WO2018120715A1 - Procédé et dispositif de commande de climatiseur, et climatiseur associé - Google Patents
Procédé et dispositif de commande de climatiseur, et climatiseur associé Download PDFInfo
- Publication number
- WO2018120715A1 WO2018120715A1 PCT/CN2017/091176 CN2017091176W WO2018120715A1 WO 2018120715 A1 WO2018120715 A1 WO 2018120715A1 CN 2017091176 W CN2017091176 W CN 2017091176W WO 2018120715 A1 WO2018120715 A1 WO 2018120715A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user
- air conditioner
- state
- parameter
- temperature value
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 22
- 230000037323 metabolic rate Effects 0.000 claims abstract description 63
- 230000005855 radiation Effects 0.000 claims abstract description 27
- 230000035807 sensation Effects 0.000 claims description 40
- 230000001815 facial effect Effects 0.000 claims description 6
- 230000006870 function Effects 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- XGFJCRNRWOXGQM-UHFFFAOYSA-N hot-2 Chemical compound CCSC1=CC(OC)=C(CCNO)C=C1OC XGFJCRNRWOXGQM-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000006855 networking Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2120/00—Control inputs relating to users or occupants
- F24F2120/10—Occupancy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/80—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
- F24F11/83—Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
Definitions
- the present invention relates to the field of air conditioning equipment, and in particular, to an air conditioner control method and apparatus, and an air conditioner.
- the traditional air conditioner controls the comfort of the person in sleep state mainly by setting the sleep curve of the air conditioner.
- the metabolic rate of the human body changes, which also affects the sleep of the person.
- Quality while the traditional air conditioner does not consider the metabolic rate of the human body during the sleep process, so its control of human comfort is cold or hot, and it is difficult to accurately match the comfort environment that the human body needs.
- the metabolic rate is different for different characteristics of the population, such as men and women have different metabolic rates, and the metabolic rate of the same person changes with age, elevation, and weight.
- the change in metabolic rate leads to differences in the human body's need for comfort.
- the traditional method of determining the metabolic rate of the human body is only a constant, and the above differences in the human body are not considered, resulting in a bias in the determination of the metabolic rate.
- the main object of the present invention is to provide an air conditioner control method, device and air conditioner, which are intended to solve the above-mentioned conventional air conditioner control of a person in a sleep state without considering the metabolic rate parameter of the human body and the inaccurate acquisition of a metabolic rate parameter, resulting in inaccurate
- the problem that the air conditioner controls the person in a sleep state cannot satisfy the comfort requirement of the human body.
- an air conditioner control method provided by the present invention includes:
- the air conditioner operation of the user into the sleep state is controlled according to the comfort parameter of the user.
- the step of acquiring the height, weight, age and gender parameters of the user specifically includes:
- the user's facial features are analyzed by an image sensor to identify the user's age and gender parameters;
- the user's height parameter is identified by an infrared sensor.
- the step of acquiring a radiation temperature value in the room specifically includes:
- the thermal image in the room is detected by the infrared sensor, the human body part in the thermal image is identified, and the temperature value of the remaining part of the thermal image except the human body part is read, and the average value of the temperature value of the remaining part is calculated.
- the average value is the radiant temperature value in the room.
- the step of controlling the operation of the air conditioner when the user enters the sleep state according to the comfort parameter of the user specifically includes:
- one or more of a set temperature, an operating wind speed, and a wind deflector parameter of the air conditioner that the user enters the sleep state is controlled.
- the step of controlling the set temperature of the air conditioner according to the comfort parameter of the human body specifically includes:
- the set temperature value is adjusted according to the adjustment value of the set temperature and the state of the thermal sensation.
- the step of controlling the air guiding strip of the air conditioner according to the comfort parameter of the human body comprises:
- the thermal sensation state is a comfortable state, controlling the air guiding strip state of the air conditioner to alternately avoid the direction of the human air supply and the swaying;
- the state of the air guiding strip of the air conditioner is controlled to be sway.
- the present invention also provides an air conditioner control device, the air conditioner control device comprising:
- a user parameter obtaining module configured to acquire a height, a weight, an age, and a gender parameter of the user
- a radiation temperature acquisition module for obtaining a radiation temperature value in the room
- An ambient temperature acquisition module for obtaining an ambient temperature value in the room
- a metabolic rate determining module for determining a metabolic rate of the user according to the height, weight, age, and gender parameters of the user
- a comfort parameter determining module configured to determine a user's comfort parameter according to the radiation temperature value and the ambient temperature value in the room and the metabolic rate of the user;
- a control module configured to control the air conditioner operation of the user into a sleep state according to the comfort parameter of the user.
- the user parameter obtaining module is configured to:
- the user's facial features are analyzed by an image sensor to identify the user's age and gender parameters;
- the user's elevated parameters are identified by an infrared sensor.
- control module is for,
- one or more of a set temperature, an operating wind speed, and a wind deflector parameter of the air conditioner that the user enters the sleep state is controlled.
