WO2018109995A1 - 光源装置 - Google Patents
光源装置 Download PDFInfo
- Publication number
- WO2018109995A1 WO2018109995A1 PCT/JP2017/031744 JP2017031744W WO2018109995A1 WO 2018109995 A1 WO2018109995 A1 WO 2018109995A1 JP 2017031744 W JP2017031744 W JP 2017031744W WO 2018109995 A1 WO2018109995 A1 WO 2018109995A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- amount
- source device
- sensor
- emitting unit
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/00002—Operational features of endoscopes
- A61B1/00004—Operational features of endoscopes characterised by electronic signal processing
- A61B1/00009—Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0638—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0655—Control therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B1/00—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
- A61B1/06—Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
- A61B1/0661—Endoscope light sources
- A61B1/0684—Endoscope light sources using light emitting diodes [LED]
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/24—Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/20—Controlling the colour of the light
- H05B45/22—Controlling the colour of the light using optical feedback
Definitions
- the present invention relates to a light source device, and more particularly to a light source device used for observation of a living tissue.
- Japanese Patent No. 5855619 in an endoscope system capable of performing observation in a plurality of observation modes, while referring to a dimming table created for each observation mode, A configuration is disclosed in which the light quantity ratio of light of a plurality of colors emitted from each of a plurality of LEDs provided in a light source device is adjusted.
- the present invention has been made in view of the above-described circumstances, and an object thereof is to provide a light source device capable of appropriately adjusting the color balance of light of a plurality of colors whose spectral spectra overlap each other. .
- a light source device of one embodiment of the present invention includes a first light-emitting portion that generates first light having an intensity in a first wavelength band and a first spectral spectrum, and is adjacent to the first wavelength band
- a second light emitting section for generating a second light having a second spectral spectrum having an intensity in the second wavelength band and overlapping a part of the first spectral spectrum, and the first light emission
- the second light emitting unit simultaneously emit light with the light quantity adjusted according to the first mixed light quantity that is the light quantity of the second light mixed in the first wavelength band.
- a control unit that generates one light.
- 1 to 8 relate to an embodiment of the present invention.
- an endoscope system 1 includes an endoscope 2 configured to image a subject inside a subject such as a living body and output an imaging signal, and to illuminate the subject.
- a light source device 3 configured to supply illumination light to the endoscope 2, an image processing device 4 configured to generate and output an image based on an imaging signal output from the endoscope 2, And a monitor 5 configured to display an image output from the image processing device 4.
- the light source device 3 and the image processing device 4 are connected via a communication cable CC.
- FIG. 1 is a diagram illustrating a configuration of a main part of an endoscope system including a light source device according to an embodiment.
- the endoscope 2 includes an elongated insertion portion 6 that can be inserted into the subject, an operation portion 7 formed at the proximal end of the insertion portion 6, and a universal cable 8 that extends from the operation portion 7. And an optical connector 9 provided at the end of the universal cable 8 and an electric connector 10 provided at the end of the electric cable EC branched from the universal cable 8.
- the operation unit 7 is configured to have a shape that can be held and operated by a user such as an operator.
- the operation unit 7 is provided with one or more scope switches (not shown) that can instruct the image processing apparatus 4 according to a user operation.
- the optical connector 9 is configured to be detachably connected to a connector receiver (not shown) of the light source device 3.
- the electrical connector 10 is configured to be detachably connected to a connector receiver (not shown) of the image processing apparatus 4.
- the endoscope 2 includes a light guide 11 that transmits illumination light supplied from the light source device 3 to which the optical connector 9 is connected, and an illumination lens that is disposed on the optical path of the illumination light emitted from the light guide 11. 12, an objective lens 13 that forms an optical image of a subject illuminated by illumination light emitted through the illumination lens 12, and an imaging device 14 that captures the optical image formed by the objective lens 13 and outputs an imaging signal. And a memory 15 in which light amount ratio information described later is stored.
- the light guide 11 is inserted through the insertion portion 6, the operation portion 7 and the universal cable 8.
- An incident end including the light incident surface of the light guide 11 is provided so as to extend from the optical connector 9. Further, the emission end portion including the light emission surface of the light guide 11 is disposed in the vicinity of the light incident surface of the illumination lens 12.
- the image pickup device 14 includes an image sensor such as a color CCD or a color CMOS.
- the imaging element 14 is configured to photoelectrically convert the optical image formed by the objective lens 13 to generate an imaging signal, and to output the generated imaging signal to the image processing device 4 to which the electrical connector 10 is connected. Has been.
- the light amount ratio information LIA which is information that sets in advance the light amount ratio of each light (R light, G light, and B light described later) from the light source device 3 according to the type of the endoscope 2 and the like. Is stored.
- the image processing device 4 includes, for example, an image processing circuit. Further, the image processing device 4 calculates a ratio between the average luminance of the image generated based on the imaging signal output from the endoscope 2 and a predetermined target luminance, and brightness control indicating the calculated ratio. Information is output to the light source device 3. That is, the brightness control information is information acquired according to the brightness of an image when a subject illuminated with R light, G light, and B light described later is captured. Further, the image processing device 4 is configured to read the light amount ratio information from the memory 15 when the power is turned on, and to output the read light amount ratio information to the light source device 3, for example.
- the light source device 3 is disposed in the vicinity of the red LED 21 having a function as a light emitting unit that generates R light, a lens 21 a that collects and emits R light, and the red LED 21, and emits R light in the red LED 21. And an optical sensor 21b that detects and outputs a light quantity detection signal indicating the detected light emission quantity.
- the light source device 3 is disposed in the vicinity of the green LED 22 having a function as a light emitting unit that generates G light, a lens 22 a that collects and emits G light, and the green LED 22, and the green LED 22 emits G light. And an optical sensor 22b that detects the amount of light and generates and outputs a light amount detection signal indicating the detected amount of emitted light.
- the light source device 3 is disposed in the vicinity of the blue LED 23 having a function as a light emitting unit that generates B light, a lens 23 a that collects and emits B light, and the blue LED 23, and emits B light in the blue LED 23. And an optical sensor 23b that detects a light amount and generates and outputs a light amount detection signal indicating the detected light emission amount.
- R light having intensity in the wavelength band RW of wavelengths ⁇ gh to ⁇ rh is emitted from the red LED 21 and has intensity in the wavelength band GW of wavelengths ⁇ gl to ⁇ gh.
- the G light is emitted from the green LED 22 and the B light having intensity in the wavelength band BW of wavelengths ⁇ bl to ⁇ gl is emitted from the red LED 21.
- the present embodiment for example, as shown in FIG.
- the spectrum of the R light emitted from the red LED 21 and the spectrum of the G light emitted from the green LED 22 overlap each other in the vicinity of the wavelength ⁇ gh
- the spectrum of the G light emitted from the green LED 22 and the spectrum of the B light emitted from the blue LED 23 overlap each other in the vicinity of the wavelength ⁇ gl.
- the wavelength bands RW and GW are adjacent to each other, and the wavelength bands GW and BW are adjacent to each other.
- wavelengths ( ⁇ bl, ⁇ gl, ⁇ gh, and ⁇ rh) that define the wavelength bands RW, GW, and BW are set values that are set according to the model of the light source device 3, for example.
- FIG. 2 is a diagram illustrating an example of a spectrum of light emitted from each LED provided in the light source device according to the embodiment.
- the light source device 3 is configured to have optical characteristics such that the R light emitted through the lens 21a is transmitted to the connector receiving side and the G light emitted through the lens 22a is reflected to the connector receiving side.
- the dichroic mirror 24 is included.
- the light source device 3 has optical characteristics such that R light and G light emitted through the dichroic mirror 24 are transmitted to the connector receiving side, and B light emitted through the lens 23a is reflected to the connector receiving side.
- the dichroic mirror 25 is configured as described above.
- the light source device 3 condenses R light, G light, and B light emitted through the dichroic mirror 25, and enters the light incident surface of the light guide 11 that is disposed near the connector receiver when the optical connector 9 is connected.
- the lens 26 is configured to emit light.
- the light source device 3 has an operation panel 27 configured by a user interface such as a switch capable of giving an instruction corresponding to a user operation to the control unit 29.
- a user interface such as a switch capable of giving an instruction corresponding to a user operation to the control unit 29.
- the light source device 3 includes an LED drive unit 28 configured to generate and output an LED drive signal for driving the red LED 21, the green LED 22, and the blue LED 23 in accordance with the control of the control unit 29.
- the LED drive unit 28 includes, for example, an LED drive circuit for generating an LED drive signal.
- the light source device 3 is based on the brightness control information output from the image processing device 4, the light amount detection signals output from the optical sensors 21b, 22b, and 23b, and the light source control information described later. It has the control part 29 comprised so that control regarding adjustment of the light quantity of light and B light could be performed with respect to the LED drive part 28.
- FIG. 29 comprisesd so that control regarding adjustment of the light quantity of light and B light could be performed with respect to the LED drive part 28.
- the control unit 29 includes, for example, a CPU.
- the control unit 29 is configured to be able to perform control for causing the red LED 21, the green LED 22, and the blue LED 23 to emit or extinguish each of the LED driving unit 28 in accordance with an instruction from the operation panel 27. Yes.
- the control unit 29 includes a memory 29a and a calculation unit 29b.
- the memory 29a the light emission amount value of the red LED 21 and the light amount of the R light detected by the optical sensor 21b when only the red LED 21 among the LEDs provided in the light source device 3 is caused to emit light alone are displayed.
- R sensor characteristic information which is information indicating a correlation between the R sensor detection value obtained in this manner and the R sensor detection value is stored.
- the memory 29a stores R sensor correction information used to correct the R sensor characteristic information described above to obtain RLED (red LED) control information.
- the memory 29a In the memory 29a, the light emission amount value of the green LED 22 and the light amount of G light detected by the optical sensor 22b when only the green LED 22 among the LEDs provided in the light source device 3 is caused to emit light alone.
- G sensor characteristic information which is information indicating a correlation between the G sensor detection value obtained in this manner and the G sensor detection value is stored.
- the memory 29a stores G sensor correction information used to correct the G sensor characteristic information described above to obtain GLED (green LED) control information.
- the memory 29a when only the blue LED 23 of each LED provided in the light source device 3 is caused to emit light alone, the light emission amount value of the blue LED 23 and the light amount of B light detected by the optical sensor 23b B sensor characteristic information, which is information indicating a correlation between the B sensor detection value obtained in this manner, is stored.
- the memory 29a stores B sensor correction information used for correcting the B sensor characteristic information described above to obtain BLED (blue LED) control information.
- the memory 29a stores light amount ratio information LIB for setting the light amount ratio of R light, G light, and B light to a predetermined light amount ratio.
- the calculation unit 29b reads the R sensor characteristic information and the R sensor correction information stored in the memory 29a, and also reads the read R sensor correction information and the light amount ratio information LIT of one of the light amount ratio information LIA and LIB.
- the RLED control information is corrected by correcting the R sensor characteristic information.
- the calculation unit 29b reads the G sensor characteristic information and the G sensor correction information stored in the memory 29a, and the read G sensor correction information and the light amount ratio of one of the light amount ratio information LIA and LIB.
