WO2018117004A1 - Wearable textile product, and footwear - Google Patents
Wearable textile product, and footwear Download PDFInfo
- Publication number
- WO2018117004A1 WO2018117004A1 PCT/JP2017/045251 JP2017045251W WO2018117004A1 WO 2018117004 A1 WO2018117004 A1 WO 2018117004A1 JP 2017045251 W JP2017045251 W JP 2017045251W WO 2018117004 A1 WO2018117004 A1 WO 2018117004A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charge generation
- yarn
- charge
- generation unit
- piezoelectric
- Prior art date
Links
- 239000004753 textile Substances 0.000 title claims abstract 4
- 239000000835 fiber Substances 0.000 claims description 36
- 230000005021 gait Effects 0.000 abstract 1
- 239000002184 metal Substances 0.000 description 47
- 239000004744 fabric Substances 0.000 description 31
- 230000000844 anti-bacterial effect Effects 0.000 description 24
- 239000000463 material Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 18
- 241000894006 Bacteria Species 0.000 description 16
- 239000004626 polylactic acid Substances 0.000 description 16
- 229920000747 poly(lactic acid) Polymers 0.000 description 15
- 210000003371 toe Anatomy 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 229920000742 Cotton Polymers 0.000 description 10
- 230000005684 electric field Effects 0.000 description 10
- 210000002683 foot Anatomy 0.000 description 10
- 229920000642 polymer Polymers 0.000 description 10
- 241000233866 Fungi Species 0.000 description 8
- 238000009940 knitting Methods 0.000 description 7
- 230000003020 moisturizing effect Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- JVTAAEKCZFNVCJ-REOHCLBHSA-N L-lactic acid Chemical compound C[C@H](O)C(O)=O JVTAAEKCZFNVCJ-REOHCLBHSA-N 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 5
- 230000001070 adhesive effect Effects 0.000 description 5
- 230000008602 contraction Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 229920001432 poly(L-lactide) Polymers 0.000 description 5
- 238000009987 spinning Methods 0.000 description 5
- 150000003254 radicals Chemical class 0.000 description 4
- 210000004243 sweat Anatomy 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000035876 healing Effects 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 230000036544 posture Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 244000025254 Cannabis sativa Species 0.000 description 2
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 2
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 206010020751 Hypersensitivity Diseases 0.000 description 2
- 208000030961 allergic reaction Diseases 0.000 description 2
- 210000003423 ankle Anatomy 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 235000009120 camo Nutrition 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 235000005607 chanvre indien Nutrition 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000011487 hemp Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 230000005616 pyroelectricity Effects 0.000 description 2
- 239000012780 transparent material Substances 0.000 description 2
- 238000009941 weaving Methods 0.000 description 2
- RBMHUYBJIYNRLY-UHFFFAOYSA-N 2-[(1-carboxy-1-hydroxyethyl)-hydroxyphosphoryl]-2-hydroxypropanoic acid Chemical compound OC(=O)C(O)(C)P(O)(=O)C(C)(O)C(O)=O RBMHUYBJIYNRLY-UHFFFAOYSA-N 0.000 description 1
- 241000238876 Acari Species 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 241000628997 Flos Species 0.000 description 1
- 206010061159 Foot deformity Diseases 0.000 description 1
- 208000001963 Hallux Valgus Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000010041 electrostatic spinning Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000005022 packaging material Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920001434 poly(D-lactide) Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 238000002166 wet spinning Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B3/00—Footwear characterised by the shape or the use
- A43B3/34—Footwear characterised by the shape or the use with electrical or electronic arrangements
- A43B3/35—Footwear characterised by the shape or the use with electrical or electronic arrangements with electric heating arrangements
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41B—SHIRTS; UNDERWEAR; BABY LINEN; HANDKERCHIEFS
- A41B11/00—Hosiery; Panti-hose
-
- A—HUMAN NECESSITIES
- A41—WEARING APPAREL
- A41D—OUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
- A41D13/00—Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B17/00—Insoles for insertion, e.g. footbeds or inlays, for attachment to the shoe after the upper has been joined
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43C—FASTENINGS OR ATTACHMENTS OF FOOTWEAR; LACES IN GENERAL
- A43C1/00—Shoe lacing fastenings
- A43C1/06—Shoe lacing fastenings tightened by draw-strings
Definitions
- One embodiment according to the present invention relates to a wearable fiber product and footwear comprising the wearable fiber product.
- Patent Document 1 Conventionally, many proposals have been made on footwear for correcting walking (see Patent Document 1 and Patent Document 2).
- an embodiment of the present invention aims to provide a wearable fiber product that can be applied to a product (such as shoes) selected by the user and corrects walking when worn.
- a wearable fiber product includes a cloth-like charge generation unit including a charge generation yarn that generates a charge by external energy and a non-charge generation yarn that does not generate a charge by external energy.
- a cloth-like non-charge generating portion includes a cloth-like charge generation unit including a charge generation yarn that generates a charge by external energy and a non-charge generation yarn that does not generate a charge by external energy.
- the wearable fiber product of one embodiment according to the present invention includes a charge generation unit and a non-charge generation unit, when energy is applied from the outside, only the charge generation unit can generate a charge. For this reason, charges can be partially generated with a simple structure in which a charge generation portion in which charge generation yarns are woven into only a necessary place is arranged. Thereby, the wearable fiber product of this invention can generate
- a wearable fiber product that can be applied to a product (such as shoes) selected by the user and that corrects walking when worn.
- FIG. 1A is a diagram showing the configuration of the piezoelectric yarn 1
- FIG. 1B is a plan view of the piezoelectric film 10.
- FIGS. 2A and 2B are diagrams showing the relationship between the uniaxial stretching direction of polylactic acid, the electric field direction, and the deformation of the piezoelectric film 10. It is a figure which shows the piezoelectric yarn 1 when external force is engaged.
- 4A is a schematic plan view of the insole 100
- FIG. 4B is a schematic cross-sectional view of the sock 101.
- FIG. 5 (A) is a schematic view of a sock 102 according to the third embodiment
- FIG. 5 (B) is a schematic view of a supporter 103 according to the fourth embodiment
- FIG. 6A is a view for explaining a sock 105 according to the sixth embodiment.
- FIG. 6B is a view for explaining a sock 106 according to the seventh embodiment.
- FIGS. 7A and 7B are views for explaining the structure of the charge generation unit 52 of the sock 105 according to the sixth embodiment.
- FIG. 8A is a view for explaining a shoe 107 according to the eighth embodiment.
- FIG. 8B is a diagram for explaining the capacitance generated in the shoe 107.
- FIG. 9A is a view for explaining a shoe 108 according to a modification of the eighth embodiment.
- FIG. 9B is a diagram for explaining the capacitance generated in the shoe 108.
- FIG. 10 is a view for explaining a shoe 109 according to the ninth embodiment.
- FIGS. 11A to 11C are diagrams for explaining a tightening operation in the shoe 109.
- FIG. 12 is a block diagram of a control circuit in the shoe 109.
- FIG. 13 is a view for explaining a garment 120 according to the tenth embodiment.
- the wearable fiber product according to the present embodiment includes a cloth-like charge generation unit including a charge generation yarn that generates a charge by external energy and a non-charge generation yarn that does not generate a charge by external energy.
- a non-charge generating unit For convenience of explanation, after describing the charge generating yarn, footwear or the like including the wearable fiber product will be described.
- FIG. 1 (A) is a partially exploded view showing the configuration of the piezoelectric yarn 1
- FIG. 1 (B) is a plan view of the piezoelectric film 10.
- the piezoelectric yarn 1 is an example of a charge generating yarn that generates charges by external energy.
- the piezoelectric yarn 1 is obtained by winding a piezoelectric film 10 around a core yarn 11.
- the piezoelectric film 10 is an example of a piezoelectric body.
- the core yarn 11 is appropriately selected from natural fibers or chemical fibers. Natural fibers or chemical fibers include plant fibers, animal fibers, or polylactic acid. The plant fiber is, for example, cotton or hemp.
- the core yarn 11 does not have to be piezoelectric polylactic acid.
- the chemical fiber include synthetic fiber, glass fiber, and carbon fiber. Chemical fibers are more robust than natural fibers.
- the core yarn 11 may be a conductive yarn having conductivity.
- the core yarn 11 is a conductive yarn, when the piezoelectricity of the piezoelectric yarn 1 is inspected, the charge formed in the piezoelectric yarn 1 using the electrode formed on a part of the outer periphery of the piezoelectric yarn 1 and the core yarn 11 is generated. It can be measured. Thereby, the piezoelectric performance of the piezoelectric film 10 used for the piezoelectric yarn 1 can be inspected.
- a clear circuit is formed between the yarns, and the electric field generated between the surfaces of the yarns increases dramatically.
- a conductor is used for the core yarn 11, if an electric current is passed through the core yarn 11, even if the insulator other than the piezoelectric film 10 is wound around the core yarn 11, it is charged by the energy from the outside. Can be realized.
- the core yarn 11 is not an essential component. Even without the core yarn 11, it is possible to turn the piezoelectric film 10 in a spiral shape to obtain a piezoelectric yarn (swivel yarn).
- the swirl yarn 11 becomes a hollow fiber, and the heat retaining ability is improved. Further, when the swirl yarn itself is impregnated with an adhesive, the strength can be increased.
- the piezoelectric film 10 is made of, for example, a piezoelectric polymer. Some piezoelectric films have pyroelectric properties and others do not have pyroelectric properties. For example, PVDF (polyvinylidene fluoride) has pyroelectricity, and charges are generated even when the temperature changes. A piezoelectric material having pyroelectric properties such as PVDF generates charges on the surface also by the thermal energy of the human body.
- PVDF polyvinylidene fluoride
- Polylactic acid is a piezoelectric film that does not have pyroelectricity. Polylactic acid produces piezoelectricity by being uniaxially stretched. Polylactic acid includes PLLA in which an L monomer is polymerized and PDLA in which a D monomer is polymerized.
- Chiral polymers such as polylactic acid have a helical structure in the main chain.
- a chiral polymer has piezoelectricity when uniaxially stretched and the molecules are oriented.
- the piezoelectric film 10 made of uniaxially stretched polylactic acid defines the thickness direction as the first axis, the stretching direction 900 as the third axis, and the direction perpendicular to both the first axis and the third axis as the second axis, It has tensor components d14 and d25 as piezoelectric strain constants. Therefore, polylactic acid generates an electric charge when distortion occurs in a direction of 45 degrees with respect to the uniaxially stretched direction.
- FIG. 2 (A) and 2 (B) are diagrams showing the relationship between the uniaxial stretching direction of polylactic acid, the electric field direction, and the deformation of the piezoelectric film 10.
- FIG. 2A when the piezoelectric film 10 contracts in the direction of the first diagonal line 910A and extends in the direction of the second diagonal line 910B orthogonal to the first diagonal line 910A, the piezoelectric film 10 extends in the direction from the back side to the front side. Generates an electric field. That is, the piezoelectric film 10 generates a negative charge on the front side of the sheet.
- FIG. 2A when the piezoelectric film 10 contracts in the direction of the first diagonal line 910A and extends in the direction of the second diagonal line 910B orthogonal to the first diagonal line 910A, the piezoelectric film 10 extends in the direction from the back side to the front side. Generates an electric field. That is, the piezoelectric film 10 generates a negative charge on the front side of the sheet.
- the piezoelectric film 10 generates electric charge when it extends in the direction of the first diagonal line 910A and contracts in the direction of the second diagonal line 910B, but the polarity is reversed and the surface of the paper surface An electric field is generated in the direction from the back to the back. That is, the piezoelectric film 10 generates a positive charge on the front side of the sheet.
- polylactic acid Since polylactic acid generates piezoelectricity by molecular orientation treatment by stretching, it is not necessary to perform poling treatment like other piezoelectric polymers such as PVDF or piezoelectric ceramics.
- the piezoelectric constant of uniaxially stretched polylactic acid is about 5 to 30 pC / N, and has a very high piezoelectric constant among polymers. Furthermore, the piezoelectric constant of polylactic acid does not vary with time and is extremely stable.
- the piezoelectric film 10 is produced by cutting a uniaxially stretched polylactic acid sheet as described above, for example, to a width of about 0.5 to 2 mm. As shown in FIG. 1B, the major axis direction and the stretching direction 900 of the piezoelectric film 10 coincide with each other. As shown in FIG. 1A, the piezoelectric film 10 becomes a piezoelectric yarn 1 of a left turning yarn (hereinafter referred to as S yarn) twisted by turning left with respect to the core yarn 11. The drawing direction 900 is inclined 45 degrees to the left with respect to the axial direction of the piezoelectric yarn 1.
- S yarn left turning yarn
- the piezoelectric yarn is manufactured by any known method. Not only covering yarn using slit film, but also fiber, for example, a method of extruding and polymerizing a piezoelectric polymer, a method of melt-spinning a piezoelectric polymer into a fiber (for example, spinning process and drawing) (Including spinning / stretching method that divides the process, direct stretching method that connects spinning process and stretching process, POY-DTY method that can perform false twisting process at the same time, or ultra-high speed prevention method that speeds up)
- Piezoelectric polymers are dry-type or wet-spun (for example, a phase separation method in which a polymer as a raw material is dissolved and extruded from a nozzle to be fiberized, or a wet and wet spinning method, uniformly in a gel form while containing the solvent.
- the piezoelectric yarn 1 may be a twisted yarn obtained by twisting only a monofilament piezoelectric yarn without using the core yarn 11. Such a twisted yarn can be made at low cost.
- the piezoelectric yarn 1 may be a twisted yarn obtained by twisting a monofilament piezoelectric yarn and a normal yarn (chemical fiber such as cotton, hemp, rayon, etc.). By including the ordinary yarn in the piezoelectric yarn 1, the touch can be improved.
- the piezoelectric yarn 1 generates a charge on the surface when an external force is applied.
- the S yarn and Z yarn piezoelectric yarns 1 By alternately weaving the S yarn and Z yarn piezoelectric yarns 1 as the charge generation portion, positive and negative charges are generated from the S yarn and Z yarn. As a result, a large electric field is generated between the S yarn and the Z yarn.
- current may flow through a circuit formed by a current path formed by moisture or the like, or a local micro discharge phenomenon. This current can provide an electrical stimulus to the user. Therefore, the wearable fiber product including such a charge generation unit can give an electrical stimulus to the user when an external force is involved.
- footwear or the like including a wearable fiber product will be described.
- FIG. 4A is a schematic plan view of an insole 100 for O-leg correction according to the first embodiment
- FIG. 4B is a schematic cross section of an O-leg correction sock 101 according to the second embodiment.
- the insole 100 according to the first embodiment is used as an integral part of a shoe by being placed in a shoe (not shown).
- the insole 100 includes a charge generation unit 50 and a non-charge generation unit 51.
- the charge generation unit 50 is disposed in a portion corresponding to the outside of the foot heel.
- the non-charge generation unit 51 constitutes a part other than the charge generation unit 50 in the insole 100.
- the charge generation unit 50 is formed so as not to overlap the non-charge generation unit 51, but may be formed so as to overlap the non-charge generation unit 51.
- the same effect can be obtained even when the non-charge generating portion 51 is arranged in a layered manner with the non-charge generating portion 51 alone in the shape of the insole 100.
- the charge generation unit 50 having a required size and shape is attached to the non-charge generation unit 51.
- a known method such as an adhesive or stitching can be used to attach the charge generation unit 50 and the non-charge generation unit 51.
- the piezoelectric yarn 1 is woven in the charge generation unit 50, a charge is generated in the charge generation unit 50 when pressure is applied to the insole 100 disposed in the shoe. For this reason, when the user wears a shoe with an insole 100 and walks, a current flows from the charge generation unit 50 to the user's body through moisture such as sweat, and an electrical stimulus is given to the user. In addition, since the magnitude of the generated charge depends to some extent on the expansion and contraction due to the pressure applied to the charge generation unit 50, the more load applied to the charge generation unit 50 by the user wearing the shoes with the insole 100 is applied to the user. The electrical stimulation that will be increased.
- the present invention can be applied to any shoes.
- the same effect can be obtained by attaching the charge generation unit 50 formed in a sheet shape to the shoe itself selected by the user without using the insole 100.
- the piezoelectric yarn 1 preferably has a higher elongation rate than the non-charge generating yarn that does not generate charges contained in the non-charge generating portion 51. That is, it is preferable that the charge generation unit 50 has a higher elongation rate than the non-charge generation unit 51.
- the sock 101 includes a charge generation unit 52 and a non-charge generation unit 53.
- the charge generation unit 52 is disposed at a portion corresponding to the outside of the foot heel.
- the non-charge generation unit 53 constitutes a part other than the charge generation unit 52 in the sock 101.
- the charge generation unit 52 is surrounded by the non-charge generation unit 53. For this reason, even if the charge generation part 52 is formed of a material having low stretchability, if the non-charge generation part 53 is formed of a material having high stretchability, the charge generation part 52 is expanded or contracted by the non-charge generation part 53. It becomes easy to be influenced by the movement of.