- control module is further configured to:
- the set temperature value is adjusted according to the adjustment value of the set temperature and the state of the thermal sensation.
- control module is further configured to:
- the thermal sensation state is a comfortable state, controlling the air guiding strip state of the air conditioner to alternately avoid the direction of the human air supply and the swaying;
- the state of the air guiding strip of the air conditioner is controlled to be sway.
- the present invention also provides an air conditioner, the air conditioner comprising:
- Infrared sensor module
- One or more processors are One or more processors;
- One or more programs wherein the one or more programs are stored in the memory and configured to be executed by one or more processors, the program including instructions for performing the following steps:
- the air conditioner operation of the user into the sleep state is controlled according to the comfort parameter of the user.
- the invention obtains the user's height, weight, age and gender parameters, and obtains the radiation temperature value and the ambient temperature value in the room, and then determines the user's metabolic rate according to the user's height, weight, age and gender parameters, and according to the room
- the radiant temperature value and the ambient temperature value and the user's metabolic rate determine the user's comfort parameters, and finally control the user to enter the sleep state of the air conditioner according to the user's comfort parameters. Since the metabolic rate of the human body changes during sleep and is related to the age, elevation, weight and sex of the human being, and the metabolic rate of the human body affects the comfort feeling of the user during sleep, the present invention solves the present problem.
- the control of the human being in the sleep state does not consider the metabolic rate parameter of the human body and the inaccurate acquisition of the metabolic rate parameter, resulting in the problem that the air conditioner does not satisfy the human body comfort requirement for the control of the person in the sleep state.
- FIG. 1 is a schematic flow chart of an embodiment of a method for controlling an air conditioner according to the present invention
- FIG. 2 is a schematic view showing a thermal image of an object scanned by an infrared array sensor according to the present invention
- Fig. 3 is a functional block diagram showing an embodiment of an air conditioner control device of the present invention.
- the present invention first proposes an air conditioner control method.
- FIG. 1 is a flow chart showing a method of controlling an air conditioner according to an embodiment of the present invention. As shown in FIG. 1, the air conditioner control method of the first embodiment of the present invention includes the following steps:
- Step S10 obtaining a height, a weight, an age, and a gender parameter of the user
- the user's height, weight, age and gender parameters can be obtained from the terminal device controlled by the air conditioner by a simple means, such as inputting or selecting corresponding parameters according to prompts through the APP interface of the mobile phone control air conditioner.
- the electronic scale can automatically obtain the weight data based on the user's identity by detecting the user's weight and uploading its weight data to the server; the webcam Based on the image sensor to obtain the facial feature data of the user, the age and gender parameters can be derived through analysis; the infrared sensor can identify the distance of the current user from the infrared sensor by acquiring the infrared image of the user, and analyze the user's high occupancy in the thermal image. The number of thermal image pixels is combined with the distance of the user from the infrared sensor to calculate the actual height parameter of the user.
- Step S20 obtaining a radiation temperature value and an ambient temperature value in the room
- the ambient temperature value of the room can be detected by the temperature sensor of the air conditioner or by the terminal device with temperature detection function in the room.
- the radiant temperature value in the room can be obtained by infrared sensor detection.
- the radiant temperature is the temperature at which the surface of the environment acts on the human body. Take the person in the room as an example.
- the radiation temperature is the temperature value of the surrounding environment in the room, such as the surrounding wall, window, etc., which can be measured by the sensor with the function of measuring the thermal image.
- the infrared sensor can obtain a thermal image when scanning the human body or the surrounding environment, as shown in FIG. 2, the thermal image can be obtained by array arrangement in which the temperature value of each small area, that is, one of the pixels, such as The color shade of each pixel shown in Figure 2 indicates the difference in temperature value, and the specific temperature value of each pixel can be read.
- the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area, because the temperature of each part of the human body surface is different, so the corresponding thermal image is also different, so the measurement of the radiation temperature in the room is through the infrared sensor.
- the identified hot part of the human body is removed, and the temperature values of the pixels of the remaining part of the thermal image are read and averaged to obtain the room.
- the value of the radiant temperature inside that is, the average radiant temperature value in the room, represents the radiant temperature value in the room.
- Step S30 determining a metabolic rate of the user according to the height, weight, age, and gender parameters of the user;
- the user's gender needs to be determined first because the metabolic rates of males and females are different.
- determining the metabolic rate based on their height, weight, and age parameters can be determined by the following formula:
- M is the user's metabolic rate
- H is the user's height parameter
- W is the user's weight parameter
- A is the user's age parameter
- the metabolic rate based on their height, weight, and age parameters can be determined by the following formula:
- M is the user's metabolic rate
- H is the user's height parameter
- W is the user's weight parameter
- A is the user's age parameter
- Step S40 determining a user's comfort parameter according to the radiation temperature value and the ambient temperature value in the room and the metabolic rate of the user;
- the user's comfort parameters reflect the user's feelings of hot and cold during sleep, which can be calculated by the following formula:
- SAMV is the user's comfort parameter
- M is the user's metabolic rate
- Tr is the radiation temperature value in the room
- Ta is the room's ambient temperature value.
