WO2018110969A1 - Flexible electromagnetic wave shielding material and manufacturing method therefor - Google Patents
Flexible electromagnetic wave shielding material and manufacturing method therefor Download PDFInfo
- Publication number
- WO2018110969A1 WO2018110969A1 PCT/KR2017/014635 KR2017014635W WO2018110969A1 WO 2018110969 A1 WO2018110969 A1 WO 2018110969A1 KR 2017014635 W KR2017014635 W KR 2017014635W WO 2018110969 A1 WO2018110969 A1 WO 2018110969A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- shielding material
- electromagnetic shielding
- nanofiber web
- flexible electromagnetic
- flexible
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 239000002121 nanofiber Substances 0.000 claims abstract description 116
- 229910052751 metal Inorganic materials 0.000 claims abstract description 44
- 239000002184 metal Substances 0.000 claims abstract description 44
- 239000002923 metal particle Substances 0.000 claims abstract description 30
- 239000011148 porous material Substances 0.000 claims abstract description 22
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 47
- 229920005989 resin Polymers 0.000 claims description 21
- 239000011347 resin Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- 229910052759 nickel Inorganic materials 0.000 claims description 20
- 239000010949 copper Substances 0.000 claims description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 14
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 239000002033 PVDF binder Substances 0.000 claims description 11
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 11
- 238000009987 spinning Methods 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 9
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims description 8
- 238000001523 electrospinning Methods 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 239000010935 stainless steel Substances 0.000 claims description 3
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 2
- 230000015556 catabolic process Effects 0.000 abstract 1
- 238000006731 degradation reaction Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 34
- 230000000052 comparative effect Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 9
- 230000032798 delamination Effects 0.000 description 6
- -1 polyvinylalchol Polymers 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 5
- 230000002265 prevention Effects 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000007772 electroless plating Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000004417 polycarbonate Substances 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229920002493 poly(chlorotrifluoroethylene) Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000005023 polychlorotrifluoroethylene (PCTFE) polymer Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229920001780 ECTFE Polymers 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 101001045744 Sus scrofa Hepatocyte nuclear factor 1-beta Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002073 nanorod Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012994 photoredox catalyst Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920006264 polyurethane film Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/28—Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
- D01D5/30—Conjugate filaments; Spinnerette packs therefor
- D01D5/34—Core-skin structure; Spinnerette packs therefor
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K9/00—Screening of apparatus or components against electric or magnetic fields
Definitions
- the present invention relates to a flexible electromagnetic shielding material, and more particularly, to a flexible electromagnetic shielding material and a method of manufacturing the same.
- Electromagnetic waves are a phenomenon in which energy moves in a sinusoidal shape while an electric field and a magnetic field interoperate with each other, and are useful for electronic devices such as wireless communication and radar.
- the electric field is generated by a voltage and easily shielded by a distance or an obstacle such as a tree, while the magnetic field is generated by a current and is inversely proportional to the distance but not easily shielded.
- the electromagnetic shielding material is typically made of a conductive material, and the electromagnetic waves radiated toward the electromagnetic shielding material are reflected back from the electromagnetic shielding material or flow to the ground to shield the electromagnetic wave.
- an example of the electromagnetic shielding material may be a metal case or a metal plate, the electromagnetic shielding material is difficult to express the elasticity, and once manufactured, since it is not easy to deform / restore to various shapes, it is easily employed in various applications There is a difficult problem.
- electric wave shielding materials such as metal plates and metal thin films are difficult to be closely contacted with parts that are the source of electromagnetic wave generation or parts that need protection from the source, and may be cracked due to bending at a step or uneven part, thereby preventing electromagnetic wave shielding performance. It may be difficult to express fully.
- an electromagnetic shielding material in which a conductive coating layer is formed on a lightweight support member such as a polymer film has been recently introduced, but there is a limit in the electromagnetic shielding performance according to the limitation of the area that can be coated on the support member.
- Films with a certain thickness or more have a lack of flexibility and are difficult to be completely adhered to a stepped or uneven part, and after being manufactured in a specific shape, it may be difficult to freely deform the shape.
- cracks, peeling, etc. occur frequently in the conductive coating layer coated during the shape deformation.
- the present invention has been made to solve the above-mentioned problems, and is excellent in elasticity, so that the shape can be freely modified as desired, so that it can be completely adhered to various shapes / structures such as unevenness or step of the application mounting surface to which the electromagnetic shielding material is employed. It is an object to provide a flexible electromagnetic shielding material that can be.
- another object of the present invention is to provide a flexible electromagnetic shielding material in which the deterioration of the electromagnetic shielding performance is prevented even in various shape changes.
- the present invention provides an electromagnetic wave shielding circuit module and an electronic device having the same, which can be easily employed in a light and small and small sized electronic device or a flexible electronic device having a component with a high density in a small area. There is this.
- the present invention is provided with a nanofiber web formed of nanofibers and comprising a plurality of pores and a metal layer covering at least a portion of the nanofibers disposed on the surface portion of the nanofiber web, Conductive nanofiber webs having at least a portion of metal particles; And a stretchable member bonded to one surface of the metal layer conductive nanofiber web.
- the nanofibers may be formed of a fiber-forming component including at least one selected from the group consisting of PVDF-based resins and urethane-based resins.
- the fiber forming component may include a PVDF resin and a urethane resin in a weight ratio of 1: 0.43 to 2.35.
- the nanofibers may have an average diameter of 150nm to 5 ⁇ m.
- the nanofiber web may have a thickness of 4 ⁇ 30 ⁇ m, the basis weight may be 3.00 ⁇ 20.00g / m2.
- the conductive nanofiber web may be formed through a spinning solution containing a resin, a solvent, and metal particles, the spinning solution is nickel, copper, silver, gold, chromium, platinum, titanium with respect to 100 parts by weight of the resin 30 to 70 parts by weight of metal particles including one or more selected from the group consisting of alloys and stainless steel may be provided.
- the conductive nanofiber web may have a porosity of 30 to 80%.
- the elastic member may be formed including a urethane-based resin.
- the stretchable member may have an average thickness of 10 to 150 ⁇ m.
- the metal layer may include at least one metal selected from the group consisting of nickel (Ni) and copper (Cu).
- the metal layer may be formed by sequentially stacking nickel (Ni), copper (Cu), and nickel (Ni).
- the metal layer may have an average thickness of 1 to 5 ⁇ m.
- the present invention (1) forming a nanofiber web having metal particles in at least a portion of the pores; (2) forming an elastic member on the lower surface of the nanofiber web; And (3) forming a metal layer to cover at least a portion of the nanofibers disposed on the surface portion of the nanofiber web to manufacture the conductive nanofiber web.
- step (1) may be performed by electrospinning a spinning solution containing a fiber forming component, a solvent, and metal particles.
- the present invention is a circuit board mounted element; And the above-described flexible electromagnetic shielding material provided on the circuit board to cover at least the upper and side portions of the device.
- the present invention provides an electronic device including the electromagnetic shielding circuit module.
- the electromagnetic wave shielding material according to the present invention has excellent elasticity and can be freely deformed as desired, and can be attached so as to be in close contact with a curved shape such as unevenness or step of the application surface on which the electromagnetic wave shielding material is disposed.
- deterioration of the electromagnetic wave shielding performance can be prevented even with various shape changes.
- parts are provided with high density in a small area, they can be provided in close contact with the mounted parts by overcoming the dense spacing and step between parts, thereby providing excellent electromagnetic wave shielding performance. Or can be easily employed in flexible electronics.
- FIG. 1 is a cross-sectional view of a flexible electromagnetic shielding material according to an embodiment of the present invention.
- FIG. 2 is a cross-sectional view of an electromagnetic shielding circuit module according to an embodiment of the present invention.
- the flexible electronic vehicle shielding material 1000 is formed of nanofibers and includes a plurality of pores (H) and a nanofiber web 110 and the nanofiber web 110.
- a conductive nanofiber web 100 having a metal layer 130 covering at least a portion of the nanofibers disposed on the surface portion of the nanofibers, and having metal particles 120 in at least a portion of the pores;
- an elastic member 200 bonded to one surface of the conductive nanofiber web 100.
- the nanofiber web 110 provided in the conductive nanofiber web 100 has a three-dimensional network structure, and includes a plurality of pores (H), the plurality of pores (H) to the nanofiber web (110) It may be formed surrounded by the nanofibers to form.
- the nanofibers may form nanofiber webs, and may be formed using any resin that may be commonly used in the art to express the elasticity of the nanofiber webs, and preferably, polyurethane , Polystyrene, polyvinylalchol, polymethyl methacrylate, polylactic acid, polyethylene oxide, polyvinyl acetate, polyacrylic acid , Polycaprolactone, polyacrylonitrile, polyvinylpyrrolidone, polyvinylchloride, polycarbonate, PC (polycarbonate), polyetherimide, polyethersulfone polyesthersulphone, polybenzimidazol, polyethylene terephthalate, polybutylene terephthal At least one selected from the group consisting of fluorine-based compound and a byte can be formed of a resin containing.
- polyurethane Polystyrene, polyvinylalchol, polymethyl methacrylate, polylactic acid, polyethylene oxide, polyvinyl acetate, polyacrylic acid , Poly
- the fluorine-based compound is polytetrafluoroethylene (PTFE) -based, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) -based, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) -based, Tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (EPE) system, tetrafluoroethylene-ethylene copolymer (ETFE) system, polychlorotrifluoroethylene (PCTFE) system, chlorotrifluoro It may be one species selected from the group consisting of a low ethylene-ethylene copolymer (ECTFE) system and a polyvinylidene fluoride (PVDF) system.
- PTFE polytetrafluoroethylene
- PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
- the nanofibers are PVDF, which is a fluorine-based compound, such that the nanofiber webs 110 formed of the nanofibers and the conductive nanofiber webs 100 having the same exhibit enhanced elasticity, heat resistance, chemical resistance, and mechanical strength.
- the fiber-forming component including at least one selected from the group consisting of a resin and a urethane resin may be blended and spun on a spinning solution.
- the fiber forming component may include PVDF-based resin and urethane-based resin in a weight ratio of 1: 0.43 to 2.35, preferably in a weight ratio of 1: 0.5 to 2, and most preferably in a weight ratio of 1: 1. have. If the weight ratio of the PVDF-based resin and the urethane-based resin is less than 1: 0.43, the elasticity of the flexible electromagnetic shielding agent may be lowered. If the weight ratio is greater than 1: 2.35, the mechanical properties may be reduced.
- the nanofibers are not limited as long as the nanofibers having an average diameter capable of forming a web in the art, preferably the average diameter is 150nm ⁇ 5 ⁇ m, more preferably the average diameter is 150 ⁇ 700 Nm, and more preferably, the average diameter may be 200 ⁇ 600nm. If the average diameter of the nanofibers is less than 150nm, the mechanical strength of the produced flexible electromagnetic shielding material may be lowered, and if the average diameter is larger than 5 ⁇ m, the elasticity may be lowered.
- the nanofiber web 110 may have a thickness of 4 to 30 ⁇ m, more preferably 4 to 13 ⁇ m, and more preferably 5 to 12 ⁇ m thickness. If the thickness of the nanofiber web 110 is less than 4 ⁇ m mechanical strength may be lowered or handling may not be easy, interlaminar peeling may occur, if the thickness exceeds 30 ⁇ m elasticity may be reduced have.
- the nanofiber web 110 may have a basis weight of 3 to 20 g / m 2, preferably a basis weight of 5 to 15 g / m 2. If the basis weight of the nanofiber web 110 is less than 3 g / m2 mechanical strength may be lowered or handling may not be easy, interlaminar peeling may occur, if the basis weight exceeds 20 g / m2 stretch This can be degraded.
- the metal particles 120 are provided in at least a portion of the pores of the conductive nanofiber web 100 to maintain a shielding force of the flexible electromagnetic shielding material 1000.
- the metal particles 120 may be at least one selected from the group consisting of nickel, copper, silver, gold, chromium, platinum, titanium alloys and stainless steel, preferably nickel or silver, more preferably nickel nano Using rods or silver nanorods may be more advantageous for maintaining shielding force.
- the metal particles 120 may be provided with 30 to 70 parts by weight, preferably 35 to 65 parts by weight with respect to 100 parts by weight of the fiber forming component.