- the charge generation unit 52 when the charge generation unit 52 has a cylindrical shape, one end or the other end of the tube may be connected to the non-charge generation unit 53. In this case as well, even if the charge generation unit 52 is formed of a material with low stretchability, the charge generation unit 52 is not formed with a non-charge generation unit if the noncharge generation unit 53 is formed of a material with high stretchability. It becomes easy to be influenced by the movement of the expansion / contraction of 53.
- the charge generator 52 when the user walks with the sock 101, the charge generator 52 generates a charge. Thereby, in order to avoid electrical stimulation, the user is corrected so as to maintain a walking style and posture in which pressure is not easily applied to the charge generator 52.
- production part 52 may be comprised by the sheet form affixed on socks.
- the charge generation unit 52 may be integrated with the non-charge generation unit 53 so as to have a sock shape.
- the insole 100 according to the first embodiment and the sock 101 according to the second embodiment include corner portions (for example, a toe portion 61 and a heel portion 62).
- the corner portion means a corner or a corner.
- the corner portion is particularly easily subjected to pressure. For this reason, it is possible to generate charges more effectively by arranging the charge generation units 50 and 52 at the corners.
- footwear for correcting the O-leg is taken as an example, but the footwear for correcting the O-leg is not limited thereto.
- the charge generation units 50 and 52 it can also be used for preventing hallux valgus, correcting other postures, stimulating the soles, and the like.
- other embodiments will be described.
- FIG. 5 (A) is a schematic view of a sock 102 according to the third embodiment
- FIG. 5 (B) is a schematic view of a supporter 103 according to the fourth embodiment
- FIG. It is the schematic of the sanitary material 104 for moisture retention which concerns on 5 embodiment.
- the sock 102 includes a charge generation unit 52 and a non-charge generation unit 53.
- the charge generation unit 52 is disposed in a portion 63 of the sock 102 other than the toe and the heel.
- the non-charge generating portion 53 is disposed on the toe portion 61 and the heel portion 62.
- the toe portion 61 and the heel portion 62 that are easily pressed and are in close contact with each other are easily stuffy, causing odors and germs to propagate.
- the electric charge generated in the electric charge generation unit 52 attracts moisture. That is, moisture generated in the vicinity of the non-charge generation unit 53 is absorbed by the non-charge generation unit 53 and then attracted to the charge generation unit 52. For this reason, by arranging the charge generation part 52 in the portion 63 other than the toe and the heel, moisture generated in the toe portion 61 and the heel portion 62 is attracted to the portion 63 other than the toe and the heel. For this reason, the ease of stuffiness of the toe portion 61 and the heel portion 62 is reduced. Even if the user wears shoes from above the socks 102, the charge generation unit 52 is provided on the side closer to the shoe opening, so that the charge generation unit 52 touches the outside air to evaporate moisture.
- the charge generation unit 52 has an antibacterial effect or a bactericidal effect. For this reason, even if moisture does not completely evaporate, the growth of odors and germs can be reduced by the antibacterial effect or the bactericidal effect in the charge generation unit 52.
- the supporter 103 has a shape covering the periphery of the user's heel.
- the supporter 103 includes a charge generation unit 54 and a non-charge generation unit 55.
- the charge generation unit 54 is disposed in the heel portion 64 of the supporter 103.
- the non-charge generating portion 55 is disposed other than the heel portion 64.
- the supporter 103 preferably includes a material that expands and contracts such as rubber. As a result, the supporter 103 is in close contact with the user's skin, and pressure is applied to the heel portion 64. When pressure is applied to the charge generation unit 54 disposed in the heel portion 64, moisture is attracted. Thereby, a moisturizing effect can be provided to the heel portion 64.
- the supporter 103 may further include a waterproof sheet (not shown) that covers the charge generation unit 54. Since the waterproof sheet prevents evaporation of moisture attracted to the charge generating portion 54, a higher moisturizing effect can be obtained. In addition, when the supporter 103 is mounted after applying a moisturizing cream or the like, not only the moisturizing effect is maintained, but also the growth of bacteria in the moisturizing cream can be reduced. The influence on the skin can be suppressed.
- the moisturizing sanitary material 104 is applied to the wound of the skin 400 such as a bandage.
- the sanitary material 104 includes a charge generation unit 56 and a non-charge generation unit 57.
- moisture in this case, body fluid secreted from the wound
- the sanitary material 104 may further include a waterproof sheet (not shown) that covers the charge generation unit 56. Since the moisture attracted to the charge generation unit 56 is prevented from evaporating by the waterproof sheet, a higher moisturizing effect can be obtained.
- the growth of bacteria can be suppressed by an electric field (see, for example, Tetsuaki Tudo, Hironori Korai, Hideaki Matsuoka, Junichi Koizumi, Kodansha: Microbial Control-Science and Engineering).
- an electric field See Koichi Takagi, Application of High Voltage / Plasma Technology to Agriculture and Food, J.HTSJ, Vol.51, No.216.
- the electric current generating the electric field may cause a current to flow through a current path formed by moisture or a circuit formed by a local micro discharge phenomenon. It is conceivable that the cell membrane of the fungus is partially destroyed by this current, thereby suppressing the growth of the fungus.
- the bacterium referred to in the present embodiment includes bacteria, fungi, or microorganisms such as mites and fleas.
- the piezoelectric yarn 1 woven into the charge generation unit 56 directly exerts an antibacterial effect or a bactericidal effect by an electric field generated when the piezoelectric yarn 1 is close to an object having a predetermined potential such as a human body.
- the piezoelectric yarn 1 causes a current to flow when it is close to an object having a predetermined potential such as a human body through moisture such as sweat. Even with this current, the antibacterial effect or the bactericidal effect may be directly exhibited.
- the charge generation unit including the charge generation yarn that generates a charge by external energy as described above can be applied to various products such as clothing and medical members.
- charge generation yarns include underwear (especially socks), towels, shoes and boots, general sportswear, hats, bedding (including futons, mattresses, sheets, pillows, pillow covers, etc.), toothbrushes, floss,
- filters filters for water purifiers, air conditioners or air purifiers
- plush toys pet-related products (pet mats, pet clothes, pet clothes inners), various mat products (feet, hands, toilet seats, etc.) , Curtains, kitchen utensils (sponges or cloths, etc.), seats (cars, trains, airplanes, etc.), motorcycle helmet cushions and exterior materials, sofas, bandages, gauze, masks, sutures, doctors and patients
- It can be applied to clothes, supporters, sanitary goods, sports equipment (wear and glove inners, or garmen used in martial arts) or packaging materials.
- the charge generating part and the adhesive can be firmly connected by the anchor effect that the adhesive enters the charge generating part provided with the charge generating yarn.
- socks or supporters
- the socks absorb moisture such as sweat and become a hotbed for the growth of bacteria, but the piezoelectric yarn 1 can suppress the growth of bacteria, and therefore has a remarkable effect as a countermeasure against bacteria.
- a sock for anti-bacteria having the wearable fiber product according to the present invention will be described.
- FIG. 6A is a view for explaining a sock 105 according to the sixth embodiment.
- FIG. 6B is a view for explaining a sock 106 according to the seventh embodiment.
- FIGS. 7A to 7C are views for explaining the structure of the charge generation unit 52 of the sock 105 according to the sixth embodiment, respectively, and FIG. 7B is the opposite of FIG. 7A. It is the figure seen from the side surface.
- the sock 105 has a two-layer structure, and may include a layer formed of the charge generation unit 52 and a layer formed of the non-charge generation unit 53.
- the inside of the sock 105 is a layer made up of the charge generation part 52, and the outside is a layer made up of the non-charge generation part 53.
- the sock 105 is formed by affixing a cloth made of the charge generation unit 52 inside the non-charge generation unit 53 formed in the shape of the sock. Thereby, when the user puts on the socks 105, the inner charge generation part 52 can be brought close to the user's skin.
- the charge generation unit 52 does not have to be formed so as to cover the entire inner surface of the non-charge generation unit 53, and is formed partially (for example, the toe portion 61 and / or the heel portion 62). May be.
- the sock 105 has a single structure, and is a knitted fabric knitted with two knitting yarns, that is, a yarn constituting the charge generation unit 52 and a yarn constituting the non-charge generation unit 53. May be.
- the yarn that comes out on the front side and the yarn that goes out on the back side can be knitted into different types.
- the knitting yarn 71 that forms the inner surface is a yarn that constitutes the charge generation section 52.
- the knitting yarn 72 that forms the outer (back side of the paper) surface is a yarn (cotton yarn or the like) constituting the non-charge generating portion 53.
- the yarn constituting the charge generation unit 52 may include two types of piezoelectric yarns, S yarn that generates a negative charge and Z yarn that generates a positive charge. In this case, two types of charges, negative and positive, can be generated on the inner (front side) surface. By adjusting the usage amount of the Z yarn and the S yarn, the proportion of the polarity of the charge generated according to the application can be adjusted.
- the yarn constituting the charge generation unit 52 may include a yarn (cotton yarn or the like) that does not generate charges other than the Z yarn and the S yarn.
- piezoelectric yarns have a poor touch compared to cotton yarns and the like, and skin may be stimulated when worn by a user. For this reason, by using a part of the yarn (such as cotton yarn) that does not generate charges in the charge generation unit 52, the touch of the charge generation unit 52 is improved and the irritation to the skin is alleviated.
- antibacterial socks made of a material having antibacterial properties use yarns containing an antibacterial agent or metal.
- Such an existing antibacterial sock does not last long because the components are released, and may cause an allergic reaction due to drugs or the like.
- the sock 105 according to the sixth embodiment includes the charge generation unit 52, the sock 105 is applied to an object (clothing or medical supplies such as a mask) used in the vicinity of an object having a predetermined potential such as a human body.
- the electric field or current generated in this case or the oxygen contained in the water is changed into radical species by them, thereby exhibiting an antibacterial effect (effect of suppressing the generation of bacteria) or a bactericidal effect (effect of killing the bacteria). Is. For this reason, the effect lasts for a long time and no allergic reaction due to drugs or the like occurs.
- the charge generator 52 Since the charge generator 52 is formed inside the non-charge generator 53, the charge generator 52 is close to the user's skin. Since the distance between the charge generation unit 52 and the user's skin is reduced, charges are generated near the user's skin. Thereby, generation
- the non-charge generating portion 53 is provided on the surface of the sock 105 opposite to the user's skin, the charge generating portion 52 can be protected from the external environment.
- the outer portion of the socks is easily worn. Since the non-charge generating portion 53 is formed outside the charge generating portion 52 of the sock 105, the portion that easily wears is the non-charge generating portion 53. For this reason, wear of the charge generation part 52 is suppressed, and the antibacterial property of the sock 105 is maintained.
- a thread containing an antibacterial agent or metal may be used in combination. Thereby, antibacterial properties can be further improved.
- the sock 105 in which the charge generation unit 52 is disposed on the inner side and the non-charge generation unit 53 is disposed on the outer side has been described.
- the non-charge generation unit 53 is disposed on the inner side and the charge is generated on the outer side.
- the present invention can also be applied to a configuration in which the generator 52 is disposed.
- a protective material for a grip of tennis can be used.
- the surface on which the user grips the grip is on the outside.
- the tennis grip protector when the charge generating portion 52 is disposed on the outer surface, a charge is generated outside the user's skin when the user grips the grip. Thereby, generation
- the sock 106 according to the seventh embodiment has a two-layer structure, and may include a layer made up of the charge generation unit 52 and a layer made up of the non-charge generation unit 53. Good.
- the outer side of the sock 106 is a layer made of the charge generation part 52, and the inner side is a layer made of the non-charge generation part 53. That is, the sock 106 according to the seventh embodiment has a structure in which the inner side and the outer side are oppositely arranged as compared with the sock 105 according to the sixth embodiment.
- the sock 106 is formed by sticking a cloth made of the charge generation part 52 on the outside of the non-charge generation part 53 formed in the shape of the sock.
- the outer charge generation unit 52 can be arranged at a position far from the user's skin and not directly touching the user's skin.
- the charge generation unit 52 does not have to be formed so as to cover the entire inner surface of the non-charge generation unit 53, and is formed partially (for example, the toe portion 61 and / or the heel portion 62). May be.
- the sock 106 according to the seventh embodiment has a single structure like the sock 105, and is a spliced yarn using two knitting yarns of a yarn constituting the charge generation unit 52 and a yarn constituting the non-charge generation unit 53.
- a knitted fabric may be used.
- the knitting yarn 71 that forms the outer surface (the back side of the drawing) is the yarn that constitutes the charge generation section 52.
- the knitting yarn 72 forming the inner surface (the front side of the drawing) is a yarn (cotton yarn or the like) constituting the non-charge generating portion 53.
- the yarn constituting the charge generation unit 52 may include an S yarn that generates a negative charge and a Z yarn that generates a positive charge.
- the proportion of the polarity of the generated charge can be adjusted according to the application.
- the yarn constituting the charge generation unit 52 may include a yarn (cotton yarn or the like) that does not generate charge other than the Z yarn and the S yarn.
- a yarn cotton yarn or the like
- the charge generator 52 is formed outside the non-charge generator 53, the charge generator 52 is located outside the sock 106. As a result, generation of mold and fungi on the outside of the sock 106 can be reduced, so that mold and fungus can be prevented from entering the sock 106. For example, even when a shoe wet with rain is worn, the bacteria generated on the shoe side are sterilized by the charge generation unit 52 provided on the surface of the sock 106, so that intrusion into the inside of the sock 106 can be suppressed. it can.
- the charge generation unit 52 is disposed at a position where it does not directly touch the user's skin, and the non-charge generation unit 53 made of cotton yarn or the like touches the user's skin, the touch of the sock 106 can be improved.
- the charge generation unit 52 is formed outside the non-charge generation unit 53, the distortion when the user moves is larger than the inner non-charge generation unit 53. For example, even when the movement is the same, the expansion and contraction of the charge generation unit 52 is larger than the expansion and contraction of the non-charge generation unit 53. For this reason, since the charge can be efficiently generated from the charge generation unit 52 with a small movement, the antibacterial action and the like can be more efficiently exhibited.
- the piezoelectric yarn 1 constituting the charge generating portion 52 has a lower hygroscopicity than the ordinary yarn constituting the non-charge generating portion 53. Since the charge generation part 52 is formed outside the non-charge generation part 53, the non-charge generation part 53 having excellent hygroscopicity is in contact with the body side of the user. For this reason, the sweat is absorbed by the non-charge generator 53, and the user's discomfort is reduced. In addition, the moisture absorbed by the non-charge generation unit 53 can be sterilized by the charge generated on the charge generation unit 52 side.
- the charge generator 52 may be made of a transparent material. Since the charge generation unit 52 is formed outside the non-charge generation unit 53, if the charge generation unit 52 is transparent, the non-charge generation unit 53 can be irradiated with light through the charge generation unit 52. When the non-charge generating unit 53 is made of a material capable of generating heat by absorbing light, the non-charge generating unit 53 absorbs light from the outside and generates heat because the charge generating unit 52 is transparent. Further, since the non-charge generating portion 53 is disposed inside the charge generating portion 52, the heat generated by the non-charge generating portion 53 is not easily released to the outside, and the heat retaining property is improved. The non-charge generating portion 53 may be a material that generates heat when it expands and contracts. In this case, the charge generator 52 does not necessarily need to be a transparent material.
- FIG. 8A is a view for explaining a shoe 107 according to the eighth embodiment.
- FIG. 8B is a diagram for explaining the capacitance generated in the shoe 107.
- FIG. 9A is a view for explaining a shoe 108 according to a modification of the eighth embodiment.
- FIG. 9B is a diagram for explaining the capacitance generated in the shoe 108.
- FIG. 9A for convenience of explanation, a part of the main body 80 in the shoe 107 is shown in a transparent state.
- a shoe 107 includes a main body 80, a shoelace 81, and a metal wire 82.
- the shoelace 81 is a charge generation part 83, which is a string in which a charge generation yarn that generates a charge by external energy is woven. Further, any one of the yarns woven into the shoelace 81 may be a charge generation yarn.
- the shoelace 81 has one of S yarn or Z yarn.
- the cross-sectional shape of the shoelace 81 is not particularly limited. For example, the cross-sectional shape of the shoelace 81 may be a circle or a square.
- a metal wire 82 is disposed on the main body 80.
- the metal wire 82 may be provided at predetermined intervals from the shoelace 81 to the shoe sole of the main body 80 in contact with the ground.
- the metal wire 82 may be disposed on the surface of the main body 80 or inside the sole, but may be disposed in a state of being embedded in the main body 80. When the metal wire 82 is arranged in a state where it is embedded in the main body 80, the metal wire 82 does not directly contact the outside air, so that damage and corrosion are prevented, so that durability is improved.
- a nonwoven fabric containing metal fibers may be disposed on the main body 80. This also provides the same effect, and a larger capacitance can be formed because the metal can be arranged in a wider range than the metal wire 82.
- the shoe 108 includes a metal wire 84, a metal wire 85, a metal wire 86, and a metal thin layer 87 instead of the metal wire 82 as compared with the shoe 107.
- the metal wire 84 is formed to a predetermined position from the shoelace 81 to the upper part of the shoe sole of the main body 80.
- One metal wire 84 may be provided, or a plurality of metal wires 84 may be provided.
