+

WO2018105748A1 - Method for introducing foreign substance into cell using laser - Google Patents

Method for introducing foreign substance into cell using laser Download PDF

Info

Publication number
WO2018105748A1
WO2018105748A1 PCT/JP2017/044259 JP2017044259W WO2018105748A1 WO 2018105748 A1 WO2018105748 A1 WO 2018105748A1 JP 2017044259 W JP2017044259 W JP 2017044259W WO 2018105748 A1 WO2018105748 A1 WO 2018105748A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cells
thin film
foreign substance
introducing
Prior art date
Application number
PCT/JP2017/044259
Other languages
French (fr)
Japanese (ja)
Inventor
恵彦 祐村
Original Assignee
国立大学法人山口大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人山口大学 filed Critical 国立大学法人山口大学
Priority to JP2018555090A priority Critical patent/JP6981666B2/en
Publication of WO2018105748A1 publication Critical patent/WO2018105748A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology

Definitions

  • the present invention relates to a method for introducing a foreign substance into a cell by forming pores in a cell membrane by laser light irradiation.
  • the method using a transfection reagent is a method in which a hydrophilic gene or protein is covered with a fat-soluble reagent so that the gene or protein can pass through a cell membrane made of lipid.
  • the introduction efficiency is high, it is not applicable to all cells, and there is a problem that it cannot be applied to primary cultured cells, nerve cells, blood cells, slime mold cells, and the like.
  • transfection reagents remain in cells, there are concerns about cytotoxicity and carcinogenicity.
  • commercially available transfection reagents do not disclose the components of the introduction agent. There is a problem that it cannot be used by humans for therapeutic purposes, and it is necessary for humans to check the safety of foods using plants introduced and modified using such transfection reagents.
  • the method using a virus is a method of introducing a gene into a virus and introducing it into a cell by infecting the cell.
  • the problem is that it cannot be applied to all cell types and is limited to cells that can be infected by viruses, and because some of the virus remains in the cells, cells modified by this method cannot be used in medicine or food. There was a problem.
  • Electroporation is a method in which pores are formed in a cell membrane by passing a current transiently through the cell, and a gene or protein in a liquid brought into contact with the cell membrane is introduced into the cell.
  • the operation is relatively simple, a dedicated device is required, the cell viability is as low as 10-50%, a large amount of cells and a large amount of foreign substances are required, and the introduction efficiency is 1 There was a problem that it was as low as ⁇ 10 ⁇ 4 % or less.
  • the particle gun method is mainly used for plant cells, and is a method in which genes and the like are attached to metal particles and introduced while passing the cells at a high speed with a dedicated gun.
  • the introduction efficiency was as low as about 1 ⁇ 10 ⁇ 7 % or less, and the survival rate was as low as 20% or less.
  • the sonoporation method is a method in which a hole is made in a cell membrane with an ultrasonic wave and a gene or the like in an external solution is introduced until the hole is closed.
  • the introduction efficiency was as low as about 1 ⁇ 10 ⁇ 7 % or less, and the survival rate was as low as 20% or less.
  • the liposome fusion method is a method of introducing a gene or protein inside a liposome into a cell by placing a gene or protein inside a lipid liposome (vesicle) and fusing the cell and the liposome into a membrane.
  • the method using a micromanipulator is a method of introducing a foreign substance by direct microinjection into cells using a micromanipulator. It is a classic physical introduction method to one target cell, and is used for a relatively large cell such as an egg cell.
  • the problem is that advanced operation techniques are required and introduction takes time, the introduction efficiency and survival rate depend on the technology of the person performing the introduction work, and many cells (for example, 10 cells). There was a problem that the introduction was extremely time consuming and labor intensive.
  • a method for introducing a gene or protein into a cell a method of forming a hole in a cell membrane by laser light irradiation is also used.
  • a cell or living tissue is irradiated with laser light through an optical fiber, and the cell wall and / or cell membrane or whole cell of the irradiated cell is cut, removed or opened, and the cell and / or living tissue is passed through the irradiation site.
  • a method of introducing a foreign substance into a cell see Patent Document 1 or placing a small particle carrying a foreign substance on a part of the cell surface of a living cell, and irradiating a part of the cell surface with laser light for processing.
  • has disclosed a method for introducing a foreign substance into the living cell at the same time as perforating the cell wall and / or cell membrane see Patent Document 2.
  • the cells are arranged in a liquid, a gel, or a gel surface in which a target substance to be introduced is present, and the liquid, the gel, or the cells are irradiated with a focused laser beam, and the cells are generated by a shock wave generated thereby.
  • irradiating a laser beam aiming at fine particles or near the fine particles requires not only a high level of technology, but also has a problem that introduction efficiency is low, and it is necessary to use a large and expensive femtosecond laser.
  • the drug is localized in the vicinity of a cell into which the drug is introduced, and a laser beam having a wavelength that is absorbed by a light absorber existing in the vicinity of the cell is irradiated to the cells of living organisms other than humans.
  • a drug introduction method (see Patent Document 4) characterized by introducing a drug is disclosed.
  • this is a method of directly irradiating a living tissue with laser light, and there is a problem that it is necessary to inject a drug to be introduced by a syringe into the living tissue before laser light irradiation.
  • the cells are allowed to stand on the thin film of the cover slip whose upper surface is coated with a thin film made of a light condensing agent, and a liquid containing a foreign substance to be introduced is brought into contact with the cells to form a thin film adjacent to the cells.
  • a method is disclosed in which a laser beam is irradiated to form pores in a cell membrane, and the foreign substance is introduced into the cells from the pores (see Patent Document 5 and Non-Patent Document 1).
  • carbon is used as a light condensing agent, carbon absorbs about 10% of transmitted light, and there is a problem in that fluorescence loss occurs during fluorescence observation.
  • an object of the present invention is to provide a method that can introduce foreign substances into single cells with high efficiency and easily, and that is less affected by damage to cells.
  • the inventors of the present invention have been diligently studied to solve the above-mentioned problems.
  • the surface of the coverslip is coated with a thin film of gold or platinum, the cells are allowed to stand on the thin film, and the thin film adjacent to the cells is coated. It was found that by irradiating the thin film with laser light and absorbing the laser light into the thin film, it is possible to form pores in the cell membrane with little influence by damage to the cells.
  • the present invention has been completed by discovering that a foreign substance to be introduced into the cell is introduced into the cell by bringing a liquid containing the foreign substance to be introduced into the cell into contact with the cell.
  • the present invention is as follows. (1) A method for introducing a foreign substance into a cell, wherein the cell is placed on the thin film of a coverslip having a top surface coated with a thin film of any metal selected from gold, platinum, silver and aluminum. Then, a liquid containing a foreign substance to be introduced is brought into contact with the cells, and a laser beam is irradiated to the thin film adjacent to the cells to absorb the laser light, thereby forming pores in the cell membrane. A method for introducing a foreign substance into a cell, wherein the foreign substance is introduced into the cell from the pore.
  • the method for introducing a foreign substance into a cell of the present invention it is possible to introduce the foreign substance into a single cell with high efficiency and little influence due to damage to the cell.
  • (A) It is explanatory drawing of the method of irradiating a laser beam with respect to the thin film which adjoined the cell membrane from the lower surface of the cover slip.
  • (B) It is a figure which shows a mode that the pore was formed in the cell membrane.
  • (C) It is a figure which shows a mode that the foreign substance was introduce
  • FIG. (A) It is a figure which shows the observation result (when using the cover slip which coated the thin film of gold
  • FIG. (B) It is a figure which shows the relative fluorescence amount of the cell which introduce
  • FIG. (C) It is a figure which shows the observation result (when using the cover slip which coated the thin film of platinum) by the computer image of the cell which introduce
  • FIG. It is a figure which shows the observation result (when using the cover slip which coated the thin film of gold
  • FIG. (A) shows a phase contrast micrograph
  • (b) shows a fluorescence micrograph of the same field of view. It is a figure which shows the observation result of the cover slip in a reference example.
  • the method for introducing a foreign substance into a cell is a method for introducing a foreign substance into a cell, wherein a thin film of any metal selected from gold, platinum, silver and aluminum is coated on the upper surface.
  • a cell is allowed to stand on the thin film of the cover slip, a liquid containing a foreign substance to be introduced is brought into contact with the cell, a laser beam is irradiated to the thin film adjacent to the cell, and the thin film is irradiated with the laser beam.
  • a method for introducing a foreign substance into a cell characterized in that it forms a pore in the cell membrane by absorption and introduces the foreign substance into the cell from the pore. According to the method, it is possible to introduce a foreign substance into a single cell with high efficiency and with little influence by damage to cells.
  • the cell may be a single cell, a tissue cell, or a plurality of cultured cells, and the types of cells are protists, animal cells, plant cells, bacteria, yeasts. Can be illustrated.
  • protists include cellular slime molds, amoebae, algae, and ciliates
  • suitable examples of cellular slime molds include cells of Dictyostelium discoideum.
  • animal cells examples of the origin include humans, monkeys, mice, rats, hamsters, rabbits, goats, sheep, horses, pigs, dogs and other mammals, and the types of cells are primary cells, Mammalian cells such as cell lines, fertilized eggs, and nerve cells can be exemplified.
  • adherent cells or suspension cells may be used, but adherent cells can be preferably exemplified.
  • plant cells include cells derived from Nicotiana tabacum and Arabidopsis thaliana.
  • bacteria include Escherichia coli, archaea, and mycoplasma.
  • the foreign substance is not particularly limited, but is preferably one or more of DNA, RNA, peptide, amino acid, saccharide, lipid, drug, and fluorescent dye, and any of DNA, RNA, and fluorescent dye More preferably, it is one or more substances. Further, these substances may be used alone or in combination as foreign substances, and these substances may be used by being bonded to the surface of fine particles such as metals, inorganic substances, and organic polymers.
  • the thin film in the present invention may be formed of any metal selected from gold, platinum, silver and aluminum, and is preferably formed of gold or platinum, and is formed of gold from the viewpoint of permeability. More preferably.
  • the thin film formed of the metal may be formed of the metal particles.
  • examples of the thickness of the thin film include 5 nm to 200 nm, preferably 8 nm to 50 nm, and more preferably 10 nm to 20 nm. If the thickness of the thin film exceeds 200 nm, the transparency of the cover slip is reduced, which hinders microscopic observation of cells into which foreign substances have been introduced, and if it is less than 5 nm, the ability to absorb laser light is insufficient. Sufficient pores will not be formed in the cell membrane for introducing foreign substances.
  • the thickness of the thin film and the output of the laser beam that forms pores in the cells are inversely proportional, and it is necessary to increase the output if the thickness of the thin film is reduced. Can be adjusted according to.
  • the thin film has an OD value of 0.005 to 0.1, preferably 0.01 to 0.08 when measured with a spectrophotometer (532 nm).
  • the average particle diameter of the metal particles selected from gold, platinum, silver and aluminum is not particularly limited, but may be 2 nm to 200 nm, preferably 5 nm to 100 nm.
  • the thin film may be coated with collagen, gelatin, fibronectin, elastin, or other extracellular matrix as necessary for cell growth. Moreover, when using a floating cell as a cell, it is preferable to coat the upper surface of the thin film with polylysine, polyethyleneimine, spermidine, spermine, or other polycations.
  • the material of the cover slip is not particularly limited, but glass, polystyrene, and polymethacrylamide may be exemplified from the viewpoint of permeability when observing under a microscope. Further, the thickness of the cover slip is not particularly limited, but may be 0.05 mm to 0.3 mm.
  • leaving the cells on the thin film means that the cells are placed on the stationary thin film.
  • a cell has a three-dimensional and complicated three-dimensional structure, and is constantly changing its shape.
  • a part of the cell membrane comes into contact with the thin film.
  • the cell membrane on the surface in contact with the thin film becomes flat and has almost no morphological change, and it becomes easy to irradiate laser light aiming at a certain place of the cell membrane.
  • the method of allowing the cells to stand still and bringing the liquid containing the foreign substance to be introduced into contact with the cells includes culturing the cells on a thin film, and then removing the supernatant medium and culturing containing the foreign substance
  • a method of adding the liquid can be exemplified.
  • cells are cultured in advance in a glass bottom dish, which will be described later, and a small amount of a culture solution containing a foreign substance except for the supernatant culture solution may be added.
  • the cells are suspended in a liquid, and the suspension is added onto the thin film. After the cells adhere or contact the thin film by gravity, a liquid containing a foreign substance is dropped or injected into the suspension to A method of making the cell covered with a liquid containing a foreign substance, or suspending cells in a liquid containing a foreign substance in advance, adding the suspension to the thin film, and allowing the cell to adhere to or contact the thin film, so that the cell is foreign
  • the method of making it the state covered with the liquid containing a substance can be illustrated. Such a method is preferable in the case of cells that can be easily peeled off from the substrate and are easier to be suspended, such as slime mold cells or blood cells. Further, in this method, when the number of cells is small, the liquid containing the foreign substance may be a small amount of about 10 ⁇ l to 30 ⁇ l. Therefore, it is preferable when an expensive or rare foreign substance is used.
  • the concentration of the foreign substance in the liquid containing the foreign substance to be introduced can be appropriately adjusted depending on the amount of the foreign substance to be introduced and the number of cells, but is 1 ng / ml to 10 mg / ml, preferably 0.1 ⁇ g / ml to 100 ⁇ g. / Ml.
  • the light source of the laser beam used in the present invention is not particularly limited, and examples thereof include a pulse laser and a continuous wave (CW) laser, but a pulse laser is preferable.
  • the wavelength of the laser beam used for irradiation of the thin film used in the present invention is not particularly limited, but examples thereof include 380 nm to 1100 nm, preferably 450 nm to 700 nm.
  • a laser beam By irradiating laser light, pores are formed in the cell membrane due to heat and plasmon effect, but by setting it to 450 nm to 700 nm, it becomes possible to easily cause plasmon effect, and laser light is irradiated at a lower output. Even so, pores are formed in the cell membrane.
  • the frequency of the laser beam can be 0.1 KHz to 100 KHz, preferably 1 KHz to 10 KHz, and the output of the laser beam is within a range where pores can be formed without being affected by damage.
  • 0.1 mW to 20 mW Preferably, 0.1 mW to 20 mW, more preferably 0.5 mW to 5 mW, and still more preferably 0.8 mW to 1.8 mW can be exemplified. Note that, as described above, the thickness of the thin film and the output of the laser beam that forms pores in the cells are inversely proportional, and the output of the laser beam can be adjusted according to the thickness of the thin film.
  • the number of times of laser light irradiation is not particularly limited, and may be one or more times depending on the amount of foreign substance to be introduced and the type of foreign substance.
  • a liquid containing a plurality of foreign substances to be introduced may be brought into contact with the cell membrane and introduced into the cells by a single laser beam irradiation.
  • the liquid containing the foreign substance to be introduced every time may be replaced, and each liquid may be brought into contact with the cell membrane and sequentially introduced into the cell by multiple times of laser light irradiation.
  • the laser beam may be irradiated to the thin film adjacent to the cell from the upper surface of the cover slip or to the thin film adjacent to the cell from the lower surface of the cover slip. From the viewpoint of reducing cell damage, it is preferable to irradiate the thin film adjacent to the cell from the lower surface of the cell.
  • irradiating the thin film adjacent to the cell with the irradiation laser light from the lower surface of the cover slip means that the laser light from the lower surface of the cover slip is applied to a part of the thin film in the region where the cell is adjacent. Refers to irradiation.
  • FIG. 1A shows a method of irradiating a part of the thin film 2 in the region 4 where the cells 7 are close to the laser beam from the lower surface of the cover slip 1.
  • the thin film 2 and / or the cell membrane 3 of the cell 7 absorbs the laser light, and the energy of the laser light is concentrated on the thin film 2 and / or the cell membrane 3, as shown by the arrow in FIG.
  • the pore 5 is formed in the cell membrane 3, and the foreign substance 6 can be introduced into the cell from the pore 5 by passive diffusion as shown in FIG. 1 (c). Since the formed pores are repaired and closed in a short time, the formation of the pores hardly affects the growth of the cells. In the present invention, the formation of pores in the cell membrane is not included in cell damage.
  • the laser beam irradiation is preferably performed through the objective lens on the thin film.
  • the pupil diameter of the laser light when passing through the objective lens can be 3 to 18 m, preferably 5 to 15 mm, more preferably 11 to 13 mm.
  • the spot (focal point) diameter of the laser beam when irradiating the thin film close to the cell with the laser beam is not particularly limited, but may be 0.2 ⁇ m to 2 ⁇ m, more preferably 0. .5 ⁇ m to 1.5 ⁇ m can be exemplified.
  • the cells are allowed to stand on the thin film of the cover slip, and foreign substances to be introduced are introduced. Forming pores in the cell membrane by contacting the contained liquid with the cells, irradiating the thin film adjacent to the cells with laser light and absorbing the laser light into the thin film;
  • the cover slip for use in the method for introducing a substance into the cell is not particularly limited as long as a thin film of any metal selected from gold, platinum, silver and aluminum is coated on the upper surface.
  • any metal selected from gold, platinum, silver and aluminum is used on the upper surface.
  • the cells are allowed to stand on the thin film of the coverslip coated with the thin film, the liquid containing the foreign substance to be introduced is brought into contact with the cells, and the thin film adjacent to the cells is irradiated with laser light to
  • the upper surface is selected from gold, platinum, silver and aluminum for use in a method of forming a pore in the cell membrane by absorbing a laser beam into a thin film and introducing the foreign substance into the cell from the pore.
  • a cover slip coated with any metal thin film but a cover coated with gold or platinum It is preferable that the lip.
  • the transformed cell obtained by the method for introducing a foreign substance into a cell of the present invention includes the cover slip of which the upper surface is coated with a thin film made of any metal selected from gold, platinum, silver and aluminum.
  • the cells are allowed to stand on the thin film, a liquid containing a foreign substance to be introduced is brought into contact with the cells, and the thin film adjacent to the cells is irradiated with laser light to absorb the laser light.
  • the cell is not particularly limited as long as it is a transformed cell obtained by forming pores in the cell membrane and introducing the foreign substance into the cells from the pores. In addition to being useful as a cell having a characteristic, it is useful for analyzing the function of a cell by bioimaging.
  • the thicknesses of the prepared gold thin films were 6.6, 10, 11.6, 13.3, 16.6, and 20 nm in the order of 20, 30, 35, 40, 50, and 60 seconds, respectively. Further, when the absorbance of the transmitted light was examined with a spectrophotometer, all of them were below the measurement limit at 532 nm. On the other hand, in the case of a cover slip coated with a thin film made of carbon produced by the method of Patent Document 5, the absorbance of transmitted light based on OD532 nm was 10%. Therefore, it was clarified that the cover slip coated with the gold thin film has less loss of fluorescence, and the fluorescence signal is not lost in fluorescence observation, and the SN (signal / noise) ratio can be increased.
  • a glass bottom dish 9 is produced by making a hole with a diameter of 12 mm in the bottom of the plastic dish 8 and attaching the cover slip 1 with the adhesive so that the side coated with the thin film 2 is inside (upper side). did.
  • FIG. 3 shows a method of irradiating the thin film from the lower surface of the cover slip with the FDSS532-Q pulse laser light irradiation device (manufactured by Crylas).
  • the pulse laser beam 11 introduced from the laser 10 passes through the ND filter 12 having a variable transmittance, the lens 13, the shutter 14, the dichroic mirror 15, and the objective lens 16 to form a thin film from the lower surface of the cover slip 1 attached to the glass bottom dish 9. 2 is irradiated.
  • the laser beam 11 is irradiated from the lower surface of the cover slip 1 to the thin film 2 in the area adjacent to the cell 7 and the pore is not formed in the cell 7. Irradiates the thin film 2 in a region where the cells are not in proximity from the lower surface of the cover slip 1 with the laser beam 11.
  • the glass bottom dish 9 can be slid in the horizontal direction by moving the stage of an inverted microscope. The position of the cell 7 and the absorption position of the pulse laser beam 11 can be adjusted, or the pulse laser beam 11 can be observed while observing the cell 7. Can be irradiated.
  • the irradiation time was controlled by the shutter 14, and the output of the pulse laser beam 11 was controlled by the ND filter 12 with variable transmittance.
  • the pulse laser beam may be irradiated from the upper surface of the cover slip in the same flow as described above.
  • the above-mentioned yellow-spotted mold was placed, the cultured glass bottom dish 9 was placed, and the focal point of the objective lens 16 (ApoN 60 ⁇ : manufactured by Olympus) was spotted ( The focal point was adjusted to the surface of the cover slip 1 so that the diameter was 0.5 ⁇ m.
  • the laser beam 11 (532 nm, 15 mW, 1 nsec pulse, 4.8 KHz) is irradiated from the lower surface of the cover slip 1 to the thin film 2 in the region where the cell membrane is not close, and the position where the thin film 2 is peeled is used as an index.
  • the focal point of irradiation with the pulse laser beam 11 was adjusted to the thin film 2 so that the spot (focal point) diameter was 1 ⁇ m.
  • the pupil diameter of the laser beam that passed through the objective lens was 12 mm.
  • the cover slip was coated under the condition of 14 mA-35 seconds as the cover slip coated with the gold thin film, and the cover slip coated with the platinum thin film was performed under the condition of 30 mA-20 seconds. The coated one was used.
  • Fluorescent dye 17 (Pulse laser light irradiation) Fluorescent dye 17 (PI (propidium iodide: manufactured by Dojin Chemical Co., Ltd.)) as a foreign substance is added to the culture solution in the glass bottom dish 9 so as to be 0.1 mg / ml, and a liquid containing the fluorescent dye 17 is added to the cell membrane 3.
  • a part of the thin film 2 in a region close to the cell 7 is irradiated with a pulse laser beam 11 (532 nm, 15 mW, 1 nsec pulse, 4.8 KHz) by the method shown in FIG. The number of cells irradiated with 100 was 100.
  • the output was reduced to 1.5 mW using an ND filter with variable transmittance, and the time of one irradiation was 1/125 seconds.
  • a plastic dish 9 to which a cover slip 1 that is not coated with a thin film is pasted, as in the above, from standing on the cover slip 1 of the yellow mold fungus a region close to the cell 7 Up to the irradiation of the pulse laser beam 11.
  • the observation of the cell 7 and the irradiation of the pulse laser beam 11 can be performed with the naked eye through the eyepiece 18 or a camera (ORCA-ER Hamamatsu Photonics) ) Was connected and images were acquired on a computer.
  • FIGS. 4A and 4C show representative examples of observation results by computer images from the lower surface direction of cells irradiated with pulsed laser light.
  • (A) is a case where a cover slip coated with a gold thin film is used
  • (c) is a case where a cover slip coated with a platinum thin film is used.
  • the numerical values in the photographs in FIGS. 4A and 4C indicate the elapsed time (seconds) when the time of irradiation with the pulse laser beam is 0.0 second.
  • required the relative fluorescence amount from the cell photograph of Fig.4 (a) is shown in FIG.4 (b). In FIG.
  • the horizontal axis indicates the elapsed time (seconds) when the laser beam irradiation time is 0.0 second, and the vertical axis indicates the relative fluorescence amount. Relative fluorescence was quantified using ImageJ software (National Institutes of Health: NIH).
  • the amount of fluorescence in the cell increased after irradiation with laser light.
  • intracellular fluorescence was observed in 99 cells out of 100 cells irradiated with laser light.
  • the change in cell morphology after laser light irradiation was not different from the normal cell morphology change before laser light irradiation.
  • the introduced fluorescent dye was maintained as it was and did not leave the cells even after several hours.
  • the cell is placed on the thin film, and the cell membrane adjacent to the thin film is located on the thin film without a large change in shape. It was easy to irradiate with a pulsed laser beam aiming at the place.
  • the GFP-lifeact plasmid prepared by the present inventors using the pBIG expression vector (Ruppel et al., Journal of Biological Chemistry, 269: 18773-187780, 1994) as a foreign substance in the culture solution in the glass bottom dish. (Yumura, S. Scientific Reports, 6: 22055 (2016)) is added at 0.05 mg / ml to bring the cell membrane into contact with a liquid containing the GFP-lifeact plasmid, and then the region close to the cells A part of the gold thin film was irradiated with a pulse laser beam (532 nm, 15 mW, 1 nsec pulse, 4.8 KHz) by the method shown in FIG.
  • a pulse laser beam (532 nm, 15 mW, 1 nsec pulse, 4.8 KHz
  • the pupil diameter of the laser beam that passed through the objective lens was 12 mm.
  • the number of cells irradiated with pulsed laser light was 12.
  • the output was reduced to 1.5 mW using an ND filter with variable transmittance, and the irradiation time for one time was 1/125 seconds.
  • FIG. 6 shows the observation results after 1 week of 1 cell out of 12 cells into which the GFP-actin plasmid was introduced.
  • (a) is a phase contrast micrograph
  • (b) is a fluorescence micrograph of the same field.
  • a glass bottom dish was prepared in the same manner as described in Example 1, and after standing the yellow mold on the cover slip gold thin film, the glass bottom dish was placed on the stage of an inverted microscope (IX70I Olympus). installed. Next, the focus of the objective lens (ApoN 60 ⁇ : Olympus) is focused on the surface of the cover slip, the focus of the pulse laser light irradiation is focused on the gold thin film, and then the glass bottom dish placed on the inverted microscope is slid. The cell was brought close to the focal point of the pulse laser beam irradiation.
  • pulse laser light (532 nm, 15 mW, 1 nsec pulse, 4.8 KHz) was irradiated for 1/125 seconds by the method shown in FIG. 3 without using an ND filter with variable transmittance.
  • FIG. 7 shows the observation result of the cover slip by the inverted microscope after the laser light irradiation.
  • the arrow represents the position where the pulse laser beam is absorbed.
  • the amount of foreign substances introduced can be adjusted by changing the laser light irradiation time and number of times, or multiple foreign substances can be introduced into the same cell step by step. The effect can be observed.
  • the cells that have been introduced with the foreign substance are observed after the growth to investigate the effects of the introduction of the foreign substance.
  • the method for introducing a foreign substance into a cell of the present invention it is possible to introduce a foreign substance into a single cell, so that a single cell that grows very slowly or does not grow like a nerve cell. It is possible to introduce foreign substances into the cells and observe the single cells as they are to examine the effects of the introduction of foreign substances.
  • plant cells are used as cells, it is possible to form callus from single cells prepared by the method for introducing foreign substances into the cells of the present invention and to produce plant bodies modified with foreign substances. .
  • the production of a cover slip coated with a thin film of gold or platinum can be produced in a short time of less than 1 minute with a sputtering apparatus, and the sputtering apparatus can be easily cleaned. Therefore, the manufacturing process is simple and the cost is low as compared with the production of a cover slip coated with a carbon thin film.
  • the method for introducing a foreign substance into a cell of the present invention it becomes possible to introduce the foreign substance into a single cell with high efficiency and without damaging the cell, so that bioimaging, It is useful in fields such as regenerative medicine and production of useful plants.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention addresses the problem of providing a method which enables the introduction of a foreign substance into a single cell with high efficiency and easily and is less likely to be influenced by the damage of the cell. A cell is left standing on a thin film which coats the upper surface of a coverslip and which is made from any one metal selected from gold, platinum, silver and aluminum, then a liquid containing a foreign substance to be introduced is brought into contact with the cell, and then laser light is emitted onto the thin film adjacent to the cell to cause the absorption of the laser light by the thin film. As a result, a fine pore is formed in the cell membrane, and the foreign substance is introduced into the cell through the fine pore.

