+

WO2018117499A1 - Procédé et dispositif d'entraînement d'un moteur à cc sans balai à l'aide d'une compensation de tension - Google Patents

Procédé et dispositif d'entraînement d'un moteur à cc sans balai à l'aide d'une compensation de tension Download PDF

Info

Publication number
WO2018117499A1
WO2018117499A1 PCT/KR2017/014324 KR2017014324W WO2018117499A1 WO 2018117499 A1 WO2018117499 A1 WO 2018117499A1 KR 2017014324 W KR2017014324 W KR 2017014324W WO 2018117499 A1 WO2018117499 A1 WO 2018117499A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power
motor
bldc motor
duty ratio
Prior art date
Application number
PCT/KR2017/014324
Other languages
English (en)
Korean (ko)
Inventor
김상훈
김원석
김태완
박푸른샘
안경원
이성준
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to CN201780049830.5A priority Critical patent/CN109757125A/zh
Publication of WO2018117499A1 publication Critical patent/WO2018117499A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/09PWM with fixed limited number of pulses per period
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/907Specific control circuit element or device
    • Y10S388/9072Bridge circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/907Specific control circuit element or device
    • Y10S388/912Pulse or frequency counter

Definitions

  • the present invention relates to a method and apparatus for driving a brushless DC motor using voltage compensation. More particularly, the present invention relates to a method for driving a brushless direct current (BLDC) motor mounted on a vehicle to detect a direct current voltage applied to a motor.
  • Brushless using voltage compensation which compensates for duty ratio by the amount of voltage change so that the voltage applied to the motor remains the same so that a constant voltage can be applied to the motor regardless of the amount of change in the DC voltage.
  • a motor and method for driving a direct current motor is a direct current motor.
  • a brushless DC motor mounted in a vehicle operates by receiving an AC voltage converted from an AC voltage through a rectifier circuit.
  • the voltage input to a brushless DC motor is often unstable.
  • the output (current, rotational speed and torque) of the motor also becomes unstable.
  • the instability of the current may cause damage to the motor, and the performance of the Electro Magnetic Compatibility (EMC) may be degraded.
  • EMC Electro Magnetic Compatibility
  • the brushless DC motor is controlled by a rotational speed by a proportional plus integral (PI) speed controller.
  • the PI speed controller compares the command speed with the actual speed, and increases the voltage applied to the motor when the actual speed is low and decreases the voltage applied to the motor when the actual speed is high.
  • the PI speed controller increases or decreases the voltage by using a pulse width modulation (PWM) signal.
  • PWM pulse width modulation
  • An object of the present invention for solving the above-described problems, when driving a BLDC motor mounted on a vehicle, by detecting a DC voltage applied to the motor to compensate the duty ratio by the amount of the DC voltage is changed to the motor
  • the present invention provides a method and apparatus for driving a brushless DC motor using voltage compensation such that a constant voltage can be applied to a motor regardless of a variation in a DC voltage by maintaining a voltage applied to the same.
  • Brushless DC motor drive device for achieving the above object, BLDC motor that operates when a rated voltage is applied; A rectifier for rectifying and smoothing AC power to DC power to supply power to the BLDC motor; An inverter for converting the DC power into three-phase (U, V, W) AC power according to a PWM control signal and supplying the DC power to the BLDC motor; A voltage detector detecting a voltage of the DC power supply; A voltage compensator configured to calculate a compensation duty ratio corresponding to the changed voltage when the voltage detected by the voltage detector is changed; And a controller for transmitting a PWM control signal corresponding to the compensation duty ratio to the inverter.
  • the inverter may supply a rated voltage corresponding to a value obtained by multiplying the voltage of the DC power by the compensation duty ratio to the BLDC motor.
  • the voltage compensator may calculate the compensation duty ratio by dividing the rated voltage by the changed voltage when the voltage of the DC power source is changed.
  • the inverter may supply the BLDC motor with a rated voltage corresponding to a value obtained by multiplying the voltage of the DC power by the compensation duty ratio.
  • the voltage compensating unit may calculate the compensation duty ratio by dividing the rated voltage by the changed voltage when the voltage of the DC power supply is changed.
  • the BLDC motor can operate stably.
  • the stable control of the BLDC motor can increase the stability of the overall vehicle system.
  • FIG. 1 is a configuration diagram schematically showing the configuration of a brushless DC motor driving apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a circuit configuration of a brushless DC motor driving apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating an operation of a brushless DC motor driving method using voltage compensation according to an exemplary embodiment of the present invention.
  • portion When a portion is referred to as being “above” another portion, it may be just above the other portion or may be accompanied by another portion in between. In contrast, when a part is mentioned as “directly above” another part, no other part is involved between them.
  • first, second, and third are used to describe various parts, components, regions, layers, and / or sections, but are not limited to these. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, the first portion, component, region, layer or section described below may be referred to as the second portion, component, region, layer or section without departing from the scope of the invention.
  • FIG. 1 is a configuration diagram schematically showing the configuration of a brushless DC motor driving apparatus according to an embodiment of the present invention.
  • the BLDC motor driving apparatus 100 may include a BLDC motor 110, an inverter 120, a controller 130, a rectifier 140, a voltage detector 150, and a voltage compensator ( 160).
  • the BLDC motor 110 performs a rotation operation when a rated voltage is applied.
  • the BLDC motor 110 includes a rotor, and receives three-phase (U, V, W) AC power from the inverter 120 to rotate the rotor to provide rotational force.
  • the BLDC motor 110 has a winding having three phases of a coil for generating an inductance component.
  • the BLDC motor has no insulated conductor such as a carbon brush for transmitting electric power.
  • the magnet is attached to the motor shaft and has a coil on the inner wall of the motor case. When the coil is powered, the magnet rotates, and thus the motor shaft to which the magnet is attached rotates, thus eliminating the need for a brush.
  • the inverter 120 converts the DC power supplied from the rectifier 140 into a three-phase (U, V, W) AC power in a pulse form having an arbitrary variable frequency and supplies the DC power to the BLDC motor 110. That is, the inverter 120 converts a direct current (DC) voltage into a three-phase alternating current (AC) voltage and supplies it to the BLDC motor 110.
  • DC direct current
  • AC alternating current
  • the inverter 120 is connected to each of the power switching elements (Q1 ⁇ Q6) as shown in Figure 2 to the winding of the three phase (U, V, W). That is, the inverter 120 includes a three-phase switching element.
  • the inverter 120 may include an upper three-phase FET and a lower three-phase FET.
