating the results obtained. in terms of growth and FCR of food, obtained for different comparative diets described in Figure 2a;
  • FIG. 3 includes a FIG. 3a which is a table showing comparative diets comprising liquid co-products of a wheat starch factory, dried or freeze-dried, as well as a FIG. 3b, which comprises two diagrams illustrating the results obtained in terms of growth and FCR of food, obtained for different comparative diets described in Figure 3a;
  • FIG. 4 includes a FIG. 4a which is a table showing comparative diets comprising liquid co-products of a wheat and maize starch mill, in wet form or in gel form, and FIG. 4b, which comprises two diagrams illustrating the results obtained in terms of growth and FCR of the food, obtained for different comparative diets described in Figure 4a;
  • FIG. 5 is a table showing comparative diets comprising liquid co-products of a starch factory of wheat and maize, in wet form or in the form of a gel, FIG. as well as a Figure 5b, which includes two diagrams illustrating the results obtained in terms of growth and FCR of the food, obtained for different comparative diets described in Figure 5a; and
  • FIG. 6 represents the evaluation of the mechanical properties of the gels enriched with wheat solubles with an incorporation in gelling agent (Xanthane Caroube mixture) of 0.30%, 0.50% and 0.70% of Example IV (measurement the strength of the gel as a function of the distance traveled by a cylindrical mobile used to apply pressure to the surface of the gel) carried out using a TA-XT Plus texturometer (Stable Micro Systems, TA-XT Plus, Surrey ,
  • Example I Examples of gels according to the invention. A. The products used in the gels according to the invention
  • Solulys is a concentrated solution of maize solubles obtained in the first stage of grain fractionation in a wet starch process. This concentrated solution comprises 48% by weight of dry matter on the total weight of solution and 44% by weight of protein and 24% by weight of lactic acid, the latter two percentages by weight being expressed on the total weight of dry matter of the solution.
  • This corn soluble composition comprises 42.5% by weight of dry matter relative to the total weight of the composition and 44% by weight of proteins relative to the total weight of dry matter of the composition.
  • This wheat soluble composition comprises about 20% by weight of dry matter on the total weight of the composition and about 28% by weight of protein on the total weight of dry matter of the composition.
  • PROTIWANZE® marketed by the company CROPERNERGIES. This wheat distillery soluble comprises 27% by weight of dry matter on the total weight of distillery soluble and 27% by weight of protein on the total weight of distillery soluble solids.
  • VINASSE 60® marketed by LESAFFRE. This vinasse comprises 60% by weight of dry matter on the total weight of vinasse and 60% by weight of protein on the total weight of dry matter of vinasse.
  • ⁇ VIPROTAL® marketed by LESAFFRE. This vinasse comprises 60% by weight of dry matter on the total weight of vinasse and 44% by weight of protein on the total weight of dry matter of vinasse.
  • SUGARCANNE MOLASSE marketed by PRIMEAL. This molasses comprises 75% by weight of dry matter on the total weight of molasses and 5% by weight of protein on the total weight of molasses solids.
  • Vitamin B1 Thiamine 0.004
  • Vitamin B2 Riboflavin 0.003
  • Vitamin B3 Nicotinic acid 0.048
  • Vitamin B6 Pyridoxine 0.003
  • Vitamin B8 Biotin 0.0001
  • Vitamin B9 Folic Acid 0.0002
  • Vitamin B12 Cobalamin 0.00001
  • Inactive yeasts containing barley gluten and
  • Vitamin A (IU) ⁇ 0.60
  • Vitamin B1 Thiamine 1, 00
  • Vitamin B2 Riboflavin 1, 20
  • Vitamin B6 Pyridoxine 1, 00
  • Vitamin B8 Biotin 0.01
  • Vitamin B9 Folic Acid 0.16
  • Vitamin B12 Cobalamin 0.0001
  • Potassium b) Gel comprising a vitamin premix and an aqueous substrate consisting of soluble wheat
  • Potassium gel comprising an aqueous substrate consisting of a soluble wheat
  • Gel comprising an aqueous substrate consisting of a mixture of soluble wheat and corn soluble
  • Potassium g) Gel comprising an aqueous substrate consisting of a mixture of soluble 75% wheat and gelled with agar-agar
  • the above gels can be prepared in the following manner.
  • the co-product (s) of the agro-industry and optionally the water is / are heated to a temperature above 80 ° C., then mixed with the other constituents of the mixture: the possible probiotics and premixes, at least one gelling agent and at least one preservative in the given proportions.
  • the mixture thus obtained is then gradually lowered to room temperature so that the gel is formed.
  • a gel was formed according to Example I, consisting of 99% by weight on the total weight of gel of an aqueous substrate comprising 25% by weight on the weight of aqueous substrate of each of the co-products of the aforementioned agro-industry. and 75% by weight on the weight of aqueous water substrate, 0.7% Flanogen XL12 (Cargill®), a 50/50 mixture of xanthan gum and locust bean gum, and 0.3% of potassium L-sorbate.
  • a control gel was also formed consisting of water, 0.7% by weight of
  • Flanogen XL12 (Cargill®) and 0.3% by weight of potassium L-sorbate, the percentages by weight being given on the total weight of gel.
  • the larvae of Tenebrio molitor used for each series of experiments come from the same population from Ynsect laboratory breeding at Evry and were collected at two different times.
  • the insect mass is returned to 10 grams by random selection of a sample of individuals to return to the optimal density.
  • the experiments lasted 14 days and were conducted in the dark, in a climatic chamber to control the temperature at 24 ° C and the relative humidity at 60%.
  • the larvae of Tenebrio molitor were fed ad libitum twice a week with a basal medium and the gels as obtained above.
  • the medium was weighed to evaluate the growth and mortality of the larvae so high.
  • Mcumul (t) Mcumul (t - 1) + Mcumul (t - 1) x ⁇
  • the use of gel co-product as a source of nutrients and water is particularly advantageous for the cultivation of larvae of Tenebrio molitor and allows for improved growth compared with a gel made of water.
  • Example III Advantages of the gels according to the invention on the development of larvae of Tenebrio molitor.
  • the larvae of Tenebrio molitor used for each series of experiments come from the same colony from Ynsect's laboratory farm in Evry and were collected at two different times.
  • the variables studied are the daily growth rate (GR, calculated as indicated in Example II) and the food conversion index (FCR).
  • the treatments ending with the letter S in their code correspond to diets consisting of a gel consisting solely of water and a nutrient substrate, said substrate corresponding to liquid co-products. dried according to two drying methods: industrial drying and lyophilization drying.
  • the diets are composed so as to respect the proportions of production of co-products given in dry matter for each industry of starch manufacture studied.
  • Starch co-products included in other diets are:
  • wheat bran WB_A and WB_B
  • WB_0 is a milling wheat bran.
  • the ingredients used 100% in the treatments A1 S (CPT_A) and B1 S (CPT_B) correspond to products sold by the starch manufacturers (industrially dried on the spot) and are composed by the freeze-dried liquid coproducts used in the respective regimes A2S (WB_A and SB_A) and B2S (WB_B and SB_B), and for which the proportions were kept.
  • a "control" treatment consisting of a milling wheat bran diet and a gel comprising an aqueous substrate consisting of water was included (A0 and B0).
  • FIGS 2b and 3b for products from Plant A and Plant B, respectively.
  • the diets are composed so as to respect the proportions of production of co-products given in dry matter for each industry of starch manufacture studied.
  • Starch co-products included in diets are:
  • wheat bran WB_A and WB_B
  • the gel given to the larvae of Tenebrio molitor corresponds to small pieces composed of 0.75% of Flanogen XL12 (Cargill, France) which is a mixture of xanthan gums and carob, 0.3% of potassium sorbate and supplemented with water and / or liquid co-product according to the treatment.
  • the amount of gel brought to the diet was adjusted according to the humidity of the substrate so as not to overfeed the larvae of Tenebrio molitor. For dry substrates with water content less than or equal to 15%, 6 grams of water were provided by the gel.
  • the amount of water to be supplied by the gel has been calculated according to the following formula:
  • the diets are composed so as to respect the proportions of production of co-products given in dry matter for each industry of starch manufacture studied.
  • the addition of the co-product in the form of a gel makes it possible to provide a co-product in a liquid form having preserved nutritional qualities, without generating a risk of increased mortality which would be due to a water content of the medium that is too high.
  • Example IV Evaluation of the impact of the gelling percentage on the physical properties of the enriched gels and the consequences on the consumption of the larvae;
  • the gels used in this study are shown in Table 10 below.
  • the liquid co-product (wheat solubles from the extraction of starch and mixed with solubles and distilling yeasts) is incorporated between 99% and 99.4% in the enriched gels, counting the addition of potassium sorbate at 0.3% and according to the inclusion of the gelling agent at 0.30%, 0.50% and 0.70% (by weight on the total weight of the gel).
  • the gelling agents used are: a mixture of Xanthan and Carob gums (Flanogen XL12, Cargill France), a mixture of Xanthan and Guar gums (Algaia, France) and agar agar for the food industry (Biocean , France).
  • the enriched gels were manufactured at 80 ° C for 15 minutes using a multifunctional cooker "Amicook” (Amicook Family gourmet, France). They were sunk rapidly in cylindrical boxes of 137.4 cm 3 volume, then placed 24 hours at 4 ° C for caking. All gels have a standard volume of 78.5 cm 3 (height: 4 cm, diameter: 5 cm).
  • the evaluation of the mechanical properties of the gels was carried out using a TA-XT Plus texturometer (Stable Micro Systems, TA-XT Plus, Surrey, France) and its "Exponent" analysis software. This method makes it possible to measure the hardness, the elasticity and mainly the strength of the various gels tested.
  • a cylindrical cell with a diameter of 6.45 mm was used to apply a pressure on the surface of the gel until reaching the limit depression of 20 mm after contact.
  • the penetration speed was set at 1.6mm / sec and the output speed at 10mm / sec.
  • the test was carried out with the gels enriched with wheat solubles with a concentration of gelling agent (Xanthane Caroube mixture) of 0.30%, 0.50% and 0.70%.
  • the bottom curve is relative to the incorporation of 0.30% of gelling agent, that of the medium is relative to the incorporation of 0.50% of gelling agent and that of the top relates to the incorporation of 0.70% gelling agent.
  • the strength of the gel (g / cm 2 ) corresponding to the force required to break and perforate the gel
  • the deformation (mm) corresponding to the distance traveled by the moving body between the initial contact and the fracture of the gel
  • the larvae of Tenebrio molitor used for this experiment come from the same colony from Ynsect laboratory breeding at Evry and were taken simultaneously from the same batch. They were fasted for 48 hours before launch and have an average initial weight of 33 mg.
  • a ratio of 0.5 g of gel per 2.5 g of larva was placed in clear plastic verrines with a square base (dimensions: 4 x 4 x 7.5 cm).
  • the enriched gels were cut with a cookie cutter and placed in the center of the verrine to guarantee the same area of access to the gel by the larvae.
  • the experiment was conducted in the dark in a climate chamber to control the temperature at 26 ° C and the relative humidity at 60%. The observations were made every hour until the total consumption of the gel. Once the gel was consumed in full, the mortality and individual weight of the larvae were recovered by counting and weighing.
  • Table 11 Results of strength, deformation, firmness and consumption of enriched gels with wheat solubles (gelling agent: Xanthane Caroube).
  • the results show that the gel consumption time increases slightly with the gelling agent concentration: an additional 5 hours of consumption time for a 0.7% gelling gel compared to a 0.3% gel. Mortality and larval weight gain are equivalent regardless of gelling concentration.
  • the results show that a gel enriched with liquid co-products is more easily consumed by T. molitor larvae when the gel strength is about 50 g / cm 2 .
  • Other observations show that, for a gel strength of less than 20 g / cm 2 , the gel is not formed, the liquid coproduct solution flows into the breeding unit, and consequently the larvae are stuck and die.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Physiology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Birds (AREA)
  • Insects & Arthropods (AREA)
  • Biochemistry (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention concerne un gel utilisé comme source d'eau et/ou de nutriments pour l'élevage d'insectes. Le gel comporte 90 à 99,6% en poids d'un substrat aqueux comportant au moins 25% en poids sur le poids total de substrat aqueux d'un coproduit liquide de l'agro-industrie, 0,3 à 2% en poids d'un agent gélifiant, et 0,1 à 5% en poids d'un agent conservateur, les pourcentages en poids de substrat aqueux, d'agent gélifiant et d'agent conservateur étant exprimés sur le poids total du gel.