- the control information for GLED is acquired by correcting the G sensor characteristic information using the information LIT.
- the calculation unit 29b reads the B sensor characteristic information and the B sensor correction information stored in the memory 29a, and at the same time, reads the B sensor correction information and the light amount ratio of one of the light amount ratio information LIA and LIB.
- the control information for BLED is acquired by correcting the B sensor characteristic information using the information LIT.
- the calculating part 29b is comprised so that the control information for RLED, the control information for GLED, and the control information for BLED may be acquired as light source control information.
- the user connects each part of the endoscope system 1 and turns on the power, and then operates the operation panel 27, for example, the endoscope uses white light including R light, G light, and B light as illumination light. 2 is instructed to the control unit 29.
- the calculation unit 29b is indicated by the light amount ratio R1 indicated by the light amount ratio information LIA output from the image processing device 4 and the light amount ratio information LIB stored in the memory 29a when the light source device 3 is turned on.
- the operation for comparing the light quantity ratio R2 to be performed is performed.
- the calculation unit 29b When the calculation unit 29b obtains a comparison result that the light quantity ratios R1 and R2 match, the calculation unit 29b corrects each sensor characteristic information using one of the light quantity ratios R1 and R2. In addition, when the calculation unit 29b obtains a comparison result that the light amount ratios R1 and R2 do not match, the calculation unit 29b corrects each sensor characteristic information using the light amount ratio R1. Further, when the light quantity ratio information LIA is not stored in the memory 15 and the light quantity ratio R1 and R2 cannot be compared due to the fact that the light quantity ratio information LIA is not stored in the memory 15, the arithmetic unit 29b uses the light quantity ratio R2 to Correct the information.
- the calculation unit 29b cannot acquire the light amount ratio information LIA from the image processing device 4 for setting the light amount ratio of the R light, the G light, and the B light to the light amount ratio R1 different from the light amount ratio R2. In this case, the sensor characteristic information is corrected using the light amount ratio R2. Further, the calculation unit 29b can acquire the light amount ratio information LIA from the image processing device 4 for setting the light amount ratio of the R light, the G light, and the B light to the light amount ratio R1 different from the light amount ratio R2. In this case, the sensor characteristic information is corrected using the light amount ratio R1.
- a factory worker for example, a light meter having a function capable of detecting a light amount (intensity) for each wavelength of 1 nm of incident light in the visible range and acquiring a spectral spectrum at the time of manufacturing or shipping inspection of the light source device 3 ( By operating the operation panel 27 in a state where the not shown) is connected to the connector receiver of the light source device 3, an instruction for performing an operation related to acquisition of the G sensor characteristic information is given to the control unit 29.
- control unit 29 In response to an instruction from the operation panel 27, the control unit 29 performs control for causing only the green LED 22 to emit light alone and with the minimum light amount value Lmin, and the light amount output from the optical sensor 22b. An operation for acquiring the G sensor detection value DGA according to the detection signal is performed. Further, in response to an instruction from the operation panel 27, the control unit 29 performs control for causing only the green LED 22 to emit light alone and with the maximum light amount value Lmax, and outputs the light from the optical sensor 22b. An operation for acquiring the G sensor detection value DGB corresponding to the detected light amount detection signal is performed.
- the minimum light amount value Lmin corresponds to the lower limit value of the light amount that can be set by operating the operation panel 27, for example.
- the maximum light amount value Lmax corresponds to, for example, an upper limit value of the light amount that can be set by operating the operation panel 27.
- the calculation unit 29b is configured to cause only the green LED 22 to emit light alone based on the G sensor detection value DGA acquired at the minimum light amount value Lmin and the G sensor detection value DGB acquired at the maximum light amount value Lmax.
- Acquire G sensor characteristic information indicating a correlation between the light emission light amount value LG of the green LED 22 and the G sensor detection value DG obtained according to the light amount of the G light detected by the optical sensor 22b.
- the G sensor characteristic information is stored in the memory 29a.
- FIG. 3 is a diagram illustrating an example of G sensor characteristic information of the light source device according to the embodiment.
- the slope A included in the right side of the equation (1) is a value calculated by performing, for example, (DGB ⁇ DGA) / (Lmax ⁇ Lmin) (see FIG. 3).
- the intercept Q included in the right side of the mathematical formula (1) is a value determined according to, for example, electrical characteristics such as dark current of the optical sensor 22b.
- the factory worker after giving an instruction to perform an operation related to acquisition of the G sensor characteristic information, the factory worker further operates the operation panel 27 to perform the R light having the minimum light amount value Lmin and the maximum light amount value. Instructions for generating Lmax R light at regular intervals.
- the control unit 29 In response to an instruction from the operation panel 27, for example, the control unit 29 causes the red LED 21 to emit light alone and with the minimum light amount value Lmin for a certain period of time, and then causes the red LED 21 to emit light alone and with the maximum light amount value Lmax for a certain period of time. Such control is performed on the LED drive unit 28. Then, according to the operation of the control unit 29 as described above, for example, a spectral spectrum as indicated by a one-dot chain line in FIG. Acquired by a photometer. Further, according to the operation of the control unit 29, as the spectrum of the R light when the red LED 21 is caused to emit light alone and with the maximum light amount value Lmax, for example, a spectrum as shown by a thick line in FIG. It is acquired by the total.
- FIG. 4 is a diagram illustrating an example of a spectrum that is acquired when each red LED provided in the light source device according to the embodiment emits light with the minimum light amount value Lmin and the maximum light amount value Lmax.
- the factory worker after giving an instruction to perform an operation related to acquisition of G sensor characteristic information, the factory worker further operates the operation panel 27 to perform the B light with the minimum light amount value Lmin and the maximum An instruction for generating the B light of the light amount value Lmax every predetermined time is given.
- the control unit 29 In response to an instruction from the operation panel 27, for example, the control unit 29 causes the blue LED 23 to emit light alone and with a minimum light amount value Lmin for a certain period of time, and then causes the blue LED 23 to emit light alone and with a maximum light amount value Lmax for a certain period of time. Such control is performed on the LED drive unit 28. Then, according to the operation of the control unit 29 as described above, for example, a spectral spectrum as shown by a one-dot chain line in FIG. 5 is used as the spectral spectrum of the B light when the blue LED 23 emits light alone and with the minimum light amount value Lmin. Acquired by a photometer. Further, according to the operation of the control unit 29, for example, the spectrum as shown by the thick line in FIG.
- FIG. 6 is a diagram illustrating an example of a correlation between the light emission amount value LR and the mixed light amount value LRG in the light source device according to the embodiment.
- the factory worker captures the spectral spectrum of the B light with the minimum light quantity value Lmin and the spectral spectrum of the B light with the maximum light quantity value Lmax acquired by the light meter connected to the light source device 3 respectively. Do the work. Thereafter, the factory worker uses a computer to analyze the spectrum of the two B lights taken from the light meter connected to the light source device 3, so that only the blue LED 23 emits light alone. The operation for obtaining the correlation between the emission light amount value LB and the mixed light amount value LBG which is the light amount of the B light mixed in the wavelength band GW is performed.
- the slope T included in the right side of the above formula (3) is, for example, the mixed light amount value LBGA corresponding to the light amount of light having a wavelength ⁇ gl or more included in the B light having the minimum light amount value Lmin, and B having the maximum light amount value Lmax.
- This is a value calculated by calculating (LBGB ⁇ LBGA) / (Lmax ⁇ Lmin) using a mixed light amount value LBGB corresponding to the light amount of light having a wavelength ⁇ gl or more in the light (see FIG. 7). That is, the slope T included in the right side of the mathematical formula (3) indicates the ratio of the increase amount of the mixed light amount value LBG to the increase amount of the light emission amount value LB.
- the factory worker performs a calculation based on the above formulas (2) and (3) (by a computer) to calculate a total mixed light amount value ⁇ LG shown in the following formula (4). That is, the total mixed light amount value ⁇ LG is calculated as a value corresponding to the sum of the light amounts of the R light and B light mixed in the wavelength band GW when the red LED 21, the green LED 22, and the blue LED 23 emit light simultaneously. Further, the total mixed light amount value ⁇ LG corresponds to the magnification ⁇ of the light amount of the R light when the light amount of the G light is 1 and the magnification ⁇ of the light amount of the B light when the light amount of the G light is 1 time. Is calculated as a fluctuating value.
- the light source device 3 emits G light having a light emission amount larger than the light emission light amount value LG corresponding to the G sensor detection value DG when only the green LED 22 is caused to emit light alone.
- G sensor characteristic information is obtained by using, as G sensor correction information, a correction variable that can reduce the slope A of Equation (1) in accordance with the magnitude of the total mixed light quantity value ⁇ LG. Is corrected so that the G sensor detection value DG corresponding to the amount of G light emitted from the light source device 3 can be obtained when the red LED 21, the green LED 22 and the blue LED 23 emit light simultaneously. Yes.
- the correction information for the R sensor which is the correction variable Cr obtained by the same method as the correction variable Cg
- the B sensor characteristic information acquired by the same method as the G sensor characteristic information is obtained by performing the same work as the series of work described above at the time of manufacturing or shipping inspection of the light source device 3.
- the correction information for the B sensor which is the correction variable Cb acquired by the same method as the correction variable Cg, is stored in the memory 29a.
- the calculation unit 29b reads one sensor characteristic information and one sensor correction information stored in the memory 29a, and also calculates the one sensor correction information and one light quantity ratio RT of the light quantity ratios R1 and R2.
- the one LED control information is acquired by correcting the one sensor characteristic information using.
- the computing unit 29b multiplies the inclination A included in the G sensor characteristic information of the above formula (1) by the correction variable Cg included in the G sensor correction information of the above formula (7).
- the relational expression shown in the following mathematical formula (8) is obtained.
- the calculating unit 29b acquires a relational expression obtained by applying values corresponding to the magnifications ⁇ and ⁇ in the light amount ratio RT to the above mathematical formula (8) as GLED control information.
- the total mixed light quantity value ⁇ LG is set to the light emission quantity value LGM corresponding to the G sensor detection value DGK in the G sensor characteristic information.
- correction is performed such that the light quantity value obtained is set to the light emission quantity value LGN corresponding to the G sensor detection value DGK in the GLED control information.
- FIG. 8 is a diagram for explaining an example of GLED control information obtained by correcting the G sensor characteristic information of the light source device according to the embodiment.
- the calculation unit 29b corrects the R sensor characteristic information and the B sensor characteristic information using a correction method similar to the G sensor characteristic information correction method as described above, so that the RLED control information and the BLED control information are corrected. Get information. And the calculating part 29b acquires the control information for RLED, the control information for GLED, and the control information for BLED as light source control information.
- the calculation unit 29b corrects the G sensor characteristic information by using the correction variable Cg acquired based on the light amounts of the R light and B light mixed in the wavelength band GW and the light amount ratio RT.
- the control information for GLED used for adjustment of G light at the time of making red LED21, green LED22, and blue LED23 light-emit simultaneously is acquired.