Description

レーザーを用いた細胞内への外来物質の導入方法Method for introducing foreign substances into cells using laser
 本発明は、レーザー光照射によって細胞膜に細孔を形成することにより、細胞内へ外来物質を導入する方法に関する。 The present invention relates to a method for introducing a foreign substance into a cell by forming pores in a cell membrane by laser light irradiation.
 細胞内に外来遺伝子等を導入することで、新たな形質を有する細胞又は生物の作製や、細胞内に蛍光色素を導入して細胞内の機能を蛍光測定するバイオイメージング解析が行われている。近年研究が進んでいるiPS(人工多能幹)細胞も任意の分化形質を有する細胞に分化させるために、細胞内への物質導入技術が必須である。 Introducing a foreign gene or the like into a cell to produce a cell or organism having a new trait or bioimaging analysis in which a fluorescent dye is introduced into the cell to measure the function in the cell by fluorescence. In order to differentiate iPS (artificial pluripotent stem) cells, which have been researched in recent years, into cells having arbitrary differentiation traits, a substance introduction technique into the cells is essential.
 従来、細胞へ遺伝子やタンパク質を導入する方法として、トランスフェクション試薬を用いる方法、ウイルスを用いる方法、エレクトロポレーション法、パーティクルガン法、ソノポレーション法、リポソーム融合法、マイクロマニピュレーターを用いる方法等が用いられてきた。 Conventional methods for introducing genes and proteins into cells include methods using transfection reagents, methods using viruses, electroporation methods, particle gun methods, sonoporation methods, liposome fusion methods, methods using micromanipulators, etc. Has been used.
 トランスフェクション試薬を用いる方法は、脂溶性の試薬で親水性の遺伝子やタンパク質を覆い、遺伝子やタンパク質が脂質からなる細胞膜を通過できるようにする方法である。導入効率は高いが、すべての細胞に適用できるわけではなく、例えばプライマリー培養細胞、神経細胞、血球細胞、粘菌細胞等には適用することができないという問題があった。また、トランスフェクション試薬は細胞に残ることから細胞毒性や発がん性が危惧されていること、加えて市販のトランスフェクション試薬は導入剤の成分が公開されていないことから、ガン医療や再生医療等の治療目的でヒトに使うことができないし、このようなトランスフェクション試薬を用いて導入改変した植物を使った食品をヒトが摂取するには安全性を確認する必要があるという問題があった。 The method using a transfection reagent is a method in which a hydrophilic gene or protein is covered with a fat-soluble reagent so that the gene or protein can pass through a cell membrane made of lipid. Although the introduction efficiency is high, it is not applicable to all cells, and there is a problem that it cannot be applied to primary cultured cells, nerve cells, blood cells, slime mold cells, and the like. In addition, since transfection reagents remain in cells, there are concerns about cytotoxicity and carcinogenicity. In addition, commercially available transfection reagents do not disclose the components of the introduction agent. There is a problem that it cannot be used by humans for therapeutic purposes, and it is necessary for humans to check the safety of foods using plants introduced and modified using such transfection reagents.
ウイルスを用いる方法は、ウイルスに遺伝子を持たせ、細胞に感染させることで細胞内に導入する方法である。すべての細胞種に応用できず、ウイルスが感染できる細胞だけに使用が限定されるという問題や、ウイルスの一部が細胞に残るので、この方法で改変した細胞を医療又は食品に用いることができないという問題があった。 The method using a virus is a method of introducing a gene into a virus and introducing it into a cell by infecting the cell. The problem is that it cannot be applied to all cell types and is limited to cells that can be infected by viruses, and because some of the virus remains in the cells, cells modified by this method cannot be used in medicine or food. There was a problem.
 エレクトロポレーション法は、細胞に一過的に電流を流すことで細胞膜に細孔を形成し、細胞膜に接触させた液体中の遺伝子やタンパク質を細胞内に導入する方法である。操作は比較的簡単であるが、専用の装置が必要であること、細胞の生存率が10~50%と低いこと、多量の細胞と多量の外来物質が必要となること、さらに導入効率が1×10-4%以下と低いこと等の問題があった。 Electroporation is a method in which pores are formed in a cell membrane by passing a current transiently through the cell, and a gene or protein in a liquid brought into contact with the cell membrane is introduced into the cell. Although the operation is relatively simple, a dedicated device is required, the cell viability is as low as 10-50%, a large amount of cells and a large amount of foreign substances are required, and the introduction efficiency is 1 There was a problem that it was as low as × 10 −4 % or less.
 パーティクルガン法は主に植物細胞に用いられており、金属粒子に遺伝子などを付着させ、専用の銃によって高速で細胞を通過させる間に導入する方法である。導入効率が1×10-7%以下程度と低く、また生存率も20%以下と低いという問題があった。 The particle gun method is mainly used for plant cells, and is a method in which genes and the like are attached to metal particles and introduced while passing the cells at a high speed with a dedicated gun. The introduction efficiency was as low as about 1 × 10 −7 % or less, and the survival rate was as low as 20% or less.
 ソノポレーション法は超音波で細胞膜に穴をあけ、外液にある遺伝子などを穴が閉じるまでの間に導入する方法である。導入効率が1×10-7%以下程度と低く、また生存率も20%以下と低いという問題があった。 The sonoporation method is a method in which a hole is made in a cell membrane with an ultrasonic wave and a gene or the like in an external solution is introduced until the hole is closed. The introduction efficiency was as low as about 1 × 10 −7 % or less, and the survival rate was as low as 20% or less.
 リポソーム融合法は、脂質からなるリポソーム(小胞)内部に遺伝子やタンパク質を入れ、細胞とリポソームを膜融合させることで、リポソーム内部の遺伝子やタンパク質を細胞に導入する方法である。汎用性及び簡便性が高いが、リポソームの調製が難しく、準備に時間がかかるという問題があった。 The liposome fusion method is a method of introducing a gene or protein inside a liposome into a cell by placing a gene or protein inside a lipid liposome (vesicle) and fusing the cell and the liposome into a membrane. Although versatility and simplicity are high, there is a problem that preparation of liposomes is difficult and preparation takes time.
 マイクロマニピュレーターを用いる方法は、マイクロマニピュレーターを用いて細胞に直接微小注射して外来物質を導入する方法である。ねらった1細胞への古典的な物理的導入方法であり卵細胞のような比較的サイズの大きな細胞で利用されている。しかしながら、高度な操作技術が要求されると共に導入に時間がかるという問題や、導入効率及び生存率はその導入作業を行う人の技術次第という問題や、多数の細胞(例えば10個の細胞)への導入は極めて時間と労力がかかるという問題があった。 The method using a micromanipulator is a method of introducing a foreign substance by direct microinjection into cells using a micromanipulator. It is a classic physical introduction method to one target cell, and is used for a relatively large cell such as an egg cell. However, the problem is that advanced operation techniques are required and introduction takes time, the introduction efficiency and survival rate depend on the technology of the person performing the introduction work, and many cells (for example, 10 cells). There was a problem that the introduction was extremely time consuming and labor intensive.
 また、細胞へ遺伝子やタンパク質を導入する方法として、レーザー光照射により細胞膜に孔を形成する方法も用いられている。 In addition, as a method for introducing a gene or protein into a cell, a method of forming a hole in a cell membrane by laser light irradiation is also used.
 例えば、細胞あるいは生組織に光ファイバーを通してレーザー光を照射し、照射された細胞の、細胞壁及び/又は細胞膜あるいは細胞全体を、切断、除去又は開孔し、該照射部位を通して前記細胞及び/又は生組織内へ外来物質を導入する方法(特許文献1参照)や、生細胞の細胞表面の一部に外来物質を担持した小粒子を置き、該細胞表面の一部にレーザー光を照射し加工することにより細胞壁及び/又は細胞膜に穿孔を設けると同時に外来物質を前記生細胞内へ導入する方法(特許文献2参照)が開示されているが、細胞壁及び/又は細胞膜に穿孔が生じる程の強いレーザーを細胞に直接照射するために、レーザー光を照射した細胞における損傷が大きくなるおそれがあった。さらに、細胞は立体的で複雑な3次元構造を有し、しかも常に刻々と形態を変化させており、細胞膜の一定の場所を狙ってレーザー光を照射することは難しいため、特定のシングル細胞をねらって物質を導入することが難しいという問題があった。 For example, a cell or living tissue is irradiated with laser light through an optical fiber, and the cell wall and / or cell membrane or whole cell of the irradiated cell is cut, removed or opened, and the cell and / or living tissue is passed through the irradiation site. A method of introducing a foreign substance into a cell (see Patent Document 1) or placing a small particle carrying a foreign substance on a part of the cell surface of a living cell, and irradiating a part of the cell surface with laser light for processing. Has disclosed a method for introducing a foreign substance into the living cell at the same time as perforating the cell wall and / or cell membrane (see Patent Document 2). However, a laser that is strong enough to cause perforation in the cell wall and / or cell membrane is disclosed. Since the cells are directly irradiated, there is a possibility that damage in the cells irradiated with the laser light is increased. In addition, cells have a three-dimensional and complicated three-dimensional structure, and are constantly changing in shape, and it is difficult to irradiate a laser beam to a specific location on the cell membrane. There was a problem that it was difficult to introduce the substance.
 また、細胞を、導入目的物質の存在する液中、ゲル中若しくはゲル表面に配置し、前記液若しくはゲル又は前記細胞にパルスレーザー光を集光させて照射し、それにより生じた衝撃波により前記細胞の細胞膜の構造を一時的に変化させ、前記物質を細胞内に導入する方法(特許文献3参照)が開示されている。しかしながら、微粒子又は微粒子の近くを狙ってレーザー光を照射することは高度な技術を要するほか、導入効率が低く、さらに大型で高価なフェムト秒レーザーを用いる必要があるという問題があった。 Further, the cells are arranged in a liquid, a gel, or a gel surface in which a target substance to be introduced is present, and the liquid, the gel, or the cells are irradiated with a focused laser beam, and the cells are generated by a shock wave generated thereby. Discloses a method of temporarily changing the structure of the cell membrane and introducing the substance into cells (see Patent Document 3). However, irradiating a laser beam aiming at fine particles or near the fine particles requires not only a high level of technology, but also has a problem that introduction efficiency is low, and it is necessary to use a large and expensive femtosecond laser.
 さらに、生体組織において、薬剤を導入する細胞の近傍に該薬剤を定位させ、該細胞の近傍に存在する光吸収体に吸収される波長のレーザー光を照射して、ヒト以外の生物の細胞に薬剤を導入することを特徴とする薬剤導入方法(特許文献4参照)が開示されている。しかしながら、生体組織に直接レーザー光を照射する方法であり、シリンジにより導入する薬剤をレーザー光照射前に生体組織へ注入する必要があるという問題があった。 Furthermore, in a living tissue, the drug is localized in the vicinity of a cell into which the drug is introduced, and a laser beam having a wavelength that is absorbed by a light absorber existing in the vicinity of the cell is irradiated to the cells of living organisms other than humans. A drug introduction method (see Patent Document 4) characterized by introducing a drug is disclosed. However, this is a method of directly irradiating a living tissue with laser light, and there is a problem that it is necessary to inject a drug to be introduced by a syringe into the living tissue before laser light irradiation.
 このほか、上面に集光剤からなる薄膜がコーティングされたカバースリップの前記薄膜上に細胞を静置し、導入する外来物質を含有する液体を前記細胞に接触させ、前記細胞に近接した薄膜に対してレーザー光を照射して細胞膜に細孔を形成し、前記細孔から前記外来物質を前記細胞内へ導入する方法(特許文献5、非特許文献1参照)が開示されている。しかしながら、例えば集光剤としてカーボンを用いた場合には、透過光のおよそ10%はカーボンが吸収してしまい、蛍光観察するにあたって蛍光のロスが生じるという問題があった。 In addition, the cells are allowed to stand on the thin film of the cover slip whose upper surface is coated with a thin film made of a light condensing agent, and a liquid containing a foreign substance to be introduced is brought into contact with the cells to form a thin film adjacent to the cells. On the other hand, a method is disclosed in which a laser beam is irradiated to form pores in a cell membrane, and the foreign substance is introduced into the cells from the pores (see Patent Document 5 and Non-Patent Document 1). However, for example, when carbon is used as a light condensing agent, carbon absorbs about 10% of transmitted light, and there is a problem in that fluorescence loss occurs during fluorescence observation.
 また、a)一つ以上の細胞を固体表面から有効な距離内の実質的に静止した位置に維持し、及びb)前記固体表面に、上記一つ以上の特定の3次元的な位置は前もって認識することなく、該一つ以上の細胞の膜の透過化を誘導するに十分な電磁放射線を指向させ、ここで前記一つ以上の細胞を前記電磁放射線の経路に一致させることを備える一つ以上の細胞を一時的に透過性にする方法(特許文献6参照)が開示されている。しかしながら、細胞膜だけでなく細胞自体に損傷を与えるという問題や、一つの細胞だけを狙って外来物質を導入できないという問題があった。 A) maintaining one or more cells in a substantially stationary position within an effective distance from the solid surface; and b) the one or more specific three-dimensional positions on the solid surface in advance. Directing electromagnetic radiation sufficient to induce permeation of the membrane of the one or more cells without recognition, wherein the one or more cells are aligned with the path of the electromagnetic radiation A method for making the above cells temporarily permeable (see Patent Document 6) is disclosed. However, there is a problem that not only the cell membrane but also the cell itself is damaged, and that a foreign substance cannot be introduced targeting only one cell.
 ところで、近年は共鳴プラズモン効果を利用したバイオ系解析技術が進められている。例えば、試料中の被検物質を標識物質により標識するとともに捕捉物質により固定化して検出するイムノクロマト分析法において、2種の標識試薬を共鳴プラズモン効果によって発色を増感する方法(特許文献6参照)や、基板と、前記基板の表面上に互いに独立して多数の金属微粒子が分散配置された増強電磁場形成層と、前記基板及び前記増強電磁場形成層の上層に形成された保護層とを有する光増強素子を構成するセンサチップを備えたセンサ(特許文献7参照)が開示されている。 By the way, in recent years, bio-based analysis techniques using the resonance plasmon effect have been advanced. For example, in an immunochromatographic analysis method in which a test substance in a sample is labeled with a labeling substance and immobilized with a capture substance and detected, a method of sensitizing the coloration of the two labeling reagents by the resonance plasmon effect (see Patent Document 6) Or a substrate, an enhanced electromagnetic field forming layer in which a large number of metal fine particles are dispersed and arranged independently of each other on the surface of the substrate, and a protective layer formed on the substrate and the enhanced electromagnetic field forming layer. A sensor (see Patent Document 7) including a sensor chip constituting an enhancement element is disclosed.
特開2002-281970号公報JP 2002-281970 A 特開2002-325572号公報JP 2002-325572 A 特開2005-168495号公報JP 2005-168495 A 特開2005-330194号公報JP 2005-330194 A 特開2015-167551号公報JP2015-167551A 特開2009-162558号公報JP 2009-162558 A 特開2014-228322号公報JP 2014-228322 A