- the metal particles may be provided in an amount of 50 parts by weight based on 100 parts by weight of the fiber forming component. If the metal particles 120 is less than 30 parts by weight with respect to 100 parts by weight of the nanofiber web 110, the holding force of the shielding efficiency may be lowered. If the metal particles 120 are greater than 70 parts by weight, the elasticity may be reduced.
- the metal particles 120 are provided in at least a portion of pores of the conductive nanofiber web 100 and are not limited as long as they can improve the elasticity of the conductive nanofiber web 100.
- the diameter may be 0.7 to 1.1 ⁇ m and the length is 1.5 to 3.5 ⁇ m, preferably 0.8 to 1.1 ⁇ m in diameter and 2 to 3 ⁇ m in length, but is not limited thereto.
- the conductive nanofiber web 100 includes a metal layer 130 covering at least a portion of the nanofibers disposed on the surface portion of the nanofiber web 110.
- the term 'surface portion' used in the present invention indicates nanofibers exposed to the surface when the nanofiber web 110 is viewed from the top regardless of depth.
- the portion in which the metal layer 130 is formed in the AB region may be referred to as a part of the nanofibers disposed on the surface portion of the nanofiber web 110.
- the nanofibers When the portion exposed in the upper direction of the web 110 includes pores, it is a range included in the surface portion from the nanofiber web 110 to the exposed pores.
- the metal layer 130 may be provided over the AB region, where A represents the uppermost point of the metal layer 130 formed on the surface portion, and B represents the uppermost point of the metal layer 130 formed on the surface portion. Represent the lowest point.
- the point B represents the lowermost portion of the metal layer 130 formed in the exposed pores.
- the metal layer 130 may have an average thickness of 1 to 5 ⁇ m, and preferably an average thickness of 2 to 4 ⁇ m. If the average thickness of the metal layer 130 is less than 1 ⁇ m, the shielding force may be lowered. If the average thickness exceeds 5 ⁇ m, the elasticity may be reduced.
- the metal layer 130 may be formed using any material as long as it can improve the shielding power in the art, preferably formed of one or more metals selected from the group consisting of nickel and copper. And, more preferably, forming nickel, copper and nickel so as to be sequentially stacked may be advantageous for improving the shielding force, elasticity.
- the first nickel layer functions to facilitate the formation of the copper layer
- the copper layer is twice the electrical conductivity of the electromagnetic wave shielding material manufactured.
- the third nickel layer may serve to prevent oxidation of the copper layer.
- the porosity of the conductive nanofiber web 100 is not limited as long as it can improve the elasticity, preferably 30 to 80%, more preferably 40 to 70%. If the porosity of the conductive nanofiber web 100 is less than 30%, the elasticity may be lowered. If the porosity exceeds 80%, mechanical properties may be lowered and interlayer peeling may occur.
- the stretchable member 200 serves to improve the stretchability of the flexible electromagnetic wave shielding material, and can be used without limitation as long as it is a material capable of improving the stretchability, and preferably, a urethane-based film is used. It may be more advantageous to improve the elasticity of the (1000).
- the stretchable member 200 is not limited as long as it can improve the stretchability of the flexible electromagnetic shielding material 1000, and preferably, the average thickness may be 10 to 150 ⁇ m, and more preferably, the average thickness may be 25 to 110 ⁇ m. And, more preferably, the average thickness may be 30 ⁇ 100 ⁇ m. If the average thickness of the stretchable member 200 is less than 10 ⁇ m, the stretchability may be reduced. If the average thickness exceeds 150 ⁇ m, interlayer peeling may occur.
- the electromagnetic shielding material (1) forming a nanofiber web having metal particles in at least a portion of the pores; (2) forming an elastic member on the lower surface of the nanofiber web; And (3) forming a metal layer to cover at least a portion of the nanofibers disposed on the surface portion of the nanofiber web to produce a conductive nanofiber web.
- step (1) the step of forming the nanofiber web 110 having the metal particles 120 in at least a portion of the pores.
- the method of providing the metal particles 120 in at least a portion of the pores of the nanofiber web 110 may be used without limitation as long as it is a method commonly used in the art, and preferably, a fiber forming component, a solvent, and a metal particle. Electrospinning a spinning solution comprising a may form a nanofiber web 110 having a metal particle 120 in at least a portion of the pores.
- the electrospinning can be appropriately selected dry electrospinning or wet electrospinning in consideration of the type of fiber-forming component, the type of solvent and the like contained in the spinning solution, the present invention is not particularly limited thereto.
- the method for producing a nanofiber web through the spun nanofibers can be prepared through a known method for producing a fibrous web.
- the fibrous mat collected and accumulated in the collector may be manufactured through a calendering process, but is not limited thereto.
- step (2) the step of forming the elastic member 200 on the lower surface of the nanofiber web 110.
- the method for forming the stretchable member 200 on the lower surface of the nanofiber web 110 may be formed by a method commonly used in the art, and preferably with the stretchable member 200 through heat fusion.
- the lower surface of the nanofiber web 110 in contact with the upper surface of the elastic member 200 may be laminated.
- the present invention is not particularly limited thereto.
- step to form a conductive nanofiber web 100 by forming a metal layer 130 to cover at least a portion of the nanofiber disposed on the surface portion of the nanofiber web 110 Perform the steps.
- the metal layer 130 may be used without limitation as long as it is a method of forming a metal layer commonly used in the art, and may be preferably formed by a method such as electroless plating, sputtering, screen printing and casting, and more preferably. Preferably, it may be formed through electroless plating, screen printing or casting, and more preferably, may be formed through electroless plating or screen printing, but is not limited thereto.
- the above-described flexible electromagnetic shielding material 1100 is implemented as an electromagnetic shielding circuit module 2000 as shown in FIG. 2, and specifically, at least the devices 1310 and 1320 on the circuit board 1200 on which the devices 1310 and 1320 are mounted.
- An electromagnetic shielding material 1100 may be provided on the circuit board 1200 to cover the upper and side portions of the substrate.
- the circuit board 1200 may be a known circuit board provided in an electronic device.
- the circuit board 1200 may be a PCB or an FPCB. Since the size and thickness of the circuit board 1200 can be changed according to the internal design of the electronic device to be implemented, the present invention is not particularly limited thereto.
- Electromagnetic shielding material 1100 according to an embodiment of the present invention, even if the separation distance between the adjacent elements (1310, 1320) is narrow or the step is caused by the thickness of the elements 1310, 1320 as shown in FIG. As it can be attached in close contact, it is advantageous to express more improved electromagnetic shielding performance.
- the electromagnetic wave shielding material according to the present invention has excellent elasticity and can be freely deformed as desired, and can be attached so as to be in close contact with a curved shape such as unevenness or step of the application surface on which the electromagnetic wave shielding material is disposed.
- deterioration of the electromagnetic wave shielding performance can be prevented even with various shape changes.
- parts are provided with high density in a small area, they can be provided in close contact with the mounted parts by overcoming the dense spacing and step between parts, thereby providing excellent electromagnetic wave shielding performance. Or can be easily employed in flexible electronics.
- polyvinylidene fluoride and polyurethane are mixed in a weight ratio of 1: 1 as a fiber-forming component, and 15 g of the fiber-forming component is 85 g with a weight ratio of dimethylacetamide and acetone as 70:30. It was dissolved in a magnetic bar at a temperature of 80 °C for 6 hours to prepare a mixed solution. 50 parts by weight of a nickel rod having an average diameter of 1 ⁇ m and an average length of 2.5 ⁇ m was mixed with the mixed solution using a mixing mixer with respect to 100 parts by weight of the fiber forming component.
- the spinning solution was put into a solution tank of an electrospinning apparatus and discharged at a rate of 15 ⁇ l / min / hole.
- the temperature of the radiation section is maintained at 30, the humidity is 50%, the distance between the collector and the spinneret tip is 20 cm, and a high voltage generator is used to impart a voltage of 40 kV or more to the spin nozzle pack.
- a nanofiber web formed of PVDF / PU composite nanofibers was prepared by imparting an air pressure of 0.03 MPa per pack nozzle.
- a calendering process was performed by applying heat and pressure at a temperature of 140 ° C. or higher and 1 kgf / cm 2 to dry the solvent and moisture remaining in the nanofiber web.
- the thickness of the produced nanofiber web is 10 ⁇ m
- the basis weight was 9.2g / m2.
- a polyurethane film having an average thickness of 100 ⁇ m was thermally fused at a temperature of 140 ° C. as a stretchable member on the bottom surface of the nanofiber web, and the stretchable member was laminated on the bottom surface of the nanofiber web.
- nickel, copper, and nickel were sequentially electrolessly plated so as to cover at least a portion of the nanofibers disposed on the upper surface portion of the laminated nanofiber web to form a metal layer having an average thickness of 3 ⁇ m, thereby manufacturing a flexible electromagnetic shielding material.
- the conductive nanofiber web provided in the manufactured flexible electromagnetic shielding agent had a porosity of 40%.
- Elasticity (elastic recovery rate) (%) [(length extended by external force)-(length removed by external force)] / [(length extended by external force)-(initial length)] ⁇ 100 (%)
- the resistance of the surface of the conductive fibrous web was measured through a resistance meter (HIOKI 3540 m ⁇ HITESTER, HIOKI) for the flexible electromagnetic shielding material prepared according to Examples and Comparative Examples. Based on the measured value of Comparative Example 1 measured as 100, the measured resistance value according to the example was expressed as a relative percentage.
- Example 9 Example 10 Example 11 Example 12 Example 13 Nano Fiber Web Thickness ( ⁇ m) 10 10 10 10 10 Basis weight (g / m2) 15 25 9.2 9.2 9.2 9.2 9.2 Metal particles Content (parts by weight) 50 50 20 35 65 80 Metal layer Thickness ( ⁇ m) 3 3 3 3 3 3 3 3 Conductive Nanofiber Web Porosity (%) 37 26 84 70 36 24 Elastic members Thickness ( ⁇ m) 100 100 100 100 100 100 elasticity(%) 92 76 94 96 90 70 Initial electromagnetic shielding performance (%) 87.0 87.1 84.3 87.1 87.3 87.4 Electromagnetic shielding performance change rate (%) 4.5 4.4 23.9 4.9 3.5 2.9 Delamination Prevention Assessment ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
- Example 1 3, 4, 7, 8, 11 satisfying the thickness and basis weight of the nanofiber web according to the present invention, the metal particle content, the porosity of the conductive nanofiber web, the thickness of the metal layer and the thickness of the stretchable member, etc. , 12, 15, 16, 19, and 20 are elastic and initial compared to Examples 2, 5, 6, 9, 10, 13, 14, 17, 18, 21 and Comparative Examples 1-3, in which any of these are missing.
- Examples 2, 5, 6, 9, 10, 13, 14, 17, 18, 21 and Comparative Examples 1-3 in which any of these are missing
- the effects of excellent electromagnetic shielding performance, small change rate of electromagnetic shielding performance, and no delamination were simultaneously achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
A flexible electromagnetic wave shielding material is provided. The electromagnetic wave shielding material according to one embodiment of the present invention comprises: a conductive nanofiber web having a nanofiber web formed of nanofibers and including a plurality of pores and a metal layer covering a part of the nanofibers disposed on a surface portion of the nanofiber web, in which metal particles are provided on at least a part of the pores; and an elastic member bonded to one surface of the metal layer of the conductive nanofiber web. Due to these features, as the electromagnetic wave shielding material has excellent elasticity, it is possible to freely modify the shape thereof as desired and to attach the electromagnetic wave shielding material to be completely adhered to a surface even if the surface where it is disposed has a curved shape such as uneven or stepped surfaces, and thus it is possible to exhibit excellent electromagnetic wave shielding performance. Further, degradation of the electromagnetic wave shielding performance can be prevented even with various shape changes. Furthermore, even when components are mounted with a high density in a narrow area, the electromagnetic wave shielding material can be provided to completely adhere to the mounted components by overcoming tight spacing and steps between the components, such that the electromagnetic wave shielding material can be easily adopted in compact or flexible electronic devices.