- the calculation unit 29b corrects the R sensor characteristic information using the correction variable Cr acquired based on the light amount of the G light mixed in the wavelength band RW and the light amount ratio RT, thereby red LEDs 21, RLED control information used to adjust R light when the green LED 22 and the blue LED 23 are caused to emit light simultaneously is acquired.
- the calculation unit 29b corrects the B sensor characteristic information using the correction variable Cb acquired based on the light amount of the G light mixed in the wavelength band BW and the light amount ratio RT, so that the red LED 21, BLED control information used to adjust the B light when the green LED 22 and the blue LED 23 emit light simultaneously is acquired.
- the control unit 29 performs control for causing the red LED 21, the green LED 22, and the blue LED 23 to emit light simultaneously in response to an instruction from the operation panel 27. Further, the control unit 29 acquires an R sensor detection value, a G sensor detection value, and a B sensor detection value based on the light amount detection signals output from the optical sensors 21b, 22b, and 23b, respectively. Further, the control unit 29 applies the R sensor detection value, the G sensor detection value, and the B sensor detection value to the light source control information obtained by the calculation unit 29b, whereby the brightness output from the image processing device 4 is obtained.
- Control is performed to acquire the light emission amount values of the red LED 21, the green LED 22, and the blue LED 23 according to the control information, respectively, and adjust the light amounts of the R light, the G light, and the B light according to the acquired light emission amount value, respectively. This is performed for the LED drive unit 28.
- the control unit 29 when the control unit 29 simultaneously emits the R light, the G light, and the B light, the light amounts of the R light and the B light mixed in the wavelength band GW based on the GLED control information obtained by the calculation unit 29b. Is adjusted as the amount of light that varies according to the light amount ratio RT.
- the control unit 29 when the control unit 29 simultaneously emits the R light, the G light, and the B light, the light amount ratio of the G light mixed in the wavelength band RW based on the RLED control information obtained by the calculation unit 29b.
- the R light is adjusted while treating it as a light amount that varies according to RT.
- the control unit 29 simultaneously emits the R light, the G light, and the B light
- the light amount ratio of the G light mixed in the wavelength band BW is calculated based on the BLED control information obtained by the calculation unit 29b.
- the B light is adjusted while treating the amount of light as a function of RT.
- the amount of light in the overlapping portion of the spectral spectra of the R light, G light, and B light is varied according to the light amount ratio of the R light, G light, and B light.
- the amount of emitted light can be adjusted. Therefore, according to the present embodiment, white light having an originally intended light amount ratio can be supplied from the light source device 3 to the endoscope 2, and the colors of the R light, G light, and B light included in the white light are included. The balance can be adjusted appropriately.
- the light source other than the light source device 3 that generates three colors of light of R light, G light, and B light. It may be applied to a device. Specifically, the present embodiment is applied in substantially the same manner to a light source device that generates light of five colors, for example, R light, G light, B light, amber light, and amber light.
- the present embodiment is applied in substantially the same manner when, for example, at least one of the LEDs provided in the light source device 3 is replaced with a laser diode.
- the control unit 29 when the control unit 29 performs control for simultaneously emitting a plurality of LEDs whose spectral spectra do not overlap with each other in response to an instruction from the operation panel 27,
- the sensor light quantity information obtained when each LED is caused to emit light alone may be used as it is (without correction) as LED control information to adjust the amount of emitted light.
- the control unit 29 when the control unit 29 performs control for causing the red LED 21 and the blue LED 23 to emit light simultaneously while extinguishing the green LED 22 in accordance with an instruction from the operation panel 27, the R sensor characteristic information is used as it is.
- the light emission amount of the red LED 21 may be adjusted using the RLED control information
- the light emission amount of the blue LED 23 may be adjusted using the B sensor characteristic information as it is as the BLED control information.
- the control unit 29 performs control for causing the red LED 21, the green LED 22, and the blue LED 23 to emit light in a time-sharing manner in response to an instruction from the operation panel 27, the R sensor characteristics
- the information is directly used as RLED control information to adjust the light emission amount of the red LED 21
- the G sensor characteristic information is directly used as GLED control information to adjust the light emission amount of the green LED 22,
- the B sensor characteristic information is directly used as the BLED control. You may make it adjust the emitted light quantity of blue LED23 using as information.
- the present embodiment is applied in a similar manner even when R light, G light, and B light are generated in a time division manner. .
- the present embodiment is also applicable to a case where control for simultaneously generating R light and G light and control for simultaneously generating G light and B light are repeated alternately. The same applies.
- a light amount instruction value corresponding to the brightness of one LED set in accordance with an instruction from the operation panel 27, and the LED driver 28 to the one LED is obtained by correcting information indicating a correlation between the drive current value corresponding to the magnitude of the drive current of the LED drive signal supplied to the LED. You may do it.