- Step S50 controlling the air conditioner operation of the user to enter a sleep state according to the comfort parameter of the user.
- the user's comfort parameter SAMV when the user enters the air conditioner operating in the sleep state, one or more of the set temperature, the running wind speed and the air guiding strip parameters of the air conditioner can be controlled.
- the rules for controlling the set temperature of the air conditioner are as follows:
- the set temperature value is adjusted according to the set value of the set temperature and the state of the thermal sensation.
- the user's comfort parameter SAMV reflects the different thermal comfort feelings of the human body.
- the range of the final calculation result of the comfort parameter SAMV -3 ⁇ SAMV ⁇ 3 is divided into 8 sections, which represent the different thermal comforts of the human body. Feeling, as shown in the following table:
- Comfort parameter value Cold and hot zone Thermal comfort -3 ⁇ SAMV ⁇ -2 Interval 8 cold -2 ⁇ SAMV ⁇ -1 Interval 7 a little cold -1 ⁇ SAMV ⁇ 0.5 Interval 6 Cool -0.5 ⁇ SAMV ⁇ 0 Interval 5 Comfortable 0 ⁇ SAMV ⁇ 0.5 Interval 4 Comfortable 0.5 ⁇ SAMV ⁇ 1 Interval 3 Warm 1 ⁇ SAMV ⁇ 2 Interval 2 A little hot 2 ⁇ SAMV ⁇ 3 Interval 1 Hot
- the adjustment value A of the set temperature determined according to the currently acquired human body comfort parameter SAMV can be obtained based on the following formula:
- the size of the human body's comfort parameter SAMV reflects the different thermal comforts of the human body, including the state of partial heat, comfort, and coldness
- the set temperature of the air conditioner is adjusted, it is necessary to determine different according to the person.
- the thermal comfort feeling is adjusted. For example, when the person feels hot, the current air conditioner set temperature value needs to be lowered. When the person feels cold, the current air conditioner set temperature value needs to be raised, and the adjustment is made to finally reach the person in a comfortable state. . Therefore, it is necessary to combine the size of the current human body comfort parameter SAMV when adjusting the set temperature value according to the set value A of the set temperature.
- the size of the comfort parameter SAMV can be divided into three state ranges: partial heat, comfort, and cold.
- the current set value is decreased by the adjustment value A to lower the current
- the air conditioner sets the temperature value; when the SAMV is in the cold interval, the adjustment value A is added to the current set temperature value to increase the current air conditioner set temperature value; when the SAMV is in the comfort interval, the current set temperature value is Do not make adjustments.
- the set temperature value is adjusted according to the set value of the set temperature in combination with the interval in which the SAMV is located:
- TS(n) is the adjusted set temperature value and TS(n-1) is the current set temperature value.
- the C experiment is determined to be 0.5,
- TS(n) TS(n-1)-
- TS(n) TS(n-1)+
- interval update time of the set temperature may be determined according to the state of the thermal sensation determined by the SAMV:
- the interval update time to the set temperature is longer; when the thermal sensation state value deviates from the comfort state value, the interval update time to the set temperature is shorter. Updating the set temperature value at this time interval enables the user's comfort state to be more quickly approached when controlling the operation of the air conditioner.
- the rules for controlling the air guide of the air conditioner are as follows:
- the air guiding strip of the air conditioner is controlled to be in a sheltered or swaying state according to a state of cold and heat of a person.
- the size of the human body comfort parameter SAMV is divided into three sections, as follows:
- the control air guiding strip When the comfort parameter SAMV is in a comfortable state, the control air guiding strip is alternately operated in a sheltered and swaying state for a predetermined period of time, so that the air supply interval of the room can be blown to the user.
- the air guiding strip When the comfort parameter SAMV is in a cold or hot state, the air guiding strip is controlled to be in a sheltered state. Since the user's comfort feeling is hot or cold, the air supply of the air conditioner should be prevented from being blown to increase the air supply. The user's feeling of discomfort.
- the current user's hot and cold state can be determined according to the size of the comfort parameter SAMV, and the running wind speed is controlled according to the user's thermal and thermal state combined with the current air conditioner operating mode.
- the wind speed of the air conditioner is controlled to be in a low wind speed state
- the wind speed of the control air conditioner is increased relative to the comfort state, and when the SAMV is larger, the user feels hotter, the control operation wind speed is higher.
- the wind speed of the air conditioner is controlled to be in a low wind speed state
- the wind speed of the control air conditioner is increased relative to the comfort state, and when the SAMV is larger, that is, the user feels colder, the control operation wind speed is higher.
- the above rules according to the size of the comfort parameter SAMV combined with the operating module of the air conditioner to control the wind speed of the air conditioner can make the current cooling or heating environment reach the user's comfortable state more quickly, and when it is already in a comfortable state, it can be stable. Maintaining the current air supply environment has a reduced impact on the user's comfort status.