- the metal wire 84 connects between the shoelace 81 and the metal wire 86.
- the thin metal layer 87 is provided on the insole portion of the shoe 108.
- the shape of the metal thin layer 87 may be an insole shape as in the first embodiment of the shoe, and is not particularly limited as long as it is a shape provided in the insole portion of the shoe.
- the metal wire 85 is provided so as to connect the lower part of the shoe sole of the main body 80 in contact with the ground from the metal thin layer 87.
- One metal wire 85 may be provided, or a plurality of metal wires 85 may be provided.
- the shoelace 81 When the user uses the shoe 108, a force is applied to the shoelace 81 and a charge is generated.
- the electric charge generated in the shoelace 81 forms a capacitance between the lower portion of the shoe sole of the shoe 107 and the shoelace 81 as shown in FIG.
- the metal wire 84, the metal wire 85, the metal wire 86, and the metal thin layer 87 exist between the lower part of the shoe sole of the shoe 107 and the shoelace 81, the place where the electrostatic capacity is formed is the metal It can be selected where the line 86 and the thin metal layer 87 are disposed. Thereby, the location where the electrostatic capacitance is formed can be expanded.
- the place where the electrostatic capacity is formed is the distance from the distance between the bottom of the shoe sole and the shoelace 81 by the amount of the metal wire 84, the metal wire 85, the metal wire 86, and the metal thin layer 87. It can be shortened. That is, the place where the electrostatic capacitance is formed is a section from the metal wire 86 to the thin metal layer 87. Therefore, the generated capacitance can be increased, and the efficacy such as antibacterial properties can be enhanced. Note that only one of the metal wire 84 and the metal wire 85 may be provided.
- a metal fiber may be knitted into the main body 80 where the shoelace 81 around the shoelace 81 contacts.
- the portion where the electrostatic capacitance is formed is expanded in the horizontal direction, or the distance is reduced by the amount of the metal fiber from the distance between the shoe sole and the metal wire 82. can do.
- FIG. 10 is a view for explaining a shoe 109 according to the ninth embodiment.
- FIGS. 11A to 11C are diagrams for explaining a tightening operation in the shoe 109.
- FIG. FIG. 12 is a block diagram of a control circuit in the shoe 109.
- a shoe 109 includes a main body 90, a piezoelectric fabric 91, a wire 92, a circuit board 93, a pin 94, a pulling string 95, and a motor 96.
- the shoe 109 includes a piezoelectric fabric 91 in a part of the main body 90.
- the piezoelectric fabric 91 corresponds to the above-described charge generation unit.
- the main body 90 other than the piezoelectric fabric 91 corresponds to the above-described non-charge generating unit.
- the piezoelectric fabric 91 is disposed so as to wrap around the back of the user's foot.
- positions the piezoelectric fabric 91 near the base of a toe was shown in FIG. 10, you may arrange
- the piezoelectric fabric 91 may be disposed at these multiple locations. By disposing the piezoelectric fabric 91 at a place where the influence of the movement of the foot is large, charges can be efficiently generated from the piezoelectric fabric 91.
- the wire 92 is arranged so as to wind the back from the back of the user's foot.
- the wire 92 is disposed at one place, but may be disposed at a plurality of places.
- the place where the wire 92 is disposed may be near the user's ankle.
- By arranging the wires 92 at a plurality of locations a higher fit can be obtained.
- the wires 92 are disposed at a plurality of locations, the length, width, and the like of each wire 92 can be appropriately changed according to the locations where the wires 92 are disposed.
- the wire 92 may be disposed at a place where it does not interfere with the piezoelectric fabric 91. Thereby, the influence on the piezoelectric fabric 91 due to the tightening of the wire 92 can be suppressed.
- the circuit board 93 is arranged near the upper toe of the user's foot.
- positions the circuit board 93 near the toe upper part of a toe was shown in FIG. 10, you may arrange
- the pin 94 is disposed near the instep of the user so as to contact the wire 92.
- the pin 94 is for maintaining the position of the wire 92.
- the wire 92 is stretched by two pins 94 and a pulling string 95.
- the state shown in FIG. 11A is a state in which the user is stopped, and almost no tensile force is applied to the wire 92 from the traction string 95.
- the circuit board 93 includes a motor 96, a control unit 97, and a drive unit 98.
- the piezoelectric fabric 91 is connected to the control unit 97.
- the control unit 97 is connected to the motor 96 via the drive unit 98.
- the control unit 97 detects a voltage generated in the piezoelectric fabric 91.
- the piezoelectric fabric 91 is connected to the control unit 97 via a wiring line disposed in the main body 90.
- the control unit 97 is, for example, a microcomputer composed of a microprocessor, and power is supplied from a power source such as a battery (not shown) via a power supply line.
- the control unit 97 detects a voltage based on bending or twisting of the piezoelectric fabric 91.
- the control unit 97 instructs the rotation number of the motor 96 to the drive unit 98 according to the detected voltage.
- An example of the motor 96 is a stepping motor.
- the rotation number of the motor 96 indicates the total number of rotations of the motor 96.
- the tow string 95 is connected to a motor 96, and the tow string 95 is operated by the motor 96.
- the tension of the wire 92 is adjusted by the movement of the tow string 95. For example, when the number of revolutions according to the detected voltage is proportional to the magnitude of the voltage, several ranges are provided for the magnitude of the voltage, and the number of revolutions is changed stepwise in the range, or a predetermined number For example, when the voltage continues to be detected for a predetermined time, the rotation speed is changed.
- the tension of the wire 92 is adjusted according to the voltage generated in the piezoelectric fabric 91.
- the tightening degree of the shoes 109 is adjusted according to the user's walking condition and running condition, and the shoe 109 is integrated with the user's foot and easily fits the user's foot.
- a relatively small pressure is applied to the piezoelectric fabric 91.
- the motor 96 rotates in accordance with the detected pressure, and the wire 92 is slightly pulled by the pulling string 95.
- the weight can be reduced as compared with the case of using a conventional ceramic piezoelectric body (PZT) without increasing the thickness of the sole.
- PZT ceramic piezoelectric body
- PLLA has flexibility
- the electrode formed on the surface is made of an organic material having flexibility similar to PLLA, it can be prevented from cracking due to a load or impact from a foot caused by jogging or walking. .
- environmental load can also be reduced by using PLLA.
- FIG. 13 is a view for explaining a garment 120 according to the tenth embodiment.
- the garment 120 includes a main body 121, a piezoelectric fabric 91, a wire 92, a circuit board 93, and pins 94, similar to the shoe 109 according to the ninth embodiment.
- the piezoelectric fabric 91 can be disposed at any position on the clothing 120, but is preferably disposed at a location where it is easy to detect the movement of the user's body.
- the wire 92 is provided at a sleeve portion of the garment 120 substantially parallel to the opening of the sleeve.
- the wire 92 is not limited to the sleeve, and can be provided at a location where the user wants to fit the user's body when the garment 120 is worn. Further, a plurality of wires 92 may be provided or provided on a net. Thereby, a variation can be given to the movement which the wire 92 expands and contracts.
- the circuit board 93 is preferably arranged on the upper part of the shoulder or the like which does not easily disturb the user's operation.
- the pin 94 is provided along the wire 92.
- the main body 121 of the garment 120 may further include a shape memory wire substantially perpendicular to the wire 92. Thereby, it can prevent that the main body 121 turns up by the wire 92 being tightened.
- the description of the other configuration is the same as that of the ninth embodiment, and will be omitted.
- the tension of the wire 92 is adjusted according to the voltage generated in the piezoelectric fabric 91.
- the tightening degree of the garment 120 is adjusted according to the user's operation, and the garment 120 is integrated with the user's body, so that the user's body can be easily fitted.
- the tightening degree of the clothing 120 by the wire 92 is adjusted according to the user's movement, the user can obtain a comfortable fit. Therefore, even when the user performs a violent operation, the hem of the clothing 120 does not get in the way, and the user can operate smoothly. On the contrary, when the movement of the user is small, it is not tightened, so that an unnecessary burden on the user's body is prevented and air permeability is maintained.
- clothing 120 was illustrated as 10th Embodiment, clothing 120 is an example, Comprising: It can adapt also to other clothing, such as pants and a jacket.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Textile Engineering (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physical Education & Sports Medicine (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
Abstract
Provided is a wearable textile product which can be adapted to a product (such as a shoe) selected by a user, and which corrects the gait when worn. This wearable textile product is provided with: a cloth-like electric charge generating portion (50, 52, 54, 56) including an electric charge generating thread (1) which generates an electric charge by means of energy from the outside; and a cloth-like non-electric charge generating portion (51, 53, 55, 57) including a non-electric charge generating thread which does not generate an electric charge by means of energy from the outside.
Description
本発明に係る一実施形態は、ウェアラブル繊維製品、及び該ウェアラブル繊維製品を備える履物に関する。
One embodiment according to the present invention relates to a wearable fiber product and footwear comprising the wearable fiber product.
従来から、歩行を矯正する履物については、多数の提案がなされている(特許文献1及び特許文献2を参照)。
Conventionally, many proposals have been made on footwear for correcting walking (see Patent Document 1 and Patent Document 2).
しかし、これらの履物は、いずれも構造が複雑であり、かつデザインや種類も少なく、ユーザの選択幅はかなり限定されていた。また、通常の履物に後から歩行を矯正する機能を持たせることは困難である。
However, all of these footwear has a complicated structure, and there are few designs and types, and the selection range of the user is considerably limited. In addition, it is difficult to give normal footwear the function of correcting walking later.
そこで、この発明に係る一実施形態は、ユーザの選択した製品(靴等)に適応でき、かつ装着時に歩行を矯正するウェアラブル繊維製品を提供することを目的とする。
Therefore, an embodiment of the present invention aims to provide a wearable fiber product that can be applied to a product (such as shoes) selected by the user and corrects walking when worn.
本発明に係る一実施形態のウェアラブル繊維製品は、外部からのエネルギーにより電荷を発生する電荷発生糸を含む布状の電荷発生部と、外部からのエネルギーにより電荷を発生しない非電荷発生糸を含む布状の非電荷発生部と、を備える。
A wearable fiber product according to an embodiment of the present invention includes a cloth-like charge generation unit including a charge generation yarn that generates a charge by external energy and a non-charge generation yarn that does not generate a charge by external energy. A cloth-like non-charge generating portion.
本発明に係る一実施形態のウェアラブル繊維製品は、電荷発生部と、非電荷発生部と、を備えるため、外部からエネルギーが付与されると、電荷発生部のみで電荷を発生させることができる。このため、必要な場所のみに電荷発生糸が織り込まれてなる電荷発生部を配置する簡易な構造で、部分的に電荷を発生させることができる。これにより、本発明のウェアラブル繊維製品は、装着時に必要に応じた電荷を発生させることができる。例えば、発生した電荷によりユーザの身体に電気的刺激を与え、歩行を矯正することができる。
Since the wearable fiber product of one embodiment according to the present invention includes a charge generation unit and a non-charge generation unit, when energy is applied from the outside, only the charge generation unit can generate a charge. For this reason, charges can be partially generated with a simple structure in which a charge generation portion in which charge generation yarns are woven into only a necessary place is arranged. Thereby, the wearable fiber product of this invention can generate | occur | produce the electric charge as needed at the time of mounting | wearing. For example, an electrical stimulus can be given to a user's body by the generated electric charge to correct walking.
この発明に係る一実施形態によれば、ユーザの選択した製品(靴等)に適応でき、かつ装着時に歩行を矯正するウェアラブル繊維製品を実現することができる。
According to an embodiment of the present invention, it is possible to realize a wearable fiber product that can be applied to a product (such as shoes) selected by the user and that corrects walking when worn.
本実施形態に係るウェアラブル繊維製品は、外部からのエネルギーにより電荷を発生する電荷発生糸を含む布状の電荷発生部と、外部からのエネルギーにより電荷を発生しない非電荷発生糸を含む布状の非電荷発生部と、を備える。説明の便宜上、該電荷発生糸について説明した後に、該ウェアラブル繊維製品を備える履物等について説明する。
The wearable fiber product according to the present embodiment includes a cloth-like charge generation unit including a charge generation yarn that generates a charge by external energy and a non-charge generation yarn that does not generate a charge by external energy. A non-charge generating unit. For convenience of explanation, after describing the charge generating yarn, footwear or the like including the wearable fiber product will be described.
図1(A)は、圧電糸1の構成を示す一部分解図であり、図1(B)は、圧電フィルム10の平面図である。圧電糸1は、外部からのエネルギーにより電荷を発生する電荷発生糸の一例である。
FIG. 1 (A) is a partially exploded view showing the configuration of the piezoelectric yarn 1, and FIG. 1 (B) is a plan view of the piezoelectric film 10. The piezoelectric yarn 1 is an example of a charge generating yarn that generates charges by external energy.
圧電糸1は、芯糸11に圧電フィルム10が巻かれてなる。圧電フィルム10は、圧電体の一例である。芯糸11は、天然繊維又は化学繊維から適宜選択される。天然繊維又は化学繊維は、植物繊維、動物繊維、あるいは、ポリ乳酸等がある。植物繊維は、例えば、綿又は麻等である。芯糸11にポリ乳酸を用いる場合には、芯糸11では特に圧電性のポリ乳酸である必要はない。後述のように、圧電フィルム10にポリ乳酸を用いる場合に、芯糸11と同じ素材となるため、親和性が高くなる。化学繊維は、例えば、合成繊維、ガラス繊維、又は炭素繊維等がある。化学繊維は、天然繊維に比べて頑丈である。
The piezoelectric yarn 1 is obtained by winding a piezoelectric film 10 around a core yarn 11. The piezoelectric film 10 is an example of a piezoelectric body. The core yarn 11 is appropriately selected from natural fibers or chemical fibers. Natural fibers or chemical fibers include plant fibers, animal fibers, or polylactic acid. The plant fiber is, for example, cotton or hemp. When polylactic acid is used for the core yarn 11, the core yarn 11 does not have to be piezoelectric polylactic acid. As will be described later, when polylactic acid is used for the piezoelectric film 10, it becomes the same material as the core yarn 11, so that the affinity is increased. Examples of the chemical fiber include synthetic fiber, glass fiber, and carbon fiber. Chemical fibers are more robust than natural fibers.
また、芯糸11は、導電性を備えた導電糸であってもよい。芯糸11を導電糸とした場合、圧電糸1の圧電性を検査する際に、圧電糸1の外周の一部に形成した電極と、芯糸11とを用いて圧電糸1に生じる電荷を計測することができる。これにより圧電糸1に用いられた圧電フィルム10の圧電性能を検査することができる。また、導電糸同士を短絡させることにより、各糸同士に明確に回路が形成され、各糸の表面間に生じる電場は飛躍的に大きくなる。また、芯糸11に導電体を用いる場合、該芯糸11に電流を流せば、圧電フィルム10以外の他の絶縁体を芯糸11に巻いた構成であっても、外部からのエネルギーにより電荷を発生する糸を実現することができる。
Further, the core yarn 11 may be a conductive yarn having conductivity. When the core yarn 11 is a conductive yarn, when the piezoelectricity of the piezoelectric yarn 1 is inspected, the charge formed in the piezoelectric yarn 1 using the electrode formed on a part of the outer periphery of the piezoelectric yarn 1 and the core yarn 11 is generated. It can be measured. Thereby, the piezoelectric performance of the piezoelectric film 10 used for the piezoelectric yarn 1 can be inspected. In addition, by short-circuiting the conductive yarns, a clear circuit is formed between the yarns, and the electric field generated between the surfaces of the yarns increases dramatically. Further, when a conductor is used for the core yarn 11, if an electric current is passed through the core yarn 11, even if the insulator other than the piezoelectric film 10 is wound around the core yarn 11, it is charged by the energy from the outside. Can be realized.
なお、芯糸11は、必須の構成ではない。芯糸11が無くても、圧電フィルム10を螺旋状に旋回して圧電糸(旋回糸)とすることは可能である。芯糸11が無い場合には、旋回糸は、中空糸となり、保温能力が向上する。また、旋回糸そのものに接着剤を含侵させると強度を増すことができる。
Note that the core yarn 11 is not an essential component. Even without the core yarn 11, it is possible to turn the piezoelectric film 10 in a spiral shape to obtain a piezoelectric yarn (swivel yarn). When the core yarn 11 is not present, the swirl yarn becomes a hollow fiber, and the heat retaining ability is improved. Further, when the swirl yarn itself is impregnated with an adhesive, the strength can be increased.
圧電フィルム10は、例えば圧電性ポリマーからなる。圧電フィルムは、焦電性を有するものと、焦電性を有していないものがある。例えば、PVDF(ポリフッ化ビニリデン)は、焦電性を有しており、温度変化によっても電荷が発生する。PVDF等の焦電性を有する圧電体は、人体の熱エネルギーによっても、表面に電荷が生じる。
The piezoelectric film 10 is made of, for example, a piezoelectric polymer. Some piezoelectric films have pyroelectric properties and others do not have pyroelectric properties. For example, PVDF (polyvinylidene fluoride) has pyroelectricity, and charges are generated even when the temperature changes. A piezoelectric material having pyroelectric properties such as PVDF generates charges on the surface also by the thermal energy of the human body.