- the present embodiment instead of correcting the sensor characteristic information corresponding to each color LED, only the sensor characteristic information corresponding to the specific color LED may be corrected. In such a case, the color balance of the illumination light supplied from the light source device 3 to the endoscope 2 can be appropriately adjusted as compared with the case where the sensor characteristic information corresponding to each color LED is not corrected. .
- the processing for obtaining the RLED control information and the BLED control information by the following method may be performed in the arithmetic unit 29b.
- the processing for obtaining the RLED control information and the BLED control information by the following method may be performed in the arithmetic unit 29b.
- a specific description of a portion to which the above-described configuration or operation can be applied will be omitted as appropriate.
- the calculation unit 29b causes the red LED 21 and the green LED 22 to emit light simultaneously according to the light emission light amount value LG set using the GLED control information based on the total mixed light amount values ⁇ LG and ⁇ LR and the light amount ratio RT.
- RLED control information for adjusting the emitted light quantity value LR at the time is acquired.
- the emitted light quantity value LB of the blue LED 23 can be expressed as the following formula (13).
- the calculating unit 29b acquires a relational expression obtained by applying values corresponding to the magnifications ⁇ and ⁇ in the light amount ratio RT to the above mathematical expression (15) as BLED control information.
- the control unit 29 adjusts the light emission amount of the B light emitted from the blue LED 23 by applying the light emission light amount value LG set using the GLED control information to the BLED control information.
- the calculation unit 29b causes the green LED 22 and the blue LED 23 to emit light simultaneously according to the light emission light amount value LG set using the GLED control information based on the total mixed light amount values ⁇ LG and ⁇ LB and the light amount ratio RT.
- BLED control information for adjusting the emission light quantity value LB at the time is acquired.
- the RLED control information can be obtained without correcting the R sensor characteristic information or without performing an operation for acquiring the R sensor characteristic information.
- the BLED control information can be obtained without correcting the B sensor characteristic information or without performing the operation for acquiring the B sensor characteristic information.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Signal Processing (AREA)
- Theoretical Computer Science (AREA)
- Astronomy & Astrophysics (AREA)
- Endoscopes (AREA)
- Instruments For Viewing The Inside Of Hollow Bodies (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
光源装置は、第1の波長帯域に強度を有しかつ第1の分光スペクトルを有する第1の光を発生する第1の発光部と、第1の波長帯域に隣接する第2の波長帯域に強度を有しかつ第1の分光スペクトルの一部に重複する第2の分光スペクトルを有する第2の光を発生する第2の発光部と、第1の発光部及び第2の発光部を同時に発光させる際に、第1の波長帯域内に混入する第2の光の光量である第1の混入光量に応じた調整を行った光量で第1の光を発生させる制御部と、を有する。
Description
本発明は、光源装置に関し、特に、生体組織の観察に用いられる光源装置に関するものである。
医療分野の内視鏡観察においては、体腔内の生体組織等の被写体に照射される複数の色の光の色バランスを調整するための方法として、例えば、当該複数の色の光の光量比を調整する方法が従来知られている。
具体的には、例えば、日本国特許第5855619号公報には、複数の観察モードによる観察を行うことが可能な内視鏡システムにおいて、観察モード毎に作成された調光テーブルを参照しつつ、光源装置に設けられた複数のLED各々から発せられる複数の色の光の光量比を調整するような構成が開示されている。
しかし、日本国特許第5855619号公報に開示された構成によれば、複数のLED各々から発せられる複数の色の光において、分光スペクトル同士の重複が生じ得る点について考慮されていない。
そのため、日本国特許第5855619号公報に開示された構成によれば、例えば、分光スペクトルが相互に重複する複数の色の光の光量比を所定の光量比に調整したとしても、当該所定の光量比とは異なる光量比の出射光が光源装置から出射されてしまう、という問題点が生じている。従って、日本国特許第5855619号公報に開示された構成によれば、例えば、分光スペクトルが相互に重複する複数の色の光を照明光として被写体に照射する場合において、当該照明光の色バランスを適切に調整することができない、という前述の問題点に応じた課題が生じている。
本発明は、前述した事情に鑑みてなされたものであり、分光スペクトルが相互に重複する複数の色の光の色バランスを適切に調整することが可能な光源装置を提供することを目的としている。
本発明の一態様の光源装置は、第1の波長帯域に強度を有しかつ第1の分光スペクトルを有する第1の光を発生する第1の発光部と、前記第1の波長帯域に隣接する第2の波長帯域に強度を有しかつ前記第1の分光スペクトルの一部に重複する第2の分光スペクトルを有する第2の光を発生する第2の発光部と、前記第1の発光部及び前記第2の発光部を同時に発光させる際に、前記第1の波長帯域内に混入する前記第2の光の光量である第1の混入光量に応じた調整を行った光量で前記第1の光を発生させる制御部と、を有する。
以下、本発明の実施形態について、図面を参照しつつ説明を行う。
図1から図8は、本発明の実施形態に係るものである。
内視鏡システム1は、図1に示すように、生体等の被検体の内部の被写体を撮像して撮像信号を出力するように構成された内視鏡2と、当該被写体を照明するための照明光を内視鏡2へ供給するように構成された光源装置3と、内視鏡2から出力される撮像信号に基づく画像を生成して出力するように構成された画像処理装置4と、画像処理装置4から出力される画像を表示するように構成されたモニタ5と、を有している。また、光源装置3及び画像処理装置4は、通信ケーブルCCを介して接続されている。図1は、実施形態に係る光源装置を含む内視鏡システムの要部の構成を示す図である。
内視鏡2は、被検体の内部に挿入可能な細長の挿入部6と、挿入部6の基端部に形成された操作部7と、操作部7から延出して設けられたユニバーサルケーブル8と、ユニバーサルケーブル8の端部に設けられた光コネクタ9と、ユニバーサルケーブル8から分岐した電気ケーブルECの端部に設けられた電気コネクタ10と、を有して構成されている。
操作部7は、術者等のユーザが把持して操作することが可能な形状を具備して構成されている。また、操作部7には、ユーザの操作に応じた指示を画像処理装置4に対して行うことが可能な1つ以上のスコープスイッチ(不図示)が設けられている。
光コネクタ9は、光源装置3のコネクタ受け(不図示)に対して着脱可能に接続されるように構成されている。
電気コネクタ10は、画像処理装置4のコネクタ受け(不図示)に対して着脱可能に接続されるように構成されている。
また、内視鏡2は、光コネクタ9が接続された光源装置3から供給される照明光を伝送するライトガイド11と、ライトガイド11から出射される照明光の光路上に配置された照明レンズ12と、照明レンズ12を経て出射される照明光により照明された被写体の光学像を形成する対物レンズ13と、対物レンズ13により形成された光学像を撮像して撮像信号を出力する撮像素子14と、後述の光量比情報が格納されているメモリ15と、を有して構成されている。
ライトガイド11は、挿入部6、操作部7及びユニバーサルケーブル8の内部に挿通されている。また、ライトガイド11の光入射面を含む入射端部は、光コネクタ9から延出して設けられている。また、ライトガイド11の光出射面を含む出射端部は、照明レンズ12の光入射面の近傍に配置されている。
撮像素子14は、カラーCCDまたはカラーCMOS等のイメージセンサを具備して構成されている。また、撮像素子14は、対物レンズ13により形成された光学像を光電変換して撮像信号を生成し、当該生成した撮像信号を電気コネクタ10が接続された画像処理装置4へ出力するように構成されている。
メモリ15には、光源装置3から出射される各光(後述のR光、G光及びB光)の光量比を内視鏡2の種類等に応じて予め設定した情報である光量比情報LIAが格納されている。
画像処理装置4は、例えば、画像処理回路を具備して構成されている。また、画像処理装置4は、内視鏡2から出力される撮像信号に基づいて生成した画像の平均輝度と、所定の目標輝度と、の比率を算出し、当該算出した比率を示す明るさ制御情報を光源装置3へ出力するように構成されている。すなわち、明るさ制御情報は、後述のR光、G光及びB光により照明された被写体を撮像した際の画像の明るさに応じて取得される情報である。また、画像処理装置4は、例えば、電源投入時にメモリ15から光量比情報を読み込むとともに、当該読み込んだ光量比情報を光源装置3へ出力するように構成されている。
光源装置3は、被写体を照明するための照明光として、例えば、赤色光であるR光、緑色光であるG光、及び、青色光であるB光を供給することができるように構成されている。
光源装置3は、R光を発生する発光部としての機能を備えた赤色LED21と、R光を集光して出射するレンズ21aと、赤色LED21の近傍に配置され、赤色LED21におけるR光の発光光量を検出し、当該検出した発光光量を示す光量検出信号を生成して出力する光センサ21bと、を有して構成されている。
光源装置3は、G光を発生する発光部としての機能を備えた緑色LED22と、G光を集光して出射するレンズ22aと、緑色LED22の近傍に配置され、緑色LED22におけるG光の発光光量を検出し、当該検出した発光光量を示す光量検出信号を生成して出力する光センサ22bと、を有して構成されている。
光源装置3は、B光を発生する発光部としての機能を備えた青色LED23と、B光を集光して出射するレンズ23aと、青色LED23の近傍に配置され、青色LED23におけるB光の発光光量を検出し、当該検出した発光光量を示す光量検出信号を生成して出力する光センサ23bと、を有して構成されている。
なお、本実施形態においては、例えば、図2に示すように、波長λgh~λrhの波長帯域RWにおいて強度を有するR光が赤色LED21から発せられ、波長λgl~λghの波長帯域GWにおいて強度を有するG光が緑色LED22から発せられ、かつ、波長λbl~λglの波長帯域BWにおいて強度を有するB光が赤色LED21から発せられるものとして説明を行う。また、本実施形態においては、例えば、図2に示すように、赤色LED21から発せられるR光の分光スペクトルと緑色LED22から発せられるG光の分光スペクトルとが波長λgh付近において相互に重複し、かつ、緑色LED22から発せられるG光の分光スペクトルと青色LED23から発せられるB光の分光スペクトルとが波長λgl付近において相互に重複するものとして説明を行う。また、本実施形態においては、例えば、図2に示すように、波長帯域RWとGWとが隣接し、かつ、波長帯域GWとBWとが隣接するものとして説明を行う。また、波長帯域RW、GW及びBWを規定する各波長(λbl、λgl、λgh及びλrh)は、例えば、光源装置3の機種等に応じてそれぞれ設定される設定値であるものとする。図2は、実施形態に係る光源装置に設けられた各LEDから発せられる光の分光スペクトルの一例を示す図である。
