WO2018110351A1 - Egr cooler - Google Patents
Egr cooler Download PDFInfo
- Publication number
- WO2018110351A1 WO2018110351A1 PCT/JP2017/043507 JP2017043507W WO2018110351A1 WO 2018110351 A1 WO2018110351 A1 WO 2018110351A1 JP 2017043507 W JP2017043507 W JP 2017043507W WO 2018110351 A1 WO2018110351 A1 WO 2018110351A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe
- flow generating
- egr
- generating ribbon
- gas
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/04—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
- B01D45/08—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D45/00—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
- B01D45/12—Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by centrifugal forces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/06—Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/35—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
Definitions
- the present invention relates to an EGR cooler that cools EGR gas that is returned from an exhaust passage of an internal combustion engine to an intake passage.
- the present invention has been made paying attention to the above problem, and an object thereof is to provide an EGR cooler capable of improving the separation performance of the liquid contained in the EGR gas while suppressing the enlargement of the apparatus. .
- an EGR cooler includes a heat exchanging portion that exchanges heat between the EGR gas returned from the exhaust passage of the internal combustion engine to the intake passage and the refrigerant, and the intake air of the exhaust passage and the heat exchanging portion.
- An inflow pipe that communicates with the opening; and an outflow pipe that communicates between the intake passage and the exhaust port of the heat exchange section.
- a swirl flow generating ribbon for swirling EGR gas along the inner peripheral surface is disposed inside, and an exhaust port and a drain port are formed on the downstream side of the swirl flow generating ribbon.
- the swirl flow generating ribbon is formed by a spirally twisted plate member, and has a first end point set at one of the radially outer ends of the swirl flow generating ribbon at an end portion facing the exhaust port.
- the second terminal point set at the other radial outer end of the swirl flow generating ribbon and the axis of the swirl flow generating ribbon, closer to the heat exchange unit than the first terminal point and the second terminal point A first end edge connecting the first end point and the center end point, and a second end edge connecting the second end point and the center end point; Is formed.
- FIG. 1 is an overall system diagram illustrating an exhaust gas recirculation system for an internal combustion engine to which an EGR cooler according to a first embodiment is applied. It is sectional drawing which shows the EGR cooler of Example 1.
- FIG. It is a perspective view which shows the swirl
- FIG. It is a side view of the swirl flow generation ribbon of Example 1.
- FIG. 4 is a sectional view taken along line AA in FIG. 3. It is explanatory drawing which shows the flow of the EGR gas in the EGR cooler of Example 1, and the isolate
- the EGR cooler of Example 1 it is explanatory drawing which shows the flow of the liquid in the ribbon termination
- Example 1 First, the configuration of the EGR cooler in the first embodiment will be described by dividing it into “the overall system configuration of the application example”, “the detailed configuration of the EGR cooler”, and “the detailed configuration of the swirling flow generating ribbon”.
- FIG. 1 is an overall system diagram illustrating an exhaust gas recirculation system for an internal combustion engine to which an EGR cooler according to a first embodiment is applied.
- the overall system configuration of an application example of the first embodiment will be described below with reference to FIG.
- the EGR cooler 20 of the first embodiment is applied to the exhaust gas recirculation system S of the internal combustion engine 1 shown in FIG.
- the internal combustion engine 1 shown in FIG. 1 is a diesel engine mounted on a vehicle as a driving source for traveling, and has four cylinders (not shown). An intake passage 2 and an exhaust passage 3 are connected to each cylinder.
- the intake passage 2 is formed with an intake port 2a at an end, and in order from the intake port 2a side, an air filter 4 for intake filtration, a compressor 5a of a turbocharger 5, an intercooler 6 for cooling intake air, and intake air
- a throttle valve 7 for adjusting the amount is provided in the exhaust passage 3, a turbine 5b of the turbocharger 5, an exhaust purification catalyst 8 for purifying exhaust, and an exhaust throttle valve 9 for adjusting the exhaust flow rate are provided in this order from the internal combustion engine 1 side.
- a muffler 10 is provided on the downstream side of the exhaust throttle valve 9, and an exhaust port 3a is formed at the end thereof.
- EGR exhaust Gas Recirculation
- exhaust gas recirculation is a technique in which a part of exhaust gas after combustion in the internal combustion engine 1 is taken out and re-intaked, and is also referred to as exhaust gas recirculation.
- the low pressure EGR passage 11 connects the intake passage 2 upstream of the compressor 5 a and the exhaust passage 3 downstream of the exhaust purification catalyst 8.
- the high pressure EGR passage 12 connects the intake passage 2 downstream of the compressor 5a and the exhaust passage 3 upstream of the turbine 5b.
- An EGR cooler 20 for cooling the exhaust gas guided to the intake passage 2 is provided in the middle of the low-pressure EGR passage 11, and the intake air is supplied to the downstream position of the EGR cooler 20 via the low-pressure EGR passage 11.
- a low-pressure EGR valve 14 for adjusting the flow rate of exhaust gas (EGR gas) recirculated to the passage 2 is provided.
- a high pressure EGR valve 15 for adjusting the flow rate of the exhaust gas recirculated to the intake passage 2 through the high pressure EGR passage 12 is provided at a midpoint of the high pressure EGR passage 12.
- FIG. 2 is a cross-sectional view illustrating the EGR cooler according to the first embodiment. Hereinafter, based on FIG. 2, the detailed structure of the EGR cooler 20 of Example 1 is demonstrated.
- the EGR cooler 20 according to the first embodiment is provided in the middle of the low pressure EGR passage 11 as described above.
- the position where the EGR cooler 20 is arranged is divided in the EGR pipe constituting the low pressure EGR passage 11, and the EGR cooler 20 is connected to the upstream side EGR pipe 11a and the downstream side as shown in FIG. It is interposed between the EGR pipe 11b.
- the EGR cooler 20 includes a heat exchange part 21, an inflow pipe 22, and an outflow pipe 23.
- the heat exchange unit 21 includes a shell 21a, a pair of core plates 21b and 21c, and a number of tubes 21d.
- the shell 21a is a cylindrical hollow tube whose both ends are open, and a pair of core plates 21b and 21c are attached so as to close the end surface of the shell 21a.
- Each core plate 21b, 21c has both ends of a large number of tubes 21d fixed in a penetrating manner, and these numerous tubes 21d extend in the axial direction inside the shell 21a.
- Each tube 21d is a hollow tube whose both ends are open, and is arranged in a state where there is a gap between the other tube 21d.
- a refrigerant inlet 21e connected to the refrigerant introduction pipe 24a and a refrigerant outlet 21f connected to the refrigerant outlet pipe 24b are formed on the peripheral surface of the shell 21a.
- the refrigerant introduction pipe 24a and the refrigerant outlet pipe 24b are pipes through which a refrigerant that is, for example, engine cooling water (LLC: Long Life Coolant) flows.
- LLC Long Life Coolant
- the inflow pipe 22 is a hollow pipe whose both ends are open, and one end 22a is connected to the upstream EGR pipe 11a.
- the other end 22b of the inflow pipe 22 is formed in a bowl shape that covers the outer end surface of one core plate 21b, and is connected to the end of the EGR gas inflow side of the shell 21a, that is, the intake port of the heat exchange unit 21. Has been.
- the inflow pipe 22 communicates the exhaust passage 3 and the intake port of the heat exchange unit 21.
- the outflow pipe 23 is a middle space that is open at both ends, and has an inlet pipe 25, an inner pipe 26, and a drain pipe 27.
- the inlet pipe 25 is a hollow tube whose both ends are open, and one end 25a is formed in a bowl shape covering the outer end surface of the other core plate 21c, and the end portion on the outflow side of the EGR gas of the shell 21a, that is, heat exchange It is connected to the exhaust port of the part 21.
- One end 26 a of the inner pipe 26 is inserted into the other end 25 b of the inlet pipe 25.
- a drain port 25c opened in the radial direction is formed on the peripheral surface of the other end 25b of the inlet pipe 25.
- a swirl flow generating ribbon 30 is disposed inside the inlet pipe 25 to swirl the EGR gas flow along the inner peripheral surface 25d.
- a tapered surface 25e is formed on the inner peripheral surface 25d of the inlet pipe 25.
- the liquid contained in the EGR gas can flow into the drain port 25c by the centrifugal force (swivel force) generated when the EGR gas swirls. Therefore, the opening direction of the drain port 25c is not limited to the downward direction of the gravity direction, and may be opened in any direction.
- the tapered surface 25e is an inclined surface that gradually increases the inner diameter dimension of the inlet pipe 25 toward the downstream side in the EGR gas flow direction, and is positioned downstream of the swirling flow generating ribbon 30 in the EGR gas flow direction. Is formed.
- the inner diameter of the inlet pipe 25 is the smallest in the first region 25 ⁇ upstream of the tapered surface 25e in the EGR gas flow direction, and gradually increases in the second region 25 ⁇ in which the tapered surface 25e is formed.
- the third region 25 ⁇ which is downstream of the tapered surface 25e in the EGR gas flow direction, is the largest.
- production ribbon 30 is arrange
- the inner diameter dimension of the first region 25 ⁇ where the swirl flow generating ribbon 30 is arranged is set to be smaller than the inner diameter dimension of the heat exchanging portion 21.
- the inner pipe 26 is formed by a straight pipe member having both ends open and having an outer diameter smaller than the minimum inner diameter of the third region 25 ⁇ of the inlet pipe 25, and one end 26a is inserted into the other end 25b of the inlet pipe 25, It is installed coaxially with the inlet pipe 25.
- An exhaust port 26c that is open in the axial direction of the inner pipe 26 is formed at the one end 26a.
- the other end 26b of the inner pipe 26 is connected to the tip of the downstream EGR pipe 11b.
- the outflow pipe 23 communicates the exhaust port of the heat exchanging portion 21 and the intake passage 2 via the inlet pipe 25 and the inner pipe 26.
- the other end 25b of the inlet pipe 25 is fitted with a spacer 28 that seals the gap S1 generated between the inner peripheral surface 25d of the inlet pipe 25 and the inner pipe 26.
- the spacer 28 has a cylindrical shape that surrounds the entire circumference of the inner pipe 26, the outer peripheral surface is in airtight contact with the inner peripheral surface 25 d of the inlet pipe 25, and the inner peripheral surface is in an airtight state with the outer peripheral surface of the inner pipe 26. In contact.
- the axial position of the end located inside the inlet pipe 25 coincides with the axial position of the most downstream portion of the peripheral edge of the drain port 25 c. That is, although the spacer 28 does not overlap with the opening region of the drain port 25c, the spacer 28 is installed without opening a gap in the axial direction with the opening region of the drain port 25c.
- the drain pipe 27 is formed by a so-called T-shaped pipe in which the second pipe member 27b is connected so as to be orthogonal to the central portion in the axial direction of the first pipe member 27a, and the inlet pipe 25 penetrates the first pipe member 27a. Yes. Further, a connection opening 27c formed in a connection portion between the first pipe member 27a and the second pipe member 27b faces the drainage port 25c, and the inlet pipe 25 and the drainage pipe are connected to the drainage port 25c and the connection opening 27c. 27 is communicated with the second pipe member 27b. That is, as described later, the liquid separated from the EGR gas inside the inlet pipe 25 flows into the second pipe member 27b from the drain port 25c through the connection opening 27c.
- the inner diameter dimension of the drain port 25 c formed in the inlet pipe 25 is set to be equal to the inner diameter dimension of the connection opening 27 c of the drain pipe 27.
- the second pipe member 27b extends downward in the gravitational direction with respect to the axial direction of the inlet pipe 25, and a tip opening 27e is formed in the tip portion 27d.
- the “gravity direction” is the downward direction in FIG. 2 and is the direction in which gravity acts.
- the first tube member 27a and the second tube member 27b are not limited to circular tubes, and may be square tubes (square pipes) or the like.
- the tip opening 27e and the connection opening 27c may have the same size and can be arbitrarily set.
- a connection port 29 a formed at the upper part in the gravity direction of the water storage tank 29 is connected to the distal end portion 27 d of the second pipe member 27 b.
- the water storage tank 29 is a tank installed below the second pipe member 27b in the direction of gravity, and stores the liquid that has flowed down the second pipe member 27b.
- a drainage opening (not shown) that can be appropriately opened and closed is formed at the lower part of the water storage tank 29 in the direction of gravity. Therefore, in the water storage tank 29, when the stored liquid reaches a certain amount, the stored liquid can be discharged out of the tank through the drain opening.
- a vent 26d is formed on the side surface of the inner pipe 26 at a position protruding from the inlet pipe 25.
- the vent 26d is an opening to which one end 29c of the bypass pipe 29b is connected, and is open in the radial direction of the inner pipe 26 and downward in the direction of gravity.
- a vent hole 29 e is formed on the upper side surface of the water storage tank 29.
- the vent 29e is an opening to which the other end 29d of the bypass pipe 29b is connected.
- the bypass pipe 29b is a pipe member whose both ends are open, and both end portions 29c and 29d are connected to the vent hole 26d and the vent hole 29e, respectively, so that the space above the water storage tank 29 becomes the inner pipe 26.
- vent 26d formed in the inner pipe 26 opens downward in the direction of gravity, but this vent 26d is used to make the water storage tank 29 have a negative pressure via the bypass pipe 29b. Since it is an opening, you may open in directions other than the downward direction of a gravitational direction.
- FIG. 3 is a perspective view showing the swirl flow generating ribbon of Example 1
- FIG. 4 is a side view of the swirl flow generating ribbon.
- FIG. 5 is a cross-sectional view taken along the line AA in FIG. The detailed configuration of the swirl flow generating ribbon according to the first embodiment will be described below with reference to FIGS.
- the swirl flow generating ribbon 30 is formed of a strip-shaped plate member that is spirally twisted, and is disposed in the first region 25 ⁇ of the inlet pipe 25.
- the swirl flow generating ribbon 30 has a radial dimension R (see FIG. 4) set to be equal to the inner diameter dimension of the first region 25 ⁇ , is installed coaxially with the inlet pipe 25, and has a peripheral edge at the inlet pipe 25. In contact with the inner peripheral surface 25d.
- the swirling flow generating ribbon 30 has a first terminal point 31a, a second terminal point 31b, and a central terminal point 31c at the terminal part 31 on the outflow side of the EGR gas, and a first edge 32a, And a second end edge 32b.
- the first end point 31 a is set to one of the radially outer ends of the swirl flow generating ribbon 30.
- the second terminal point 31 b is set to the other of the terminal ends on the radially outer side of the swirling flow generating ribbon 30.
- the axial position of the first terminal point 31a coincides with the axial position of the second terminal point 31b, and the terminal line L connecting the first terminal point 31a and the second terminal point 31b is turned.
- the center terminal point 31c is set on the axis O of the swirling flow generating ribbon 30 and at a position closer to the inflow side of EGR gas than the first terminal point 31a and the second terminal point 31b, that is, closer to the heat exchanging unit 21. Has been.
- the first edge 32 a is an edge connecting the first terminal point 31 a and the center terminal point 31 c among the terminal edges of the swirl flow generating ribbon 30.
- the second end edge 32 b is an end edge connecting the second end point 31 b and the center end point 31 c among the end edges of the swirl flow generating ribbon 30.
- the end portion 31 of the swirling flow generating ribbon 30 is provided with a space region cut out in a V shape surrounded by the first end edge 32a, the second end edge 32b, and the end line L.
- the swirling flow generating ribbon 30 is formed with a folded structure 33 that is folded on the inflow side of the EGR gas at each of the first end edge 32a and the second end edge 32b.
- the folded structure 33 includes a first folded piece 33 a in which the tips of the first end edge 32 a and the second end edge 32 b are folded back to the one spiral surface 30 a side of the swirl flow generating ribbon 30, And a second folded piece 33b in which the tips of the end edge 32a and the second end edge 32b are folded back to the opposite spiral surface 30b side.
- the folded structure 33 is formed between the center terminal point 31c and the first terminal point 31a, and between the center terminal point 31c and the second terminal point 31b. As a result, a gap S2 is generated between both ends in the radial direction of the folded structure 33 and the inner peripheral surface 25d of the inlet pipe 25 (see FIG. 2).
- the swirling flow generating ribbon 30 is disposed in the first region 25 ⁇ , at least the first terminal point 31a and the second terminal point 31b of the terminal portion 31 are formed with a tapered surface 25e on the inner peripheral surface 25d. Inserted in the second region 25 ⁇ .
- the start end 34 of the swirling flow generating ribbon 30 on the EGR gas inflow side has a first start end point 34a, a second start end point 34b, and a center start end point 34c.
- the first starting point 34 a is set to one of the starting ends on the radially outer side of the swirling flow generating ribbon 30.
- the second starting end point 34 b is set to the other of the starting ends on the radially outer side of the swirling flow generating ribbon 30.
- the center start end point 34c is on the axis O of the swirling flow generating ribbon 30, and the first start end point 34a and the second start end point 34b coincide with the axial position.
- the center start point 34c is set on the intersection of the start line connecting the first start point 34a and the second start point 34b and the axis O, and the first and second start points 34a, 34b and the center start point 34c. Are aligned along the radial direction of the swirl flow generating ribbon 30. Further, the starting end portion 34 of the swirling flow generating ribbon 30 is erected along the direction of gravity.
- FIG. 6 is an explanatory diagram illustrating a gas-liquid two-phase fluid and separated gas / liquid flows in the EGR cooler according to the first embodiment.
- action of the EGR gas in the EGR cooler 20 of Example 1 is demonstrated.
- the EGR cooler 20 of the first embodiment when a part of the exhaust gas flowing through the exhaust passage 3 flows into the low pressure EGR passage 11, the EGR gas that is a part of this exhaust gas is Then, it flows from the upstream EGR pipe 11 a into the inflow pipe 22 of the EGR cooler 20.
- the other end 22b of the inflow pipe 22 is connected to the end of the EGR gas inflow side of the shell 21a of the heat exchanging portion 21, and the end of the EGR gas inflow side of the shell 21a is connected to one core. While being blocked by the plate 21b, a large number of tubes 21d penetrate the one core plate 21b.
- the numerous tubes 21d extend in the axial direction inside the shell 21a and penetrate the other core plate 21c that closes the end portion of the shell 21a on the outflow side of the EGR gas. Therefore, the EGR gas that has flowed into the inflow pipe 22 passes through the shell 21a by passing through the numerous tubes 21d, and the inlet pipe 25 of the outflow pipe 23 from the end of the EGR gas outflow side of the shell 21a. Is discharged.
- the shell 21a is formed with a refrigerant inlet 21e connected to the refrigerant introduction pipe 24a and a refrigerant outlet 21f connected to the refrigerant outlet pipe 24b. Therefore, the refrigerant flowing through the refrigerant introduction pipe 24a flows into the shell 21a from the refrigerant inlet 21e, flows through the inside of the shell 21a, and flows out to the refrigerant outlet pipe 24b through the refrigerant outlet 21f.