また、ポリ乳酸(PLA)は、焦電性を有していない圧電フィルムである。ポリ乳酸は、一軸延伸されることで圧電性が生じる。ポリ乳酸には、L体モノマーが重合したPLLAと、D体モノマーが重合したPDLAと、がある。
Polylactic acid (PLA) is a piezoelectric film that does not have pyroelectricity. Polylactic acid produces piezoelectricity by being uniaxially stretched. Polylactic acid includes PLLA in which an L monomer is polymerized and PDLA in which a D monomer is polymerized.
ポリ乳酸のようなキラル高分子は、主鎖が螺旋構造を有する。キラル高分子は、一軸延伸されて分子が配向すると、圧電性を有する。一軸延伸されたポリ乳酸からなる圧電フィルム10は、厚み方向を第1軸、延伸方向900を第3軸、第1軸及び第3軸の両方に直交する方向を第2軸と定義したとき、圧電歪み定数としてd14及びd25のテンソル成分を有する。したがって、ポリ乳酸は、一軸延伸された方向に対して45度の方向に歪みが生じた場合に、電荷を発生する。
Chiral polymers such as polylactic acid have a helical structure in the main chain. A chiral polymer has piezoelectricity when uniaxially stretched and the molecules are oriented. When the piezoelectric film 10 made of uniaxially stretched polylactic acid defines the thickness direction as the first axis, the stretching direction 900 as the third axis, and the direction perpendicular to both the first axis and the third axis as the second axis, It has tensor components d14 and d25 as piezoelectric strain constants. Therefore, polylactic acid generates an electric charge when distortion occurs in a direction of 45 degrees with respect to the uniaxially stretched direction.
図2(A)及び図2(B)は、ポリ乳酸の一軸延伸方向と、電場方向と、圧電フィルム10の変形と、の関係を示す図である。図2(A)に示すように、圧電フィルム10は、第1対角線910Aの方向に縮み、第1対角線910Aに直交する第2対角線910Bの方向に伸びると、紙面の裏側から表側に向く方向に電場を生じる。すなわち、圧電フィルム10は、紙面表側では、負の電荷が発生する。圧電フィルム10は、図2(B)に示すように、第1対角線910Aの方向に伸び、第2対角線910Bの方向に縮む場合も、電荷を発生するが、極性が逆になり、紙面の表面から裏側に向く方向に電場を生じる。すなわち、圧電フィルム10は、紙面表側では、正の電荷が発生する。
2 (A) and 2 (B) are diagrams showing the relationship between the uniaxial stretching direction of polylactic acid, the electric field direction, and the deformation of the piezoelectric film 10. As shown in FIG. 2A, when the piezoelectric film 10 contracts in the direction of the first diagonal line 910A and extends in the direction of the second diagonal line 910B orthogonal to the first diagonal line 910A, the piezoelectric film 10 extends in the direction from the back side to the front side. Generates an electric field. That is, the piezoelectric film 10 generates a negative charge on the front side of the sheet. As shown in FIG. 2B, the piezoelectric film 10 generates electric charge when it extends in the direction of the first diagonal line 910A and contracts in the direction of the second diagonal line 910B, but the polarity is reversed and the surface of the paper surface An electric field is generated in the direction from the back to the back. That is, the piezoelectric film 10 generates a positive charge on the front side of the sheet.
ポリ乳酸は、延伸による分子の配向処理で圧電性が生じるため、PVDF等の他の圧電性ポリマー又は圧電セラミックスのように、ポーリング処理を行う必要がない。一軸延伸されたポリ乳酸の圧電定数は、5~30pC/N程度であり、高分子の中では非常に高い圧電定数を有する。さらに、ポリ乳酸の圧電定数は経時的に変動することがなく、極めて安定している。
Since polylactic acid generates piezoelectricity by molecular orientation treatment by stretching, it is not necessary to perform poling treatment like other piezoelectric polymers such as PVDF or piezoelectric ceramics. The piezoelectric constant of uniaxially stretched polylactic acid is about 5 to 30 pC / N, and has a very high piezoelectric constant among polymers. Furthermore, the piezoelectric constant of polylactic acid does not vary with time and is extremely stable.
圧電フィルム10は、上述の様な一軸延伸されたポリ乳酸のシートを、例えば幅0.5~2mm程度に切り取られることにより生成される。圧電フィルム10は、図1(B)に示すように、長軸方向と延伸方向900が一致している。圧電フィルム10は、図1(A)に示したように、芯糸11に対して左旋回して撚られた左旋回糸(以下、S糸と称する。)の圧電糸1となる。延伸方向900は、圧電糸1の軸方向に対して、左45度に傾いた状態となる。
The piezoelectric film 10 is produced by cutting a uniaxially stretched polylactic acid sheet as described above, for example, to a width of about 0.5 to 2 mm. As shown in FIG. 1B, the major axis direction and the stretching direction 900 of the piezoelectric film 10 coincide with each other. As shown in FIG. 1A, the piezoelectric film 10 becomes a piezoelectric yarn 1 of a left turning yarn (hereinafter referred to as S yarn) twisted by turning left with respect to the core yarn 11. The drawing direction 900 is inclined 45 degrees to the left with respect to the axial direction of the piezoelectric yarn 1.
したがって、図3に示すように、圧電糸1に外力が係ると、圧電フィルム10は、図2(A)に示した状態のようになり、表面に負の電荷を生じる。図示はしていないが、芯糸11に対して右旋回して撚られた右旋回糸(以下、Z糸と称する。)の圧電糸1の場合は、圧電糸1に外力が係ると、表面に正の電荷を生じる。多くの菌は、負の電荷を有する。そのため、Z糸を備えた布は、発生した正の電荷により、多くの菌を吸着することができる。また、Z糸を備えた布は、発生した正の電荷により、負の電荷を有する菌を不活化することもできる。このように、表面に正の電荷を発生させる圧電糸を用いた布は、菌対策用圧電糸として高い効果を有する。
Therefore, as shown in FIG. 3, when an external force is applied to the piezoelectric yarn 1, the piezoelectric film 10 is in the state shown in FIG. 2A, and a negative charge is generated on the surface. Although not shown, in the case of the piezoelectric yarn 1 of a right turning yarn (hereinafter referred to as Z yarn) twisted by turning right with respect to the core yarn 11, when an external force is applied to the piezoelectric yarn 1, A positive charge is generated on the surface. Many bacteria have a negative charge. Therefore, the cloth provided with the Z yarn can adsorb many bacteria due to the generated positive charges. Moreover, the cloth provided with the Z yarn can inactivate bacteria having a negative charge by the generated positive charge. As described above, the cloth using the piezoelectric yarn that generates a positive charge on the surface has a high effect as a microbe-controlling piezoelectric yarn.
なお、圧電糸は、あらゆる公知の方法により製造される。スリットフィルムを用いたカバリング糸だけではなく、繊維として、例えば、圧電性高分子を押し出し成型して繊維化する手法、圧電性高分子を溶融紡糸して繊維化する手法(例えば、紡糸工程と延伸工程を分けて行う紡糸・延伸法、紡糸工程と延伸工程を連結した直延伸法、仮撚り工程も同時に行うことのできるPOY-DTY法、または高速化を図った超高速防止法などを含む)、圧電性高分子を乾式あるいは湿式紡糸(例えば、溶媒に原料となるポリマーを溶解してノズルから押し出して繊維化するような相分離法もしくは乾湿紡糸法、溶媒を含んだままゲル状に均一に繊維化するような液晶紡糸法、または液晶溶液もしくは融体を用いて繊維化する液晶紡糸法、などを含む)により繊維化する手法、または圧電性高分子を静電紡糸により繊維化する手法等を採用することができる。なお、圧電糸1として、芯糸11を用いず、モノフィラメントの圧電糸のみを撚ってなる撚糸を用いても良い。このような撚糸は低コストで作ることができる。また、圧電糸1として、モノフィラメントの圧電糸と普通糸(綿や麻、レーヨン等の化学繊維等)とを撚ってなる撚糸を用いても良い。圧電糸1に普通糸が含まれることにより、肌触りのよさを向上することができる。
Incidentally, the piezoelectric yarn is manufactured by any known method. Not only covering yarn using slit film, but also fiber, for example, a method of extruding and polymerizing a piezoelectric polymer, a method of melt-spinning a piezoelectric polymer into a fiber (for example, spinning process and drawing) (Including spinning / stretching method that divides the process, direct stretching method that connects spinning process and stretching process, POY-DTY method that can perform false twisting process at the same time, or ultra-high speed prevention method that speeds up) Piezoelectric polymers are dry-type or wet-spun (for example, a phase separation method in which a polymer as a raw material is dissolved and extruded from a nozzle to be fiberized, or a wet and wet spinning method, uniformly in a gel form while containing the solvent. (Including liquid crystal spinning method for fiberizing, liquid crystal spinning method for fiberizing using liquid crystal solution or melt, etc.) or fiberizing piezoelectric polymer by electrostatic spinning It is possible to adopt a technique or the like. The piezoelectric yarn 1 may be a twisted yarn obtained by twisting only a monofilament piezoelectric yarn without using the core yarn 11. Such a twisted yarn can be made at low cost. The piezoelectric yarn 1 may be a twisted yarn obtained by twisting a monofilament piezoelectric yarn and a normal yarn (chemical fiber such as cotton, hemp, rayon, etc.). By including the ordinary yarn in the piezoelectric yarn 1, the touch can be improved.
これにより、圧電糸1は、外力が係った場合に、表面に電荷を生じる。電荷発生部として、S糸とZ糸の圧電糸1を交互に織り込むことにより、S糸とZ糸から正と負の電荷が発生する。これによりS糸とZ糸との間で大きな電場が発生する。これにより、湿気等で形成された電流経路や、局部的なミクロな放電現象等で形成された回路を電流が流れることがある。この電流によりユーザに電気刺激を与えることができる。したがって、このような電荷発生部を備えるウェアラブル繊維製品は、外力が係った場合に、ユーザに電気刺激を与えることができる。以下、ウェアラブル繊維製品を備える履物等について説明する。
Thus, the piezoelectric yarn 1 generates a charge on the surface when an external force is applied. By alternately weaving the S yarn and Z yarn piezoelectric yarns 1 as the charge generation portion, positive and negative charges are generated from the S yarn and Z yarn. As a result, a large electric field is generated between the S yarn and the Z yarn. As a result, current may flow through a circuit formed by a current path formed by moisture or the like, or a local micro discharge phenomenon. This current can provide an electrical stimulus to the user. Therefore, the wearable fiber product including such a charge generation unit can give an electrical stimulus to the user when an external force is involved. Hereinafter, footwear or the like including a wearable fiber product will be described.
図4(A)は、第1実施形態に係るO脚矯正用の中敷き100の平面概略図であり、図4(B)は、第2実施形態に係るO脚矯正用の靴下101の概略断面図である
図4(A)に示すように、第1実施形態に係る中敷き100は、不図示の靴の中に配置することによって靴と一体として使用するためのものである。中敷き100は、電荷発生部50と、非電荷発生部51とを備える。電荷発生部50は、足の踵の外側に対応する部分に配置されている。非電荷発生部51は、中敷き100における電荷発生部50以外の部分を構成する。 FIG. 4A is a schematic plan view of aninsole 100 for O-leg correction according to the first embodiment, and FIG. 4B is a schematic cross section of an O-leg correction sock 101 according to the second embodiment. As shown in FIG. 4A, the insole 100 according to the first embodiment is used as an integral part of a shoe by being placed in a shoe (not shown). The insole 100 includes a charge generation unit 50 and a non-charge generation unit 51. The charge generation unit 50 is disposed in a portion corresponding to the outside of the foot heel. The non-charge generation unit 51 constitutes a part other than the charge generation unit 50 in the insole 100.
図4(A)に示すように、第1実施形態に係る中敷き100は、不図示の靴の中に配置することによって靴と一体として使用するためのものである。中敷き100は、電荷発生部50と、非電荷発生部51とを備える。電荷発生部50は、足の踵の外側に対応する部分に配置されている。非電荷発生部51は、中敷き100における電荷発生部50以外の部分を構成する。 FIG. 4A is a schematic plan view of an
なお、本実施形態において電荷発生部50は、非電荷発生部51と重ならないように形成されているが、非電荷発生部51に重ねて形成されていてもよい。例えば、非電荷発生部51のみで中敷き100の形状としたものに、重ねて非電荷発生部51を配置するものであっても同様の効果が得られる。この場合、必要な大きさと形状に構成された電荷発生部50を非電荷発生部51に貼り付ける。電荷発生部50と非電荷発生部51との貼り付けは、接着剤や縫合等の公知の方法が使用可能である。
In this embodiment, the charge generation unit 50 is formed so as not to overlap the non-charge generation unit 51, but may be formed so as to overlap the non-charge generation unit 51. For example, the same effect can be obtained even when the non-charge generating portion 51 is arranged in a layered manner with the non-charge generating portion 51 alone in the shape of the insole 100. In this case, the charge generation unit 50 having a required size and shape is attached to the non-charge generation unit 51. A known method such as an adhesive or stitching can be used to attach the charge generation unit 50 and the non-charge generation unit 51.
電荷発生部50は、圧電糸1が織り込まれているため、靴の中に配置された中敷き100に圧力がかかると、電荷発生部50に電荷が発生する。このため、ユーザが中敷き100を敷いた靴を装着して歩くと、汗等の水分を介して電荷発生部50からユーザの身体に電流が流れ、ユーザに電気的刺激が与えられる。また、発生する電荷の大きさは、電荷発生部50にかかる圧力による伸縮にある程度依存するため、中敷き100を敷いた靴を装着したユーザによる負荷が電荷発生部50に多くかかるほど、ユーザに付与される電気刺激が大きくなる。これにより、ユーザは電気刺激を回避するため、自然と電荷発生部50に圧力のかかりにくい歩き方や姿勢を保つように矯正される。また、ユーザの選択した靴等に中敷き100を挿入するだけであるため、どのような靴にも適応できる。なお、中敷き100を使用せずに、ユーザの選択した靴自体にシート状に形成した電荷発生部50を貼り付けることによっても同様の効果が得られる。なお、圧電糸1は、非電荷発生部51に含まれる電荷を発生しない非電荷発生糸よりも伸び率が高いことが好ましい。すなわち、電荷発生部50は非電荷発生部51よりも伸び率が高いことが好ましい。これにより、電荷発生部50に圧力がかかると、圧電糸1及び電荷発生部50の伸縮がより大きくなるため、発生する電荷が大きくなる。よって、より大きな効果が得られる。なお、電荷発生部50及び非電荷発生部51の伸び率については、編み物である場合、圧電糸1や非電荷発生糸の編み方で調節できる。
Since the piezoelectric yarn 1 is woven in the charge generation unit 50, a charge is generated in the charge generation unit 50 when pressure is applied to the insole 100 disposed in the shoe. For this reason, when the user wears a shoe with an insole 100 and walks, a current flows from the charge generation unit 50 to the user's body through moisture such as sweat, and an electrical stimulus is given to the user. In addition, since the magnitude of the generated charge depends to some extent on the expansion and contraction due to the pressure applied to the charge generation unit 50, the more load applied to the charge generation unit 50 by the user wearing the shoes with the insole 100 is applied to the user. The electrical stimulation that will be increased. Thereby, in order to avoid electrical stimulation, the user is corrected so as to maintain a walking method and posture in which the pressure is not easily applied to the charge generation unit 50. Moreover, since the insole 100 is only inserted into the shoes selected by the user, the present invention can be applied to any shoes. The same effect can be obtained by attaching the charge generation unit 50 formed in a sheet shape to the shoe itself selected by the user without using the insole 100. The piezoelectric yarn 1 preferably has a higher elongation rate than the non-charge generating yarn that does not generate charges contained in the non-charge generating portion 51. That is, it is preferable that the charge generation unit 50 has a higher elongation rate than the non-charge generation unit 51. Accordingly, when pressure is applied to the charge generation unit 50, the expansion and contraction of the piezoelectric yarn 1 and the charge generation unit 50 become larger, and thus the generated charge increases. Therefore, a greater effect can be obtained. In addition, about the elongation rate of the electric charge generation | occurrence | production part 50 and the non-charge generation part 51, when it is a knitted fabric, it can adjust with the knitting method of the piezoelectric yarn 1 or a non-charge generation yarn.