Description

GEL COMPORTANT UN COPRODUIT LIQUIDE DE L'AGRO-INDUSTRIE ET SON
UTILISATION POUR L'ÉLEVAGE D'INSECTES
La présente invention concerne l'alimentation des insectes et notamment leur apport en eau sous forme de gel. L'invention concerne en outre un régime alimentaire, un procédé de préparation dudit gel, ainsi que ses applications notamment dans l'élevage d'insectes.
L'élevage industriel d'insectes est en plein essor et constitue un enjeu majeur pour l'alimentation animale et humaine, actuelle et à venir, notamment en tant que source alternative de protéines animales.
Toutefois, l'industrialisation de l'élevage d'insectes, en particulier Tenebrio molitor est en constante évolution et s'avère d'une grande complexité pour les acteurs du milieu.
Les larves de Tenebrio molitor sont particulièrement prisées car elles requièrent peu de nourriture et d'eau pour se développer dans leur milieu naturel.
En élevage industriel, les éleveurs doivent cependant veiller à la bonne croissance des larves, ainsi qu'à leur prise de poids constante. Il s'est avéré pour cela que l'apport en eau joue un rôle clé pour la bonne croissance de celles-ci. Aussi, il est nécessaire d'optimiser le régime alimentaire notamment l'apport en eau, selon les besoins nutritionnels réels des larves et d'être en mesure d'ajuster selon les circonstances, les bonnes quantités d'eau et de nutriments.
En outre, les besoins en eau des insectes sont généralement de l'ordre de 2 kg d'eau pour produire 1 kg d'insectes matures (larves prêtes à être abattues). A échelle industrielle, cela constitue donc des volumes d'eau important qu'il est nécessaire de couvrir et dont la gestion doit être correctement assurée. En effet, une mauvaise gestion de l'eau peut générer soit une trop faible croissance dans le cas où la quantité d'eau serait insuffisante, soit un problème de mortalité accrue des insectes due principalement à l'augmentation du risque microbiologique et/ou à des risques d'engluage des insectes si l'on complémente le milieu d'élevage en eau.
A ce jour, le milieu d'élevage des larves d'insecte est par exemple constitué par un milieu nutritif tel que du son de blé et comportant, comme source d'eau, des fruits et légumes frais. De l'eau peut également être apportée aux insectes via l'eau atmosphérique ou par humidification directe du substrat.
Toutefois, ces milieux ne permettent pas toujours d'obtenir une croissance satisfaisante et/ou une mortalité acceptable. En effet, ces milieux présentent généralement l'un au moins des inconvénients suivants : un apport en eau trop restreint, une incapacité à évaluer précisément la quantité d'eau introduite/à introduire dans le milieu d'élevage, une humidification trop importante du milieu propice au développement de moisissure ou à l'engluage, une complexité dans la gestion des besoins en eau, une gestion des déchets difficile qui est généralement source de risque microbiologique, un apport en eau à une cadence limitée pour un élevage industriel.
Aussi, il existe un besoin en un régime alimentaire peu coûteux, facile à mettre en œuvre et permettant à la fois une croissance optimisée des larves et une mortalité contrôlée.
Le travail des inventeurs a permis de mettre en évidence que l'apport d'eau sous la forme d'un gel spécifique permettait de résoudre les inconvénients cités ci- avant.
La présente invention concerne donc un gel comprenant :
- de 90% à 99,6% en poids d'un substrat aqueux comportant au moins 25% en poids sur le poids total de substrat aqueux d'un coproduit liquide de l'agro- industrie,
de 0,3 à 2% en poids d'un agent gélifiant, et
de 0,1 à 5% en poids d'un agent conservateur,
les pourcentages en poids de substrat aqueux, d'agent gélifiant et d'agent conservateur étant exprimés sur le poids total du gel,
ledit gel ayant une teneur en eau supérieure à 50% en poids sur le poids total de gel.
Dans la présente demande, sauf spécifié autrement, toutes les valeurs numériques données s'entendent bornes incluses.
Les inventeurs ont en effet montré que l'apport en eau effectué sous une forme de gel comportant un substrat aqueux comportant au moins 25% en poids sur le poids total de substrat aqueux d'un coproduit liquide de l'agro-industrie permettait une bonne assimilation de l'eau et des nutriments par les insectes, conduisant à une excellente croissance, tout en limitant les coûts de production grâce la valorisation de coproduits de l'agro-industrie. En outre, l'utilisation du gel comme source d'eau permet avantageusement de stabiliser le milieu d'un point de vue microbiologique et de sécuriser les insectes par rapport à un éventuel engluage. L'utilisation des coproduits liquides sous forme de gel comme source d'eau et de nutriments permet en outre de fournir aux insectes des nutriments ayant de bonnes qualités nutritionnelles, ces nutriments ne subissant aucune étape de séchage industriel susceptible de les altérer. Les coproduits liquides de l'agro-industrie sont par ailleurs abondants et ont de surcroit un coût d'achat faible. En outre, ces coproduits liquides sont convertis efficacement par certains insectes, notamment par Tenebrio molitor.
Les insectes préférés pour l'élevage industriel sont par exemple les coléoptères, les diptères, les lépidoptères, les orthoptères, les hyménoptères, les dictyoptères regroupant notamment les blattoptères, y inclus isoptères, et les mantoptères, les phasmoptères, les hémiptères, les hétéroptères, les éphéméroptères et les mécoptères, de préférence, les coléoptères, les diptères, les orthoptères, les lépidoptères, les blattoptères ; ou leurs mélanges.
Préférentiellement, les insectes sont choisis parmi le groupe constitué par Tenebrio molitor, Hermetia illucens, Galleria mellonella, Alphitobius diaperinus, Zophobas morio, Blattera fusca, Tribolium castaneum, Rhynchophorus ferrugineus, Musca domestica, Chrysomya megacephala, Locusta migratoria, Schistocerca gregaria, Acheta domestica, Samia ricini ou leurs mélanges, et plus préférentiellement encore, Tenebrio molitor.
Plus préférentiellement, l'invention vise les espèces d'insectes dotées d'un appareil buccal broyeur telles que les espèces appartenant à l'ordre des coléoptères, lépidoptères notamment au stade larvaire ou hyménoptères ; ou dotées d'un appareil buccal piqueur, telles que les espèces appartenant à l'ordre des diptères ou des hémiptères.
Ce gel convient avantageusement aux espèces appartenant à l'ordre des coléoptères tels que les scarabées, les coccinelles, les lucanes, les chrysomèles, les hannetons, les charançons, les carabes, et plus particulièrement aux espèces de la famille des ténébrionidés. Le régime gel est typiquement utilisé pour l'élevage de Tenebrio molitor (ténébrion meunier).
Avantageusement, le gel est adapté au stade larvaire des espèces d'insectes visées ci-avant.
Un coproduit est une matière inévitable créée au cours d'un processus de fabrication d'un produit d'intérêt.
En particulier, le coproduit visé par l'invention est liquide. Par « liquide », on entend que le coproduit est sous forme liquide à température ambiante dans les conditions normales de pression atmosphérique. En particulier, cela signifie que c'est un coproduit obtenu directement à l'issue d'un procédé industriel sans qu'aucune étape de séchage n'ait été réalisée. Plus particulièrement, le coproduit liquide est un coproduit aqueux comportant des matières solubles. Préférentiellement, les matières solubles présentes dans le coproduit liquide sont des protéines et/ou des glucides tels que du saccharose et/ou du lactose, plus préférentiellement, des protéines et des glucides. Les matières solubles peuvent également comporter des fibres solubles.
Avantageusement, le coproduit liquide comporte au moins 90% en poids de matières solubles sur le poids total de matière sèche. En d'autres termes, le coproduit comporte moins de 10% de matières insolubles sur le poids total de matière sèche.
Par agro-industrie, on vise plus particulièrement les industries de l'amidonnerie, de la féculerie, de la malterie, de production de bioéthanol, du sucre, de la fermentation, de la brasserie, de la distillation et l'industrie laitière.
Les coproduits liquides de ces industries résultent des effluents et plus particulièrement des eaux générées au cours des divers procédés de fabrication, objets de ces industries.
L'amidonnerie et la féculerie visent à séparer les constituants de la plante et notamment l'amidon ou la fécule respectivement. La malterie vise à faire germer l'orge et à préparer du malt, via un procédé dit de maltage.
Dans l'amidonnerie et la féculerie, les eaux générées au cours des procédés de fabrication, par exemple lors du trempage de la matière première dans de l'eau, sont appelées solubles.
Il existe divers types de solubles selon la matière première mise en œuvre dans ce procédé de fabrication : solubles de blé, de maïs, de pomme de terre, pois, orge, manioc.
On peut citer à titre d'exemple de solubles, le CORAMI® (issu de blé), le SOLULYS® (issu de maïs) commercialisés par ROQUETTE ou le AMYSTEEP 424® (issu de maïs) commercialisé par TEREOS.
De préférence, les solubles sont choisis parmi les solubles de blé et/ou les solubles de maïs.
Il existe également des solubles de distillerie. Ceux-ci sont obtenus par fermentation-distillation des solubles lors du procédé de fabrication de bioéthanol. Il s'agit donc de solubles de distillerie de blé, de maïs, de pois, de manioc, d'orge, de céréales (par exemple, blé, maïs, orge).
Un autre coproduit liquide peut résulter de ce procédé de fabrication de bioéthanol : la crème de levure. Comme détaillé ci-après, une crème de levure peut être obtenue par d'autres procédés tels que par exemple la fermentation, la distillerie ou la brasserie ou lors de bioprocédés pour la production du propanediol, de l'acide succinique ou du polyhydroxyalcanoates.
Dans le cas d'une crème de levures issues d'un procédé de fabrication de bioéthanol, il s'agit avantageusement de levures, actives ou inactives, récupérées par filtration à l'issue du processus de fermentation.
A titre d'exemple de crèmes de levures, il est possible de trouver notamment des crèmes de levures de la fermentation alcoolique de solubles de blé.
Les solubles de distillation comportent fréquemment les levures mises en œuvre lors de la fermentation et des solubles (non distillés).
On peut citer à titre d'exemple de solubles de distillation, l'ALCOMIX® (issu de blé) commercialisé par TEREOS, le CORAMI® BE (issu de blé) commercialisé par ROQUETTE, le PROTIWANZE® (issu de blé). Il existe également un soluble de distillation issu de blé, maïs et orge.
L'industrie sucrière vise à extraire le sucre des betteraves sucrières ou de la canne à sucre. L'industrie sucrière génère plusieurs sortes de coproduits liquides et notamment les égouts de sucrerie et la mélasse.
Les égouts de sucrerie et la mélasse correspondent aux résidus sirupeux obtenus après cristallisation de la liqueur formée durant la fabrication du sucre. Les égouts de sucrerie contiennent plus de sucre que la mélasse.
Il existe différents types de mélasses et d'égouts de sucrerie selon la matière première mise en œuvre dans ce procédé de fabrication de sucre : la mélasse de canne à sucre, la mélasse de betterave sucrière, les égouts de sucrerie de canne à sucre, les égouts de sucrerie de betterave sucrière.
On peut citer à titre d'exemple de mélasses, il existe de la mélasse de canne à sucre telle que celle commercialisée par PRIMEAL et de la mélasse de betterave sucrière.
Les industries de la fermentation, de la distillation et de la brasserie visent la mise en œuvre de microorganismes en vue de produire des microorganismes par multiplication (par exemple des levures, notamment des levures de boulangerie), de produire des substances biologiques telles que des acides aminés (acide glutamique, lysine), des substances organiques (enzymes) ou de l'alcool. La production d'alcool peut se faire à partir de matière première d'origines variées telles que par la fermentation de fruits (raisin, betterave, canne à sucre), de céréales (blé, maïs), ou de manioc.
Ces industries génèrent plusieurs sortes de coproduits liquides dont les vinasses et des crèmes de levures.
Les vinasses sont des coproduits liquides issus de la fermentation du moût après extraction des composés d'intérêts.
A titre d'exemple de vinasses, on peut citer les produits VINASSE 60® (vinasse pour la production de levures boulangères) et VIPROTAL® (vinasse de sirop de betterave issu de la fermentation pour la production de levures de boulangerie) commercialisés par LESAFFRE, PRL 364® (vinasse de sirop de betterave et de glucose issu de la fermentation pour la production d'acide glutamique) et SIRIONAL® (vinasse de sirop de betterave et de glucose issu de la fermentation pour la production de lysine) commercialisés par AJINOMOTO.
Les crèmes de levures correspondent aux coproduits résultant de la séparation du moût tel que par filtration ou centrifugation après fermentation.
Par « fermentation », il est entendu tout procédé utilisant des microorganismes tels que par exemple, des levures, des bactéries et/ou des champignons, pour la transformation de la matière première.
Comme indiqué ci-avant, les crèmes de levures peuvent comporter des microorganismes sous une forme active ou inactive, avantageusement des levures.
L'industrie laitière vise notamment la production de fromages, de beurres, de crèmes.
Le lactosérum, également appelé petit-lait, est un coproduit liquide de généré notamment lors de la fabrication des fromages. Ce lactosérum, existant sous deux formes le lactosérum doux et le lactosérum acide, est riche en protéines de lait et en éléments nutritifs. Les concentrés protéiques de lactosérum (CPL) sous forme liquide sont des ingrédients dérivés du lactosérum en enlevant une partie de l'eau, les minéraux et le lactose. Le perméat est un coproduit résultant de la fabrication de concentrés de protéines de lait ou de lactosérum, par ultrafiltration. Il contient des particules solubles du lait ou du lactosérum, des sels et du lactose. Le perméat liquide peut être concentré et utilisé avant séchage.
Le coproduit liquide est donc avantageusement choisi parmi la liste comprenant les solubles de céréales, les solubles de maïs, les solubles de blé, les solubles de pois, les solubles de manioc, les solubles de betterave à sucre, les solubles de canne à sucre, les solubles de distillerie de céréales, les solubles de distillerie de blé, les solubles de distillerie de maïs, les solubles de distillerie de pois, les solubles de distillerie du manioc, les vinasses, les mélasses, les crèmes de levures, les lactosérums et leurs dérivés concentrés notamment le perméat, ou leurs mélanges.