  • the inverter 120 may supply the BLDC motor 110 with a rated voltage Vz corresponding to a value obtained by multiplying the voltage V DC of the DC power supply by the duty ratio r D according to Equation 1 below. .
  • Equation 1 Vz denotes a rated voltage, V DC denotes a voltage of a DC power supply, and r D denotes a duty ratio.
  • the rectifier 140 rectifies and smoothes the AC power to convert the DC power into DC power to supply power required for the operation of the BLDC motor 110.
  • the voltage detector 150 detects the voltage of the DC power source converted through the rectifier 140.
  • the voltage compensator 160 calculates a compensation duty ratio corresponding to the changed voltage.
  • the voltage compensator 160 in order to maintain the voltage applied to the BLDC motor 110 is kept constant, if the voltage of the DC power supply changes even a little, using the equation (1) to change the rated voltage to the changed voltage By dividing to calculate the compensation duty ratio.
  • the controller 130 transmits a PWM control signal corresponding to the compensation duty ratio to the inverter 120 to control the voltage applied to the BLDC motor 110 to be kept constant.
  • the controller 130 may move the rotor to a predetermined specific position, and force the motor to be driven by generating a rotating magnetic field in the motor in which the rotor is aligned.
  • the operation of the BLDC motor 110 may be controlled by a sensorless control process of acquiring the position information of the rotor using the counter electromotive force to control the motor in a sensorless manner.
  • the controller 130 turns on all three-phase switches on the upper end of the inverter 120, or turns on all three-phase switches on the lower end of the inverter 120 to zero (0).
  • the vector may be controlled to be applied to the BLDC motor 110.
  • FIG. 2 is a diagram illustrating an example of a circuit configuration of a BLDC motor driving apparatus according to an exemplary embodiment of the present invention.
  • the inverter 120 has respective power switching elements FETs Q1 to Q6 connected to windings of three phases (U, V, and W). do. That is, the inverter 120 may use a conventional switching circuit composed of six switching elements Q1 to Q6 and a diode.
  • a terminal voltage detection unit for detecting the terminal voltage of each phase (U, V, W) from the three-phase AC power supplied to the BLDC motor 110 and inputting it to the controller 130 is further illustrated. It may include.
  • the controller 130 may acquire the position information of the rotor by detecting the zero crossing point ZCP of the counter electromotive force according to the terminal voltage of each phase (U, V, W) detected by the terminal voltage detector.
  • controller 130 may be implemented as a microprocessor controlling a pattern of the PWM signal supplied to the inverter 120 by controlling the voltage application time so that the overcurrent is not supplied to the BLDC motor 110.
  • the PWM signal generator 132 generates a PWM signal corresponding to the compensation duty ratio under the control of the controller 130 and supplies it to the inverter 120.
  • a power factor correction capacitor (not shown) may be connected in parallel on the connection line between the inverter 120 and the three-phase winding of the BLDC motor 110. That is, three power factor correction capacitors C may be connected in parallel between U and V phases, between V and W phases, and between W and U phases in three phases at the output terminal of the inverter 120. In addition, the capacitance of the power factor correction capacitor C may be set to be the same as that of the inductance component of the BLDC motor 110.
  • the controller 130 applies the switching driving signals of the respective power switching elements Q1 to Q6 to the inverter 120. That is, the controller 130 controls the switching operation of each switching element (Q1 ⁇ Q6) of the inverter 120 to control the start, operation and speed of the BLDC motor 110 according to the user's operation, each switching element A switching driving signal for switching Q1 to Q6 is generated and applied to the inverter 120.
  • FIG. 3 is a flowchart illustrating an operation of a method of driving a BLDC motor using voltage compensation according to an exemplary embodiment of the present invention.
  • the rectifying unit 140 rectifies and smoothes AC power and converts the DC power into DC power (S310).
  • the voltage detector 150 detects the voltage of the DC power supply and transmits the detected voltage to the voltage compensator 160 (S320).
  • the voltage compensator 160 calculates a compensation duty ratio corresponding to the changed voltage (S330).
  • the voltage compensator 160 changes the rated voltage by using Equation 1 when the voltage of the DC power source changes even a little, so that the three-phase AC voltage applied to the BLDC motor 110 is kept constant.
  • the compensation duty ratio is calculated by dividing by the received voltage.
  • the compensation duty ratio r D is 30% (0.3). That is, when the AC power is externally applied and the voltage V DC of the DC power converted through the rectifying circuit is 10V and the duty ratio r D is 30% (0.3), the BLDC motor 110 The rated voltage Vz applied is 3V.
  • the voltage compensator 160 converts the rated voltage (Vz) 3V to the voltage of the DC (DC) power supply using Equation (1). (V DC ) divided by 15V to calculate the compensation duty ratio (r D ) 20% (0.2).
  • the controller 130 transmits a PWM control signal corresponding to the compensation duty ratio to the inverter 120 (S340).
  • the inverter 120 supplies power of the three-phase AC voltage corresponding to the compensation duty ratio to the BLDC motor 110 according to the PWM control signal (S350).
  • the inverter 120 according to the PWM control signal, the rated voltage (Vz) 3V corresponding to a value of the voltage (V DC ) 15V of the DC power supply multiplied by the compensation duty ratio (r D ) 20% (0.2) 3V.
  • Vz rated voltage
  • r D compensation duty ratio
  • the controller 130 may detect a zero crossing point (ZCP) and perform a sensorless operation mode for controlling the phase switching and the rotational speed of the BLDC motor 110 based on the zero crossing point (ZCP) information.
  • ZCP zero crossing point
  • Voltage compensation logic can implement a stable motor control regardless of the variation of the DC power applied to the motor. Therefore, this voltage compensation logic is different from a power supply stabilization circuit that only removes noise components. For example, a power stabilization circuit alone is not sufficient for voltages that maintain 12V after the input voltage surges from 10V to 12V. In this case, using the BLDC motor driving apparatus and method according to an embodiment of the present invention, even if the input voltage of the motor changes, it is possible to always apply only a constant rated voltage to the BLDC motor.
  • the present invention even if the input voltage is unstable, the voltage applied to the motor is always kept constant to enable stable motor control. In addition, it is possible to increase the stability of the overall vehicle system through a stable motor control. And stable motor control algorithm does not generate unnecessary noise.
  • the DC voltage applied to the motor is detected to compensate for the duty ratio by the amount of the DC voltage fluctuating so that the voltage is applied to the motor.
  • the DC voltage applied to the motor is detected to compensate for the duty ratio by the amount of the DC voltage fluctuating so that the voltage is applied to the motor.
  • the present invention can be used in the industry of manufacturing a vehicle equipped with a BLDC motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