光源装置3は、レンズ21aを経て出射されるR光をコネクタ受け側へ透過させるとともに、レンズ22aを経て出射されるG光を当該コネクタ受け側へ反射するような光学特性を具備して構成されたダイクロイックミラー24を有して構成されている。
光源装置3は、ダイクロイックミラー24を経て出射されるR光及びG光をコネクタ受け側へ透過させるとともに、レンズ23aを経て出射されるB光を当該コネクタ受け側へ反射するような光学特性を具備して構成されたダイクロイックミラー25を有して構成されている。
光源装置3は、ダイクロイックミラー25を経て出射されるR光、G光及びB光を集光し、光コネクタ9の接続に伴ってコネクタ受けの近傍に配置されるライトガイド11の光入射面へ出射するように構成されたレンズ26を有して構成されている。
光源装置3は、ユーザの操作に応じた指示を制御部29に対して行うことが可能なスイッチ等のユーザインターフェースにより構成された操作パネル27を有している。
光源装置3は、制御部29の制御に応じ、赤色LED21、緑色LED22及び青色LED23をそれぞれ駆動するためのLED駆動信号を生成して出力するように構成されたLED駆動部28を有している。LED駆動部28は、例えば、LED駆動信号を生成するためのLED駆動回路を具備して構成されている。
光源装置3は、画像処理装置4から出力される明るさ制御情報と、光センサ21b、22b及び23bからそれぞれ出力される光量検出信号と、後述の光源制御情報と、に基づき、R光、G光及びB光の光量の調整に係る制御をLED駆動部28に対して行うことができるように構成された制御部29を有している。
制御部29は、例えば、CPUを具備して構成されている。また、制御部29は、操作パネル27からの指示に応じ、赤色LED21、緑色LED22及び青色LED23をそれぞれ発光または消光させるための制御をLED駆動部28に対して行うことができるように構成されている。また、制御部29は、メモリ29aと、演算部29bと、を有して構成されている。
メモリ29aには、光源装置3に設けられた各LEDのうちの赤色LED21のみを単独で発光させた場合における、赤色LED21の発光光量値と、光センサ21bにより検出されたR光の光量に応じて得られるRセンサ検出値と、の間の相関関係を示す情報であるRセンサ特性情報が格納されている。また、メモリ29aには、前述のRセンサ特性情報を補正してRLED(赤色LED)用制御情報を得るために用いられるRセンサ用補正情報が格納されている。
メモリ29aには、光源装置3に設けられた各LEDのうちの緑色LED22のみを単独で発光させた場合における、緑色LED22の発光光量値と、光センサ22bにより検出されたG光の光量に応じて得られるGセンサ検出値と、の間の相関関係を示す情報であるGセンサ特性情報が格納されている。また、メモリ29aには、前述のGセンサ特性情報を補正してGLED(緑色LED)用制御情報を得るために用いられるGセンサ用補正情報が格納されている。
メモリ29aには、光源装置3に設けられた各LEDのうちの青色LED23のみを単独で発光させた場合における、青色LED23の発光光量値と、光センサ23bにより検出されたB光の光量に応じて得られるBセンサ検出値と、の間の相関関係を示す情報であるBセンサ特性情報が格納されている。また、メモリ29aには、前述のBセンサ特性情報を補正してBLED(青色LED)用制御情報を得るために用いられるBセンサ用補正情報が格納されている。
メモリ29aには、R光、G光及びB光の光量比を所定の光量比に設定するための光量比情報LIBが格納されている。
演算部29bは、メモリ29aに格納されたRセンサ特性情報及びRセンサ用補正情報を読み込むとともに、当該読み込んだRセンサ用補正情報と、光量比情報LIA及びLIBのうちの一方の光量比情報LITと、を用いてRセンサ特性情報を補正することによりRLED用制御情報を取得するように構成されている。また、演算部29bは、メモリ29aに格納されたGセンサ特性情報及びGセンサ用補正情報を読み込むとともに、当該読み込んだGセンサ用補正情報と、光量比情報LIA及びLIBのうちの一方の光量比情報LITと、を用いてGセンサ特性情報を補正することによりGLED用制御情報を取得するように構成されている。また、演算部29bは、メモリ29aに格納されたBセンサ特性情報及びBセンサ用補正情報を読み込むとともに、当該読み込んだBセンサ用補正情報と、光量比情報LIA及びLIBのうちの一方の光量比情報LITと、を用いてBセンサ特性情報を補正することによりBLED用制御情報を取得するように構成されている。また、演算部29bは、RLED用制御情報、GLED用制御情報及びBLED用制御情報を光源制御情報として取得するように構成されている。
続いて、本実施形態の内視鏡システム1の動作等について説明する。
ユーザは、内視鏡システム1の各部を接続して電源を投入した後、操作パネル27を操作することにより、例えば、R光、G光及びB光を含む白色光を照明光として内視鏡2に供給させるための指示を制御部29に対して行う。
演算部29bは、光源装置3の電源が投入された際に、画像処理装置4から出力される光量比情報LIAにより示される光量比R1と、メモリ29aに格納されている光量比情報LIBにより示される光量比R2と、を比較するための動作を行う。
演算部29bは、光量比R1及びR2が一致しているとの比較結果を得た場合に、当該光量比R1及びR2のうちの一方の光量比を用いて各センサ特性情報を補正する。また、演算部29bは、光量比R1及びR2が一致していないとの比較結果を得た場合に、当該光量比R1を用いて各センサ特性情報を補正する。また、演算部29bは、メモリ15に光量比情報LIAが格納されていないこと等に起因し、光量比R1及びR2の比較を行うことができない場合には、光量比R2を用いて各センサ特性情報を補正する。
すなわち、演算部29bは、R光、G光及びB光の光量比を光量比R2とは異なる光量比R1に設定するための光量比情報LIAを画像処理装置4からから取得することができなかった場合に、当該光量比R2を用いて各センサ特性情報を補正する。また、演算部29bは、R光、G光及びB光の光量比を光量比R2とは異なる光量比R1に設定するための光量比情報LIAを画像処理装置4からから取得することができた場合に、当該光量比R1を用いて各センサ特性情報を補正する。
ここで、メモリ29aに格納される各センサのセンサ特性情報及びセンサ用補正情報の取得方法の具体例について、以下に説明する。なお、以降においては、R光、G光及びB光の光量比がα:1:βに設定される場合、すなわち、R光の光量がG光の光量のα倍に設定され、かつ、B光の光量がG光の光量のβ倍に設定される場合を例に挙げて説明する。また、以降においては、簡単のため、メモリ29aに格納されるGセンサ特性情報及びGセンサ用補正情報の取得方法を代表例として挙げて説明する。
工場作業者は、例えば、光源装置3の製造時または出荷検査時において、可視域の入射光の波長1nm毎の光量(強度)を検出して分光スペクトルを取得可能な機能を具備する光量計(不図示)を光源装置3のコネクタ受けに接続した状態で操作パネル27を操作することにより、Gセンサ特性情報の取得に係る動作を行わせるための指示を制御部29に対して行う。
制御部29は、操作パネル27からの指示に応じ、緑色LED22のみを単独でかつ最小光量値Lminで発光させるための制御をLED駆動部28に対して行うとともに、光センサ22bから出力される光量検出信号に応じたGセンサ検出値DGAを取得するための動作を行う。また、制御部29は、操作パネル27からの指示に応じ、緑色LED22のみを単独でかつ最大光量値Lmaxで発光させるための制御をLED駆動部28に対して行うとともに、光センサ22bから出力される光量検出信号に応じたGセンサ検出値DGBを取得するための動作を行う。
なお、最小光量値Lminは、例えば、操作パネル27の操作により設定可能な光量の下限値に相当する。また、最大光量値Lmaxは、例えば、操作パネル27の操作により設定可能な光量の上限値に相当する。
演算部29bは、最小光量値Lminにおいて取得されたGセンサ検出値DGAと、最大光量値Lmaxにおいて取得されたGセンサ検出値DGBと、に基づき、緑色LED22のみを単独で発光させた場合における、緑色LED22の発光光量値LGと、光センサ22bにより検出されたG光の光量に応じて得られるGセンサ検出値DGと、の間の相関関係を示すGセンサ特性情報を取得するとともに、当該取得したGセンサ特性情報をメモリ29aに格納する。
すなわち、以上に述べたような演算部29bの動作によれば、例えば、下記数式(1)及び図3に示すように、Gセンサ検出値DGが発光光量値LGに対して線形に変化することを示す関係式がGセンサ特性情報としてメモリ29aに格納される。図3は、実施形態に係る光源装置のGセンサ特性情報の一例を示す図である。
DG=A×LG+Q …(1)
なお、上記数式(1)の右辺に含まれる傾きAは、例えば、(DGB-DGA)/(Lmax-Lmin)の演算を行うことにより算出される値である(図3参照)。また、上記数式(1)の右辺に含まれる切片Qは、例えば、光センサ22bの暗電流等の電気的特性に応じて決定される値である。
なお、上記数式(1)の右辺に含まれる傾きAは、例えば、(DGB-DGA)/(Lmax-Lmin)の演算を行うことにより算出される値である(図3参照)。また、上記数式(1)の右辺に含まれる切片Qは、例えば、光センサ22bの暗電流等の電気的特性に応じて決定される値である。
工場作業者は、例えば、Gセンサ特性情報の取得に係る動作を行わせるための指示を行った後、さらに、操作パネル27を操作することにより、最小光量値LminのR光と、最大光量値LmaxのR光と、を一定時間ずつ発生させるための指示を行う。
制御部29は、操作パネル27からの指示に応じ、例えば、赤色LED21を単独でかつ最小光量値Lminで一定時間発光させた後で、赤色LED21を単独でかつ最大光量値Lmaxで一定時間発光させるような制御をLED駆動部28に対して行う。そして、このような制御部29の動作に応じ、赤色LED21を単独でかつ最大光量値Lmaxで発光させた際のR光の分光スペクトルとして、例えば、図4の一点鎖線で示すような分光スペクトルが光量計により取得される。また、このような制御部29の動作に応じ、赤色LED21を単独でかつ最大光量値Lmaxで発光させた際のR光の分光スペクトルとして、例えば、図4の太線で示すような分光スペクトルが光量計により取得される。図4は、実施形態に係る光源装置に設けられた赤色LEDを最小光量値Lmin及び最大光量値Lmaxで発光させた際にそれぞれ取得される分光スペクトルの一例を示す図である。
また、工場作業者は、例えば、Gセンサ特性情報の取得に係る動作を行わせるための指示を行った後、さらに、操作パネル27を操作することにより、最小光量値LminのB光と、最大光量値LmaxのB光と、を一定時間ずつ発生させるための指示を行う。
制御部29は、操作パネル27からの指示に応じ、例えば、青色LED23を単独でかつ最小光量値Lminで一定時間発光させた後で、青色LED23を単独でかつ最大光量値Lmaxで一定時間発光させるような制御をLED駆動部28に対して行う。そして、このような制御部29の動作に応じ、青色LED23を単独でかつ最小光量値Lminで発光させた際のB光の分光スペクトルとして、例えば、図5の一点鎖線で示すような分光スペクトルが光量計により取得される。また、このような制御部29の動作に応じ、青色LED23を単独でかつ最大光量値Lmaxで発光させた際のB光の分光スペクトルとして、例えば、図5の太線で示すような分光スペクトルが光量計により取得される。図5は、実施形態に係る光源装置に設けられた青色LEDを最小光量値Lmin及び最大光量値Lmaxで発光させた際にそれぞれ取得される分光スペクトルの一例を示す図である。
工場作業者は、光源装置3に接続されている光量計により取得された、最小光量値LminのR光の分光スペクトルと、最大光量値LmaxのR光の分光スペクトルと、を図示しない工場作業用のコンピュータ(以降、単にコンピュータと称する)にそれぞれ取り込むための作業を行う。その後、工場作業者は、コンピュータを用い、光源装置3に接続されている光量計から取り込んだ2つのR光のスペクトルを解析することにより、赤色LED21のみを単独で発光させた場合における、赤色LED21の発光光量値LRと、波長帯域GW内に混入したR光の光量である混入光量値LRGと、の間の相関関係を取得するための作業を行う。そして、このような工場作業者の作業によれば、例えば、下記数式(2)及び図6に示すような、混入光量値LRGが発光光量値LRに対して線形に変化することを示す関係式が取得される。図6は、実施形態に係る光源装置における発光光量値LRと混入光量値LRGとの間の相関関係の一例を示す図である。
LRG=LR×S …(2)
なお、上記数式(2)の右辺に含まれる傾きSは、例えば、最小光量値LminのR光に含まれる波長λgh以下の光の光量に相当する混入光量値LRGAと、最大光量値LmaxのR光における波長λgh以下の光の光量に相当する混入光量値LRGBと、を用い、(LRGB-LRGA)/(Lmax-Lmin)の演算を行うことにより算出される値である(図6参照)。すなわち、上記数式(2)の右辺に含まれる傾きSは、発光光量値LRの増加量に対する混入光量値LRGの増加量の比率を示している。
なお、上記数式(2)の右辺に含まれる傾きSは、例えば、最小光量値LminのR光に含まれる波長λgh以下の光の光量に相当する混入光量値LRGAと、最大光量値LmaxのR光における波長λgh以下の光の光量に相当する混入光量値LRGBと、を用い、(LRGB-LRGA)/(Lmax-Lmin)の演算を行うことにより算出される値である(図6参照)。すなわち、上記数式(2)の右辺に含まれる傾きSは、発光光量値LRの増加量に対する混入光量値LRGの増加量の比率を示している。