 バイオイメージング解析においては、シングル細胞レベルでの観察が必要となるが、従来の細胞内に外来遺伝子等を導入する方法では、特定のシングル細胞をねらって細胞膜に細孔を形成し、細胞に対して損傷による影響を与えずに物質を高効率、且つ、容易に細胞内へ導入することが困難であった。そこで、本発明の課題は、外来物質を高効率、且つ、容易にシングル細胞内へ導入でき、さらに細胞への損傷による影響が少ない方法を提供することにある。 In bioimaging analysis, observation at the single cell level is necessary, but in the conventional method of introducing a foreign gene into a cell, a pore is formed in the cell membrane aiming at a specific single cell and Therefore, it has been difficult to introduce a substance into a cell easily and efficiently without being affected by damage. Accordingly, an object of the present invention is to provide a method that can introduce foreign substances into single cells with high efficiency and easily, and that is less affected by damage to cells.
 本発明者らは、前記課題を解決すべく鋭意検討する中で、カバースリップの表面を金又は白金の薄膜でコーティングし、前記薄膜上に細胞を静置し、前記細胞に近接した薄膜に対してレーザー光を照射して、前記薄膜にレーザー光を吸収させることで、細胞への損傷による影響が少なく、細胞膜に細孔を形成可能であることを見いだした。さらに、細胞内に導入したい外来物質を含有する液体を細胞に接触させておくことにより、形成した細孔から導入したい外来物質が細胞内に導入されることを見いだし、本発明を完成した。 The inventors of the present invention have been diligently studied to solve the above-mentioned problems. The surface of the coverslip is coated with a thin film of gold or platinum, the cells are allowed to stand on the thin film, and the thin film adjacent to the cells is coated. It was found that by irradiating the thin film with laser light and absorbing the laser light into the thin film, it is possible to form pores in the cell membrane with little influence by damage to the cells. Furthermore, the present invention has been completed by discovering that a foreign substance to be introduced into the cell is introduced into the cell by bringing a liquid containing the foreign substance to be introduced into the cell into contact with the cell.
 すなわち、本発明は、以下に示すとおりのものである。
(1)細胞内への外来物質の導入方法であって、上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属の薄膜がコーティングされたカバースリップの前記薄膜上に細胞を静置し、導入する外来物質を含有する液体を前記細胞に接触させ、前記細胞に近接した薄膜に対してレーザー光を照射して前記薄膜にレーザー光を吸収させることにより前記細胞膜に細孔を形成し、前記細孔から前記外来物質を前記細胞内へ導入することを特徴とする細胞内への外来物質の導入方法。
(2)カバースリップの下面から細胞に近接した薄膜に対してレーザー光を照射することを特徴とする上記(1)記載の細胞内への外来物質の導入方法。
(3)薄膜に対して対物レンズを通してレーザー光を照射することを特徴とする上記(1)又は(2)記載の細胞内への外来物質の導入方法。
(4)レーザー光のスポット径が0.2μm~2μmであることを特徴とする上記(1)~(3)のいずれか記載の細胞内への外来物質の導入方法。
(5)上面に金又は白金の薄膜がコーティングされたカバースリップを用いることを特徴とする上記(1)~(4)のいずれか記載の細胞内への外来物質の導入方法。
(6)薄膜をスパッタ法により形成することを特徴とする上記(1)~(5)のいずれか記載の細胞内への外来物質の導入方法。
(7)外来物質がDNA、RNA、タンパク質、ポリペプチド、アミノ酸、糖類、脂質、薬剤、蛍光色素のいずれか1以上の物質であることを特徴とする上記(1)~(6)のいずれか記載の細胞内への外来物質の導入方法。
(8)上記(1)~(7)のいずれか記載の細胞内への外来物質の導入方法によって得られた形質転換細胞。
(9)上記(1)~(7)のいずれか記載の細胞内への外来物質の導入方法に用いるための、上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属からなる薄膜がコーティングされたカバースリップ。
That is, the present invention is as follows.
(1) A method for introducing a foreign substance into a cell, wherein the cell is placed on the thin film of a coverslip having a top surface coated with a thin film of any metal selected from gold, platinum, silver and aluminum. Then, a liquid containing a foreign substance to be introduced is brought into contact with the cells, and a laser beam is irradiated to the thin film adjacent to the cells to absorb the laser light, thereby forming pores in the cell membrane. A method for introducing a foreign substance into a cell, wherein the foreign substance is introduced into the cell from the pore.
(2) The method for introducing a foreign substance into a cell as described in (1) above, wherein the thin film adjacent to the cell is irradiated with laser light from the lower surface of the cover slip.
(3) The method for introducing a foreign substance into cells according to (1) or (2) above, wherein the thin film is irradiated with laser light through an objective lens.
(4) The method for introducing a foreign substance into cells according to any one of (1) to (3) above, wherein the spot diameter of the laser beam is 0.2 μm to 2 μm.
(5) The method for introducing a foreign substance into cells according to any one of the above (1) to (4), wherein a cover slip having an upper surface coated with a thin film of gold or platinum is used.
(6) The method for introducing a foreign substance into cells according to any one of the above (1) to (5), wherein the thin film is formed by sputtering.
(7) Any of (1) to (6) above, wherein the foreign substance is any one or more of DNA, RNA, protein, polypeptide, amino acid, saccharide, lipid, drug, and fluorescent dye A method for introducing a foreign substance into the cell.
(8) A transformed cell obtained by the method for introducing a foreign substance into a cell according to any one of (1) to (7) above.
(9) A thin film made of any metal selected from gold, platinum, silver and aluminum on the upper surface for use in the method for introducing a foreign substance into cells according to any one of (1) to (7) above Is coated coverslip.
 本発明の細胞内への外来物質の導入方法によれば、細胞への損傷による影響が少なく、外来物質を高効率、且つ、容易にシングル細胞内へ導入することが可能となる。 According to the method for introducing a foreign substance into a cell of the present invention, it is possible to introduce the foreign substance into a single cell with high efficiency and little influence due to damage to the cell.
(a)カバースリップの下面から細胞膜に近接した薄膜に対してレーザー光を照射する方法の説明図である。(b)細胞膜に細孔が形成した様子を示す図である。(c)細孔から外来物質が細胞内に導入した様子を示す図である。(A) It is explanatory drawing of the method of irradiating a laser beam with respect to the thin film which adjoined the cell membrane from the lower surface of the cover slip. (B) It is a figure which shows a mode that the pore was formed in the cell membrane. (C) It is a figure which shows a mode that the foreign substance was introduce | transduced in the cell from the pore. ガラスボトムディッシュに静置した細胞にレーザーを照射する概略図である。It is the schematic which irradiates a laser to the cell left still in the glass bottom dish. パルスレーザー光照射装置によるパルスレーザー光照射の概略図である。It is the schematic of pulse laser beam irradiation by a pulse laser beam irradiation apparatus. (a)実施例1における蛍光色素を導入した細胞のコンピューター画像による細胞の観察結果(金の薄膜をコーティングしたカバースリップを用いた場合)を示す図である。(b)実施例1における蛍光色素を導入した細胞の相対蛍光量を示す図である。(c)実施例1における蛍光色素を導入した細胞のコンピューター画像による細胞の観察結果(白金の薄膜をコーティングしたカバースリップを用いた場合)を示す図である。(A) It is a figure which shows the observation result (when using the cover slip which coated the thin film of gold | metal | money) by the computer image of the cell which introduce | transduced the fluorescent dye in Example 1. FIG. (B) It is a figure which shows the relative fluorescence amount of the cell which introduce | transduced the fluorescent pigment | dye in Example 1. FIG. (C) It is a figure which shows the observation result (when using the cover slip which coated the thin film of platinum) by the computer image of the cell which introduce | transduced the fluorescent pigment | dye in Example 1. FIG. 実施例2における蛍光色素を導入した細胞のコンピューター画像による細胞の観察結果(金の薄膜をコーティングしたカバースリップを用いた場合)を示す図である。It is a figure which shows the observation result (when using the cover slip which coated the thin film of gold | metal | money) by the computer image of the cell which introduce | transduced the fluorescent pigment | dye in Example 2. FIG. 実施例3におけるプラスミドを導入した細胞の顕微鏡による蛍光観察結果を示す図である。(a)は位相差顕微鏡写真、(b)は同視野の蛍光顕微鏡写真を示す。It is a figure which shows the fluorescence observation result by the microscope of the cell which introduce | transduced the plasmid in Example 3. FIG. (A) shows a phase contrast micrograph, and (b) shows a fluorescence micrograph of the same field of view. 参考例におけるカバースリップの観察結果を示す図である。It is a figure which shows the observation result of the cover slip in a reference example.
 本発明の細胞内への外来物質の導入方法としては、細胞内への外来物質の導入方法であって、上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属の薄膜がコーティングされたカバースリップの前記薄膜上に細胞を静置し、導入する外来物質を含有する液体を前記細胞に接触させ、前記細胞に近接した薄膜に対してレーザー光を照射して前記薄膜にレーザー光を吸収させることにより前記細胞膜に細孔を形成し、前記細孔から前記外来物質を前記細胞内へ導入することを特徴とする細胞内への外来物質の導入方法であれば特に制限されず、かかる方法により、細胞への損傷による影響が少なく、外来物質を高効率、且つ、容易にシングル細胞内へ導入することが可能となる。 The method for introducing a foreign substance into a cell according to the present invention is a method for introducing a foreign substance into a cell, wherein a thin film of any metal selected from gold, platinum, silver and aluminum is coated on the upper surface. A cell is allowed to stand on the thin film of the cover slip, a liquid containing a foreign substance to be introduced is brought into contact with the cell, a laser beam is irradiated to the thin film adjacent to the cell, and the thin film is irradiated with the laser beam. There is no particular limitation as long as it is a method for introducing a foreign substance into a cell, characterized in that it forms a pore in the cell membrane by absorption and introduces the foreign substance into the cell from the pore. According to the method, it is possible to introduce a foreign substance into a single cell with high efficiency and with little influence by damage to cells.
 本発明において、細胞としては、単一の細胞であっても、組織の細胞であっても、培養した複数の細胞でもよく、細胞の種類としては原生生物、動物細胞、植物細胞、細菌、酵母を例示することができる。 In the present invention, the cell may be a single cell, a tissue cell, or a plurality of cultured cells, and the types of cells are protists, animal cells, plant cells, bacteria, yeasts. Can be illustrated.
 原生生物としては、細胞性粘菌、アメーバ、藻類、繊毛虫を例示することができ、細胞性粘菌としては、キイロタマホコリカビ(Dictyostelium discoideum)の細胞を好適に例示することがでる。動物細胞を用いる場合、由来としてはヒト、サル、マウス、ラット、ハムスター、ウサギ、ヤギ、ヒツジ、ウマ、ブタ、イヌ等の哺乳動物由来を例示することができ、細胞の種類としてはプライマリー細胞、細胞株、受精卵、神経細胞等の哺乳動物細胞を例示することができる。動物細胞を用いる場合には、接着性細胞でも浮遊性細胞でもよいが、接着性細胞を好適に例示することができる。また、植物細胞としては、ニコチアナ・タバカム、シロイヌナズナ由来の細胞を例示することができる。細菌としては、大腸菌、古細菌、マイコプラズマを例示することができる。 Examples of protists include cellular slime molds, amoebae, algae, and ciliates, and suitable examples of cellular slime molds include cells of Dictyostelium discoideum. When using animal cells, examples of the origin include humans, monkeys, mice, rats, hamsters, rabbits, goats, sheep, horses, pigs, dogs and other mammals, and the types of cells are primary cells, Mammalian cells such as cell lines, fertilized eggs, and nerve cells can be exemplified. When animal cells are used, adherent cells or suspension cells may be used, but adherent cells can be preferably exemplified. Examples of plant cells include cells derived from Nicotiana tabacum and Arabidopsis thaliana. Examples of bacteria include Escherichia coli, archaea, and mycoplasma.
 本発明において、外来物質としては特に制限されないが、DNA、RNA、ペプチド、アミノ酸、糖類、脂質、薬剤、蛍光色素のいずれか1以上の物質であることが好ましく、DNA、RNA、蛍光色素のいずれか1以上の物質であることがより好ましい。また、外来物質としてこれらの物質を単独でも、組み合わせてもよく、また、これらの物質を金属、無機物、有機高分子等の微粒子の表面に結合させて用いてもよい。 In the present invention, the foreign substance is not particularly limited, but is preferably one or more of DNA, RNA, peptide, amino acid, saccharide, lipid, drug, and fluorescent dye, and any of DNA, RNA, and fluorescent dye More preferably, it is one or more substances. Further, these substances may be used alone or in combination as foreign substances, and these substances may be used by being bonded to the surface of fine particles such as metals, inorganic substances, and organic polymers.
 本発明における薄膜は、金、白金、銀及びアルミニウムから選択されるいずれかの金属で形成されていればよく、金又は白金で形成されていることが好ましく、透過性の観点から金で形成されていることがより好ましい。上記金属で形成される薄膜は上記金属の粒子から形成されていてもよい。照射したレーザー光を金、白金、銀及びアルミニウムから選択されるいずれかの金属が吸収することにより、細胞に損傷の影響を与えずに、低い出力のレーザー光で、吸収した位置に近接した細胞膜に細孔を形成することが可能となる。細孔は、細胞が本来持っている細胞膜修復機構によって速やかに閉じられる。金、白金、銀及びアルミニウムから選択されるいずれかの金属のコーティング方法としては、スパッタリングや真空蒸着によりコーティングする方法や、上記金属粒子を塗布してコーティングする方法を例示することができるが、薄膜作製工程の容易性の観点からスパッタリング法であることが好ましい。 The thin film in the present invention may be formed of any metal selected from gold, platinum, silver and aluminum, and is preferably formed of gold or platinum, and is formed of gold from the viewpoint of permeability. More preferably. The thin film formed of the metal may be formed of the metal particles. By irradiating the irradiated laser light with a metal selected from gold, platinum, silver and aluminum, the cell membrane is close to the position where it was absorbed with low-power laser light without affecting the cells. It becomes possible to form pores. The pores are quickly closed by the cell membrane repair mechanism inherent to the cell. Examples of the coating method of any metal selected from gold, platinum, silver, and aluminum include a method of coating by sputtering or vacuum deposition, and a method of coating by applying the above metal particles. The sputtering method is preferable from the viewpoint of the ease of the manufacturing process.
 本発明において、上記薄膜の厚さとしては、5nm~200nm、好ましくは8nm~50nm、より好ましくは10nm~20nmを例示することができる。薄膜の厚さが200nmを超えれば、カバースリップの透明性が低下し、外来物質を導入した細胞の顕微鏡観察を妨げることとなり、5nm未満であれば、レーザー光を吸収する能力が不十分で、外来物質を導入するために十分な細孔が細胞膜に形成されないこととなる。なお、薄膜の厚さと細胞に細孔を形成するレーザー光の出力とは反比例の関係にあり、薄膜の厚さを薄くすると出力を高める必要があるため、薄膜の厚さは用いるレーザー光の出力に応じて調整することができる。 In the present invention, examples of the thickness of the thin film include 5 nm to 200 nm, preferably 8 nm to 50 nm, and more preferably 10 nm to 20 nm. If the thickness of the thin film exceeds 200 nm, the transparency of the cover slip is reduced, which hinders microscopic observation of cells into which foreign substances have been introduced, and if it is less than 5 nm, the ability to absorb laser light is insufficient. Sufficient pores will not be formed in the cell membrane for introducing foreign substances. The thickness of the thin film and the output of the laser beam that forms pores in the cells are inversely proportional, and it is necessary to increase the output if the thickness of the thin film is reduced. Can be adjusted according to.