- the EGR gas flows through the multiple tubes 21d, while the refrigerant flows through the inside of the shell 21a containing the tubes 21d. Therefore, the EGR gas flows outside the tubes 21d while passing through the multiple tubes 21d. It is cooled by heat exchange with the flowing refrigerant. Thereby, the fall of the filling efficiency of the EGR gas in the internal combustion engine 1 can be prevented, and the air ratio can be reduced. Further, the combustion temperature in the internal combustion engine 1 can be lowered. As a result, the NOx emission amount can be reduced.
- the high-temperature EGR gas is cooled in the heat exchange unit 21.
- the water contained in the EGR gas becomes liquid as condensed water, and the EGR gas that recirculates to the intake passage 2 becomes a gas-liquid two-phase fluid in which gas and liquid are mixed.
- the heat exchange efficiency in the heat exchange unit 21 is high and the cooling performance is good, the generation of condensed water increases.
- the liquid contained in the gas-liquid two-phase fluid flows downstream in a state of droplets of a certain size, it collides with the rotor blades of the compressor 5a of the turbocharger 5, May cause shock.
- the swirl flow generating ribbon 30 is disposed inside the inlet pipe 25 of the outflow pipe 23 through which the EGR gas in a gas-liquid two-phase fluid state flows.
- the EGR gas flowing into the inlet pipe 25 swirls by flowing along the swirl flow generating ribbon 30 when passing through the first region 25 ⁇ where the swirl flow generating ribbon 30 is installed. It becomes a flow. And the liquid with a large mass contained in EGR gas is guide
- the liquid guided toward the inner peripheral surface 25d of the inlet pipe 25 aggregates into droplets, separates from the gas, and adheres to the inner peripheral surface 25d from the second region 25 ⁇ by the swirling flow. It flows to the third region 25 ⁇ . Then, the liquid flowing into the third region 25 ⁇ flows into the drain port 25c formed in the third region 25 ⁇ , and flows down the second pipe member 27b through the connection opening 27c of the drain pipe 27 by its own weight. Then, it flows into the water storage tank 29 from the front end opening 27e and is stored.
- the inner pipe 26 and the water storage tank 29 communicate with each other via the bypass pipe 29b. Therefore, the airflow flowing through the inner pipe 26 can make the inside of the water storage tank 29 have a negative pressure, and the flow of liquid flowing down the drainage pipe 27 can be made smooth. Further, the gas flowing into the water storage tank 29 together with the liquid can be returned to the low pressure EGR passage 11 through the bypass pipe 29b and the inner pipe 26.
- the gas flowing through the inlet pipe 25 flows into the inner pipe 26 from the exhaust port 26c opened in the axial direction. Then, this gas flows to the compressor 5 a of the turbocharger 5 through the inner pipe 26.
- the outer diameter dimension of the inner pipe 26 is smaller than the inner diameter dimension of the third region 25 ⁇ of the inlet pipe 25 in order to be inserted into the inlet pipe 25. Therefore, in the EGR cooler 20 of the first embodiment, the liquid adhering to the inner peripheral surface 25d of the inlet pipe 25 can be prevented from entering the inner pipe 26.
- the other end 25 b of the inlet pipe 25 is fitted with a spacer 28 that seals the gap S ⁇ b> 1 generated between the inlet pipe 25 and the inner pipe 26. Therefore, the EGR cooler 20 can prevent the gas from leaking from the other end 25b of the inlet pipe 25, and can smoothly flow the gas separated from the gas-liquid two-phase fluid into the inner pipe 26.
- the spiral surfaces 30a and 30b of the swirl flow generating ribbon 30 have an angle with respect to the flow direction of the EGR gas. Therefore, the liquid contained in the EGR gas collides with the spiral surfaces 30a and 30b and becomes droplets and adheres to the spiral surfaces 30a and 30b.
- the liquid in the droplet state attached to the spiral surfaces 30a and 30b of the swirl flow generating ribbon 30 is pushed to the downstream side in the EGR gas flow direction by the swirl flow while remaining attached to the spiral surfaces 30a and 30b. While flowing, it flows toward the radially outer side of the swirling flow generating ribbon 30 and flows along the inner peripheral surface 25 d of the inlet pipe 25. Further, a part of the liquid in the droplet state does not flow to the inner peripheral surface 25d of the inlet pipe 25, but moves to the end portion 31 of the swirling flow generating ribbon 30 while adhering to the spiral surfaces 30a and 30b.
- the first end edge 32 a is more EGR gas than the center end point 31 c where the first end point 31 a located on the radially outer side of the swirling flow generating ribbon 30 is positioned on the axis O of the swirling flow generating ribbon 30. It is located downstream of the flow direction.
- the second end edge 32b is such that the second terminal point 31b located on the radially outer side of the swirling flow generating ribbon 30 is more EGR gas than the center terminal point 31c positioned on the axis O of the swirling flow generating ribbon 30.
- the liquid adhering to the spiral surfaces 30a and 30b of the swirl flow generating ribbon 30 flows toward the radially outer side of the swirl flow generating ribbon 30 while being swept away by the swirl flow downstream in the EGR gas flow direction. .
- the extending direction of the first and second end edges 32 a and 32 b substantially coincides with the flow direction (moving direction) of the liquid pushed away by the swirling flow while adhering to the swirling flow generating ribbon 30.
- the liquid adhering to the spiral surfaces 30a and 30b is maintained in the state of adhering to the first and second end edges 32a and 32b. It moves toward the radially outer side and is guided to the inner peripheral surface 25d of the inlet pipe 25.
- the swirl flow generating ribbon 30 does not adhere to the axis O. It can be guided to the inner peripheral surface 25d of the inlet pipe 25 in a state of being attached to the first and second end edges 32a and 32b. Thereby, in the swirl
- the swirling flow generating ribbon 30 of the first embodiment is formed with a folded structure 33 that is folded to the inflow side of the EGR gas at both the first end edge 32a and the second end edge 32b. Therefore, the liquid that has moved to the first end edge 32a or the second end edge 32b while adhering to the spiral surfaces 30a, 30b is separated from the spiral surfaces 30a, 30b by the folding structure 33 and is downstream in the EGR gas flow direction. Scattering to the side is prevented. That is, the liquid flows radially outward of the swirl flow generating ribbon 30 along the gap between the first end edge 32a and the first folded piece 33a or the gap between the second end edge 32b and the second folded piece 33b. It flows toward you.
- the swirling flow generating ribbon 30 can guide the liquid to the inner peripheral surface 25d of the inlet pipe 25 while preventing the liquid from separating from the first and second end edges 32a and 32b, and from the EGR gas.
- the liquid separation performance can be further improved.
- the folded structure 33 of the first embodiment includes a first folded piece 33a folded on one spiral surface 30a side of the swirling flow generating ribbon 30, and a second folded piece folded on the opposite spiral surface 30b side. 33b. Therefore, it can be prevented that the liquid is separated from the first and second end edges 32a and 32b regardless of which of the spiral surfaces 30a and 30b of the swirl flow generating ribbon 30 is attached.
- the folded structure 33 is formed between the center terminal point 31c and the first terminal point 31a and between the center terminal point 31c and the second terminal point 31b.
- a gap S ⁇ b> 2 is generated between both ends in the radial direction and the inner peripheral surface 25 d of the inlet pipe 25.
- the liquid that has been prevented from flowing toward the downstream side in the EGR gas flow direction by the folding structure 33 is directed toward the downstream side in the EGR gas flow direction through the gap S2 at both radial ends of the folding structure 33. It becomes possible to flow out.
- liquid is prevented from accumulating in the gap between the first end edge 32a and the first folded piece 33a and the gap between the second end edge 32b and the second folded piece 33b.
- the liquid can be promptly guided toward the inner peripheral surface 25d of the inlet pipe 25.
- the inlet pipe 25 of this Example 1 has the 2nd area
- the EGR cooler 20 includes a heat exchanging unit 21 that cools the EGR gas returned to the intake passage 2 by exchanging heat between the EGR gas and the refrigerant.
- the EGR cooler 20 has a swirl flow generating ribbon 30 disposed inside the inlet pipe 25 of the outflow pipe 23 connected to the end of the EGR gas outflow side of the shell 21a that is the exhaust port of the heat exchange unit 21.
- One end 26a of the inner pipe 26 in which the drain port 25c is formed and the exhaust port 26c is formed is inserted into the downstream side of the swirl flow generating ribbon 30.
- the EGR cooler 20 includes a heat exchange function for cooling high-temperature EGR gas, and a gas-liquid separation function for separating gas and liquid from the EGR gas that has been cooled to become a gas-liquid two-phase fluid. ing.
- this EGR cooler 20 can make the piping required when providing a gas-liquid separator independently with respect to an EGR cooler unnecessary. Further, it is not necessary to secure a space for installing the gas-liquid separation device, and the size of the device can be suppressed and the size can be reduced.
- the liquid can be separated from the EGR gas inside the outflow pipe 23
- the liquid cooled to the condensed water by the heat exchange section 21 can be quickly separated from the gas and collected. Therefore, it is possible to prevent the liquid generated by condensing from the EGR gas from being re-vaporized, and to improve the removal rate of the liquid from the EGR gas.
- An outflow pipe 23; The outflow pipe 23 has a swirl flow generating ribbon 30 that swirls the EGR gas along an inner peripheral surface 25d therein, and an exhaust port 26c and a drain port 25c on the downstream side of the swirl flow generating ribbon 30.
- the swirl flow generating ribbon 30 is formed by a spirally twisted plate member, and is set at one end of the swirl flow generating ribbon 30 on the radially outer side at the end portion 31 facing the exhaust port 26c.
- a point 31a and a center end point 31c set closer to the heat exchanging part 21 than the second end point 31b, and the first end point 31a and the center end point 31c are connected to each other.
- One end edge 32a and a second end edge 32b connecting the second end point 31b and the center end point 31c are formed. Thereby, the separation performance of the liquid contained in the EGR gas can be improved while suppressing an increase in the size of the apparatus.
- the swirling flow generating ribbon 30 is configured such that a folded structure 33 is formed on the first end edge 32a and the second end edge 32b so as to be folded toward the inflow side of the EGR gas.
- the folding structure 33 is formed between the center terminal point 31c and the first terminal point 31a and between the central terminal point 31c and the second terminal point 31b.
- the configuration whereby, in addition to the effect of (2) above, the liquid is accumulated in the gap between the first end edge 32a and the first folded piece 33a and the gap between the second end edge 32b and the second folded piece 33b. While preventing, the liquid can be appropriately guided to the inner peripheral surface 25d of the inlet pipe 25.
- the inner peripheral surface 25d of the outflow pipe 23 is formed with a tapered surface 25e whose inner diameter dimension gradually increases along the flow direction of the EGR gas
- the swirl flow generating ribbon 30 has a configuration in which at least the first terminal point 31a and the second terminal point 31b are inserted into a region where the tapered surface 25e is formed (second region 25 ⁇ ).
- the swirl flow generating ribbon 30 is disposed inside, and one end 25a is connected to an exhaust port of the heat exchanging portion 21 (an end portion on the outflow side of the EGR gas of the shell 21a). And an inlet pipe 25 in which the drain port 25c is formed, and an inner pipe 26 in which one end 26a is inserted into the other end 25b of the inlet pipe 25 and the exhaust port 26c is formed. did.
- Example 1 the example which formed the folding structure 33 in the 1st end edge 32a and the 2nd end edge 32b of the terminal part 31 of the swirl
- the present invention is not limited to this, and the folded structure may not be formed in the terminal portion 31.
- the extending direction of the first and second end edges 32 a and 32 b substantially coincides with the flow direction of the liquid pushed away by the swirling flow while adhering to the swirling flow generating ribbon 30.
- the swirling flow generating ribbon 30 can guide the liquid toward the inner peripheral surface 25d of the inlet pipe 25 while adhering to the spiral surfaces 30a and 30b at the end portion 31.
- a tapered surface 25e is formed on the inner peripheral surface 25d of the inlet pipe 25, and at least the first and second swirl flow generating ribbons 30 are formed in the second region 25 ⁇ where the tapered surface 25e is formed.
- the example which inserted the terminal points 31a and 31b was shown.
- an inlet pipe in which the inner peripheral surface 25d is not formed with a tapered surface may be used. Even in this case, the liquid separated from the gas-liquid two-phase fluid can flow into the drain port 25c by the swirl flow.
- end portion 31 of the swirl flow generating ribbon 30 arranged in the first region 25 ⁇ is extended until it is inserted into the third region 25 ⁇ of the inlet pipe 25, and this end portion 31 is close to the exhaust port 26c of the inner pipe 26. You may let them.
- first and second terminal points 31a and 31b of the swirling flow generating ribbon 30 are inserted into the second region 25 ⁇ where the tapered surface 25e is formed, and the first and second end edges 32a of the swirling flow generating ribbon 30 are inserted.
- 32b both ends in the radial direction of the folded structure 33 may be extended along the inner peripheral surface 25d of the inlet pipe 25. That is, extension portions that are inserted into the third region 25 ⁇ of the inlet pipe 25 may be provided at both ends in the radial direction of the folded structure 33.
- the extension is formed in a V-shaped cross section by the first and second folded pieces 33a and 33b.
- the folded structure 33 is extended until the tip of the extended portion reaches the downstream position from the exhaust port 26 c of the inner pipe 26, thereby the first folded piece 33 a of the folded structure 33 and the first folded piece 33 a.
- the liquid flowing between the two folded pieces 33b can be guided to the inner peripheral surface 25d of the inlet pipe 25 without being scattered in the inner pipe 26. Further, by maintaining the gap S2 generated between the extension portion of the folded structure 33 and the inner peripheral surface 25d of the inlet pipe 25, the liquid flowing along the folded structure 33 can be smoothly guided to the inner peripheral surface 25d.
- the start end portion 34 of the swirling flow generating ribbon 30 is erected along the direction of gravity.
- the swirl flow generating ribbon 30 may be installed so that the start end portion 34 is horizontal with respect to the direction of gravity.
- the liquid guided to the inner peripheral surface 25d inside the inlet pipe 25 can easily flow under the pipe under its own weight, and the liquid separated from the gas can be effectively prevented from re-scattering.
- the shell 21a of the heat exchange unit 21 is a cylindrical hollow tube.
- the present invention is not limited to this, and the shell 21a may be a rectangular hollow tube containing stacked flat tubes.
- the other end 22b of the inflow pipe 22 and the one end 25a of the inlet pipe 25 of the outflow pipe 23 have a rectangular joint portion with the shell 21a.
- the downstream side from the first region 25 ⁇ where the swirl flow generating ribbon 30 is disposed needs to be cylindrical in order to turn the EGR gas into a swirl flow. Therefore, the one end 25a is formed so as to have a cylindrical shape while gradually reducing the cross-sectional area while making the portion joined to the shell 21a rectangular.
- the storage tank 29 is connected to the drain pipe 27 and the liquid separated from the EGR gas that has become the gas-liquid two-phase fluid is stored, but the drain pipe 27 and the storage tank 29 are It does not necessarily have to be installed.
- the liquid separated in the inlet pipe 25 and discharged from the drain port 25c may not be stored.
- the first end edge 32 a and the second end edge 32 b are both formed in a straight line, and a space region that is notched in a V shape is generated in the terminal portion 31 of the swirling flow generating ribbon 30.
- the present invention is not limited to this. Since the center end point 31c only needs to be set on the inflow side of the gas-liquid two-phase fluid with respect to the first end point 31a and the second end point 31b, the first and second end edges 32a and 32b are curved, The end portion 31 of the swirling flow generating ribbon 30 may be cut out in a U shape.
- the axial position of the first terminal point 31a and the axial position of the second terminal point 31b do not necessarily coincide with each other, and one of them is closer to the inflow side of the gas-liquid two-phase fluid than the other. It may be set. At this time, the end line L may not be orthogonal to the axis O of the swirl flow generating ribbon 30. And since the center terminal point 31c should just be set to the inflow side of a gas-liquid two-phase fluid rather than the 1st terminal point 31a and the 2nd terminal point 31b, it is radial from the axis O of the swirl
- the shape of the swirl flow generating ribbon 30 is not limited to that shown in the first embodiment.
- the installation direction of the EGR cooler 20 of the present invention is not limited to this, and the installation direction may be appropriately set due to the influence of the layout or the like in the exhaust gas recirculation system S.
- the example in which the starting end portion 34 of the swirling flow generating ribbon 30 is erected along the direction of gravity is shown.
- the erected direction of the starting end portion 34 is not limited to this, and the EGR cooler 20 It is set as appropriate according to the layout.
- the present invention is not limited to this, and the EGR cooler of the present invention can be applied even if the internal combustion engine 1 is a gasoline engine. Is possible.
- each pipe inlet pipe 25, etc.
- the shell 21a of the heat exchanging portion 21 the size of the diameter, the connection location of each member, etc. are not limited to those shown in the first embodiment, and can be arbitrarily set. .
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Separating Particles In Gases By Inertia (AREA)
Abstract
The purpose of the present invention is to provide an EGR cooler such that an improvement in separation of liquid contained in EGR gas can be achieved while an increase in device size is suppressed. The EGR cooler has: a heat-exchange unit (21) for cooling EGR gas returning from an exhaust path (3) of an internal combustion engine (1) to an intake path (2); and an outflow pipe (23) providing communication between an exhaust port of the heat-exchange unit (21) and the intake path (2), having therein a swirl flow generation ribbon (30) formed of a helical plate member and causing the EGR gas to swirl, and having an exhaust port (26c) and a drainage port (25c). The swirl flow generation ribbon (30) has a configuration in which first and second edges (32a, 32b) connecting a first end point (31a) set on one radial outer side, a second end point (31b) set on the other radial outer side, and a center end point (31c) disposed on an axis (O) at a position closer to the heat-exchange unit (21) than the first and second end points (31a, 31b) are disposed on an end section (31).
Description
本発明は、内燃機関の排気通路から吸気通路に戻されるEGRガスを冷却するEGRクーラに関する発明である。
The present invention relates to an EGR cooler that cools EGR gas that is returned from an exhaust passage of an internal combustion engine to an intake passage.
従来、内燃機関の排気通路から吸気通路へと排気ガスの一部をEGRガスとして戻す際、このEGRガスが流れるEGRパイプにEGRクーラを設けると共に、このEGRクーラの下流側に、EGRガスを冷却することで生じた液体を気体から分離する気液分離装置を設けた構成が知られている(例えば、特許文献1、特許文献2、特許文献3参照)。
Conventionally, when part of the exhaust gas is returned as EGR gas from the exhaust passage of the internal combustion engine to the intake passage, an EGR cooler is provided in the EGR pipe through which the EGR gas flows, and the EGR gas is cooled downstream of the EGR cooler. The structure which provided the gas-liquid separator which isolate | separates the liquid produced by doing from gas is known (for example, refer patent document 1, patent document 2, patent document 3).