工場作業者は、光源装置3に接続されている光量計により取得された、最小光量値LminのB光の分光スペクトルと、最大光量値LmaxのB光の分光スペクトルと、をコンピュータにそれぞれ取り込むための作業を行う。その後、工場作業者は、コンピュータを用い、光源装置3に接続されている光量計から取り込んだ2つのB光のスペクトルを解析することにより、青色LED23のみを単独で発光させた場合における、青色LED23の発光光量値LBと、波長帯域GW内に混入したB光の光量である混入光量値LBGと、の間の相関関係を取得するための作業を行う。そして、このような工場作業者の作業によれば、例えば、下記数式(3)及び図7に示すような、混入光量値LBGが発光光量値LBに対して線形に変化することを示す関係式が取得される。図7は、実施形態に係る光源装置における発光光量値LBと混入光量値LBGとの間の相関関係の一例を示す図である。
LBG=LB×T …(3)
なお、上記数式(3)の右辺に含まれる傾きTは、例えば、最小光量値LminのB光に含まれる波長λgl以上の光の光量に相当する混入光量値LBGAと、最大光量値LmaxのB光における波長λgl以上の光の光量に相当する混入光量値LBGBと、を用い、(LBGB-LBGA)/(Lmax-Lmin)の演算を行うことにより算出される値である(図7参照)。すなわち、上記数式(3)の右辺に含まれる傾きTは、発光光量値LBの増加量に対する混入光量値LBGの増加量の比率を示している。
なお、上記数式(3)の右辺に含まれる傾きTは、例えば、最小光量値LminのB光に含まれる波長λgl以上の光の光量に相当する混入光量値LBGAと、最大光量値LmaxのB光における波長λgl以上の光の光量に相当する混入光量値LBGBと、を用い、(LBGB-LBGA)/(Lmax-Lmin)の演算を行うことにより算出される値である(図7参照)。すなわち、上記数式(3)の右辺に含まれる傾きTは、発光光量値LBの増加量に対する混入光量値LBGの増加量の比率を示している。
工場作業者は、上記数式(2)及び(3)に基づく演算を(コンピュータで)行うことにより、下記数式(4)に示す総混入光量値ΔLGを算出する。すなわち、総混入光量値ΔLGは、赤色LED21、緑色LED22及び青色LED23を同時に発光させた場合に波長帯域GW内に混入するR光及びB光の光量の和に相当する値として算出される。また、総混入光量値ΔLGは、G光の光量を1倍とした場合のR光の光量の倍率α、及び、G光の光量を1倍とした場合のB光の光量の倍率βに応じて変動する値として算出される。
ΔLG=LRG+LBG
=LR×S+LB×T
=LG×α×S+LG×β×T …(4)
ここで、例えば、赤色LED21、緑色LED22及び青色LED23を同時に発光させた場合においては、下記数式(5)に示すような、発光光量値LGに対して総混入光量値ΔLGを加えた光量、すなわち、緑色LED22のみを単独で発光させた場合のGセンサ検出値DGに対応する発光光量値LGよりも大きな出射光量のG光が光源装置3から出射される。
=LR×S+LB×T
=LG×α×S+LG×β×T …(4)
ここで、例えば、赤色LED21、緑色LED22及び青色LED23を同時に発光させた場合においては、下記数式(5)に示すような、発光光量値LGに対して総混入光量値ΔLGを加えた光量、すなわち、緑色LED22のみを単独で発光させた場合のGセンサ検出値DGに対応する発光光量値LGよりも大きな出射光量のG光が光源装置3から出射される。
LG+ΔLG=LG(1+α×S+β×T) …(5)
そのため、本実施形態においては、上記数式(1)の傾きAを総混入光量値ΔLGの大きさに応じて小さくすることができるような補正変数をGセンサ用補正情報として用いてGセンサ特性情報を補正することにより、赤色LED21、緑色LED22及び青色LED23を同時に発光させた場合に、光源装置3から出射されるG光の出射光量に応じたGセンサ検出値DGを得ることができるようにしている。
そのため、本実施形態においては、上記数式(1)の傾きAを総混入光量値ΔLGの大きさに応じて小さくすることができるような補正変数をGセンサ用補正情報として用いてGセンサ特性情報を補正することにより、赤色LED21、緑色LED22及び青色LED23を同時に発光させた場合に、光源装置3から出射されるG光の出射光量に応じたGセンサ検出値DGを得ることができるようにしている。
具体的には、本実施形態においては、上記数式(1)により得られるGセンサ検出値DGと、下記数式(6)により得られるGセンサ検出値DGと、を等しくするような補正変数CgをGセンサ用補正情報として取得するようにしている。
DG=A×Cg×(LG+ΔLG)+Q …(6)
そして、工場作業者は、上記数式(1)、(4)及び(6)に基づく演算を(コンピュータで)行うことにより、下記数式(7)に示すような、倍率α及びβの2つの変数を含む補正変数Cgを取得するとともに、当該取得した補正変数CgをGセンサ用補正情報としてメモリ29aに格納する。
そして、工場作業者は、上記数式(1)、(4)及び(6)に基づく演算を(コンピュータで)行うことにより、下記数式(7)に示すような、倍率α及びβの2つの変数を含む補正変数Cgを取得するとともに、当該取得した補正変数CgをGセンサ用補正情報としてメモリ29aに格納する。
Cg=LG/(LG+ΔLG)
=LG/{LG(1+α×S+β×T)}
=1/(1+α×S+β×T) …(7)
すなわち、以上に述べたような、光源装置3の製造時または出荷検査時において行われる一連の作業によれば、上記数式(1)に示したGセンサ特性情報と、上記数式(7)に示したGセンサ用補正情報と、がメモリ29aに格納される。また、光源装置3の製造時または出荷検査時において、以上に述べたような一連の作業と同様の作業が行われることにより、Gセンサ特性情報と同様の方法により取得されたRセンサ特性情報と、補正変数Cgと同様の方法により取得された補正変数CrであるRセンサ用補正情報と、がメモリ29aに格納される。また、光源装置3の製造時または出荷検査時において、以上に述べたような一連の作業と同様の作業が行われることにより、Gセンサ特性情報と同様の方法により取得されたBセンサ特性情報と、補正変数Cgと同様の方法により取得された補正変数CbであるBセンサ用補正情報と、がメモリ29aに格納される。なお、本実施形態においては、R光の分光スペクトルがG光の分光スペクトルのみに重複するため、倍率βを含まないような補正変数Crが取得される。また、本実施形態においては、B光の分光スペクトルがG光の分光スペクトルのみに重複するため、倍率αを含まないような補正変数Cbが取得される。
=LG/{LG(1+α×S+β×T)}
=1/(1+α×S+β×T) …(7)
すなわち、以上に述べたような、光源装置3の製造時または出荷検査時において行われる一連の作業によれば、上記数式(1)に示したGセンサ特性情報と、上記数式(7)に示したGセンサ用補正情報と、がメモリ29aに格納される。また、光源装置3の製造時または出荷検査時において、以上に述べたような一連の作業と同様の作業が行われることにより、Gセンサ特性情報と同様の方法により取得されたRセンサ特性情報と、補正変数Cgと同様の方法により取得された補正変数CrであるRセンサ用補正情報と、がメモリ29aに格納される。また、光源装置3の製造時または出荷検査時において、以上に述べたような一連の作業と同様の作業が行われることにより、Gセンサ特性情報と同様の方法により取得されたBセンサ特性情報と、補正変数Cgと同様の方法により取得された補正変数CbであるBセンサ用補正情報と、がメモリ29aに格納される。なお、本実施形態においては、R光の分光スペクトルがG光の分光スペクトルのみに重複するため、倍率βを含まないような補正変数Crが取得される。また、本実施形態においては、B光の分光スペクトルがG光の分光スペクトルのみに重複するため、倍率αを含まないような補正変数Cbが取得される。
演算部29bは、メモリ29aに格納された一のセンサ特性情報及び一のセンサ用補正情報を読み込むとともに、当該一のセンサ用補正情報と、光量比R1及びR2のうちの一方の光量比RTと、を用いて当該一のセンサ特性情報を補正することにより一のLED用制御情報を取得する。
具体的には、演算部29bは、例えば、上記数式(1)のGセンサ特性情報に含まれる傾きAに対し、上記数式(7)のGセンサ用補正情報に含まれる補正変数Cgを乗じることにより、下記数式(8)に示す関係式を取得する。
DG={A×LG/(1+α×S+β×T)}+Q …(8)
演算部29bは、光量比RTにおける倍率α及びβに相当する値を上記数式(8)に適用して得られる関係式をGLED用制御情報として取得する。
演算部29bは、光量比RTにおける倍率α及びβに相当する値を上記数式(8)に適用して得られる関係式をGLED用制御情報として取得する。
すなわち、以上に述べたような演算部29bの動作によれば、例えば、図8に示すように、Gセンサ特性情報におけるGセンサ検出値DGKに対応する発光光量値LGMに総混入光量値ΔLGを加えて得られる光量値を、GLED用制御情報における当該Gセンサ検出値DGKに対応する発光光量値LGNに設定するような補正が行われる。図8は、実施形態に係る光源装置のGセンサ特性情報を補正して得られるGLED用制御情報の一例を説明するための図である。
演算部29bは、以上に述べたようなGセンサ特性情報の補正方法と同様の補正方法を用いてRセンサ特性情報及びBセンサ特性情報をそれぞれ補正することにより、RLED用制御情報及びBLED用制御情報を取得する。そして、演算部29bは、RLED用制御情報、GLED用制御情報及びBLED用制御情報を光源制御情報として取得する。
すなわち、演算部29bは、波長帯域GW内に混入するR光及びB光の光量と、光量比RTと、に基づいて取得される補正変数Cgを用いてGセンサ特性情報を補正することにより、赤色LED21、緑色LED22及び青色LED23を同時に発光させる際のG光の調整に用いるGLED用制御情報を取得する。また、演算部29bは、波長帯域RW内に混入するG光の光量と、光量比RTと、に基づいて取得される補正変数Crを用いてRセンサ特性情報を補正することにより、赤色LED21、緑色LED22及び青色LED23を同時に発光させる際のR光の調整に用いるRLED用制御情報を取得する。また、演算部29bは、波長帯域BW内に混入するG光の光量と、光量比RTと、に基づいて取得される補正変数Cbを用いてBセンサ特性情報を補正することにより、赤色LED21、緑色LED22及び青色LED23を同時に発光させる際のB光の調整に用いるBLED用制御情報を取得する。
制御部29は、操作パネル27からの指示に応じ、赤色LED21、緑色LED22及び青色LED23を同時に発光させるための制御をLED駆動部28に対して行う。また、制御部29は、光センサ21b、22b及び23bからそれぞれ出力される光量検出信号に基づき、Rセンサ検出値、Gセンサ検出値及びBセンサ検出値をそれぞれ取得する。また、制御部29は、演算部29bにより得られた光源制御情報に対し、Rセンサ検出値、Gセンサ検出値及びBセンサ検出値を適用することにより、画像処理装置4から出力される明るさ制御情報に応じた赤色LED21、緑色LED22及び青色LED23の発光光量値をそれぞれ取得するとともに、当該取得した発光光量値に応じてR光、G光及びB光の光量をそれぞれ調整するための制御をLED駆動部28に対して行う。
すなわち、制御部29は、R光、G光及びB光を同時に発光させる際に、演算部29bにより得られたGLED用制御情報に基づき、波長帯域GW内に混入するR光及びB光の光量を光量比RTに応じて変動する光量として扱いつつG光の調整を行う。また、制御部29は、R光、G光及びB光を同時に発光させる際に、演算部29bにより得られたRLED用制御情報に基づき、波長帯域RW内に混入するG光の光量を光量比RTに応じて変動する光量として扱いつつR光の調整を行う。また、制御部29は、R光、G光及びB光を同時に発光させる際に、演算部29bにより得られたBLED用制御情報に基づき、波長帯域BW内に混入するG光の光量を光量比RTに応じて変動する光量として扱いつつB光の調整を行う。
ここで、例えば、赤色LED21、緑色LED22及び青色LED23を同時に発光させつつ、R光、G光及びB光の分光スペクトル同士の重複部分を考慮せずに発光光量の調整を行った場合には、本来意図した光量比とは異なる光量比の白色光が光源装置3から内視鏡2に供給されてしまう、という問題が生じる。
これに対し、本実施形態によれば、R光、G光及びB光の分光スペクトル同士の重複部分における光量の大きさを、R光、G光及びB光の光量比に応じて変動させつつ発光光量の調整を行うことができる。そのため、本実施形態によれば、本来意図した光量比の白色光を光源装置3から内視鏡2に供給することができるとともに、当該白色光に含まれるR光、G光及びB光の色バランスを適切に調整することができる。
なお、本実施形態は、分光スペクトルが相互に重複する2色以上の光を発生する限りにおいては、R光、G光及びB光の3色の光を発生する光源装置3以外の他の光源装置に対して適用されるものであってもよい。具体的には、本実施形態は、例えば、R光、G光、B光、菫色光、及び、琥珀色光の5色の光を発生する光源装置においても略同様に適用される。
また、本実施形態は、例えば、光源装置3に設けられた各LEDのうちの少なくとも1つがレーザダイオードに置き換えられた場合においても略同様に適用される。
また、本実施形態によれば、例えば、制御部29が、操作パネル27からの指示に応じ、分光スペクトルが相互に重複しない複数のLEDを同時に発光させるための制御を行う際に、当該複数のLEDを各々単独で発光させた際に得られたセンサ特性情報をそのまま(補正せずに)LED用制御情報として用いて発光光量を調整するようにしてもよい。具体的には、例えば、制御部29が、操作パネル27からの指示に応じ、緑色LED22を消光させつつ赤色LED21及び青色LED23を同時に発光させるための制御を行う際に、Rセンサ特性情報をそのままRLED用制御情報として用いて赤色LED21の発光光量を調整し、Bセンサ特性情報をそのままBLED用制御情報として用いて青色LED23の発光光量を調整するようにしてもよい。
また、本実施形態によれば、例えば、制御部29が、操作パネル27からの指示に応じ、赤色LED21、緑色LED22及び青色LED23を時分割に発光させるための制御を行う際に、Rセンサ特性情報をそのままRLED用制御情報として用いて赤色LED21の発光光量を調整し、Gセンサ特性情報をそのままGLED用制御情報として用いて緑色LED22の発光光量を調整し、Bセンサ特性情報をそのままBLED用制御情報として用いて青色LED23の発光光量を調整するようにしてもよい。
また、本実施形態は、分光スペクトルが相互に重複する2色以上の光を同時に発生させる限りにおいては、R光、G光及びB光を時分割に発生させる場合においても略同様に適用される。具体的には、本実施形態は、例えば、R光及びG光を同時に発生させるための制御と、G光及びB光を同時に発生させるための制御と、が交互に繰り返されるような場合においても略同様に適用される。