図4(B)に示すように、第2実施形態に係る靴下101は、電荷発生部52と、非電荷発生部53とを備える。電荷発生部52は、足の踵の外側に対応する部分に配置されている。非電荷発生部53は、靴下101における電荷発生部52以外の部分を構成する。電荷発生部52は、非電荷発生部53に囲まれている。このため、電荷発生部52が伸縮性の低い素材で形成されていても、非電荷発生部53が伸縮性の高い素材で形成されていれば、電荷発生部52が非電荷発生部53の伸縮の動きによる影響を受けやすくなる。また、例えば、電荷発生部52が筒状である場合、その筒の一端又は他端が非電荷発生部53に接続されていればよい。この場合も、同様に電荷発生部52が伸縮性の低い素材で形成されていても、非電荷発生部53が伸縮性の高い素材で形成されていれば、電荷発生部52が非電荷発生部53の伸縮の動きによる影響を受けやすくなる。
As shown in FIG. 4B, the sock 101 according to the second embodiment includes a charge generation unit 52 and a non-charge generation unit 53. The charge generation unit 52 is disposed at a portion corresponding to the outside of the foot heel. The non-charge generation unit 53 constitutes a part other than the charge generation unit 52 in the sock 101. The charge generation unit 52 is surrounded by the non-charge generation unit 53. For this reason, even if the charge generation part 52 is formed of a material having low stretchability, if the non-charge generation part 53 is formed of a material having high stretchability, the charge generation part 52 is expanded or contracted by the non-charge generation part 53. It becomes easy to be influenced by the movement of. Further, for example, when the charge generation unit 52 has a cylindrical shape, one end or the other end of the tube may be connected to the non-charge generation unit 53. In this case as well, even if the charge generation unit 52 is formed of a material with low stretchability, the charge generation unit 52 is not formed with a non-charge generation unit if the noncharge generation unit 53 is formed of a material with high stretchability. It becomes easy to be influenced by the movement of the expansion / contraction of 53.
中敷き100を敷いた靴と同様に、ユーザが靴下101を装着して歩くと、電荷発生部52で電荷が発生する。これにより、ユーザは電気刺激を回避するため、自然と電荷発生部52に圧力のかかりにくい歩き方や姿勢を保つように矯正される。なお、この靴下101を装着して靴を履くことにより、中敷き100を靴に使用した時と同様の効果が得られる。なお、電荷発生部52は、靴下に貼り付けるシート状に構成されていても良い。また、電荷発生部52は、非電荷発生部53と組み合わせるような形で一体化されて靴下の形状としても良い。
Similarly to the shoe with the insole 100, when the user walks with the sock 101, the charge generator 52 generates a charge. Thereby, in order to avoid electrical stimulation, the user is corrected so as to maintain a walking style and posture in which pressure is not easily applied to the charge generator 52. By wearing the socks 101 and wearing the shoes, the same effect as when the insole 100 is used for the shoes can be obtained. In addition, the electric charge generation | occurrence | production part 52 may be comprised by the sheet form affixed on socks. In addition, the charge generation unit 52 may be integrated with the non-charge generation unit 53 so as to have a sock shape.
また、第1実施形態に係る中敷き100及び第2実施形態に係る靴下101は、コーナー部分(例えば、つま先の部分61、踵の部分62)を備える。本実施形態においてコーナー部分とは、隅や角を意味する。ユーザが中敷き100を使用又は靴下101を装着した時、このコーナー部分には特に圧力が加わり易い。このため、電荷発生部50、52をコーナー部分に配置することにより、より効果的に電荷を発生させることができる。
Also, the insole 100 according to the first embodiment and the sock 101 according to the second embodiment include corner portions (for example, a toe portion 61 and a heel portion 62). In the present embodiment, the corner portion means a corner or a corner. When the user uses the insole 100 or wears the sock 101, the corner portion is particularly easily subjected to pressure. For this reason, it is possible to generate charges more effectively by arranging the charge generation units 50 and 52 at the corners.
第1実施形態及び第2実施形態においては、O脚矯正用の履物を例に挙げたが、O脚矯正用には限らない。例えば、電荷発生部50、52の配置を変更することにより、外反母趾の防止用や、その他の姿勢矯正、足裏の刺激等にも利用できる。以下、その他の実施形態について説明する。
In the first embodiment and the second embodiment, footwear for correcting the O-leg is taken as an example, but the footwear for correcting the O-leg is not limited thereto. For example, by changing the arrangement of the charge generation units 50 and 52, it can also be used for preventing hallux valgus, correcting other postures, stimulating the soles, and the like. Hereinafter, other embodiments will be described.
図5(A)は、第3実施形態に係る靴下102の概略図であり、図5(B)は、第4実施形態に係るサポータ103の概略図であり、図5(C)は、第5実施形態に係る保湿用の衛生材料104の概略図である。
FIG. 5 (A) is a schematic view of a sock 102 according to the third embodiment, FIG. 5 (B) is a schematic view of a supporter 103 according to the fourth embodiment, and FIG. It is the schematic of the sanitary material 104 for moisture retention which concerns on 5 embodiment.
図5(A)に示すように、第3実施形態に係る靴下102は、電荷発生部52と、非電荷発生部53とを備える。電荷発生部52は、靴下102におけるつま先及び踵以外の部分63に配置されている。非電荷発生部53は、つま先の部分61及び踵の部分62に配置されている。通常、ユーザが靴下を装着すると、圧力がかかり密着し易いつま先の部分61や踵の部分62が蒸れ易くなり、においや雑菌の繁殖の原因となる。
As shown in FIG. 5A, the sock 102 according to the third embodiment includes a charge generation unit 52 and a non-charge generation unit 53. The charge generation unit 52 is disposed in a portion 63 of the sock 102 other than the toe and the heel. The non-charge generating portion 53 is disposed on the toe portion 61 and the heel portion 62. Usually, when the user wears socks, the toe portion 61 and the heel portion 62 that are easily pressed and are in close contact with each other are easily stuffy, causing odors and germs to propagate.
電荷発生部52において発生する電荷は、水分を引き付ける。すなわち、非電荷発生部53付近で発生した水分は非電荷発生部53で吸収されたのち、電荷発生部52に引き付けられる。このため、電荷発生部52をつま先及び踵以外の部分63に配置することにより、つま先の部分61及び踵の部分62で発生した水分はつま先及び踵以外の部分63に引き付けられる。このため、つま先の部分61や踵の部分62が蒸れ易さが低減される。また、ユーザが靴下102の上から靴を履いた場合であっても、電荷発生部52が靴の開口部側へ近い側へ設けられているため、電荷発生部52は外気に触れ水分を蒸発させることができ、さらに靴内部での蒸れが低減される。後に詳細に説明するが、電荷発生部52は抗菌効果又は殺菌効果を有する。このため、完全に水分が蒸発しなくても、電荷発生部52における抗菌効果又は殺菌効果によって、においや雑菌の繁殖を軽減することが出来る。
The electric charge generated in the electric charge generation unit 52 attracts moisture. That is, moisture generated in the vicinity of the non-charge generation unit 53 is absorbed by the non-charge generation unit 53 and then attracted to the charge generation unit 52. For this reason, by arranging the charge generation part 52 in the portion 63 other than the toe and the heel, moisture generated in the toe portion 61 and the heel portion 62 is attracted to the portion 63 other than the toe and the heel. For this reason, the ease of stuffiness of the toe portion 61 and the heel portion 62 is reduced. Even if the user wears shoes from above the socks 102, the charge generation unit 52 is provided on the side closer to the shoe opening, so that the charge generation unit 52 touches the outside air to evaporate moisture. Furthermore, the stuffiness inside the shoe is reduced. As will be described in detail later, the charge generation unit 52 has an antibacterial effect or a bactericidal effect. For this reason, even if moisture does not completely evaporate, the growth of odors and germs can be reduced by the antibacterial effect or the bactericidal effect in the charge generation unit 52.
図5(B)に示すように、第4実施形態に係るサポータ103は、ユーザの踵周辺を覆う形状である。サポータ103は、電荷発生部54と、非電荷発生部55とを備える。電荷発生部54は、サポータ103における踵の部分64に配置されている。非電荷発生部55は、踵の部分64以外に配置されている。また、サポータ103は、ゴム等の伸縮する素材を含むものであることが好ましい。これにより、サポータ103がユーザの肌に密着すると同時に踵の部分64に圧力がかかる。踵の部分64に配置されている電荷発生部54に圧力がかかると、水分が引き付けられる。これにより、踵の部分64に保湿効果をもたらすことができる。なお、サポータ103は、さらに電荷発生部54を覆うような不図示の防水シートを有していてもよい。該防水シートにより電荷発生部54に引き付けられた水分の蒸発が阻止されるため、より高い保湿効果が得られる。また、保湿クリーム等を塗布した上にサポータ103を装着した場合、保湿効果が維持されるだけでなく、保湿クリームにおける菌の繁殖を軽減することが出来るので、長時間サポータ103を着用しても肌への影響を抑制することができる。
As shown in FIG. 5B, the supporter 103 according to the fourth embodiment has a shape covering the periphery of the user's heel. The supporter 103 includes a charge generation unit 54 and a non-charge generation unit 55. The charge generation unit 54 is disposed in the heel portion 64 of the supporter 103. The non-charge generating portion 55 is disposed other than the heel portion 64. Further, the supporter 103 preferably includes a material that expands and contracts such as rubber. As a result, the supporter 103 is in close contact with the user's skin, and pressure is applied to the heel portion 64. When pressure is applied to the charge generation unit 54 disposed in the heel portion 64, moisture is attracted. Thereby, a moisturizing effect can be provided to the heel portion 64. The supporter 103 may further include a waterproof sheet (not shown) that covers the charge generation unit 54. Since the waterproof sheet prevents evaporation of moisture attracted to the charge generating portion 54, a higher moisturizing effect can be obtained. In addition, when the supporter 103 is mounted after applying a moisturizing cream or the like, not only the moisturizing effect is maintained, but also the growth of bacteria in the moisturizing cream can be reduced. The influence on the skin can be suppressed.
図5(C)に示すように、第5実施形態に係る保湿用の衛生材料104は、例えば、絆創膏等の皮膚400の傷口に宛がうものである。衛生材料104は、電荷発生部56と、非電荷発生部57とを備える。衛生材料104の電荷発生部56に圧力がかかると、電荷発生部56に水分(この場合、傷口から分泌された体液)が引き付けられる。これにより、傷口にいわゆるモイストヒーリング(湿潤療法)を施すことができるため、傷の治癒を早めることができる。なお、衛生材料104は、さらに電荷発生部56を覆うような不図示の防水シートを有していてもよい。該防水シートにより電荷発生部56に引き付けられた水分の蒸発が阻止されるため、より高い保湿効果が得られる。
As shown in FIG. 5C, the moisturizing sanitary material 104 according to the fifth embodiment is applied to the wound of the skin 400 such as a bandage. The sanitary material 104 includes a charge generation unit 56 and a non-charge generation unit 57. When pressure is applied to the charge generation unit 56 of the sanitary material 104, moisture (in this case, body fluid secreted from the wound) is attracted to the charge generation unit 56. Thereby, since so-called moist healing (wet therapy) can be applied to the wound, healing of the wound can be accelerated. The sanitary material 104 may further include a waterproof sheet (not shown) that covers the charge generation unit 56. Since the moisture attracted to the charge generation unit 56 is prevented from evaporating by the waterproof sheet, a higher moisturizing effect can be obtained.
また、従来から、電場により菌の増殖を抑制することができる旨が知られている(例えば、土戸哲明,高麗寛紀,松岡英明,小泉淳一著、講談社:微生物制御-科学と工学を参照。また、高木浩一,高電圧・プラズマ技術の農業・食品分野への応用,J.HTSJ,Vol.51,No.216を参照)。また、この電場を生じさせている電位により、湿気等で形成された電流経路や、局部的なミクロな放電現象等で形成された回路を電流が流れることがある。この電流により菌の細胞膜が部分的に破壊されて菌の増殖を抑制することが考えられる。なお、本実施形態で言う菌とは、細菌、真菌又はダニやノミ等の微生物を含む。
In addition, it has been known that the growth of bacteria can be suppressed by an electric field (see, for example, Tetsuaki Tudo, Hironori Korai, Hideaki Matsuoka, Junichi Koizumi, Kodansha: Microbial Control-Science and Engineering). (See Koichi Takagi, Application of High Voltage / Plasma Technology to Agriculture and Food, J.HTSJ, Vol.51, No.216). In addition, the electric current generating the electric field may cause a current to flow through a current path formed by moisture or a circuit formed by a local micro discharge phenomenon. It is conceivable that the cell membrane of the fungus is partially destroyed by this current, thereby suppressing the growth of the fungus. In addition, the bacterium referred to in the present embodiment includes bacteria, fungi, or microorganisms such as mites and fleas.
したがって、電荷発生部56に織り込まれている圧電糸1は、人体等の所定の電位を有する物に近接した場合に発生する電場によって、直接的に抗菌効果又は殺菌効果を発揮する。あるいは、圧電糸1は、汗等の水分を介して、人体等の所定の電位を有する物に近接した場合に電流を流す。この電流によっても、直接的に抗菌効果又は殺菌効果を発揮する場合がある。あるいは、電流や電圧の作用により水分に含まれる酸素が変化したラジカル種、さらに繊維中に含まれる添加材との相互作用や触媒作用によって生じたラジカル種やその他の抗菌性化学種(アミン誘導体等)によって間接的に抗菌効果又は殺菌効果を発揮する場合がある。ラジカル種として、スーパーオキシドアニオンラジカル(活性酸素)やヒドロキシラジカルの発生が考えられる。これにより、衛生材料104の電荷発生部56が抗菌効果又は殺菌効果を発揮する場合、傷口及び傷口周辺の菌の増殖を抑制し、傷の治癒を早めることができる。
Therefore, the piezoelectric yarn 1 woven into the charge generation unit 56 directly exerts an antibacterial effect or a bactericidal effect by an electric field generated when the piezoelectric yarn 1 is close to an object having a predetermined potential such as a human body. Alternatively, the piezoelectric yarn 1 causes a current to flow when it is close to an object having a predetermined potential such as a human body through moisture such as sweat. Even with this current, the antibacterial effect or the bactericidal effect may be directly exhibited. Or radical species whose oxygen contained in moisture has been changed by the action of electric current or voltage, and radical species and other antibacterial chemical species (amine derivatives, etc.) produced by interaction with and / or catalytic action of additives contained in the fiber. ) May indirectly exert antibacterial or bactericidal effects. As radical species, generation of superoxide anion radical (active oxygen) or hydroxy radical can be considered. Thereby, when the electric charge generation part 56 of the sanitary material 104 exhibits an antibacterial effect or a bactericidal effect, it is possible to suppress the growth of the wound and the bacteria around the wound and accelerate the healing of the wound.
以上の様な、外部からのエネルギーにより電荷を発生する電荷発生糸を備えた電荷発生部は、各種の衣料、医療部材等の製品に適用可能である。例えば、電荷発生糸は、肌着(特に靴下)、タオル、靴及びブーツ等の中敷き、スポーツウェア全般、帽子、寝具(布団、マットレス、シーツ、枕、枕カバー等を含む。)、歯ブラシ、フロス、各種フィルタ類(浄水器、エアコン又は空気清浄器のフィルタ等)、ぬいぐるみ、ペット関連商品(ペット用マット、ペット用服、ペット用服のインナー)、各種マット品(足、手、又は便座等)、カーテン、台所用品(スポンジ又は布巾等)、シート(車、電車又は飛行機等のシート)、オートバイ用ヘルメットの緩衝材及びその外装材、ソファ、包帯、ガーゼ、マスク、縫合糸、医者及び患者の服、サポータ、サニタリ用品、スポーツ用品(ウェア及びグローブのインナー、又は武道で使用する籠手等)あるいは包装資材等に適用することができる。また、布テープやステッカーシート等のように電荷発生部と粘着剤とを備えた構造にも適用することができる。この場合、粘着剤が電荷発生糸を備えた電荷発生部に浸入するアンカー効果によって、電荷発生部と粘着剤とを強固に接続することができる。
The charge generation unit including the charge generation yarn that generates a charge by external energy as described above can be applied to various products such as clothing and medical members. For example, charge generation yarns include underwear (especially socks), towels, shoes and boots, general sportswear, hats, bedding (including futons, mattresses, sheets, pillows, pillow covers, etc.), toothbrushes, floss, Various filters (filters for water purifiers, air conditioners or air purifiers), plush toys, pet-related products (pet mats, pet clothes, pet clothes inners), various mat products (feet, hands, toilet seats, etc.) , Curtains, kitchen utensils (sponges or cloths, etc.), seats (cars, trains, airplanes, etc.), motorcycle helmet cushions and exterior materials, sofas, bandages, gauze, masks, sutures, doctors and patients It can be applied to clothes, supporters, sanitary goods, sports equipment (wear and glove inners, or garmen used in martial arts) or packaging materials. That. Moreover, it is applicable also to the structure provided with the electric charge generation part and the adhesive like cloth tape, a sticker sheet, etc. In this case, the charge generating part and the adhesive can be firmly connected by the anchor effect that the adhesive enters the charge generating part provided with the charge generating yarn.
衣料のうち、特に靴下(又はサポータ)は、歩行等の動きによって、関節に沿って必ず伸縮が生じるため、圧電糸1は、高頻度で電荷を発生する。また、靴下は、汗等の水分を吸い取り、菌の増殖の温床となるが、圧電糸1は、菌の増殖を抑制することができるため、菌対策用途として、顕著な効果を生じる。以下、本発明に係るウェアラブル繊維製品を備える菌対策用の靴下の実施形態について説明する。
Among the garments, in particular, socks (or supporters) always expand and contract along the joints due to movements such as walking, so that the piezoelectric yarn 1 generates a charge at a high frequency. In addition, the socks absorb moisture such as sweat and become a hotbed for the growth of bacteria, but the piezoelectric yarn 1 can suppress the growth of bacteria, and therefore has a remarkable effect as a countermeasure against bacteria. Hereinafter, an embodiment of a sock for anti-bacteria having the wearable fiber product according to the present invention will be described.