La présente invention concerne un procédé et un dispositif d'entraînement d'un moteur à courant continu sans balai (BLDC) à l'aide d'une compensation de tension. Lorsqu'un moteur BLDC monté dans un véhicule est entraîné, la tension continue appliquée au moteur est détectée et le facteur de marche est compensé proportionnellement à la quantité de variation de la tension continue de telle sorte que la même tension appliquée au moteur est maintenue, ce qui garantit qu'une tension constante est appliquée au moteur indépendamment de la quantité de variation de la tension continue. Un dispositif d'entraînement d'un moteur BLDC selon la présente invention peut comprendre : un moteur BLDC qui fonctionne lorsqu'une tension nominale est appliquée ; une partie de redressement conçue pour redresser et lisser un CA et pour le convertir ainsi en CC afin d'alimenter en courant le moteur BLDC ; un onduleur conçu pour convertir le CC en CA triphasé (U, V, W) en fonction d'un signal de commande de PWM et pour l'envoyer au moteur BLDC ; une partie de détection de tension conçue pour détecter une tension du CC ; une partie de compensation de tension qui, lorsque la tension détectée par la partie de détection de tension varie, calcule un facteur de marche de compensation correspondant à la tension qui varie ; et une partie de commande conçue pour transférer à l'onduleur un signal de commande de PWM correspondant au facteur de marche de compensation. D'après la présente invention, même si la tension continue appliquée au moteur BLDC est instable, la tension alternative triphasée appliquée au moteur peut être maintenue constante.
PCT/KR2017/014324 2016-12-23 2017-12-07 Procédé et dispositif d'entraînement d'un moteur à cc sans balai à l'aide d'une compensation de tension WO2018117499A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780049830.5A CN109757125A (zh) 2016-12-23 2017-12-07 利用电压补偿的无刷直流电机驱动方法及装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0178075 2016-12-23
KR1020160178075A KR102552538B1 (ko) 2016-12-23 2016-12-23 전원보상을 이용한 브러시리스 직류모터 구동 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2018117499A1 true WO2018117499A1 (fr) 2018-06-28