しかしながら、従来装置のように、EGRクーラと気液分離装置とを独立して設置した場合では、EGRクーラと気液分離装置とをつなぐ配管が必要になる。また、気液分離装置を設置するスペースを確保しなければならない。そのため、装置が大型化するという問題が生じる。
一方、特許文献1に開示されているように、旋回流発生リボンの終端部(気液二相流体の流出側の端部)が配管の径方向に沿った直線状の端縁を有していると、旋回流発生リボンに付着した液体が、リボン終端部において配管の内周面に向かって流れることなく気体中に再飛散することがある。そのため、一度分離した液体が再び気体に混じって流れてしまい、液体の分離性能が低下するという問題が生じる。 However, in the case where the EGR cooler and the gas-liquid separator are installed independently as in the conventional apparatus, a pipe connecting the EGR cooler and the gas-liquid separator is required. In addition, a space for installing the gas-liquid separator must be secured. Therefore, the problem that an apparatus enlarges arises.
On the other hand, as disclosed inPatent Document 1, the end portion of the swirl flow generating ribbon (the end portion on the outflow side of the gas-liquid two-phase fluid) has a linear edge along the radial direction of the pipe. If so, the liquid adhering to the swirl flow generating ribbon may re-scatter into the gas without flowing toward the inner peripheral surface of the pipe at the end of the ribbon. For this reason, the liquid once separated flows again in the gas, and there arises a problem that the liquid separation performance deteriorates.
一方、特許文献1に開示されているように、旋回流発生リボンの終端部(気液二相流体の流出側の端部)が配管の径方向に沿った直線状の端縁を有していると、旋回流発生リボンに付着した液体が、リボン終端部において配管の内周面に向かって流れることなく気体中に再飛散することがある。そのため、一度分離した液体が再び気体に混じって流れてしまい、液体の分離性能が低下するという問題が生じる。 However, in the case where the EGR cooler and the gas-liquid separator are installed independently as in the conventional apparatus, a pipe connecting the EGR cooler and the gas-liquid separator is required. In addition, a space for installing the gas-liquid separator must be secured. Therefore, the problem that an apparatus enlarges arises.
On the other hand, as disclosed in
本発明は、上記問題に着目してなされたもので、装置の大型化を抑制しつつ、EGRガスに含まれる液体の分離性能の向上を図ることができるEGRクーラを提供することを目的とする。
The present invention has been made paying attention to the above problem, and an object thereof is to provide an EGR cooler capable of improving the separation performance of the liquid contained in the EGR gas while suppressing the enlargement of the apparatus. .
上記目的を達成するため、本発明のEGRクーラは、内燃機関の排気通路から吸気通路に戻されるEGRガスと冷媒との間で熱交換を行う熱交換部と、排気通路と熱交換部の吸気口とを連通する流入管と、吸気通路と熱交換部の排気口とを連通する流出管と、を備えている。
そして、流出管は、内周面に沿ってEGRガスを旋回させる旋回流発生リボンが内部に配置され、且つ、旋回流発生リボンの下流側に排気口及び排水口が形成されている。
また、旋回流発生リボンは、螺旋状にねじられた板部材によって形成され、排気口に向いた終端部に、旋回流発生リボンの径方向外側の終端の一方に設定された第1終端点と、旋回流発生リボンの径方向外側の終端の他方に設定された第2終端点と、旋回流発生リボンの軸線上であって、第1終端点及び第2終端点よりも熱交換部に近い位置に設定された中心終端点と、を有すると共に、第1終端点と中心終端点とを結んだ第1端縁と、第2終端点と中心終端点とを結んだ第2端縁と、が形成されている。 In order to achieve the above object, an EGR cooler according to the present invention includes a heat exchanging portion that exchanges heat between the EGR gas returned from the exhaust passage of the internal combustion engine to the intake passage and the refrigerant, and the intake air of the exhaust passage and the heat exchanging portion. An inflow pipe that communicates with the opening; and an outflow pipe that communicates between the intake passage and the exhaust port of the heat exchange section.
And in the outflow pipe, a swirl flow generating ribbon for swirling EGR gas along the inner peripheral surface is disposed inside, and an exhaust port and a drain port are formed on the downstream side of the swirl flow generating ribbon.
The swirl flow generating ribbon is formed by a spirally twisted plate member, and has a first end point set at one of the radially outer ends of the swirl flow generating ribbon at an end portion facing the exhaust port. The second terminal point set at the other radial outer end of the swirl flow generating ribbon and the axis of the swirl flow generating ribbon, closer to the heat exchange unit than the first terminal point and the second terminal point A first end edge connecting the first end point and the center end point, and a second end edge connecting the second end point and the center end point; Is formed.
そして、流出管は、内周面に沿ってEGRガスを旋回させる旋回流発生リボンが内部に配置され、且つ、旋回流発生リボンの下流側に排気口及び排水口が形成されている。
また、旋回流発生リボンは、螺旋状にねじられた板部材によって形成され、排気口に向いた終端部に、旋回流発生リボンの径方向外側の終端の一方に設定された第1終端点と、旋回流発生リボンの径方向外側の終端の他方に設定された第2終端点と、旋回流発生リボンの軸線上であって、第1終端点及び第2終端点よりも熱交換部に近い位置に設定された中心終端点と、を有すると共に、第1終端点と中心終端点とを結んだ第1端縁と、第2終端点と中心終端点とを結んだ第2端縁と、が形成されている。 In order to achieve the above object, an EGR cooler according to the present invention includes a heat exchanging portion that exchanges heat between the EGR gas returned from the exhaust passage of the internal combustion engine to the intake passage and the refrigerant, and the intake air of the exhaust passage and the heat exchanging portion. An inflow pipe that communicates with the opening; and an outflow pipe that communicates between the intake passage and the exhaust port of the heat exchange section.
And in the outflow pipe, a swirl flow generating ribbon for swirling EGR gas along the inner peripheral surface is disposed inside, and an exhaust port and a drain port are formed on the downstream side of the swirl flow generating ribbon.
The swirl flow generating ribbon is formed by a spirally twisted plate member, and has a first end point set at one of the radially outer ends of the swirl flow generating ribbon at an end portion facing the exhaust port. The second terminal point set at the other radial outer end of the swirl flow generating ribbon and the axis of the swirl flow generating ribbon, closer to the heat exchange unit than the first terminal point and the second terminal point A first end edge connecting the first end point and the center end point, and a second end edge connecting the second end point and the center end point; Is formed.
よって、本発明では、装置が大型化することを抑制しつつ、気液二相流体を旋回させて気体と液体を分離したときに、液滴化したままの液体が気体と共に流れることを防止できる。
Therefore, in the present invention, when the gas-liquid two-phase fluid is swirled to separate the gas and the liquid while suppressing an increase in the size of the apparatus, it is possible to prevent the liquid that is in the form of droplets from flowing together with the gas. .
以下、本発明のEGRクーラを実施するための形態を、図面に示す実施例1に基づいて説明する。
Hereinafter, the form for implementing the EGR cooler of this invention is demonstrated based on Example 1 shown in drawing.
(実施例1)
まず、実施例1におけるEGRクーラの構成を、「適用例のシステム全体構成」、「EGRクーラの詳細構成」、「旋回流発生リボンの詳細構成」に分けて説明する。 Example 1
First, the configuration of the EGR cooler in the first embodiment will be described by dividing it into “the overall system configuration of the application example”, “the detailed configuration of the EGR cooler”, and “the detailed configuration of the swirling flow generating ribbon”.
まず、実施例1におけるEGRクーラの構成を、「適用例のシステム全体構成」、「EGRクーラの詳細構成」、「旋回流発生リボンの詳細構成」に分けて説明する。 Example 1
First, the configuration of the EGR cooler in the first embodiment will be described by dividing it into “the overall system configuration of the application example”, “the detailed configuration of the EGR cooler”, and “the detailed configuration of the swirling flow generating ribbon”.
[適用例のシステム全体構成]
図1は、実施例1のEGRクーラを適用した内燃機関の排気還流システムを示す全体システム図である。以下、図1に基づき、実施例1の適用例のシステム全体構成を説明する。 [System overall configuration of application example]
FIG. 1 is an overall system diagram illustrating an exhaust gas recirculation system for an internal combustion engine to which an EGR cooler according to a first embodiment is applied. The overall system configuration of an application example of the first embodiment will be described below with reference to FIG.
図1は、実施例1のEGRクーラを適用した内燃機関の排気還流システムを示す全体システム図である。以下、図1に基づき、実施例1の適用例のシステム全体構成を説明する。 [System overall configuration of application example]
FIG. 1 is an overall system diagram illustrating an exhaust gas recirculation system for an internal combustion engine to which an EGR cooler according to a first embodiment is applied. The overall system configuration of an application example of the first embodiment will be described below with reference to FIG.
実施例1のEGRクーラ20は、図1に示す内燃機関1の排気還流システムSに適用している。ここで、図1に示した内燃機関1は、走行用駆動源として車両に搭載されるディーゼルエンジンであり、4つの気筒(不図示)を有している。各気筒には、それぞれ吸気通路2と排気通路3が接続されている。
The EGR cooler 20 of the first embodiment is applied to the exhaust gas recirculation system S of the internal combustion engine 1 shown in FIG. Here, the internal combustion engine 1 shown in FIG. 1 is a diesel engine mounted on a vehicle as a driving source for traveling, and has four cylinders (not shown). An intake passage 2 and an exhaust passage 3 are connected to each cylinder.
吸気通路2は、端部に吸気口2aが形成され、この吸気口2a側から順に、吸気濾過用のエアクリーナー4、ターボ過給機5のコンプレッサ5a、吸気を冷却するインタークーラ6、吸入空気量を調整するためのスロットル弁7が設けられている。排気通路3には、内燃機関1側から順に、ターボ過給機5のタービン5b、排気を浄化するための排気浄化触媒8、排気流量を調整するための排気絞り弁9が設けられている。なお、排気絞り弁9の下流側にはマフラー10が設けられ、その先に排気口3aが形成されている。
The intake passage 2 is formed with an intake port 2a at an end, and in order from the intake port 2a side, an air filter 4 for intake filtration, a compressor 5a of a turbocharger 5, an intercooler 6 for cooling intake air, and intake air A throttle valve 7 for adjusting the amount is provided. In the exhaust passage 3, a turbine 5b of the turbocharger 5, an exhaust purification catalyst 8 for purifying exhaust, and an exhaust throttle valve 9 for adjusting the exhaust flow rate are provided in this order from the internal combustion engine 1 side. A muffler 10 is provided on the downstream side of the exhaust throttle valve 9, and an exhaust port 3a is formed at the end thereof.
吸気通路2と排気通路3とは、低圧EGR通路11及び高圧EGR通路12によって接続されている。ここで、「EGR(Exhaust Gas Recirculation)」とは、内燃機関1において燃焼後の排気の一部を取り出して再度吸気させる技術であり、排気再循環ともいう。
The intake passage 2 and the exhaust passage 3 are connected by a low pressure EGR passage 11 and a high pressure EGR passage 12. Here, “EGR (Exhaust Gas Recirculation)” is a technique in which a part of exhaust gas after combustion in the internal combustion engine 1 is taken out and re-intaked, and is also referred to as exhaust gas recirculation.
低圧EGR通路11は、コンプレッサ5aより上流の吸気通路2と排気浄化触媒8より下流の排気通路3とを接続している。一方、高圧EGR通路12は、コンプレッサ5aより下流の吸気通路2とタービン5bより上流の排気通路3とを接続している。
これにより、低圧EGR通路11では、タービン5bを通過した排気ガスを、コンプレッサ5aの吸気に戻す。また、高圧EGR通路12では、タービン5bに吸い込まれる前の排気ガスを、コンプレッサ5aを通過したエアに戻す。 The low pressure EGRpassage 11 connects the intake passage 2 upstream of the compressor 5 a and the exhaust passage 3 downstream of the exhaust purification catalyst 8. On the other hand, the high pressure EGR passage 12 connects the intake passage 2 downstream of the compressor 5a and the exhaust passage 3 upstream of the turbine 5b.
Thereby, in the lowpressure EGR passage 11, the exhaust gas that has passed through the turbine 5b is returned to the intake air of the compressor 5a. In the high pressure EGR passage 12, the exhaust gas before being sucked into the turbine 5b is returned to the air that has passed through the compressor 5a.
これにより、低圧EGR通路11では、タービン5bを通過した排気ガスを、コンプレッサ5aの吸気に戻す。また、高圧EGR通路12では、タービン5bに吸い込まれる前の排気ガスを、コンプレッサ5aを通過したエアに戻す。 The low pressure EGR
Thereby, in the low
そして、低圧EGR通路11の途中位置には、吸気通路2に導かれる排気ガスを冷却するためのEGRクーラ20が設けられると共に、このEGRクーラ20の下流位置に、低圧EGR通路11を介して吸気通路2に還流される排気ガス(EGRガス)の流量を調整するための低圧EGR弁14が設けられている。高圧EGR通路12の途中位置には、高圧EGR通路12を介して吸気通路2に還流される排気ガスの流量を調整するための高圧EGR弁15が設けられている。
An EGR cooler 20 for cooling the exhaust gas guided to the intake passage 2 is provided in the middle of the low-pressure EGR passage 11, and the intake air is supplied to the downstream position of the EGR cooler 20 via the low-pressure EGR passage 11. A low-pressure EGR valve 14 for adjusting the flow rate of exhaust gas (EGR gas) recirculated to the passage 2 is provided. A high pressure EGR valve 15 for adjusting the flow rate of the exhaust gas recirculated to the intake passage 2 through the high pressure EGR passage 12 is provided at a midpoint of the high pressure EGR passage 12.
[EGRクーラの詳細構成]
図2は、実施例1のEGRクーラを示す断面図である。以下、図2に基づいて、実施例1のEGRクーラ20の詳細構成を説明する。 [Detailed configuration of EGR cooler]
FIG. 2 is a cross-sectional view illustrating the EGR cooler according to the first embodiment. Hereinafter, based on FIG. 2, the detailed structure of theEGR cooler 20 of Example 1 is demonstrated.
図2は、実施例1のEGRクーラを示す断面図である。以下、図2に基づいて、実施例1のEGRクーラ20の詳細構成を説明する。 [Detailed configuration of EGR cooler]
FIG. 2 is a cross-sectional view illustrating the EGR cooler according to the first embodiment. Hereinafter, based on FIG. 2, the detailed structure of the
実施例1のEGRクーラ20は、上述のように、低圧EGR通路11の途中位置に設けられている。ここで、低圧EGR通路11を構成するEGRパイプは、EGRクーラ20を配置する位置が分割されており、EGRクーラ20は、図2に示すように、上流側のEGRパイプ11aと、下流側のEGRパイプ11bとの間に介装されている。そして、このEGRクーラ20は、熱交換部21と、流入管22と、流出管23と、を備えている。
The EGR cooler 20 according to the first embodiment is provided in the middle of the low pressure EGR passage 11 as described above. Here, the position where the EGR cooler 20 is arranged is divided in the EGR pipe constituting the low pressure EGR passage 11, and the EGR cooler 20 is connected to the upstream side EGR pipe 11a and the downstream side as shown in FIG. It is interposed between the EGR pipe 11b. The EGR cooler 20 includes a heat exchange part 21, an inflow pipe 22, and an outflow pipe 23.
熱交換部21は、図2に示すように、シェル21aと、一対のコアプレート21b,21cと、多数のチューブ21dと、を有している。
シェル21aは、両端が開放した円筒状の中空管であり、このシェル21aの端面を閉塞するように一対のコアプレート21b,21cが取り付けられている。そして、各コアプレート21b,21cには、多数のチューブ21dの両端が貫通状態で固定されており、これらの多数のチューブ21dは、シェル21aの内部を軸方向に延びている。なお、各チューブ21dは、両端が開放した中空管であり、他のチューブ21dとの間に隙間を開けた状態で配置されている。
さらに、このシェル21aの周面には、冷媒導入パイプ24aが接続された冷媒入口21eと、冷媒導出パイプ24bが接続された冷媒出口21fとが形成されている。なお、冷媒導入パイプ24a及び冷媒導出パイプ24bは、例えばエンジン冷却水(LLC:Long Life Coolant)である冷媒が流れるパイプである。また、このシェル21aの内径寸法は、低圧EGR通路11の内径寸法よりも大きくなっている。 As shown in FIG. 2, theheat exchange unit 21 includes a shell 21a, a pair of core plates 21b and 21c, and a number of tubes 21d.
Theshell 21a is a cylindrical hollow tube whose both ends are open, and a pair of core plates 21b and 21c are attached so as to close the end surface of the shell 21a. Each core plate 21b, 21c has both ends of a large number of tubes 21d fixed in a penetrating manner, and these numerous tubes 21d extend in the axial direction inside the shell 21a. Each tube 21d is a hollow tube whose both ends are open, and is arranged in a state where there is a gap between the other tube 21d.
Furthermore, arefrigerant inlet 21e connected to the refrigerant introduction pipe 24a and a refrigerant outlet 21f connected to the refrigerant outlet pipe 24b are formed on the peripheral surface of the shell 21a. The refrigerant introduction pipe 24a and the refrigerant outlet pipe 24b are pipes through which a refrigerant that is, for example, engine cooling water (LLC: Long Life Coolant) flows. The inner diameter of the shell 21a is larger than the inner diameter of the low pressure EGR passage 11.
シェル21aは、両端が開放した円筒状の中空管であり、このシェル21aの端面を閉塞するように一対のコアプレート21b,21cが取り付けられている。そして、各コアプレート21b,21cには、多数のチューブ21dの両端が貫通状態で固定されており、これらの多数のチューブ21dは、シェル21aの内部を軸方向に延びている。なお、各チューブ21dは、両端が開放した中空管であり、他のチューブ21dとの間に隙間を開けた状態で配置されている。
さらに、このシェル21aの周面には、冷媒導入パイプ24aが接続された冷媒入口21eと、冷媒導出パイプ24bが接続された冷媒出口21fとが形成されている。なお、冷媒導入パイプ24a及び冷媒導出パイプ24bは、例えばエンジン冷却水(LLC:Long Life Coolant)である冷媒が流れるパイプである。また、このシェル21aの内径寸法は、低圧EGR通路11の内径寸法よりも大きくなっている。 As shown in FIG. 2, the
The
Furthermore, a
流入管22は、両端が開放した中空管であり、一端22aが上流側のEGRパイプ11aに接続されている。また、この流入管22の他端22bは、一方のコアプレート21bの外側端面を覆う椀形状に形成され、シェル21aのEGRガスの流入側の端部、すなわち熱交換部21の吸気口に接続されている。これにより、流入管22は、排気通路3と熱交換部21の吸気口とを連通している。
The inflow pipe 22 is a hollow pipe whose both ends are open, and one end 22a is connected to the upstream EGR pipe 11a. The other end 22b of the inflow pipe 22 is formed in a bowl shape that covers the outer end surface of one core plate 21b, and is connected to the end of the EGR gas inflow side of the shell 21a, that is, the intake port of the heat exchange unit 21. Has been. Thus, the inflow pipe 22 communicates the exhaust passage 3 and the intake port of the heat exchange unit 21.