 本発明において、上記薄膜は分光光度計によって測定(532nm)した場合のOD値として、0.005~0.1、好ましくは0.01~0.08である。 In the present invention, the thin film has an OD value of 0.005 to 0.1, preferably 0.01 to 0.08 when measured with a spectrophotometer (532 nm).
 また、金、白金、銀及びアルミニウムから選択されるいずれかの金属の粒子の平均粒径としては特に制限されないが、2nm~200nm、好ましくは5nm~100nmを挙げることができる。 Further, the average particle diameter of the metal particles selected from gold, platinum, silver and aluminum is not particularly limited, but may be 2 nm to 200 nm, preferably 5 nm to 100 nm.
 上記薄膜上には、細胞増殖のために必要に応じてコラーゲン、ゼラチン、フィブロネクチン、エラスチン、その他の細胞外マトリックスをコーティングしてもよい。また、細胞として浮遊性細胞を用いる場合には、ポリリジン、ポリエチレンイミン、スペルミジン、スペルミン、その他のポリカチオンで薄膜の上面をコーティングすることが好ましい。 The thin film may be coated with collagen, gelatin, fibronectin, elastin, or other extracellular matrix as necessary for cell growth. Moreover, when using a floating cell as a cell, it is preferable to coat the upper surface of the thin film with polylysine, polyethyleneimine, spermidine, spermine, or other polycations.
 本発明において、カバースリップの材質としては特に制限されないが、顕微鏡観察をする上で透過性の観点から、ガラス、ポリスチレン、ポリメタクリルアクリルアミドを例示することができる。また、カバースリップの厚さとしては特に制限されないが、0.05mm~0.3mmを例示することができる。 In the present invention, the material of the cover slip is not particularly limited, but glass, polystyrene, and polymethacrylamide may be exemplified from the viewpoint of permeability when observing under a microscope. Further, the thickness of the cover slip is not particularly limited, but may be 0.05 mm to 0.3 mm.
 本発明において、薄膜上に細胞を静置するとは、静止した薄膜上に細胞が置かれた状態にすることを意味する。細胞は立体的で複雑な3次元構造を有し、しかも常に形態を変化させているが、上述のように薄膜上に細胞を静置すると、細胞膜の一部は薄膜と接する状態となる。その結果、薄膜に接する面の細胞膜は平坦となり形態変化がほとんどない状態となり、細胞膜の一定の場所を狙ってレーザー光照射を行うことが容易となる。 In the present invention, leaving the cells on the thin film means that the cells are placed on the stationary thin film. A cell has a three-dimensional and complicated three-dimensional structure, and is constantly changing its shape. However, when the cell is left on the thin film as described above, a part of the cell membrane comes into contact with the thin film. As a result, the cell membrane on the surface in contact with the thin film becomes flat and has almost no morphological change, and it becomes easy to irradiate laser light aiming at a certain place of the cell membrane.
 本発明において、細胞を静置し、導入する外来物質を含有する液体を細胞に接触させる方法としては、薄膜上で細胞を培養し、その後上清の培養液を除き、外来物質を含有する培養液を加える方法を例示することができる。多くの動物培養細胞では酵素処理やEDTA等の2価カチオンキレート剤を加えることで細胞を培養している基盤から引きはがして懸濁細胞を作製することが一般的であるが、この作業は手間を要する。そのため、上記作業を不要とするため、例えば後述するガラスボトムディッシュに細胞をあらかじめ培養しておき、上清の培養液を除いて外来物質を含む培養液を少量加えればよい。 In the present invention, the method of allowing the cells to stand still and bringing the liquid containing the foreign substance to be introduced into contact with the cells includes culturing the cells on a thin film, and then removing the supernatant medium and culturing containing the foreign substance A method of adding the liquid can be exemplified. In many animal cultured cells, it is common to create suspension cells by removing them from the substrate where the cells are cultured by adding a divalent cation chelating agent such as enzyme treatment or EDTA. Cost. Therefore, in order to eliminate the need for the above work, for example, cells are cultured in advance in a glass bottom dish, which will be described later, and a small amount of a culture solution containing a foreign substance except for the supernatant culture solution may be added.
 このほか、細胞を液体に懸濁し、かかる懸濁液を薄膜上に加え、重力により細胞が薄膜に接着若しくは接触した後、外来物質を含有する液体を懸濁液に滴下若しくは注入し、細胞が外来物質を含有する液体で覆われる状態とする方法や、外来物質を含有する液体に細胞を前もって懸濁し、かかる懸濁液を薄膜上に加え、細胞を薄膜に接着若しくは接触させ、細胞が外来物質を含有する液体で覆われる状態とする方法を例示することができる。かかる方法は、基盤から簡単にはがしやすく、懸濁する方が容易な細胞、例えば粘菌細胞や血球系の細胞の場合に好ましい。さらに、かかる方法においては、細胞数が少ない場合において外来物質を含有する液体が10μl~30μl程度の少量でよいため、高価若しくは希少な外来物質を用いる場合には好ましい。 In addition, the cells are suspended in a liquid, and the suspension is added onto the thin film. After the cells adhere or contact the thin film by gravity, a liquid containing a foreign substance is dropped or injected into the suspension to A method of making the cell covered with a liquid containing a foreign substance, or suspending cells in a liquid containing a foreign substance in advance, adding the suspension to the thin film, and allowing the cell to adhere to or contact the thin film, so that the cell is foreign The method of making it the state covered with the liquid containing a substance can be illustrated. Such a method is preferable in the case of cells that can be easily peeled off from the substrate and are easier to be suspended, such as slime mold cells or blood cells. Further, in this method, when the number of cells is small, the liquid containing the foreign substance may be a small amount of about 10 μl to 30 μl. Therefore, it is preferable when an expensive or rare foreign substance is used.
 導入する外来物質を含有する液体における外来物質の濃度は、導入する外来物質量や細胞の数により適宜調整することができるが、1ng/ml~10mg/ml、好ましくは0.1μg/ml~100μg/mlである。 The concentration of the foreign substance in the liquid containing the foreign substance to be introduced can be appropriately adjusted depending on the amount of the foreign substance to be introduced and the number of cells, but is 1 ng / ml to 10 mg / ml, preferably 0.1 μg / ml to 100 μg. / Ml.
 本発明に用いるレーザー光の光源としては特に制限されず、パルスレーザーや、連続波(CW)レーザーを例示することができるが、パルスレーザーであることが好ましい。 The light source of the laser beam used in the present invention is not particularly limited, and examples thereof include a pulse laser and a continuous wave (CW) laser, but a pulse laser is preferable.
 本発明に用いる、薄膜に対して照射するレーザー光の波長としては特に制限されないが、380nm~1100nm、好ましくは450nm~700nmを例示することができる。レーザー光を照射することにより熱やプラズモン効果によって細胞膜に細孔が形成されるが、450nm~700nmとすることで、プラズモン効果を生じやすくさせることが可能となり、レーザー光をより低出力で照射しても細胞膜に細孔が形成される。また、レーザー光の周波数としては0.1KHz~100KHz、好ましくは1KHz~10KHzを例示することができ、レーザー光の出力としては、細胞が損傷による影響を受けずに細孔が形成できる範囲であればよく、好ましくは0.1mW~20mW、より好ましくは0.5mW~5mW、さらに好ましくは0.8mW~1.8mWを例示することができる。なお、上述のように薄膜の厚さと細胞に細孔を形成するレーザー光の出力は反比例の関係にあり、薄膜の厚さに応じてレーザー光の出力を調整することができる。 The wavelength of the laser beam used for irradiation of the thin film used in the present invention is not particularly limited, but examples thereof include 380 nm to 1100 nm, preferably 450 nm to 700 nm. By irradiating laser light, pores are formed in the cell membrane due to heat and plasmon effect, but by setting it to 450 nm to 700 nm, it becomes possible to easily cause plasmon effect, and laser light is irradiated at a lower output. Even so, pores are formed in the cell membrane. Further, the frequency of the laser beam can be 0.1 KHz to 100 KHz, preferably 1 KHz to 10 KHz, and the output of the laser beam is within a range where pores can be formed without being affected by damage. Preferably, 0.1 mW to 20 mW, more preferably 0.5 mW to 5 mW, and still more preferably 0.8 mW to 1.8 mW can be exemplified. Note that, as described above, the thickness of the thin film and the output of the laser beam that forms pores in the cells are inversely proportional, and the output of the laser beam can be adjusted according to the thickness of the thin film.
 レーザー光の照射回数は特に制限されず、導入したい外来物質の量、外来物質の種類に応じて1回でも複数回でもよい。また、複数の外来物質を細胞内に導入する場合は、導入する複数の外来物質を含有する液体を細胞膜に接触させて1回のレーザー光照射で細胞内に導入してもよく、レーザー光照射ごとに導入する外来物質を含有する液体を置換して、それぞれ細胞膜に接触させて、複数回のレーザー光照射で細胞内に順に導入してもよい。 The number of times of laser light irradiation is not particularly limited, and may be one or more times depending on the amount of foreign substance to be introduced and the type of foreign substance. In addition, when introducing a plurality of foreign substances into cells, a liquid containing a plurality of foreign substances to be introduced may be brought into contact with the cell membrane and introduced into the cells by a single laser beam irradiation. The liquid containing the foreign substance to be introduced every time may be replaced, and each liquid may be brought into contact with the cell membrane and sequentially introduced into the cell by multiple times of laser light irradiation.
 本発明において、レーザー光の照射は、カバースリップの上面から細胞に近接した薄膜に対して照射しても、カバースリップの下面から細胞に近接した薄膜に対して照射してもよいが、カバースリップの下面から細胞に近接した薄膜に対して照射することがより細胞の損傷を低減させる観点から好ましい。なお、本発明において、前記細胞に近接した薄膜に対してカバースリップの下面から照射レーザー光を照射するとは、細胞が近接している領域の薄膜の一部に対してカバースリップの下面からレーザー光を照射することをいう。また、レーザー光を照射する際には、予めレーザー光照射の焦点を薄膜に合わせることが好ましい。図1(a)に、カバースリップ1の下面から、細胞7が近接している領域4の薄膜2の一部に対してレーザー光を照射する方法を示す。 In the present invention, the laser beam may be irradiated to the thin film adjacent to the cell from the upper surface of the cover slip or to the thin film adjacent to the cell from the lower surface of the cover slip. From the viewpoint of reducing cell damage, it is preferable to irradiate the thin film adjacent to the cell from the lower surface of the cell. In the present invention, irradiating the thin film adjacent to the cell with the irradiation laser light from the lower surface of the cover slip means that the laser light from the lower surface of the cover slip is applied to a part of the thin film in the region where the cell is adjacent. Refers to irradiation. Moreover, when irradiating a laser beam, it is preferable to previously focus the laser beam irradiation on the thin film. FIG. 1A shows a method of irradiating a part of the thin film 2 in the region 4 where the cells 7 are close to the laser beam from the lower surface of the cover slip 1.
 上記照射により、薄膜2及び/又は細胞7の細胞膜3がレーザー光を吸収し、薄膜2及び/又は細胞膜3にレーザー光のエネルギーが集中することで、図1(b)の矢印で示すように細胞膜3に細孔5が形成し、図1(c)に示すように細孔5から受動拡散により外来物質6を細胞内に導入することができる。なお、形成した細孔は短時間で修復されて閉じるため、細孔の形成による細胞の生育への影響はほとんどない。また、本発明において、細胞膜に細孔が形成されることは、細胞の損傷に含まれない。 As a result of the irradiation, the thin film 2 and / or the cell membrane 3 of the cell 7 absorbs the laser light, and the energy of the laser light is concentrated on the thin film 2 and / or the cell membrane 3, as shown by the arrow in FIG. The pore 5 is formed in the cell membrane 3, and the foreign substance 6 can be introduced into the cell from the pore 5 by passive diffusion as shown in FIG. 1 (c). Since the formed pores are repaired and closed in a short time, the formation of the pores hardly affects the growth of the cells. In the present invention, the formation of pores in the cell membrane is not included in cell damage.
 本発明において、レーザー光の照射は、薄膜に対して対物レンズを通して行うことが好ましい。対物レンズを通す場合のレーザー光の瞳径は、3mm~18mを例示することができ、好ましくは5mm~15mmを例示することができ、より好ましくは11mm~13mmを例示することができる。 In the present invention, the laser beam irradiation is preferably performed through the objective lens on the thin film. The pupil diameter of the laser light when passing through the objective lens can be 3 to 18 m, preferably 5 to 15 mm, more preferably 11 to 13 mm.
 本発明において、細胞に近接した薄膜に対してレーザー光を照射する場合のレーザー光のスポット(焦点)径としては特に制限されないが、0.2μm~2μmを例示することができ、より好ましくは0.5μm~1.5μmを例示することができる。 In the present invention, the spot (focal point) diameter of the laser beam when irradiating the thin film close to the cell with the laser beam is not particularly limited, but may be 0.2 μm to 2 μm, more preferably 0. .5 μm to 1.5 μm can be exemplified.
 本発明の上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属の薄膜がコーティングされたカバースリップとしては、当該カバースリップの前記薄膜上に細胞を静置し、導入する外来物質を含有する液体を前記細胞に接触させ、前記細胞に近接した薄膜に対してレーザー光を照射して前記薄膜にレーザー光を吸収させることにより前記細胞膜に細孔を形成し、前記細孔から前記外来物質を前記細胞内へ導入する方法に用いるためのカバースリップであって、上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属の薄膜がコーティングされてあれば特に制限されない。本発明の上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属の薄膜がコーティングされたカバースリップを用いることで、本発明の細胞内への外来物質の導入方法を高効率、且つ、容易に行うことが可能となる。 As the cover slip in which the upper surface of the present invention is coated with a thin film of any metal selected from gold, platinum, silver and aluminum, the cells are allowed to stand on the thin film of the cover slip, and foreign substances to be introduced are introduced. Forming pores in the cell membrane by contacting the contained liquid with the cells, irradiating the thin film adjacent to the cells with laser light and absorbing the laser light into the thin film; The cover slip for use in the method for introducing a substance into the cell is not particularly limited as long as a thin film of any metal selected from gold, platinum, silver and aluminum is coated on the upper surface. By using a cover slip coated with a thin film of any metal selected from gold, platinum, silver and aluminum on the top surface of the present invention, the method for introducing a foreign substance into cells of the present invention is highly efficient, and Can be done easily.
 本発明の上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属の薄膜がコーティングされたカバースリップの使用としては、上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属の薄膜がコーティングされたカバースリップの前記薄膜上に細胞を静置し、導入する外来物質を含有する液体を前記細胞に接触させ、前記細胞に近接した薄膜に対してレーザー光を照射して前記薄膜にレーザー光を吸収させることにより前記細胞膜に細孔を形成し、前記細孔から前記外来物質を前記細胞内へ導入する方法に用いるための、上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属の薄膜がコーティングされたカバースリップの使用であれば特に制限されないが、金又は白金がコーティングされたカバースリップであることが好ましい。 As the use of the cover slip in which the upper surface of the present invention is coated with a thin film of any metal selected from gold, platinum, silver and aluminum, any metal selected from gold, platinum, silver and aluminum is used on the upper surface. The cells are allowed to stand on the thin film of the coverslip coated with the thin film, the liquid containing the foreign substance to be introduced is brought into contact with the cells, and the thin film adjacent to the cells is irradiated with laser light to The upper surface is selected from gold, platinum, silver and aluminum for use in a method of forming a pore in the cell membrane by absorbing a laser beam into a thin film and introducing the foreign substance into the cell from the pore. There are no particular restrictions on the use of a cover slip coated with any metal thin film, but a cover coated with gold or platinum It is preferable that the lip.