また、本実施形態を適宜変形することにより、例えば、操作パネル27からの指示に応じて設定される一のLEDの明るさに相当する光量指示値と、LED駆動部28から当該一のLEDに対して供給されるLED駆動信号の駆動電流の大きさに相当する駆動電流値と、の間の相関関係を示す情報を補正することにより、当該一のLEDの光量の調整に用いる制御情報を得るようにしてもよい。
また、本実施形態によれば、各色のLEDに対応するセンサ特性情報を補正する代わりに、特定の色のLEDに対応するセンサ特性情報のみを補正しても良い。そして、このような場合においては、各色のLEDに対応するセンサ特性情報を補正しない場合に比べ、光源装置3から内視鏡2に供給される照明光の色バランスを適切に調整することができる。
また、本実施形態によれば、例えば、RLED用制御情報及びBLED用制御情報を以下の方法で取得するための処理が演算部29bにおいて行われるようにしてもよい。なお、以降においては、簡単のため、既述の構成または動作等を適用可能な部分に関する具体的な説明を適宜省略するものとする。
赤色LED21、緑色LED22及び青色LED23を同時に発光させた場合に波長帯域RW内に混入するG光の光量に相当する値を総混入光量値ΔLRとすると、LR+ΔLR:LG+ΔLG=α:1の関係が成立する。そして、このような関係によれば、赤色LED21の発光光量値LRを以下の数式(9)のように表すことができる。
LR=α×(LG+ΔLG)-ΔLR
=α×LG×{1+ΔLG/LG-ΔLR/(α×LG)} …(9)
また、上記数式(4)によれば、以下の数式(10)に示すような関係が成立する。
=α×LG×{1+ΔLG/LG-ΔLR/(α×LG)} …(9)
また、上記数式(4)によれば、以下の数式(10)に示すような関係が成立する。
ΔLG/LG=(LG×α×S+LG×β×T)/LG
=α×S+β×T …(10)
さらに、総混入光量値ΔLRが発光光量値LGに対して線形に変化する場合において、以下の数式(11)に示すような関係が成立する。なお、下記数式(11)に含まれるPの値は、前述の傾きS及びTと同様の方法で算出される値であり、発光光量値LGの増加量に対する総混入光量値ΔLRの増加量の比率を示している。
=α×S+β×T …(10)
さらに、総混入光量値ΔLRが発光光量値LGに対して線形に変化する場合において、以下の数式(11)に示すような関係が成立する。なお、下記数式(11)に含まれるPの値は、前述の傾きS及びTと同様の方法で算出される値であり、発光光量値LGの増加量に対する総混入光量値ΔLRの増加量の比率を示している。
ΔLR/(α×LG)=(LG×P)/(α×LG)=P/α …(11)
そして、上記数式(9)に対し、上記数式(10)及び(11)をそれぞれ適用することにより、下記数式(12)のような関係式を得ることができる。
そして、上記数式(9)に対し、上記数式(10)及び(11)をそれぞれ適用することにより、下記数式(12)のような関係式を得ることができる。
LR=α×LG×(1+α×S+β×T-P/α) …(12)
演算部29bは、光量比RTにおける倍率α及びβに相当する値を上記数式(12)に適用して得られる関係式をRLED用制御情報として取得する。また、制御部29は、GLED用制御情報を用いて設定した発光光量値LGをRLED用制御情報に適用することにより、赤色LED21から発せられるR光の発光光量を調整する。
演算部29bは、光量比RTにおける倍率α及びβに相当する値を上記数式(12)に適用して得られる関係式をRLED用制御情報として取得する。また、制御部29は、GLED用制御情報を用いて設定した発光光量値LGをRLED用制御情報に適用することにより、赤色LED21から発せられるR光の発光光量を調整する。
すなわち、演算部29bは、総混入光量値ΔLG及びΔLRと、光量比RTと、に基づき、GLED用制御情報を用いて設定された発光光量値LGに応じて赤色LED21及び緑色LED22を同時に発光させる際の発光光量値LRを調整するためのRLED用制御情報を取得する。
赤色LED21、緑色LED22及び青色LED23を同時に発光させた場合に波長帯域BW内に混入するG光の光量に相当する値を総混入光量値ΔLBとすると、LB+ΔLB:LG+ΔLG=β:1の関係が成立する。そして、このような関係によれば、青色LED23の発光光量値LBを以下の数式(13)のように表すことができる。
LB=β×(LG+ΔLG)-ΔLB
=β×LG×{1+ΔLG/LG-ΔLB/(β×LG)} …(13)
また、総混入光量値ΔLBが発光光量値LGに対して線形に変化する場合において、以下の数式(14)に示すような関係が成立する。なお、下記数式(14)に含まれるUの値は、前述の傾きS及びTと同様の方法で算出される値であり、発光光量値LGの増加量に対する総混入光量値ΔLBの増加量の比率を示している。
=β×LG×{1+ΔLG/LG-ΔLB/(β×LG)} …(13)
また、総混入光量値ΔLBが発光光量値LGに対して線形に変化する場合において、以下の数式(14)に示すような関係が成立する。なお、下記数式(14)に含まれるUの値は、前述の傾きS及びTと同様の方法で算出される値であり、発光光量値LGの増加量に対する総混入光量値ΔLBの増加量の比率を示している。
ΔLB/(β×LG)=(LG×U)/(β×LG)=U/β …(14)
そして、上記数式(13)に対し、上記数式(10)及び(14)をそれぞれ適用することにより、下記数式(15)のような関係式を得ることができる。
そして、上記数式(13)に対し、上記数式(10)及び(14)をそれぞれ適用することにより、下記数式(15)のような関係式を得ることができる。
LB=β×LG×(1+α×S+β×T-U/β) …(15)
演算部29bは、光量比RTにおける倍率α及びβに相当する値を上記数式(15)に適用して得られる関係式をBLED用制御情報として取得する。また、制御部29は、GLED用制御情報を用いて設定した発光光量値LGをBLED用制御情報に適用することにより、青色LED23から発せられるB光の発光光量を調整する。
演算部29bは、光量比RTにおける倍率α及びβに相当する値を上記数式(15)に適用して得られる関係式をBLED用制御情報として取得する。また、制御部29は、GLED用制御情報を用いて設定した発光光量値LGをBLED用制御情報に適用することにより、青色LED23から発せられるB光の発光光量を調整する。
すなわち、演算部29bは、総混入光量値ΔLG及びΔLBと、光量比RTと、に基づき、GLED用制御情報を用いて設定された発光光量値LGに応じて緑色LED22及び青色LED23を同時に発光させる際の発光光量値LBを調整するためのBLED用制御情報を取得する。
以上に述べたような方法によれば、Rセンサ特性情報を補正せずとも、または、Rセンサ特性情報を取得するための作業を行わずとも、RLED用制御情報を得ることができる。また、以上に述べたような方法によれば、Bセンサ特性情報を補正せずとも、または、Bセンサ特性情報を取得するための作業を行わずとも、BLED用制御情報を得ることができる。
なお、本発明は、上述した実施形態に限定されるものではなく、発明の趣旨を逸脱しない範囲内において種々の変更や応用が可能であることは勿論である。
本出願は、2016年12月12日に日本国に出願された特願2016-240382号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲に引用されるものとする。
Claims (8)
- 第1の波長帯域に強度を有しかつ第1の分光スペクトルを有する第1の光を発生する第1の発光部と、
前記第1の波長帯域に隣接する第2の波長帯域に強度を有しかつ前記第1の分光スペクトルの一部に重複する第2の分光スペクトルを有する第2の光を発生する第2の発光部と、
前記第1の発光部及び前記第2の発光部を同時に発光させる際に、前記第1の波長帯域内に混入する前記第2の光の光量である第1の混入光量に応じた調整を行った光量で前記第1の光を発生させる制御部と、
を有することを特徴とする光源装置。 - 前記制御部は、前記第1の発光部及び前記第2の発光部を同時に発光させる際に、さらに、前記第2の波長帯域内に混入する前記第1の光の光量である第2の混入光量に応じた調整を行った光量で前記第2の光を発生させる
ことを特徴とする請求項1に記載の光源装置。 - 前記第1の発光部の発光光量を検出する第1のセンサと、
前記第2の発光部の発光光量を検出する第2のセンサと、
をさらに有し、
前記制御部は、前記第1の発光部を単独で発光させた場合における、前記第1の発光部の発光光量と、前記第1のセンサにより検出された光量に応じて得られるセンサ検出値と、の間の相関関係を示す第1のセンサ特性情報を前記第1の混入光量及び前記光量比に基づいて補正することにより、前記第1の発光部及び前記第2の発光部を同時に発光させる際の前記第1の光の光量の調整に用いる第1の制御情報を取得するとともに、前記第2の発光部を単独で発光させた場合における、前記第2の発光部の発光光量と、前記第2のセンサにより検出された光量に応じて得られるセンサ検出値と、の間の相関関係を示す第2のセンサ特性情報を前記第2の混入光量及び前記光量比に基づいて補正することにより、前記第1の発光部及び前記第2の発光部を同時に発光させる際の前記第2の光の光量の調整に用いる第2の制御情報を取得する
ことを特徴とする請求項2に記載の光源装置。 - 前記第1の光及び前記第2の光の光量比を第1の光量比に設定するための情報が格納された記憶部をさらに有し、
前記制御部は、前記第1の光及び前記第2の光の光量比を前記第1の光量比とは異なる第2の光量比に設定するための情報を前記光源装置の外部から取得することができなかった場合に、前記第1の光量比を用いて前記第1のセンサ特性情報及び前記第2のセンサ特性情報をそれぞれ補正し、前記第1の光及び前記第2の光の光量比を前記第2の光量比に設定するための情報を前記光源装置の外部から取得することができた場合に、前記第2の光量比を用いて前記第1のセンサ特性情報及び前記第2のセンサ特性情報をそれぞれ補正する
ことを特徴とする請求項3に記載の光源装置。 - 前記制御部は、さらに、前記第1の発光部及び前記第2の発光部を時分割に発光させる際に、前記第1のセンサ特性情報をそのまま前記第1の制御情報として用いて前記第1の光の光量を調整するとともに、前記第2のセンサ特性情報をそのまま前記第2の制御情報として用いて前記第2の光の光量を調整する
ことを特徴とする請求項3に記載の光源装置。 - 前記制御部は、前記第1の制御情報及び前記第2の制御情報と、前記光源装置の外部に設けられた画像処理装置において前記第1の光及び前記第2の光により照明された被写体を撮像した際の画像の明るさに応じて取得される明るさ制御情報と、に基づき、前記第1の光の光量及び前記第2の光の光量をそれぞれ調整する
ことを特徴とする請求項3に記載の光源装置。 - 前記第1の発光部の発光光量を検出するセンサをさらに有し、
前記制御部は、前記第1の発光部を単独で発光させた場合における、前記第1の発光部の発光光量と、前記センサにより検出された光量に応じて得られるセンサ検出値と、の間の相関関係を示すセンサ特性情報を前記第1の混入光量及び前記光量比に基づいて補正することにより、前記第1の発光部及び前記第2の発光部を同時に発光させる際の前記第1の光の光量の調整に用いる第1の制御情報を取得するとともに、前記第1の混入光量と、前記第2の混入光量と、前記光量比と、に基づき、前記第1の制御情報を用いて設定された前記第1の光の光量に応じて前記第1の発光部及び前記第2の発光部を同時に発光させる際の前記第2の光の光量を調整するための第2の制御情報を取得する
ことを特徴とする請求項2に記載の光源装置。 - 前記第2の波長帯域に隣接する第3の波長帯域に強度を有し、前記第1の分光スペクトルと重複せず、かつ、前記第2の分光スペクトルの一部に重複する第3の分光スペクトルを有する第3の光を発生する第3の発光部と、
前記第1の光及び前記第2の光を同時に発光させるための第1の指示と、前記第1の光及び前記第3の光を同時に発光させるための第2の指示と、を前記制御部に入力可能な入力部と、をさらに有し、
前記制御部は、前記入力部から前記第1の指示が入力された際に、前記第1の混入光量に応じた調整を行った光量で前記第1の光を発生させるとともに、前記第2の波長帯域内に混入する前記第1の光の光量である第2の混入光量に応じた調整を行った光量で前記第2の光を発生させ、前記入力部から前記第2の指示が入力された際に、前記第1の混入光量に応じた光量の調整を行わずに前記第1の光を発生させ、前記第3の波長帯域内に混入する前記第2の光の光量である第3の混入光量に応じた光量の調整を行わずに前記第3の光を発生させる
ことを特徴とする請求項1に記載の光源装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017564657A JP6384889B1 (ja) | 2016-12-12 | 2017-09-04 | 内視鏡用光源装置 |
DE112017006226.8T DE112017006226T5 (de) | 2016-12-12 | 2017-09-04 | Lichtquelleneinrichtung |
CN201780056838.4A CN109715042B (zh) | 2016-12-12 | 2017-09-04 | 光源装置 |
US16/357,661 US10834791B2 (en) | 2016-12-12 | 2019-03-19 | Light source device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-240382 | 2016-12-12 | ||
JP2016240382 | 2016-12-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/357,661 Continuation US10834791B2 (en) | 2016-12-12 | 2019-03-19 | Light source device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018109995A1 true WO2018109995A1 (ja) | 2018-06-21 |
Family
ID=62558450