L'utilisation de tels coproduits liquides dans l'alimentation d'insectes, permet de réduire les coûts associés à l'alimentation, tout en favorisant la bonne croissance des insectes du fait de l'apport d'un coproduit présentant de bonnes propriétés nutritionnelles. En effet, les coproduits sous forme liquide permettent une meilleure croissance que les coproduits secs. Cela peut être expliqué par le fait que les procédés de séchage industriel par lesquels sont fabriqués les coproduits secs altèrent la qualité nutritionnelle des coproduits ainsi obtenus. Ainsi, les coproduits liquides présentent une meilleure qualité nutritionnelle que les coproduits sec.
Avantageusement, le coproduit liquide comporte une teneur en eau supérieure à 35% en poids total du coproduit. Préférentiellement, la teneur en eau est supérieure ou égale à 40%, plus préférentiellement, supérieure ou égale à 50%.
Préférentiellement, le coproduit liquide est choisi parmi la liste comprenant les solubles de céréales, les solubles de maïs, les solubles de blé, les solubles de distillerie de céréales, les solubles de distillerie de blé, les solubles de distillerie de maïs, les vinasses, les crèmes de levures, les lactosérums et leurs dérivés concentrés notamment le perméat, ou leurs mélanges.
Avantageusement, le substrat aqueux comporte de l'eau et le coproduit de l'agro-industrie. Préférentiellement, le substrat aqueux est constitué d'eau et du coproduit de l'agro-industrie.
De préférence, le substrat aqueux a une teneur en eau totale comprise entre 56% et 98,2% en poids sur le poids total de substrat aqueux, de préférence comprise entre 60% et 95%, plus préférentiellement entre 70% et 90%.
Le gel comporte de 0,3 à 2% en poids d'un agent gélifiant, préférentiellement de 0,5 à 1 ,5% en poids d'un agent gélifiant, les pourcentages en poids étant donnés sur le poids total de gel.
De préférence, la teneur en eau du gel est supérieure à 50% en poids sur le poids total de gel, de préférence de 65% à 85% en poids sur le poids total de gel.
La présence dans le gel d'un agent conservateur permet de limiter le développement de moisissures dans le gel. De façon préférée, la teneur en agent conservateur est comprise entre 0,1 et 3% en poids, plus préférentiellement entre 0,15 et de 0,5% en poids, tel que par exemple, 0,3% en poids sur le poids total de gel. Avantageusement, l'agent conservateur est choisi parmi les agents conservateurs utilisables dans l'alimentation animale et plus particulièrement parmi le groupe constitué par l'acide acétique, l'acétate de sodium, l'acide formique, l'acide fumarique, l'acide citrique, l'acide sorbique, le sorbate de potassium, le sorbate de calcium, l'acide propionique, le propionate de sodium, le propionate de calcium, l'acide benzoïque, le benzoate de sodium, le benzoate de calcium, le benzoate de potassium, l'acide butyrique, ainsi que les sels et acides correspondant à ces molécules.
De préférence, le conservateur n'est pas un paraben.
Selon un mode de réalisation particulier de l'invention, le gel comprend :
- de 90% à 99,6% en poids d'un substrat aqueux comportant au moins 25% en poids sur le poids total de substrat aqueux d'un coproduit liquide de l'agro- industrie,
de 0,3 à 2% en poids d'un agent gélifiant, et
de 0,1 à 5% en poids d'un agent conservateur, l'agent conservateur étant choisi parmi les agents conservateurs utilisables dans l'alimentation animale et plus particulièrement parmi le groupe constitué par l'acide acétique, l'acétate de sodium, l'acide formique, l'acide fumarique, l'acide citrique, l'acide sorbique, le sorbate de potassium, le sorbate de calcium, l'acide propionique, le propionate de sodium, la propionate de calcium, l'acide benzoïque, le benzoate de sodium, le benzoate de calcium, le benzoate de potassium, l'acide butyrique, ainsi que les sels et acides correspondant à ces molécules,
les pourcentages en poids de substrat aqueux, d'agent gélifiant et d'agent conservateur étant exprimés sur le poids total du gel,
ledit gel ayant une teneur en eau supérieure à 50% en poids sur le poids total de gel.
De préférence, le conservateur est le sorbate de potassium ou le propionate de sodium.
Le coproduit de l'agro-industrie est liquide à température ambiante.
Préférentiellement, la teneur en substrat aqueux est comprise entre 95 et 99% en poids sur le poids total de gel.
Avantageusement, le substrat aqueux comporte au moins 50% en poids d'un coproduit liquide de l'agro-industrie, sur le poids total de substrat aqueux.
Avantageusement, le substrat aqueux comporte de l'eau et au moins 50% en poids, par exemple au moins 75% en poids, de coproduit de l'agro-industrie. Préférentiellement, le substrat aqueux est constitué d'eau et d'au moins 50% en poids, par exemple au moins 75% en poids, de coproduit de l'agro-industrie. Selon un mode particulier de réalisation de l'invention, lorsque de la mélasse est utilisée, il convient d'utiliser une quantité maximale de 55% en poids de mélasse dans le substrat.
Selon un autre mode particulier de réalisation de l'invention, lorsque de la vinasse est utilisée, il convient d'utiliser une quantité maximale de 70% en poids de vinasse dans le substrat.
Selon un troisième mode particulier de réalisation de l'invention, lorsque de la crème de levure est introduite dans le substrat aqueux, il convient de l'introduire via un mélange de coproduits, de manière à ce que la quantité de crème de levure n'excède pas 25% en poids dans le substrat aqueux.
Selon un mode de réalisation particulier de l'invention, le substrat aqueux comporte de l'eau et au moins 95% en poids de coproduit de l'agro-industrie. Préférentiellement, le substrat aqueux est constitué d'eau et d'au moins 95% en poids de coproduit de l'agro-industrie.
Selon un mode de réalisation particulier de l'invention, le substrat aqueux consiste en un coproduit liquide de l'agro-industrie.
Préférentiellement, le coproduit liquide est choisi parmi la liste comprenant : les solubles de céréales, les solubles de maïs, les solubles de blé, les solubles de manioc, les solubles de distillerie de céréales, les solubles de distillerie de blé, les solubles de distillerie de maïs, les solubles de distillerie de manioc, la crème de levures, le lactosérum et ses dérivés concentrés, notamment le perméat, ou
un mélange d'au moins deux coproduits choisis parmi les solubles de céréales, les solubles de maïs, les solubles de blé, les solubles de manioc, les solubles de distillerie de céréales, les solubles de distillerie de blé, les solubles de distillerie de maïs, les solubles de distillerie de manioc, la crème de levures, les lactosérums et leurs dérivés concentrés, notamment le perméat, les crèmes de levure, les vinasses et les mélasses.
De préférence, le substrat aqueux a une teneur en eau totale comprise entre 50% et 95% en poids sur le poids total de substrat aqueux.
Préférentiellement, le coproduit liquide de l'agro-industrie est un soluble de distillerie ou un mélange d'un soluble de distillerie avec un autre coproduit liquide.
Avantageusement, le soluble de distillerie est choisi parmi le groupe constitué par les solubles de distillerie de blé, des solubles de distillerie de maïs et les solubles de distillerie de céréales. Comme indiqué ci-avant, le gel selon l'invention contient également un agent gélifiant.
De façon avantageuse, l'agent gélifiant est sélectionné dans le groupe constitué par l'agar-agar, le carraghénane, la gomme de guar, l'alginate de calcium, le chitosan, la pectine, la gomme de xanthane, la gomme de caroube, la gomme de gellane ou leurs mélanges.
Selon un autre mode particulier de réalisation de l'invention, le gel comprend : de 90% à 99,6% en poids d'un substrat aqueux comportant au moins 25% en poids sur le poids total de substrat aqueux d'un coproduit liquide de l'agro- industrie,
de 0,3 à 2% en poids d'un agent gélifiant, l'agent gélifiant étant sélectionné dans le groupe constitué par l'agar-agar, le carraghénane, la gomme de guar, l'alginate de calcium, le chitosan, la pectine, la gomme de xanthane, la gomme de caroube, la gomme de gellane ou leurs mélanges, et
- de 0,1 à 5% en poids d'un agent conservateur,
les pourcentages en poids de substrat aqueux, d'agent gélifiant et d'agent conservateur étant exprimés sur le poids total du gel,
ledit gel ayant une teneur en eau supérieure à 50% en poids sur le poids total de gel.
Plus particulièrement, le gel comprend :
- de 90% à 99,6% en poids d'un substrat aqueux comportant au moins 25% en poids sur le poids total de substrat aqueux d'un coproduit liquide de l'agro- industrie,
de 0,3 à 2% en poids d'un agent gélifiant, l'agent gélifiant étant sélectionné dans le groupe constitué par l'agar-agar, le carraghénane, la gomme de guar, l'alginate de calcium, le chitosan, la pectine, la gomme de xanthane, la gomme de caroube, la gomme de gellane ou leurs mélanges, et
de 0,1 à 5% en poids d'un agent conservateur, l'agent conservateur étant choisi parmi les agents conservateurs utilisables dans l'alimentation animale et plus particulièrement parmi le groupe constitué par l'acide acétique, l'acétate de sodium, l'acide formique, l'acide fumarique, l'acide citrique, l'acide sorbique, le sorbate de potassium, le sorbate de calcium, l'acide propionique, le propionate de sodium, la propionate de calcium, l'acide benzoïque, le benzoate de sodium, le benzoate de calcium, le benzoate de potassium, l'acide butyrique, ainsi que les sels et acides correspondant à ces molécules, les pourcentages en poids de substrat aqueux, d'agent gélifiant et d'agent conservateur étant exprimés sur le poids total du gel,
ledit gel ayant une teneur en eau supérieure à 50% en poids sur le poids total de gel.
Selon un aspect particulièrement avantageux de l'invention, l'agent gélifiant est un mélange de gomme de xanthane et de gomme de caroube, un mélange de gomme de xanthane et de gomme de guar, ou de l'agar-agar.
Avantageusement, l'agent gélifiant comporte un mélange 50/50 de gomme de xanthane et de gomme de caroube. A titre d'exemple, un tel gélifiant est commercialisé sous l'appellation Flanogen® XL12 par Cargill. La gomme de caroube a l'avantage de présenter un effet attractif sur les larves d'insectes et notamment sur les larves de Tenebrio molitor.
Selon un mode particulier de réalisation de l'invention, le gel comporte des levures.
Les levures peuvent être actives ou inactives.
Par « levures inactives », on vise également les extraits et/ou écorces de levures. Par « écorces de levures », on désigne la fraction insoluble des levures, c'est- à-dire la paroi des levures et la membrane plasmique des levures. Il ne s'agit donc ni d'une levure entière, ni du contenu cellulaire de la levure tel qu'un extrait de levure. Les écorces de levures ont des propriétés très intéressantes en santé animale ou humaine ou comme complément alimentaire chez l'animal et chez l'homme.
Avantageusement, la teneur totale en levures dans le gel est comprise entre 0,5% et 20% en poids sec de levures, de préférence de 3 à 15% en poids sec de levures, préférentiellement de 4 à 10% en poids sec de levures, sur le poids total de gel.
Les levures peuvent provenir du coproduit liquide de l'agro-industrie.
Le coproduit de l'agro-industrie peut en effet être un soluble de distillerie qui comporte déjà des levures ou un mélange d'au moins deux coproduits liquides de l'agro-industrie dont l'un est une crème de levures.
Alternativement, les levures peuvent être ajoutées sous forme solide, par exemple, sous forme de levures sèches ou comme indiquées ci-après de probiotique. Sous forme de levures sèches, elles sont introduites à une teneur comprise entre 0,1 à 6% en poids, préférentiellement, entre 1 et 5% en poids sur le poids total du gel.
Outre les protéines, les glucides, les fibres solubles et les éventuelles levures, le coproduit de l'agro-industrie peut comporter d'autres nutriments d'intérêt tel que des minéraux. Avantageusement, la teneur en sodium du coproduit est supérieure ou égale à 1 % en poids total du coproduit.
Avantageusement, le coproduit liquide présente une teneur en sodium supérieure à 2% en poids sur le poids total du coproduit.
Toutefois, une teneur trop élevée en sodium pourrait s'avérer toxique pour les larves de Tenebrio molitor et entraver leur bon développement. De préférence, le coproduit comporte une teneur en sodium allant de 1 % à 5%.
Le coproduit comporte avantageusement une teneur en sulfate inférieure à 4% en poids total du coproduit. Une teneur trop élevée en sulfate pourrait s'avérer toxique pour les larves de Tenebrio molitor et entraver leur bon développement. De préférence, le coproduit comporte une teneur en sulfate inférieure à 3%, préférentiellement inférieure à 2%, encore préférentiellement inférieure à 1 %.
Avantageusement, le gel selon l'invention peut comprendre en outre du calcium.
Selon un autre mode de réalisation, les levures peuvent provenir de l'ajout de probiotiques au gel.
Lorsqu'un probiotique est ajouté dans le gel, ce probiotique est introduit, par exemple, à une teneur comprise entre 0,1 à 8% en poids, préférentiellement, entre 1 et 5% en poids sur le poids total du gel.
A titre d'exemple de probiotiques, on peut citer les levures LB 2245® de la société LALLEMAND. Ces levures comportent également des vitamines et des minéraux.
Le gel selon l'invention peut en outre contenir de 0,001 à 0,5% en poids de vitamines sur le poids total du gel, tel que par exemple de 0,001 à 0,1 % en poids de vitamines sur le poids total du gel.
Les vitamines peuvent être introduites sous forme de composition enrichie en vitamines, telles qu'un « prémix ».
Avantageusement, le prémix comporte des vitamines choisies parmi le groupe constitué par la vitamine A, la vitamine B1 (thiamine), la vitamine B2 (riboflavine), la vitamine B3 (nicotinamide), la vitamine B5 (acide pantothénique), la vitamine B6 (pyridoxine), la vitamine B8 (biotine), la vitamine B9 (acide folique), la vitamine B12 (cobalamine), la vitamine C, la vitamine PP (Niacine), la vitamine D3 (cholécalciférol), la vitamine E, la vitamine K2 (ménaquinone), la vitamine K3 (ménadione) ou leurs précurseurs et dérivés. Il existe de nombreux prémix commerciaux, tels que par exemple le prémix AIN Vitamin Mixture 76, commercialisé par MP Biomedicals, LLC.
Le prémix peut également comporter de la choline, du cholestérol, de la carnitine et/ou de l'inositol, ainsi que des minéraux et/ou des oligoéléments.