Family

ID=62626728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/014324 WO2018117499A1 (fr) 2016-12-23 2017-12-07 Procédé et dispositif d'entraînement d'un moteur à cc sans balai à l'aide d'une compensation de tension

Country Status (3)

Country Link
KR (1) KR102552538B1 (fr)
CN (1) CN109757125A (fr)
WO (1) WO2018117499A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102216667B1 (ko) 2018-12-26 2021-02-17 주식회사 현대케피코 모터 전원 이상 제어 장치 및 방법
CN110409937A (zh) * 2019-07-03 2019-11-05 东方久乐汽车电子(上海)股份有限公司 一种具有电压补偿功能的隐藏门把手控制器
CN112994533B (zh) * 2019-12-18 2023-05-26 珠海格力电器股份有限公司 一种无刷直流电机控制方法、装置、无刷直流电机及电器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990081162A (ko) * 1998-04-27 1999-11-15 구자홍 비엘디씨(bldc) 모터의 구동방법
US20060145639A1 (en) * 2004-12-30 2006-07-06 Joong-Ho Song Brushless DC motor system and method of controlling the same
KR20060103724A (ko) * 2005-03-28 2006-10-04 삼성전자주식회사 Bldc 모터의 제어장치 및 그 제어방법
US20080152325A1 (en) * 2006-12-21 2008-06-26 Samsung Electronics Co., Ltd. Apparatus and method for controlling BLDC motor
KR20160007845A (ko) * 2014-07-03 2016-01-21 권동철 Bldc fan 모터의 드라이브 제어 시스템