Description
본 발명은 플렉서블 전자파 차폐재에 관한 것으로, 더욱 상세하게는 플렉서블 전자파 차폐재 및 이의 제조방법에 관한 것이다.The present invention relates to a flexible electromagnetic shielding material, and more particularly, to a flexible electromagnetic shielding material and a method of manufacturing the same.
전자파란 전계와 자계가 상호 연동하면서 정현파 모양으로 에너지가 이동하는 현상으로서, 무선통신이나 레이더와 같은 전자기기에 유용하게 이용된다. 상기 전계는 전압에 의해 생성되고 거리가 멀어지거나 나무 등의 장애물에 의해 쉽게 차폐되는 반면에, 상기 자계는 전류에 의해 생성되고 거리에 반비례하지만 쉽게 차폐되지 않는 특성이 있다.Electromagnetic waves are a phenomenon in which energy moves in a sinusoidal shape while an electric field and a magnetic field interoperate with each other, and are useful for electronic devices such as wireless communication and radar. The electric field is generated by a voltage and easily shielded by a distance or an obstacle such as a tree, while the magnetic field is generated by a current and is inversely proportional to the distance but not easily shielded.
한편, 최근의 전자기기는 전자기기 내부 간섭원 또는 외부 간섭원에 의해 발생되는 전자파 장애(electromagnetic interference: EMI)에 민감하여, 전자파에 의해 전자기기의 오동작이 유발될 우려가 있다. 또한, 전자기기를 사용하는 사용자 역시 전자기기에서 발생되는 전자파에 의해 유해한 영향을 받을 수 있다.On the other hand, recent electronic devices are sensitive to electromagnetic interference (EMI) generated by internal or external interference sources of electronic devices, and there is a concern that malfunction of electronic devices may be caused by electromagnetic waves. In addition, the user using the electronic device may also be harmfully affected by the electromagnetic waves generated from the electronic device.
이에 따라 최근에는 전자파 발생원 또는 외부에서 방사되는 전자파로부터 전자기기의 부품이나 인체를 보호하기 위한 전자파 차폐재에 대한 관심이 급증하고 있다.Accordingly, in recent years, the interest in the electromagnetic wave shielding material for protecting the parts and the human body of the electronic device from the electromagnetic wave source or the electromagnetic radiation emitted from the outside.
상기 전자파 차폐재는 통상적으로 도전성 재료로 제조되며, 전자파 차폐재를 향해 방사된 전자파는 전자파 차폐재에서 다시 반사되거나 그라운드로 흐르게 됨으로써 전자파를 차폐하게 된다. 한편, 상기 전자파 차폐재의 일예는 금속케이스나 금속플레이트일 수 있는데, 이와 같은 전자파 차폐재는 신축성이 발현되기 어렵고, 한 번 제조된 후에는 다양한 형상으로 변형/복원이 쉽지 않음에 따라서 다양한 적용처에 쉽게 채용되기 어려운 문제가 있다. 특히, 금속플레이트나 금속박막과 같은 전차파 차폐재는 전자파 발생원인 부품 또는 발생원으로부터 보호가 필요한 부품에 이격 없이 밀착되기 어렵고, 단차나 요철이 있는 부분에서 꺾임으로 인하여 크랙이 발생할 수 있어서 전자파 차폐성능을 온전히 발현하기 어려울 수 있다.The electromagnetic shielding material is typically made of a conductive material, and the electromagnetic waves radiated toward the electromagnetic shielding material are reflected back from the electromagnetic shielding material or flow to the ground to shield the electromagnetic wave. On the other hand, an example of the electromagnetic shielding material may be a metal case or a metal plate, the electromagnetic shielding material is difficult to express the elasticity, and once manufactured, since it is not easy to deform / restore to various shapes, it is easily employed in various applications There is a difficult problem. In particular, electric wave shielding materials such as metal plates and metal thin films are difficult to be closely contacted with parts that are the source of electromagnetic wave generation or parts that need protection from the source, and may be cracked due to bending at a step or uneven part, thereby preventing electromagnetic wave shielding performance. It may be difficult to express fully.
이러한 문제를 해결하기 위하여 최근에는 고분자 필름과 같은 경량화된 지지부재 상에 도전성 코팅층을 형성시킨 전자파 차폐재가 소개되고 있으나 지지부재 상에 코팅할 수 있는 면적의 제한에 따라서 전자파 차폐성능에 한계가 있으며, 일정두께 이상의 필름은 유연성이 부족하여 단차, 요철이 있는 부품상에 완전히 밀착하여 구비되기 어렵고, 특정 형상으로 제조된 후에는 형상을 자유자재로 변형하기에 어려울 수 있으며, 형상의 변형이 가능한 경우에도 형상변형 시 피복된 전도성 코팅층에 크랙, 박리 등이 빈번하게 발생하는 문제가 있다.In order to solve this problem, an electromagnetic shielding material in which a conductive coating layer is formed on a lightweight support member such as a polymer film has been recently introduced, but there is a limit in the electromagnetic shielding performance according to the limitation of the area that can be coated on the support member. Films with a certain thickness or more have a lack of flexibility and are difficult to be completely adhered to a stepped or uneven part, and after being manufactured in a specific shape, it may be difficult to freely deform the shape. There is a problem that cracks, peeling, etc. occur frequently in the conductive coating layer coated during the shape deformation.
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 신축성이 뛰어나서 형상을 원하는 대로 자유자재로 변형 가능함에 따라서 전자파 차폐재가 채용되는 적용처 부착면의 요철이나 단차 등의 다양한 형상/구조에도 완전히 밀착될 수 있는 플렉서블 전자파 차폐재를 제공하는데 목적이 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is excellent in elasticity, so that the shape can be freely modified as desired, so that it can be completely adhered to various shapes / structures such as unevenness or step of the application mounting surface to which the electromagnetic shielding material is employed. It is an object to provide a flexible electromagnetic shielding material that can be.
또한, 본 발명은 다양한 형상변화에도 전자파 차폐성능의 저하가 방지되는 플렉서블 전자파 차폐재를 제공하는데 다른 목적이 있다.In addition, another object of the present invention is to provide a flexible electromagnetic shielding material in which the deterioration of the electromagnetic shielding performance is prevented even in various shape changes.
나아가, 본 발명은 좁은 면적내 높은 밀도로 부품이 구비된 경박단소형화된전자기기나 플렉서블한 전자기기에 용이하게 채용될 수 있는 전자파 차폐형 회로모듈 및 이를 구비한 전자기기를 제공하는데 또 다른 목적이 있다.Furthermore, the present invention provides an electromagnetic wave shielding circuit module and an electronic device having the same, which can be easily employed in a light and small and small sized electronic device or a flexible electronic device having a component with a high density in a small area. There is this.
상술한 과제를 해결하기 위해 본 발명은, 나노섬유로 형성되고 다수의 기공을 포함하는 나노섬유웹 및 상기 나노섬유웹의 표면부에 배치된 나노섬유의 적어도 일부를 덮는 금속층을 구비하며, 기공의 적어도 일부에 메탈입자를 구비하는 도전성 나노섬유웹; 및 상기 금속층 도전성 나노섬유웹의 일면에 접합된 신축성 부재;를 포함하는 플렉서블 전자파 차폐재를 제공한다.In order to solve the above problems, the present invention is provided with a nanofiber web formed of nanofibers and comprising a plurality of pores and a metal layer covering at least a portion of the nanofibers disposed on the surface portion of the nanofiber web, Conductive nanofiber webs having at least a portion of metal particles; And a stretchable member bonded to one surface of the metal layer conductive nanofiber web.
본 발명의 일 실시예에 의하면, 상기 나노섬유는 PVDF계 수지 및 우레탄계 수지로 이루어진 군에서 선택되는 1종 이상을 포함하는 섬유형성성분으로 형성될 수 있다.According to one embodiment of the present invention, the nanofibers may be formed of a fiber-forming component including at least one selected from the group consisting of PVDF-based resins and urethane-based resins.
또한, 상기 섬유형성성분은 PVDF계 수지 및 우레탄계 수지를 1 : 0.43 ~ 2.35의 중량비로 구비할 수 있다.In addition, the fiber forming component may include a PVDF resin and a urethane resin in a weight ratio of 1: 0.43 to 2.35.
또한, 상기 나노섬유는 평균직경이 150㎚ ~ 5㎛일 수 있다.In addition, the nanofibers may have an average diameter of 150nm to 5㎛.
또한, 상기 나노섬유웹은 두께가 4 ~ 30㎛일 수 있고, 평량이 3.00 ~ 20.00g/㎡일 수 있다.In addition, the nanofiber web may have a thickness of 4 ~ 30㎛, the basis weight may be 3.00 ~ 20.00g / ㎡.
또한, 상기 도전성 나노섬유웹은 수지, 용매 및 메탈입자를 포함하는 방사용액을 통해 형성될 수 있고, 상기 방사용액은 상기 수지 100 중량부에 대하여 니켈, 구리, 은, 금, 크롬, 백금, 티타늄 합금 및 스테인리스 스틸로 이루어진 군에서 선택된 1종 이상을 포함하는 메탈입자를 30 ~ 70 중량부로 구비할 수 있다In addition, the conductive nanofiber web may be formed through a spinning solution containing a resin, a solvent, and metal particles, the spinning solution is nickel, copper, silver, gold, chromium, platinum, titanium with respect to 100 parts by weight of the resin 30 to 70 parts by weight of metal particles including one or more selected from the group consisting of alloys and stainless steel may be provided.
또한, 상기 도전성 나노섬유웹은 기공도가 30 ~ 80%일 수 있다.In addition, the conductive nanofiber web may have a porosity of 30 to 80%.
또한, 상기 신축성 부재는 우레탄계 수지를 포함하여 형성될 수 있다.In addition, the elastic member may be formed including a urethane-based resin.
또한, 상기 신축성 부재는 평균두께가 10 ~ 150㎛일 수 있다.In addition, the stretchable member may have an average thickness of 10 to 150 μm.
또한, 상기 금속층은 니켈(Ni) 및 구리(Cu)로 이루어진 군에서 선택된 1종 이상의 금속을 포함할 수 있다.In addition, the metal layer may include at least one metal selected from the group consisting of nickel (Ni) and copper (Cu).
또한, 상기 금속층은 니켈(Ni), 구리(Cu) 및 니켈(Ni)이 순차적으로 적층되어 형성될 수 있다.In addition, the metal layer may be formed by sequentially stacking nickel (Ni), copper (Cu), and nickel (Ni).
또한, 상기 금속층은 평균두께가 1 ~ 5㎛일 수 있다.In addition, the metal layer may have an average thickness of 1 to 5㎛.
한편, 본 발명은 (1) 기공의 적어도 일부에 메탈입자를 구비하는 나노섬유웹을 형성하는 단계; (2) 상기 나노섬유웹의 하부면에 신축성 부재를 형성하는 단계; 및 (3) 상기 나노섬유웹의 표면부에 배치된 나노섬유의 적어도 일부를 덮도록 금속층을 형성하여 도전성 나노섬유웹을 제조하는 단계;를 포함하는 플렉서블 전자파 차폐재 제조방법을 제공한다.On the other hand, the present invention (1) forming a nanofiber web having metal particles in at least a portion of the pores; (2) forming an elastic member on the lower surface of the nanofiber web; And (3) forming a metal layer to cover at least a portion of the nanofibers disposed on the surface portion of the nanofiber web to manufacture the conductive nanofiber web.
본 발명의 일 실시예에 의하면, 상기 (1) 단계는, 섬유형성성분, 용매 및 메탈입자를 포함하는 방사용액을 전기방사시켜서 수행할 수 있다.According to an embodiment of the present invention, step (1) may be performed by electrospinning a spinning solution containing a fiber forming component, a solvent, and metal particles.
한편, 본 발명은 소자가 실장된 회로기판; 및 적어도 상기 소자의 상부와 측부를 덮도록 회로기판 상에 구비되는 상술한 플렉서블 전자파 차폐재;를 포함하는 전자파 차폐형 회로모듈을 제공한다.On the other hand, the present invention is a circuit board mounted element; And the above-described flexible electromagnetic shielding material provided on the circuit board to cover at least the upper and side portions of the device.
한편, 본 발명은 상기 전자파 차폐형 회로모듈을 포함하는 전자기기를 제공한다.On the other hand, the present invention provides an electronic device including the electromagnetic shielding circuit module.