Outre le sodium et le calcium mentionnés ci-avant, le gel peut donc avantageusement comporter des minéraux choisis parmi le groupe constitué par le fer, le cuivre, le sélénium, le chrome, l'iode, le cobalt, le manganèse, le fluor, le zinc, le potassium, le phosphore, le magnésium.
Ces minéraux peuvent également provenir d'un coproduit de l'agro-industrie ou être ajouté via un prémix, ledit prémix pouvant être un prémix de vitamines comportant des minéraux comme indiqué ci-avant ou un prémix de minéraux uniquement. A titre d'exemple de prémix de minéraux, on peut citer le prémix « Wesson Sait Mixture », commercialisé par MP Biomedicals, LLC.
Avantageusement, le prémix de vitamines est introduit dans le gel à une teneur comprise entre 0,1 et 5% en poids, sur le poids total de gel.
Le gel selon l'invention présente avantageusement une force du gel d'au moins 30 g/cm2, notamment 30 g/cm2, 40 g/cm2 ou 50 g/cm2, de préférence 80 g/cm2.
En effet, les insectes n'acceptent qu'une certaine texture. Ils doivent pouvoir couper et ingérer facilement des morceaux de gel à l'aide de leurs pièces buccales. Le gel doit donc être solide.
Avantageusement, la force du gel est comprise entre 40 g/cm2 et 150 g/cm2, notamment entre 80 g/cm2 et 150 g/cm2. De préférence, la force du gel est comprise entre 40 g/cm2 et 100 g/cm2, notamment d'au moins 50 g/cm2, voire d'au moins 90 g/cm2, plus préférentiellement d'au moins 100 g/cm2. La force du gel est mesurée à l'aide d'un texturomètre.
Ainsi, le gel n'est pas gluant ou collant. Les insectes peuvent donc se déplacer au-dessus du gel sans être englués. Cela réduit donc la mortalité des insectes, les insectes se retrouvant moins prisonniers du gel.
En outre, la synérèse du gel peut être avantageusement comprise entre 0,1 et 5% afin d'éviter un relargage d'eau trop important et de mouiller l'environnement des insectes.
La synérèse du gel peut être déterminée, par exemple, comme indiqué dans G. BLANCHER (2009), Sciences du Vivant, ENSIA (AgroParisTech). La mesure est effectuée sur des produits conservés à 4°C pendant 24 h, par pesée différentielle avec une balance analytique. Brièvement, le produit contenu dans un godet est pesé, puis le liquide contenu en surface est enlevé en inclinant le godet puis avec un papier absorbant légèrement appuyé sur la surface du produit. Une deuxième pesée est ensuite effectuée. La synérèse est exprimée en % de perte entre les deux pesées.
Avantageusement, le gel présente une forme adaptée pour faciliter l'accès à l'eau pour les insectes. Il se présente, par exemple, sous forme d'unités (blocs) de gel ayant un volume compris entre 30 cm3 et 1500 cm3, telles qu'un cube ou un parallélépipède à base carrée, ou un cylindre dont la longueur est de l'ordre de 0,5 à 15 cm, préférentiellement de 0,8 à 12 cm.
L'invention concerne également un régime alimentaire pour insectes comportant un gel et un aliment :
- le gel étant tel que décrit précédemment, et,
- l'aliment étant un substrat insoluble ayant une teneur en humidité inférieure ou égale à 55% en poids sur le poids total du substrat insoluble.
Le régime alimentaire selon l'invention comporte ainsi deux produits distincts, l'aliment n'étant pas inclus dans le gel.
Avantageusement, le régime alimentaire est utilisé pour l'élevage des larves de Tenebrio molitor.
Le substrat est dit « insoluble », car il comporte au moins 60% en poids de matières insolubles, sur le poids total de matière sèche. De telles matières insolubles sont par exemple choisies dans le groupe constitué par le son de blé, le son de riz, le son de maïs, les tourteaux de germes de maïs, les fibres de maïs, les fibres de légumineuses fourragères, le remoulage de blé, les drêches de brasserie, les radicelles d'orge (issues de malterie), les pelures de tubercules, de pommes de terre, la pulpe de pois, la pulpe de betterave.
Les teneurs en nutriments et en eau du gel et du substrat insoluble sont déterminées de sorte à administrer aux larves de Tenebrio molitor une quantité en nutriments et en eau adéquate.
Avantageusement, le substrat insoluble a une teneur en humidité inférieure à 45% en poids total du substrat insoluble, préférentiellement inférieure à 25%.
L'avantage de l'utilisation d'un gel pour l'apport en eau permet de réduire les risques microbiologiques, en particulier de moisissures. En effet, l'apport d'eau sous forme de gel permet de limiter la teneur en eau du substrat insoluble.
L'invention concerne également, un procédé de préparation d'un gel selon l'invention, comportant :
- une étape de formation d'un composé liquide par mélange : i. de 90% à 99,6% en poids d'un substrat aqueux comportant au moins 25% en poids sur le poids total de substrat aqueux d'un coproduit liquide de l'agro- industrie, le substrat aqueux étant porté à une température permettant la dissolution d'un agent gélifiant ;
ii. de 0,3 à 2% en poids d'un agent gélifiant, et
iii. de 0,1 à 5% en poids d'un agent conservateur, les pourcentages en poids de substrat aqueux, d'agent gélifiant et d'agent conservateur étant exprimés sur le poids total du composé liquide,
- une étape de refroidissement du composé liquide de sorte à l'amener en dessous d'une deuxième température, à laquelle il est gélifié.
Le substrat aqueux, le coproduit liquide de l'agro-industrie, l'agent conservateur et l'agent gélifiant sont tels que définis précédemment pour le gel selon l'invention.
Le procédé de production d'un gel selon l'invention peut, en particulier, comporter les étapes suivantes :
- une étape de formation d'un composé liquide par mélange :
i. de 90% à 99,6% en poids d'un substrat aqueux comportant au moins 25% en poids sur le poids total de substrat aqueux d'un coproduit liquide de l'agro- industrie, le substrat aqueux étant porté à une température permettant la dissolution d'un agent gélifiant ;
ii. de 0,3 à 2% en poids d'un agent gélifiant, et
iii. de 0,1 à 5% en poids d'un agent conservateur,
les pourcentages en poids de substrat aqueux, d'agent gélifiant et d'agent conservateur étant exprimés sur le poids total du composé liquide,
une étape de soutirage du composé liquide ;
- une étape de refroidissement en ligne du composé liquide de sorte à l'amener en dessous d'une deuxième température, à laquelle il est gélifié ;
une étape de transfert dans une ligne de distribution ;
une étape de débitage en blocs du composé gélifié, en sortie de ligne de distribution.
Par « porté à une température permettant la dissolution d'un gélifiant», on entend notamment une étape de chauffage du substrat aqueux comportant le coproduit. Cette étape peut être mise en œuvre par n'importe quel moyen disponible à cet effet. Avantageusement, le substrat aqueux est chauffé à une température comprise entre 60°C et 100°C, notamment entre 60°C et 85°C, par exemple de l'ordre de 80°C, de préférence la température est telle qu'elle est suffisante pour dissoudre l'agent gélifiant et n'altérant pas la qualité nutritionnelle du coproduit liquide.
En particulier, il est entendu que par « composé liquide », on vise un composé, qui est sous forme liquide à la température de chauffage. En effet, ce composé liquide, lors de son refroidissement est destiné à se gélifier.
Par « soutirage », on entend une étape extraction du composé liquide formé par la première étape de mélange du substrat aqueux avec l'agent gélifiant et l'agent conservateur, de la cuve dans laquelle il se trouve. Avantageusement, l'étape de soutirage permet de soutirer une quantité appropriée de composé liquide, uniformément mélangé, afin de fournir aux insectes la quantité de gel adaptée à leur besoin en eau et en nutriments.
Par « refroidissement en ligne », on entend une étape de refroidissement le long d'un dispositif de production de gel, par un moyen prévu à cet effet. Le composé liquide soutiré est refroidit au cours de son acheminement, entre la cuve dans laquelle se trouve le composé liquide et le milieu d'élevage des insectes. Ce refroidissement en ligne amène le composé liquide à une température inférieure à sa température de gélification, qui peut être par exemple de l'ordre de 40°C. Plus généralement, le composé ainsi gélifié est amené à une température compatible de l'usage pour lequel il est prévu. Par exemple, pour le nourrissage et l'apport en eau à des insectes, le composé, qui sera distribué à une température proche de sa température après refroidissement en ligne est amené à une température maximale de 25°C en sortie du refroidissement en ligne. Le refroidissement en ligne peut être réalisé en une fois, ou via plusieurs paliers de refroidissement, par des refroidissements graduels et successifs.
L'étape de transfert correspond à l'acheminement du gel depuis la zone de refroidissement jusqu'à la zone de débitage. Cet acheminement est effectué par des moyens prévus à cet effet. Avantageusement, l'acheminement est mis en œuvre à une température inférieure ou égale à 25°C afin de maintenir la bonne cohésion du gel.
L'étape de débitage correspond à une étape de coupe du gel. Avantageusement, le débitage est effectué par moyens de coupes mécaniques permettant la coupe du gel selon les besoins en eau et en nutriments des insectes.
En gélifiant le composé en ligne, après soutirage sous forme liquide, et en le débitant en blocs directement en sortie d'une ligne de distribution, le gel est produit au besoin et en continu. La manutention du gel et son stockage (sous forme de gel) sont éliminés, ce qui supprime de fait les problématiques associées. Les risques de contamination ou de développement de bactéries sont fortement limités, car le gel est distribué immédiatement en sortie de ligne de distribution, peu de temps après que le composé a été formé. Par ailleurs, dans le cadre d'un élevage d'insectes, la taille des blocs en sortie peut être adaptée aux besoins de manière fine, et en continu.
L'invention concerne, en outre, l'utilisation d'un gel selon l'invention comme source d'eau et/ou de nutriments pour l'élevage d'insectes.
En particulier, le gel selon l'invention est utilisé comme source d'eau et/ou de nutriments, avantageusement, comme source d'eau et de nutriments, pour l'élevage industriel d'insectes.
L'apport d'une source d'eau est indispensable pour le bon développement des insectes. Pour la même quantité d'eau fournie (30% de la masse de larve), les larves de ténébrions croissent 48% plus rapidement avec une source d'eau gélifiée par rapport à de l'eau directement mélangée au substrat. Leur gain de masse individuelle en matière sèche est également plus important de 64%.
De plus, l'utilisation de gel améliore la croissance des larves par rapport à l'utilisation de carottes, même quand elles sont élevées à des densités élevées telles que celles utilisées dans une installation de production industrielle. En effet, le taux de croissance des larves dans ces conditions est significativement plus grand pour les larves élevées avec du gel.
Donner de l'eau aux insectes et en quantité suffisante est donc un facteur clé d'une croissance rapide et efficace des larves. Cela permet également d'augmenter considérablement la productivité d'un élevage d'insectes et notamment de Tenebrio molitor.
Cela permet également un meilleur contrôle dans le dosage de l'apport en eau. Le gel selon l'invention permet également un apport en nutriments intéressants.
Avantageusement, ce gel est utilisé pour l'élevage de Tenebrio molitor, en particulier pour l'élevage de larves de Tenebrio molitor.
L'invention concerne enfin, l'utilisation d'un coproduit liquide de l'agro-industrie sous forme de gel comme source d'eau et/ou de nutriments, avantageusement comme source d'eau et de nutriments, pour l'élevage d'insectes, notamment l'élevage industriel d'insectes.
L'utilisation d'un coproduit liquide de l'agro-industrie permet avantageusement un meilleur contrôle dans le dosage de l'apport en eau tel que mentionné ci-dessus, ainsi qu'un apport intéressants en nutriments, favorisant la croissance des insectes, tout en diminuant le risque de mortalité. L'invention sera mieux comprise à la lecture des exemples qui suivent, donnés à titre illustratif, avec référence aux figures :
- la Figure 1 a est un diagramme illustrant la croissance et la mortalité de larves de Tenebrio molitor en élevage sur des gels comportant divers coproduits liquides de l'agro-industrie (deux solubles de blé, un soluble de distillerie de céréales et une vinasse) ;
- la Figure 1 b correspond à la courbe de croissance de Tenebrio molitor en élevage sur des gels comportant les coproduits liquides de l'agro-industrie mentionnés en Figure 1 a ;
- la Figure 1 c est un diagramme illustrant l'indice de conversion alimentaire FCR, également appelé indice de consommation, calculé pour Tenebrio molitor selon le coproduit liquide de l'agro-industrie, sous forme de gel, qui a été intégré dans son régime alimentaire ;
- la Figure 2 comporte une Figure 2a qui est un tableau présentant des régimes alimentaires comparatifs comportant des coproduits liquides d'une amidonnerie de blé et de maïs, séchés ou lyophilisés, ainsi qu'une Figure 2b, qui comprend deux diagrammes illustrant les résultats obtenus en termes de croissance et de FCR de la nourriture, obtenus pour différents régimes alimentaires comparatifs décrits à la Figure 2a;
- la Figure 3 comporte une Figure 3a qui est un tableau présentant des régimes alimentaires comparatifs comportant des coproduits liquides d'une amidonnerie de blé, séchés ou lyophilisés, ainsi qu'une Figure 3b, qui comprend deux diagrammes illustrant les résultats obtenus en termes de croissance et de FCR de la nourriture, obtenus pour différents régimes alimentaires comparatifs décrits à la Figure 3a;
- la Figure 4 comporte une Figure 4a qui est un tableau présentant des régimes alimentaires comparatifs comportant des coproduits liquides d'une amidonnerie de blé et de maïs, sous forme humide ou sous forme de gel, ainsi qu'une Figure 4b, qui comprend deux diagrammes illustrant les résultats obtenus en termes de croissance et de FCR de la nourriture, obtenus pour différents régimes alimentaires comparatifs décrits à la Figure 4a;
- la Figure 5 comporte une Figure 5a qui est un tableau présentant des régimes alimentaires comparatifs comportant des coproduits liquides d'une amidonnerie de blé et de maïs, sous forme humide ou sous forme de gel, ainsi qu'une Figure 5b, qui comprend deux diagrammes illustrant les résultats obtenus en termes de croissance et de FCR de la nourriture, obtenus pour différents régimes alimentaires comparatifs décrits à la Figure 5a ; et