流出管23は、両端が開放した中空間であり、インレットパイプ25と、インナーパイプ26と、排水パイプ27と、を有している。
The outflow pipe 23 is a middle space that is open at both ends, and has an inlet pipe 25, an inner pipe 26, and a drain pipe 27.
インレットパイプ25は、両端が開放した中空管であり、一端25aが、他方のコアプレート21cの外側端面を覆う椀形状に形成され、シェル21aのEGRガスの流出側の端部、すなわち熱交換部21の排気口に接続されている。また、このインレットパイプ25の他端25bには、インナーパイプ26の一端26aが差し込まれている。さらに、このインレットパイプ25の他端25bの周面には、半径方向に開放した排水口25cが形成されている。
そして、インレットパイプ25の内部には、EGRガスの流れを内周面25dに沿って旋回させる旋回流発生リボン30が配置されている。また、インレットパイプ25の内周面25dには、テーパ面25eが形成されている。
なお、EGRガスに含まれる液体は、このEGRガスが旋回する際に生じる遠心力(旋回力)が作用することで排水口25cへと流れ込むことが可能である。そのため、排水口25cの開放方向は、重力方向の下方に限らず、任意の方向に開放させてよい。 Theinlet pipe 25 is a hollow tube whose both ends are open, and one end 25a is formed in a bowl shape covering the outer end surface of the other core plate 21c, and the end portion on the outflow side of the EGR gas of the shell 21a, that is, heat exchange It is connected to the exhaust port of the part 21. One end 26 a of the inner pipe 26 is inserted into the other end 25 b of the inlet pipe 25. Further, a drain port 25c opened in the radial direction is formed on the peripheral surface of the other end 25b of the inlet pipe 25.
A swirlflow generating ribbon 30 is disposed inside the inlet pipe 25 to swirl the EGR gas flow along the inner peripheral surface 25d. A tapered surface 25e is formed on the inner peripheral surface 25d of the inlet pipe 25.
The liquid contained in the EGR gas can flow into thedrain port 25c by the centrifugal force (swivel force) generated when the EGR gas swirls. Therefore, the opening direction of the drain port 25c is not limited to the downward direction of the gravity direction, and may be opened in any direction.
そして、インレットパイプ25の内部には、EGRガスの流れを内周面25dに沿って旋回させる旋回流発生リボン30が配置されている。また、インレットパイプ25の内周面25dには、テーパ面25eが形成されている。
なお、EGRガスに含まれる液体は、このEGRガスが旋回する際に生じる遠心力(旋回力)が作用することで排水口25cへと流れ込むことが可能である。そのため、排水口25cの開放方向は、重力方向の下方に限らず、任意の方向に開放させてよい。 The
A swirl
The liquid contained in the EGR gas can flow into the
テーパ面25eは、インレットパイプ25の内径寸法を、EGRガスの流れ方向の下流側に向かって徐々に大きくする傾斜面であり、旋回流発生リボン30よりもEGRガスの流れ方向の下流側の位置に形成されている。これにより、インレットパイプ25の内径寸法は、テーパ面25eよりもEGRガスの流れ方向の上流側である第1領域25αが最も小さく、テーパ面25eが形成された第2領域25βにて徐々に大きくなり、テーパ面25eよりもEGRガスの流れ方向の下流側である第3領域25γが最も大きくなる。そして、第1領域25αに旋回流発生リボン30が配置され、第3領域25γに排水口25cが形成されている。
なお、旋回流発生リボン30が配置された第1領域25αの内径寸法は、熱交換部21の内径寸法よりも小さくなるように設定されている。 Thetapered surface 25e is an inclined surface that gradually increases the inner diameter dimension of the inlet pipe 25 toward the downstream side in the EGR gas flow direction, and is positioned downstream of the swirling flow generating ribbon 30 in the EGR gas flow direction. Is formed. As a result, the inner diameter of the inlet pipe 25 is the smallest in the first region 25α upstream of the tapered surface 25e in the EGR gas flow direction, and gradually increases in the second region 25β in which the tapered surface 25e is formed. Thus, the third region 25γ, which is downstream of the tapered surface 25e in the EGR gas flow direction, is the largest. And the swirl | vortex flow generation | occurrence | production ribbon 30 is arrange | positioned in the 1st area | region 25 (alpha), and the drain port 25c is formed in the 3rd area | region 25 (gamma).
Note that the inner diameter dimension of the first region 25α where the swirlflow generating ribbon 30 is arranged is set to be smaller than the inner diameter dimension of the heat exchanging portion 21.
なお、旋回流発生リボン30が配置された第1領域25αの内径寸法は、熱交換部21の内径寸法よりも小さくなるように設定されている。 The
Note that the inner diameter dimension of the first region 25α where the swirl
インナーパイプ26は、インレットパイプ25の第3領域25γの最小内径寸法よりも小さい外径寸法を有する両端が開放した直管部材によって形成され、インレットパイプ25の他端25bに一端26aが差し込まれ、インレットパイプ25と同軸状態に設置される。この一端26aには、インナーパイプ26の軸線方向に開放した排気口26cが形成されている。また、このインナーパイプ26の他端26bは、下流側のEGRパイプ11bの先端に接続されている。
これにより、流出管23は、インレットパイプ25及びインナーパイプ26を介して、熱交換部21の排気口と吸気通路2とを連通している。 Theinner pipe 26 is formed by a straight pipe member having both ends open and having an outer diameter smaller than the minimum inner diameter of the third region 25γ of the inlet pipe 25, and one end 26a is inserted into the other end 25b of the inlet pipe 25, It is installed coaxially with the inlet pipe 25. An exhaust port 26c that is open in the axial direction of the inner pipe 26 is formed at the one end 26a. The other end 26b of the inner pipe 26 is connected to the tip of the downstream EGR pipe 11b.
As a result, theoutflow pipe 23 communicates the exhaust port of the heat exchanging portion 21 and the intake passage 2 via the inlet pipe 25 and the inner pipe 26.
これにより、流出管23は、インレットパイプ25及びインナーパイプ26を介して、熱交換部21の排気口と吸気通路2とを連通している。 The
As a result, the
そして、インレットパイプ25の他端25bには、このインレットパイプ25の内周面25dとインナーパイプ26との間に生じる間隙S1を封鎖するスペーサー28が嵌合されている。スペーサー28は、インナーパイプ26の全周を取り囲む円筒形状を呈しており、外周面がインレットパイプ25の内周面25dに気密状態で接触し、内周面がインナーパイプ26の外周面に気密状態で接触している。
さらに、このスペーサー28は、インレットパイプ25の内側に位置する端部の軸方向位置が、排水口25cの周縁部のうちの最も下流側の部分の軸方向位置と一致している。つまり、スペーサー28は、排水口25cの開口領域に重複しないものの、排水口25cの開口領域と軸方向に隙間を開けることなく設置されている。 Theother end 25b of the inlet pipe 25 is fitted with a spacer 28 that seals the gap S1 generated between the inner peripheral surface 25d of the inlet pipe 25 and the inner pipe 26. The spacer 28 has a cylindrical shape that surrounds the entire circumference of the inner pipe 26, the outer peripheral surface is in airtight contact with the inner peripheral surface 25 d of the inlet pipe 25, and the inner peripheral surface is in an airtight state with the outer peripheral surface of the inner pipe 26. In contact.
Further, in thespacer 28, the axial position of the end located inside the inlet pipe 25 coincides with the axial position of the most downstream portion of the peripheral edge of the drain port 25 c. That is, although the spacer 28 does not overlap with the opening region of the drain port 25c, the spacer 28 is installed without opening a gap in the axial direction with the opening region of the drain port 25c.
さらに、このスペーサー28は、インレットパイプ25の内側に位置する端部の軸方向位置が、排水口25cの周縁部のうちの最も下流側の部分の軸方向位置と一致している。つまり、スペーサー28は、排水口25cの開口領域に重複しないものの、排水口25cの開口領域と軸方向に隙間を開けることなく設置されている。 The
Further, in the
排水パイプ27は、第1管部材27aの軸方向中央部に第2管部材27bが直交するように接続した、いわゆるT字管によって形成され、第1管部材27aをインレットパイプ25が貫通している。また、第1管部材27aと第2管部材27bとの接続部分に形成された接続開口27cが排水口25cと対向し、この排水口25c及び接続開口27cを介して、インレットパイプ25と排水パイプ27の第2管部材27bとが連通している。つまり、後述するように、インレットパイプ25の内部においてEGRガスから分離した液体は、排水口25cから接続開口27cを介して第2管部材27bに流入する。
ここで、インレットパイプ25に形成された排水口25cの内径寸法は、排水パイプ27の接続開口27cの内径寸法と同等に設定されている。そして、第2管部材27bは、インレットパイプ25の軸方向に対して重力方向の下方に向かって延在され、先端部27dに先端開口27eが形成されている。ここで、「重力方向」とは、図2における下方向であり、重力が作用する方向である。
なお、第1管部材27a及び第2管部材27bは、いずれも円管に限らず、角管(角パイプ)等であってもよい。また、図2に示す第2管部材27bは、途中位置が先端部27dに向かって次第に細くなり、先端開口27eの開口面積が接続開口27cの開口面積よりも小さくなっている。しかしながら、先端開口27eと接続開口27cとは、同等の大きさであってもよく、任意に設定できる。 Thedrain pipe 27 is formed by a so-called T-shaped pipe in which the second pipe member 27b is connected so as to be orthogonal to the central portion in the axial direction of the first pipe member 27a, and the inlet pipe 25 penetrates the first pipe member 27a. Yes. Further, a connection opening 27c formed in a connection portion between the first pipe member 27a and the second pipe member 27b faces the drainage port 25c, and the inlet pipe 25 and the drainage pipe are connected to the drainage port 25c and the connection opening 27c. 27 is communicated with the second pipe member 27b. That is, as described later, the liquid separated from the EGR gas inside the inlet pipe 25 flows into the second pipe member 27b from the drain port 25c through the connection opening 27c.
Here, the inner diameter dimension of thedrain port 25 c formed in the inlet pipe 25 is set to be equal to the inner diameter dimension of the connection opening 27 c of the drain pipe 27. The second pipe member 27b extends downward in the gravitational direction with respect to the axial direction of the inlet pipe 25, and a tip opening 27e is formed in the tip portion 27d. Here, the “gravity direction” is the downward direction in FIG. 2 and is the direction in which gravity acts.
Thefirst tube member 27a and the second tube member 27b are not limited to circular tubes, and may be square tubes (square pipes) or the like. In addition, the second tube member 27b shown in FIG. 2 has an intermediate position that gradually becomes thinner toward the distal end portion 27d, and the opening area of the distal end opening 27e is smaller than the opening area of the connection opening 27c. However, the tip opening 27e and the connection opening 27c may have the same size and can be arbitrarily set.
ここで、インレットパイプ25に形成された排水口25cの内径寸法は、排水パイプ27の接続開口27cの内径寸法と同等に設定されている。そして、第2管部材27bは、インレットパイプ25の軸方向に対して重力方向の下方に向かって延在され、先端部27dに先端開口27eが形成されている。ここで、「重力方向」とは、図2における下方向であり、重力が作用する方向である。
なお、第1管部材27a及び第2管部材27bは、いずれも円管に限らず、角管(角パイプ)等であってもよい。また、図2に示す第2管部材27bは、途中位置が先端部27dに向かって次第に細くなり、先端開口27eの開口面積が接続開口27cの開口面積よりも小さくなっている。しかしながら、先端開口27eと接続開口27cとは、同等の大きさであってもよく、任意に設定できる。 The
Here, the inner diameter dimension of the
The
第2管部材27bの先端部27dには、図2に示すように、貯水タンク29の重力方向の上部に形成された接続口29aが接続されている。ここで、貯水タンク29は、第2管部材27bの重力方向下方に設置されたタンクであり、第2管部材27bを流れ落ちた液体を貯留する。
なお、この貯水タンク29の重力方向の下部には、適宜開閉可能な排水開口(図示せず)が形成されている。そのため、貯水タンク29では、貯留された液体が一定量に達したら、排水開口を介して貯留した液体をタンク外へ放出できる。 As shown in FIG. 2, aconnection port 29 a formed at the upper part in the gravity direction of the water storage tank 29 is connected to the distal end portion 27 d of the second pipe member 27 b. Here, the water storage tank 29 is a tank installed below the second pipe member 27b in the direction of gravity, and stores the liquid that has flowed down the second pipe member 27b.
A drainage opening (not shown) that can be appropriately opened and closed is formed at the lower part of thewater storage tank 29 in the direction of gravity. Therefore, in the water storage tank 29, when the stored liquid reaches a certain amount, the stored liquid can be discharged out of the tank through the drain opening.
なお、この貯水タンク29の重力方向の下部には、適宜開閉可能な排水開口(図示せず)が形成されている。そのため、貯水タンク29では、貯留された液体が一定量に達したら、排水開口を介して貯留した液体をタンク外へ放出できる。 As shown in FIG. 2, a
A drainage opening (not shown) that can be appropriately opened and closed is formed at the lower part of the
さらに、この実施例1では、インナーパイプ26のインレットパイプ25から突出した位置の側面に、通気口26dが形成されている。この通気口26dは、バイパスパイプ29bの一方の端部29cが接続する開口であり、インナーパイプ26の半径方向であって重力方向の下方に開放している。また、貯水タンク29の上部の側面には、通気口29eが形成されている。この通気口29eは、バイパスパイプ29bの他方の端部29dが接続する開口である。
ここで、バイパスパイプ29bは両端が開放した管部材であり、両端部29c,29dが、通気口26dと通気口29eにそれぞれ接続されることで、貯水タンク29の上部の空間が、インナーパイプ26の内部に連通する。
なお、図2では、インナーパイプ26に形成された通気口26dが重力方向の下方に開放しているが、この通気口26dは、バイパスパイプ29bを介して貯水タンク29を負圧にするための開口であるため、重力方向の下方以外の方向に開放してもよい。 Further, in the first embodiment, avent 26d is formed on the side surface of the inner pipe 26 at a position protruding from the inlet pipe 25. The vent 26d is an opening to which one end 29c of the bypass pipe 29b is connected, and is open in the radial direction of the inner pipe 26 and downward in the direction of gravity. A vent hole 29 e is formed on the upper side surface of the water storage tank 29. The vent 29e is an opening to which the other end 29d of the bypass pipe 29b is connected.
Here, thebypass pipe 29b is a pipe member whose both ends are open, and both end portions 29c and 29d are connected to the vent hole 26d and the vent hole 29e, respectively, so that the space above the water storage tank 29 becomes the inner pipe 26. It communicates with the inside.
In FIG. 2, thevent 26d formed in the inner pipe 26 opens downward in the direction of gravity, but this vent 26d is used to make the water storage tank 29 have a negative pressure via the bypass pipe 29b. Since it is an opening, you may open in directions other than the downward direction of a gravitational direction.
ここで、バイパスパイプ29bは両端が開放した管部材であり、両端部29c,29dが、通気口26dと通気口29eにそれぞれ接続されることで、貯水タンク29の上部の空間が、インナーパイプ26の内部に連通する。
なお、図2では、インナーパイプ26に形成された通気口26dが重力方向の下方に開放しているが、この通気口26dは、バイパスパイプ29bを介して貯水タンク29を負圧にするための開口であるため、重力方向の下方以外の方向に開放してもよい。 Further, in the first embodiment, a
Here, the
In FIG. 2, the
[旋回流発生リボンの詳細構成]
図3は、実施例1の旋回流発生リボンを示す斜視図であり、図4は旋回流発生リボンの側面図である。また、図5は、図3におけるA-A断面図である。以下、図3~図5に基づき、実施例1の旋回流発生リボンの詳細構成を説明する。 [Detailed configuration of swirl flow generation ribbon]
FIG. 3 is a perspective view showing the swirl flow generating ribbon of Example 1, and FIG. 4 is a side view of the swirl flow generating ribbon. FIG. 5 is a cross-sectional view taken along the line AA in FIG. The detailed configuration of the swirl flow generating ribbon according to the first embodiment will be described below with reference to FIGS.
図3は、実施例1の旋回流発生リボンを示す斜視図であり、図4は旋回流発生リボンの側面図である。また、図5は、図3におけるA-A断面図である。以下、図3~図5に基づき、実施例1の旋回流発生リボンの詳細構成を説明する。 [Detailed configuration of swirl flow generation ribbon]
FIG. 3 is a perspective view showing the swirl flow generating ribbon of Example 1, and FIG. 4 is a side view of the swirl flow generating ribbon. FIG. 5 is a cross-sectional view taken along the line AA in FIG. The detailed configuration of the swirl flow generating ribbon according to the first embodiment will be described below with reference to FIGS.
旋回流発生リボン30は、螺旋状にねじられた帯状の板部材により形成されており、インレットパイプ25の第1領域25α内に配置されている。この旋回流発生リボン30は、径方向寸法R(図4参照)が第1領域25αの内径寸法と同等に設定されており、インレットパイプ25と同軸状態に設置されると共に、周縁がインレットパイプ25の内周面25dに接触している。
The swirl flow generating ribbon 30 is formed of a strip-shaped plate member that is spirally twisted, and is disposed in the first region 25α of the inlet pipe 25. The swirl flow generating ribbon 30 has a radial dimension R (see FIG. 4) set to be equal to the inner diameter dimension of the first region 25α, is installed coaxially with the inlet pipe 25, and has a peripheral edge at the inlet pipe 25. In contact with the inner peripheral surface 25d.
この旋回流発生リボン30は、EGRガスの流出側の終端部31に、第1終端点31aと、第2終端点31bと、中心終端点31cと、を有すると共に、第1端縁32aと、第2端縁32bと、が形成されている。
第1終端点31aは、旋回流発生リボン30の径方向外側の終端の一方に設定されている。第2終端点31bは、旋回流発生リボン30の径方向外側の終端の他方に設定されている。ここで、第1終端点31aの軸方向位置と、第2終端点31bの軸方向位置とは一致しており、第1終端点31aと第2終端点31bを結んだ終端線Lは、旋回流発生リボン30の軸線Oと直交する。
そして、中心終端点31cは、旋回流発生リボン30の軸線O上であって、第1終端点31a及び第2終端点31bよりもEGRガスの流入側、つまり熱交換部21に近い位置に設定されている。 The swirlingflow generating ribbon 30 has a first terminal point 31a, a second terminal point 31b, and a central terminal point 31c at the terminal part 31 on the outflow side of the EGR gas, and a first edge 32a, And a second end edge 32b.