- the embodiment of the invention obtains the height, weight, age and gender parameters of the user, and obtains the radiation temperature value and the ambient temperature value in the room, and then determines the metabolic rate of the user according to the height, weight, age and gender parameters of the user, and according to The radiant temperature value and the ambient temperature value in the room and the user's metabolic rate determine the user's comfort parameters, and finally control the air conditioner operation of the user into the sleep state according to the user's comfort parameter. Since the metabolic rate of the human body changes during sleep and is related to the age, elevation, weight and sex of the human being, and the metabolic rate of the human body affects the comfort feeling of the user during sleep, the present invention solves the present problem.
- the control of the human being in the sleep state does not consider the metabolic rate parameter of the human body and the inaccurate acquisition of the metabolic rate parameter, resulting in the problem that the air conditioner does not satisfy the human body comfort requirement for the control of the person in the sleep state.
- the invention also provides an air conditioner control device.
- FIG. 3 is a schematic diagram of functional modules of an air conditioner control device of the device of the present invention.
- the air conditioner control device includes:
- the user parameter obtaining module 10 is configured to acquire a height, a weight, an age, and a gender parameter of the user;
- the radiation temperature obtaining module 20 is configured to obtain a radiation temperature value in the room
- the ambient temperature obtaining module 30 is configured to obtain an ambient temperature value in the room
- a metabolic rate determining module 40 configured to determine a metabolic rate of the user according to a height, a weight, an age, and a gender parameter of the user;
- the comfort parameter determining module 50 is configured to determine a user's comfort parameter according to the radiation temperature value and the ambient temperature value in the room and the metabolic rate of the user;
- the control module 60 is configured to control the operation of the air conditioner when the user enters a sleep state according to the comfort parameter of the user.
- the user's height, weight, age and gender parameters can be obtained from the terminal device controlled by the air conditioner by a simple means, such as inputting or selecting corresponding parameters according to prompts through the APP interface of the mobile phone control air conditioner.
- the electronic scale can automatically obtain the weight data based on the user's identity by detecting the user's weight and uploading its weight data to the server; the webcam Based on the image sensor to obtain the user's facial data, the age and gender parameters can be derived through analysis; the infrared sensor can identify the distance of the current user from the infrared sensor by acquiring the infrared image of the user, and analyze the user's altitude in the thermal image. The number of thermal image pixels is combined with the distance of the user from the infrared sensor to calculate the actual height parameter of the user.
- the ambient temperature value of the room can be detected by the temperature sensor of the air conditioner or by the terminal device with temperature detection function in the room.
- the radiant temperature value in the room can be obtained by infrared sensor detection.
- the radiant temperature is the temperature at which the surface of the environment acts on the human body. Take the person in the room as an example.
- the radiation temperature is the temperature value of the surrounding environment in the room, such as the surrounding wall, window, etc., which can be measured by the sensor with the function of measuring the thermal image.
- the infrared sensor can obtain a thermal image when scanning the human body or the surrounding environment, as shown in FIG. 2, the thermal image can be obtained by array arrangement in which the temperature value of each small area, that is, one of the pixels, such as The color shade of each pixel shown in Figure 2 indicates the difference in temperature value, and the specific temperature value of each pixel can be read.
- the thermal infrared sensor scans the human body, it will also get a thermal image of a certain area, because the temperature of each part of the human body surface is different, so the corresponding thermal image is also different, so the measurement of the radiation temperature in the room is through the infrared sensor.
- the identified hot part of the human body is removed, and the temperature values of the pixels of the remaining part of the thermal image are read and averaged to obtain the room.
- the value of the radiant temperature inside that is, the average radiant temperature value in the room, represents the radiant temperature value in the room.
- the user's gender needs to be determined first because the metabolic rates of males and females are different.
- determining the metabolic rate based on their height, weight, and age parameters can be determined by the following formula:
- M is the user's metabolic rate
- H is the user's height parameter
- W is the user's weight parameter
- A is the user's age parameter
- the metabolic rate based on their height, weight, and age parameters can be determined by the following formula:
- M is the user's metabolic rate
- H is the user's height parameter
- W is the user's weight parameter
- A is the user's age parameter
- the user's comfort parameters reflect the user's feelings of hot and cold during sleep, which can be calculated by the following formula:
- SAMV is the user's comfort parameter
- M is the user's metabolic rate
- Tr is the radiation temperature value in the room
- Ta is the room's ambient temperature value.
- the user's comfort parameter SAMV when the user enters the air conditioner operating in the sleep state, one or more of the set temperature, the running wind speed and the air guiding strip parameters of the air conditioner can be controlled.
- the rules for controlling the set temperature of the air conditioner are as follows:
- the set temperature value is adjusted according to the set value of the set temperature and the state of the thermal sensation.
- the user's comfort parameter SAMV reflects the different thermal comfort feelings of the human body.