- La Figure 6 représente l'évaluation des propriétés mécaniques des gels enrichis aux solubles de blé avec une incorporation en gélifiant (mélange Xanthane Caroube) de 0,30%, 0,50% et 0,70% de l'exemple IV (mesure de la force du gel en fonction de la distance parcourue par un mobile cylindrique utilisé pour appliquer une pression à la surface du gel) réalisée à l'aide d'un texturomètre TA-XT Plus (Stable Micro Systems, TA-XT Plus, Surrey,
France) et son logiciel d'analyse « Exponent ».
Exemple I : Exemples de gels selon l'invention. A. Les produits mis en œuvre dans les gels selon l'invention
a) Les solubles
- Les solubles de maïs
• SOLULYS 048E®, commercialisé par ROQUETTE. Le Solulys correspond à une solution concentrée de solubles du maïs obtenu, lors de la première étape de fractionnement du grain, dans un processus d'amidonnerie humide. Cette solution concentrée comporte 48% en poids de matière sèche sur le poids total de solution et 44% en poids de protéines et 24% en poids d'acide lactique, ces deux derniers pourcentages en poids étant exprimés sur le poids total de matière sèche de la solution.
• AMYSTEEP424®, commercialisé par TEREOS. Cette composition de soluble de maïs comporte 42,5% en poids de matière sèche sur le poids total de la composition et 44% en poids de protéines sur le poids total de matière sèche de la composition.
- Les solubles de blé
• CORAMI®, commercialisé par ROQUETTE. Il correspond à un soluble d'extraction d'amidon obtenu suite aux étapes de trempage et de raffinage, dans un processus d'amidonnerie. Cette composition de soluble de blé comporte 29% en poids de matière sèche sur le poids total de la composition. Les solubles de distillerie
- Les solubles de distillerie du blé
• ALCOMIX®, commercialisé par la société TEREOS. Cette composition de soluble de blé comporte environ 20% en poids de matière sèche sur le poids total de la composition et environ 28% en poids de protéines sur le poids total de matière sèche de la composition.
• PROTIWANZE®, commercialisé par la société CROPERNERGIES. Ce soluble de distillerie du blé comporte 27% en poids de matière sèche sur le poids total de soluble de distillerie et 27% en poids de protéines sur le poids total de matière sèche de soluble de distillerie.
• CORAMI BE®, commercialisé par ROQUETTE. Ce soluble de distillerie du blé comporte 32% en poids de matière sèche sur le poids total de soluble de distillerie et 32% en poids de protéines sur le poids total de matière sèche de soluble de distillerie.
- Les solubles de distillerie de céréales
· soluble de distillerie issu du blé, du maïs et de l'orge, fourni par la société CROPENERGIES. c) Les crèmes de levures
• crème de levures de blé fournie par TEREOS. d) Les vinasses
• VINASSE 60® commercialisé par LESAFFRE. Cette vinasse comporte 60% en poids de matière sèche sur le poids total de vinasse et 60% en poids de protéines sur le poids total de matière sèche de vinasse.
· VIPROTAL® commercialisé par LESAFFRE. Cette vinasse comporte 60% en poids de matière sèche sur le poids total de vinasse et 44% en poids de protéines sur le poids total de matière sèche de vinasse.
• PRL 364® commercialisé par AJINOMOTO. Cette vinasse comporte 70% en poids de matière sèche sur le poids total de vinasse et 70% en poids de protéines sur le poids total de matière sèche de vinasse. SIRONAL® commercialisé par AJINOMOTO. Cette vinasse comporte 66% en poids de matière sèche sur le poids total de vinasse et 52,8% en poids de protéines sur le poids total de matière sèche de vinasse. e) Les mélasses
SUGARCANNE MOLASSE commercialisé par PRIMEAL. Cette mélasse comporte 75% en poids de matière sèche sur le poids total de mélasse et 5% en poids de protéines sur le poids total de matière sèche de mélasse.
BEET MOLASSE commercialisé par CRISTALUNION. Cette mélasse comporte 75% en poids de matière sèche sur le poids total de mélasse et 14% en poids de protéines sur le poids total de matière sèche de mélasse. f) Les probiotiques
Levures LB 2245® commercialisées par LALLEMAND présentant les caractéristiques mentionnées dans le Tableau 1 ci-dessous :
Levures LB 2245 (%)
Vitamine A (IU) < à 0,0003
Eau 6
Protides 45,00
Lipides totaux 15,00
Acides gras SAT 10,00
Glucides totaux 42,10
Sucres solubles 24,00
Fibres 16,60
Sodium 0,047
Calcium 0,212
Fer 0,005
Vitamine B1 : Thiamine 0,004
Vitamine B2 : Riboflavine 0,003
Vitamine B3: Acide nicotinique 0,048
Vitamine B5 Acide
0,003
pantothenique
Vitamine B6 : Pyridoxine 0,003
Vitamine B8 : Biotine 0,0001
Vitamine B9 : Acide folique 0,0002
Vitamine B12 : Cobalamin 0,00001
Levures inactives, contenant du gluten d'orge et de
Commentaires
blé
Tableau 1 : Composition de Levures LB 2245 g) Les prémix de vitamines
• Prémix de vitamines PX SHRIMP V 0.5 commercialisé par MIXSCIENCE présentant les caractéristiques mentionnées dans le Tableau 2 ci-dessous : Prémix (%)
Fer 0,20
Iode 0,01
Cobalt 0,00238
Cuivre 0,60
Manganèse 0,40
Zinc 0,3
Sélénium - Sélénite de sodium 0,008
BHT 0,40
Vitamine A (IU) < à 0,60
Vitamine B1 : Thiamine 1 ,00
Vitamine B2 : Riboflavine 1 ,20
Vitamine B5 Acide
3,00
pantothénique
Vitamine B6 : Pyridoxine 1 ,00
Vitamine B8 : Biotine 0,01
Vitamine B9 : Acide folique 0,16
Vitamine B12 : Cobalamine 0,0001
PP - Niacine 3,00
D3 0,0015
E 2,941 176
K3 0,20
Tableau 2 : Composition du prémix
B. Formulation de gels selon l'invention.
a) Gel comprenant un probiotique et un substrat aqueux constitué de soluble de maïs % en poids sur le
poids total de gel
Soluble de maïs 94,09
Probiotiques 4,81
Gélifiant (½ Gomme 0,8
de xanthane + ½
Gomme de caroube)
Sorbate de 0,3
Potassium b) Gel comprenant un prémix de vitamines et un substrat aqueux constitué de soluble de blé
Figure imgf000025_0001
c) Gel comprenant un prémix de vitamines et un substrat aqueux constitué d'un soluble de maïs
Figure imgf000025_0002
d) Gel comprenant 75% d'un soluble de distillerie de blé et 25% d'eau dans le substrat aqueux % en poids sur le
poids total de gel
Soluble de distillerie 74,17
de blé
Eau 24,73
Gélifiant (½ Gomme 0,8
de xanthane + ½
Gomme de caroube)
Sorbate de 0,3
Potassium Gel comprenant un substrat aqueux constitué d'un soluble de blé
Figure imgf000026_0001
Gel comprenant un substrat aqueux constitué d'un mélange de soluble de blé et de soluble de maïs
% en poids sur le
poids total de gel
soluble de maïs 95,9
soluble de blé 3,0
Gélifiant (½ Gomme 0,8
de xanthane + ½
Gomme de caroube)
Sorbate de 0,3
Potassium g) Gel comprenant un substrat aqueux constitué d'un mélange de soluble de blé à 75% et gélifié avec de l'agar-agar
Figure imgf000027_0001
C. Préparation d'un gel
Les gels ci-dessus peuvent être préparés de la façon suivante.
Dans une cuve sous agitation le(s) coproduit(s) de l'agro-industrie et optionnellement l'eau est/sont chauffé(s) à une température supérieure à 80°C, puis mélangés aux autres constituants du mélange : les éventuels probiotiques et prémix, à au moins un agent gélifiant et à au moins un agent conservateur dans les proportions données. Le mélange ainsi obtenu est ensuite redescendu progressivement à température ambiante afin que le gel se forme.
Exemple II : Effets de différents gels selon l'invention sur le développement des larves de Tenebrio molitor.
Quatre coproduits de l'agro-industrie ont été testés : deux solubles de blé (SB1 et SB2), une vinasse (VF) et un soluble de céréale issu du blé, du maïs et de l'orge (SC).
Un gel a été formé selon l'exemple I, constitué de 99% en poids sur le poids total de gel d'un substrat aqueux comportant 25% en poids sur le poids de substrat aqueux de chacun de coproduits de l'agro-industrie précités et 75% en poids sur le poids de substrat aqueux d'eau, de 0,7% de Flanogen XL12 (Cargill®), un mélange à 50/50 de gomme de xanthane et de gomme de caroube, et de 0,3% de L-sorbate de potassium.
Un gel témoin a également été formé constitué d'eau, de 0,7% en poids de
Flanogen XL12 (Cargill®) et de 0,3% en poids de L-sorbate de potassium, les pourcentages en poids étant donnés sur le poids total de gel. Les larves de Tenebrio molitor utilisées pour chaque série d'expériences proviennent de la même population issue de l'élevage de laboratoire d'Ynsect à Evry et ont été prélevées à deux moments différents.
Les expériences ont débuté avec 10 grammes de larves à jeun depuis 48h et dont le poids individuel était d'environ 20 mg.
Elles ont été élevées à une densité optimale de 0,63 g / cm2 dans des verrines en plastique transparent à base carré (dimensions : 4 x 4 x 7,5 cm).
A chaque nourrissage, la masse d'insecte est remise à 10 grammes par sélection aléatoire d'un échantillon d'individus afin de revenir à la densité optimale.
Les expériences ont duré 14 jours et ont été conduites dans l'obscurité, dans une chambre climatique afin de contrôler la température à 24 °C et l'humidité relative à 60 %. Les larves de Tenebrio molitor ont été nourries ad libitum 2 fois par semaine avec un milieu de base et les gels tels qu'obtenus ci-avant.
A la fin de l'expérience le milieu a été pesé afin d'évaluer la croissance et la mortalité des larves ainsi élevées.
Pour le calcul du taux de croissance quotidien, il est nécessaire d'estimer la croissance totale théorique en corrigeant l'effet des dilutions successives. Pour cela, la biomasse larvaire théorique (Mcumul) est réévaluée à chaque prise de données (t) à partir des pesées de masse larvaires (ML) selon la formule suivante :
ML(t) - ML(t— 1)
Mcumul(t) = Mcumul(t - 1) + Mcumul(t - 1) x ^ Le taux de croissance quotidien (GR) est calculé entre la masse larvaire initiale (ML(t0)=10 g) et la masse larvaire théorique à la fin de l'expérience (tf) selon la formule suivante :
_ Mcumul (tf) - ML(t0)
GR ~ ML(t0) x At
Pour l'estimation de la mortalité, la moyenne des taux de mortalité apparente quotidienne entre chaque prise de données a été calculée. Les taux de de mortalité quotidienne ont été estimés en divisant le nombre de mort comptés par le nombre de jours entre deux nourrissages.
Les résultats obtenus sont présentés à la Figure 1 a.
On observe que l'ajout d'un gel comportant les coproduits dans le milieu d'élevage des larves permet d'augmenter la croissance des larves par rapport à un milieu comportant un gel constitué uniquement d'eau. En outre, l'ajout de tel gel permet avantageusement de réduire la mortalité des larves par rapport à la valeur du témoin (gel constitué d'eau). Sur la Figure 1 b, on constate que la biomasse du milieu d'élevage augmente tout au long des 14 jours de culture (de 10g jusqu'à 35g). Le gain de biomasse des expériences menées en présence de gel comportant un coproduit est supérieur au gain de biomasse de l'expérience témoin, menée en présence d'un gel comportant uniquement de l'eau (différence d'environ 8g).
Par ailleurs, l'indice de conversion alimentaire FCR été calculé (selon la méthode indiquée dans le Tableau 3, ci-après) pour l'ensemble des expériences menées. Les résultats sont présentés en Figure 1 c. On observe que l'indice de conversion alimentaire des expériences menées en présence d'un coproduit est inférieur ou équivalent à celui obtenu pour le témoin.
En conclusion, l'utilisation de coproduit sous forme de gel en tant que source de nutriments et d'eau est particulièrement avantageuse pour la culture des larves de Tenebrio molitor et permet une croissance améliorée par rapport à un gel constitué d'eau.
Exemple III : Avantages des gels selon l'invention sur le développement des larves de Tenebrio molitor.
Deux séries d'expériences ont été lancées sur la base de régimes alimentaires composés de coproduits de deux usines d'amidonnerie de blé et de maïs pour la première (usine A) et de blé pour la seconde (usine B).
Les objectifs de chacune de ces expériences sont (1 ) d'évaluer l'impact du séchage industriel sur la qualité nutritionnelle des coproduits et (2) de tester l'utilisation de coproduits liquides notamment en incorporation dans un gel à la fois nutritif et source d'eau sur les performances d'élevage de Tenebrio molitor. a) Matériel biologique et conditions d'élevage
Les larves de Tenebrio molitor utilisées pour chaque série d'expériences proviennent de la même colonie issue de l'élevage de laboratoire d'Ynsect à Evry et ont été prélevées à deux moments différents.
Les expériences ont débuté avec 10 grammes de larves à jeun depuis 48h et dont le poids individuel était d'environ 20 mg.
Elles ont été élevées à une densité optimale de 0,63 g / cm2 dans des verrines en plastique transparent à base carré (dimensions : 4 x 4 x 7,5 cm). A chaque nourrissage, la masse d'insecte est remise à 10 grammes par sélection aléatoire d'un échantillon d'individus afin de revenir à la densité optimale.
Les expériences ont duré 2 semaines et ont été conduites dans l'obscurité dans une chambre climatique afin de contrôler la température à 25 °C et l'humidité relative à 60 %. Les larves de Tenebrio molitor ont été nourries ad libitum 2 fois par semaine avec 1 1 g de nourriture et une quantité de gel ajustée selon l'humidité du substrat (voir paragraphe précédent). Au total, le substrat a été renouvelé 4 fois, les événements de renouvellement correspondant aux différentes prises de données. b) Procédure expérimentale et prise de données
Les prises de données ont été effectuées à chaque nourrissage. Les individus ont été séparés de la nourriture par tamisage manuel en utilisant un maillage de tamis approprié en fonction de la taille des individus. Les individus morts ont été retirés et comptés. Les individus vivants ont également été comptés. Les larves vivantes et la matière résiduelle (nourriture non consommée, gel restant et fèces) ont été pesées et une petite partie (environ 2 grammes) est placée à 105°C pendant 24h puis pesée pour estimer la matière sèche.
Les variables étudiées sont le taux de croissance quotidien (GR, calculé tel qu'indiqué à l'Exemple II) et l'indice de conversion alimentaire (FCR).
Pour le calcul du FCR, il est nécessaire de connaître la masse de nourriture consommée. Cependant, celle-ci ne peut pas ou difficilement être obtenue par tamisage, il faut donc passer par un calcul et une expérience intermédiaire en partant d'une méthode par calcul indirect (confirmée en interne en laboratoire) que la digestibilité apparente et son indicateur dérivé, le taux de rejet (RR), sont constants au long de l'expérience, autrement dit que la masse de fèces (ou Masse de frass) produite est proportionnelle à la masse de nourriture ingérée. Une expérience dans laquelle 10 grammes de larves de Tenebrio molitor ont consommé entièrement leur nourriture a donc été effectuée pour tous les traitements afin d'obtenir le RR. Les formules des calculs sont données dans le tableau ci-dessous (Tableau 3). Variables Unité Formules
FCR - Masse de nourriture consommée