본 발명에 따른 전자파 차폐재는 신축성이 뛰어나서 형상을 원하는 대로 자유자재로 변형 가능하며, 전자파 차폐재가 배치되는 적용처 부착면의 요철이나 단차 등의 굴곡진 형상에도 완전히 밀착되도록 부착이 가능하다. 또한, 다양한 형상변화에도 전자파 차폐성능의 저하가 방지될 수 있다. 나아가 좁은 면적내 높은 밀도로 부품이 구비된 경우에도 부품간 조밀한 이격 간격 및 단차를 극복하여 실장된 부품들에 완전히 밀착하여 구비될 수 있어서 우수한 전자파 차폐성능을 발현할 수 있음에 따라서 경박단소형화되거나 플렉서블한 전자기기에 용이하게 채용될 수 있다.The electromagnetic wave shielding material according to the present invention has excellent elasticity and can be freely deformed as desired, and can be attached so as to be in close contact with a curved shape such as unevenness or step of the application surface on which the electromagnetic wave shielding material is disposed. In addition, deterioration of the electromagnetic wave shielding performance can be prevented even with various shape changes. Furthermore, even when parts are provided with high density in a small area, they can be provided in close contact with the mounted parts by overcoming the dense spacing and step between parts, thereby providing excellent electromagnetic wave shielding performance. Or can be easily employed in flexible electronics.
도 1은 본 발명의 일 실시예에 따른 플렉서블 전자파 차폐재의 단면도, 그리고,1 is a cross-sectional view of a flexible electromagnetic shielding material according to an embodiment of the present invention, and
도 2는 본 발명의 일실시예에 따른 전자파 차폐형 회로모듈의 단면도이다.2 is a cross-sectional view of an electromagnetic shielding circuit module according to an embodiment of the present invention.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. The drawings and description are to be regarded as illustrative in nature and not restrictive. Like reference numerals designate like elements throughout the specification.
도 1을 참조하면, 본 발명의 일 실시예에 의한 플렉서블 전자차 차폐재(1000)는 나노섬유로 형성되고 다수의 기공(H)을 포함하는 나노섬유웹(110) 및 상기 나노섬유웹(110)의 표면부에 배치된 나노섬유의 적어도 일부를 덮는 금속층(130)을 구비하며, 기공의 적어도 일부에 메탈입자(120)를 구비하는 도전성 나노섬유웹(100); 및 상기 도전성 나노섬유웹(100)의 일면에 접합된 신축성 부재(200);를 포함한다.Referring to FIG. 1, the flexible electronic vehicle shielding material 1000 according to an embodiment of the present invention is formed of nanofibers and includes a plurality of pores (H) and a nanofiber web 110 and the nanofiber web 110. A conductive nanofiber web 100 having a metal layer 130 covering at least a portion of the nanofibers disposed on the surface portion of the nanofibers, and having metal particles 120 in at least a portion of the pores; And an elastic member 200 bonded to one surface of the conductive nanofiber web 100.
상기 도전성 나노섬유웹(100)에 구비되는 나노섬유웹(110)은 3차원 네트워크 구조로써, 다수의 기공(H)을 포함하고, 상기 다수의 기공(H)는 상기 나노섬유웹(110)을 형성하는 나노섬유들에 의해 둘러싸여 형성될 수 있다.The nanofiber web 110 provided in the conductive nanofiber web 100 has a three-dimensional network structure, and includes a plurality of pores (H), the plurality of pores (H) to the nanofiber web (110) It may be formed surrounded by the nanofibers to form.
상기 나노섬유는 나노섬유웹을 형성할 수 있는 것으로, 나노섬유웹의 신축성을 발현하기 위하여 당업계에서 통상적으로 사용할 수 있는 수지라면 제한 없이 사용하여 형성할 수 있으며, 바람직하게는 폴리우레탄(polyurethane), 폴리스티렌(polystylene), 폴리비닐알코올(polyvinylalchol), 폴리메틸메타크릴레이트(polymethyl methacrylate), 폴리락트산(polylactic acid), 폴리에틸렌옥사이드(polyethyleneoxide), 폴리비닐아세테이트(polyvinyl acetate), 폴리아크릴산(polyacrylic acid), 폴리카프로락톤(polycaprolactone), 폴리아크릴로니트릴(polyacrylonitrile), 폴리비닐피롤리돈 (polyvinylpyrrolidone), 폴리염화비닐(polyvinylchloride), 폴리카보네이트, PC(polycarbonate), 폴리이더이미드(polyetherimide), 폴리이더술폰(polyesthersulphone), 폴리벤지미다졸(polybenzimidazol), 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트 및 불소계화합물로 이루어진 군에서 선택된 1종 이상을 포함하는 수지로 형성할 수 있다. 또한, 상기 불소계화합물은 폴리테트라플루오로에틸렌(PTFE)계, 테트라플루오로에틸렌-퍼플루오로알킬 비닐 에테르 공중합체(PFA)계, 테트라플루오로에틸렌-헥사플루오로프로필렌 공중합체(FEP)계, 테트라플루오로에틸렌-헥사플루오로프로필렌-퍼플루오로알킬 비닐 에테르 공중합체(EPE)계, 테트라플루오로에틸렌-에틸렌 공중합체(ETFE)계, 폴리클로로트리플루오로에틸렌(PCTFE)계, 클로로트리플루오로에틸렌-에틸렌 공중합체(ECTFE)계 및 폴리비닐리덴플루오라이드(PVDF)계로 이루어진 군에서 선택된 1 종이상일 수 있다. 바람직하게는 상기 나노섬유로 형성되는 나노섬유웹(110) 및 이를 구비하는 도전성 나노섬유웹(100)이 보다 향상된 신축성, 내열성, 내화학성 및 기계적 강도를 발현하도록, 상기 나노섬유는 불소계 화합물인 PVDF계 수지 및 우레탄계 수지로 이루어진 군에서 선택되는 1종 이상을 포함하는 섬유형성성분이 방사용액 상에서 블렌드 되어 방사된 것일 수 있다. 일예로, 상기 섬유형성성분은 PVDF계 수지 및 우레탄계 수지를 1: 0.43 ~ 2.35의 중량비로, 바람직하게는 1 : 0.5 ~ 2의 중량비로, 가장 가람직하게는 1 : 1의 중량비로 포함할 수 있다. 만일 상기 PVDF계 수지 및 우레탄계 수지의 중량비가 1 : 0.43 미만이면 플렉서블 전자파 차폐제의 신축성이 저하될 수 있고, 중량비가 1 : 2.35를 초과하면 기계적 물성이 저하될 수 있다.The nanofibers may form nanofiber webs, and may be formed using any resin that may be commonly used in the art to express the elasticity of the nanofiber webs, and preferably, polyurethane , Polystyrene, polyvinylalchol, polymethyl methacrylate, polylactic acid, polyethylene oxide, polyvinyl acetate, polyacrylic acid , Polycaprolactone, polyacrylonitrile, polyvinylpyrrolidone, polyvinylchloride, polycarbonate, PC (polycarbonate), polyetherimide, polyethersulfone polyesthersulphone, polybenzimidazol, polyethylene terephthalate, polybutylene terephthal At least one selected from the group consisting of fluorine-based compound and a byte can be formed of a resin containing. In addition, the fluorine-based compound is polytetrafluoroethylene (PTFE) -based, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA) -based, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) -based, Tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (EPE) system, tetrafluoroethylene-ethylene copolymer (ETFE) system, polychlorotrifluoroethylene (PCTFE) system, chlorotrifluoro It may be one species selected from the group consisting of a low ethylene-ethylene copolymer (ECTFE) system and a polyvinylidene fluoride (PVDF) system. Preferably, the nanofibers are PVDF, which is a fluorine-based compound, such that the nanofiber webs 110 formed of the nanofibers and the conductive nanofiber webs 100 having the same exhibit enhanced elasticity, heat resistance, chemical resistance, and mechanical strength. The fiber-forming component including at least one selected from the group consisting of a resin and a urethane resin may be blended and spun on a spinning solution. For example, the fiber forming component may include PVDF-based resin and urethane-based resin in a weight ratio of 1: 0.43 to 2.35, preferably in a weight ratio of 1: 0.5 to 2, and most preferably in a weight ratio of 1: 1. have. If the weight ratio of the PVDF-based resin and the urethane-based resin is less than 1: 0.43, the elasticity of the flexible electromagnetic shielding agent may be lowered. If the weight ratio is greater than 1: 2.35, the mechanical properties may be reduced.
또한, 상기 나노섬유는 당업계에서 통상적으로 웹을 형성할 수 있는 평균직경을 갖는 나노섬유라면 제한되지 않으며, 바람직하게는 평균직경이 150㎚ ~ 5㎛, 보다 바람직하게는 평균직경이 150 ~ 700㎚일 수 있고, 더욱 바람직하게는 평균직경이 200 ~ 600㎚ 일 수 있다. 만일 상기 나노섬유의 평균직경이 150㎚ 미만이면 제조되는 플렉서블 전자파 차폐재의 기계적 강도가 저하될 수 있고, 평균직경이 5㎛를 초과하면 신축성이 저하될 수 있다.In addition, the nanofibers are not limited as long as the nanofibers having an average diameter capable of forming a web in the art, preferably the average diameter is 150nm ~ 5㎛, more preferably the average diameter is 150 ~ 700 Nm, and more preferably, the average diameter may be 200 ~ 600nm. If the average diameter of the nanofibers is less than 150nm, the mechanical strength of the produced flexible electromagnetic shielding material may be lowered, and if the average diameter is larger than 5㎛, the elasticity may be lowered.
또한, 상기 나노섬유웹(110)은 두께가 4 ~ 30㎛, 보다 바람직하게는 4 ~ 13㎛일 수 있고, 더욱 바람직하게는 두께가 5 ~ 12㎛ 일 수 있다. 만일 상기 나노섬유웹(110)의 두께가 4㎛ 미만이면 기계적 강도가 저하될 수 있거나 핸들링이 용이하지 않을 수 있고, 층간 박리현상이 발생할 수 있으며, 두께가 30㎛를 초과하면 신축성이 저하될 수 있다.In addition, the nanofiber web 110 may have a thickness of 4 to 30㎛, more preferably 4 to 13㎛, and more preferably 5 to 12㎛ thickness. If the thickness of the nanofiber web 110 is less than 4㎛ mechanical strength may be lowered or handling may not be easy, interlaminar peeling may occur, if the thickness exceeds 30㎛ elasticity may be reduced have.
그리고, 상기 나노섬유웹(110)은 평량이 3 ~ 20g/㎡일 수 있고, 바람직하게는 평량이 5 ~ 15 g/㎡일 수 있다. 만일 상기 나노섬유웹(110)의 평량이 3 g/㎡ 미만이면 기계적 강도가 저하될 수 있거나 핸들링이 용이하지 않을 수 있고, 층간 박리현상이 발생할 수 있으며, 평량이 20 g/㎡를 초과하면 신축성이 저하될 수 있다.The nanofiber web 110 may have a basis weight of 3 to 20 g / m 2, preferably a basis weight of 5 to 15 g / m 2. If the basis weight of the nanofiber web 110 is less than 3 g / ㎡ mechanical strength may be lowered or handling may not be easy, interlaminar peeling may occur, if the basis weight exceeds 20 g / ㎡ stretch This can be degraded.
상기 메탈입자(120)는 도전성 나노섬유웹(100)의 기공의 적어도 일부에 구비되어, 플렉서블 전자파 차폐재(1000)의 차폐력을 유지시키는 기능을 한다. 상기 메탈입자(120)는 니켈, 구리, 은, 금, 크롬, 백금, 티타늄 합금 및 스테인리스 스틸로 이루어진 군에서 선택된 1종 이상일 수 있고, 바람직하게는 니켈 또는 은일 수 있으며, 보다 바람직하게는 니켈 나노로드 또는 은 나노로드를 사용하는 것이 차폐력 유지에 더욱 유리할 수 있다. The metal particles 120 are provided in at least a portion of the pores of the conductive nanofiber web 100 to maintain a shielding force of the flexible electromagnetic shielding material 1000. The metal particles 120 may be at least one selected from the group consisting of nickel, copper, silver, gold, chromium, platinum, titanium alloys and stainless steel, preferably nickel or silver, more preferably nickel nano Using rods or silver nanorods may be more advantageous for maintaining shielding force.