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990075671A (ko) * 1998-03-23 1999-10-15 구자홍 오픈루프 구간의 제어방법
JP3458378B2 (ja) 1999-11-29 2003-10-20 横河電機株式会社 モータの駆動回路
KR100468963B1 (ko) * 2001-09-14 2005-01-29 엘지전자 주식회사 역률 개선 장치
CN1223072C (zh) * 2001-12-18 2005-10-12 乐金电子(天津)电器有限公司 功率因数改善装置
JP3700059B2 (ja) * 2002-08-12 2005-09-28 トヨタ自動車株式会社 電圧変換装置、電圧変換方法、電圧変換の制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
KR101075222B1 (ko) * 2004-10-29 2011-10-19 삼성전자주식회사 역률 보상 장치 및 방법
CN100488026C (zh) * 2005-06-16 2009-05-13 海尔集团公司 交流电动机变频控制器转矩波动跟随电路及其方法
KR101244588B1 (ko) * 2008-04-28 2013-04-01 다이킨 고교 가부시키가이샤 인버터 제어장치 및 전력변환장치
CN102661812A (zh) * 2012-05-15 2012-09-12 无锡艾柯威科技有限公司 一种提高电机绕组温度检测精度的方法
CN104038114B (zh) * 2014-06-09 2016-08-24 江苏仁源电气有限公司 单绕组直流无刷电机的正弦波电压驱动系统及其控制方法
CN104038115B (zh) * 2014-06-09 2017-02-01 江苏仁源电气有限公司 单绕组直流无刷电机的正弦波电流驱动系统及其控制方法
CN105846730A (zh) * 2015-01-15 2016-08-10 深圳市索阳新能源科技有限公司 一种混合动力汽车专用的直流变频电动机控制系统及其控制方法
KR20160097645A (ko) 2015-02-09 2016-08-18 한온시스템 주식회사 브러시리스 직류 모터용 인버터 구동 회로

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990081162A (ko) * 1998-04-27 1999-11-15 구자홍 비엘디씨(bldc) 모터의 구동방법
US20060145639A1 (en) * 2004-12-30 2006-07-06 Joong-Ho Song Brushless DC motor system and method of controlling the same
KR20060103724A (ko) * 2005-03-28 2006-10-04 삼성전자주식회사 Bldc 모터의 제어장치 및 그 제어방법
US20080152325A1 (en) * 2006-12-21 2008-06-26 Samsung Electronics Co., Ltd. Apparatus and method for controlling BLDC motor
KR20160007845A (ko) * 2014-07-03 2016-01-21 권동철 Bldc fan 모터의 드라이브 제어 시스템

Also Published As

Publication number Publication date
CN109757125A (zh) 2019-05-14
KR20180074213A (ko) 2018-07-03
KR102552538B1 (ko) 2023-07-07

Similar Documents

Publication Publication Date Title
RU2543502C1 (ru) Устройство преобразования мощности
KR100437932B1 (ko) 다중-출력 전력 변환 회로
WO2010071361A2 (fr) Appareil et procédé pour démarrage d'un moteur bldc sans capteur
WO2018117499A1 (fr) Procédé et dispositif d'entraînement d'un moteur à cc sans balai à l'aide d'une compensation de tension
WO2017061817A1 (fr) Appareil d'entraînement de moteur et appareil ménager l'intégrant
WO2016017880A1 (fr) Procédé de compensation d'erreur de position de rotor en utilisant un courant de modélisation de moteur à courant continu sans balai sans détecteur de position
US20170237376A1 (en) Motor controller and method for controlling motor
JP5168955B2 (ja) 電動機制御装置
AU2018295871A1 (en) Motor drive apparatus
KR20180082128A (ko) 상전압 검출을 이용한 브러시리스 직류모터 기동 제어방법 및 장치
JP4380089B2 (ja) 自由回転中の誘導電動機の回転速度検出方法と再起動方法
WO2006083470A1 (fr) Technique de controle permettant de limiter le courant d'un systeme d'entrainement de machine a induction
WO2018048129A1 (fr) Appareil et procédé de commande de rotor de moteur
WO2020189861A1 (fr) Dispositif et procédé de commande d'onduleur
WO2022177194A1 (fr) Alimentation électrique, dispositif électronique et son procédé de commande
JP4448300B2 (ja) 同期機の制御装置
JP4892920B2 (ja) インバータ装置
WO2020105839A1 (fr) Dispositif de commande d'onduleur
WO2019168356A1 (fr) Dispositif d'entraînement de moteur
KR20160097645A (ko) 브러시리스 직류 모터용 인버터 구동 회로
WO2003084047A1 (fr) Controleur pour un moteur a courant continu sans balais
JP3873203B2 (ja) 巻線型誘導機の速度制御装置及び方法
KR100313251B1 (ko) 모터의구동제어장치
FI115347B (fi) Laite ja menetelmä sähköenergian varastoimiseksi reversiibelisti reversiibelin konversionsa avulla
CN110620459B (zh) 用于操作bldc电动机的驱动电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883451

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载