Gain de biomasse
RR % Masse de frass
Masse d je nourri :ture consommée-
Masse de nourriture g Masse de substrat (0)— Masse de substrat(t)
Mc(t) = -— -—— — consommée (Me) 1— RR
Tableau 3: Formules de calcul de l'indice de conversion alimentaire (FCR) c) Evaluation de l'impact du séchage industriel sur la qualité nutritionnelle des coproduits
Les traitements finissant par la lettre S dans leur code (A1 S et A2S, B1 S et B2S) correspondent à des régimes alimentaires composé d'un gel constitué uniquement d'eau et d'un substrat nutritif, ledit substrat correspondant à des coproduit liquides séchés selon deux méthodes de séchage : le séchage industriel et le séchage par lyophilisation.
Préparation de la nourriture et du gel
Les régimes alimentaires sont composés de façon à respecter les proportions de production des coproduits donnés en matière sèche pour chaque industrie d'amidonnerie étudiée.
Les coproduits d'amidonnerie inclus dans les autres régimes alimentaires sont :
- le son de blé (WB_A et WB_B),
- les solubles de blé issus de l'extraction de l'amidon (SB_A),
- les solubles de blé issus de l'extraction de l'amidon et mélangés aux solubles et aux levures de distillation (SB_B),
WB_0 correspond à un son de blé de meunerie.
Les ingrédients utilisés à 100% dans les traitements A1 S (CPT_A) et B1 S (CPT_B) correspondent à des produits vendus par les amidonneries (séchés industriellement sur place) et sont composés par les coproduits liquides séchés par lyophilisation utilisés dans les régimes respectifs A2S (WB_A et SB_A) et B2S (WB_B et SB_B), et pour lesquels les proportions ont été gardées. Pour chaque série, un traitement « témoin » composé d'un régime à base de son de blé de meunerie et d'un gel comportant un substrat aqueux constitué d'eau a été inclus (A0 et B0).
Chaque traitement a été répliqué 3 fois.
Amidonnerie A
Figure imgf000032_0001
* La nourriture a été lyophilisée
** Les pourcentages sont exprimés en matière sèche
Tableau 4 : Plan expérimental sur les coproduits de l'amidonnerie A, composition des régimes alimentaires
Amidonnerie B
Figure imgf000032_0002
* La nourriture a été lyophilisée
** Les pourcentages sont exprimés en matière sèche
Tableau 5 : Plan expérimental sur les coproduits de l'amidonnerie B, composition des régimes alimentaires
Tous les régimes secs ont été préparés individuellement avant le début de l'étude et conservés dans un environnement sec et stable. Pour les traitements séchés par lyophilisation, le mélange humide des coproduits est préalablement placé à -80 ° C pendant 24 heures puis mis au lyophilisateur pendant 3 jours.
Tous les traitements ont reçu 1 1 grammes de nourriture par nourrissage et indépendamment de leur teneur en matière sèche.
Concernant le gel donné aux larves de Tenebrio molitor comme source d'eau, il correspond à de petits morceaux composés de 0,75% de Flanogen XL12 (Cargill, France) qui est un mélange de gommes de xanthane et de caroube, 0,3% de sorbate de potassium et complété avec de l'eau. Pour les substrats secs dont la teneur en eau est inférieure ou égale à 15%, 6 grammes d'eau ont été fournis par le gel.
Résultats
Les régimes sont rappelés en Figures 2a et 3a ; les résultats sont donnés en
Figures 2b et 3b pour les produits issus de l'usine A et de l'usine B, respectivement.
Comme cela ressort de ces résultats, les élevages menés sur des substrats secs (A1 S) et (B1 S) ne permettent pas d'obtenir d'aussi bons rendements en termes de croissance et FCR que les élevages menés sur des substrats liquides lyophilisés, respectivement (A2S/Figure 2) et (B2S/ Figure 3).
En conséquence, il montré que le séchage industriel altère la qualité nutritionnelle des coproduits utilisés. Il est donc préférable d'utiliser ceux-ci sous leur forme liquide. d) Utilisation de coproduits liquides notamment en incorporation dans un gel sur les performances d'élevage de Tenebrio molitor
Les traitements permettent de comparer les différentes utilisations des coproduits liquides : mélangés en un substrat humide (A3 et B3) ou incorporés au gel (A4, A5 et B4).
Préparation de la nourriture et du gel
Les régimes alimentaires sont composés de façon à respecter les proportions de production des coproduits donnés en matière sèche pour chaque industrie d'amidonnerie étudiée.
Les coproduits d'amidonnerie inclus dans les régimes alimentaires sont :
- le son de blé (WB_A et WB_B),
- les solubles de blé issus de l'extraction de l'amidon (SB_A),
- les solubles de blé issus de l'extraction de l'amidon et mélangés aux solubles et aux levures de distillation (SB_B),
- les solubles de maïs issus du processus de trempage (SM_A),
- les tourteaux de germes de maïs (GM_A), et
- les fibres de maïs humides (FM_A). Substrat (%)** Gel (%] ** Humidité
Gel
du
Code enrichi WB A SB A SM A GM A FM A SB A SM A
Substrat
39,0
21 ,0% 12,0% 5,9% 22,1 % 0,00 0,00 52%
A3 Non %
39,0
0,00 12,0% 5,9% 22,1 % 21 ,0% 42%
A4 Oui % 0,00
39,0
4,9% 12,0% 5,9% 22,1 % 16,1 % 9,2% 44%
A5 Oui %
** Les pourcentages sont exprimés en matière sèche
Tableau 6 : Plan expérimental sur les coproduits de l'amidonnerie A, composition des régimes alimentaires
Figure imgf000034_0001
** Les pourcentages sont exprimés en matière sèche
Tableau 7 : Plan expérimental sur les coproduits de l'amidonnerie B, composition des régimes alimentaires
Figure imgf000034_0002
Tableau 8 : Composition des gels (amidonnerie A) Gel (%) Masse Teneur
Gel de gel en eau
SB B EAU
Code enrichi (g) du gel
B3 Non 0,00 100% 3,2g 100%
B4 Oui 75,0% 25,0% 4,4g 85,1 %
Tableau 9 : Composition des gels (amidonnerie B)
Tous les régimes secs ont été préparés individuellement avant le début de l'étude et conservés dans un environnement sec et stable.
Tous les régimes humides ont été préparés le jour du nourrissage pour maintenir l'humidité du substrat stable et éviter la contamination microbiologique. Du sorbate de potassium en poudre a également été ajouté (0,3 %) au substrat et bien mélangé. Tous les traitements ont reçu 1 1 grammes de nourriture par nourrissage et indépendamment de leur teneur en matière sèche.
Concernant le gel donné aux larves de Tenebrio molitor, il correspond à de petits morceaux composés de 0,75% de Flanogen XL12 (Cargill, France) qui est un mélange de gommes de xanthane et de caroube, 0,3% de sorbate de potassium et complété avec de l'eau et/ou un coproduit liquide selon le traitement. La quantité de gel apporté au régime a été ajustée en fonction de l'humidité du substrat afin de ne pas suralimenter en eau les larves de Tenebrio molitor. Pour les substrats secs dont la teneur en eau est inférieure ou égale à 15%, 6 grammes d'eau ont été fournis par le gel.
Pour les substrats dont la teneur en eau est supérieure à 15%, la quantité d'eau à fournir par le gel a été calculée selon la formule suivante :
[Masse d'eau dans le gel en gramme] = - ([Humidité du substrat en pourcentage] /15%) + 7
Comme précédemment, les régimes alimentaires sont composés de façon à respecter les proportions de production des coproduits donnés en matière sèche pour chaque industrie d'amidonnerie étudiée.
Pour chaque série, un traitement « témoin » composé d'un régime à base de son de blé de meunerie et du gel a été inclus (A0 et B0). WB_0 correspond au son de blé de meunerie.
Chaque traitement a été répliqué 3 fois. Résultats
Les régimes sont rappelés en Figures 4a et 5a ; les résultats sont donnés en Figures 4b et 5b pour les produits issus de l'usine A et de l'usine B.
La comparaison des élevages menés sur un substrat humide comprenant un coproduit (A3) et (B3), et sur un substrat comportant le ou les coproduits sous forme de gel (A4, A5) et (B4), montre clairement que le taux de croissance est meilleur lorsque le coproduit est apporté sous forme de gel, ainsi que le FCR (le taux devant être le plus bas possible).
Ceci peut être expliqué par le fait qu'un milieu humide augmente la mortalité des individus. Ainsi, l'apport du coproduit sous forme de gel permet de fournir un coproduit sous une forme liquide ayant des qualités nutritionnelles préservées, sans générer de risque de mortalité accrue qui serait due à une teneur en eau du milieu trop élevée.
Exemple IV : - Evaluation de l'impact du pourcentage en gélifiant sur les propriétés physiques des gels enrichis et les conséquences sur la consommation des larves ;
- Etude de différents gélifiants sur la force des gels enrichis pour trois niveaux d'incorporation ; - Conséquences sur la consommation des larves,
a) Préparation des gels
Les gels utilisés dans cette étude sont présentés dans le tableau 10 ci-dessous. Le coproduit liquide (solubles de blé issus de l'extraction de l'amidon et mélangé aux solubles et aux levures de distillation) est incorporé entre 99% et 99,4% dans les gels enrichis, en comptant l'ajout de sorbate de potassium à 0,3% et selon l'inclusion de l'agent gélifiant à 0,30%, 0,50% et 0,70% (en poids sur le poids total du gel). Les gélifiants utilisés sont : un mélange de gommes de Xanthane et de Caroube (Flanogen XL12, Cargill France), un mélange de gommes de Xanthane et de Guar (Algaia, France) et de l'agar-agar destiné à l'agroalimentaire (Biocean, France). Les gels enrichis ont été fabriqués à 80°C pendant 15 minutes à l'aide d'un robot cuiseur multifonction « Amicook » (Amicook Family gourmet, France). Ils ont été coulés rapidement dans des boites cylindriques de volume 137,4 cm3, puis placés 24 heures à 4°C pour la prise en masse. Tous les gels ont un volume standard de 78,5 cm3 (hauteur : 4 cm ; diamètre : 5 cm).
Coproduit
Solubles de blé
liquide
Gélifiant Xanthane Caroube Xanthane Guar Agar Agar
0,30% 0,30% 0,30%
%
d'incorporation 0,50% 0,50% 0,50%
du gélifiant
0,70% 0,70% 0,70% Tableau 10 : Préparation des gels enrichis
b) Analyse de texture des gels
L'évaluation des propriétés mécaniques des gels a été réalisée à l'aide d'un texturomètre TA-XT Plus (Stable Micro Systems, TA-XT Plus, Surrey, France) et son logiciel d'analyse « Exponent ». Cette méthode permet de mesurer la dureté, l'élasticité et principalement la force des différents gels testés. Un mobile cylindrique de diamètre 6,45 mm a été utilisé pour appliquer une pression à la surface du gel jusqu'à atteindre l'enfoncement limite de 20 mm après contact. La vitesse de pénétration a été fixée à 1 ,6 mm/s et la vitesse de sortie à 10 mm/s. L'essai a été réalisé avec les gels enrichis aux solubles de blé avec une concentration en gélifiant (mélange Xanthane Caroube) de 0,30%, 0,50% et 0,70%. Sur la figure 6, la courbe du bas est relative à l'incorporation de 0,30% de gélifiant, celle du milieu est relative à l'incorporation de 0,50% de gélifiant et celle du haut est relative à l'incorporation de 0,70% de gélifiant.
D'après le graphique de la figure 6 représentant la force en fonction de la distance parcourue par le mobile, les paramètres de texture suivants ont été déterminés :
- la force du gel (g/cm2) correspondant à la force nécessaire pour rompre et perforer le gel, - la déformation (mm) correspondant à la distance parcourus par le mobile entre le contact initial et la rupture du gel, et
- la fermeté correspondant au rapport entre la force du gel et sa déformation.
c) Etude de la vitesse de consommation des gels par les larves de Tenebrio molitor
Les larves de Tenebrio molitor utilisées pour cette expérience proviennent de la même colonie issue de l'élevage de laboratoire d'Ynsect à Evry et ont été prélevées simultanément du même lot. Elles ont été mises à jeun pendant 48h avant le lancement et ont un poids initial moyen de 33 mg. Un ratio de 0,5 g de gel pour 2,5 g de larve a été placé dans des verrines en plastique transparent à base carré (dimensions : 4 x 4 x 7,5 cm). Les gels enrichis ont été découpés à l'aide d'un emporte- pièce et placés au centre de la verrine pour garantir la même surface d'accès au gel par les larves.
L'expérience a été conduite dans l'obscurité dans une chambre climatique afin de contrôler la température à 26°C et l'humidité relative à 60%. Les observations ont été réalisées toutes les heures jusqu'à la consommation totale du gel. Une fois le gel consommé en intégralité, la mortalité et le poids individuel des larves ont été récupérés par comptage et pesées.
d) Résultats d1 ) Effet de la concentration en gélifiant sur la force du gel enrichi et sur la consommation des larves Les résultats présentés dans le tableau 1 1 ci-dessous montrent que la force et la fermeté du gel augmentent avec la concentration en gélifiant, passant d'une force de 56,92 g/cm2 pour 0,3% à 149,09 g/cm2 pour 0,7%, soit un triplement de la force pour une augmentation de 0,4% dans la concentration en gélifiant. La capacité de déformation des gels augmente faiblement avec la concentration en gélifiant. % Temps de Gain de
Force Déformation Fermeté
incorporation consommation poids
(g/cm2) (mm) (pente)
gélifiant (h) (%)
0,30% 56,92 5,92 14,27 9,7 (+/- 0,7) 9,8%
0,50% 1 17,15 6,17 29,28 10,3 (+/-0.3) 10,1 %
0,70% 149,02 6,27 36,98 14.7 (+/- 1 ,2) 9,0%
Tableau 11 : Résultats de force, déformation, fermeté et consommation des gels enrichis aux solubles de blé (gélifiant : Xanthane Caroube).
Les résultats montrent que le temps de consommation des gels augmente légèrement avec la concentration en gélifiant : 5 heures de temps de consommation supplémentaires pour un gel à 0,7% en gélifiant par rapport à un gel à 0,3%. La mortalité et le gain de masse des larves sont équivalents quelle que soit la concentration en gélifiant. Ainsi, les résultats montrent qu'un gel enrichi avec des coproduits liquides est plus facilement consommé par les larves de T. molitor quand la force du gel est d'environ 50 g/cm2. D'autres observations (non présentées) montrent que, pour une force de gel inférieure à 20 g/cm2, le gel ne se forme pas, la solution de coproduit liquide s'écoule dans l'unité d'élevage, et par conséquence les larves se trouvent engluées et meurent.
d2) Effet du gélifiant sur la consommation des gels par les larves
Les résultats donnés dans le tableau 12 ci-dessous montrent que pour des gels enrichis d'une force équivalente (environ 50 g/cm2), le temps de consommation totale du gel est comparable : entre 10 et 1 1 heures. Le gélifiant n'a donc pas d'effet significatif sur l'appétence des gels. Ainsi, différents gélifiants peuvent être utilisés aux fins de l'invention pour atteindre des résultats similaires sur la consommation du gel par les larves. Gélifiant Force Temps de Gain de poids(%)
(g/cm2) consommation (h)
Xanthane Caroube 56,92 9,7 (+/-0.7) 9,8%
Xanthane Guar 42,09 10,3 (+/-1 .3) 10,2%
Agar-Agar 47,24 1 1 ,3 (+/-0.3) 10,2%
Tableau 12 : Effet du gélifiant sur la consommation de gels enrichis