- the range of the final calculation result of the comfort parameter SAMV -3 ⁇ SAMV ⁇ 3 is divided into 8 sections, which represent the different thermal comforts of the human body. Feeling, as shown in the following table:
- Comfort parameter value Cold and hot zone Thermal comfort -3 ⁇ SAMV ⁇ -2 Interval 8 cold -2 ⁇ SAMV ⁇ -1 Interval 7 a little cold -1 ⁇ SAMV ⁇ 0.5 Interval 6 Cool -0.5 ⁇ SAMV ⁇ 0 Interval 5 Comfortable 0 ⁇ SAMV ⁇ 0.5 Interval 4 Comfortable 0.5 ⁇ SAMV ⁇ 1 Interval 3 Warm 1 ⁇ SAMV ⁇ 2 Interval 2 A little hot 2 ⁇ SAMV ⁇ 3 Interval 1 Hot
- the adjustment value A of the set temperature determined according to the currently acquired human body comfort parameter SAMV can be obtained based on the following formula:
- the size of the human body's comfort parameter SAMV reflects the different thermal comforts of the human body, including the state of partial heat, comfort, and coldness
- the set temperature of the air conditioner is adjusted, it is necessary to determine different according to the person.
- the thermal comfort feeling is adjusted. For example, when the person feels hot, the current air conditioner set temperature value needs to be lowered. When the person feels cold, the current air conditioner set temperature value needs to be raised, and the adjustment is made to finally reach the person in a comfortable state. . Therefore, it is necessary to combine the size of the current human body comfort parameter SAMV when adjusting the set temperature value according to the set value A of the set temperature.
- the size of the comfort parameter SAMV can be divided into three state ranges: partial heat, comfort, and cold.
- the current set value is decreased by the adjustment value A to lower the current
- the air conditioner sets the temperature value; when the SAMV is in the cold interval, the adjustment value A is added to the current set temperature value to increase the current air conditioner set temperature value; when the SAMV is in the comfort interval, the current set temperature value is Do not make adjustments.
- the set temperature value is adjusted according to the set value of the set temperature in combination with the interval in which the SAMV is located:
- TS(n) is the adjusted set temperature value and TS(n-1) is the current set temperature value.
- the C experiment is determined to be 0.5,
- TS(n) TS(n-1)-
- TS(n) TS(n-1)+
- interval update time of the set temperature may be determined according to the state of the thermal sensation determined by the SAMV:
- the interval update time to the set temperature is longer; when the thermal sensation state value deviates from the comfort state value, the interval update time to the set temperature is shorter. Updating the set temperature value at this time interval enables the user's comfort state to be more quickly approached when controlling the operation of the air conditioner.
- the rules for controlling the air guide of the air conditioner are as follows:
- the air guiding strip of the air conditioner is controlled to be in a sheltered or swaying state according to a state of cold and heat of a person.
- the size of the human body comfort parameter SAMV is divided into three sections, as follows:
- the control air guiding strip When the comfort parameter SAMV is in a comfortable state, the control air guiding strip is alternately operated in a sheltered and swaying state for a predetermined period of time, so that the air supply interval of the room can be blown to the user.
- the air guiding strip When the comfort parameter SAMV is in a cold or hot state, the air guiding strip is controlled to be in a sheltered state. Since the user's comfort feeling is hot or cold, the air supply of the air conditioner should be prevented from being blown to increase the air supply. The user's feeling of discomfort.
- the current user's hot and cold state can be determined according to the size of the comfort parameter SAMV, and the running wind speed is controlled according to the user's thermal and thermal state combined with the current air conditioner operating mode.
- the wind speed of the air conditioner is controlled to be in a low wind speed state
- the wind speed of the control air conditioner is increased relative to the comfort state, and when the SAMV is larger, the user feels hotter, the control operation wind speed is higher.
- the wind speed of the air conditioner is controlled to be in a low wind speed state
- the wind speed of the control air conditioner is increased relative to the comfort state, and when the SAMV is larger, that is, the user feels colder, the control operation wind speed is higher.
- the above rules according to the size of the comfort parameter SAMV combined with the operating module of the air conditioner to control the wind speed of the air conditioner can make the current cooling or heating environment reach the user's comfortable state more quickly, and when it is already in a comfortable state, it can be stable. Maintaining the current air supply environment has a reduced impact on the user's comfort status.
- the invention also proposes an air conditioner.
- the air conditioner of the present invention includes:
- Infrared sensor module
- One or more processors are One or more processors;
- One or more programs wherein one or more programs are stored in the memory and configured to be executed by one or more processors, the program comprising instructions for performing the following steps:
- the air conditioner operation of the user entering the sleep state is controlled according to the user's comfort parameter.