 本発明の細胞内への外来物質の導入方法によって得られた形質転換細胞としては、上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属からなる薄膜がコーティングされたカバースリップの前記薄膜上に細胞を静置し、導入する外来物質を含有する液体を前記細胞に接触させ、前記細胞に近接した薄膜に対してレーザー光を照射して前記薄膜にレーザー光を吸収させることにより前記細胞膜に細孔を形成し、前記細孔から前記外来物質を前記細胞内へ導入することによって得られた形質転換細胞であれば特に制限されず、かかる形質転換細胞は、外来物質による新たな形質を有する細胞として有用であるほか、バイオイメージングによる細胞の機能解析に有用である。 The transformed cell obtained by the method for introducing a foreign substance into a cell of the present invention includes the cover slip of which the upper surface is coated with a thin film made of any metal selected from gold, platinum, silver and aluminum. The cells are allowed to stand on the thin film, a liquid containing a foreign substance to be introduced is brought into contact with the cells, and the thin film adjacent to the cells is irradiated with laser light to absorb the laser light. The cell is not particularly limited as long as it is a transformed cell obtained by forming pores in the cell membrane and introducing the foreign substance into the cells from the pores. In addition to being useful as a cell having a characteristic, it is useful for analyzing the function of a cell by bioimaging.
[細胞(細胞性粘菌)内への蛍光色素の導入]
(金の薄膜がコーティングされたカバースリップの作製)
 イオンスパッタリング装置(サンユー電子社製)を用いて、金(Au)をターゲットとして、14mA、20、30、35、40、50、又は60秒の条件で厚さ0.17mmのカバースリップNo.1(松浪硝子工業社製)の上面に金の薄膜がコーティングされたカバースリップを作製した。作製した金の薄膜の厚さは20、30、35、40、50、60秒の場合でそれぞれ順に6.6、10、11.6、13.3、16.6、20nmであった。また、分光光度計により透過光の吸収度を調べたところ、いずれも532nmで測定限界以下であった。一方、上記特許文献5の方法で作製したカーボンからなる薄膜がコーティングされたカバースリップの場合はOD532nmに基づく透過光の吸収度は10%であった。したがって、金の薄膜がコーティングされたカバースリップはより蛍光のロスが少なく、蛍光観察においてより蛍光シグナルを失わず、SN(シグナル/ノイズ)比を上げることができることが明らかとなった。
[Introduction of fluorescent dye into cells (cellular slime molds)]
(Preparation of a cover slip coated with a thin gold film)
Using an ion sputtering apparatus (manufactured by Sanyu Electronics Co., Ltd.), with a gold (Au) target, a cover slip No. of 0.17 mm in thickness under the conditions of 14 mA, 20, 30, 35, 40, 50, or 60 seconds. A cover slip in which a gold thin film was coated on the upper surface of No. 1 (manufactured by Matsunami Glass Industry Co., Ltd.) was produced. The thicknesses of the prepared gold thin films were 6.6, 10, 11.6, 13.3, 16.6, and 20 nm in the order of 20, 30, 35, 40, 50, and 60 seconds, respectively. Further, when the absorbance of the transmitted light was examined with a spectrophotometer, all of them were below the measurement limit at 532 nm. On the other hand, in the case of a cover slip coated with a thin film made of carbon produced by the method of Patent Document 5, the absorbance of transmitted light based on OD532 nm was 10%. Therefore, it was clarified that the cover slip coated with the gold thin film has less loss of fluorescence, and the fluorescence signal is not lost in fluorescence observation, and the SN (signal / noise) ratio can be increased.
(白金の薄膜がコーティングされたカバースリップの作製)
 マグネトロンスパッタリング装置(JFC-1600:日本電子社製)を用いて、白金(Pt)をターゲットとして、20mA-10秒、20mA-20秒、30mA-20秒、30mA-30秒、40mA-20秒、又は40mA-30秒の条件で厚さ0.17mmのカバースリップNo.1(松浪硝子工業社製)の上面に白金粒子をスパッタリングし、白金の薄膜がコーティングされたカバースリップを6種類作製した。作製したカバースリップを分光光度計(532nm)で測定したところ、OD値はそれぞれ0.002,0.018,0.026,0.039,0.058,0.062であった。
(Preparation of a cover slip coated with a platinum thin film)
Using a magnetron sputtering apparatus (JFC-1600: manufactured by JEOL Ltd.), platinum (Pt) as a target, 20 mA-10 seconds, 20 mA-20 seconds, 30 mA-20 seconds, 30 mA-30 seconds, 40 mA-20 seconds, Or a cover slip No. of 0.17 mm in thickness under the condition of 40 mA-30 seconds. Sputtering platinum particles on the upper surface of 1 (manufactured by Matsunami Glass Industrial Co., Ltd.), six types of cover slips coated with a platinum thin film were produced. When the produced cover slip was measured with a spectrophotometer (532 nm), the OD values were 0.002, 0.018, 0.026, 0.039, 0.058, and 0.062, respectively.
(ガラスボトムディッシュの作製)
 図2に示すように、プラスチックディッシュ8の底に直径12mmの穴をあけ、カバースリップ1の薄膜2をコーティングした側を内側(上側)になるように接着剤で貼付け、ガラスボトムディッシュ9を作製した。
(Production of glass bottom dish)
As shown in FIG. 2, a glass bottom dish 9 is produced by making a hole with a diameter of 12 mm in the bottom of the plastic dish 8 and attaching the cover slip 1 with the adhesive so that the side coated with the thin film 2 is inside (upper side). did.
(細胞の静置)
 細胞性粘菌の一種であるキイロタマホコリカビ(Dictyostelium discoideum)の細胞を含む培養液を滅菌したガラスボトムディッシュ9に加えることによって、キイロタマホコリカビの細胞を金の薄膜上に静置した。なお、静置されたキイロタマホコリカビの細胞の周りには培養液があるため、キイロタマホコリカビの細胞は生育可能な状態にある。
(Leave cells)
A cell culture medium containing cells of Dictyostelium discoideum, which is a kind of cellular slime mold, was added to a sterilized glass bottom dish 9, so that the cells of the yellow mold were left on a gold thin film. In addition, since there is a culture solution around the cells of the static mold that has been allowed to stand, the cells of the mold are in a state where they can grow.
(カバースリップの下面からの薄膜に対するパルスレーザー光の照射)
 FDSS532-Qパルスレーザー光照射装置(Crylas社製)を用いて、カバースリップの下面から薄膜に対してパルスレーザー光を照射する方法を図3に示す。レーザー10から導入したパルスレーザー光11は透過率可変のNDフィルター12、レンズ13、シャッター14、ダイクロミックミラー15、対物レンズ16を通過してガラスボトムディッシュ9に貼付けたカバースリップ1の下面から薄膜2に対して照射する。細胞7に細孔5を形成する場合は、細胞7の直下に近接している領域の薄膜2に対してレーザー光11をカバースリップ1の下面から照射し、細胞7に細孔を形成しない場合は、カバースリップ1の下面から細胞が近接していない領域の薄膜2に対してレーザー光11を照射する。ガラスボトムディッシュ9は倒立顕微鏡のステージを動かすことで水平方向にスライドさせることでき、細胞7の位置とパルスレーザー光11の吸収の位置を調整することや、細胞7を観察しながらパルスレーザー光11を照射することが可能である。照射時間はシャッター14によって制御し、パルスレーザー光11の出力は透過率可変のNDフィルター12で制御した。細胞7に細孔5を形成する場合は、透過率可変のNDフィルターを用い、焦点の調整の際には、透過率可変のNDフィルターを除いて照射した。1回のレーザー照射時間は1/125秒とした。なお、倒立顕微鏡の代わりに正立顕微鏡を用いる場合には、カバースリップの上面から、上記と同様の流れでパルスレーザー光を照射すればよい。
(Pulse laser light irradiation to the thin film from the bottom surface of the cover slip)
FIG. 3 shows a method of irradiating the thin film from the lower surface of the cover slip with the FDSS532-Q pulse laser light irradiation device (manufactured by Crylas). The pulse laser beam 11 introduced from the laser 10 passes through the ND filter 12 having a variable transmittance, the lens 13, the shutter 14, the dichroic mirror 15, and the objective lens 16 to form a thin film from the lower surface of the cover slip 1 attached to the glass bottom dish 9. 2 is irradiated. When the pore 5 is formed in the cell 7, the laser beam 11 is irradiated from the lower surface of the cover slip 1 to the thin film 2 in the area adjacent to the cell 7 and the pore is not formed in the cell 7. Irradiates the thin film 2 in a region where the cells are not in proximity from the lower surface of the cover slip 1 with the laser beam 11. The glass bottom dish 9 can be slid in the horizontal direction by moving the stage of an inverted microscope. The position of the cell 7 and the absorption position of the pulse laser beam 11 can be adjusted, or the pulse laser beam 11 can be observed while observing the cell 7. Can be irradiated. The irradiation time was controlled by the shutter 14, and the output of the pulse laser beam 11 was controlled by the ND filter 12 with variable transmittance. When the pores 5 were formed in the cells 7, an ND filter with variable transmittance was used, and when adjusting the focus, irradiation was performed without the ND filter with variable transmittance. One laser irradiation time was 1/125 seconds. In the case where an upright microscope is used instead of the inverted microscope, the pulse laser beam may be irradiated from the upper surface of the cover slip in the same flow as described above.
(パルスレーザー光照射の焦点の調整)
 倒立顕微鏡(IX70I オリンパス社製)のステージに、上述のキイロタマホコリカビを静置し、培養したガラスボトムディッシュ9を設置し、対物レンズ16(ApoN 60×:オリンパス社製)の焦点をスポット(焦点)径が0.5μmとなるようにカバースリップ1の表面に合わせた。次に、細胞膜が近接していない領域の薄膜2に対してカバースリップ1の下面からパルスレーザー光11(532nm,15mW, 1nsec pulse, 4.8 KHz)を照射し、薄膜2が剥がれる位置を指標として、パルスレーザー光11の照射の焦点をスポット(焦点)径が1μmとなるように薄膜2に合わせた。対物レンズを通したレーザー光の瞳径は、12mmであった。なお、カバースリップは、以下の実施例で、金の薄膜をコーティングしたカバースリップとしては14mA-35秒の条件でコーティングしたもの、白金の薄膜をコーティングしたカバースリップとしては30mA-20秒の条件でコーティングしたものを用いた。
(Adjusting the focus of pulsed laser light irradiation)
On the stage of an inverted microscope (IX70I manufactured by Olympus), the above-mentioned yellow-spotted mold was placed, the cultured glass bottom dish 9 was placed, and the focal point of the objective lens 16 (ApoN 60 ×: manufactured by Olympus) was spotted ( The focal point was adjusted to the surface of the cover slip 1 so that the diameter was 0.5 μm. Next, the laser beam 11 (532 nm, 15 mW, 1 nsec pulse, 4.8 KHz) is irradiated from the lower surface of the cover slip 1 to the thin film 2 in the region where the cell membrane is not close, and the position where the thin film 2 is peeled is used as an index. The focal point of irradiation with the pulse laser beam 11 was adjusted to the thin film 2 so that the spot (focal point) diameter was 1 μm. The pupil diameter of the laser beam that passed through the objective lens was 12 mm. In the following examples, the cover slip was coated under the condition of 14 mA-35 seconds as the cover slip coated with the gold thin film, and the cover slip coated with the platinum thin film was performed under the condition of 30 mA-20 seconds. The coated one was used.
(パルスレーザー光照射)
 ガラスボトムディッシュ9中の培養液に外来物質として蛍光色素17(PI(propidium iodide:同仁化学社製)を0.1mg/mlとなるように加えて、細胞膜3に蛍光色素17を含有する液体を接触させ、細胞7に近接している領域の薄膜2の一部に対して図3に示す方法でパルスレーザー光11(532nm, 15mW, 1nsec pulse, 4.8 KHz)を照射した。また、パルスレーザー光を照射した細胞数は100であった。照射の際には透過率可変のNDフィルターを用いて出力を1.5mWに減光させ、1回の照射時間は1/125秒とした。コントロールとして、薄膜をコーティングしていないカバースリップ1を貼付けたプラスチックディッシュ9を用い、上記と同様にキイロタマホコリカビのカバースリップ1上への静置から、細胞7に近接している領域の一部に対するパルスレーザー光11の照射までの工程を行った。細胞7の観察やパルスレーザー光11の照射の観察は、接眼レンズ18を通して肉眼で行なうか、別ポートにカメラ(ORCA-ER 浜松ホトニクス社製)を接続してコンピューターに画像を取得して行なった。
(Pulse laser light irradiation)
Fluorescent dye 17 (PI (propidium iodide: manufactured by Dojin Chemical Co., Ltd.)) as a foreign substance is added to the culture solution in the glass bottom dish 9 so as to be 0.1 mg / ml, and a liquid containing the fluorescent dye 17 is added to the cell membrane 3. A part of the thin film 2 in a region close to the cell 7 is irradiated with a pulse laser beam 11 (532 nm, 15 mW, 1 nsec pulse, 4.8 KHz) by the method shown in FIG. The number of cells irradiated with 100 was 100. At the time of irradiation, the output was reduced to 1.5 mW using an ND filter with variable transmittance, and the time of one irradiation was 1/125 seconds. Using a plastic dish 9 to which a cover slip 1 that is not coated with a thin film is pasted, as in the above, from standing on the cover slip 1 of the yellow mold fungus, a region close to the cell 7 Up to the irradiation of the pulse laser beam 11. The observation of the cell 7 and the irradiation of the pulse laser beam 11 can be performed with the naked eye through the eyepiece 18 or a camera (ORCA-ER Hamamatsu Photonics) ) Was connected and images were acquired on a computer.
 パルスレーザー光を照射した細胞の下面方向からのコンピューター画像による観察結果の代表例を図4(a)、(c)に示す。(a)は金の薄膜をコーティングしたカバースリップを用いた場合、(c)は白金の薄膜をコーティングしたカバースリップを用いた場合である。図4(a)、(c)における写真中の数値は、パルスレーザー光を照射した時間を0.0秒とした時の経過時間(秒)を示す。また、図4(a)の細胞写真から相対蛍光量を求めたグラフを図4(b)に示す。図4(b)において、横軸はレーザー光を照射した時間を0.0秒とした時の経過時間(秒)を示し、縦軸は相対蛍光量を示す。相対蛍光量は、ImageJソフトウエア(アメリカ国立衛生研究所:NIH)を用いて定量した。 4 (a) and 4 (c) show representative examples of observation results by computer images from the lower surface direction of cells irradiated with pulsed laser light. (A) is a case where a cover slip coated with a gold thin film is used, and (c) is a case where a cover slip coated with a platinum thin film is used. The numerical values in the photographs in FIGS. 4A and 4C indicate the elapsed time (seconds) when the time of irradiation with the pulse laser beam is 0.0 second. Moreover, the graph which calculated | required the relative fluorescence amount from the cell photograph of Fig.4 (a) is shown in FIG.4 (b). In FIG. 4B, the horizontal axis indicates the elapsed time (seconds) when the laser beam irradiation time is 0.0 second, and the vertical axis indicates the relative fluorescence amount. Relative fluorescence was quantified using ImageJ software (National Institutes of Health: NIH).
(結果)
 図4に示すように、レーザー光を照射した後に細胞内の蛍光量が増加していた。また、レーザー光を照射した100細胞中、99細胞において細胞内での蛍光が観察された。さらに、レーザー光照射の前後の細胞の動きを顕微鏡で観察した結果、レーザー光照射後の細胞の形態変化はレーザー光照射前の正常な細胞の形態変化と差はみられなかった。また、導入した蛍光色素はそのまま維持され数時間後でも細胞から出ることはなかった。なお、図に示していないが、薄膜をコーティングしていない上記コントロールのカバースリップを用いた場合は細胞膜に細孔が全く形成されず、細胞内での蛍光量に変化はなかった。
(result)