Claims

REVENDICATIONS
1 . Gel comprenant :
- 90 à 99,6% en poids d'un substrat aqueux comportant au moins 25% en poids sur le poids total de substrat aqueux d'un coproduit liquide de l'agro-industrie,
- de 0,3 à 2% en poids d'un agent gélifiant, et
- de 0,1 à 5% en poids d'un agent conservateur,
les pourcentages en poids de substrat aqueux, d'agent gélifiant et d'agent conservateur étant exprimés sur le poids total du gel,
ledit gel ayant une teneur en eau supérieure à 50% en poids sur le poids total de gel.
2. Gel selon la revendication 1 , dans lequel l'agro-industrie est choisie parmi les industries de l'amidonnerie, de la féculerie, de la malterie, de production de bioéthanol, du sucre, de la fermentation, de la brasserie, de la distillation et l'industrie laitière.
3. Gel selon la revendication 1 ou 2, dans lequel le substrat aqueux comporte au moins 50% en poids d'un coproduit liquide de l'agro-industrie, sur le poids total de substrat aqueux.
4. Gel selon l'une quelconque des revendications 1 à 3, dans lequel le substrat aqueux comporte de l'eau.
5. Gel selon la revendication 4, dans lequel le substrat aqueux consiste en de l'eau et un coproduit liquide de l'agro-industrie.
6. Gel selon l'une quelconque des revendications 1 à 3, dans lequel le substrat aqueux consiste en un coproduit liquide de l'agro-industrie.
7. Gel selon l'une quelconque des revendications précédentes, dans lequel le coproduit liquide de l'agro-industrie est choisi parmi la liste constituée par les solubles de céréales, les solubles de maïs, les solubles de blé, les solubles de pois, les solubles de manioc, les solubles de betterave à sucre, les solubles de canne à sucre, les solubles de distillerie de céréales, les solubles de distillerie de blé, les solubles de distillerie de maïs, les solubles de distillerie de pois, les solubles de distillerie du manioc, les vinasses, les mélasses, les crèmes de levures, les lactosérums et leurs dérivés concentrés notamment le perméat, ou leurs mélanges.
8. Gel selon l'une quelconque des revendications précédentes, dans lequel le coproduit liquide de l'agro-industrie est un soluble de distillerie ou un mélange d'un soluble de distillerie avec un autre coproduit liquide.
9. Gel selon l'une quelconque des revendications précédentes, dans lequel l'agent gélifiant est un mélange de gomme de xanthane et de gomme de caroube, ou un mélange de gomme de xanthane et de gomme de guar.
10. Gel selon l'une quelconque des revendications 1 à 9, comportant des levures.
1 1 . Gel selon l'une quelconque des revendications 1 à 10, comportant en outre de 0,001 à 0,5% en poids de vitamines sur le poids total du gel.
12. Gel selon l'une quelconque des revendications 1 à 1 1 , présentant une force du gel d'au moins 30 g/cm2.
13. Régime alimentaire pour insectes comportant un gel et un aliment :
- le gel étant selon l'une quelconque des revendications 1 à 12, et,
- l'aliment étant un substrat insoluble ayant une teneur en humidité inférieure ou égale à 55% en poids sur le poids total du substrat insoluble.
14. Procédé de préparation d'un gel selon l'une quelconque des revendications 1 à 12, comportant :
- une étape de formation d'un composé liquide par mélange :
i. de 90 à 99,6% en poids d'un substrat aqueux comportant au moins 25% en poids sur le poids total de substrat aqueux d'un coproduit liquide de l'agro-industrie, le substrat aqueux étant porté à une température permettant la dissolution d'un agent gélifiant;
ii. de 0,3 à 2% en poids d'un agent gélifiant, et
iii. de 0,1 à 5% en poids d'un agent conservateur,
les pourcentages en poids d'agent gélifiant et d'agent conservateur étant exprimés sur le poids total du composé liquide,
- une étape de refroidissement du composé liquide de sorte à l'amener en dessous d'une deuxième température, à laquelle il est gélifié.
15. Utilisation d'un gel selon l'une quelconques des revendications 1 à 12, comme source d'eau et/ou de nutriments pour l'élevage d'insectes.
16. Utilisation d'un coproduit liquide de l'agro-industrie sous forme de gel comme source d'eau et/ou de nutriments pour l'élevage d'insectes.
PCT/EP2017/084783 2016-12-29 2017-12-28 Gel comportant un coproduit liquide de l'agro-industrie et son utilisation pour l'élevage d'insectes WO2018122360A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US16/474,172 US20190343148A1 (en) 2016-12-29 2017-12-28 Gel comprising a liquid coproduct from agro-industry and use thereof for rearing insects
BR112019013661-4A BR112019013661A2 (pt) 2016-12-29 2017-12-28 Gel que compreende um coproduto líquido da agroindústria e uso do mesmo para criar insetos
CN201780081444.4A CN110121270A (zh) 2016-12-29 2017-12-28 包含来自农产业的液体副产物的凝胶及其用于昆虫饲养的用途
JP2019535777A JP7675499B2 (ja) 2016-12-29 2017-12-28 農産業からの液体副産物を含むゲル、及び昆虫を飼育するための当該ゲルの使用
CA3047515A CA3047515A1 (fr) 2016-12-29 2017-12-28 Gel comportant un coproduit liquide de l'agro-industrie et son utilisation pour l'elevage d'insectes
RU2019123586A RU2767790C2 (ru) 2016-12-29 2017-12-28 Гель, содержащий жидкий побочный продукт агропромышленности, и его применение для разведения насекомых
AU2017385720A AU2017385720A1 (en) 2016-12-29 2017-12-28 Gel comprising a liquid coproduct from agro-industry and use thereof for rearing insects
EP17832785.4A EP3562326A1 (fr) 2016-12-29 2017-12-28 Gel comportant un coproduit liquide de l'agro-industrie et son utilisation pour l'élevage d'insectes
ZA2019/04931A ZA201904931B (en) 2016-12-29 2019-07-26 Gel comprising a liquid coproduct from agro-industry and use thereof for rearing insects
AU2023266263A AU2023266263A1 (en) 2016-12-29 2023-11-14 Gel comprising a liquid coproduct from agro-industry and use thereof for rearing insects