- the infrared sensor module is installed on the indoor unit of the air conditioner, or a separate infrared sensor device for communicating with the air conditioner, for detecting thermal imaging of the human body and other objects in the room, and the processor executes the program stored in the memory of the air conditioner. According to the thermal image of the human body detected by the infrared sensor module, the temperature value of the surface of the human body is acquired, and the other control of the processor executing the program is the same as the first embodiment of the air conditioner control method of the present invention, and details are not described herein again.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Signal Processing (AREA)
- Air Conditioning Control Device (AREA)
Abstract
L'invention concerne un procédé de commande d'un climatiseur, le procédé consistant : à acquérir des paramètres de hauteur, de poids, d'âge et de sexe d'un utilisateur ; à acquérir une température de rayonnement et une température ambiante dans une pièce ; à déterminer un taux métabolique de l'utilisateur en fonction des paramètres de hauteur, de poids, d'âge et de sexe de l'utilisateur ; à déterminer un paramètre de confort pour l'utilisateur en fonction de la température de rayonnement et de la température ambiante dans la pièce et du taux métabolique de l'utilisateur ; et à commander, en fonction du paramètre de confort, le fonctionnement d'un climatiseur pour l'utilisateur en état de sommeil. L'invention concerne également un dispositif de commande d'un climatiseur, et un climatiseur associé. La présente invention résout le problème des climatiseurs existants, lesquels, lors de la réalisation des manœuvres de commande pour des utilisateurs en état de sommeil, ne prennent pas en considération les taux métaboliques ou acquièrent des paramètres imprécis de taux métaboliques et, par conséquent, les manœuvres de commande effectuées par ces climatiseurs pour les utilisateurs en état de sommeil ne peuvent pas satisfaire les exigences de confort.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611271172.8 | 2016-12-30 | ||
CN201611271172.8A CN106679098A (zh) | 2016-12-30 | 2016-12-30 | 空调器的控制方法、装置及空调器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018120715A1 true WO2018120715A1 (fr) | 2018-07-05 |
Family
ID=58849147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/091176 WO2018120715A1 (fr) | 2016-12-30 | 2017-06-30 | Procédé et dispositif de commande de climatiseur, et climatiseur associé |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106679098A (fr) |
WO (1) | WO2018120715A1 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110925972A (zh) * | 2019-11-04 | 2020-03-27 | 佛山市云米电器科技有限公司 | 一种多人场景下的目标人物机身特定时间变动风力加持智能出风系统 |
CN113627448A (zh) * | 2020-05-07 | 2021-11-09 | 香港大学浙江科学技术研究院 | 构建人体热舒适预测模型的方法、预测方法及系统 |
CN113867162A (zh) * | 2021-09-27 | 2021-12-31 | 歌尔科技有限公司 | 家电控制方法、智能终端及计算机可读存储介质 |
CN114383291A (zh) * | 2021-12-06 | 2022-04-22 | 青岛海尔空调器有限总公司 | 空调控制方法、控制装置及空调器 |
CN114877503A (zh) * | 2022-06-06 | 2022-08-09 | 中科微机电技术(北京)有限公司 | 一种空调控制方法及控制装置 |
CN115264912A (zh) * | 2022-07-27 | 2022-11-01 | 青岛海尔空调器有限总公司 | 空调器及其出风控制方法 |
CN115540254A (zh) * | 2022-08-04 | 2022-12-30 | 青岛海尔空调器有限总公司 | 用于控制智能空调的方法、装置及智能空调、存储介质 |
CN115875813A (zh) * | 2022-12-06 | 2023-03-31 | 珠海格力电器股份有限公司 | 送风控制方法、空调器及存储介质 |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106679098A (zh) * | 2016-12-30 | 2017-05-17 | 广东美的制冷设备有限公司 | 空调器的控制方法、装置及空调器 |
CN107514751B (zh) * | 2017-08-22 | 2020-08-14 | 广东美的制冷设备有限公司 | 空调器的控制方法、装置及空调器 |
CN107514752A (zh) * | 2017-08-22 | 2017-12-26 | 广东美的制冷设备有限公司 | 空调器的控制方法、空调器及计算机可读存储介质 |