As shown in FIG. 4, the amount of fluorescence in the cell increased after irradiation with laser light. In addition, intracellular fluorescence was observed in 99 cells out of 100 cells irradiated with laser light. Furthermore, as a result of observing the movement of the cells before and after laser light irradiation with a microscope, the change in cell morphology after laser light irradiation was not different from the normal cell morphology change before laser light irradiation. Further, the introduced fluorescent dye was maintained as it was and did not leave the cells even after several hours. Although not shown in the figure, when the above control cover slip that was not coated with a thin film was used, no pores were formed in the cell membrane, and there was no change in the amount of fluorescence in the cell.
 したがって、本発明の細胞内への外来物質の導入方法により、細胞膜に細孔が形成され、非常に高い効率で蛍光色素が細胞内に導入していることが明らかとなった。さらに、本発明の細胞内への外来物質の導入方法においては、細胞への損傷による影響が少ないことが明らかとなった。 Therefore, it was clarified that pores were formed in the cell membrane and the fluorescent dye was introduced into the cell with very high efficiency by the method for introducing a foreign substance into the cell of the present invention. Furthermore, it has been clarified that the method for introducing a foreign substance into a cell of the present invention has little influence due to damage to the cell.
 このほか、本発明の細胞内への外来物質の導入方法では、細胞が薄膜上に静置されており、薄膜に近接する細胞膜は大きな形態の変化がなく薄膜上に位置するため、細胞の一定の場所を狙ってパルスレーザー光照射を行うことが容易であった。 In addition, in the method for introducing a foreign substance into a cell of the present invention, the cell is placed on the thin film, and the cell membrane adjacent to the thin film is located on the thin film without a large change in shape. It was easy to irradiate with a pulsed laser beam aiming at the place.
[細胞(Cos-1)内への蛍光色素の導入]
 細胞性粘菌の代わりにアフリカミドリザル由来のCos-1細胞を用い、外来物質としての蛍光色素としてPIの代わりにFM4‐64を10μMとなるように加えた以外は実施例1と同様の方法で細胞内に蛍光色素を導入した。カバースリップは金の薄膜がコーティングされたカバースリップを用いた。結果を図5に示す。図5の写真中の数値は、パルスレーザー光を照射した時間を0.0秒とした時の経過時間(秒)を示し、矢印はレーザーをスポットした位置を示す。
[Introduction of fluorescent dye into cells (Cos-1)]
The same method as in Example 1, except that Cos-1 cells derived from African green monkeys were used instead of cellular slime molds, and FM4-64 was added as a fluorescent dye as a foreign substance instead of PI so as to be 10 μM. A fluorescent dye was introduced into the cells. As the cover slip, a cover slip coated with a gold thin film was used. The results are shown in FIG. The numerical value in the photograph of FIG. 5 indicates the elapsed time (second) when the time of irradiation with the pulsed laser beam is 0.0 second, and the arrow indicates the position where the laser is spotted.
 図5に示すように、Cos-1細胞を用いても細胞内に蛍光色素FM4‐64が取り込まれていることが確認された。したがって、本発明の細胞内への外来物質の導入方法は、哺乳動物細胞でも利用可能であることが明らかとなった。 As shown in FIG. 5, it was confirmed that the fluorescent dye FM4-64 was incorporated into the cells even when Cos-1 cells were used. Therefore, it has been clarified that the method for introducing a foreign substance into cells of the present invention can also be used in mammalian cells.
[細胞内へのプラスミドの導入]
(パルスレーザー光照射)
 実施例1に記載の方法と同様で、倒立顕微鏡(IX70I オリンパス社製)のステージにキイロタマホコリカビの細胞を静置し、次いで培養したガラスボトムディッシュを設置し、対物レンズ(ApoN 60×:オリンパス社製)の焦点をスポット(焦点)径が0.5μmとなるようにカバースリップの表面に合わせ、パルスレーザー光照射の焦点を金の薄膜に合わせた。次に、ガラスボトムディッシュ中の培養液に外来物質として本発明者らがpBIG expression vector(Ruppel et al., Journal of Biological Chemistry, 269:18773-187780, 1994)をバックボーンとして作製したGFP-lifeactプラスミド(Yumura, S. Scientific Reports, 6:22055(2016))を0.05mg/mlとなるように加えて細胞膜にGFP-lifeactプラスミドを含有する液体を接触させ、その後、細胞に近接している領域の金の薄膜の一部に対して図3に示す方法でパルスレーザー光(532nm, 15mW, 1nsec pulse, 4.8 KHz)を照射した。対物レンズを通したレーザー光の瞳径は、12mmであった。また、パルスレーザー光を照射した細胞数は12であった。照射の際には透過率可変のNDフィルターを用いて出力を1.5mWに減光させ、1回の照射時間は1/125秒とした。パルスレーザー光照射によりGFP-lifeactプラスミドを細胞内に導入して1週間後に、GFP-lifeactの発現を蛍光顕微鏡IX71(オリンパス社製)で観察した。GFP-actinプラスミドを導入した12細胞のうち1細胞の1週間後の観察結果を図6に示す。図6中、(a)は位相差顕微鏡写真、(b)は同視野の蛍光顕微鏡写真である。
[Introduction of plasmid into cells]
(Pulse laser light irradiation)
In the same manner as described in Example 1, a cell bottom dish was placed on the stage of an inverted microscope (IX70I Olympus), and then a cultured glass bottom dish was placed, and an objective lens (ApoN 60 ×: The focus of Olympus was adjusted to the surface of the cover slip so that the spot (focal point) diameter was 0.5 μm, and the focus of the pulse laser beam irradiation was adjusted to the gold thin film. Next, the GFP-lifeact plasmid prepared by the present inventors using the pBIG expression vector (Ruppel et al., Journal of Biological Chemistry, 269: 18773-187780, 1994) as a foreign substance in the culture solution in the glass bottom dish. (Yumura, S. Scientific Reports, 6: 22055 (2016)) is added at 0.05 mg / ml to bring the cell membrane into contact with a liquid containing the GFP-lifeact plasmid, and then the region close to the cells A part of the gold thin film was irradiated with a pulse laser beam (532 nm, 15 mW, 1 nsec pulse, 4.8 KHz) by the method shown in FIG. The pupil diameter of the laser beam that passed through the objective lens was 12 mm. The number of cells irradiated with pulsed laser light was 12. At the time of irradiation, the output was reduced to 1.5 mW using an ND filter with variable transmittance, and the irradiation time for one time was 1/125 seconds. One week after the introduction of the GFP-lifeact plasmid into the cells by pulse laser light irradiation, the expression of GFP-lifeact was observed with a fluorescence microscope IX71 (Olympus). FIG. 6 shows the observation results after 1 week of 1 cell out of 12 cells into which the GFP-actin plasmid was introduced. In FIG. 6, (a) is a phase contrast micrograph, and (b) is a fluorescence micrograph of the same field.
(結果)
 図6に示すように、1つの細胞が10細胞以上まで分裂しており、また、蛍光顕微鏡写真においてすべての細胞で蛍光が観察された。図に示していないが、GFP-lifeactプラスミドを細胞内に導入した他の11細胞も同様の結果であった。したがって、本発明の細胞内への外来物質の導入方法により細胞内に遺伝子が高効率で導入でき、受精卵や分裂増殖がほとんどないため多量の細胞を利用できない細胞種(例えば,神経細胞など)のような1細胞が非常に貴重な細胞に外来物質を導入する場合に特に効果的である。また、1つの細胞が10細胞以上にまで分裂していたことや、図6の矢印で示した細胞のように細胞分裂が観察されたことから、本発明の細胞内への外来物質の導入方法においては正常細胞と同様に細胞分裂能力を有し、細胞への損傷による影響が少ないことが確認された。
(result)
As shown in FIG. 6, one cell was divided to 10 cells or more, and fluorescence was observed in all the cells in the fluorescence micrograph. Although not shown in the figure, the other 11 cells into which the GFP-lifeact plasmid was introduced into the cells had similar results. Therefore, a cell type (for example, a nerve cell) in which a large amount of cells cannot be used because a gene can be introduced into the cell with high efficiency by the method of introducing a foreign substance into the cell of the present invention and there is almost no fertilized egg or divisional proliferation This is particularly effective when a foreign substance is introduced into a very valuable cell. In addition, since one cell has been divided into 10 cells or more, and cell division was observed as shown by the arrows in FIG. 6, the method for introducing a foreign substance into the cells of the present invention It has been confirmed that the cell has the ability to divide like normal cells and is less affected by damage to the cells.
[参考例]
 1細胞レベルで外来物質を導入するためには、細胞の大きさと比較して非常に狭い範囲にパルスレーザー光を吸収する必要がある。そこで、上面に金薄膜がコーティングされたカバースリップの下面から薄膜に対してパルスレーザー光を照射した場合の吸収レベルを調べた。
[Reference example]
In order to introduce a foreign substance at the level of one cell, it is necessary to absorb the pulse laser beam in a very narrow range as compared with the cell size. Therefore, the absorption level was examined when the thin film was irradiated with pulsed laser light from the bottom surface of the cover slip whose upper surface was coated with a gold thin film.
(パルスレーザー光の吸収レベルの確認)
 実施例1に記載の方法と同様でガラスボトムディッシュを作製し、キイロタマホコリカビをカバースリップの金の薄膜上に静置した後、倒立顕微鏡(IX70I オリンパス社製)のステージにガラスボトムディッシュを設置した。次に、対物レンズ(ApoN 60×:オリンパス社製)の焦点をカバースリップの表面に合わせ、パルスレーザー光照射の焦点を金の薄膜に合わせた後、倒立顕微鏡に設置したガラスボトムディッシュをスライドしてパルスレーザー光照射の焦点付近に細胞を近づけた。その後、透過率可変のNDフィルターを用いずに図3に示す方法でパルスレーザー光(532nm, 15mW, 1nsec pulse, 4.8 KHz)を1/125秒間照射した。レーザー光照射後の倒立顕微鏡によるカバースリップの観察結果を図7に示す。図7中、矢印はパルスレーザー光を吸収させた位置を表す。
(Confirmation of pulse laser light absorption level)
A glass bottom dish was prepared in the same manner as described in Example 1, and after standing the yellow mold on the cover slip gold thin film, the glass bottom dish was placed on the stage of an inverted microscope (IX70I Olympus). installed. Next, the focus of the objective lens (ApoN 60 ×: Olympus) is focused on the surface of the cover slip, the focus of the pulse laser light irradiation is focused on the gold thin film, and then the glass bottom dish placed on the inverted microscope is slid. The cell was brought close to the focal point of the pulse laser beam irradiation. Thereafter, pulse laser light (532 nm, 15 mW, 1 nsec pulse, 4.8 KHz) was irradiated for 1/125 seconds by the method shown in FIG. 3 without using an ND filter with variable transmittance. FIG. 7 shows the observation result of the cover slip by the inverted microscope after the laser light irradiation. In FIG. 7, the arrow represents the position where the pulse laser beam is absorbed.
(結果)
 図7において、矢印で示すパルスレーザー光を吸収させた位置(スポット(焦点)径0.5μm)のみに金の薄膜が剥がれ、近接する細胞には何ら損傷はみられなかった。したがって、上面に金の薄膜がコーティングされたカバースリップの薄膜に対してパルスレーザー光を照射した場合には、非常に狭い範囲にパルスレーザー光が吸収しており、吸収レベルが高いことが明らかとなった。
(result)
In FIG. 7, the gold thin film was peeled only at the position where the pulsed laser beam indicated by the arrow was absorbed (spot (focal point diameter: 0.5 μm)), and no damage was observed in the adjacent cells. Therefore, it is clear that when the cover slip thin film with the gold thin film coated on the top surface is irradiated with pulsed laser light, the pulse laser light is absorbed in a very narrow range and the absorption level is high. became.
 上記結果から、本発明を用いると、隣り合う2つの細胞に異なる外来物質を導入して、それらの細胞間の反応を調べることや、プライマリーカルチャーのように2種類以上の細胞が混じり合う中で、特定の種類の細胞だけに目的の外来物質を導入することも可能となる。 From the above results, when the present invention is used, different foreign substances are introduced into two adjacent cells, the reaction between these cells is examined, or two or more types of cells are mixed together as in primary culture. It is also possible to introduce a desired foreign substance only into a specific type of cell.
 また、レーザー光の照射時間や照射回数を変えることにより、外来物質の導入量を調整することや、複数の外来物質を同一の細胞内に段階的に導入し、各段階での外来物質導入による影響を観察することが可能となる。 In addition, the amount of foreign substances introduced can be adjusted by changing the laser light irradiation time and number of times, or multiple foreign substances can be introduced into the same cell step by step. The effect can be observed.
 さらに、従来の細胞内へ外来物質を導入する方法では、外来物質を導入した細胞の増殖を前提とし、外来物質を導入した細胞が増殖した後に細胞を観察して外来物質導入による影響を調べていたが、本発明の細胞内への外来物質の導入方法によれば、シングル細胞への外来物質の導入が可能であることにより、増殖が非常に遅い、あるいは神経細胞のような増殖しないシングル細胞に外来物質を導入し、かかるシングル細胞をそのまま観察して外来物質導入による影響を調べることが可能となる。 Furthermore, in the conventional method of introducing a foreign substance into a cell, on the premise of the growth of the cell into which the foreign substance has been introduced, the cells that have been introduced with the foreign substance are observed after the growth to investigate the effects of the introduction of the foreign substance. However, according to the method for introducing a foreign substance into a cell of the present invention, it is possible to introduce a foreign substance into a single cell, so that a single cell that grows very slowly or does not grow like a nerve cell. It is possible to introduce foreign substances into the cells and observe the single cells as they are to examine the effects of the introduction of foreign substances.
 このほか、細胞として植物細胞を用いれば、本発明の細胞内への外来物質の導入方法で作製したシングル細胞からカルスを形成させて、外来物質により改変した植物体を作製することも可能となる。 In addition, if plant cells are used as cells, it is possible to form callus from single cells prepared by the method for introducing foreign substances into the cells of the present invention and to produce plant bodies modified with foreign substances. .
 加えて、金や白金の薄膜がコーティングされたカバースリップの作製は、スパッタリング装置により1分以内という短時間で作製可能であると共に、スパッタリング装置の清掃が容易である。そのため、カーボンの薄膜がコーティングされたカバースリップの作製と比べて製造工程が簡易であり、かつ低コストというメリットも有している。 In addition, the production of a cover slip coated with a thin film of gold or platinum can be produced in a short time of less than 1 minute with a sputtering apparatus, and the sputtering apparatus can be easily cleaned. Therefore, the manufacturing process is simple and the cost is low as compared with the production of a cover slip coated with a carbon thin film.
 本発明の細胞内への外来物質の導入方法によれば、細胞に損傷を与えることなく外来物質を高効率、且つ、容易にシングル細胞内へ導入することが可能となることから、バイオイメージング、再生医療、有用植物作製等の分野において有用である。 According to the method for introducing a foreign substance into a cell of the present invention, it becomes possible to introduce the foreign substance into a single cell with high efficiency and without damaging the cell, so that bioimaging, It is useful in fields such as regenerative medicine and production of useful plants.
 1  カバースリップ
 2  薄膜
 3  細胞膜
 4  細胞膜が近接している領域
 5  細孔
 6  外来物質
 7  細胞
 8  プラスチックディッシュ
 9  ガラスボトムディッシュ
10  レーザー
11  パルスレーザー光
12  透過率可変のNDフィルター
13  レンズ
14  シャッター
15  ダイクロミックミラー
16  対物レンズ
17  蛍光色素
18  接眼レンズ
DESCRIPTION OF SYMBOLS 1 Cover slip 2 Thin film 3 Cell membrane 4 The area | region which the cell membrane adjoins 5 Pore 6 Foreign substance 7 Cell 8 Plastic dish 9 Glass bottom dish 10 Laser 11 Pulse laser beam 12 Variable transmittance ND filter 13 Lens 14 Shutter 15 Dichromic Mirror 16 Objective lens 17 Fluorescent dye 18 Eyepiece