図6(A)は、第6実施形態に係る靴下105を説明するための図である。図6(B)は、第7実施形態に係る靴下106を説明するための図である。図7(A)~(C)は、それぞれ第6実施形態に係る靴下105の電荷発生部52の構造を説明するための図であり、図7(B)は、図7(A)を反対側の面から見た図である。
FIG. 6A is a view for explaining a sock 105 according to the sixth embodiment. FIG. 6B is a view for explaining a sock 106 according to the seventh embodiment. FIGS. 7A to 7C are views for explaining the structure of the charge generation unit 52 of the sock 105 according to the sixth embodiment, respectively, and FIG. 7B is the opposite of FIG. 7A. It is the figure seen from the side surface.
図6(A)に示すように、第6実施形態に係る靴下105は、二層構造であって、電荷発生部52からなる層と、非電荷発生部53からなる層とを備えていてもよい。靴下105の内側が電荷発生部52からなる層であり、外側が非電荷発生部53からなる層である。例えば、靴下105は、靴下の形状に形成された非電荷発生部53の内側に電荷発生部52からなる布を貼り付けることにより形成される。これにより、ユーザが靴下105を履いたときに、内側の電荷発生部52をユーザの皮膚に近接させることができる。なお、電荷発生部52は、非電荷発生部53の内側における全面を覆うように形成されていなくてもよく、部分的(例えば、つま先の部分61及び/又は踵の部分62)に形成されていてもよい。
As shown in FIG. 6A, the sock 105 according to the sixth embodiment has a two-layer structure, and may include a layer formed of the charge generation unit 52 and a layer formed of the non-charge generation unit 53. Good. The inside of the sock 105 is a layer made up of the charge generation part 52, and the outside is a layer made up of the non-charge generation part 53. For example, the sock 105 is formed by affixing a cloth made of the charge generation unit 52 inside the non-charge generation unit 53 formed in the shape of the sock. Thereby, when the user puts on the socks 105, the inner charge generation part 52 can be brought close to the user's skin. The charge generation unit 52 does not have to be formed so as to cover the entire inner surface of the non-charge generation unit 53, and is formed partially (for example, the toe portion 61 and / or the heel portion 62). May be.
第6実施形態に係る靴下105は、一重構造であって、電荷発生部52を構成する糸及び非電荷発生部53を構成する糸の2本の編糸を用いて添え糸編した編物であってもよい。靴下105において、表目側に出る糸と裏目側に出る糸とが別の種類に編み分ける事ができる。この場合、図7(A)に示すように、内側(紙面表側)の面を形成する編糸71が電荷発生部52を構成する糸である。また、図7(B)に示すように、外側(紙面裏側)の面を形成する編糸72が非電荷発生部53を構成する糸(綿糸等)である。これにより、ユーザが靴下105を履いたときに、内側の電荷発生部52をユーザの皮膚に近接させることができる。
The sock 105 according to the sixth embodiment has a single structure, and is a knitted fabric knitted with two knitting yarns, that is, a yarn constituting the charge generation unit 52 and a yarn constituting the non-charge generation unit 53. May be. In the sock 105, the yarn that comes out on the front side and the yarn that goes out on the back side can be knitted into different types. In this case, as shown in FIG. 7A, the knitting yarn 71 that forms the inner surface (the front side of the drawing) is a yarn that constitutes the charge generation section 52. Further, as shown in FIG. 7B, the knitting yarn 72 that forms the outer (back side of the paper) surface is a yarn (cotton yarn or the like) constituting the non-charge generating portion 53. Thereby, when the user puts on the socks 105, the inner charge generation part 52 can be brought close to the user's skin.
電荷発生部52を構成する糸は、マイナスの電荷を発生させるS糸及びプラスの電荷を発生させるZ糸の2種類の圧電糸を備えていてもよい。この場合、内側(紙面表側)の面においてマイナスとプラスの二種類の電荷を発生させることができる。Z糸及びS糸の使用量を調節することにより、用途に応じて発生させる電荷の極性の割合等を調節することができる。また、電荷発生部52を構成する糸は、Z糸及びS糸以外に電荷を発生しない糸(綿糸等)を備えていてもよい。通常、圧電糸は綿糸等に比べて肌触りが悪いため、ユーザが着用すると皮膚が刺激される場合がある。このため、電荷発生部52に電荷を発生しない糸(綿糸等)を一部使用することによって、電荷発生部52の肌触りがよくなり、皮膚への刺激が緩和される。
The yarn constituting the charge generation unit 52 may include two types of piezoelectric yarns, S yarn that generates a negative charge and Z yarn that generates a positive charge. In this case, two types of charges, negative and positive, can be generated on the inner (front side) surface. By adjusting the usage amount of the Z yarn and the S yarn, the proportion of the polarity of the charge generated according to the application can be adjusted. In addition, the yarn constituting the charge generation unit 52 may include a yarn (cotton yarn or the like) that does not generate charges other than the Z yarn and the S yarn. In general, piezoelectric yarns have a poor touch compared to cotton yarns and the like, and skin may be stimulated when worn by a user. For this reason, by using a part of the yarn (such as cotton yarn) that does not generate charges in the charge generation unit 52, the touch of the charge generation unit 52 is improved and the irritation to the skin is alleviated.
従来、抗菌性を有する素材からなる抗菌性靴下には、抗菌剤や金属等を含ませた糸が使用されている。このような既存の抗菌性靴下は、成分が放出されるため効果が長く持続せず、また、薬剤等によるアレルギー反応が生じる場合がある。これに対して、第6実施形態に係る靴下105は電荷発生部52を備えるため、人体等の所定の電位を有する物に近接して用いられる物(衣料、又はマスク等の医療用品)に適用した場合に発生する電場又は電流あるいはそれらによって水分中に含まれる酸素がラジカル種に変化することにより、抗菌効果(菌の発生を抑制する効果)又は殺菌効果(菌を死滅する効果)を発揮するものである。このため、効果が長く持続し、かつ、薬剤等によるアレルギー反応が生じない。
Conventionally, antibacterial socks made of a material having antibacterial properties use yarns containing an antibacterial agent or metal. Such an existing antibacterial sock does not last long because the components are released, and may cause an allergic reaction due to drugs or the like. On the other hand, since the sock 105 according to the sixth embodiment includes the charge generation unit 52, the sock 105 is applied to an object (clothing or medical supplies such as a mask) used in the vicinity of an object having a predetermined potential such as a human body. In this case, the electric field or current generated in this case or the oxygen contained in the water is changed into radical species by them, thereby exhibiting an antibacterial effect (effect of suppressing the generation of bacteria) or a bactericidal effect (effect of killing the bacteria). Is. For this reason, the effect lasts for a long time and no allergic reaction due to drugs or the like occurs.
電荷発生部52は非電荷発生部53の内側に形成されているため、電荷発生部52はユーザの皮膚に近接する。電荷発生部52とユーザの皮膚との距離が近くなるため、ユーザの皮膚の近くで電荷が発生する。これにより、ユーザの皮膚におけるカビや菌の発生をより効率的に軽減することができる。また、靴下105において、ユーザの皮膚とは反対側の面に非電荷発生部53が設けられているため、電荷発生部52を外部環境から保護することができる。
Since the charge generator 52 is formed inside the non-charge generator 53, the charge generator 52 is close to the user's skin. Since the distance between the charge generation unit 52 and the user's skin is reduced, charges are generated near the user's skin. Thereby, generation | occurrence | production of the mold | fungi and bacteria in a user's skin can be reduced more efficiently. In addition, since the non-charge generating portion 53 is provided on the surface of the sock 105 opposite to the user's skin, the charge generating portion 52 can be protected from the external environment.
また、ユーザが靴下を着用する場合、靴下の外側の部分が摩耗し易い。靴下105は、非電荷発生部53が電荷発生部52の外側に形成されているため、摩耗し易い部分は非電荷発生部53である。このため、電荷発生部52の摩耗が抑制され、靴下105の抗菌性が維持される。なお、抗菌剤や金属等を含ませた糸を併用しても良い。これにより、さらに抗菌性を向上させることができる。
Also, when the user wears socks, the outer portion of the socks is easily worn. Since the non-charge generating portion 53 is formed outside the charge generating portion 52 of the sock 105, the portion that easily wears is the non-charge generating portion 53. For this reason, wear of the charge generation part 52 is suppressed, and the antibacterial property of the sock 105 is maintained. A thread containing an antibacterial agent or metal may be used in combination. Thereby, antibacterial properties can be further improved.
なお、第6実施形態において、内側に電荷発生部52が配置され、外側に非電荷発生部53が配置される靴下105について説明したが、内側に非電荷発生部53が配置され、外側に電荷発生部52が配置されるものにも適応できる。例えば、テニスのグリップの保護材等が挙げられる。テニスのグリップにおいては、ユーザがグリップを握る側である面が外側になる。テニスのグリップの保護材において、外側となる面に電荷発生部52が配置されると、ユーザがグリップを握る事によりユーザの皮膚が接触する外側に電荷が発生する。これによりユーザの皮膚及びテニスのグリップの保護材におけるカビや菌の発生をより効率的に軽減することができる。
In the sixth embodiment, the sock 105 in which the charge generation unit 52 is disposed on the inner side and the non-charge generation unit 53 is disposed on the outer side has been described. However, the non-charge generation unit 53 is disposed on the inner side and the charge is generated on the outer side. The present invention can also be applied to a configuration in which the generator 52 is disposed. For example, a protective material for a grip of tennis can be used. In a tennis grip, the surface on which the user grips the grip is on the outside. In the tennis grip protector, when the charge generating portion 52 is disposed on the outer surface, a charge is generated outside the user's skin when the user grips the grip. Thereby, generation | occurrence | production of the mold | fungi and microbe in a user's skin and the protection material of a tennis grip can be reduced more efficiently.
図6(B)に示すように、第7実施形態に係る靴下106は、二層構造であって、電荷発生部52からなる層と、非電荷発生部53からなる層とを備えていてもよい。靴下106の外側が電荷発生部52からなる層であり、内側が非電荷発生部53からなる層である。すなわち、第7実施形態に係る靴下106は、第6実施形態に係る靴下105と比較すると、内側と外側が逆に配置された構造である。例えば、靴下106は、靴下の形状に形成された非電荷発生部53の外側に電荷発生部52からなる布を貼り付けることにより形成される。これにより、ユーザが靴下106を履いたときに、外側の電荷発生部52をユーザの皮膚から遠い位置であって直接ユーザの皮膚に触れない位置に配置させることができる。なお、電荷発生部52は、非電荷発生部53の内側における全面を覆うように形成されていなくてもよく、部分的(例えば、つま先の部分61及び/又は踵の部分62)に形成されていてもよい。
As shown in FIG. 6B, the sock 106 according to the seventh embodiment has a two-layer structure, and may include a layer made up of the charge generation unit 52 and a layer made up of the non-charge generation unit 53. Good. The outer side of the sock 106 is a layer made of the charge generation part 52, and the inner side is a layer made of the non-charge generation part 53. That is, the sock 106 according to the seventh embodiment has a structure in which the inner side and the outer side are oppositely arranged as compared with the sock 105 according to the sixth embodiment. For example, the sock 106 is formed by sticking a cloth made of the charge generation part 52 on the outside of the non-charge generation part 53 formed in the shape of the sock. Accordingly, when the user puts on the socks 106, the outer charge generation unit 52 can be arranged at a position far from the user's skin and not directly touching the user's skin. The charge generation unit 52 does not have to be formed so as to cover the entire inner surface of the non-charge generation unit 53, and is formed partially (for example, the toe portion 61 and / or the heel portion 62). May be.
第7実施形態に係る靴下106は、靴下105と同様に一重構造であって、電荷発生部52を構成する糸及び非電荷発生部53を構成する糸の2本の編糸を用いて添え糸編した編物であってもよい。この場合、図7(B)に示すように、外側(紙面裏側)の面を形成する編糸71が電荷発生部52を構成する糸である。また、図7(A)に示すように、内側(紙面表側)の面を形成する編糸72が非電荷発生部53を構成する糸(綿糸等)である。これにより、ユーザが靴下106を履いたときに、外側の電荷発生部52をユーザの皮膚から遠ざけることができる。
The sock 106 according to the seventh embodiment has a single structure like the sock 105, and is a spliced yarn using two knitting yarns of a yarn constituting the charge generation unit 52 and a yarn constituting the non-charge generation unit 53. A knitted fabric may be used. In this case, as shown in FIG. 7B, the knitting yarn 71 that forms the outer surface (the back side of the drawing) is the yarn that constitutes the charge generation section 52. Further, as shown in FIG. 7A, the knitting yarn 72 forming the inner surface (the front side of the drawing) is a yarn (cotton yarn or the like) constituting the non-charge generating portion 53. Thereby, when the user puts on the socks 106, the outer charge generation part 52 can be kept away from the user's skin.
靴下105と同様に電荷発生部52を構成する糸は、マイナスの電荷を発生させるS糸及びプラスの電荷を発生させるZ糸を備えていてもよい。この場合、靴下106の外側の面においてマイナスとプラスの二種類の電荷を発生させることができるため、用途に応じて発生させる電荷の極性の割合等を調節することができる。
Similarly to the sock 105, the yarn constituting the charge generation unit 52 may include an S yarn that generates a negative charge and a Z yarn that generates a positive charge. In this case, since two types of charges, negative and positive, can be generated on the outer surface of the sock 106, the proportion of the polarity of the generated charge can be adjusted according to the application.
電荷発生部52を構成する糸は、Z糸及びS糸以外に電荷を発生しない糸(綿糸等)を備えていてもよい。Z糸及びS糸より太い綿糸等を織り込むことにより、Z糸及びS糸が直接外部と接触する面積が小さくなるため、Z糸及びS糸の耐久性を持続させることができる。
The yarn constituting the charge generation unit 52 may include a yarn (cotton yarn or the like) that does not generate charge other than the Z yarn and the S yarn. By weaving cotton yarn thicker than Z yarn and S yarn, the area in which Z yarn and S yarn are in direct contact with the outside is reduced, so that the durability of Z yarn and S yarn can be maintained.
電荷発生部52は非電荷発生部53の外側に形成されているため、電荷発生部52は靴下106の外側に位置する。これにより靴下106の外側におけるカビや菌の発生を軽減することができるため、カビや菌が靴下106の内部への侵入を抑制することができる。例えば、雨に濡れた靴等を履いても靴側で発生した菌が靴下106の表面に設けられた電荷発生部52で除菌されるため、靴下106の内部への侵入を抑制することができる。
Since the charge generator 52 is formed outside the non-charge generator 53, the charge generator 52 is located outside the sock 106. As a result, generation of mold and fungi on the outside of the sock 106 can be reduced, so that mold and fungus can be prevented from entering the sock 106. For example, even when a shoe wet with rain is worn, the bacteria generated on the shoe side are sterilized by the charge generation unit 52 provided on the surface of the sock 106, so that intrusion into the inside of the sock 106 can be suppressed. it can.
また、電荷発生部52が直接ユーザの皮膚に触れない位置に配置されており、綿糸等からなる非電荷発生部53がユーザの皮膚に触れるため、靴下106の肌触りを向上させることができる。また、電荷発生部52は、非電荷発生部53の外側に形成されているため、ユーザが動いたときの歪は内側の非電荷発生部53より大きい。例えば同じ動きをした場合であっても、電荷発生部52の伸縮が、非電荷発生部53の伸縮より大きくなる。このため小さい動きで電荷発生部52から効率よく電荷を発生することができるため、抗菌作用等をより効率的に発揮させることができる。
Further, since the charge generation unit 52 is disposed at a position where it does not directly touch the user's skin, and the non-charge generation unit 53 made of cotton yarn or the like touches the user's skin, the touch of the sock 106 can be improved. In addition, since the charge generation unit 52 is formed outside the non-charge generation unit 53, the distortion when the user moves is larger than the inner non-charge generation unit 53. For example, even when the movement is the same, the expansion and contraction of the charge generation unit 52 is larger than the expansion and contraction of the non-charge generation unit 53. For this reason, since the charge can be efficiently generated from the charge generation unit 52 with a small movement, the antibacterial action and the like can be more efficiently exhibited.
電荷発生部52を構成する圧電糸1は、非電荷発生部53を構成する普通の糸に比べて吸湿性が低い。電荷発生部52は非電荷発生部53の外側に形成されているため、ユーザの身体側には吸湿性に優れた非電荷発生部53が接する。このため、汗が非電荷発生部53に吸湿されて、ユーザの不快感が低減される。また、非電荷発生部53に吸湿された水分は電荷発生部52側に発生する電荷によって除菌することができる。
The piezoelectric yarn 1 constituting the charge generating portion 52 has a lower hygroscopicity than the ordinary yarn constituting the non-charge generating portion 53. Since the charge generation part 52 is formed outside the non-charge generation part 53, the non-charge generation part 53 having excellent hygroscopicity is in contact with the body side of the user. For this reason, the sweat is absorbed by the non-charge generator 53, and the user's discomfort is reduced. In addition, the moisture absorbed by the non-charge generation unit 53 can be sterilized by the charge generated on the charge generation unit 52 side.