CN109458718B (zh) * | 2017-09-04 | 2021-01-12 | 杭州海康威视数字技术股份有限公司 | 空调控制系统及方法 |
US12270708B2 (en) | 2018-05-30 | 2025-04-08 | The Trustees Of Princeton University | Scanning motion average radiant temperature sensor applications |
CN109084420B (zh) * | 2018-07-28 | 2019-11-12 | 珠海格力电器股份有限公司 | 一种空调的控制方法、装置、存储介质及空调 |
CN109114772A (zh) * | 2018-08-15 | 2019-01-01 | 美的集团武汉制冷设备有限公司 | 空调、空调的调节方法、装置、电子设备和存储介质 |
CN110285538A (zh) * | 2019-06-27 | 2019-09-27 | 广东美的制冷设备有限公司 | 空调器及其控制方法和计算机可读存储介质 |
CN114110967B (zh) * | 2020-08-28 | 2023-04-14 | 青岛海尔空调器有限总公司 | 空调的控制方法、装置、电子设备及计算机存储介质 |
CN112019904A (zh) * | 2020-09-15 | 2020-12-01 | 四川长虹电器股份有限公司 | 电视屏幕的开关控制方法及系统 |
CN113108441A (zh) * | 2021-04-07 | 2021-07-13 | 中山大学 | 一种空调器智能控制方法及空调器 |
CN113531804B (zh) * | 2021-06-24 | 2023-01-13 | 青岛海尔空调器有限总公司 | 空调器的自动控制方法、装置、电子设备以及存储介质 |
CN115562093A (zh) * | 2021-07-02 | 2023-01-03 | 云米互联科技(广东)有限公司 | 智能空调设备的自动控制方法及装置 |
CN113483391A (zh) * | 2021-07-12 | 2021-10-08 | 珠海格力电器股份有限公司 | 空调的控制方法以及空调系统 |
CN113932425B (zh) * | 2021-10-12 | 2022-12-23 | 青岛海尔空调器有限总公司 | 用于控制空调的方法及装置、空调 |
CN114646124B (zh) * | 2022-03-18 | 2024-04-30 | 青岛国创智能家电研究院有限公司 | 用于修正热舒适度模型的方法、装置及存储介质 |
CN115388529A (zh) * | 2022-09-27 | 2022-11-25 | 青岛海尔空调器有限总公司 | 空调器及其控制方法 |
CN115614908B (zh) * | 2022-09-30 | 2024-08-23 | 珠海格力电器股份有限公司 | 空调控制方法、装置和空调 |
CN115807961A (zh) * | 2022-11-30 | 2023-03-17 | 青岛海尔空调器有限总公司 | 空调及其控制方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120016752A (ko) * | 2010-08-17 | 2012-02-27 | 엘지전자 주식회사 | 공기조화장치 |
CN104110786A (zh) * | 2013-12-30 | 2014-10-22 | 广东美的制冷设备有限公司 | 智能空调及其睡眠控制装置和方法 |
CN104764165A (zh) * | 2015-04-08 | 2015-07-08 | 阜阳师范学院 | 控制睡眠环境的空调器及方法 |
CN105202714A (zh) * | 2015-10-30 | 2015-12-30 | 上海斐讯数据通信技术有限公司 | 一种控制空调调温的移动终端 |
CN105241004A (zh) * | 2015-09-28 | 2016-01-13 | 珠海格力电器股份有限公司 | 空调控制方法、装置和空调器 |
CN105352133A (zh) * | 2015-11-30 | 2016-02-24 | 广东美的制冷设备有限公司 | 空调控制方法、空调控制系统及空调 |
CN105841290A (zh) * | 2015-08-24 | 2016-08-10 | 福建福伦德电器有限公司 | 通过人体生理参数智能化控制空调运行的方法 |
CN106679098A (zh) * | 2016-12-30 | 2017-05-17 | 广东美的制冷设备有限公司 | 空调器的控制方法、装置及空调器 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2556884B2 (ja) * | 1988-07-01 | 1996-11-27 | 関西電力株式会社 | 空調システム制御装置 |
JP5238679B2 (ja) * | 2009-12-15 | 2013-07-17 | 株式会社東芝 | 空調制御装置、空調制御方法及び輻射温度計測装置 |
CN105003998A (zh) * | 2014-04-17 | 2015-10-28 | 美的集团股份有限公司 | 空调器的舒适性控制方法及装置 |
CN105020835B (zh) * | 2014-04-17 | 2019-01-29 | 美的集团股份有限公司 | 空调器的舒适性控制方法及装置 |
CN103940043A (zh) * | 2014-04-17 | 2014-07-23 | 美的集团股份有限公司 | 空调器的舒适性控制方法及装置 |
CN104566812B (zh) * | 2014-12-25 | 2017-05-24 | 广东美的制冷设备有限公司 | 空调器面板显示控制方法和系统、空调器 |
CN106016636B (zh) * | 2016-07-29 | 2019-08-27 | 广东美的制冷设备有限公司 | 空调器的控制方法及空调器 |
CN106196484A (zh) * | 2016-07-29 | 2016-12-07 | 广东美的制冷设备有限公司 | 空调器的控制方法及空调器 |
CN106196481B (zh) * | 2016-07-29 | 2019-07-30 | 广东美的制冷设备有限公司 | 基于冷热感值的导风条调节方法及装置 |
-
2016
- 2016-12-30 CN CN201611271172.8A patent/CN106679098A/zh active Pending
-
2017
- 2017-06-30 WO PCT/CN2017/091176 patent/WO2018120715A1/fr active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120016752A (ko) * | 2010-08-17 | 2012-02-27 | 엘지전자 주식회사 | 공기조화장치 |
CN104110786A (zh) * | 2013-12-30 | 2014-10-22 | 广东美的制冷设备有限公司 | 智能空调及其睡眠控制装置和方法 |
CN104764165A (zh) * | 2015-04-08 | 2015-07-08 | 阜阳师范学院 | 控制睡眠环境的空调器及方法 |
CN105841290A (zh) * | 2015-08-24 | 2016-08-10 | 福建福伦德电器有限公司 | 通过人体生理参数智能化控制空调运行的方法 |
CN105241004A (zh) * | 2015-09-28 | 2016-01-13 | 珠海格力电器股份有限公司 | 空调控制方法、装置和空调器 |
CN105202714A (zh) * | 2015-10-30 | 2015-12-30 | 上海斐讯数据通信技术有限公司 | 一种控制空调调温的移动终端 |
CN105352133A (zh) * | 2015-11-30 | 2016-02-24 | 广东美的制冷设备有限公司 | 空调控制方法、空调控制系统及空调 |