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1663523A FR3061411A1 (fr) 2016-12-29 2016-12-29 Gel comportant un coproduit liquide de l'agro-industrie
FR1663523 2016-12-29

Publications (1)

Publication Number Publication Date
WO2018122360A1 true WO2018122360A1 (fr) 2018-07-05

Family

ID=58501586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/084783 WO2018122360A1 (fr) 2016-12-29 2017-12-28 Gel comportant un coproduit liquide de l'agro-industrie et son utilisation pour l'élevage d'insectes

Country Status (11)

Country Link
US (1) US20190343148A1 (fr)
EP (1) EP3562326A1 (fr)
JP (1) JP7675499B2 (fr)
CN (1) CN110121270A (fr)
AU (2) AU2017385720A1 (fr)
BR (1) BR112019013661A2 (fr)
CA (1) CA3047515A1 (fr)
FR (1) FR3061411A1 (fr)
RU (1) RU2767790C2 (fr)
WO (1) WO2018122360A1 (fr)
ZA (1) ZA201904931B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115318A (zh) * 2019-04-09 2019-08-13 上海师范大学 一种通用性甲虫果冻及其制备方法
WO2023285757A1 (fr) 2021-07-13 2023-01-19 Ynsect Procédé de préparation d'un bloc de gel

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3081679B1 (fr) * 2018-06-01 2021-11-26 Ynsect Milieu de ponte pour insectes comportant un substrat texturant
EP3855931A1 (fr) * 2018-09-28 2021-08-04 Cargill, Incorporated Aliment pour insectes
CN111374242A (zh) * 2020-03-10 2020-07-07 松颉环保科技(深圳)有限公司 一种包含废弃液体原料的黑水虻饲料及其制备方法
CN111317080A (zh) * 2020-03-10 2020-06-23 松颉环保科技(深圳)有限公司 一种利用废弃液体原料制备的黑水虻饲料及其制备方法
FR3110595B1 (fr) * 2020-05-21 2024-08-16 Innovafeed Méthode de fabrication de substrat d’élevage de larves
DE102020004957A1 (de) 2020-08-13 2022-02-17 Hermetia Baruth GmbH Verfahren zur Gewinnung von Insektenmehl
KR102635347B1 (ko) * 2021-05-26 2024-02-08 전라북도(농업기술원) 긴날개여치 사육용 인공사료 조성물 및 이를 이용한 긴날개여치의 인공 사육방법
FR3130516A1 (fr) * 2021-12-16 2023-06-23 Innovafeed Procédé de préparation d’un substrat d’élevage de larves d’insectes par hydrolyse enzymatique et substrat obtenu
CN115812850B (zh) * 2022-11-28 2024-08-13 上海邦成生物工程有限公司 具有复合凝胶包覆层的丙酸钙粉体的制备方法及相应粉体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1500261A (en) * 1974-04-11 1978-02-08 Mars Ltd Food products
US5643622A (en) * 1993-05-10 1997-07-01 Pacific Kenyon Corporation Methods for producing a solid feed supplement
US6293223B1 (en) * 2000-05-19 2001-09-25 Cornell Research Foundation, Inc. Artificial diet and method using an artificial diet, for mass rearing of insects
US20090285937A1 (en) * 2008-05-15 2009-11-19 The Bug Company Of Minnesota Combination water and food insect supplement
WO2016004312A1 (fr) * 2014-07-03 2016-01-07 Adm Alliance Nutrition, Inc Aliments pour insectes
CN106036259A (zh) * 2016-05-30 2016-10-26 中国农业科学院植物保护研究所 一种葱地种蝇幼虫的人工饲料及其制备方法和饲养方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19739167A1 (de) * 1997-09-06 1999-03-11 Baensch Tetra Werke Gelartiges Futter für Wassertiere
AU754277B2 (en) * 1998-01-08 2002-11-07 Otsuka Foods Co., Ltd. Gelled foods and process for producing the same
US6726941B2 (en) * 2001-08-20 2004-04-27 Archer Daniels Midland Company Amorphous solid cast feed product made by solidifying liquid agricultural byproducts
JP3338704B1 (ja) * 2002-01-31 2002-10-28 株式会社九州メディカル 鱗翅目ヤガ科昆虫の幼虫を使用した植物性食品廃棄物の処理方法、並びに、その産物を使用した飼料
US20090123609A1 (en) * 2007-11-08 2009-05-14 Harris Joseph M Methods of preparing a liquid suspension for use with animal feed
CN101449749A (zh) * 2008-12-31 2009-06-10 贺小茹 一种昆虫饲料及其制备方法
RU2485788C2 (ru) * 2011-07-06 2013-06-27 Государственное научное учреждение Лазаревская опытная станция защиты растений Всероссийского научно-исследовательского института биологической защиты растений Россельхозакадемии СПОСОБ ПРОИЗВОДСТВА ПИТАТЕЛЬНОЙ СРЕДЫ ДЛЯ РАЗВЕДЕНИЯ ЛИЧИНОК ХИЩНОГО ЖУКА КРИПТОЛЕМУСА Сryptolaemus montrouzieri Muls.
TW201347679A (zh) * 2012-05-31 2013-12-01 Ting-Yu Chiang 昆蟲人工飼料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1500261A (en) * 1974-04-11 1978-02-08 Mars Ltd Food products
US5643622A (en) * 1993-05-10 1997-07-01 Pacific Kenyon Corporation Methods for producing a solid feed supplement
US6293223B1 (en) * 2000-05-19 2001-09-25 Cornell Research Foundation, Inc. Artificial diet and method using an artificial diet, for mass rearing of insects
US20090285937A1 (en) * 2008-05-15 2009-11-19 The Bug Company Of Minnesota Combination water and food insect supplement
WO2016004312A1 (fr) * 2014-07-03 2016-01-07 Adm Alliance Nutrition, Inc Aliments pour insectes
CN106036259A (zh) * 2016-05-30 2016-10-26 中国农业科学院植物保护研究所 一种葱地种蝇幼虫的人工饲料及其制备方法和饲养方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201701, Derwent World Patents Index; AN 2016-70380M, XP002772095 *
G. BLANCHER, SCIENCES DU VIVANT, 2009
See also references of EP3562326A1

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110115318A (zh) * 2019-04-09 2019-08-13 上海师范大学 一种通用性甲虫果冻及其制备方法
WO2023285757A1 (fr) 2021-07-13 2023-01-19 Ynsect Procédé de préparation d'un bloc de gel
FR3125205A1 (fr) 2021-07-13 2023-01-20 Ynsect Procédé de préparation d’un bloc de gel

Also Published As

Publication number Publication date
FR3061411A1 (fr) 2018-07-06
CN110121270A (zh) 2019-08-13
AU2023266263A1 (en) 2023-12-07
BR112019013661A2 (pt) 2020-06-02
JP7675499B2 (ja) 2025-05-13
RU2019123586A (ru) 2021-02-01
US20190343148A1 (en) 2019-11-14
RU2767790C2 (ru) 2022-03-21
CA3047515A1 (fr) 2018-07-05
ZA201904931B (en) 2021-05-26
AU2017385720A1 (en) 2019-07-18
EP3562326A1 (fr) 2019-11-06
RU2019123586A3 (fr) 2021-02-17
JP2020503046A (ja) 2020-01-30

Similar Documents

Publication Publication Date Title
EP3562326A1 (fr) Gel comportant un coproduit liquide de l&#39;agro-industrie et son utilisation pour l&#39;élevage d&#39;insectes
KR101149107B1 (ko) 굼벵이 사료 제조방법
EP3801012B1 (fr) Milieu de ponte pour insectes comportant un substrat texturant
WO2016004312A1 (fr) Aliments pour insectes
JP2009537131A (ja) プロバイオティクス微生物の組成物、それを含む顆粒、その調製方法およびその使用
CA2718617A1 (fr) Procede et unite de transformation de betteraves
CA3179259A1 (fr) Methode de fabrication de substrat d&#39;elevage de larves
WO2009037399A2 (fr) Procede de production de spores et de metabolites provenant de microorganismes d&#39;origine fongique et leurs utilisations
Mbajiuka et al. Fermentation of pods of cocoa (theobroma cacao L) using palm wine yeasts for the production of alcohol and biomass
FR2467552A1 (fr) Aliment de longue conservation pour les porcs
EP1702517B1 (fr) Procédé de préparation de grains de kéfir, et application aux installations de préparation de soupes pour animaux d&#39;élevage
US11484045B2 (en) Process for manufacturing yeast strains having increased mannan oligosaccharides and improved amino acid profiles
EP3801013B1 (fr) Milieu de ponte pour insectes comportant un substrat solide
CA3101873A1 (fr) Procede d&#39;amelioration de la degradation ruminale de la paille de ble
FR3038617A1 (fr) Utilisation de coproduits de la transformation de cereales pour la preparation d&#39;une composition enrichie en proteines comprenant des levures
WO2023111238A1 (fr) Procédé de préparation d&#39;un substrat d&#39;élevage de larves d&#39;insectes par hydrolyse enzymatique et substrat obtenu
FR3146893A1 (fr) Produit solide à base d’urine transformée, procédé de préparation et utilisations
FR3116179A1 (fr) Aliment alternatif destine a l’elevage des crevettes comprenant de la farine de hermetia illucens
BE436661A (fr)
BE702563A (fr)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17832785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3047515

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019535777

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013661

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017385720

Country of ref document: AU

Date of ref document: 20171228

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017832785

Country of ref document: EP

Effective date: 20190729

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019013661

Country of ref document: BR

Free format text: APRESENTE A RETIFICACAO DO TEXTO EM PORTUGUES, ADAPTADO A NORMA VIGENTE, DO PEDIDO CONFORME DEPOSITO INTERNACIONAL INICIAL ( RESUMO COM NUMERACAO CORRETA ), CONFORME DETERMINA O ATO NORMATIVO 128/97 NO ITEM 9.2.1

ENP Entry into the national phase

Ref document number: 112019013661

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190701

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载