Thefirst end point 31 a is set to one of the radially outer ends of the swirl flow generating ribbon 30. The second terminal point 31 b is set to the other of the terminal ends on the radially outer side of the swirling flow generating ribbon 30. Here, the axial position of the first terminal point 31a coincides with the axial position of the second terminal point 31b, and the terminal line L connecting the first terminal point 31a and the second terminal point 31b is turned. It is orthogonal to the axis O of the flow generating ribbon 30.
Thecenter terminal point 31c is set on the axis O of the swirling flow generating ribbon 30 and at a position closer to the inflow side of EGR gas than the first terminal point 31a and the second terminal point 31b, that is, closer to the heat exchanging unit 21. Has been.
第1終端点31aは、旋回流発生リボン30の径方向外側の終端の一方に設定されている。第2終端点31bは、旋回流発生リボン30の径方向外側の終端の他方に設定されている。ここで、第1終端点31aの軸方向位置と、第2終端点31bの軸方向位置とは一致しており、第1終端点31aと第2終端点31bを結んだ終端線Lは、旋回流発生リボン30の軸線Oと直交する。
そして、中心終端点31cは、旋回流発生リボン30の軸線O上であって、第1終端点31a及び第2終端点31bよりもEGRガスの流入側、つまり熱交換部21に近い位置に設定されている。 The swirling
The
The
第1端縁32aは、旋回流発生リボン30の終端縁のうち、第1終端点31aと中心終端点31cとを結んだ端縁である。また、第2端縁32bは、旋回流発生リボン30の終端縁のうち、第2終端点31bと中心終端点31cとを結んだ端縁である。つまり、旋回流発生リボン30の終端部31には、第1端縁32aと第2端縁32bと終端線Lにて囲まれたV字状に切り欠かれた空間領域が設けられている。
The first edge 32 a is an edge connecting the first terminal point 31 a and the center terminal point 31 c among the terminal edges of the swirl flow generating ribbon 30. The second end edge 32 b is an end edge connecting the second end point 31 b and the center end point 31 c among the end edges of the swirl flow generating ribbon 30. In other words, the end portion 31 of the swirling flow generating ribbon 30 is provided with a space region cut out in a V shape surrounded by the first end edge 32a, the second end edge 32b, and the end line L.
また、この旋回流発生リボン30は、第1端縁32a及び第2端縁32bのそれぞれに、EGRガスの流入側に折り返された折り返し構造33が形成されている。
折り返し構造33は、図5に示すように、第1端縁32a及び第2端縁32bの先端を旋回流発生リボン30の一方の螺旋面30a側に折り返した第1折返片33aと、第1端縁32a及び第2端縁32bの先端を反対側の螺旋面30b側に折り返した第2折返片33bと、を有している。また、この折り返し構造33は、中心終端点31cから第1終端点31aの手前までの間と、中心終端点31cから第2終端点31bの手前までの間に形成されている。これにより、折り返し構造33の径方向両端部と、インレットパイプ25の内周面25dとの間には隙間S2が生じている(図2参照)。 Further, the swirlingflow generating ribbon 30 is formed with a folded structure 33 that is folded on the inflow side of the EGR gas at each of the first end edge 32a and the second end edge 32b.
As shown in FIG. 5, the foldedstructure 33 includes a first folded piece 33 a in which the tips of the first end edge 32 a and the second end edge 32 b are folded back to the one spiral surface 30 a side of the swirl flow generating ribbon 30, And a second folded piece 33b in which the tips of the end edge 32a and the second end edge 32b are folded back to the opposite spiral surface 30b side. The folded structure 33 is formed between the center terminal point 31c and the first terminal point 31a, and between the center terminal point 31c and the second terminal point 31b. As a result, a gap S2 is generated between both ends in the radial direction of the folded structure 33 and the inner peripheral surface 25d of the inlet pipe 25 (see FIG. 2).
折り返し構造33は、図5に示すように、第1端縁32a及び第2端縁32bの先端を旋回流発生リボン30の一方の螺旋面30a側に折り返した第1折返片33aと、第1端縁32a及び第2端縁32bの先端を反対側の螺旋面30b側に折り返した第2折返片33bと、を有している。また、この折り返し構造33は、中心終端点31cから第1終端点31aの手前までの間と、中心終端点31cから第2終端点31bの手前までの間に形成されている。これにより、折り返し構造33の径方向両端部と、インレットパイプ25の内周面25dとの間には隙間S2が生じている(図2参照)。 Further, the swirling
As shown in FIG. 5, the folded
さらに、この旋回流発生リボン30は、第1領域25αに配置されているものの、終端部31の少なくとも第1終端点31a及び第2終端点31bは、内周面25dにテーパ面25eが形成された領域、すなわち第2領域25βに挿入されている。
Further, although the swirling flow generating ribbon 30 is disposed in the first region 25α, at least the first terminal point 31a and the second terminal point 31b of the terminal portion 31 are formed with a tapered surface 25e on the inner peripheral surface 25d. Inserted in the second region 25β.
なお、旋回流発生リボン30のEGRガスの流入側の始端部34は、第1始端点34a、第2始端点34b、中心始端点34cと、を有している。
第1始端点34aは、旋回流発生リボン30の径方向外側の始端の一方に設定されている。第2始端点34bは、旋回流発生リボン30の径方向外側の始端の他方に設定されている。中心始端点34cは、旋回流発生リボン30の軸線O上であって、第1始端点34a及び第2始端点34bと軸方向位置が一致している。すなわち、中心始端点34cは、第1始端点34aと第2始端点34bを結んだ始端線と軸線Oとの交点上に設定され、第1,第2始端点34a,34b及び中心始端点34cは、旋回流発生リボン30の半径方向に沿って並んでいる。さらに、この旋回流発生リボン30の始端部34は、重力方向に沿って立設している。 Thestart end 34 of the swirling flow generating ribbon 30 on the EGR gas inflow side has a first start end point 34a, a second start end point 34b, and a center start end point 34c.
Thefirst starting point 34 a is set to one of the starting ends on the radially outer side of the swirling flow generating ribbon 30. The second starting end point 34 b is set to the other of the starting ends on the radially outer side of the swirling flow generating ribbon 30. The center start end point 34c is on the axis O of the swirling flow generating ribbon 30, and the first start end point 34a and the second start end point 34b coincide with the axial position. That is, the center start point 34c is set on the intersection of the start line connecting the first start point 34a and the second start point 34b and the axis O, and the first and second start points 34a, 34b and the center start point 34c. Are aligned along the radial direction of the swirl flow generating ribbon 30. Further, the starting end portion 34 of the swirling flow generating ribbon 30 is erected along the direction of gravity.
第1始端点34aは、旋回流発生リボン30の径方向外側の始端の一方に設定されている。第2始端点34bは、旋回流発生リボン30の径方向外側の始端の他方に設定されている。中心始端点34cは、旋回流発生リボン30の軸線O上であって、第1始端点34a及び第2始端点34bと軸方向位置が一致している。すなわち、中心始端点34cは、第1始端点34aと第2始端点34bを結んだ始端線と軸線Oとの交点上に設定され、第1,第2始端点34a,34b及び中心始端点34cは、旋回流発生リボン30の半径方向に沿って並んでいる。さらに、この旋回流発生リボン30の始端部34は、重力方向に沿って立設している。 The
The
次に、実施例1のEGRクーラにおける作用を、「EGRガスの冷却作用」と、「気液分離及び液体再飛散防止作用」と、「装置のコンパクト化作用」に分けて説明する。
Next, the operation of the EGR cooler according to the first embodiment will be described by dividing it into “EGR gas cooling operation”, “gas-liquid separation and liquid re-spattering prevention operation”, and “apparatus compacting operation”.
[EGRガスの冷却作用]
図6は、実施例1のEGRクーラにおける気液二相流体及び分離した気体・液体の流れを示す説明図である。以下、図6に基づき、実施例1のEGRクーラ20におけるEGRガスの冷却作用を説明する。 [Cooling action of EGR gas]
FIG. 6 is an explanatory diagram illustrating a gas-liquid two-phase fluid and separated gas / liquid flows in the EGR cooler according to the first embodiment. Hereinafter, based on FIG. 6, the cooling effect | action of the EGR gas in theEGR cooler 20 of Example 1 is demonstrated.
図6は、実施例1のEGRクーラにおける気液二相流体及び分離した気体・液体の流れを示す説明図である。以下、図6に基づき、実施例1のEGRクーラ20におけるEGRガスの冷却作用を説明する。 [Cooling action of EGR gas]
FIG. 6 is an explanatory diagram illustrating a gas-liquid two-phase fluid and separated gas / liquid flows in the EGR cooler according to the first embodiment. Hereinafter, based on FIG. 6, the cooling effect | action of the EGR gas in the
図1に示す排気還流システムSでは、低圧EGR通路11を介して内燃機関1から排出された排気ガスの一部を排気通路3から還流させ、吸気口2aから吸い込んだ外気に合流させてターボ過給機5のコンプレッサ5aに供給する。このとき、高温のEGRガスを還流すると内燃機関1におけるEGRガスの充填効率が低下するため、NOx排出量の低減が難しい。そのため、EGRガスと外気とを合流させる前に、エンジン冷却水等の冷媒とEGRガスとの間で熱交換を行い、還流するEGRガスを冷却する必要がある。
In the exhaust gas recirculation system S shown in FIG. 1, a part of the exhaust gas discharged from the internal combustion engine 1 through the low pressure EGR passage 11 is recirculated from the exhaust passage 3 and merged with the outside air sucked from the intake port 2a. Supplied to the compressor 5a of the feeder 5. At this time, if the high-temperature EGR gas is recirculated, the charging efficiency of the EGR gas in the internal combustion engine 1 is reduced, so that it is difficult to reduce the NOx emission amount. Therefore, before the EGR gas and the outside air are merged, it is necessary to exchange heat between the refrigerant such as engine cooling water and the EGR gas to cool the refluxed EGR gas.
これに対し、実施例1のEGRクーラ20では、図6に示すように、排気通路3を流れる排気ガスの一部が低圧EGR通路11に流れると、この排気ガスの一部であるEGRガスは、上流側のEGRパイプ11aからEGRクーラ20の流入管22へと流れ込む。この流入管22は、他端22bが熱交換部21のシェル21aのEGRガスの流入側の端部に接続されているが、このシェル21aのEGRガスの流入側の端部は、一方のコアプレート21bで閉塞されていると共に、この一方のコアプレート21bを多数のチューブ21dが貫通している。そして、この多数のチューブ21dは、シェル21aの内部を軸方向に延びて、シェル21aのEGRガスの流出側の端部を閉塞する他方のコアプレート21cを貫通している。
そのため、流入管22へと流れたEGRガスは、多数のチューブ21dの中を通ることでシェル21a内を通過し、このシェル21aのEGRガスの流出側の端部から流出管23のインレットパイプ25へと排出される。 On the other hand, in theEGR cooler 20 of the first embodiment, as shown in FIG. 6, when a part of the exhaust gas flowing through the exhaust passage 3 flows into the low pressure EGR passage 11, the EGR gas that is a part of this exhaust gas is Then, it flows from the upstream EGR pipe 11 a into the inflow pipe 22 of the EGR cooler 20. The other end 22b of the inflow pipe 22 is connected to the end of the EGR gas inflow side of the shell 21a of the heat exchanging portion 21, and the end of the EGR gas inflow side of the shell 21a is connected to one core. While being blocked by the plate 21b, a large number of tubes 21d penetrate the one core plate 21b. The numerous tubes 21d extend in the axial direction inside the shell 21a and penetrate the other core plate 21c that closes the end portion of the shell 21a on the outflow side of the EGR gas.
Therefore, the EGR gas that has flowed into theinflow pipe 22 passes through the shell 21a by passing through the numerous tubes 21d, and the inlet pipe 25 of the outflow pipe 23 from the end of the EGR gas outflow side of the shell 21a. Is discharged.
そのため、流入管22へと流れたEGRガスは、多数のチューブ21dの中を通ることでシェル21a内を通過し、このシェル21aのEGRガスの流出側の端部から流出管23のインレットパイプ25へと排出される。 On the other hand, in the
Therefore, the EGR gas that has flowed into the
一方、シェル21aには、冷媒導入パイプ24aが接続された冷媒入口21eと、冷媒導出パイプ24bが接続された冷媒出口21fとが形成されている。そのため、冷媒導入パイプ24aを流れる冷媒が、冷媒入口21eからシェル21a内に流れ込み、このシェル21aの内部を流れて、冷媒出口21fを介して冷媒導出パイプ24bへと流れ出る。
On the other hand, the shell 21a is formed with a refrigerant inlet 21e connected to the refrigerant introduction pipe 24a and a refrigerant outlet 21f connected to the refrigerant outlet pipe 24b. Therefore, the refrigerant flowing through the refrigerant introduction pipe 24a flows into the shell 21a from the refrigerant inlet 21e, flows through the inside of the shell 21a, and flows out to the refrigerant outlet pipe 24b through the refrigerant outlet 21f.
このように、多数のチューブ21d内をEGRガスが流れる一方、このチューブ21dを内蔵したシェル21aの内部を冷媒が流れるので、EGRガスは、多数のチューブ21dを通る間にこのチューブ21dの外側を流れる冷媒との熱交換によって冷却される。これにより、内燃機関1でのEGRガスの充填効率の低下を防止し、空気比率の低減を図ることができる。また、内燃機関1における燃焼温度を低下できる。この結果、NOx排出量の低減を図ることができる。
As described above, the EGR gas flows through the multiple tubes 21d, while the refrigerant flows through the inside of the shell 21a containing the tubes 21d. Therefore, the EGR gas flows outside the tubes 21d while passing through the multiple tubes 21d. It is cooled by heat exchange with the flowing refrigerant. Thereby, the fall of the filling efficiency of the EGR gas in the internal combustion engine 1 can be prevented, and the air ratio can be reduced. Further, the combustion temperature in the internal combustion engine 1 can be lowered. As a result, the NOx emission amount can be reduced.
[気液分離及び液体再飛散防止作用]
以下、図6に基づき、実施例1のEGRクーラ20における気液分離及び液体再飛散防止作用を説明する。 [Gas-liquid separation and liquid re-spattering prevention]
Hereinafter, based on FIG. 6, the gas-liquid separation and the liquid re-scattering preventing action in theEGR cooler 20 of the first embodiment will be described.
以下、図6に基づき、実施例1のEGRクーラ20における気液分離及び液体再飛散防止作用を説明する。 [Gas-liquid separation and liquid re-spattering prevention]
Hereinafter, based on FIG. 6, the gas-liquid separation and the liquid re-scattering preventing action in the
上述のように、熱交換部21にて高温のEGRガスを冷却する。しかしながら、EGRガスを冷却すると、このEGRガスに含まれていた水分が凝縮水として液体になり、吸気通路2へと還流するEGRガスは、気体と液体とが混ざり合った気液二相流体になる。特に、熱交換部21における熱交換効率が高く、冷却性能が良い場合では、凝縮水の発生が多くなる。
そして、この気液二相流体に含まれている液体がある程度の大きさの液滴となった状態で下流へと流れていくと、ターボ過給機5のコンプレッサ5aの回転翼に衝突し、衝撃を与えることがある。
これに対し、実施例1のEGRクーラ20は、気液二相流体の状態になったEGRガスが流れる流出管23のインレットパイプ25の内部に旋回流発生リボン30が配置されている。 As described above, the high-temperature EGR gas is cooled in theheat exchange unit 21. However, when the EGR gas is cooled, the water contained in the EGR gas becomes liquid as condensed water, and the EGR gas that recirculates to the intake passage 2 becomes a gas-liquid two-phase fluid in which gas and liquid are mixed. Become. In particular, when the heat exchange efficiency in the heat exchange unit 21 is high and the cooling performance is good, the generation of condensed water increases.
Then, when the liquid contained in the gas-liquid two-phase fluid flows downstream in a state of droplets of a certain size, it collides with the rotor blades of thecompressor 5a of the turbocharger 5, May cause shock.
On the other hand, in theEGR cooler 20 of the first embodiment, the swirl flow generating ribbon 30 is disposed inside the inlet pipe 25 of the outflow pipe 23 through which the EGR gas in a gas-liquid two-phase fluid state flows.
そして、この気液二相流体に含まれている液体がある程度の大きさの液滴となった状態で下流へと流れていくと、ターボ過給機5のコンプレッサ5aの回転翼に衝突し、衝撃を与えることがある。
これに対し、実施例1のEGRクーラ20は、気液二相流体の状態になったEGRガスが流れる流出管23のインレットパイプ25の内部に旋回流発生リボン30が配置されている。 As described above, the high-temperature EGR gas is cooled in the
Then, when the liquid contained in the gas-liquid two-phase fluid flows downstream in a state of droplets of a certain size, it collides with the rotor blades of the
On the other hand, in the
そのため、図6に示すように、インレットパイプ25に流入したEGRガスは、旋回流発生リボン30が設置された第1領域25αを通過する際、この旋回流発生リボン30に沿って流れることで旋回流となる。そして、この旋回流によって付与される遠心力により、EGRガスに含まれている質量の大きい液体は、インレットパイプ25の内周面25dに向かって誘導される。
Therefore, as shown in FIG. 6, the EGR gas flowing into the inlet pipe 25 swirls by flowing along the swirl flow generating ribbon 30 when passing through the first region 25α where the swirl flow generating ribbon 30 is installed. It becomes a flow. And the liquid with a large mass contained in EGR gas is guide | induced toward the internal peripheral surface 25d of the inlet pipe 25 with the centrifugal force provided by this turning flow.
そして、インレットパイプ25の内周面25dへ向かって誘導された液体は、凝集して液滴となり、気体から分離して内周面25dに付着したまま、旋回流の流れによって第2領域25βから第3領域25γへと流れていく。そして、第3領域25γに流れ込んだ液体は、この第3領域25γに形成された排水口25cに流れ込み、自重によって排水パイプ27の接続開口27cを介して第2管部材27bを流れ落ちる。その後、先端開口27eから貯水タンク29内に流れて貯留される。
Then, the liquid guided toward the inner peripheral surface 25d of the inlet pipe 25 aggregates into droplets, separates from the gas, and adheres to the inner peripheral surface 25d from the second region 25β by the swirling flow. It flows to the third region 25γ. Then, the liquid flowing into the third region 25γ flows into the drain port 25c formed in the third region 25γ, and flows down the second pipe member 27b through the connection opening 27c of the drain pipe 27 by its own weight. Then, it flows into the water storage tank 29 from the front end opening 27e and is stored.