또한, 상기 메탈입자(120)는 상기 섬유형성성분 100 중량부에 대하여 30 ~ 70 중량부로, 바람직하게는 35 ~ 65 중량부로 구비될 수 있다. 일예로, 상기 메탈입자는 상기 섬유형성성분 100 중량부에 대하여 50 중량부로 구비될 수 있다. 만일 상기 메탈입자(120)가 상기 나노섬유웹(110) 100 중량부에 대하여 30 중량부 미만이면 차폐효율의 유지력이 저하될 수 있고, 70 중량부를 초과하면 신축성이 저하될 수 있다.In addition, the metal particles 120 may be provided with 30 to 70 parts by weight, preferably 35 to 65 parts by weight with respect to 100 parts by weight of the fiber forming component. For example, the metal particles may be provided in an amount of 50 parts by weight based on 100 parts by weight of the fiber forming component. If the metal particles 120 is less than 30 parts by weight with respect to 100 parts by weight of the nanofiber web 110, the holding force of the shielding efficiency may be lowered. If the metal particles 120 are greater than 70 parts by weight, the elasticity may be reduced.
그리고, 상기 메탈입자(120)는 도전성 나노섬유웹(100)의 기공의 적어도 일부에 구비되며 도전성 나노섬유웹(100)의 신축성을 향상시킬 수 있는 크기라면 제한되지 않으며, 일예로 상기 메탈입자(120)가 나노로드 형상인 경우 직경이 0.7 ~ 1.1㎛ 및 길이가 1.5 ~ 3.5㎛, 바람직하게는 직경이 0.8 ~ 1.1㎛ 및 길이가 2 ~ 3㎛일 수 있으나, 이에 제한되지 않는다.In addition, the metal particles 120 are provided in at least a portion of pores of the conductive nanofiber web 100 and are not limited as long as they can improve the elasticity of the conductive nanofiber web 100. When 120 is a nanorod shape, the diameter may be 0.7 to 1.1 µm and the length is 1.5 to 3.5 µm, preferably 0.8 to 1.1 µm in diameter and 2 to 3 µm in length, but is not limited thereto.
상기 도전성 나노섬유웹(100)은 상기 나노섬유웹(110)의 표면부에 배치된 나노섬유의 적어도 일부를 덮는 금속층(130)을 구비한다.The conductive nanofiber web 100 includes a metal layer 130 covering at least a portion of the nanofibers disposed on the surface portion of the nanofiber web 110.
한편, 본 발명에서 사용하는 용어인 상기 '표면부'는 깊이에 관계 없이 상부에서 나노섬유웹(110)을 보았을 때 표면에 노출되는 나노섬유를 나타낸다. 구체적으로 도 1에 도시된 바와 같이 A-B 영역에서 금속층(130)이 형성된 부분을 나노섬유웹(110)의 표면부에 배치된 나노섬유의 일부라고 할 수 있으며, 도 1에 도시되지 않았지만, 나노섬유웹(110) 상부 방향에서 노출된 부분이 기공을 포함할 경우에는 나노섬유웹(110)에서 노출된 기공까지 표면부에 포함되는 범위이다.Meanwhile, the term 'surface portion' used in the present invention indicates nanofibers exposed to the surface when the nanofiber web 110 is viewed from the top regardless of depth. Specifically, as shown in FIG. 1, the portion in which the metal layer 130 is formed in the AB region may be referred to as a part of the nanofibers disposed on the surface portion of the nanofiber web 110. Although not shown in FIG. 1, the nanofibers When the portion exposed in the upper direction of the web 110 includes pores, it is a range included in the surface portion from the nanofiber web 110 to the exposed pores.
상기 금속층(130)은 도 1에 도시된 바와 같이, A-B 영역에 걸쳐 구비될 수 있는데, A는 표면부에 형성된 금속층(130)의 최상부 지점을 나타내며, B는 표면부에 형성된 금속층(130)의 최하부 지점을 나타낸다. 또한, 일예로 노출된 부분이 기공을 포함하여 금속층(130)의 최하부 지점이 기공 상에 위치할 경우, 상기 B 지점은 노출된 기공에 형성된 금속층(130)의 최하부를 나타낸다.As shown in FIG. 1, the metal layer 130 may be provided over the AB region, where A represents the uppermost point of the metal layer 130 formed on the surface portion, and B represents the uppermost point of the metal layer 130 formed on the surface portion. Represent the lowest point. In addition, as an example, when the exposed portion includes pores and the lowermost point of the metal layer 130 is positioned on the pores, the point B represents the lowermost portion of the metal layer 130 formed in the exposed pores.
또한, 상기 금속층(130)은 평균두께가 1 ~ 5㎛일 수 있고, 바람직하게는 평균두께가 2 ~ 4㎛ 일 수 있다. 만일 상기 금속층(130)의 평균두께가 1㎛ 미만이면 차폐력이 저하될 수 있고, 평균두께가 5㎛를 초과하면 신축성이 저하될 수 있다.In addition, the metal layer 130 may have an average thickness of 1 to 5 μm, and preferably an average thickness of 2 to 4 μm. If the average thickness of the metal layer 130 is less than 1 μm, the shielding force may be lowered. If the average thickness exceeds 5 μm, the elasticity may be reduced.
한편, 상기 금속층(130)은 당업계에서 통상적으로 차폐력을 향상시킬 수 있는 물질이라면 제한 없이 사용하여 형성할 수 있으며, 바람직하게는 니켈 및 구리로 이루어진 군에서 선택된 1종 이상의 금속을 포함하여 형성할 수 있고, 보다 바람직하게는 니켈, 구리 및 니켈이 순차적으로 적층되도록 형성하는 것이 차폐력, 신축성 향상에 유리할 수 있다.On the other hand, the metal layer 130 may be formed using any material as long as it can improve the shielding power in the art, preferably formed of one or more metals selected from the group consisting of nickel and copper. And, more preferably, forming nickel, copper and nickel so as to be sequentially stacked may be advantageous for improving the shielding force, elasticity.
상기와 같이 니켈, 구리 및 니켈이 순차적으로 적층되도록 금속층(130)을 형성하는 경우, 첫번째 니켈층은 구리층의 형성을 용이하도록 하는 기능을 하고, 두번때 구리층은 제조되는 전자파 차폐재의 전기전도도를 조절하는 기능을 하며, 세번째 니켈층은 구리층의 산화를 방지하는 기능을 수행할 수 있다.When the metal layer 130 is formed so that nickel, copper, and nickel are sequentially stacked as described above, the first nickel layer functions to facilitate the formation of the copper layer, and the copper layer is twice the electrical conductivity of the electromagnetic wave shielding material manufactured. The third nickel layer may serve to prevent oxidation of the copper layer.
상기 도전성 나노섬유웹(100)의 기공도는 신축성을 향상시킬 수 있는 기공도라면 제한되지 않으며, 바람직하게는 30 ~ 80% 일 수 있고, 보다 바람직하게는 40 ~ 70% 일 수 있다. 만일 상기 도전성 나노섬유웹(100)의 기공도가 30% 미만이면 신축성이 저하될 수 있고, 기공도가 80%를 초과하면 기계적 물성이 저하되고, 층간 박리가 발생할 수 있다. The porosity of the conductive nanofiber web 100 is not limited as long as it can improve the elasticity, preferably 30 to 80%, more preferably 40 to 70%. If the porosity of the conductive nanofiber web 100 is less than 30%, the elasticity may be lowered. If the porosity exceeds 80%, mechanical properties may be lowered and interlayer peeling may occur.
다음, 상기 신축성 부재(200)는 플렉서블 전자파 차폐재의 신축성을 향상시키는 기능을 하는 것으로, 통상적으로 신축성을 향상 시킬 수 있는 물질이라면 제한 없이 사용할 수 있으며, 바람직하게는 우레탄계 필름을 사용하는 것이 플렉서블 전자파 차폐재(1000)의 신축성 향상에 더욱 유리할 수 있다.Next, the stretchable member 200 serves to improve the stretchability of the flexible electromagnetic wave shielding material, and can be used without limitation as long as it is a material capable of improving the stretchability, and preferably, a urethane-based film is used. It may be more advantageous to improve the elasticity of the (1000).
또한. 상기 신축성 부재(200)는 플렉서블 전자파 차폐재(1000)의 신축성을 향상시킬 수 있는 두께라면 제한 되지 않으며, 바람직하게는 평균두께가 10 ~ 150㎛, 보다 바람직하게는 평균두께가 25 ~ 110㎛ 일 수 있고, 더욱 바람직하게는 평균두께가 30 ~ 100㎛ 일 수 있다. 만일 상기 신축성 부재(200)의 평균두께가 10㎛ 미만이면 신축성이 저하될 수 있고, 평균두께가 150㎛를 초과하면 층간 박리현상이 발생할 수 있다.Also. The stretchable member 200 is not limited as long as it can improve the stretchability of the flexible electromagnetic shielding material 1000, and preferably, the average thickness may be 10 to 150 μm, and more preferably, the average thickness may be 25 to 110 μm. And, more preferably, the average thickness may be 30 ~ 100㎛. If the average thickness of the stretchable member 200 is less than 10 μm, the stretchability may be reduced. If the average thickness exceeds 150 μm, interlayer peeling may occur.
한편, 본 발명의 일 실시예에 따른 전자파 차폐재는, (1) 기공의 적어도 일부에 메탈입자를 구비하는 나노섬유웹을 형성하는 단계; (2) 상기 나노섬유웹의 하부면에 신축성 부재를 형성하는 단계; 및 (3) 상기 나노섬유웹의 표면부에 배치된 나노섬유의 적어도 일부를 덮도록 금속층을 형성하여 도전성 나노섬유웹을 제조하는 단계;를 포함하여 제조된다.On the other hand, the electromagnetic shielding material according to an embodiment of the present invention, (1) forming a nanofiber web having metal particles in at least a portion of the pores; (2) forming an elastic member on the lower surface of the nanofiber web; And (3) forming a metal layer to cover at least a portion of the nanofibers disposed on the surface portion of the nanofiber web to produce a conductive nanofiber web.
먼저, 본 발명에 따른 (1) 단계로써, 기공의 적어도 일부에 메탈입자(120)를 구비하는 나노섬유웹(110)을 형성하는 단계를 수행한다.First, in step (1) according to the present invention, the step of forming the nanofiber web 110 having the metal particles 120 in at least a portion of the pores.
상기 나노섬유웹(110) 기공의 적어도 일부에 메탈입자(120)를 구비시키는 방법은, 당업계에서 통상적으로 사용할 수 있는 방법이라면 제한 없이 사용할 수 있으며, 바람직하게는 섬유형성성분, 용매 및 메탈입자를 포함하는 방사용액을 전기방사시켜서 기공의 적어도 일부에 메탈입자(120)를 구비하는 나노섬유웹(110)을 형성할 수 있다.The method of providing the metal particles 120 in at least a portion of the pores of the nanofiber web 110 may be used without limitation as long as it is a method commonly used in the art, and preferably, a fiber forming component, a solvent, and a metal particle. Electrospinning a spinning solution comprising a may form a nanofiber web 110 having a metal particle 120 in at least a portion of the pores.
한편, 상기 전기방사는 방사용액에 포함되는 섬유형성성분의 종류, 용매의 종류 등을 고려하여 건식 전기방사 또는 습식 전기방사를 적절히 선택할 수 있음에 따라, 본 발명은 이에 대해 특별히 한정하지 않는다. 또한, 방사된 나노섬유를 통해 나노섬유웹을 제조하는 방법은 공지된 섬유웹을 제조하는 방법을 통해 제조할 수 있다. 일예로, 콜렉터에서 수집, 축적시킨 섬유매트에 대해 캘린더링 공정을 거쳐 제조될 수 있으나, 이에 제한되는 것은 아니다.On the other hand, the electrospinning can be appropriately selected dry electrospinning or wet electrospinning in consideration of the type of fiber-forming component, the type of solvent and the like contained in the spinning solution, the present invention is not particularly limited thereto. In addition, the method for producing a nanofiber web through the spun nanofibers can be prepared through a known method for producing a fibrous web. For example, the fibrous mat collected and accumulated in the collector may be manufactured through a calendering process, but is not limited thereto.