CN106679098A (zh) * | 2016-12-30 | 2017-05-17 | 广东美的制冷设备有限公司 | 空调器的控制方法、装置及空调器 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110925972A (zh) * | 2019-11-04 | 2020-03-27 | 佛山市云米电器科技有限公司 | 一种多人场景下的目标人物机身特定时间变动风力加持智能出风系统 |
CN113627448A (zh) * | 2020-05-07 | 2021-11-09 | 香港大学浙江科学技术研究院 | 构建人体热舒适预测模型的方法、预测方法及系统 |
CN113867162A (zh) * | 2021-09-27 | 2021-12-31 | 歌尔科技有限公司 | 家电控制方法、智能终端及计算机可读存储介质 |
CN114383291A (zh) * | 2021-12-06 | 2022-04-22 | 青岛海尔空调器有限总公司 | 空调控制方法、控制装置及空调器 |
CN114877503A (zh) * | 2022-06-06 | 2022-08-09 | 中科微机电技术(北京)有限公司 | 一种空调控制方法及控制装置 |
CN115264912A (zh) * | 2022-07-27 | 2022-11-01 | 青岛海尔空调器有限总公司 | 空调器及其出风控制方法 |
CN115540254A (zh) * | 2022-08-04 | 2022-12-30 | 青岛海尔空调器有限总公司 | 用于控制智能空调的方法、装置及智能空调、存储介质 |
CN115875813A (zh) * | 2022-12-06 | 2023-03-31 | 珠海格力电器股份有限公司 | 送风控制方法、空调器及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN106679098A (zh) | 2017-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018120715A1 (fr) | Procédé et dispositif de commande de climatiseur, et climatiseur associé | |
WO2018076757A1 (fr) | Procédé et dispositif d'acquisition de localisation d'une personne | |
WO2019221430A1 (fr) | Procédé de commande de climatiseur de type plafonnier | |
WO2020141729A1 (fr) | Dispositif de mesure corporelle et procédé de commande associé | |
WO2020011019A1 (fr) | Procédé de commande d'une électrovanne de détente, climatiseur, climatiseur et support d'informations lisible par ordinateur | |
WO2017041337A1 (fr) | Procédé, terminal et système de commande d'un conditionneur d'air | |
WO2018012826A1 (fr) | Appareil d'affichage | |
WO2020124847A1 (fr) | Procédé de commande pour climatiseur, climatiseur associé, et support d'informations | |
WO2019066301A1 (fr) | Appareil de climatisation et son procédé de commande | |
WO2020204531A1 (fr) | Système de commande de télévision et dispositif de commande de télévision approprié à cet effet | |
WO2013151230A1 (fr) | Panneau d'affichage avec forme incurvée et son procédé d'acquisition de rayon | |
WO2019024239A1 (fr) | Climatiseur d'armoire et procédé de commande correspondant | |
WO2019062113A1 (fr) | Procédé et dispositif de commande pour appareil ménager, appareil ménager et support de stockage lisible | |
WO2019075909A1 (fr) | Climatiseur, procédé et dispositif de commande associé, et support de stockage lisible par ordinateur | |
WO2018120717A1 (fr) | Procédé et dispositif de commande de climatiseur | |
WO2020062616A1 (fr) | Procédé et appareil de régulation de valeur gamma de panneau d'affichage, et dispositif d'affichage associé | |
WO2019051900A1 (fr) | Procédé et appareil de commande de dispositif domestique intelligent, et support de stockage lisible | |
WO2018107668A1 (fr) | Conditionneur d'air et procédé de commande pour un démarrage de ce dernier par un seul bouton | |
WO2022005121A1 (fr) | Dispositif d'amélioration de précision de température d'une caméra d'imagerie thermique permettant une détection de corps humain | |
WO2022065641A1 (fr) | Appareil de cuisson et son procédé de commande | |
WO2017096769A1 (fr) | Procédé et système pour un étalonnage de couleur d'un dispositif d'affichage | |
WO2017024634A1 (fr) | Unité intérieure de conditionnement d'air et procédé de commande de sortie d'air intérieure de conditionnement d'air | |
WO2021112446A1 (fr) | Robot nettoyeur à détermination de source de pollution et procédé de fonctionnement associé | |
WO2012002742A2 (fr) | Module appareil de prises de vue et procédé pour entraîner ledit module | |
WO2021040156A1 (fr) | Dispositif de mesure du corps et procédé de commande associé |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17886614 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17886614 Country of ref document: EP Kind code of ref document: A1 |