なお、この実施例1では、インナーパイプ26と貯水タンク29とがバイパスパイプ29bを介して連通している。そのため、インナーパイプ26を流れる気流により、貯水タンク29の内部を負圧にでき、排水パイプ27を流下する液体の流れを円滑にできる。さらに、液体と共に貯水タンク29へと流れ込んだ気体を、このバイパスパイプ29b及びインナーパイプ26を介して低圧EGR通路11へと戻すことができる。
In the first embodiment, the inner pipe 26 and the water storage tank 29 communicate with each other via the bypass pipe 29b. Therefore, the airflow flowing through the inner pipe 26 can make the inside of the water storage tank 29 have a negative pressure, and the flow of liquid flowing down the drainage pipe 27 can be made smooth. Further, the gas flowing into the water storage tank 29 together with the liquid can be returned to the low pressure EGR passage 11 through the bypass pipe 29b and the inner pipe 26.
また、インレットパイプ25を流れる気体は、軸方向に開放した排気口26cからインナーパイプ26に流れ込む。そして、この気体は、インナーパイプ26を介してターボ過給機5のコンプレッサ5aへと流れていく。
ここで、インナーパイプ26の外径寸法は、インレットパイプ25に差し込まれるためにインレットパイプ25の第3領域25γの内径寸法よりも小さくなっている。そのため、実施例1のEGRクーラ20では、インレットパイプ25の内周面25dに付着した液体がインナーパイプ26内に入り込むことを防止できる。さらに、インレットパイプ25の他端25bには、インナーパイプ26との間に生じる間隙S1を封鎖するスペーサー28が嵌合されている。そのため、このEGRクーラ20は、インレットパイプ25の他端25bから気体が漏れ出ることを防止し、気液二相流体から分離した気体を円滑にインナーパイプ26へと流入させることができる。 The gas flowing through theinlet pipe 25 flows into the inner pipe 26 from the exhaust port 26c opened in the axial direction. Then, this gas flows to the compressor 5 a of the turbocharger 5 through the inner pipe 26.
Here, the outer diameter dimension of theinner pipe 26 is smaller than the inner diameter dimension of the third region 25γ of the inlet pipe 25 in order to be inserted into the inlet pipe 25. Therefore, in the EGR cooler 20 of the first embodiment, the liquid adhering to the inner peripheral surface 25d of the inlet pipe 25 can be prevented from entering the inner pipe 26. Further, the other end 25 b of the inlet pipe 25 is fitted with a spacer 28 that seals the gap S <b> 1 generated between the inlet pipe 25 and the inner pipe 26. Therefore, the EGR cooler 20 can prevent the gas from leaking from the other end 25b of the inlet pipe 25, and can smoothly flow the gas separated from the gas-liquid two-phase fluid into the inner pipe 26.
ここで、インナーパイプ26の外径寸法は、インレットパイプ25に差し込まれるためにインレットパイプ25の第3領域25γの内径寸法よりも小さくなっている。そのため、実施例1のEGRクーラ20では、インレットパイプ25の内周面25dに付着した液体がインナーパイプ26内に入り込むことを防止できる。さらに、インレットパイプ25の他端25bには、インナーパイプ26との間に生じる間隙S1を封鎖するスペーサー28が嵌合されている。そのため、このEGRクーラ20は、インレットパイプ25の他端25bから気体が漏れ出ることを防止し、気液二相流体から分離した気体を円滑にインナーパイプ26へと流入させることができる。 The gas flowing through the
Here, the outer diameter dimension of the
一方、旋回流発生リボン30の螺旋面30a,30bは、EGRガスの流れ方向に対して角度を有している。そのため、EGRガスに含まれる液体がこの螺旋面30a,30bに衝突し、液滴となって螺旋面30a,30bに付着する。一方、この旋回流発生リボン30の螺旋面30a,30bに付着した液滴状態の液体は、螺旋面30a,30bに付着したまま、旋回流の流れによって、EGRガスの流れ方向の下流側に押し流されつつ、旋回流発生リボン30の径方向外側に向かって流れ、インレットパイプ25の内周面25dに沿って流れていく。また、液滴状態の液体の一部は、インレットパイプ25の内周面25dまで流れず、螺旋面30a,30bに付着したまま旋回流発生リボン30の終端部31まで移動する。
Meanwhile, the spiral surfaces 30a and 30b of the swirl flow generating ribbon 30 have an angle with respect to the flow direction of the EGR gas. Therefore, the liquid contained in the EGR gas collides with the spiral surfaces 30a and 30b and becomes droplets and adheres to the spiral surfaces 30a and 30b. On the other hand, the liquid in the droplet state attached to the spiral surfaces 30a and 30b of the swirl flow generating ribbon 30 is pushed to the downstream side in the EGR gas flow direction by the swirl flow while remaining attached to the spiral surfaces 30a and 30b. While flowing, it flows toward the radially outer side of the swirling flow generating ribbon 30 and flows along the inner peripheral surface 25 d of the inlet pipe 25. Further, a part of the liquid in the droplet state does not flow to the inner peripheral surface 25d of the inlet pipe 25, but moves to the end portion 31 of the swirling flow generating ribbon 30 while adhering to the spiral surfaces 30a and 30b.
そして、旋回流発生リボン30の終端部31まで移動した液滴状態の液体は、第1端縁32a又は第2端縁32bに達したら、図7に矢印で示すように、第1端縁32a又は第2端縁32bに沿って旋回流発生リボン30の径方向外側に向かって流れ、インレットパイプ25の内周面25dへ向かって誘導される。
Then, when the liquid in the droplet state that has moved to the end portion 31 of the swirling flow generating ribbon 30 reaches the first end edge 32a or the second end edge 32b, as shown by an arrow in FIG. 7, the first end edge 32a. Alternatively, it flows toward the radially outer side of the swirl flow generating ribbon 30 along the second end edge 32 b and is guided toward the inner peripheral surface 25 d of the inlet pipe 25.
このとき、第1端縁32aは、旋回流発生リボン30の径方向外側に位置する第1終端点31aが、旋回流発生リボン30の軸線O上に位置する中心終端点31cよりも、EGRガスの流れ方向の下流側に位置している。また、第2端縁32bは、旋回流発生リボン30の径方向外側に位置する第2終端点31bが、旋回流発生リボン30の軸線O上に位置する中心終端点31cよりも、EGRガスの流れ方向の下流側に位置している。
これに対し、旋回流発生リボン30の螺旋面30a,30bに付着した液体は、旋回流によってEGRガスの流れ方向の下流側に押し流されつつ、旋回流発生リボン30の径方向外側に向かって流れる。 At this time, thefirst end edge 32 a is more EGR gas than the center end point 31 c where the first end point 31 a located on the radially outer side of the swirling flow generating ribbon 30 is positioned on the axis O of the swirling flow generating ribbon 30. It is located downstream of the flow direction. In addition, the second end edge 32b is such that the second terminal point 31b located on the radially outer side of the swirling flow generating ribbon 30 is more EGR gas than the center terminal point 31c positioned on the axis O of the swirling flow generating ribbon 30. Located downstream in the flow direction.
On the other hand, the liquid adhering to the spiral surfaces 30a and 30b of the swirlflow generating ribbon 30 flows toward the radially outer side of the swirl flow generating ribbon 30 while being swept away by the swirl flow downstream in the EGR gas flow direction. .
これに対し、旋回流発生リボン30の螺旋面30a,30bに付着した液体は、旋回流によってEGRガスの流れ方向の下流側に押し流されつつ、旋回流発生リボン30の径方向外側に向かって流れる。 At this time, the
On the other hand, the liquid adhering to the spiral surfaces 30a and 30b of the swirl
そのため、第1,第2端縁32a,32bの延在方向が、旋回流発生リボン30に付着したまま旋回流で押し流される液体の流れ方向(移動方向)とほぼ一致することになる。これにより、旋回流発生リボン30の終端部31において、螺旋面30a,30bに付着した液体は、第1,第2端縁32a,32bに付着した状態を維持したまま、旋回流発生リボン30の径方向外側に向かって移動し、インレットパイプ25の内周面25dへと誘導される。
すなわち、この旋回流発生リボン30は、液体が螺旋面30a,30bに付着して気体から分離し、そのまま終端部31へと移動したときに軸線O付近に付着していても、この液体を第1,第2端縁32a,32bに付着させた状態でインレットパイプ25の内周面25dへと誘導できる。これにより、実施例1の旋回流発生リボン30では、気体から分離した液体が終端部31から気体中に再飛散してしまうことを防止できる。そして、実施例1のEGRクーラ20では、液体の分離性能を向上させると共に、液体の捕集率を向上させることができる。なお、実施例1のEGRクーラ20は、液体の分離にバッフルやフィルタ等を用いることがないので、気体の流れが阻害されず、通気抵抗の上昇を抑制できる。 Therefore, the extending direction of the first and second end edges 32 a and 32 b substantially coincides with the flow direction (moving direction) of the liquid pushed away by the swirling flow while adhering to the swirlingflow generating ribbon 30. Thereby, in the terminal part 31 of the swirling flow generating ribbon 30, the liquid adhering to the spiral surfaces 30a and 30b is maintained in the state of adhering to the first and second end edges 32a and 32b. It moves toward the radially outer side and is guided to the inner peripheral surface 25d of the inlet pipe 25.
That is, even if the swirlflow generating ribbon 30 adheres to the spiral surfaces 30a and 30b and separates from the gas and moves to the terminal portion 31 as it is, the swirl flow generating ribbon 30 does not adhere to the axis O. It can be guided to the inner peripheral surface 25d of the inlet pipe 25 in a state of being attached to the first and second end edges 32a and 32b. Thereby, in the swirl | vortex flow generation | occurrence | production ribbon 30 of Example 1, it can prevent that the liquid isolate | separated from gas re-scatters in gas from the termination | terminus part 31. FIG. And in the EGR cooler 20 of Example 1, while improving the separation performance of a liquid, the collection rate of a liquid can be improved. In addition, since the EGR cooler 20 of Example 1 does not use a baffle, a filter, or the like for liquid separation, the flow of gas is not inhibited and an increase in ventilation resistance can be suppressed.
すなわち、この旋回流発生リボン30は、液体が螺旋面30a,30bに付着して気体から分離し、そのまま終端部31へと移動したときに軸線O付近に付着していても、この液体を第1,第2端縁32a,32bに付着させた状態でインレットパイプ25の内周面25dへと誘導できる。これにより、実施例1の旋回流発生リボン30では、気体から分離した液体が終端部31から気体中に再飛散してしまうことを防止できる。そして、実施例1のEGRクーラ20では、液体の分離性能を向上させると共に、液体の捕集率を向上させることができる。なお、実施例1のEGRクーラ20は、液体の分離にバッフルやフィルタ等を用いることがないので、気体の流れが阻害されず、通気抵抗の上昇を抑制できる。 Therefore, the extending direction of the first and second end edges 32 a and 32 b substantially coincides with the flow direction (moving direction) of the liquid pushed away by the swirling flow while adhering to the swirling
That is, even if the swirl
しかも、この実施例1の旋回流発生リボン30は、第1端縁32a及び第2端縁32bのいずれにも、EGRガスの流入側に折り返された折り返し構造33が形成されている。
そのため、螺旋面30a,30bに付着したまま第1端縁32a又は第2端縁32bにまで移動した液体は、この折り返し構造33により、螺旋面30a,30bから離れてEGRガスの流れ方向の下流側に飛散することが阻止される。つまり、液体は、第1端縁32aと第1折返片33aとの隙間、又は、第2端縁32bと第2折返片33bとの隙間に沿って、旋回流発生リボン30の径方向外側に向かって流れていく。
これにより、旋回流発生リボン30は、第1,第2端縁32a,32bから液体が離間することを防止しつつ、この液体をインレットパイプ25の内周面25dへと誘導でき、EGRガスからの液体の分離性能をさらに向上させることができる。 In addition, the swirlingflow generating ribbon 30 of the first embodiment is formed with a folded structure 33 that is folded to the inflow side of the EGR gas at both the first end edge 32a and the second end edge 32b.
Therefore, the liquid that has moved to thefirst end edge 32a or the second end edge 32b while adhering to the spiral surfaces 30a, 30b is separated from the spiral surfaces 30a, 30b by the folding structure 33 and is downstream in the EGR gas flow direction. Scattering to the side is prevented. That is, the liquid flows radially outward of the swirl flow generating ribbon 30 along the gap between the first end edge 32a and the first folded piece 33a or the gap between the second end edge 32b and the second folded piece 33b. It flows toward you.
As a result, the swirlingflow generating ribbon 30 can guide the liquid to the inner peripheral surface 25d of the inlet pipe 25 while preventing the liquid from separating from the first and second end edges 32a and 32b, and from the EGR gas. The liquid separation performance can be further improved.
そのため、螺旋面30a,30bに付着したまま第1端縁32a又は第2端縁32bにまで移動した液体は、この折り返し構造33により、螺旋面30a,30bから離れてEGRガスの流れ方向の下流側に飛散することが阻止される。つまり、液体は、第1端縁32aと第1折返片33aとの隙間、又は、第2端縁32bと第2折返片33bとの隙間に沿って、旋回流発生リボン30の径方向外側に向かって流れていく。
これにより、旋回流発生リボン30は、第1,第2端縁32a,32bから液体が離間することを防止しつつ、この液体をインレットパイプ25の内周面25dへと誘導でき、EGRガスからの液体の分離性能をさらに向上させることができる。 In addition, the swirling
Therefore, the liquid that has moved to the
As a result, the swirling
さらに、この実施例1の折り返し構造33は、旋回流発生リボン30の一方の螺旋面30a側に折り返された第1折返片33aと、反対側の螺旋面30b側に折り返された第2折返片33bと、を有している。
そのため、液体が旋回流発生リボン30の螺旋面30a,30bのどちらに付着していても、第1,第2端縁32a,32bから離間することを防止できる。 Further, the foldedstructure 33 of the first embodiment includes a first folded piece 33a folded on one spiral surface 30a side of the swirling flow generating ribbon 30, and a second folded piece folded on the opposite spiral surface 30b side. 33b.
Therefore, it can be prevented that the liquid is separated from the first and second end edges 32a and 32b regardless of which of the spiral surfaces 30a and 30b of the swirlflow generating ribbon 30 is attached.
そのため、液体が旋回流発生リボン30の螺旋面30a,30bのどちらに付着していても、第1,第2端縁32a,32bから離間することを防止できる。 Further, the folded
Therefore, it can be prevented that the liquid is separated from the first and second end edges 32a and 32b regardless of which of the spiral surfaces 30a and 30b of the swirl
また、この折り返し構造33は、中心終端点31cから第1終端点31aの手前までの間と、中心終端点31cから第2終端点31bの手前までの間に形成されており、折り返し構造33の径方向の両端部とインレットパイプ25の内周面25dとの間には隙間S2が生じている。
そのため、折り返し構造33によってEGRガスの流れ方向の下流側に向かうことが阻止された液体は、折り返し構造33の径方向の両端部において、隙間S2を介してEGRガスの流れ方向の下流側に向かって流れ出すことが可能になる。
これにより、この旋回流発生リボン30では、第1端縁32aと第1折返片33aとの隙間や、第2端縁32bと第2折返片33bとの隙間に液体が溜まってしまうことを防止しつつ、インレットパイプ25の内周面25dに向けて液体を速やかに誘導できる。 The foldedstructure 33 is formed between the center terminal point 31c and the first terminal point 31a and between the center terminal point 31c and the second terminal point 31b. A gap S <b> 2 is generated between both ends in the radial direction and the inner peripheral surface 25 d of the inlet pipe 25.
For this reason, the liquid that has been prevented from flowing toward the downstream side in the EGR gas flow direction by thefolding structure 33 is directed toward the downstream side in the EGR gas flow direction through the gap S2 at both radial ends of the folding structure 33. It becomes possible to flow out.
Thereby, in the swirlflow generating ribbon 30, liquid is prevented from accumulating in the gap between the first end edge 32a and the first folded piece 33a and the gap between the second end edge 32b and the second folded piece 33b. However, the liquid can be promptly guided toward the inner peripheral surface 25d of the inlet pipe 25.
そのため、折り返し構造33によってEGRガスの流れ方向の下流側に向かうことが阻止された液体は、折り返し構造33の径方向の両端部において、隙間S2を介してEGRガスの流れ方向の下流側に向かって流れ出すことが可能になる。
これにより、この旋回流発生リボン30では、第1端縁32aと第1折返片33aとの隙間や、第2端縁32bと第2折返片33bとの隙間に液体が溜まってしまうことを防止しつつ、インレットパイプ25の内周面25dに向けて液体を速やかに誘導できる。 The folded
For this reason, the liquid that has been prevented from flowing toward the downstream side in the EGR gas flow direction by the
Thereby, in the swirl
そして、この実施例1のインレットパイプ25は、内周面25dに、EGRガスの流れ方向の下流側に向かって徐々に内径寸法を大きくするテーパ面25eが形成された第2領域25βを有している。また、旋回流発生リボン30は、終端部31の少なくとも第1終端点31a及び第2終端点31bが、テーパ面25eが形成された領域である第2領域25βに挿入されている。
そのため、第1,第2端縁32a,32bに沿って第1終端点31aや第2終端点31bまで流れた液体は、テーパ面25e上に流れ出ることになる。これにより、実施例1のEGRクーラ20は、第1,第2端縁32a,32bに沿って内周面25dへと誘導された液体を、排水口25cに向けて円滑に排出でき、液体の誘導・分離を促進できる。 And theinlet pipe 25 of this Example 1 has the 2nd area | region 25 (beta) in which the taper surface 25e which gradually enlarges an internal diameter dimension toward the downstream of the flow direction of EGR gas was formed in inner peripheral surface 25d. ing. Further, in the swirling flow generating ribbon 30, at least the first terminal point 31a and the second terminal point 31b of the terminal part 31 are inserted into the second region 25β which is a region where the tapered surface 25e is formed.
Therefore, the liquid that has flowed along the first and second end edges 32a and 32b to the firstterminal point 31a and the second terminal point 31b flows out onto the tapered surface 25e. Thereby, the EGR cooler 20 of Example 1 can smoothly discharge the liquid guided to the inner peripheral surface 25d along the first and second end edges 32a and 32b toward the drain port 25c, Induction and separation can be promoted.
そのため、第1,第2端縁32a,32bに沿って第1終端点31aや第2終端点31bまで流れた液体は、テーパ面25e上に流れ出ることになる。これにより、実施例1のEGRクーラ20は、第1,第2端縁32a,32bに沿って内周面25dへと誘導された液体を、排水口25cに向けて円滑に排出でき、液体の誘導・分離を促進できる。 And the
Therefore, the liquid that has flowed along the first and second end edges 32a and 32b to the first
[装置のコンパクト化作用]
以下、図6に基づき、実施例1のEGRクーラ20における装置のコンパクト化作用を説明する。 [Compact equipment operation]
Hereinafter, the compacting operation of the apparatus in theEGR cooler 20 of the first embodiment will be described with reference to FIG.