電荷発生部52は透明の素材で構成されていてもよい。電荷発生部52は非電荷発生部53の外側に形成されているため、電荷発生部52が透明であると、電荷発生部52を通して非電荷発生部53に光が照射可能である。非電荷発生部53が光を吸収して発熱可能な素材から構成されている場合、電荷発生部52が透明であるため、非電荷発生部53は外部からの光を吸収して発熱する。また、非電荷発生部53は電荷発生部52の内部に配置されているため、非電荷発生部53で発熱した熱は外部へ放出され難く、保温性が高くなる。なお、非電荷発生部53は伸縮すると発熱する素材であっても良い。この場合、電荷発生部52は必ずしも透明の素材である必要は無い。
The charge generator 52 may be made of a transparent material. Since the charge generation unit 52 is formed outside the non-charge generation unit 53, if the charge generation unit 52 is transparent, the non-charge generation unit 53 can be irradiated with light through the charge generation unit 52. When the non-charge generating unit 53 is made of a material capable of generating heat by absorbing light, the non-charge generating unit 53 absorbs light from the outside and generates heat because the charge generating unit 52 is transparent. Further, since the non-charge generating portion 53 is disposed inside the charge generating portion 52, the heat generated by the non-charge generating portion 53 is not easily released to the outside, and the heat retaining property is improved. The non-charge generating portion 53 may be a material that generates heat when it expands and contracts. In this case, the charge generator 52 does not necessarily need to be a transparent material.
図8(A)は、第8実施形態に係る靴107を説明するための図である。図8(B)は、靴107で生じる静電容量を説明するための図である。図9(A)は、第8実施形態の変形例に係る靴108を説明するための図である。図9(B)は、靴108で生じる静電容量を説明するための図である。図9(A)においては、説明の便宜上、靴107における本体80の一部を透過した状態で示している。
FIG. 8A is a view for explaining a shoe 107 according to the eighth embodiment. FIG. 8B is a diagram for explaining the capacitance generated in the shoe 107. FIG. 9A is a view for explaining a shoe 108 according to a modification of the eighth embodiment. FIG. 9B is a diagram for explaining the capacitance generated in the shoe 108. In FIG. 9A, for convenience of explanation, a part of the main body 80 in the shoe 107 is shown in a transparent state.
図8(A)に示すように、第8実施形態に係る靴107は、本体80、靴紐81及び金属線82を備える。靴紐81は電荷発生部83であり、外部からのエネルギーにより電荷を発生する電荷発生糸が織り込まれた紐である。また、靴紐81に織り込まれる糸のうち、いずれか一本が電荷発生糸であればよい。例えば、靴紐81は、S糸又はZ糸のいずれか一本を有する。また、靴紐81の断面形状は、特に限定されない。例えば、靴紐81の断面形状は、丸、四角等の形状が挙げられる。
As shown in FIG. 8A, a shoe 107 according to the eighth embodiment includes a main body 80, a shoelace 81, and a metal wire 82. The shoelace 81 is a charge generation part 83, which is a string in which a charge generation yarn that generates a charge by external energy is woven. Further, any one of the yarns woven into the shoelace 81 may be a charge generation yarn. For example, the shoelace 81 has one of S yarn or Z yarn. Moreover, the cross-sectional shape of the shoelace 81 is not particularly limited. For example, the cross-sectional shape of the shoelace 81 may be a circle or a square.
本体80には、金属線82が配置されている。金属線82は、靴紐81から地面に接する本体80の靴底まで、所定の間隔毎に設けられていてもよい。
A metal wire 82 is disposed on the main body 80. The metal wire 82 may be provided at predetermined intervals from the shoelace 81 to the shoe sole of the main body 80 in contact with the ground.
また、金属線82は、本体80の表面やソール内部に配置されていてもよいが、本体80内部に埋め込まれた状態で配置されていてもよい。金属線82が本体80内部に埋め込まれた状態で配置されると、金属線82は外気に直接接しないため、破損や腐食が防止されるため耐久性が向上する。
The metal wire 82 may be disposed on the surface of the main body 80 or inside the sole, but may be disposed in a state of being embedded in the main body 80. When the metal wire 82 is arranged in a state where it is embedded in the main body 80, the metal wire 82 does not directly contact the outside air, so that damage and corrosion are prevented, so that durability is improved.
ユーザが靴107を履いて、靴紐81を締めると、靴紐81に力が加わって、電荷が発生する。また、ユーザが靴107を履いた状態で歩行すると、靴紐81に力が加わることにより、電荷が発生する。靴紐81に発生した電荷は、図8(B)に示すように、靴107の靴底が接する地面Gと金属線82との間で、金属線82を介して静電容量が形成される。これにより、靴107の本体80におけるカビや菌の発生を軽減することができる。また、薬品等を使用せず、靴107を使用することによって発生する電荷を用いるため、抗菌効果を持続することができる。なお、金属線82の代わりに、金属繊維を含有させた不織布を本体80に配置させてもよい。これによっても同様の効果が得られ、また、金属線82に比べて広い範囲に金属を配置することができるため、より大きな静電容量が形成される。
When the user puts on the shoe 107 and tightens the shoelace 81, a force is applied to the shoelace 81 and a charge is generated. Further, when the user walks with the shoes 107 on, a force is applied to the shoelace 81, and thus electric charges are generated. As shown in FIG. 8B, the electric charge generated in the shoelace 81 forms an electrostatic capacity via the metal wire 82 between the ground line G where the shoe sole of the shoe 107 contacts and the metal wire 82. . Thereby, generation | occurrence | production of the mold | fungi and bacteria in the main body 80 of the shoe 107 can be reduced. In addition, the antibacterial effect can be maintained because the charges generated by using the shoes 107 without using chemicals are used. Instead of the metal wire 82, a nonwoven fabric containing metal fibers may be disposed on the main body 80. This also provides the same effect, and a larger capacitance can be formed because the metal can be arranged in a wider range than the metal wire 82.
図9(A)に示すように、靴108は、靴107と比べて金属線82の代わりに、金属ワイヤ84、金属ワイヤ85、金属線86及び金属薄層87を備える。金属ワイヤ84は靴紐81から本体80の靴底の上部までの所定の位置まで形成されている。金属ワイヤ84は一本であってもよいし、複数本設けられていてもよい。金属ワイヤ84は、靴紐81と、金属線86との間を接続している。金属薄層87は靴108の中敷きの部分に設けられる。金属薄層87の形状は靴の第1実施形態のような中敷きの形状であってもよいし、その他靴の中敷きの部分に設けられる形状であれば、特に限定されない。金属ワイヤ85は、金属薄層87から地面と接する本体80の靴底の下部を接続するように設けられている。金属ワイヤ85は、一本であってもよいし、複数本設けられていてもよい。
As shown in FIG. 9A, the shoe 108 includes a metal wire 84, a metal wire 85, a metal wire 86, and a metal thin layer 87 instead of the metal wire 82 as compared with the shoe 107. The metal wire 84 is formed to a predetermined position from the shoelace 81 to the upper part of the shoe sole of the main body 80. One metal wire 84 may be provided, or a plurality of metal wires 84 may be provided. The metal wire 84 connects between the shoelace 81 and the metal wire 86. The thin metal layer 87 is provided on the insole portion of the shoe 108. The shape of the metal thin layer 87 may be an insole shape as in the first embodiment of the shoe, and is not particularly limited as long as it is a shape provided in the insole portion of the shoe. The metal wire 85 is provided so as to connect the lower part of the shoe sole of the main body 80 in contact with the ground from the metal thin layer 87. One metal wire 85 may be provided, or a plurality of metal wires 85 may be provided.
ユーザが靴108を使用することにより、靴紐81に力が加わって、電荷が発生する。靴紐81に発生した電荷は、図9(B)に示すように、靴107の靴底の下部と靴紐81との間で、静電容量が形成される。このとき、金属ワイヤ84、金属ワイヤ85、金属線86及び金属薄層87が靴107の靴底の下部と靴紐81との間に存在するため、静電容量が形成される箇所は、金属線86及び金属薄層87が配置された箇所に選択することができる。これにより、静電容量が形成される箇所を拡張することができる。
When the user uses the shoe 108, a force is applied to the shoelace 81 and a charge is generated. The electric charge generated in the shoelace 81 forms a capacitance between the lower portion of the shoe sole of the shoe 107 and the shoelace 81 as shown in FIG. At this time, since the metal wire 84, the metal wire 85, the metal wire 86, and the metal thin layer 87 exist between the lower part of the shoe sole of the shoe 107 and the shoelace 81, the place where the electrostatic capacity is formed is the metal It can be selected where the line 86 and the thin metal layer 87 are disposed. Thereby, the location where the electrostatic capacitance is formed can be expanded.
また、静電容量が形成される箇所は、靴底の下部と靴紐81との間の距離から金属ワイヤ84、金属ワイヤ85、金属線86及び金属薄層87が存在する分だけ、距離を短縮することができる。すなわち、静電容量が形成される箇所は、金属線86から、金属薄層87までの区間になる。したがって、発生する静電容量を大きくすることができ、抗菌性等の効力を増強することができる。なお、金属ワイヤ84及び金属ワイヤ85は、いずれか片方のみ設けられていてもよい。
Further, the place where the electrostatic capacity is formed is the distance from the distance between the bottom of the shoe sole and the shoelace 81 by the amount of the metal wire 84, the metal wire 85, the metal wire 86, and the metal thin layer 87. It can be shortened. That is, the place where the electrostatic capacitance is formed is a section from the metal wire 86 to the thin metal layer 87. Therefore, the generated capacitance can be increased, and the efficacy such as antibacterial properties can be enhanced. Note that only one of the metal wire 84 and the metal wire 85 may be provided.
その他の靴107の変形例として、靴紐81周辺の靴紐81が接触する箇所の本体80に金属繊維を編み込んでもよい。これにより、靴108と同様に、静電容量が形成される箇所を水平方向に拡張したり、靴底と金属線82との間の距離から金属繊維が存在する分だけ、距離を短縮したりすることができる。
As another modified example of the shoe 107, a metal fiber may be knitted into the main body 80 where the shoelace 81 around the shoelace 81 contacts. As a result, as in the case of the shoe 108, the portion where the electrostatic capacitance is formed is expanded in the horizontal direction, or the distance is reduced by the amount of the metal fiber from the distance between the shoe sole and the metal wire 82. can do.
図10は、第9実施形態に係る靴109を説明するための図である。図11(A)~(C)は、靴109における締め付け動作を説明するための図である。図12は、靴109における制御回路のブロック図である。
FIG. 10 is a view for explaining a shoe 109 according to the ninth embodiment. FIGS. 11A to 11C are diagrams for explaining a tightening operation in the shoe 109. FIG. FIG. 12 is a block diagram of a control circuit in the shoe 109.
図10に示すように、第9実施形態に係る靴109は、本体90、圧電ファブリック91、ワイヤ92、回路基板93、ピン94、牽引紐95、及びモータ96を備える。
As shown in FIG. 10, a shoe 109 according to the ninth embodiment includes a main body 90, a piezoelectric fabric 91, a wire 92, a circuit board 93, a pin 94, a pulling string 95, and a motor 96.
靴109は、本体90の一部に圧電ファブリック91を備える。圧電ファブリック91は、前述の電荷発生部に相当する。圧電ファブリック91以外の本体90は、前述の非電荷発生部に相当する。圧電ファブリック91は、ユーザの足の裏面から甲を巻くように配置されている。なお、図10では、足指の付け根付近に圧電ファブリック91を配置する例を示したが、土踏まず付近、踵の付近等に配置してもよい。圧電ファブリック91は、これら複数の箇所に配置してもよい。圧電ファブリック91をこのような足の動きによる影響の大きな場所に配置することによって、圧電ファブリック91から効率よく電荷を発生させることができる。
The shoe 109 includes a piezoelectric fabric 91 in a part of the main body 90. The piezoelectric fabric 91 corresponds to the above-described charge generation unit. The main body 90 other than the piezoelectric fabric 91 corresponds to the above-described non-charge generating unit. The piezoelectric fabric 91 is disposed so as to wrap around the back of the user's foot. In addition, although the example which arrange | positions the piezoelectric fabric 91 near the base of a toe was shown in FIG. 10, you may arrange | position in the vicinity of an arch, the vicinity of a heel, etc. The piezoelectric fabric 91 may be disposed at these multiple locations. By disposing the piezoelectric fabric 91 at a place where the influence of the movement of the foot is large, charges can be efficiently generated from the piezoelectric fabric 91.
ワイヤ92は、ユーザの足の裏面から甲を巻くように配置されている。なお、図10では、ワイヤ92は一箇所に配置されたが、複数の箇所に配置してもよい。ワイヤ92が配置される箇所はユーザの足首付近であってもよい。ワイヤ92を複数の箇所に配置することにより、より高いフィット感が得られる。ワイヤ92を複数の箇所に配置する場合、各ワイヤ92の長さや幅等は、配置される箇所に応じて適宜変更可能である。ワイヤ92は、圧電ファブリック91に干渉しない場所に配置されてもよい。これによりワイヤ92の締め付けによる圧電ファブリック91への影響が抑制できる。
The wire 92 is arranged so as to wind the back from the back of the user's foot. In FIG. 10, the wire 92 is disposed at one place, but may be disposed at a plurality of places. The place where the wire 92 is disposed may be near the user's ankle. By arranging the wires 92 at a plurality of locations, a higher fit can be obtained. When the wires 92 are disposed at a plurality of locations, the length, width, and the like of each wire 92 can be appropriately changed according to the locations where the wires 92 are disposed. The wire 92 may be disposed at a place where it does not interfere with the piezoelectric fabric 91. Thereby, the influence on the piezoelectric fabric 91 due to the tightening of the wire 92 can be suppressed.
回路基板93は、ユーザの足のつま先上部付近に配置される。なお、図10では、足指のつま先上部付近に回路基板93を配置する例を示したが、足首付近、踵の付近等に配置してもよい。回路基板93をこのような足の動きによる影響の少ない場所に配置することによって、回路基板93の耐久性が高まる。
The circuit board 93 is arranged near the upper toe of the user's foot. In addition, although the example which arrange | positions the circuit board 93 near the toe upper part of a toe was shown in FIG. 10, you may arrange | position near an ankle, the vicinity of a heel, etc. By arranging the circuit board 93 in a place where the influence of the movement of the foot is small, the durability of the circuit board 93 is enhanced.
ピン94は、ユーザの足の甲付近に、ワイヤ92に接するように配置される。ピン94は、ワイヤ92の位置を維持するためのものである。図11(A)に示すように、ワイヤ92は、二つのピン94及び牽引紐95によって掛け渡されている。図11(A)に示される状態は、ユーザが停止している状態であり、ワイヤ92には、ほとんど牽引紐95からの引張力がかかっていない。
The pin 94 is disposed near the instep of the user so as to contact the wire 92. The pin 94 is for maintaining the position of the wire 92. As shown in FIG. 11A, the wire 92 is stretched by two pins 94 and a pulling string 95. The state shown in FIG. 11A is a state in which the user is stopped, and almost no tensile force is applied to the wire 92 from the traction string 95.
図12に示すように、回路基板93は、モータ96、制御部97、及び駆動部98を備える。圧電ファブリック91は、制御部97と接続されている。制御部97は、駆動部98を介して、モータ96に接続されている。制御部97は、圧電ファブリック91で発生した電圧を検知する。圧電ファブリック91は、本体90内に配設された配線ラインを介して、制御部97に接続されている。制御部97は例えばマイクロプロセッサで構成されるマイクロコンピュータが挙げられ、不図示の電池などの電源から電源供給用ラインを介して電源供給されている。制御部97は、圧電ファブリック91の曲げや捻れに基づく電圧を検出する。
As shown in FIG. 12, the circuit board 93 includes a motor 96, a control unit 97, and a drive unit 98. The piezoelectric fabric 91 is connected to the control unit 97. The control unit 97 is connected to the motor 96 via the drive unit 98. The control unit 97 detects a voltage generated in the piezoelectric fabric 91. The piezoelectric fabric 91 is connected to the control unit 97 via a wiring line disposed in the main body 90. The control unit 97 is, for example, a microcomputer composed of a microprocessor, and power is supplied from a power source such as a battery (not shown) via a power supply line. The control unit 97 detects a voltage based on bending or twisting of the piezoelectric fabric 91.