다음, 본 발명에 따른 (2) 단계로써, 상기 나노섬유웹(110)의 하부면에 신축성 부재(200)를 형성하는 단계를 수행한다.Next, as a step (2) according to the present invention, the step of forming the elastic member 200 on the lower surface of the nanofiber web 110.
상기 나노섬유웹(110)의 하부면에 신축성 부재(200)를 형성하는 방법은, 당업계에서 통상적으로 사용할 수 있는 방법으로 형성할 수 있으며, 바람직하게는 열융착을 통해 신축성 부재(200)와 접하는 나노섬유웹(110)의 하부면과 신축성 부재(200)의 상부면을 합지할 수 있다. 한편, 상기 열융착의 조건은 나노섬유를 형성하는 수지의 종류에 의해 변경될 수 있음에 따라, 본 발명에서는 이를 특별히 한정하지 않는다.The method for forming the stretchable member 200 on the lower surface of the nanofiber web 110 may be formed by a method commonly used in the art, and preferably with the stretchable member 200 through heat fusion. The lower surface of the nanofiber web 110 in contact with the upper surface of the elastic member 200 may be laminated. On the other hand, as the conditions of the heat fusion may be changed by the type of resin forming the nanofibers, the present invention is not particularly limited thereto.
다음, 본 발명에 따른 (3) 단계로써, 상기 나노섬유웹(110)의 표면부에 배치된 나노섬유의 적어도 일부를 덮도록 금속층(130)을 형성하여 도전성 나노섬유웹(100)을 제조하는 단계를 수행한다.Next, according to the present invention (3) step, to form a conductive nanofiber web 100 by forming a metal layer 130 to cover at least a portion of the nanofiber disposed on the surface portion of the nanofiber web 110 Perform the steps.
상기 금속층(130)은 당업계에서 통상적으로 사용할 수 있는 금속층의 형성방법이라면 제한 없이 사용할 수 있고, 바람직하게는 무전해 도금, 스퍼터링, 스크린 프린팅 및 캐스팅 등의 방법을 통해 형성할 수 있고, 보다 바람직하게는 무전해 도금, 스크린 프린팅 또는 캐스팅을 통해 형성할 수 있으며, 더욱 바람직하게는 무전해 도금 또는 스크린 프린팅을 통해 형성할 수 있으나, 이제 제한되는 것은 아니다.The metal layer 130 may be used without limitation as long as it is a method of forming a metal layer commonly used in the art, and may be preferably formed by a method such as electroless plating, sputtering, screen printing and casting, and more preferably. Preferably, it may be formed through electroless plating, screen printing or casting, and more preferably, may be formed through electroless plating or screen printing, but is not limited thereto.
상술한 플렉서블 전자파 차폐재(1100)는 도 2와 같이 전자파 차폐형 회로모듈(2000)로 구현되며, 구체적으로 소자(1310, 1320)가 실장된 회로기판(1200) 상부에 적어도 상기 소자(1310, 1320)의 상부 및 측부를 덮도록 전자파 차폐재(1100)가 회로기판(1200) 상에 구비될 수 있다.The above-described flexible electromagnetic shielding material 1100 is implemented as an electromagnetic shielding circuit module 2000 as shown in FIG. 2, and specifically, at least the devices 1310 and 1320 on the circuit board 1200 on which the devices 1310 and 1320 are mounted. An electromagnetic shielding material 1100 may be provided on the circuit board 1200 to cover the upper and side portions of the substrate.
상기 회로기판(1200)은 전자기기에 구비되는 공지된 회로기판일 수 있으며, 일예로 PCB, FPCB일 수 있다. 상기 회로기판(1200)의 크기, 두께는 구현하고자 하는 전자기기의 내부설계에 따라 변경이 가능함에 따라서 본 발명은 이에 대해 특별히 한정하지 않는다.The circuit board 1200 may be a known circuit board provided in an electronic device. For example, the circuit board 1200 may be a PCB or an FPCB. Since the size and thickness of the circuit board 1200 can be changed according to the internal design of the electronic device to be implemented, the present invention is not particularly limited thereto.
또한, 상기 소자(1310, 1320)는 구동칩과 같은 전자기기내 회로기판에 실장되는 공지된 소자일 수 있으며, 전자파 및/또는 열을 발생하거나 전자파에 민감하여 쉽게 오작동 되는 소자일 수 있다.In addition, the devices 1310 and 1320 may be well-known devices mounted on a circuit board in an electronic device such as a driving chip, and may be devices that generate electromagnetic waves and / or heat or are sensitive to electromagnetic waves and easily malfunction.
본 발명의 일 실시예에 의한 전자파차폐재(1100)는 도 2와 같이 인접한 소자(1310, 1320) 간의 이격거리가 좁거나 소자(1310, 1320)의 두께로 인한 단차가 발생한 경우에도 소자의 측부에 밀착되도록 부착될 수 있음에 따라서 보다 향상된 전자파 차폐성능을 발현하기에 유리하다. Electromagnetic shielding material 1100 according to an embodiment of the present invention, even if the separation distance between the adjacent elements (1310, 1320) is narrow or the step is caused by the thickness of the elements 1310, 1320 as shown in FIG. As it can be attached in close contact, it is advantageous to express more improved electromagnetic shielding performance.
본 발명에 따른 전자파 차폐재는 신축성이 뛰어나서 형상을 원하는 대로 자유자재로 변형 가능하며, 전자파 차폐재가 배치되는 적용처 부착면의 요철이나 단차 등의 굴곡진 형상에도 완전히 밀착되도록 부착이 가능하다. 또한, 다양한 형상변화에도 전자파 차폐성능의 저하가 방지될 수 있다. 나아가 좁은 면적내 높은 밀도로 부품이 구비된 경우에도 부품간 조밀한 이격 간격 및 단차를 극복하여 실장된 부품들에 완전히 밀착하여 구비될 수 있어서 우수한 전자파 차폐성능을 발현할 수 있음에 따라서 경박단소형화되거나 플렉서블한 전자기기에 용이하게 채용될 수 있다.The electromagnetic wave shielding material according to the present invention has excellent elasticity and can be freely deformed as desired, and can be attached so as to be in close contact with a curved shape such as unevenness or step of the application surface on which the electromagnetic wave shielding material is disposed. In addition, deterioration of the electromagnetic wave shielding performance can be prevented even with various shape changes. Furthermore, even when parts are provided with high density in a small area, they can be provided in close contact with the mounted parts by overcoming the dense spacing and step between parts, thereby providing excellent electromagnetic wave shielding performance. Or can be easily employed in flexible electronics.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.Although the present invention will be described in more detail with reference to the following examples, the following examples are not intended to limit the scope of the present invention, which will be construed as to aid the understanding of the present invention.
<실시예 1><Example 1>
먼저, 방사용액을 제조하기 위하여 섬유형성성분으로 폴리비닐리덴플루오라이드 및 폴리우레탄을 1 : 1의 중량비로 혼합하고, 상기 섬유형성성분 15g을 디메틸아세트아마이드와 아세톤의 중량비를 70:30으로 하여 85g에 80℃의 온도로 6시간 마그네틱바를 사용하여 용해시켜 혼합용액을 제조했다. 상기 혼압용액에 평균직경이 1㎛ 이며 평균길이가 2.5㎛ 인 니켈 로드(rod)를 섬유형성성분 100 중량부에 대하여 50 중량부를 혼합믹서를 사용하여 혼합했다. 상기 방사용액을 전기방사장치의 용액탱크에 투입하고, 15㎕/min/hole의 속도로 토출하였다. 이때 방사 구간의 온도는 30, 습도는 50%를 유지하고, 콜렉터와 방사노즐팁 간 거리를 20㎝하고 고전압 발생기를 사용하여 방사 노즐 팩(Spin Nozzle Pack)에 40kV 이상의 전압을 부여함과 동시에 방사 팩 노즐 당 0.03MPa의 에어압력을 부여하여 PVDF/PU 복합 나노섬유로 형성된 나노섬유웹을 제조하였다. 다음으로 상기 나노섬유웹에 잔존하는 용매, 수분을 건조시키기 위해 140℃ 이상의 온도 및 1kgf/㎠로 열과 압력을 가해 캘린더링 공정을 실시하였다. 이때, 제조된 나노섬유웹의 두께는 10㎛, 평량은 9.2g/㎡였다.
First, in order to prepare a spinning solution, polyvinylidene fluoride and polyurethane are mixed in a weight ratio of 1: 1 as a fiber-forming component, and 15 g of the fiber-forming component is 85 g with a weight ratio of dimethylacetamide and acetone as 70:30. It was dissolved in a magnetic bar at a temperature of 80 ℃ for 6 hours to prepare a mixed solution. 50 parts by weight of a nickel rod having an average diameter of 1 μm and an average length of 2.5 μm was mixed with the mixed solution using a mixing mixer with respect to 100 parts by weight of the fiber forming component. The spinning solution was put into a solution tank of an electrospinning apparatus and discharged at a rate of 15 µl / min / hole. At this time, the temperature of the radiation section is maintained at 30, the humidity is 50%, the distance between the collector and the spinneret tip is 20 cm, and a high voltage generator is used to impart a voltage of 40 kV or more to the spin nozzle pack. A nanofiber web formed of PVDF / PU composite nanofibers was prepared by imparting an air pressure of 0.03 MPa per pack nozzle. Next, a calendering process was performed by applying heat and pressure at a temperature of 140 ° C. or higher and 1 kgf / cm 2 to dry the solvent and moisture remaining in the nanofiber web. At this time, the thickness of the produced nanofiber web is 10㎛, the basis weight was 9.2g / ㎡.
이후, 상기 나노섬유웹의 하부면에 신축성 부재로 평균두께 100㎛의 폴리우레탄필름을 온도 140℃로 열융착하여 나노섬유웹의 하부면에 신축성 부재를 합지하였다. 그 후 합지한 나노섬유웹의 상부 표면부에 배치된 나노섬유의 적어도 일부를 덮도록 니켈, 구리 및 니켈을 순차적으로 무전해도금하여 평균두께 3㎛의 금속층을 형성시켜서 플렉서블 전자파 차폐재를 제조하였다. 제조된 플렉서블 전자파 차폐제에 구비되는 도전성 나노섬유웹은 기공도는 40%였다. Thereafter, a polyurethane film having an average thickness of 100 μm was thermally fused at a temperature of 140 ° C. as a stretchable member on the bottom surface of the nanofiber web, and the stretchable member was laminated on the bottom surface of the nanofiber web. Thereafter, nickel, copper, and nickel were sequentially electrolessly plated so as to cover at least a portion of the nanofibers disposed on the upper surface portion of the laminated nanofiber web to form a metal layer having an average thickness of 3 μm, thereby manufacturing a flexible electromagnetic shielding material. The conductive nanofiber web provided in the manufactured flexible electromagnetic shielding agent had a porosity of 40%.
<실시예 2 ~ 22 및 비교예 1 ~ 3><Examples 2 to 22 and Comparative Examples 1 to 3>
실시예 1과 동일하게 실시하여 제조하되, 하기 표 1 내지 표 4와 같이 나노섬유웹의 두께와 평량, 메탈입자 함량, 도전성 나노섬유웹의 기공도, 금속층의 두께 및 신축성 부재의 두께 등을 변경하여 표 1 내지 표 4와 같은 플렉서블 전자파 차폐재를 제조하였다.Manufactured in the same manner as in Example 1, but changing the thickness and basis weight of the nanofiber web, metal particle content, the porosity of the conductive nanofiber web, the thickness of the metal layer and the thickness of the stretchable member as shown in Table 1 to Table 4 To prepare a flexible electromagnetic shielding material as shown in Table 1 to Table 4.
<실험예 1>Experimental Example 1
실시예 및 비교예에서 제조된 플렉서블 전자파 차폐재에 대하여 하기의 물성을 평가하여 표 1 내지 표 4에 나타내었다.The following physical properties were evaluated for the flexible electromagnetic shielding materials prepared in Examples and Comparative Examples, and are shown in Tables 1 to 4.