以下、図6に基づき、実施例1のEGRクーラ20における装置のコンパクト化作用を説明する。 [Compact equipment operation]
Hereinafter, the compacting operation of the apparatus in the
実施例1のEGRクーラ20は、図2に示すように、EGRガスと冷媒との間で熱交換を行うことで、吸気通路2に還流されるEGRガスを冷却する熱交換部21を有する。また、このEGRクーラ20は、熱交換部21の排気口であるシェル21aのEGRガスの流出側の端部に接続された流出管23のインレットパイプ25の内部に旋回流発生リボン30を配置し、この旋回流発生リボン30の下流側の位置に、排水口25cが形成されると共に排気口26cが形成されたインナーパイプ26の一端26aが差し込まれている。すなわち、実施例1のEGRクーラ20は、高温のEGRガスを冷却する熱交換機能と、冷却されて気液二相流体となったEGRガスから気体と液体を分離する気液分離機能とを備えている。
As shown in FIG. 2, the EGR cooler 20 according to the first embodiment includes a heat exchanging unit 21 that cools the EGR gas returned to the intake passage 2 by exchanging heat between the EGR gas and the refrigerant. In addition, the EGR cooler 20 has a swirl flow generating ribbon 30 disposed inside the inlet pipe 25 of the outflow pipe 23 connected to the end of the EGR gas outflow side of the shell 21a that is the exhaust port of the heat exchange unit 21. One end 26a of the inner pipe 26 in which the drain port 25c is formed and the exhaust port 26c is formed is inserted into the downstream side of the swirl flow generating ribbon 30. That is, the EGR cooler 20 according to the first embodiment includes a heat exchange function for cooling high-temperature EGR gas, and a gas-liquid separation function for separating gas and liquid from the EGR gas that has been cooled to become a gas-liquid two-phase fluid. ing.
そのため、EGRガスの冷却を行うEGRクーラ20の流出管23の内部において、気液二相流体となったEGRガスから液体を分離する気液分離を行うことが可能になる。これにより、このEGRクーラ20は、EGRクーラに対して気液分離装置を独立して設ける際に必要となる配管を不要にできる。また、気液分離装置を設置するスペースを確保する必要がなくなり、装置の大型化を抑制してコンパクト化を図ることができる。
Therefore, it becomes possible to perform gas-liquid separation that separates the liquid from the EGR gas that has become a gas-liquid two-phase fluid, in the outflow pipe 23 of the EGR cooler 20 that cools the EGR gas. Thereby, this EGR cooler 20 can make the piping required when providing a gas-liquid separator independently with respect to an EGR cooler unnecessary. Further, it is not necessary to secure a space for installing the gas-liquid separation device, and the size of the device can be suppressed and the size can be reduced.
さらに、このEGRクーラ20では、流出管23の内部でEGRガスから液体を分離できるため、熱交換部21で冷却されて凝縮水となった液体を速やかに気体から分離させ、捕集できる。これにより、EGRガスから凝縮して生じた液体が再蒸気化することを防止して、EGRガスからの液体の除去率の向上を図ることができる。
Furthermore, in this EGR cooler 20, since the liquid can be separated from the EGR gas inside the outflow pipe 23, the liquid cooled to the condensed water by the heat exchange section 21 can be quickly separated from the gas and collected. Thereby, it is possible to prevent the liquid generated by condensing from the EGR gas from being re-vaporized, and to improve the removal rate of the liquid from the EGR gas.
次に、効果を説明する。
実施例1のEGRクーラ20にあっては、下記に列挙する効果が得られる。 Next, the effect will be described.
In theEGR cooler 20 of the first embodiment, the effects listed below can be obtained.
実施例1のEGRクーラ20にあっては、下記に列挙する効果が得られる。 Next, the effect will be described.
In the
(1) 内燃機関1の排気通路3から吸気通路2に戻されるEGRガスと冷媒との間で熱交換を行う熱交換部21と、前記排気通路3と前記熱交換部21の吸気口(シェル21aのEGRガスの流入側の端部)とを連通する流入管22と、前記吸気通路2と前記熱交換部21の排気口(シェル21aのEGRガスの流出側の端部)とを連通する流出管23と、を備え、
前記流出管23は、内周面25dに沿って前記EGRガスを旋回させる旋回流発生リボン30が内部に配置され、且つ、前記旋回流発生リボン30の下流側に排気口26c及び排水口25cが形成され、
前記旋回流発生リボン30は、螺旋状にねじられた板部材によって形成され、前記排気口26cに向いた終端部31に、前記旋回流発生リボン30の径方向外側の終端の一方に設定された第1終端点31aと、前記旋回流発生リボン30の径方向外側の終端の他方に設定された第2終端点31bと、前記旋回流発生リボン30の軸線O上であって、前記第1終端点31a及び前記第2終端点31bよりも前記熱交換部21に近い位置に設定された中心終端点31cと、を有すると共に、前記第1終端点31aと前記中心終端点31cとを結んだ第1端縁32aと、前記第2終端点31bと前記中心終端点31cとを結んだ第2端縁32bと、が形成されている構成とした。
これにより、装置の大型化を抑制しつつ、EGRガスに含まれる液体の分離性能の向上を図ることができる。 (1) Aheat exchanging portion 21 for exchanging heat between the EGR gas returned from the exhaust passage 3 of the internal combustion engine 1 to the intake passage 2 and the refrigerant, and an intake port (shell) of the exhaust passage 3 and the heat exchanging portion 21 21a of the EGR gas inflow side) and the intake passage 2 and the exhaust port of the heat exchanging part 21 (the end of the EGR gas outflow side of the shell 21a). An outflow pipe 23;
Theoutflow pipe 23 has a swirl flow generating ribbon 30 that swirls the EGR gas along an inner peripheral surface 25d therein, and an exhaust port 26c and a drain port 25c on the downstream side of the swirl flow generating ribbon 30. Formed,
The swirlflow generating ribbon 30 is formed by a spirally twisted plate member, and is set at one end of the swirl flow generating ribbon 30 on the radially outer side at the end portion 31 facing the exhaust port 26c. The first terminal point 31a, the second terminal point 31b set at the other end of the swirling flow generating ribbon 30 on the radially outer side, and the axis O of the swirling flow generating ribbon 30, and the first terminal point 31b. A point 31a and a center end point 31c set closer to the heat exchanging part 21 than the second end point 31b, and the first end point 31a and the center end point 31c are connected to each other. One end edge 32a and a second end edge 32b connecting the second end point 31b and the center end point 31c are formed.
Thereby, the separation performance of the liquid contained in the EGR gas can be improved while suppressing an increase in the size of the apparatus.
前記流出管23は、内周面25dに沿って前記EGRガスを旋回させる旋回流発生リボン30が内部に配置され、且つ、前記旋回流発生リボン30の下流側に排気口26c及び排水口25cが形成され、
前記旋回流発生リボン30は、螺旋状にねじられた板部材によって形成され、前記排気口26cに向いた終端部31に、前記旋回流発生リボン30の径方向外側の終端の一方に設定された第1終端点31aと、前記旋回流発生リボン30の径方向外側の終端の他方に設定された第2終端点31bと、前記旋回流発生リボン30の軸線O上であって、前記第1終端点31a及び前記第2終端点31bよりも前記熱交換部21に近い位置に設定された中心終端点31cと、を有すると共に、前記第1終端点31aと前記中心終端点31cとを結んだ第1端縁32aと、前記第2終端点31bと前記中心終端点31cとを結んだ第2端縁32bと、が形成されている構成とした。
これにより、装置の大型化を抑制しつつ、EGRガスに含まれる液体の分離性能の向上を図ることができる。 (1) A
The
The swirl
Thereby, the separation performance of the liquid contained in the EGR gas can be improved while suppressing an increase in the size of the apparatus.
(2) 前記旋回流発生リボン30は、前記第1端縁32a及び前記第2端縁32bに、前記EGRガスの流入側に向けて折り返された折り返し構造33が形成されている構成とした。
これにより、上記(1)の効果に加え、第1,第2端縁32a,32bから液体を離れにくくでき、旋回流発生リボン30に付着した液体が気体中に再飛散することを防止できる。 (2) The swirlingflow generating ribbon 30 is configured such that a folded structure 33 is formed on the first end edge 32a and the second end edge 32b so as to be folded toward the inflow side of the EGR gas.
Thereby, in addition to the effect of the above (1), it is difficult to separate the liquid from the first and second end edges 32a and 32b, and the liquid adhering to the swirlflow generating ribbon 30 can be prevented from being re-scattered into the gas.
これにより、上記(1)の効果に加え、第1,第2端縁32a,32bから液体を離れにくくでき、旋回流発生リボン30に付着した液体が気体中に再飛散することを防止できる。 (2) The swirling
Thereby, in addition to the effect of the above (1), it is difficult to separate the liquid from the first and second end edges 32a and 32b, and the liquid adhering to the swirl
(3) 前記折り返し構造33は、前記中心終端点31cから前記第1終端点31aの手前までの間と、前記中心終端点31cから前記第2終端点31bの手前までの間に形成されている構成とした。
これにより、上記(2)の効果に加え、第1端縁32aと第1折返片33aとの隙間や、第2端縁32bと第2折返片33bとの隙間に液体が溜まってしまうことを防止しつつ、インレットパイプ25の内周面25dへと液体を適切に誘導できる。 (3) Thefolding structure 33 is formed between the center terminal point 31c and the first terminal point 31a and between the central terminal point 31c and the second terminal point 31b. The configuration.
Thereby, in addition to the effect of (2) above, the liquid is accumulated in the gap between thefirst end edge 32a and the first folded piece 33a and the gap between the second end edge 32b and the second folded piece 33b. While preventing, the liquid can be appropriately guided to the inner peripheral surface 25d of the inlet pipe 25.
これにより、上記(2)の効果に加え、第1端縁32aと第1折返片33aとの隙間や、第2端縁32bと第2折返片33bとの隙間に液体が溜まってしまうことを防止しつつ、インレットパイプ25の内周面25dへと液体を適切に誘導できる。 (3) The
Thereby, in addition to the effect of (2) above, the liquid is accumulated in the gap between the
(4) 前記流出管23の内周面25dには、前記EGRガスの流れ方向に沿って内径寸法が徐々に大きくなるテーパ面25eが形成され、
前記旋回流発生リボン30は、少なくとも前記第1終端点31a及び前記第2終端点31bが、前記テーパ面25eが形成された領域(第2領域25β)に挿入されている構成とした。
これにより、上記(1)~(3)のいずれかの効果に加え、第1,第2端縁32a,32bに沿って内周面25dへと誘導された液体を、排水口25cに向けて円滑に排出でき、液体の誘導・分離を促進できる。 (4) The innerperipheral surface 25d of the outflow pipe 23 is formed with a tapered surface 25e whose inner diameter dimension gradually increases along the flow direction of the EGR gas,
The swirlflow generating ribbon 30 has a configuration in which at least the first terminal point 31a and the second terminal point 31b are inserted into a region where the tapered surface 25e is formed (second region 25β).
As a result, in addition to the effects (1) to (3) above, the liquid guided to the innerperipheral surface 25d along the first and second end edges 32a and 32b is directed toward the drain port 25c. It can be discharged smoothly, and the induction and separation of liquid can be promoted.
前記旋回流発生リボン30は、少なくとも前記第1終端点31a及び前記第2終端点31bが、前記テーパ面25eが形成された領域(第2領域25β)に挿入されている構成とした。
これにより、上記(1)~(3)のいずれかの効果に加え、第1,第2端縁32a,32bに沿って内周面25dへと誘導された液体を、排水口25cに向けて円滑に排出でき、液体の誘導・分離を促進できる。 (4) The inner
The swirl
As a result, in addition to the effects (1) to (3) above, the liquid guided to the inner
(5) 前記流出管23は、前記旋回流発生リボン30が内部に配置されると共に、一端25aが前記熱交換部21の排気口(シェル21aのEGRガスの流出側の端部)に接続され、且つ、前記排水口25cが形成されたインレットパイプ25と、前記インレットパイプ25の他端25bに一端26aが差し込まれると共に、前記排気口26cが形成されたインナーパイプ26と、を備えた構成とした。
これにより、上記(1)~(4)のいずれかの効果に加え、インレットパイプ25の内周面25dに付着した液体がインナーパイプ26内に入り込むことを防止でき、気体と液体との分離性能の向上を図ることができる。 (5) In theoutflow pipe 23, the swirl flow generating ribbon 30 is disposed inside, and one end 25a is connected to an exhaust port of the heat exchanging portion 21 (an end portion on the outflow side of the EGR gas of the shell 21a). And an inlet pipe 25 in which the drain port 25c is formed, and an inner pipe 26 in which one end 26a is inserted into the other end 25b of the inlet pipe 25 and the exhaust port 26c is formed. did.
As a result, in addition to any of the effects (1) to (4) described above, it is possible to prevent the liquid adhering to the innerperipheral surface 25d of the inlet pipe 25 from entering the inner pipe 26 and to separate the gas from the liquid. Can be improved.
これにより、上記(1)~(4)のいずれかの効果に加え、インレットパイプ25の内周面25dに付着した液体がインナーパイプ26内に入り込むことを防止でき、気体と液体との分離性能の向上を図ることができる。 (5) In the
As a result, in addition to any of the effects (1) to (4) described above, it is possible to prevent the liquid adhering to the inner
以上、本発明のEGRクーラを実施例1に基づき説明してきたが、具体的な構成については、この実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加などは許容される。
Although the EGR cooler of the present invention has been described based on the first embodiment, the specific configuration is not limited to this embodiment, and does not depart from the gist of the invention according to each claim of the claims. As long as the design is changed or added, it is acceptable.
実施例1では、旋回流発生リボン30の終端部31の第1端縁32a及び第2端縁32bに折り返し構造33を形成した例を示した。しかしながら、これに限らず、終端部31に折り返し構造を形成しなくてもよい。
この場合であっても、第1,第2端縁32a,32bの延在方向は、旋回流発生リボン30に付着したまま旋回流で押し流される液体の流れ方向とほぼ一致する。このため、旋回流発生リボン30は、終端部31において、螺旋面30a,30bに付着させたままインレットパイプ25の内周面25dへ向かって液体を誘導できる。 In Example 1, the example which formed thefolding structure 33 in the 1st end edge 32a and the 2nd end edge 32b of the terminal part 31 of the swirl | vortex flow generation | occurrence | production ribbon 30 was shown. However, the present invention is not limited to this, and the folded structure may not be formed in the terminal portion 31.
Even in this case, the extending direction of the first and second end edges 32 a and 32 b substantially coincides with the flow direction of the liquid pushed away by the swirling flow while adhering to the swirlingflow generating ribbon 30. For this reason, the swirling flow generating ribbon 30 can guide the liquid toward the inner peripheral surface 25d of the inlet pipe 25 while adhering to the spiral surfaces 30a and 30b at the end portion 31.
この場合であっても、第1,第2端縁32a,32bの延在方向は、旋回流発生リボン30に付着したまま旋回流で押し流される液体の流れ方向とほぼ一致する。このため、旋回流発生リボン30は、終端部31において、螺旋面30a,30bに付着させたままインレットパイプ25の内周面25dへ向かって液体を誘導できる。 In Example 1, the example which formed the
Even in this case, the extending direction of the first and second end edges 32 a and 32 b substantially coincides with the flow direction of the liquid pushed away by the swirling flow while adhering to the swirling
さらに、この実施例1では、インレットパイプ25の内周面25dにテーパ面25eを形成し、このテーパ面25eが形成された第2領域25βに、少なくとも旋回流発生リボン30の第1,第2終端点31a,31bを挿入した例を示した。しかしながら、内周面25dにテーパ面を形成していないインレットパイプであってもよい。
この場合であっても、気液二相流体から分離した液体は、旋回流の流れによって排水口25cに流れ込むことができる。 Further, in the first embodiment, atapered surface 25e is formed on the inner peripheral surface 25d of the inlet pipe 25, and at least the first and second swirl flow generating ribbons 30 are formed in the second region 25β where the tapered surface 25e is formed. The example which inserted the terminal points 31a and 31b was shown. However, an inlet pipe in which the inner peripheral surface 25d is not formed with a tapered surface may be used.
Even in this case, the liquid separated from the gas-liquid two-phase fluid can flow into thedrain port 25c by the swirl flow.
この場合であっても、気液二相流体から分離した液体は、旋回流の流れによって排水口25cに流れ込むことができる。 Further, in the first embodiment, a
Even in this case, the liquid separated from the gas-liquid two-phase fluid can flow into the
さらに、第1領域25α内に配置した旋回流発生リボン30の終端部31を、インレットパイプ25の第3領域25γに挿入するまで延長し、この終端部31をインナーパイプ26の排気口26cに近接させてもよい。
Further, the end portion 31 of the swirl flow generating ribbon 30 arranged in the first region 25α is extended until it is inserted into the third region 25γ of the inlet pipe 25, and this end portion 31 is close to the exhaust port 26c of the inner pipe 26. You may let them.
また、テーパ面25eが形成された第2領域25βに旋回流発生リボン30の第1,第2終端点31a,31bを挿入すると共に、この旋回流発生リボン30の第1,第2端縁32a,32bに設けた折り返し構造33の径方向の両端部を、インレットパイプ25の内周面25dに沿って延長してもよい。つまり、折り返し構造33の径方向の両端部に、インレットパイプ25の第3領域25γ内に挿入される延長部を設けてもよい。この延長部は、第1,第2折返片33a,33bによって断面V字状に形成される。
このとき、旋回流発生リボン30では、折り返し構造33を、延長部の先端がインナーパイプ26の排気口26cよりも下流位置に至るまで延長することで、折り返し構造33の第1折返片33aと第2折返片33bの間に流れ込んだ液体を、インナーパイプ26内に飛散させることなくインレットパイプ25の内周面25dへ誘導できる。
また、折り返し構造33の延長部と、インレットパイプ25の内周面25dとの間に生じる隙間S2を維持することで、折り返し構造33に沿って流れる液体を内周面25dへ円滑に誘導できる。 Further, the first and second terminal points 31a and 31b of the swirling flow generating ribbon 30 are inserted into the second region 25β where the tapered surface 25e is formed, and the first and second end edges 32a of the swirling flow generating ribbon 30 are inserted. , 32b, both ends in the radial direction of the folded structure 33 may be extended along the inner peripheral surface 25d of the inlet pipe 25. That is, extension portions that are inserted into the third region 25γ of the inlet pipe 25 may be provided at both ends in the radial direction of the folded structure 33. The extension is formed in a V-shaped cross section by the first and second folded pieces 33a and 33b.