制御部97は検知した電圧に応じて、駆動部98にモータ96の回転数を指示する。モータ96は、例えば、ステッピングモータが挙げられる。ここで、モータ96の回転数はモータ96が回転するトータルの回数を示すものである。牽引紐95は、モータ96に接続されており、モータ96により、牽引紐95が操作される。牽引紐95の動きにより、ワイヤ92の引張具合が調節される。検知した電圧に応じた回転数は、例えば、電圧の大きさに比例する場合、電圧の大きさにいくつかの範囲を設けて、その範囲において段階的に回転数を変化させる場合、又は所定の電圧が所定の時間検出し続けた場合に回転数を変化させる場合等が挙げられる。所定の電圧が所定の時間検出し続けた場合に回転数を変化させる場合は、急にユーザがジョギング等を停止し再び開始したときに、急に靴109の締め付けが緩むことにより転倒することや違和感を防止できる。
The control unit 97 instructs the rotation number of the motor 96 to the drive unit 98 according to the detected voltage. An example of the motor 96 is a stepping motor. Here, the rotation number of the motor 96 indicates the total number of rotations of the motor 96. The tow string 95 is connected to a motor 96, and the tow string 95 is operated by the motor 96. The tension of the wire 92 is adjusted by the movement of the tow string 95. For example, when the number of revolutions according to the detected voltage is proportional to the magnitude of the voltage, several ranges are provided for the magnitude of the voltage, and the number of revolutions is changed stepwise in the range, or a predetermined number For example, when the voltage continues to be detected for a predetermined time, the rotation speed is changed. If the rotation speed is changed when the predetermined voltage continues to be detected for a predetermined time, when the user suddenly stops jogging or the like and starts again, the shoe 109 suddenly loosens, and the shoe 109 falls over. A sense of incongruity can be prevented.
このような構成では、ユーザが歩行やジョギング等を行った場合、圧電ファブリック91において発生する電圧に応じてワイヤ92の引張具合が調節される。これにより、ユーザの歩行状況やランニング状況に応じて靴109の締め付け具合が調整され、ユーザの足と一体化し、ユーザの足にフィットし易くなる。例えば、ユーザがゆっくり歩行する場合は比較的小さな圧力が圧電ファブリック91にかかる。このとき、図11(B)に示すように、モータ96が検出された圧力に応じて回転し、ワイヤ92は、牽引紐95によって少し引張される。
In such a configuration, when the user walks or jogs, the tension of the wire 92 is adjusted according to the voltage generated in the piezoelectric fabric 91. Thereby, the tightening degree of the shoes 109 is adjusted according to the user's walking condition and running condition, and the shoe 109 is integrated with the user's foot and easily fits the user's foot. For example, when the user walks slowly, a relatively small pressure is applied to the piezoelectric fabric 91. At this time, as shown in FIG. 11B, the motor 96 rotates in accordance with the detected pressure, and the wire 92 is slightly pulled by the pulling string 95.
これに対して、ユーザが走る場合は比較的大きな圧力が圧電ファブリック91にかかる。このとき、図11(C)に示すように、モータ96が検出された圧力に応じて回転し、ワイヤ92は、牽引紐95によって大きく引張される。このように、ユーザの動きに応じて、ワイヤ92による靴109の締め付け具合が調整されるため、ユーザは快適なフィット感が得られる。逆にユーザの動きの少ないときは、締め付けされないため、ユーザの足に対する不要な負担が防止され、かつ通気性が保たれる。
On the other hand, when the user runs, a relatively large pressure is applied to the piezoelectric fabric 91. At this time, as shown in FIG. 11C, the motor 96 rotates in accordance with the detected pressure, and the wire 92 is greatly pulled by the tow string 95. In this way, the degree of tightening of the shoe 109 by the wire 92 is adjusted according to the movement of the user, so that the user can have a comfortable fit. On the contrary, when the movement of the user is small, it is not tightened, so that an unnecessary burden on the user's foot is prevented and air permeability is maintained.
また、上述のPLLAを用いた圧電ファブリック91を採用することで、ソールの厚みを厚くすることなく、従来のセラミック圧電体(PZT)を用いる場合よりも重量を軽くできる。また、PLLAは可撓性を有するため、表面に形成する電極を、PLLAと同様の可撓性を有する有機材料にすれば、ジョギングや歩行による足からの負荷や衝撃によって割れることが防止される。また、PLLAであることで、環境負荷も軽減できる。
Further, by adopting the above-described piezoelectric fabric 91 using PLLA, the weight can be reduced as compared with the case of using a conventional ceramic piezoelectric body (PZT) without increasing the thickness of the sole. Since PLLA has flexibility, if the electrode formed on the surface is made of an organic material having flexibility similar to PLLA, it can be prevented from cracking due to a load or impact from a foot caused by jogging or walking. . Moreover, environmental load can also be reduced by using PLLA.
図13は、第10実施形態に係る衣類120を説明するための図である。図13に示すように、衣類120は、第9実施形態に係る靴109と同様に本体121、圧電ファブリック91、ワイヤ92、回路基板93、及びピン94を備える。圧電ファブリック91は、衣類120のいずれの位置にも配置可能であるが、ユーザの身体の動作を検知し易い箇所に配置されていることが好ましい。衣類120において、ワイヤ92は、衣類120の袖の部分に、袖の開口部と略平行に設けられている。なお、ワイヤ92は、袖に限られず、衣類120の装着時にユーザの身体にフィットさせたい箇所に設けることが可能である。さらにワイヤ92は、複数設けられてもよいし、網上に設けることもできる。これにより、ワイヤ92の伸縮する動きにバリエーションを持たせることができる。
FIG. 13 is a view for explaining a garment 120 according to the tenth embodiment. As shown in FIG. 13, the garment 120 includes a main body 121, a piezoelectric fabric 91, a wire 92, a circuit board 93, and pins 94, similar to the shoe 109 according to the ninth embodiment. The piezoelectric fabric 91 can be disposed at any position on the clothing 120, but is preferably disposed at a location where it is easy to detect the movement of the user's body. In the garment 120, the wire 92 is provided at a sleeve portion of the garment 120 substantially parallel to the opening of the sleeve. Note that the wire 92 is not limited to the sleeve, and can be provided at a location where the user wants to fit the user's body when the garment 120 is worn. Further, a plurality of wires 92 may be provided or provided on a net. Thereby, a variation can be given to the movement which the wire 92 expands and contracts.
回路基板93は、ユーザの動作を妨げ難い肩の上部等に配置されることが好ましい。またピン94はワイヤ92に沿って設けられる。なお、図示はしていないが衣類120の本体121において、ワイヤ92に対して略垂直に形状記憶ワイヤをさらに備えてもよい。これにより、ワイヤ92が締め付けられることにより本体121がめくれ上がることが防止できる。その他の構成の説明については、第9実施形態と同様な構成であるため省略する。
The circuit board 93 is preferably arranged on the upper part of the shoulder or the like which does not easily disturb the user's operation. The pin 94 is provided along the wire 92. Although not shown, the main body 121 of the garment 120 may further include a shape memory wire substantially perpendicular to the wire 92. Thereby, it can prevent that the main body 121 turns up by the wire 92 being tightened. The description of the other configuration is the same as that of the ninth embodiment, and will be omitted.
ユーザが衣類120を着用して動作すると、圧電ファブリック91において発生する電圧に応じてワイヤ92の引張具合が調節される。これにより、ユーザの動作に応じて衣類120の締め付け具合が調整され、衣類120がユーザの身体と一体化し、ユーザの身体にフィットし易くなる。このように、ユーザの動きに応じて、ワイヤ92による衣類120の締め付け具合が調整されるため、ユーザは快適なフィット感が得られる。したがって、ユーザが激しい動作を行う場合であっても、衣類120の裾等が邪魔にならず、ユーザはスムーズに動作できる。逆にユーザの動きの少ないときは、締め付けされないため、ユーザの身体に対する不要な負担が防止され、かつ通気性が保たれる。なお、第10実施形態として衣類120を例示したが、衣類120は一例であって、ズボンや上着等、その他の衣料にも適応できる。
When the user wears the garment 120 and operates, the tension of the wire 92 is adjusted according to the voltage generated in the piezoelectric fabric 91. Thereby, the tightening degree of the garment 120 is adjusted according to the user's operation, and the garment 120 is integrated with the user's body, so that the user's body can be easily fitted. Thus, since the tightening degree of the clothing 120 by the wire 92 is adjusted according to the user's movement, the user can obtain a comfortable fit. Therefore, even when the user performs a violent operation, the hem of the clothing 120 does not get in the way, and the user can operate smoothly. On the contrary, when the movement of the user is small, it is not tightened, so that an unnecessary burden on the user's body is prevented and air permeability is maintained. In addition, although clothing 120 was illustrated as 10th Embodiment, clothing 120 is an example, Comprising: It can adapt also to other clothing, such as pants and a jacket.
最後に、本実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
Finally, the description of the present embodiment should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
1,…圧電糸(電荷発生糸)
50,52,54,56…電荷発生部
51,53,55,57…非電荷発生部
101~109,120…靴下,靴,サポータ,衛生材料,衣類(ウェアラブル繊維製品)
61,62…つま先の部分,踵の部分(コーナー部分)
101…靴下,靴(履物) 1, ... Piezoelectric yarn (charge generating yarn)
50, 52, 54, 56 ... Charge generators 51, 53, 55, 57 ... Non-charge generators 101 to 109, 120 ... Socks, shoes, supporters, sanitary materials, clothing (wearable fiber products)
61, 62 ... toe part, heel part (corner part)
101 ... socks, shoes (footwear)
50,52,54,56…電荷発生部
51,53,55,57…非電荷発生部
101~109,120…靴下,靴,サポータ,衛生材料,衣類(ウェアラブル繊維製品)
61,62…つま先の部分,踵の部分(コーナー部分)
101…靴下,靴(履物) 1, ... Piezoelectric yarn (charge generating yarn)
50, 52, 54, 56 ...
61, 62 ... toe part, heel part (corner part)
101 ... socks, shoes (footwear)
Claims (9)
- 外部からのエネルギーにより電荷を発生する電荷発生糸を含む布状の電荷発生部と、
外部からのエネルギーにより電荷を発生しない非電荷発生糸を含む布状の非電荷発生部と、
を備えるウェアラブル繊維製品。 A cloth-like charge generation part including a charge generation thread that generates charge by energy from outside;
A cloth-like non-charge generating portion including a non-charge generating yarn that does not generate charges due to external energy;
Wearable textile products. - コーナー部分を備え、
前記電荷発生部は、前記コーナー部分に配置される請求項1に記載のウェアラブル繊維製品。 With corners,
The wearable fiber product according to claim 1, wherein the charge generation unit is disposed at the corner portion. - 請求項1又は2に記載のウェアラブル繊維製品を備える履物であって、
前記電荷発生部は、履物のつま先及び/又は踵の部分に配置される履物。 Footwear comprising the wearable fiber product according to claim 1 or 2,
The footwear is disposed on the toe and / or heel portion of the footwear. - 請求項1に記載のウェアラブル繊維製品を備える履物であって、
前記電荷発生部は、履物のつま先及び踵以外の部分に配置される履物。 A footwear comprising the wearable fiber product according to claim 1,
The charge generation part is footwear disposed on a portion other than a toe and a heel of the footwear. - 請求項1又は2に記載のウェアラブル繊維製品であって、
前記電荷発生糸は圧電体を含む。 The wearable fiber product according to claim 1 or 2,
The charge generation yarn includes a piezoelectric body. - 請求項1、2又は5に記載のウェアラブル繊維製品であって、
前記電荷発生糸は前記非電荷発生糸より伸び率が高い。 The wearable fiber product according to claim 1, 2, or 5,
The charge generating yarn has a higher elongation than the non-charge generating yarn. - 請求項1、2又は5に記載のウェアラブル繊維製品であって、
前記電荷発生部は前記非電荷発生部より伸び率が低い。 The wearable fiber product according to claim 1, 2, or 5,
The charge generation part has a lower elongation than the non-charge generation part. - 請求項3又は4に記載の履物であって、
前記電荷発生部の一方の端部又は他方の端部は、前記非電荷発生部と接続されている。 The footwear according to claim 3 or 4,
One end or the other end of the charge generation unit is connected to the non-charge generation unit. - 請求項8に記載の履物であって、
前記電荷発生部は前記非電荷発生部に囲まれている。 The footwear according to claim 8,
The charge generation part is surrounded by the non-charge generation part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018557751A JP6867408B2 (en) | 2016-12-22 | 2017-12-18 | Wearable textiles and footwear |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016248936 | 2016-12-22 | ||
JP2016-248936 | 2016-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018117004A1 true WO2018117004A1 (en) | 2018-06-28 |
Family
ID=62626404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/045251 WO2018117004A1 (en) | 2016-12-22 | 2017-12-18 | Wearable textile product, and footwear |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6867408B2 (en) |
WO (1) | WO2018117004A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018235965A1 (en) * | 2017-06-23 | 2020-04-23 | 岡本株式会社 | Knitted fabric, textile products knitted with the knitted fabric, and legwear |
CN115666304A (en) * | 2020-06-03 | 2023-01-31 | 株式会社村田制作所 | Face mask |
WO2024070739A1 (en) * | 2022-09-30 | 2024-04-04 | 株式会社村田製作所 | Cloth, and textile product |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004339632A (en) * | 2003-05-14 | 2004-12-02 | Shinichiro Ishibashi | Method and device for controlling odor |
JP2005287920A (en) * | 2004-04-02 | 2005-10-20 | Kozo Oshio | Fitness footwear |
JP2006521879A (en) * | 2003-03-06 | 2006-09-28 | アフェレント コーポレイション | Method and apparatus for improving human balance and walking and preventing foot injury |
JP2009516839A (en) * | 2005-11-23 | 2009-04-23 | アルファ−フィット・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Pressure sensor |
JP2016209149A (en) * | 2015-04-30 | 2016-12-15 | 帝人株式会社 | Antibacterial fabric transducer and shoe insole using the same |
JP2016209144A (en) * | 2015-04-30 | 2016-12-15 | 帝人株式会社 | Fabric-like piezoelectric sensor and shoe insole using the same |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2963892B1 (en) * | 1998-05-01 | 1999-10-18 | 株式会社ワコール | Lower body clothing for maternity |
JP2002209607A (en) * | 2001-01-19 | 2002-07-30 | Seiko Epson Corp | Insole inserted in shoes |
JP2016213269A (en) * | 2015-04-30 | 2016-12-15 | 帝人株式会社 | Fabric-like transducer and device including the same |
-
2017
- 2017-12-18 WO PCT/JP2017/045251 patent/WO2018117004A1/en active Application Filing
- 2017-12-18 JP JP2018557751A patent/JP6867408B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006521879A (en) * | 2003-03-06 | 2006-09-28 | アフェレント コーポレイション | Method and apparatus for improving human balance and walking and preventing foot injury |
JP2004339632A (en) * | 2003-05-14 | 2004-12-02 | Shinichiro Ishibashi | Method and device for controlling odor |
JP2005287920A (en) * | 2004-04-02 | 2005-10-20 | Kozo Oshio | Fitness footwear |
JP2009516839A (en) * | 2005-11-23 | 2009-04-23 | アルファ−フィット・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | Pressure sensor |
JP2016209149A (en) * | 2015-04-30 | 2016-12-15 | 帝人株式会社 | Antibacterial fabric transducer and shoe insole using the same |
JP2016209144A (en) * | 2015-04-30 | 2016-12-15 | 帝人株式会社 | Fabric-like piezoelectric sensor and shoe insole using the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2018235965A1 (en) * | 2017-06-23 | 2020-04-23 | 岡本株式会社 | Knitted fabric, textile products knitted with the knitted fabric, and legwear |
JP7148988B2 (en) | 2017-06-23 | 2022-10-06 | 岡本株式会社 | Knitted fabric, textile products knitted from the knitted fabric, and legwear |
CN115666304A (en) * | 2020-06-03 | 2023-01-31 | 株式会社村田制作所 | Face mask |
WO2024070739A1 (en) * | 2022-09-30 | 2024-04-04 | 株式会社村田製作所 | Cloth, and textile product |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018117004A1 (en) | 2019-10-24 |
JP6867408B2 (en) | 2021-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240001269A1 (en) | Filter and air-conditioning device | |
CN108701753B (en) | Piezoelectric substrate, piezoelectric woven fabric, piezoelectric knitted fabric, and piezoelectric device | |
JP6428979B1 (en) | Antibacterial thread, sheet, and seat cover | |
CN110088366B (en) | Antibacterial fiber | |
US11326279B2 (en) | Antibacterial yarn and antibacterial fabric | |
CN109964326B (en) | Piezoelectric substrate, sensor, actuator, biological information acquisition device, and piezoelectric fiber structure | |
WO2018117004A1 (en) | Wearable textile product, and footwear | |
US12063862B2 (en) | Piezoelectric fiber composite having separate joint portions and piezoelectric clothing containing the same | |
US11946172B2 (en) | Antibacterial twisted yarn, and antibacterial yarn and antibacterial cloth including antibacterial twisted yarns | |
JP6669317B2 (en) | Piezoelectric yarn | |
TW202106937A (en) | Thread and fabric | |
WO2021246461A1 (en) | Mask | |
JP6784334B2 (en) | Antibacterial yarn and antibacterial textile products | |
JP7643279B2 (en) | Fabrics and Textiles | |
JP2018203636A (en) | Antibacterial member | |
JP7148988B2 (en) | Knitted fabric, textile products knitted from the knitted fabric, and legwear |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17882997 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018557751 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17882997 Country of ref document: EP Kind code of ref document: A1 |