Claims (9)

  1. 細胞内への外来物質の導入方法であって、上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属の薄膜がコーティングされたカバースリップの前記薄膜上に細胞を静置し、導入する外来物質を含有する液体を前記細胞に接触させ、前記細胞に近接した薄膜に対してレーザー光を照射して前記薄膜にレーザー光を吸収させることにより前記細胞膜に細孔を形成し、前記細孔から前記外来物質を前記細胞内へ導入することを特徴とする細胞内への外来物質の導入方法。 A method for introducing a foreign substance into a cell, wherein the cell is allowed to stand on the thin film of a cover slip coated with a thin film of any metal selected from gold, platinum, silver and aluminum on the upper surface and introduced A liquid containing a foreign substance is brought into contact with the cells, and the thin film adjacent to the cells is irradiated with laser light to absorb the laser light, thereby forming pores in the cell membrane, and A method for introducing a foreign substance into a cell, wherein the foreign substance is introduced into the cell from a hole.
  2. カバースリップの下面から細胞に近接した薄膜に対してレーザー光を照射することを特徴とする請求項1記載の細胞内への外来物質の導入方法。 The method for introducing a foreign substance into a cell according to claim 1, wherein the thin film adjacent to the cell is irradiated with laser light from the lower surface of the cover slip.
  3. 薄膜に対して対物レンズを通してレーザー光を照射することを特徴とする請求項1又は2記載の細胞内への外来物質の導入方法。 3. The method for introducing a foreign substance into cells according to claim 1, wherein the thin film is irradiated with laser light through an objective lens.
  4. レーザー光のスポット径が0.2μm~2μmであることを特徴とする請求項1~3のいずれか記載の細胞内への外来物質の導入方法。 The method for introducing a foreign substance into cells according to any one of claims 1 to 3, wherein the spot diameter of the laser beam is 0.2 μm to 2 μm.
  5. 上面に金又は白金の薄膜がコーティングされたカバースリップを用いることを特徴とする請求項1~4のいずれか記載の細胞内への外来物質の導入方法。 The method for introducing a foreign substance into a cell according to any one of claims 1 to 4, wherein a cover slip having an upper surface coated with a thin film of gold or platinum is used.
  6. 薄膜をスパッタ法により形成することを特徴とする請求項1~5のいずれか記載の細胞内への外来物質の導入方法。 6. The method for introducing an exogenous substance into cells according to claim 1, wherein the thin film is formed by sputtering.
  7. 外来物質がDNA、RNA、タンパク質、ポリペプチド、アミノ酸、糖類、脂質、薬剤、蛍光色素のいずれか1以上の物質であることを特徴とする請求項1~6のいずれか記載の細胞内への外来物質の導入方法。 The foreign substance according to any one of claims 1 to 6, wherein the foreign substance is any one or more of DNA, RNA, protein, polypeptide, amino acid, saccharide, lipid, drug, and fluorescent dye. How to introduce foreign substances.
  8. 請求項1~7のいずれか記載の細胞内への外来物質の導入方法によって得られた形質転換細胞。 A transformed cell obtained by the method for introducing a foreign substance into a cell according to any one of claims 1 to 7.
  9. 請求項1~7のいずれか記載の細胞内への外来物質の導入方法に用いるための、上面に金、白金、銀及びアルミニウムから選択されるいずれかの金属からなる薄膜がコーティングされたカバースリップ。