At this time, in the swirlingflow generating ribbon 30, the folded structure 33 is extended until the tip of the extended portion reaches the downstream position from the exhaust port 26 c of the inner pipe 26, thereby the first folded piece 33 a of the folded structure 33 and the first folded piece 33 a. The liquid flowing between the two folded pieces 33b can be guided to the inner peripheral surface 25d of the inlet pipe 25 without being scattered in the inner pipe 26.
Further, by maintaining the gap S2 generated between the extension portion of the foldedstructure 33 and the inner peripheral surface 25d of the inlet pipe 25, the liquid flowing along the folded structure 33 can be smoothly guided to the inner peripheral surface 25d.
このとき、旋回流発生リボン30では、折り返し構造33を、延長部の先端がインナーパイプ26の排気口26cよりも下流位置に至るまで延長することで、折り返し構造33の第1折返片33aと第2折返片33bの間に流れ込んだ液体を、インナーパイプ26内に飛散させることなくインレットパイプ25の内周面25dへ誘導できる。
また、折り返し構造33の延長部と、インレットパイプ25の内周面25dとの間に生じる隙間S2を維持することで、折り返し構造33に沿って流れる液体を内周面25dへ円滑に誘導できる。 Further, the first and second
At this time, in the swirling
Further, by maintaining the gap S2 generated between the extension portion of the folded
また、この実施例1では、旋回流発生リボン30の始端部34が、重力方向に沿って立設している。しかしながら、例えば始端部34を重力方向に対して水平になるように旋回流発生リボン30を設置してもよい。
この場合では、インレットパイプ25の内部で内周面25dへと誘導した液体を、自重でパイプ下側に流れやすくでき、気体から分離した液体が再飛散することを効果的に防止できる。 Further, in the first embodiment, thestart end portion 34 of the swirling flow generating ribbon 30 is erected along the direction of gravity. However, for example, the swirl flow generating ribbon 30 may be installed so that the start end portion 34 is horizontal with respect to the direction of gravity.
In this case, the liquid guided to the innerperipheral surface 25d inside the inlet pipe 25 can easily flow under the pipe under its own weight, and the liquid separated from the gas can be effectively prevented from re-scattering.
この場合では、インレットパイプ25の内部で内周面25dへと誘導した液体を、自重でパイプ下側に流れやすくでき、気体から分離した液体が再飛散することを効果的に防止できる。 Further, in the first embodiment, the
In this case, the liquid guided to the inner
さらに、この実施例1では、熱交換部21のシェル21aが円筒状の中空管である。しかしながら、これに限らず、シェル21aは、積層した扁平なチューブを内蔵する矩形状の中空管であってもよい。なお、この場合では、流入管22の他端22b及び流出管23のインレットパイプ25の一端25aは、シェル21aとの接合部分を矩形状にする。特に、インレットパイプ25では、旋回流発生リボン30が配置された第1領域25αから下流側は、EGRガスを旋回流とするために円筒状である必要がある。そのため、一端25aは、シェル21aに接合する部分を矩形状にする一方、断面積を次第に小さくしつつ円筒形状になるように形成する。
Furthermore, in the first embodiment, the shell 21a of the heat exchange unit 21 is a cylindrical hollow tube. However, the present invention is not limited to this, and the shell 21a may be a rectangular hollow tube containing stacked flat tubes. In this case, the other end 22b of the inflow pipe 22 and the one end 25a of the inlet pipe 25 of the outflow pipe 23 have a rectangular joint portion with the shell 21a. In particular, in the inlet pipe 25, the downstream side from the first region 25α where the swirl flow generating ribbon 30 is disposed needs to be cylindrical in order to turn the EGR gas into a swirl flow. Therefore, the one end 25a is formed so as to have a cylindrical shape while gradually reducing the cross-sectional area while making the portion joined to the shell 21a rectangular.
また、実施例1では、排水パイプ27に貯水タンク29を接続し、気液二相流体となったEGRガスから分離した液体を貯留する例を示したが、排水パイプ27や貯水タンク29は、必ずしも設置しなくてもよい。インレットパイプ25内で分離し、排水口25cから排出した液体は貯留しなくてもよい。
In the first embodiment, the storage tank 29 is connected to the drain pipe 27 and the liquid separated from the EGR gas that has become the gas-liquid two-phase fluid is stored, but the drain pipe 27 and the storage tank 29 are It does not necessarily have to be installed. The liquid separated in the inlet pipe 25 and discharged from the drain port 25c may not be stored.
また、実施例1では、第1端縁32a及び第2端縁32bがいずれも直線状に形成され、旋回流発生リボン30の終端部31にV字状に切り欠かれた空間領域が生じている例を示したが、これに限らない。第1終端点31a及び第2終端点31bに対し、中心終端点31cが気液二相流体の流入側に設定されていればよいので、第1,第2端縁32a,32bが湾曲し、旋回流発生リボン30の終端部31がU字状に切り欠かれてもよい。
Further, in the first embodiment, the first end edge 32 a and the second end edge 32 b are both formed in a straight line, and a space region that is notched in a V shape is generated in the terminal portion 31 of the swirling flow generating ribbon 30. However, the present invention is not limited to this. Since the center end point 31c only needs to be set on the inflow side of the gas-liquid two-phase fluid with respect to the first end point 31a and the second end point 31b, the first and second end edges 32a and 32b are curved, The end portion 31 of the swirling flow generating ribbon 30 may be cut out in a U shape.
さらに、第1終端点31aの軸方向位置と、第2終端点31bの軸方向位置は、必ずしも一致していなくてもよく、いずれか一方が、他方よりも気液二相流体の流入側に設定されていてもよい。また、このときには、終端線Lが旋回流発生リボン30の軸線Oと直交しなくてもよい。そして、中心終端点31cは、第1終端点31a及び第2終端点31bよりも気液二相流体の流入側に設定されていればよいので、旋回流発生リボン30の軸線Oから径方向にずれた位置(軸線O付近の位置)に設定されていてもよい。
すなわち、旋回流発生リボン30の形状については、実施例1に示すものに限らない。旋回流発生リボン30の径方向外側の終端のそれぞれに設定された第1,第2終端点31a,31bと、それよりも気液二相流体の流入側に設定された中心終端点31cと、これらを結んだ端縁である第1,第2端縁32a,32bと、を有していれば、各終端点や始端点等の設定位置や各端縁の形状等は任意に設定できる。 Furthermore, the axial position of the firstterminal point 31a and the axial position of the second terminal point 31b do not necessarily coincide with each other, and one of them is closer to the inflow side of the gas-liquid two-phase fluid than the other. It may be set. At this time, the end line L may not be orthogonal to the axis O of the swirl flow generating ribbon 30. And since the center terminal point 31c should just be set to the inflow side of a gas-liquid two-phase fluid rather than the 1st terminal point 31a and the 2nd terminal point 31b, it is radial from the axis O of the swirl | vortex flow generation | occurrence | production ribbon 30. It may be set at a shifted position (position near the axis O).
That is, the shape of the swirlflow generating ribbon 30 is not limited to that shown in the first embodiment. A first end point 31a, a second end point 31b set at each of the radially outer ends of the swirl flow generating ribbon 30, and a center end point 31c set at the inflow side of the gas-liquid two-phase fluid more than that, If the first and second end edges 32a and 32b, which are the ends connecting these, are provided, the setting positions of the end points and the start end points, the shapes of the end edges, and the like can be arbitrarily set.
すなわち、旋回流発生リボン30の形状については、実施例1に示すものに限らない。旋回流発生リボン30の径方向外側の終端のそれぞれに設定された第1,第2終端点31a,31bと、それよりも気液二相流体の流入側に設定された中心終端点31cと、これらを結んだ端縁である第1,第2端縁32a,32bと、を有していれば、各終端点や始端点等の設定位置や各端縁の形状等は任意に設定できる。 Furthermore, the axial position of the first
That is, the shape of the swirl
そして、この実施例1では、重力方向に対してEGRガスの流れ方向が水平になるような、いわゆる横置き方向にEGRクーラ20を設置する例を示した。しかしながら、本発明のEGRクーラ20の設置方向はこれに限らず、排気還流システムS内でのレイアウト等の影響により、設置方向を適宜設定してもよい。
さらに、実施例1において、旋回流発生リボン30の始端部34を重力方向に沿って立設した例を示したが、この始端部34の立設方向についてもこれに限らず、EGRクーラ20のレイアウトに応じて適宜設定される。 In the first embodiment, an example in which theEGR cooler 20 is installed in a so-called lateral direction in which the flow direction of the EGR gas is horizontal with respect to the direction of gravity is shown. However, the installation direction of the EGR cooler 20 of the present invention is not limited to this, and the installation direction may be appropriately set due to the influence of the layout or the like in the exhaust gas recirculation system S.
Furthermore, in the first embodiment, the example in which the startingend portion 34 of the swirling flow generating ribbon 30 is erected along the direction of gravity is shown. However, the erected direction of the starting end portion 34 is not limited to this, and the EGR cooler 20 It is set as appropriate according to the layout.
さらに、実施例1において、旋回流発生リボン30の始端部34を重力方向に沿って立設した例を示したが、この始端部34の立設方向についてもこれに限らず、EGRクーラ20のレイアウトに応じて適宜設定される。 In the first embodiment, an example in which the
Furthermore, in the first embodiment, the example in which the starting
さらに、実施例1では、内燃機関1が車両に搭載されるディーゼルエンジンである例を示したが、これに限らず、内燃機関1はガソリンエンジンであっても、本発明のEGRクーラの適用が可能である。
Further, in the first embodiment, the example in which the internal combustion engine 1 is a diesel engine mounted on a vehicle is shown. However, the present invention is not limited to this, and the EGR cooler of the present invention can be applied even if the internal combustion engine 1 is a gasoline engine. Is possible.
また、各配管(インレットパイプ25等)や、熱交換部21のシェル21a等の形状、径の寸法、各部材の接続箇所等についても、実施例1に示すものに限らず、任意に設定できる。
Further, the shape of each pipe (inlet pipe 25, etc.), the shell 21a of the heat exchanging portion 21, the size of the diameter, the connection location of each member, etc. are not limited to those shown in the first embodiment, and can be arbitrarily set. .
本出願は、2016年12月16日に日本国特許庁に出願された特願2016-243997号に基づいて優先権を主張し、そのすべての開示は完全に本明細書で参照により組み込まれる。
This application claims priority based on Japanese Patent Application No. 2016-243997 filed with the Japan Patent Office on December 16, 2016, the entire disclosure of which is fully incorporated herein by reference.
Claims (5)
- 内燃機関の排気通路から吸気通路に戻されるEGRガスと冷媒との間で熱交換を行う熱交換部と、前記排気通路と前記熱交換部の吸気口とを連通する流入管と、前記吸気通路と前記熱交換部の排気口とを連通する流出管と、を備え、
前記流出管は、内周面に沿って前記EGRガスを旋回させる旋回流発生リボンが内部に配置され、且つ、前記旋回流発生リボンの下流側に排気口及び排水口が形成され、
前記旋回流発生リボンは、螺旋状にねじられた板部材によって形成され、前記排気口に向いた終端部に、前記旋回流発生リボンの径方向外側の終端の一方に設定された第1終端点と、前記旋回流発生リボンの径方向外側の終端の他方に設定された第2終端点と、前記旋回流発生リボンの軸線上であって、前記第1終端点及び前記第2終端点よりも前記熱交換部に近い位置に設定された中心終端点と、を有すると共に、前記第1終端点と前記中心終端点とを結んだ第1端縁と、前記第2終端点と前記中心終端点とを結んだ第2端縁と、が形成されている
ことを特徴とするEGRクーラ。 A heat exchanging portion that exchanges heat between the EGR gas returned from the exhaust passage of the internal combustion engine to the intake passage and the refrigerant, an inflow pipe that communicates the exhaust passage and the intake port of the heat exchanging portion, and the intake passage And an outflow pipe communicating with the exhaust port of the heat exchange section,
The outflow pipe has a swirl flow generating ribbon that swirls the EGR gas along an inner peripheral surface, and an exhaust port and a drain port are formed on the downstream side of the swirl flow generating ribbon,
The swirl flow generating ribbon is formed of a spirally twisted plate member, and has a first end point set at one end of the swirl flow generating ribbon on the radially outer side at a terminal end facing the exhaust port. A second terminal point set at the other radial outer end of the swirl flow generating ribbon, and an axis of the swirl flow generating ribbon, the first terminal point and the second terminal point being A center end point set at a position close to the heat exchange section, a first end edge connecting the first end point and the center end point, the second end point, and the center end point An EGR cooler characterized in that a second end edge is formed. - 請求項1に記載されたEGRクーラにおいて、
前記旋回流発生リボンは、前記第1端縁及び前記第2端縁に、前記EGRガスの流入側に向けて折り返された折り返し構造が形成されている
ことを特徴とするEGRクーラ。 In the EGR cooler according to claim 1,
The swirling flow generating ribbon is formed with a folded structure that is folded back toward the inflow side of the EGR gas at the first end edge and the second end edge. - 請求項2に記載されたEGRクーラにおいて、
前記折り返し構造は、前記中心終端点から前記第1終端点の手前までの間と、前記中心終端点から前記第2終端点の手前までの間に形成されている
ことを特徴とするEGRクーラ。 In the EGR cooler according to claim 2,
The EGR cooler characterized in that the folded structure is formed between the center terminal point and before the first terminal point, and between the center terminal point and before the second terminal point. - 請求項1から請求項3のいずれか一項に記載されたEGRクーラにおいて、
前記流出管の内周面には、前記EGRガスの流れ方向に沿って内径寸法が徐々に大きくなるテーパ面が形成され、
前記旋回流発生リボンは、少なくとも前記第1終端点及び前記第2終端点が、前記テーパ面が形成された領域に挿入されている
ことを特徴とするEGRクーラ。 In the EGR cooler according to any one of claims 1 to 3,
On the inner peripheral surface of the outflow pipe, a tapered surface whose inner diameter dimension gradually increases along the flow direction of the EGR gas is formed.
In the EGR cooler, at least the first terminal point and the second terminal point of the swirling flow generating ribbon are inserted into a region where the tapered surface is formed. - 請求項1から請求項4のいずれか一項に記載されたEGRクーラにおいて、
前記流出管は、前記旋回流発生リボンが内部に配置されると共に、一端が前記熱交換部の排気口に接続され、且つ、前記排水口が形成されたインレットパイプと、前記インレットパイプの他端に一端が差し込まれると共に、前記排気口が形成されたインナーパイプと、を備えた
ことを特徴とするEGRクーラ。 In the EGR cooler according to any one of claims 1 to 4,
The outlet pipe has the swirl flow generating ribbon disposed therein, one end connected to the exhaust port of the heat exchanging unit, and the other end of the inlet pipe. An EGR cooler comprising: an inner pipe in which one end is inserted and an exhaust pipe is formed.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016243997A JP6730175B2 (en) | 2016-12-16 | 2016-12-16 | EGR cooler |
JP2016-243997 | 2016-12-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018110351A1 true WO2018110351A1 (en) | 2018-06-21 |
Family
ID=62559146
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/043507 WO2018110351A1 (en) | 2016-12-16 | 2017-12-04 | Egr cooler |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6730175B2 (en) |
WO (1) | WO2018110351A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5412184U (en) * | 1977-06-29 | 1979-01-26 | ||
JPS56501351A (en) * | 1979-10-24 | 1981-09-24 | ||
JPS5649020Y2 (en) * | 1976-08-13 | 1981-11-16 | ||
JPH06273571A (en) * | 1993-03-18 | 1994-09-30 | Hitachi Ltd | Partial structure of steam-water separator, steam-water separator using the structure, and nuclear reactor using the steam-water separator |
JP2005199161A (en) * | 2004-01-15 | 2005-07-28 | Tlv Co Ltd | Gas-liquid separator |
US20090065431A1 (en) * | 2006-02-20 | 2009-03-12 | Knut Bakke | In-line separator |
US20140116255A1 (en) * | 2012-10-31 | 2014-05-01 | Intevep, S.A. | Axial gas-liquid cyclone separator |
JP2016031042A (en) * | 2014-07-29 | 2016-03-07 | 日野自動車株式会社 | Egr system |
WO2017104532A1 (en) * | 2015-12-17 | 2017-06-22 | 臼井国際産業株式会社 | Swirling flow generator for gas-liquid separation |
WO2017104531A1 (en) * | 2015-12-17 | 2017-06-22 | 臼井国際産業株式会社 | Gas-liquid separation device |
-
2016
- 2016-12-16 JP JP2016243997A patent/JP6730175B2/en active Active
-
2017
- 2017-12-04 WO PCT/JP2017/043507 patent/WO2018110351A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5649020Y2 (en) * | 1976-08-13 | 1981-11-16 | ||
JPS5412184U (en) * | 1977-06-29 | 1979-01-26 | ||
JPS56501351A (en) * | 1979-10-24 | 1981-09-24 | ||
JPH06273571A (en) * | 1993-03-18 | 1994-09-30 | Hitachi Ltd | Partial structure of steam-water separator, steam-water separator using the structure, and nuclear reactor using the steam-water separator |
JP2005199161A (en) * | 2004-01-15 | 2005-07-28 | Tlv Co Ltd | Gas-liquid separator |
US20090065431A1 (en) * | 2006-02-20 | 2009-03-12 | Knut Bakke | In-line separator |
US20140116255A1 (en) * | 2012-10-31 | 2014-05-01 | Intevep, S.A. | Axial gas-liquid cyclone separator |
JP2016031042A (en) * | 2014-07-29 | 2016-03-07 | 日野自動車株式会社 | Egr system |
WO2017104532A1 (en) * | 2015-12-17 | 2017-06-22 | 臼井国際産業株式会社 | Swirling flow generator for gas-liquid separation |
WO2017104531A1 (en) * | 2015-12-17 | 2017-06-22 | 臼井国際産業株式会社 | Gas-liquid separation device |
Also Published As
Publication number | Publication date |
---|---|
JP6730175B2 (en) | 2020-07-29 |
JP2018096334A (en) | 2018-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017104184A1 (en) | Gas-liquid separation device | |
JP6634092B2 (en) | Swirling flow generator for gas-liquid separation | |
US11313330B2 (en) | Gas-liquid separator | |
US11179662B2 (en) | Gas-liquid separator | |
JP2013238144A (en) | Low-pressure loop egr device | |
WO2018110351A1 (en) | Egr cooler | |
US20240293767A1 (en) | Gas-liquid separator | |
US20240050882A1 (en) | Gas-liquid separator | |
CN111566334B (en) | Gas-liquid separation device | |
JP2011074850A (en) | Exhaust gas recirculation device in internal combustion engine | |
JPH09310988A (en) | Inter-cooler |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17881215 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17881215 Country of ref document: EP Kind code of ref document: A1 |