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/031744 WO2018109995A1 (ja) | 2016-12-12 | 2017-09-04 | 光源装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10834791B2 (ja) |
JP (1) | JP6384889B1 (ja) |
CN (1) | CN109715042B (ja) |
DE (1) | DE112017006226T5 (ja) |
WO (1) | WO2018109995A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109345603A (zh) * | 2018-09-29 | 2019-02-15 | Oppo广东移动通信有限公司 | 图像处理方法和装置、电子设备、计算机可读存储介质 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6439083B1 (ja) * | 2017-05-02 | 2018-12-19 | オリンパス株式会社 | 内視鏡システム |
JP6876810B2 (ja) * | 2017-08-28 | 2021-05-26 | Hoya株式会社 | 内視鏡用光源装置及び内視鏡システム |
JP6646644B2 (ja) * | 2017-12-22 | 2020-02-14 | 株式会社フジクラ | レーザシステム |
JP2019185002A (ja) * | 2018-04-11 | 2019-10-24 | ソニー株式会社 | 顕微鏡システム及び医療用光源装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009131324A (ja) * | 2007-11-28 | 2009-06-18 | Hoya Corp | フィールドシーケンシャル撮像表示システム |
JP2009297290A (ja) * | 2008-06-13 | 2009-12-24 | Fujifilm Corp | 内視鏡装置およびその画像処理方法 |
JP2015179291A (ja) * | 2015-06-18 | 2015-10-08 | ウシオ電機株式会社 | レーザ光源装置及び画像投影装置 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5855619A (ja) | 1981-09-29 | 1983-04-02 | Ngk Spark Plug Co Ltd | 着火後一定時間駆動される報知器付複数バ−ナ用連続着火装置 |
WO2006003931A1 (ja) * | 2004-06-30 | 2006-01-12 | Mitsubishi Chemical Corporation | 発光装置、照明、表示装置用バックライトユニット及び表示装置 |
JP5075452B2 (ja) * | 2007-04-09 | 2012-11-21 | 三洋電機株式会社 | 投写型映像表示装置 |
EP2130484B1 (en) | 2008-06-04 | 2011-04-20 | FUJIFILM Corporation | Illumination device for use in endoscope |
US8297782B2 (en) * | 2008-07-24 | 2012-10-30 | Bafetti Vincent H | Lighting system for growing plants |
US8905610B2 (en) * | 2009-01-26 | 2014-12-09 | Flex Lighting Ii, Llc | Light emitting device comprising a lightguide film |
CN102164530B (zh) * | 2009-03-30 | 2014-07-30 | 奥林巴斯医疗株式会社 | 荧光观察装置 |
JP5331586B2 (ja) * | 2009-06-18 | 2013-10-30 | 株式会社日立ハイテクノロジーズ | 欠陥検査装置および検査方法 |
EP2589858B1 (en) * | 2011-01-28 | 2016-06-29 | Olympus Corporation | Illumination device and observation system |
KR102112967B1 (ko) * | 2011-03-23 | 2020-05-19 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 발광 소자 |
TWI457904B (zh) * | 2012-04-20 | 2014-10-21 | Hung Ta Liu | 用於顯示器的顯示控制方法 |
JP6237628B2 (ja) * | 2012-08-02 | 2017-11-29 | 日本電気株式会社 | 投射型表示装置及び投射光発生方法 |
WO2014020894A1 (ja) * | 2012-08-02 | 2014-02-06 | 日本電気株式会社 | 投射型表示装置及び投射光発生方法 |
WO2014083970A1 (ja) * | 2012-11-30 | 2014-06-05 | 日本電気株式会社 | 画像表示装置および画像表示方法 |
JP6157135B2 (ja) * | 2013-02-07 | 2017-07-05 | オリンパス株式会社 | 光源撮像装置 |
DE102013206154A1 (de) * | 2013-04-08 | 2014-10-09 | Zumtobel Lighting Gmbh | Leuchtvorrichtung mit variabel einstellbarer Lichtfarbe |
US9915775B2 (en) * | 2013-08-29 | 2018-03-13 | Soraa, Inc. | Circadian-friendly LED light sources |
JP5855619B2 (ja) | 2013-09-30 | 2016-02-09 | 富士フイルム株式会社 | キャリブレーション方法及び内視鏡システム |
JP5997676B2 (ja) * | 2013-10-03 | 2016-09-28 | 富士フイルム株式会社 | 内視鏡用光源装置、およびこれを用いた内視鏡システム |
WO2015128201A1 (en) * | 2014-02-28 | 2015-09-03 | Koninklijke Philips N.V. | Lighting system |
JP6412709B2 (ja) * | 2014-04-02 | 2018-10-24 | オリンパス株式会社 | 観察画像取得システム |
US10732495B2 (en) * | 2014-05-02 | 2020-08-04 | Coretronic Corporation | Illumination system, projection apparatus and method for driving illumination system |
TWI504832B (zh) * | 2014-05-02 | 2015-10-21 | Coretronic Corp | 照明系統及投影裝置 |
JP6365184B2 (ja) * | 2014-09-26 | 2018-08-01 | 日亜化学工業株式会社 | 液晶表示装置用バックライトユニット及びこれを用いた液晶表示装置 |
CN105657283A (zh) * | 2014-11-11 | 2016-06-08 | 索尼公司 | 图像生成方法、装置以及终端设备 |
WO2016103643A1 (en) * | 2014-12-25 | 2016-06-30 | Sony Corporation | Medical imaging system, illumination device, and method |
CN106999029A (zh) * | 2015-05-28 | 2017-08-01 | 奥林巴斯株式会社 | 光源装置 |
JP6688984B2 (ja) * | 2015-06-29 | 2020-04-28 | パナソニックIpマネジメント株式会社 | 固体光源点灯装置、照明器具並びに照明システム |
JP6569440B2 (ja) * | 2015-09-30 | 2019-09-04 | 株式会社Jvcケンウッド | 検出方法、検出装置および投射装置 |
US10049614B2 (en) * | 2015-10-28 | 2018-08-14 | Dell Products L.P. | OLED degradation compensation system |
CN106023898B (zh) * | 2016-07-26 | 2018-07-24 | 京东方科技集团股份有限公司 | 像素电路、显示面板及驱动方法 |
US11607110B2 (en) * | 2016-08-25 | 2023-03-21 | Hoya Corporation | Electronic endoscope processor and electronic endoscope system |
-
2017
- 2017-09-04 WO PCT/JP2017/031744 patent/WO2018109995A1/ja active Application Filing
- 2017-09-04 CN CN201780056838.4A patent/CN109715042B/zh active Active
- 2017-09-04 JP JP2017564657A patent/JP6384889B1/ja active Active
- 2017-09-04 DE DE112017006226.8T patent/DE112017006226T5/de not_active Withdrawn
-
2019
- 2019-03-19 US US16/357,661 patent/US10834791B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009131324A (ja) * | 2007-11-28 | 2009-06-18 | Hoya Corp | フィールドシーケンシャル撮像表示システム |
JP2009297290A (ja) * | 2008-06-13 | 2009-12-24 | Fujifilm Corp | 内視鏡装置およびその画像処理方法 |
JP2015179291A (ja) * | 2015-06-18 | 2015-10-08 | ウシオ電機株式会社 | レーザ光源装置及び画像投影装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109345603A (zh) * | 2018-09-29 | 2019-02-15 | Oppo广东移动通信有限公司 | 图像处理方法和装置、电子设备、计算机可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN109715042B (zh) | 2021-11-30 |
US20190215925A1 (en) | 2019-07-11 |
CN109715042A (zh) | 2019-05-03 |
US10834791B2 (en) | 2020-11-10 |
JPWO2018109995A1 (ja) | 2018-12-20 |
JP6384889B1 (ja) | 2018-09-05 |
DE112017006226T5 (de) | 2019-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6384889B1 (ja) | 内視鏡用光源装置 | |
JP6138203B2 (ja) | 内視鏡装置 | |
JP6072369B2 (ja) | 内視鏡装置 | |
JP6010255B2 (ja) | 光源装置及び光源装置の作動方法 | |
CN110536630B (zh) | 光源系统、光源控制方法、第1光源装置、内窥镜系统 | |
US10225446B2 (en) | Image pickup system and light source apparatus | |
US20160302652A1 (en) | Fluorescence observation apparatus | |
WO2019193934A1 (ja) | 内視鏡用光源装置 | |
CN107405056A (zh) | 活体观察系统 | |
US11889988B2 (en) | Endoscope apparatus, endoscope image processing apparatus, endoscope apparatus actuation method, and recording medium | |
JP6100674B2 (ja) | 内視鏡用光源装置及び内視鏡システム | |
JP5774563B2 (ja) | 内視鏡システム及びそのプロセッサ装置並びに内視鏡システムの作動方法 | |
JP6203092B2 (ja) | 生体観察システム | |
JP5747362B2 (ja) | 内視鏡装置 | |
JP5558331B2 (ja) | 内視鏡システム、内視鏡システムのプロセッサ装置及び内視鏡システムの作動方法 | |
JP2020192007A (ja) | 情報処理装置及びその作動方法並びに内視鏡システム及びその作動方法 | |
JP6484257B2 (ja) | 照明装置、内視鏡システム及び色味補正装置 | |
JP6325707B2 (ja) | 内視鏡用光源装置及び内視鏡システム | |
JP6039605B2 (ja) | 内視鏡システム及びその作動方法 | |
WO2016203983A1 (ja) | 内視鏡装置 | |
WO2019167315A1 (ja) | 内視鏡用光源装置 | |
JP2010172382A (ja) | 光源装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2017564657 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17882197 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17882197 Country of ref document: EP Kind code of ref document: A1 |