     
    A cover slip having a top surface coated with a thin film made of any metal selected from gold, platinum, silver and aluminum for use in the method for introducing a foreign substance into cells according to any one of claims 1 to 7. .

PCT/JP2017/044259 2016-12-09 2017-12-08 Method for introducing foreign substance into cell using laser WO2018105748A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018555090A JP6981666B2 (en) 2016-12-09 2017-12-08 Method of introducing foreign substances into cells using a laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016238946 2016-12-09
JP2016-238946 2016-12-09

Publications (1)

Publication Number Publication Date
WO2018105748A1 true WO2018105748A1 (en) 2018-06-14

Family

ID=62490966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044259 WO2018105748A1 (en) 2016-12-09 2017-12-08 Method for introducing foreign substance into cell using laser

Country Status (2)

Country Link
JP (1) JP6981666B2 (en)
WO (1) WO2018105748A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513984A (en) * 2011-05-13 2014-06-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Photothermal substrate for selective transfection of cells
JP2015167551A (en) * 2014-03-11 2015-09-28 国立大学法人山口大学 Introduction of foreign substances into cells
WO2015170758A1 (en) * 2014-05-08 2015-11-12 公立大学法人大阪府立大学 Accumulation device and accumulation method, manufacturing device for microscopic object accumulation structural body, microscopic organism accumulation and elimination device, detection-substance detection device, separation-substance separation device, and introduction-substance introduction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014513984A (en) * 2011-05-13 2014-06-19 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Photothermal substrate for selective transfection of cells
JP2015167551A (en) * 2014-03-11 2015-09-28 国立大学法人山口大学 Introduction of foreign substances into cells
WO2015170758A1 (en) * 2014-05-08 2015-11-12 公立大学法人大阪府立大学 Accumulation device and accumulation method, manufacturing device for microscopic object accumulation structural body, microscopic organism accumulation and elimination device, detection-substance detection device, separation-substance separation device, and introduction-substance introduction device

Also Published As

Publication number Publication date
JPWO2018105748A1 (en) 2019-10-24
JP6981666B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
Pylaev et al. A novel cell transfection platform based on laser optoporation mediated by Au nanostar layers
Wu et al. In vivo delivery of nanoparticles into plant leaves
EP1225228A2 (en) A method for introducing foreign matters into living cells using a laser beam
Soman et al. Femtosecond laser-assisted optoporation for drug and gene delivery into single mammalian cells
KR20110108390A (en) Laser Mediated Thin Film Incision and Migration of Cell Colonies
Antkowiak et al. Application of dynamic diffractive optics for enhanced femtosecond laser based cell transfection
JP2023510963A (en) Devices and methods for transfection of cells and generation of clonal populations of cells
JP2004081086A (en) Cell culture microchamber
Wu et al. A highly reproducible micro U‐well array plate facilitating high‐throughput tumor spheroid culture and drug assessment
WO2009140701A2 (en) Delivery into cells using ultra-short pulse lasers
Kurkdjian et al. Non-enzymatic access to the plasma membrane of Medicago root hairs by laser microsurgery
JP7489054B2 (en) Method for obtaining cells and culturing cells
EP1725653B1 (en) Methods for purification of cells based on product secretion
Wymer et al. Confocal microscopy of plant cells
WO2018105748A1 (en) Method for introducing foreign substance into cell using laser
JP6374187B2 (en) Introduction of foreign substances into cells
Mitchell et al. Femtosecond optoinjection of intact tobacco BY-2 cells using a reconfigurable photoporation platform
EP3353276B1 (en) Cell culture support
Schomaker et al. Plasmonic perforation of living cells using ultrashort laser pulses and gold nanoparticles
LeBlanc et al. Optoperforation of single, intact Arabidopsis cells for uptake of extracellular dye-conjugated dextran
AU769568B2 (en) Method for processing cells
Shinde et al. Infrared Light Activated Highly Efficient Cell Therapy Using Flower‐Shaped Microstructure Device
KR100977532B1 (en) Ultrafast Laser Microprocess-based Useful Plant Resource Transformation Apparatus and Method
JP2023067487A (en) PLATE-LIKE SUBSTRATE FOR CELL OBSERVATION OR CULTURE, AND METHOD FOR MANUFACTURING PLATE-LIKE SUBSTRATE FOR CELL OBSERVATION OR CULTURE
Rosenbalm et al. Cell viability test after laser guidance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17878162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018555090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17878162

Country of ref document: EP

Kind code of ref document: A1

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载