1. 신축성(탄성회복률) 평가1. Evaluation of elasticity (elastic recovery rate)
실시예 및 비교예에 따라 제조된 플렉서블 전자파 차폐재에 대하여 UTM (Universal Testing Machine, Instron사, 3343)를 통해 50% 신장시킨 후 외력을 제거하여 하기 수학식 1에 따른 신축성을 평가하였다.About flexible electromagnetic wave shielding material manufactured according to the Example and the comparative example After stretching by 50% through UTM (Universal Testing Machine, Instron, 3343) to remove the external force to evaluate the elasticity according to the following equation (1).
[수학식 1][Equation 1]
신축성(탄성회복률)(%) = [(외력으로 늘어난 길이) - (외력 제거 길이)] / [(외력으로 늘어난 길이)- (초기 길이)] ×100(%)Elasticity (elastic recovery rate) (%) = [(length extended by external force)-(length removed by external force)] / [(length extended by external force)-(initial length)] × 100 (%)
2. 초기 전자파차폐성능2. Initial electromagnetic shielding performance
실시예 및 비교예에 따라 제조된 플렉서블 전자파 차폐재에 대하여 저항측정기(HIOKI 3540 mΩ HITESTER, HIOKI)를 통해 전도성 섬유웹 표면의 저항을 측정하였다. 측정된 비교예1의 측정값을 100으로 기준하여 실시예에 따른 측정 저항값을 상대적인 백분율로 나타내었다.The resistance of the surface of the conductive fibrous web was measured through a resistance meter (HIOKI 3540 mΩ HITESTER, HIOKI) for the flexible electromagnetic shielding material prepared according to Examples and Comparative Examples. Based on the measured value of Comparative Example 1 measured as 100, the measured resistance value according to the example was expressed as a relative percentage.
3. 전자파차폐성능 변동율3. Rate of change of electromagnetic shielding performance
실시예 및 비교예에 따라 제조된 플렉서블 전자파 차폐재를 지그를 사용하여 시편을 가로방향으로 1.2배 신장시킨 뒤, 다시 세로방향으로 1.2배 신장시키는 것을 1세트로 하여 3세트를 반복하였다. After the flexible electromagnetic shielding material prepared according to the Examples and Comparative Examples was stretched 1.2 times in the transverse direction using the jig and then 1.2 times in the longitudinal direction, three sets were repeated.
이후, 초기 전자파차폐성능 측정방법을 이용하여 신장 후 각 시편의 저항값(B)을 구한 뒤, 각 시편의 초기 저항값(A)에 대비한 신장에 따른 시편 별 변동율을 하기의 수학식 2에 따라 계산하였다. Then, after obtaining the resistance value (B) of each specimen after stretching by using the initial electromagnetic shielding performance measurement method, the variation rate for each specimen according to the stretching relative to the initial resistance value (A) of each specimen is shown in Equation 2 below. Calculated accordingly.
이때, 변동율이 클수록 전자파차폐성능이 저하됨을 의미한다. In this case, the greater the rate of change, the lower the electromagnetic shielding performance.
[수학식 2][Equation 2]
변동율(%) = (B - A) ×100 ÷ A% Change = (B-A) × 100 ÷ A
4. 층간 박리 평가4. Delamination Evaluation
실시예 및 비교예에 따라 제조된 플렉서블 전자파 차폐재에 대하여 신축성 평가를 각각 수행한 후 층간 박리가 발생하지 않는 경우 - ○, 층간 박리가 발생하는 경우 - ×로 하여 층간 박리를 평가하여 하기 표 1 내지 표 4에 나타내었다.In the case where the interlayer peeling does not occur after the elasticity evaluation of each of the flexible electromagnetic shielding materials prepared according to the Examples and Comparative Examples-○, when the interlayer peeling occurs-× to evaluate the interlayer peeling to Table 1 to Table 4 shows.
구분division | 실시예1Example 1 | 실시예2Example 2 | 실시예3Example 3 | 실시예4Example 4 | 실시예5Example 5 | 실시예6Example 6 | 실시예7Example 7 | |
나노섬유웹Nano Fiber Web | 두께(㎛)Thickness (㎛) | 1010 | 1One | 44 | 1313 | 3535 | 1010 | 1010 |
평량(g/㎡)Basis weight (g / ㎡) | 9.29.2 | 9.29.2 | 9.29.2 | 9.29.2 | 9.29.2 | 1One | 55 | |
메탈입자 Metal particles | 함량(중량부)Content (parts by weight) | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 |
금속층 Metal layer | 두께(㎛)Thickness (㎛) | 33 | 33 | 33 | 33 | 33 | 33 | 33 |
도전성 나노섬유웹Conductive Nanofiber Web | 기공도(%)Porosity (%) | 4040 | 4040 | 4040 | 4040 | 4040 | 8282 | 6868 |
신축성 부재 Elastic members | 두께(㎛)Thickness (㎛) | 100100 | 100100 | 100100 | 100100 | 100100 | 100100 | 100100 |
신축성(%)elasticity(%) | 9696 | 8787 | 9494 | 8989 | 7272 | 8888 | 9191 | |
초기 전자파차폐성능(%)Initial electromagnetic shielding performance (%) | 87.387.3 | 87.187.1 | 87.387.3 | 87.287.2 | 87.487.4 | 85.285.2 | 86.486.4 | |
전자파차폐성능 변동율(%)Electromagnetic shielding performance change rate (%) | 3.93.9 | 11.311.3 | 4.64.6 | 3.93.9 | 4.24.2 | 15.115.1 | 4.24.2 | |
층간박리 방지 평가Delamination Prevention Assessment | ○○ | ×× | ○○ | ○○ | ○○ | ×× | ○○ |
구분division | 실시예8Example 8 | 실시예9Example 9 | 실시예10Example 10 | 실시예11Example 11 | 실시예12Example 12 | 실시예13Example 13 | |
나노섬유웹Nano Fiber Web | 두께(㎛)Thickness (㎛) | 1010 | 1010 | 1010 | 1010 | 1010 | 1010 |
평량(g/㎡)Basis weight (g / ㎡) | 1515 | 2525 | 9.29.2 | 9.29.2 | 9.29.2 | 9.29.2 | |
메탈입자 Metal particles | 함량(중량부)Content (parts by weight) | 5050 | 5050 | 2020 | 3535 | 6565 | 8080 |
금속층 Metal layer | 두께(㎛)Thickness (㎛) | 33 | 33 | 33 | 33 | 33 | 33 |
도전성 나노섬유웹Conductive Nanofiber Web | 기공도(%)Porosity (%) | 3737 | 2626 | 8484 | 7070 | 3636 | 2424 |
신축성 부재 Elastic members | 두께(㎛)Thickness (㎛) | 100100 | 100100 | 100100 | 100100 | 100100 | 100100 |
신축성(%)elasticity(%) | 9292 | 7676 | 9494 | 9696 | 9090 | 7070 | |
초기 전자파차폐성능(%)Initial electromagnetic shielding performance (%) | 87.087.0 | 87.187.1 | 84.384.3 | 87.187.1 | 87.387.3 | 87.487.4 | |
전자파차폐성능 변동율(%)Electromagnetic shielding performance change rate (%) | 4.54.5 | 4.44.4 | 23.923.9 | 4.94.9 | 3.53.5 | 2.92.9 | |
층간박리 방지 평가Delamination Prevention Assessment | ○○ | ○○ | ×× | ○○ | ○○ | ○○ |
구분division | 실시예14Example 14 | 실시예15Example 15 | 실시예16Example 16 | 실시예17Example 17 | 실시예18Example 18 | 실시예19Example 19 | |
나노섬유웹Nano Fiber Web | 두께(㎛)Thickness (㎛) | 1010 | 1010 | 1010 | 1010 | 1010 | 1010 |
평량(g/㎡)Basis weight (g / ㎡) | 9.29.2 | 9.29.2 | 9.29.2 | 9.29.2 | 9.29.2 | 9.29.2 | |
메탈입자 Metal particles | 함량(중량부)Content (parts by weight) | 5050 | 5050 | 5050 | 5050 | 5050 | 5050 |
금속층 Metal layer | 두께(㎛)Thickness (㎛) | 0.30.3 | 22 | 44 | 77 | 33 | 33 |
도전성 나노섬유웹Conductive Nanofiber Web | 기공도(%)Porosity (%) | 4040 | 4040 | 4040 | 4040 | 4040 | 4040 |
신축성 부재 Elastic members | 두께(㎛)Thickness (㎛) | 100100 | 100100 | 100100 | 100100 | 55 | 2525 |
신축성(%)elasticity(%) | 9090 | 9292 | 9191 | 7171 | 6868 | 8787 | |
초기 전자파차폐성능(%)Initial electromagnetic shielding performance (%) | 98.198.1 | 88.188.1 | 86.186.1 | 85.385.3 | 86.986.9 | 87.087.0 | |
전자파차폐성능 변동율(%)Electromagnetic shielding performance change rate (%) | 6.76.7 | 4.84.8 | 44 | 3.83.8 | 8.18.1 | 4.44.4 | |
층간박리 방지 평가Delamination Prevention Assessment | ○○ | ○○ | ○○ | ○○ | ○○ | ○○ |
구분division | 실시예20Example 20 | 실시예21Example 21 | 비교예1Comparative Example 1 | 비교예2Comparative Example 2 | 비교예3Comparative Example 3 | |
나노섬유웹Nano Fiber Web | 두께(㎛)Thickness (㎛) | 1010 | 1010 | 1010 | 1010 | 1010 |
평량(g/㎡)Basis weight (g / ㎡) | 9.29.2 | 9.29.2 | 9.29.2 | 9.29.2 | 9.29.2 | |
메탈입자 Metal particles | 함량(중량부)Content (parts by weight) | 5050 | 5050 | 5050 | -- | 5050 |
금속층 Metal layer | 두께(㎛)Thickness (㎛) | 33 | 33 | -- | 33 | 33 |
도전성 나노섬유웹Conductive Nanofiber Web | 기공도(%)Porosity (%) | 4040 | 4040 | 4040 | 9090 | 4040 |
신축성 부재 Elastic members | 두께(㎛)Thickness (㎛) | 110110 | 180180 | 100100 | 100100 | -- |
신축성(%)elasticity(%) | 9696 | 9797 | 9595 | 6969 | 4747 | |
초기 전자파차폐성능(%)Initial electromagnetic shielding performance (%) | 87.187.1 | 87.387.3 | 100100 | 82.682.6 | 87.287.2 | |
전자파차폐성능 변동율(%)Electromagnetic shielding performance change rate (%) | 3.83.8 | 5.25.2 | 5.25.2 | 28.328.3 | 5.65.6 | |
층간박리 방지 평가Delamination Prevention Assessment | ○○ | ×× | ○○ | ×× | ○○ |
상기 표 1 내지 표 4에서 알 수 있듯이,As can be seen in Table 1 to Table 4,
본 발명에 따른 나노섬유웹의 두께와 평량, 메탈입자 함량, 도전성 나노섬유웹의 기공도, 금속층의 두께 및 신축성 부재의 두께 등을 모두 만족하는 실시예 1, 3, 4, 7, 8, 11, 12, 15, 16, 19 및 20이, 이 중에서 하나라도 누락된 실시예 2, 5, 6, 9, 10, 13, 14, 17, 18, 21 및 비교예 1 ~ 3에 비하여 신축성 및 초기 전자파차폐성능이 우수하고, 전자파차폐성능 변동율 작으며, 층간 박리가 발생하지 않는 효과를 모두 동시에 달성할 수 있었다.Example 1, 3, 4, 7, 8, 11 satisfying the thickness and basis weight of the nanofiber web according to the present invention, the metal particle content, the porosity of the conductive nanofiber web, the thickness of the metal layer and the thickness of the stretchable member, etc. , 12, 15, 16, 19, and 20 are elastic and initial compared to Examples 2, 5, 6, 9, 10, 13, 14, 17, 18, 21 and Comparative Examples 1-3, in which any of these are missing The effects of excellent electromagnetic shielding performance, small change rate of electromagnetic shielding performance, and no delamination were simultaneously achieved.
이상에서 본 발명의 일 실시 예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.Although one embodiment of the present invention has been described above, the spirit of the present invention is not limited to the embodiments set forth herein, and those skilled in the art who understand the spirit of the present invention may add elements within the same scope. Other embodiments may be easily proposed by changing, deleting, adding, and the like, but this will also fall within the spirit of the present invention.
Claims (16)
- 나노섬유로 형성되고 다수의 기공을 포함하는 나노섬유웹 및 상기 나노섬유웹의 표면부에 배치된 나노섬유의 적어도 일부를 덮는 금속층을 구비하며, 기공의 적어도 일부에 메탈입자를 구비하는 도전성 나노섬유웹; 및A conductive nanofiber having a nanofiber web formed of nanofibers and including a plurality of pores and a metal layer covering at least a portion of the nanofibers disposed on the surface portion of the nanofiber web, and having metal particles in at least a portion of the pores. The web; And상기 도전성 나노섬유웹의 일면에 접합된 신축성 부재;를 포함하는 플렉서블 전자파 차폐재.Flexible electromagnetic shielding material comprising a; stretchable member bonded to one surface of the conductive nanofiber web.
- 제1항에 있어서,The method of claim 1,상기 나노섬유는 PVDF계 수지 및 우레탄계 수지로 이루어진 군에서 선택되는 1종 이상을 포함하는 섬유형성성분으로 형성된 플렉서블 전자파 차폐재.The nanofiber is a flexible electromagnetic shielding material formed of a fiber-forming component comprising at least one selected from the group consisting of PVDF-based resins and urethane-based resins.
- 제2항에 있어서,The method of claim 2,상기 섬유형성성분은 PVDF계 수지 및 우레탄계 수지를 1 : 0.43 ~ 2.35의 중량비로 구비하는 플렉서블 전자파 차폐재.The fiber forming component is a flexible electromagnetic shielding material having a PVDF-based resin and a urethane-based resin in a weight ratio of 1: 0.43 to 2.35.
- 제1항에 있어서,The method of claim 1,상기 나노섬유는 평균직경이 150㎚ ~ 5㎛인 플렉서블 전자파 차폐재.The nanofiber is a flexible electromagnetic shielding material having an average diameter of 150nm ~ 5㎛.
- 제1항에 있어서,The method of claim 1,상기 나노섬유웹은 두께가 4 ~ 30㎛이고, 평량이 3.00 ~ 20.00g/㎡ 인 플렉서블 전자파 차폐재. The nanofiber web has a thickness of 4 ~ 30㎛, the basis weight is a flexible electromagnetic shielding material of 3.00 ~ 20.00g / ㎡.
- 제1항에 있어서,The method of claim 1,상기 도전성 나노섬유웹은 수지, 용매 및 메탈입자를 포함하는 방사용액을 통해 형성되고,The conductive nanofiber web is formed through a spinning solution containing a resin, a solvent and metal particles,상기 방사용액은 상기 수지 100 중량부에 대하여 니켈, 구리, 은, 금, 크롬, 백금, 티타늄 합금 및 스테인리스 스틸로 이루어진 군에서 선택된 1종 이상의 금속을 포함하는 메탈입자를 30 ~ 70 중량부로 구비하는 플렉서블 전자파 차폐재. The spinning solution includes 30 to 70 parts by weight of metal particles including at least one metal selected from the group consisting of nickel, copper, silver, gold, chromium, platinum, titanium alloys and stainless steel, based on 100 parts by weight of the resin. Flexible electromagnetic shielding material.
- 제1항에 있어서, The method of claim 1,상기 도전성 나노섬유웹은 기공도가 30 ~ 80%인 플렉서블 전자파 차폐재.The conductive nanofiber web has a porosity of 30 to 80% of the flexible electromagnetic shielding material.
- 제1항에 있어서,The method of claim 1,상기 신축성 부재는 우레탄계 수지를 포함하여 형성되는 플렉서블 전자파 차폐재.The flexible member is a flexible electromagnetic shielding material including a urethane-based resin.
- 제1항에 있어서,The method of claim 1,상기 신축성 부재는 평균두께가 10 ~ 150㎛인 플렉서블 전자파 차폐재.The flexible member is a flexible electromagnetic shielding material having an average thickness of 10 ~ 150㎛.
- 제1항에 있어서,The method of claim 1,상기 금속층은 니켈(Ni) 및 구리(Cu)로 이루어진 군에서 선택된 1종 이상의 금속을 포함하는 플렉서블 전자파 차폐재.The metal layer is a flexible electromagnetic shielding material including at least one metal selected from the group consisting of nickel (Ni) and copper (Cu).
- 제1항에 있어서,The method of claim 1,상기 금속층은 니켈(Ni), 구리(Cu) 및 니켈(Ni)이 순차적으로 적층되어 형성된 플렉서블 전자파 차폐재.The metal layer is a flexible electromagnetic shielding material formed by sequentially stacking nickel (Ni), copper (Cu) and nickel (Ni).
- 제1항에 있어서,The method of claim 1,상기 금속층은 평균두께가 1 ~ 5㎛인 플렉서블 전자파 차폐재.The metal layer is a flexible electromagnetic shielding material having an average thickness of 1 ~ 5㎛.
- (1) 기공의 적어도 일부에 메탈입자를 구비하는 나노섬유웹을 형성하는 단계;(1) forming a nanofiber web having metal particles in at least some of the pores;(2) 상기 나노섬유웹의 하부면에 신축성 부재를 형성하는 단계; 및(2) forming an elastic member on the lower surface of the nanofiber web; And(3) 상기 나노섬유웹의 표면부에 배치된 나노섬유의 적어도 일부를 덮도록 금속층을 형성하여 도전성 나노섬유웹을 제조하는 단계;를 포함하는 플렉서블 전자파 차폐재 제조방법.(3) forming a metal layer to cover at least a portion of the nanofibers disposed on the surface portion of the nanofiber web to produce a conductive nanofiber web; flexible electromagnetic shielding material manufacturing method comprising a.
- 제13항에 있어서, 상기 (1) 단계는,The method of claim 13, wherein step (1) comprises:섬유형성성분, 용매 및 메탈입자를 포함하는 방사용액을 전기방사시켜서 수행하는 플렉서블 전자파 차폐재 제조방법.A method of manufacturing a flexible electromagnetic shielding material by electrospinning a spinning solution comprising a fiber forming component, a solvent, and metal particles.
- 소자가 실장된 회로기판; 및A circuit board on which the device is mounted; And적어도 상기 소자의 상부와 측부를 덮도록 회로기판 상에 구비되는 제1항 내지 제12항 중 어느 한 항에 따른 플렉서블 전자파 차폐재;를 포함하는 전자파 차폐형 회로모듈.An electromagnetic shielding circuit module comprising: a flexible electromagnetic shielding material according to any one of claims 1 to 12 provided on a circuit board so as to cover at least an upper portion and a side portion of the device.
- 제15항에 따른 전자파 차폐형 회로모듈을 포함하는 전자기기.Electronic device comprising an electromagnetic shielding circuit module according to claim 15.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/467,191 US10609848B2 (en) | 2016-12-13 | 2017-12-13 | Flexible electromagnetic wave shielding material and manufacturing method therefor |
CN201780077040.8A CN110073733B (en) | 2016-12-13 | 2017-12-13 | Flexible electromagnetic wave shielding material and method for producing same |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20160169487 | 2016-12-13 | ||
KR10-2016-0169487 | 2016-12-13 | ||
KR1020170171246A KR101976545B1 (en) | 2016-12-13 | 2017-12-13 | Flexible EMI shielding material and manufacturing method thereof |
KR10-2017-0171246 | 2017-12-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018110969A1 true WO2018110969A1 (en) | 2018-06-21 |
Family
ID=62559640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2017/014635 WO2018110969A1 (en) | 2016-12-13 | 2017-12-13 | Flexible electromagnetic wave shielding material and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018110969A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10316901A (en) * | 1997-05-22 | 1998-12-02 | Toyoda Gosei Co Ltd | Electroconductive coating material |
JP2000138426A (en) * | 1998-11-02 | 2000-05-16 | Tomoegawa Paper Co Ltd | Flexible printed circuit board with metal fiber sheet for electromagnetic wave shielding and method of manufacturing the same |
KR20090038994A (en) * | 2007-10-17 | 2009-04-22 | 손충연 | Conductive double sided tape using insulator as support |
KR20130136386A (en) * | 2012-06-04 | 2013-12-12 | 주식회사 아모그린텍 | Electromagnetic wave shielding sheet, perparation method thereof and internal antenna having the same |
KR101424030B1 (en) * | 2014-01-13 | 2014-07-28 | 톱텍에이치앤에스 주식회사 | A shield sheet for preventing electromagnetic wave |
-
2017
- 2017-12-13 WO PCT/KR2017/014635 patent/WO2018110969A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10316901A (en) * | 1997-05-22 | 1998-12-02 | Toyoda Gosei Co Ltd | Electroconductive coating material |
JP2000138426A (en) * | 1998-11-02 | 2000-05-16 | Tomoegawa Paper Co Ltd | Flexible printed circuit board with metal fiber sheet for electromagnetic wave shielding and method of manufacturing the same |
KR20090038994A (en) * | 2007-10-17 | 2009-04-22 | 손충연 | Conductive double sided tape using insulator as support |
KR20130136386A (en) * | 2012-06-04 | 2013-12-12 | 주식회사 아모그린텍 | Electromagnetic wave shielding sheet, perparation method thereof and internal antenna having the same |
KR101424030B1 (en) * | 2014-01-13 | 2014-07-28 | 톱텍에이치앤에스 주식회사 | A shield sheet for preventing electromagnetic wave |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101976545B1 (en) | Flexible EMI shielding material and manufacturing method thereof | |
KR102045018B1 (en) | Flexible EMI shielding materials for electronic device, EMI shielding type circuit module comprising the same and Electronic device comprising the same | |
US10995195B2 (en) | Composite nanofiber sheet | |
WO2018194414A1 (en) | Printed circuit nanofiber web manufacturing method, printed circuit nanofiber web manufactured thereby, and electronic device employing same | |
WO2013183887A1 (en) | Electromagnetic wave shielding sheet, method for manufacturing same, and embedded antenna comprising same | |
WO2017209427A1 (en) | Flexible electromagnetic shielding sheet and electronic device provided with same | |
CN110073732B (en) | Flexible electromagnetic wave shielding material, electromagnetic wave shielding circuit module, and electronic device | |
WO2017155317A1 (en) | Method for manufacturing sheet heating element comprising polyimide insulating layer | |
US20160218268A1 (en) | Thermoelectric conversion module | |
KR20190019874A (en) | Electro-magnetic interference shield flim | |
KR20200101704A (en) | Shielding film for FPCB, electromagnetic shielding circuit board with the same and electronic device with the same | |
KR101603582B1 (en) | Thermal diffusion sheet having a flexible layer of ceramic-carbon composite | |
WO2012044068A2 (en) | Manufacturing method of electrode substrate | |
WO2018110969A1 (en) | Flexible electromagnetic wave shielding material and manufacturing method therefor | |
KR101947412B1 (en) | Conductive complex fiber for flexible EMI shielding materials, method for manufacturing thereof and Electronic device comprising the same | |
WO2012169674A1 (en) | Surface mounting gasket and method of manufacturing same | |
KR101521693B1 (en) | flexible/stretchable transparent film having conductivity and manufacturing method thereof | |
WO2018038475A1 (en) | Pressure-sensitive adhesive tape, method for manufacturing same, and electronic device comprising same | |
WO2019098498A1 (en) | Fabric material-based flexible electrode and manufacturing method thereof | |
KR102003880B1 (en) | Flexible cupper laminated film and Preparing method of the same | |
US11612088B2 (en) | Anisotropic heat transfer, electromagnetic interference shielding composite and method for preparation thereof | |
WO2024049273A1 (en) | Electromagnetic wave shielding sheet, method for manufacturing same, and electronic device comprising same | |
TWI836005B (en) | Piezoelectric sensor and method of manufacturing piezoelectric sensor | |
KR20230025164A (en) | EMI shielding materials for shield can, EMI shielding type circuit module comprising the same and Electronic device comprising the same | |
KR102227015B1 (en) | EMI shielding-Heat radiation composite sheet and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17880397 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17880397 Country of ref document: EP Kind code of ref document: A1 |